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ABSTRACT It is shown that it is possible to design a proportional-plus-integral stabilizing compensa
tor for a class of feedback systems with exponentially stable infinite dimensional plants. This simple
compensator also enables the feedback system to track asymptotically polynomial inputs and to suppress
asymptotically polynomial disturbances.

h INTRODUCTION

Exponential stability and asymptotic tracking are among the most fundamental requirement in

control system design. Not surprisingly, over the years these requirements have received a considerable

amount of attention in the literature (see, e.g. [Bal.2, Bha.1, Ben.l, Che.2, Des.l, Gib.l, Mor.l]).

Nevertheless, the existence of simple, finite dimensional stabilizing compensators which ensure asymp

totic tracking of polynomial inputs, for feedback systems with infinite dimensional plants is still a

largely unresolved question.

We will consider a class of systems which are described by a linear differential equation in a Hil-

bert space. Before proceeding further, we will define exponential stability for these systems in terms of

the properties of a semigroup function and we will establish the relation between exponential stability

of these systems and the spectrum of the semigroup generator. With these preliminaries out of the way,

we will proceed to exhibit the existence of proportional-plus-integral (P-I) stabilizing compensators for

a class of feedback systems with infinite dimensional plants. As is well known [Des.l], P-I compensa

tors result in feedback systems which track asymptotically polynomial inputs and suppress asymptoti

cally polynomial disturbances.

~ The research reported herein was sponsored in part by the National Science Foundation under grant ECS-8121149, the
Air Force Office of Scientific Research grant AFOSR-83-0361, the Office of Naval Research under grant N00014-83-K-0602, the
State of California MICRO Program, and the General Electric Co.



2. PRELIMINARY RESULTS

Consider the multi-input multi-output feedback system S(P,K)t with infinite dimensional plant,

shown in Fig. 1. We assume that the plant has n( inputs and n0 outputs, and is described by a

differential equation in a Hilbert space E:

xp = ApXp + Bpe2, yi = CpXp + D^, (2.1)

where xpeE, e2elR"'» h6^ The operators Bp:HH{ -> E , Cp:E->wC0 and Dp:^Cl -> Rn* are

assumed to be bounded, whileAp may be an unbounded operator from E to E, with its domain dense in

E.

For any a > 0, we define a stability region D_„ c C, in the complex plane, by

D_o k [se € IRe(s) <-a}. Let U^ = [se CIRe(y) £ -a} denote the complement of£>_<, in C, let

3t/-a= {se € IRe($) = -a) denote its boundary, and let UZa = [se C IRefa) > -a). Next, let o(Ap)

be the spectrum of Ap and let p(Ap) be the resolvent set ofAp which is defined to be the complement of

c(Ap) in C. We will denote the domain and the range of Ap by D(AP) and R(AP), respectively. The

notation used in this paper follows the notation in [Ball] and [Katl].

Assumption 2.1: (i) Ap is a closed operator which generates an analytic semigroup, (ii) There

exists an cto >0 such that the spectrum ofAp is a subset ofD^. u

Assumption 2.2: The transfer function of the plant isgiven by Gp(s) = Cp(sl - APTXBP +Dpt where /

is the the identity operator inE. We assume that limw _ o„Gp(s) -> Dp.
*S> •

Weassume that we arerequired to design a minimal, finite dimensional, proportional-plus-integral

compensator, described by a differential equation of the form:

xe = A,xe + B& yi = CcXe + D& , (22)

where xcelR"c, e*ieRn°, yielR"' and Ac, Bc, Cc and Dc are matrices of appropriate dimension, with all

the eigenvalues of Ae equal to zero, for integral action. Since o(AJ = {0}, the compensator transfer

function is Ge(s) =Ce(sl - Ae)"lBe +De =J^ Fj tf, where each Fy e Rw> and mdepends on Ac. To

ensure well-posedness ofthe closed loop system, we assume that det(/^ +DJ)P) * 0.



We define the Hilbert space HbyH= Ex JR*e and its inner product by

{

T f '
Xp Zp
xe zc

\. J V. J

)li = {Xp,2p)e + {Xc,Zc) - .
ot

(2.3)

Since e\ = u\ - y2 and e2=y\+ «2, we obtain the following state equations for theclosed loop system

(2.4)

(2.5)

» «

xp

Xe
= A XP

Xc
+ B

"1

«2
k J

«1

e2
= C

xp

Xe
K J

+ D
"1

«2

where

Ap-Bpc(In+DpeylCp Btf^DJD^Cc
-Be(IB+DpDc)-1Cp Ae-Bc(IR+DpeTlDpCcA =

£ =

C =

D =

\-iBpDMn+DPcT1 B^DJD,),-i

B^+DpPeT* -B^+DfiX^

'~(In+DpeT% -(I^Dfi^Dfi,
-D^+DPcY'C, (I^DJDpTlCe

(I.+DficT1 -iln+DficT^
r\D&t+DpDcT1 UnfDcPp)

(2.6a)

(2.6b)

(2.6c)

(2.6d)

The domain Z)(A) =D(Ap) x IRBc c //; the operators B, Cand Dare easily seen to be bounded.

We will now show that because the operator Ap generates an analytic semigroup, the operator A

also generates an analytic semigroup.

Proposition 2.1: The operator A generates an analytic semigroup, TQ).

Proof: We can decompose the matrix A in (2.6a) as follows:

A=F+Q (2.7a)

where, for XceIR arbitrary



F =

• <

A, 0

a .

. G =

-BpDc(lHo +DfieT'Cp Bp(IH{ +DJDpTxCe
-Be(Ino +DpeTlCp Ac-B^ +DflcT'DpCc-Xj^

It is easy to see that F generates the analytic semigroup

7X0 =
Tp(t) 0

0 «Vr.

(2.7b)

(2.7c)

where Tp(-) is the semigroup generated by Ar Since Q is a bounded operator, it follows from the per

turbation theorem [Paz.l, p. 80] that A generates an analytic semigroup. •

From Proposition 2.1 and [Tri.l], we obtain

Proposition 22: The operator A satisfies the spectrum determined growth assumption, Le.,

sup(*e(a(A))) = lim MM .

Next, from Proposition2.2, we obtain the following result [Tri.1]:

Proposition 23: Given any p > sup(Re(a(A))) , there exists an M > 0 such that

\\T(t)\]H<M-e^ , Vf2>0.

Letx = [x], xQ*. Then the formula

f

*(0 = 7X0*0 + fTX' - x)Bu(x)dt

(2.8)

(2.JJ

(2.10)

defines a mild solution of (2.4) [Paz.l]. We can therefore define exponential stability of the feedback

system S(P,K) in terms of the semigroup T(0 as follows.

Definition 2.1: The feedback system S(P , K) is exponentially stable if and only if there exists a > 0

andM> 0 such that 117X011*<M-e™ , V t£0.
•

Propositions 2.2 and 2.3 yield the following result

Proposition 2.4: The system S(P , K) is exponentially stable if and only if there exists a > 0 such

that sup(Re(a(A))) < -a. •



We conclude this section by observing that it follows from Assumption 2.1 and Proposition 2.4,

that the plant is exponentially stable.

3. EXISTENCE OF A STABILIZING PROPORTIONAL-PLUS-INTEGRATOR COMPENSA

TOR.

We will establish the existence of a proportional-plus-integral stabilizing compensator in two

steps. First we will show that we can construct a proportional stabilizing compensator. Then we will

show that we can construct an integral, stabilizing compensator. Finally we will combine these two

results.

Definition 3.1: We say that a matrix transfer function G: C-» C"0*"' is analytic in a region Uc C

if each of its element is analytic in U. m

Assumption 2.1 is used in the Appendix to show that Gp(s) is analytic in IFL.

We define the characteristic function %(s) of the system S(P,K), by

X(s) =det(j/,e - Ac)-deu7n| +Ge(s)Gp(s)) =/cdet(/ni +Ge(s)Gp(s)) =Ate«/B<> +Gp(s)Ge(s)). (3.1)

To establish the next result, we will need the following Weinstein-Aronszajn formula.

Proposition 3.1 (The W-A Formula [Katl]): Let F be a closed operator in the Banach space X, let

Q be an F-degenerate operator in X, let R = rt(Q, and let y(s) = det(IR + (Q(F - sl)~l)\R) be the associ

ated W-A determinant, with IR the identity operator in R and (Q(F - sI)~l)\R the restriction of

Q(F - sTf1 to R. If A is a domain of the complex plane consisting of points of p(F) and of isolated

eigenvalues of F with finite multiplicities, then y(s) is meromorphic in A and, for A = F + Q,

v(s;A) = v(s;F) + v(s;y), seA , (3.2a)

where the multiplicityfunction v(s;$) of <j> in (3.2a) is definedby

{k if s is a zero of § of order k 1
-k if s is a pole of <J> of order k r , (3.2b)
0 for other seA J

and the multiplicity function v (s;F) for a closed operator F is defined by



*sp(F)
' s is an isolated point

all other cases

f 0 if J
(s;F) =^dim(P) if

I +00 in
of a(F) k (3.2c)

where P is the projection associated with an isolated point of a(F) (see [Katl, p.180]). •

Next, for any function/. C -» C, we define 2tf(s)) = [se C l/fr) = 0} to be its set of zeros.

Theorem 3.1 The system S(P,K) is exponentially stable if and only if there exists an a > 0 such

thatZ(x(j))cD_0.

Proof: (The notation and the definitions used in this proof follow [Katl].) We begin by decomposing

the matrix A as in (2.7a), (2.7b) with Re(Xe) < -04. Therefore (si - F) is invertible for

seU-a^ <= p(Ap), and Q is an F-degenerate operator because it is bounded. Consider .ye U-^. Since

(si - F)"1 exists and is bounded, we can define V(s) by

V(s) = Q(sI-FTl

-BpDc(IHo +Dp^C^sI - ApTl Bp(In{ +DJDpTlCe(s - KTl
-Be(IHo +DpDeTlCp(sI - ApT1 (Ae-Bc(IHo +Dfie)'lDpCe - XjH)(s - *JT1

(3.3)

Let B0 £R(BP) x R*e and let VBq(s) denote the restriction of V(s) to B0. Then

det(7 +V(s)) £ det(/B(J +VBJ is well defined. We will show that det(/Bo +VBJ =%{s) and then apply

the W-A formula.

Let bj £ Bpfij, j - 1,2,... ,/if, where [ejfjLi is the standard unit basis in R"f. Suppose that n£ «,- is

the largest positive interger such that any n+1 elements of the set [bj}%i are linearly dependent in the

Hilbert space H. Without loss of generality, we can assume that {fyJjLi isa basis for R(BP). Under this

basis, the linear operator Bp assumes the form Bp =(/^ IBp) where the i-thcolumn of Bp is obtained

by expressing bm in terms of the basis {fyjjbi- Let B k (bi,b2,...,b^. Then it is easy to show that

VBq(s) =
-BpDcdn, +D^T'C^sI - Ap)"lB Bp(IH( +Dfi^C^s- XCTX

-BC(IR<> +DpcTxCp(sI - ApTlB (Ae - Bc(Ino +DpeylDpCe - Xjn)(s - Xf1

-B&d^ +DpDcT'M Bpd^DPpT^s-XcT1
-Bc(IHo +DpD^M (Ae - Be(I% +DpD^DpCc - Xjn)(s - X^'1

(3.4a)

(3.4b)



whereMk [rx,r2,...,r^ 6 R^" with rt £ Cp(sl- ApTlbh 1£ i <S n. Because each element in (3.4b) is

in matrix form, it is easy to show that

X(s) =det(/j0 +VBo(s)) =AoW* +Gc(s)Gp(s)). (3.5)

Let A =17_a, where 0 <a £ oto is such that Ac U^ c p(A,). Then from the W-A formula

(3.2a), we have that

[seU^ Isea(A)) = [seU^ IseZ(x(s))) . (3.6)

If the system S(P,K) is exponentially stable, then, firom Proposition 2.4, we can find some 0 < a < olq

such that sup(/te(a(A))) <-a, i.e., a(A) cZ>_«. Therefore, from (3.6) [seU^ IseZ(x(s))} is an empty

set i.e., Z(x(s)) c D^. On the other hand, if there exists P>0 such that Z(x(s)) <z D_p, then, setting

a = mintp.cto}, we obtain from (3.6) that sup(Re(a(A))) £ -a, which implies that the system S(P,K)

is exponentially stable. This completes the proof. •

In the proofs to follow, we will make use of Rouche's theorem, stated below [Chu.l].

Rouche's theorem: Let /{•) and #(-) be functions which are analytic inside and on a positively

oriented simple closed contour C in the complex plane. If \fls)\ > \g(s)\ at each point s on C, then the

functions yfr) and/fc) + g(s) have the same number of zeros, counting multiplicities, inside C. •

Theorem 3.2: Consider the feedback system S(P,K) in Fig. 1 and suppose that Ac = 0, Bc = 0,

Ce = 0 and n,p0. Then there exists a matrix Dc*0 such that the closed loop system is exponentially

stable.

Proof: By Theorem 3.1, the system S(P,K) is exponentially stable if and only if there exists an a > 0

such that Z[deu7B/ +DcGp(s))] c D^. Suppose that Gp(s) « [&>{$)] and De = [d$. Then

dett7„c +DeGp(s)) =deKTAy + lAa&W
A=l

»f "0

= 1+ ISAXtM +o(s) £ 1+H(s) , (3.7)
fc*i*=i

where o(s) represents the second and higher order terms in dy and gif{s)t and At>- = 1 when i =y, and

Aij = 0 otherwise. Because Gp(s) is analytic on Ul^ and because of Assumption 2.2, there exists an



positive a < Oo and M > 0 such that \gi/s)\< M,V sedU^. It is clear that we can always choose a

matrix Dc*0, with sufficiently small components, </#, to ensure that \H(s)\<iy sedU-a. Setting

C = 3C/-a, f(s) b 1 and g(s) = //(*), we obtain from Rouche's theorem that

det(/„e +DcGp(s)) = 1+//($) has the same number of zeros in U-a as /(•), which is zero. Therefore

det(/„ +DeGp(s)) has no zeros on £/_<,, i.e„ Z(/„ +DcGp(s)) c Z>_o, which completes the proof. •

Assumption 3.1: The matrix Gp(0) has maximum rank, i.e.,0 is not a transmission zero of Gp(s). •

Theorem 3J: Suppose that Dc = 0 and Ac = 0, so that Ge(s) = —C^. Then there exists an n,- x n0
s

maximum-rank matrix F{ such that for any Be, Ce such that C,Be - F/, the closed loop system is

exponentially stable.

Proof Case I: nt = n0, i.e, the plant and the compensator transfer matrices are square. Let

nc - m= not Be = F/eR ,CC =/v From Theorem 3.1, we know that the system is exponentially

stable if there exists an a > 0 such that

Z(tet(sln) det(/„c +Gp—)) =Z(fet(sIHe + GpFi)) c £L« . (3.8)

Suppose that Gp(s) = [gi/s)] and F7 = fty]. Hence

He ne

deKsIt+GpFj) =/» +/e_1£ J/o&uCs) +/e"2( •••)+•• +detGpdetF7. (3.9)

Let /(*) =j"e and let 5(5) =Z'"1 £ Etou(s) +^ ••• )+ ' ** +detGpdetF/. Suppose that

j/iyl <8,Vy. Let 0 < a < Oo and suppose that seU-a, Then

lg(s)l £'if^lEE^rful +bV^( •••)+ ... + detGp-detF/

c

^/VUl"c(Ur1A/8 +Ur2Af252 +ljr3M353+ ••• +u"^M'V)i (3.10)

where Nt is the number of product terms in the coefficients of kl""\ N = max,- Nh and A/ > 0 is such



that \gif(s)\ <M,V sedU-a. Hence, since \s\ Za for any sedU^ , if 5<-r^-,
2NM

'̂ FT1 =̂ *WsVlM8 +Ur2M282 +- +Isr'Af'S**)f(s) \f(s)\

NM8 NM8 2NM&

W-M8 <x-M5 a

Setting C=dt/L^ and applying Rouche's theorem, we conclude that detft/^ + Gp(s)Fj) has nc

Now we let C =Ce £ {se C I\s +cl <e/2) where e >0. Clearly, there is an e0 >0 such that

if e £ Co, then Ce c £/_„. Since by Assumption 3.1 detGp(0) * 0, it follows by continuity that there

exists an e^O.Eo) such that detGp(-e) * 0 for all e £ e^ Finally, there is an £2e(0,£i) such that for all

ee(0,E2), if Fi =Gp^-6)8* then j/y <a / 2MV\ V (/, is satisfied, and, inaddition,

det(s/ne + Gp(s)Fj) = det((^-6)/Bc + Gp(j)F, - zln)

(3.11)

zeros in

= det

i

(s +e)Ine + Gp(-e) + (s +e)JGP( -e + f(* +e) )dt G?(-z)z-zIH

= det (s + z)IHe + Z(s + Z)
i

\(jp( -Z + f(y +£) )dt <?!(-e)

=(* +E)Be + (^ +e)"'"^ +z)Qds) + (s + zf^zKs + z)2Q2(s) +

••• + z"%s +£)"«&,£), (3.12)

where the Qfa) are determined from the expansion of the determinant. It is easy to see that the Qt{s)

are analytic on U-a and therefore they are analytic on and inside C. Let Wt = max^c \Qt{s)\ and let

W=max,^. Let f(s) £ (s +£)"e and g(s) £ (s +z)"e~lz(s +z)Qx(s) + (s + z)"e~\\s + zfQ^s)

+ ••• +zHe(s +tfVn^y Then |fc)l =e"c / 2* V je C, and, ife<1/2T7,

\gW zfy^zlWx +(|)ne"2E2(-|)2W2 +.-• +EBe(|)X
2»,

£W
2»c



n. + 1 , n

0Be 1-E O"
(3.13)

Therefore we obtain that \f(s)\ > \g(s)\ V seC. It now follow from Rouche's theorem that

det(sIH + Gp(s)Fj) =/fr) + g(s) has the same number of zeros, ne, inside C as/fa). Therefore we have

shown that Z(det(a/„e + Gp(s)Fj)) c D_^ with £>0.

Case II: n0 < nt. Because of Assumption 3.1, we may assume the determinant of the first n0

columns of Gp(0) is not equal to 0. Let ne - n0, Bc =In<>, Ce =F/6lRw. It follows from Theorem

3.1, that the system is exponentially stable if there exists a >0 such that Z[det(j/B<r + Gp(s)F/)] <= £>_«.

The proof for Case II follows the same arguments as for Case I, except for the way in which we choose

F7. Let

GPAs)£

*l.l(»)

g2,l(.S)

gn^lis)

82*£s)

Sna.n(s)

Hnr*^xn0

8Un0+l)(s)

82An0+l)(s)

*W»^

'(»rno)xG|r,,<P

glsifa)

g^is)

gn^nis)

(3.14)

Then by the above assumption, detGPi«(0) * 0. Let e>0 be such that te\Gp/t(-z) *0 and let

F* =G£e(-z)z e R"**"1, and let F^R"**"" consist of the first n0 columns of Fe. Then, since

Gp(rzyFj = £/„, (3.12) becomes

detfef. + Gp(s)Fj)

= det

= det

(s + z)Ine +

fa + E)/Be+ Z(S + Z)

The rest of the proof follows that for Case I.

Gp(-z) + (-z + t(s + z))dt

[G'p(-z +t(s +z))dt

(s +£) [Gp\

10

Frel*

(3.15)



Case HI: n0 > /if. Let ne = nit Be =F7 and Cc = IH[. It follows from Theorem 3.1 that the system

S(P,K) is exponentially stable if there exists a > 0 such that

F F
Z(det(sln) det(/„o +Gp-j)) =Z(det(sln) det(/^ +-jGp(s))) =Z(de«X,e +F,Gp(s))) c Z>^. (3.16)

Because of Assumption 3.1, we can assume that the determinant of the first n, rows of Gp(0) is not

equal to 0. Let

GPAs)£

gi.i(s)

g2.l(s)

gut(s)

g2*f.S)

gn,.l(s) • ' " gnt.nft)

gnt +l,l(s) ••' gni+l,n{(s)

gn0.l(s) • ' ' gn0.nf.S)

0mjtfro-a}

(3.17)

*CV^«CV*0

Then by assumption, detGPf,(0) * 0. Let £>0 be such that detGPi,(-E) * 0, let Ft = G^i(-£)-£, and let

F7 eRB' ° consist of the first n% rows of F€. The rest of the proof proceeds as for Case I. This com

pletes the proof. •

We are now ready to establish our main result

Theorem 3.4: Suppose that Assumption 3.1 is satisfied. Then for any integer m £ 1, there exist m+1

«,- x n0 matrices Fj, 0 <,j <, m, withFm of maximum rank, such that, if [AC,BC,CC,DC] is a minimal real

ization ofthe matrix transfer function ££o F} /y, then the closed loop system is exponentially stable.

Proof: Case I: n% ^ n0. We will prove this theorem by induction. Since the only requirement on

De in the proof of Theorem 3.2, is that its components be sufficiently small, it is clear that there exists a

matrix F0( = De) with maximum rank such that /+Gp(0)F0 and Gp(0)F0 are both invertible. Hence the

Theorem is true for m = 0. Now suppose that m £ 1 and that we can construct a minimal stabilizing

compensator [Ae,B'c,Cfc,D'c], with transfer function 22o ^ ^* wnere Pm-\ has maximum rank and

11



Gp(0)F^_x is invertible. Now, see Fig.2a, consider this closed loop system as a "new plant" with

transfer function Gp(s) £ [(/„, + Gp(s) 2S? F'i' ^_1 GM 23>l F'i! & ^^

Gp(0) =[G^/Cir'G^/C-i =h0 for m>1 and Gp(0) =. (/„, + GJWfr1 Gp(0)F'0 for /n=l. In

either case, Assumption 3.1 is satisfied. According to Theorem 3.3, for this new plant, we can find a

stabilizing compensator K, whose transfer function is of the form F'mI, with ^eTR ° ° of maximum

rank. For this compensator, there exists a > 0 such that

z[det(^ +G^flO]

= Z

= Z

= z

m-1 m-1

detfef. +(/. +Gp(s) £ F; / sTlGp(s)(Z fj / tfO
(=0 f=0

m-1 m-1

detfc/. +(f*I + Gp(s) J^^'YGfiXl/^'Y^
j=0 j=0

m-1

(det[r% +Gp(s) £/fc~1^1del&%, +G^Stf-A +W~i
t=0 t=0

c D^., (3.18)

where Fii £ 0, Fi = Fri for 0£i£m-l and F„=0. Let

X£det(s^\ +Gp(s) JSoF^1^ =dst(irlIn)'det(IHo +Gp(j) 25W> ™* tet

74det(y»/Bo +Gp(j) 520(FwF/m +F^ =deK^/^-deK/^ +Gp(*) EWft.if'.+W By

assumption, &C*i.Ci,J>i is a minimal realization for XS1 F*lsi - (XS1^"-1"1)'̂ 17"/"1- since

F^i has maximum rank, it can be shown that £S1^m_W ^ <sW"1/» are coprime. From [Che.l,

Chap. 6], it follows that Xc is a square matrix ofdimension nc =deg(det(sm"lInJi)=(m-'iyn0. Because

^EZqF'i1 f is a stabilizing compensator for the plant Gp(s), it follows from Theorem 3.1, that there

exists a |3 >0 such that Z(X)e/>-p. It now follows from (3.18) that Z(Y) c £Ly, where y =min(a,p).

We now setFt =F^i^ +/;•, for 0 £ i £ m. Then Fm =F^-F^ has maximum rank because F^ has

maximum rank and F„ is invertible. Also Gp(0)Fm =(G^OJF^OF^ is invertible because GpCO)^!

and F'm are invertible. Hence we conclude that any minimal realization for the transfer function

JSo Fi / ** is a stabilizing compensator for the plant P.

Case II: nt < n0. We proceed again by induction,as for Case I, except now we reason in terms of

the configuration shown in Fig. 2b. Thus we now set
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(fyd^lSWi^GptoUn, + J£o F'tlJGpWr1 and FmeRB<XB' and we examine the set

Z[det(i/B| + F'mGp(s)] instead ofZ[det(5/Btf + Gpte)/^)]. The rest ofthe proof continues as for Case I

and is thereforeomitted. This completes the proof. •

4. CONCLUSION

Since it is possible to both stabilize and ensure asymptotic tracking of polynomial inputs and

asymptotic reejection of polynomial disturbances by means of very simple finite dimensional compensa

tors, it is clear that fairly complex design specifications may be possible to be satisfied by fairly low

dimensional compensators. Such compensators are best designed using nonsmooth optimization tech

niques, as outlined in [Pol.l].

APPENDIX: ANALYnCTTY RESULTS

Theorem A.1: The matrix transfer function Gp(s) = Cp(sl - Ap)~lBp + Dp is a componentwise ana

lytic function over UZ^.

Proof: First, we will prove that each component of Gp(s) =Cp(sl - Ap)~lBp + Dp is an analytic

function over Ut^. We denote the (i,f)-th component of Gp(s) by Gtfs). Then

Gy(s) =Cpi(sl - Ap)-lBp,j + by , (A.1)

where CPii. is the i-th row of Cp , Bpj is the j-th column of Bp and Dtj is the (#)-th component of D.

We will prove that Gij(s) is differentiable by showing that

Gjjjs + As)-G^s)
Ar-*0 As ~pt*,v~ "*" "p,'j
}*"„— TT — =-C .(si-Ap)~2B .. (A.2)

Consider Ay small enough such that both s and s+As belong to UZ^ c p(Ap). Then we have

,(C„(fr + As)I-Apr%,j +Dd-iP^-A^Brt + Dj> ,
I — + Cp;.(sl - AJ *BPt.j\ t

= lc,

((s + As)I-j
II II— -

As

((s + As)I-Aprl-(sI-Ap)-1
- p— + (sI-Ap)2

As

((s + As)I-Ap)-l-(sI-Aprl

BPJ t

*iiCp,-[iiF -—£—-—— + (^-APr2niiflp,yii
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((s + Asy-ApTl-(sI-APTl
As

siicyiir^-:—z—^z—v~ "p/ + (si-Apr2\\\wp\\

((s +Asy-Aprl\(sI-Ap)-((s +Asy-Ap)](sl-APT1
=IICP|||| t - J + (tf-Ap-2!!!!*,!!

= IICP|| || - ((s + As)I-ApT\sI- Apf1 + (si- AJ*H \\BP\\

=||CP||||((* +AsV-ApT^sI-Ap) +((s +A5)/-Ap)](j/-AprV-Aprl||!|Bp||

= \As\ \\Cp\\ \\((s + As)I - Ap)"1^ - Ap)~V - A^H ||Bp|| -> 0 as lAd -» 0. (A-3>

Therefore (A.2) is proved and Gij(s) is an analytic function onUZ^. •
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Figure 1: The Feedback system S(P, K)
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Figure 2.a: Feedback compensator structure for the proof of Case I in Theorem 3.4
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Figure 2.b: Feedback compensator structure for the proof of Case n in Theorem 3.4
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