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ABSTRACT

This thesis explores systematic approaches to design of high-speed algorithms and
architectures for real-time signal and image processing in general, and for one- and two-
dimensional recursive and adaptive digital filters in particular. First we address rate-
optimal software-programmable multiprocessor implementation of signal processing
algorithms described by data-flow programs. We introduce the notion of perfect datc:-
flow programs, and prove that fully-static rate-optimal multiprocessor schedules can
always be constructed for such programs using no retiming at all. We study properties of
program unfolding transformations, and derive an expression for the optimum unfolding
factor to reduce any data-flow signal processing program to an equivalent perfect data-
flow program, which can then be scheduled rate-optimally in a fully-static manner. A1
upper bound on the number of processors to achieve a rate-optimal schedule is also
derived.

Next we develop high-speed algorithms for one- and two-dimensional recursive and
adaptive digital filters. Look-ahead algorithms are proposed to change the basic linear
filter structures (while maintaining identical input-output behavior) and to create addi-
tional concurrency. Scattered look-ahead and decomposition algorithms are used to
implement high-speed recursive and adaptive digital filters using fine-grain pipelining,

with logarithmic increase in hardware for a linear increase in the sample rate. A



technique of incremental output compusation is proposed and used to dezive incremental
block digital filters of linear multiplication complexity in block size, as opposed to the
square multiplication complexity in all previous block filter structures. Two-dimensional
gecursive digital filters inherently possess large amount of concurrency. An index map-
ping transformation is used to exploit this concurrency, and to derive fine-grain pipelined
and one-dimensional block implementation of two-dimensional recursive digital filters.
Look-ahead and incremental computation techniques are extended to two-dimensions,
and are used to derive an efficient incremental two-dimensional recursive block digital

filter architecture.

Look-ahead and program unfolding transformations are performed on general itera-
tive data-flow signal processing programs to increase concurrency. These transforma-
tions are usetul where the designed algorithms are unable to meet the real-time require-

ments of the target application.
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1

INTRODUCTION

1.1. INTRODUCTION

The continuing advancement of scaled VLSI technologies has made it possible to
implement very complex functions on single chips at low cost. The computer aids for
design of integrated circuits (ICs) have also advanced to a point that a designer can
quickly design a chip starting with architecture design specifications. As an example,
many designs that required two or three years of design time five years ago can be done
within only two to three months today (for an identical size design team). However, in
| order to fully utilize the silicon area in an efficient manner for any specific application, it
is necessary to optimize the algorithms and/or architectures by applying suitable u-ansfor-'
mations. For example, one can make more dramatic improvements in silicon area of an
IC chip implementation by finding a more efficient algorithm or a better architecture of a
given algorithm, as opposed to finding a minimum transistor circuit realization for the

building blocks (such as adder units or memory cells) of the system.

While the process of chip design from architecture specifications has been well
understood and fairly well automated, the algorithm and architecture design from appli-
cation or problem speciﬁcations still remains a difficult task. Over the past decade,

researchers have succeeded in systematically mapping a class of regular iterative
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algorithms on systolic arrays starting with algorithm specifications (see [1-8]). However,
finding efficient solutions to implementation of general irregular algorithms still remains
an open ‘problem. Several computer-aids for algorithm-specific custom implementations
have also been developed in the last five years. Examples of these systems include the
Lager design system at Berkeley [9], the Cathedral design system at IMEG, Belgium
[10], and th: silicon compiler developed at the GE R&D Center [11]. These design sys-
tems currently lack the ability to perform transformations on algorithms. These systems
are also architecture-specific; they do not explore the entire algorithm and architecture
design space.

The goal of this thesis is to develop algorithm and architecture designs for high-
speed real-time digital signal and image processing systems. Systematic approaches are
explored to transform existing algorithms to create concurrency. These transformation
schemes can be applied to a class of algorithms without altering their input-output
behavior or functionality. The transformation schemes developed in this thesis can be
basically divided into four broad categories. They are program unfolding, retiming,
look-ahead and decomposition, and index mapping transformations. Program unfolding
transformation increases the number of tasks, which can then be distributed more evenly
among multiple processors. This transformation does not alter the basic algorithm, but
does alter the sequencing or scheduling of the tasks of the algorithm. With an optimum
unfolding factor, we can always construct a minimum-time or rate-optimal fully-static
multiprocessor schedule. The retiming transformation involves moving around the
delays in a data-flow program. This transformation can lead to a reduced iteration period,
but cannot guarantee a rate-optimal schedule. The third category of transformation

involves look-ahead computation schemes, which change the structures of linear
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recursive algorithms (while maintaining identical input-output behavior) to create addi-
tional concurrency. The decompbsition algorithms reduce the implementation complex-
ity in these algorithms from linear to logarithmic (with respect to steps of look-ahead).
The look-ahead schemes apply to linear recursive systems, and are demonstrated in this
thesis in the context of digital filters. The index mapping transformation is used to exploit

the inherent concurrency in the twc -dimensional recursive digital filters.

These algorithm transformations can often result in an efficient high performance
implementation (the efficiency measure is based on area-throughput tradeoff, and the
throughput is assumed to be reflected by the sample rate of the system, and not neces-
sarily the clock rate). This is be:ause an algorithm transformation on a particular system
can lead to a dramatic improvement in the implementation. The transformation tech-
niques developed in this thesis can form the core of an architecture synthesis system, and
can serve as the front end to one of the existing architecture-specific vertically-integrated

computer-aided design systems.

1.2. CONTRIBUTIONS OF THE THESIS

Chapter 2 of this thesis concentrates on the program unfolding transformation,
which leads to the construction of minimum-time fully-static multipfocessor schedules.
The basic idea of this transformation is to exploit the repetitive nature of operation in sig-
nal and image processing systems (which operate on infinite time series). These systems
and the corresponding iterative data-flow programs are non-terminating in nature. The
scheduling and task sequencing issues have been studied in great detail over last two
decades in the context of assembly line job scheduling and computer science. Minimiz-

ing the execution time over single pass of the program has been the goal in these sys-
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tems. However, in signal and image processing systems, the same tasks are performed
repetitively, and therefore we need to minimize the execution time of a single iteration

while exploiting maximum possible overlap of successive iterations.

The loop or feedback or recursion in the algorithms described by iterative data-flow
programs imposes a lower bound on the iteration or sample period. This bound is funda-
mental and cannot be broken even if infinite processors are available. The non-recursive
systems do not have any feedback, and do not have any lower bound on the iteration
period. The actual iteration period of any data-flow program may be much greater than
the iteration bound. A retiming transformation can improve the iteration period, but can-

not guarantee an iteration period equal to the iteration bound.

Unfolding a data-flow program leads to a new program with replicated tasks
corresponding to successive iterations. For example, if a program contains 20 tasks and is
unfolded by a factor of 5, then the unfolded program will contain 100 tasks belonging to
S consecutive iterations. Unfolding of iterative data-flow programs can lead to greater
concurrency in high performance implementations. Program unfolding increases the
number of tasks to be executed, and these unfolded tasks can be more evenly distributed
at compile time among multiple processors leading to reduced program execution time.
Whether an iteration period equal to the iteration bound can always be achieved by pro-
gram unfolding with a finite unfolding factor had remained an open question. We show
that unfolding the program beyond a certain factor does not lead to any further reduction
in the execution time. It is shown that this optimum unfolding factor is given by the least
common multiple of the loop delay operators in the data-flow program graph. This

unfolding factor leads to an exactly even distribution of the iterative tasks, and executes
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the program in minimum possible time. We derive upper bounds on the number of pro-
cessors to achieve minimum time schedules. In this context, we introduce the notion of a
perfect data-flow program, which can always be executed in minimum time without
requiring any unfolding or any retiming operation at all. We study properties of unfolded
data-flow programs, and show that an unfolding operation with the optimum unfolding
factor reduces any iterative data-flow program to an equivalent perfect data-flow pro-
gram. We also present extensions to multiple rate data-flow programs, and applications to

scheduling in non-homogeneous processor system implementations.

Many image processing, video signal processing, radar, sonar, and seismic signal
processing applications require very high sample rate implementations. As an example,
consider an implementation of a 5x5 convolver image processing system implementa-
tion. For a 512x512 frame size, and a frame rate of 30 frames per second, we need a
computation rate of 200 million multiply operations per second, which can never be
achieved by using a general purpose programmable signal processor implementation.
These high performance systems can be implemented with low-cost (i.e. with low silicon
area) by using dedicated custom IC chips, which use fine-grain pipelining and parallel-
ism. Many dedicated chips have been implemented using fine-grain pipelining in general
and bit-level pipelining in particular in the last two decades using bit-parallel [12-23] and
bit-serial [24-33] approaches.

The two basic approaches to achieving concurrency are pipelining and parallelism
or block processing. Suppose a single multiply/add operation can be clocked at 25 Mhz

in some technology, and we require a sample rate of 100 Mhz. Then, one way to imple-

ment this system is to pipeline the multiply/add operation by four stages, i.e. insert four
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pipeline delays or buffers or latches in intermediate portions of the multiply/add circuit.
Another approach is to duplicate the hardware by four times. In this case, we can in each
cycle operate on four input samples, and generate four output samples (the four non-
overlapping samples form a block). With a clock period of 25 Mhz, and a block size of
fonr, we can achieve an effective system system sample rate of 100 Mhz. Naturally, any
corabination of pipelining and parallelism can also be exploited. In the above example,
yet another alternative would be to pipeline the multiply/add hardware by two stages, and
duplicate the hardware by two times. In general, with M stages or levels of pipelining,
aad with a block size L, we can get an effective improvement in sample rate by a factor
of LM . Pipelining is preferred to block processing, since pipelining exploits concurrency
with reduced hardware penalty.

Exploiting fine-grain pipelining and block processing techniques in non-recursive
systems is straightforward. However exploiting these techniques in recursive systems is a
real challenge [23]. This is because the computational latency associated with the inter-
nal recursion or feedback in recursive systems limits the opportunities to use fine-grain
pipelining and block processing techniques to achieve high sample rate realizations. In
chapter 3, we develop techniques to pipeline recursive digital filters in an area-efficient
manner. Fine-grain pipelining of recursive loops by simply inserting latches is useful for
applications requiring moderate sample rates and where multiple independent computa-
tions are available to be interleaved in the pipeline; but not where a single recursive

operation needs to be performed at very high sample rates.

We introduce a new look-ahead approach (referred to as scatrered look-ahead) to

pipeline recursive loops. In the look-ahead algorithm, we iterate the recursive state
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update representation, and implement the new recursion. This approach also improves
the iteration bound of the realization. It is shown that the existing clustered look-ahead
approach to pipelining recursive filters does not guarantee stability, whereas our new
scattered look-ahead approach does guarantee stability. We also propose a new decom-
position technique to implement the non-recursive portion (generated due to the scattered
look-ahead process) in a decomposed manner (for cases where the number of loop pipe-
line stages can be expressed as a power of 2) to obtain concurrent stable pipelined reali-
zations of logarithmic implementation complexity with respect to the number of loop
pipeline stages (as opposed to linear). The upper bound on the roundoff error in these
pipelined filters is shcwn to improve with an increase in the number of loop pipeline
stages. We derive efficient pipelined realizations of both direct form and state space
form recursive digital filters. Based on the scattered look-ahead technique, we present
fully pipelined and fully hardware efficient linear bidirectional and unidirectional ring

systolic arrays for recursive digital filters.

In chapter 4, we. address block implementation and fine-grain pipelined block
implementation of recursive digital filters. In a block implementation, we process sam-
ples in non-overlapping blocks. With a block size of L, we can Mme the sample rate
by a factor of L. We extend an existing linear complexity direct form block filter struc-
ture to higher order systems, and refer to it as the incremental block filter. Block imple-
mentation of state space recursive digital filters has been known for a long time. The two
existing popular block structures are the block-state structure, and the parallel block-state
structure. However the multiplication complexity of these structures is proportional to
the square of the block size. The block state update operation in these filter structures is

performed based on the clustered look-ahead computation, and requires a linear
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complexity in block size. But, the output computation of the complete block is done all at
once and requires a square complexity in block size. We introduce a new technique of
incremental output computation that has lincar complexity in block size. Based on the
clustered look-ahead and incremental output computation approaches, we derive our new
incremental block-state structure for block implementation of state space filters of multi-
plication complexity linear in block size. The incremental block-ttate structure is also
extended to the multirate recursive filtering case. We combine the techniques of scat-
tered look-ahead, clustered look-ahead, decomposition, and incremental output computa-
tion to introduce several pipeline stages inside the recursive loop of the block filter. We
derive deeply pipelined block filter structures for implementation of direct form and state
space form recursive digital filters. The multiplication cbmplcxizy of these deeply pipe-
lined block filters is linear with respect to the block size, logarithmic with respect to the
number of loop pipeline stages, and the complexities due to pipelining and block process-
ing are additive. In summary, we can increase the sample rate in recursive digital filters
by a factor LM with O (L +O (log M) multiplication complexity using our techniques,

as opposed to O (L 2M2) multiplication complexity using previous approaches.

In chapter 5, we address high performance implementation of adaptive and time-
varying recursive digital filters. We extend the look-ahead and decomposition algorithms
to time-varying systems. Previous approaches to high sample rate adaptive lattice filter
implementations have been based on word-level pipelined word-parallel (or "block")
realizations. We show that adaptive filters can be implemented in an area-efficient
manner by first using fine-grain pipelining, and then using block processing in combina-
tion with pipelining if further increase in the sample rate is needed. We show that with

the use of the decomposition technique, high speed realizations can be achieved using
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pipelining with a logarithmic increase in hardware (the block realizations require a linear
increase). We derive pipelined word-parallel realizations of high sample rate adaptive
lattice filters using the techniques of look-ahead computation, decomposed state update
implementation, and incremental output computation. These three techniques combined
together make it possible to achieve asymptotically optimal complexity realizations (i.c.
asymptotically the same complexity as non-recursive systems) of high speed adaptive lat-
tice filters (in both bit-serial and bit-parallel methodologies) and provide a "system solu-
tion" to high speed adaptive filtering. The adaptive lattice filter structures are ideal for
high sample rate implementations, since the coefficients of a particular stage are adapted
order-recursively based on the error innovations of the previous stage, and the coefficient
update recursion inside each stage is linear in nature. An example of a normalized sto-
chastic gradient adaptive lattice filter is presented, and its complexity, latency, and

implementation methodology tradeoffs are studied.

Chapter 6 focuses on exploiting concurrency in direct-form and local state-space
form two-dimensional recursive digital filters to obtain efficient implementations. Unlike
one dimensional recursive systems, two-dimensional recursive digital filter algorithms
possess large amount of inherent concurrency, which can be exploited for fine-grain pipe-
lining and/or parallelism. The locus of these concurrent computations is referred to as the
concurrent computation region. We use an index mapping transformation to exploit this
concurrency, and derive fine-grain pipelined and one-dimensional block filter architec-
tures for the implementation of two-dimensional recursive digital filters. This transfor-
mation leads to appropriate interleaving (or indexing) of the input samples, and does not

require any algorithm transformation, and does not lead to any hardware overhead.
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Another approach to achieving concurrency is by two-dimensional block processing
using algorithm transformation téchniqucs. We extend the look-ahead computation and
the incremental output computation principles to the two-dimensional case, and derive a
new two-dimensional incremental block filter structure. The multiplication complexity
of our new incremental block filter with a block size LyxL3 is O (Max (L £L2L1L2)), as
opposed to O (L £L2) of the existing block-state filter structures. We then combine pipe-
line interleaving and incremental block filtering approaches to derive efficient filter struc-
tures. The notion of an index mapping function is used to derive the implementable delay
and quasi delay operators for the concurrent pipelined and/or blocked two-dimensional
architectures. The quasi delay operators represent delay operator in one dimension and
an advance operator in the other. We show that for an N -dimensional recursive filter, the
concurrent computation region corresponds to an (N—1)-dimensional hyperplane. The
pipeline interleaving and the block processing concepts are also extended to higher

dimensional cases.

In chapter 7, we create concurrency in general iterative data-flow programs by
applying the look-ahead transformations locally to some critical nodes. This chapter uses
the theory of program unfolding and look-ahead transformations developed in chapters 2
through 6 of the thesis. The local transformations of iterative data-flow programs are par-
ticularly useful in systems where the algorithms cannot meet the real-time constraints of
the target application. Chapter 8 concludes the dissertation with suggestions for future

work.
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PROGRAM UNFOLDING

2.1. INTRODUCTION

The data-flow representation of algorithms clearly exhibits the available con-
currency, and forms a natural basis for program specifications in a multiprocessor
environment. Although the concept of data-flow computation has existed for quite some
time [1-2], only in recent years it has received wide attention [3-8]. In this chapter, we
consider non-preemptible deterministic periodic scheduling of iterative static large-grain
synchronous data-flow programs. In particular, we consider construction of minimum-
time multiprocessor schedules for these programs. The iterative programs are assumed to
be non-terminating in nature; in other words we assume the program is executed a very
large number of times, such that it can be considered an infinite number of times. This
nature of computation is frequently found in many {eal-ﬁme systems, typically in signal
and image processing applications. The loops in these programs lead to a lower bound
on the execution time of a single iteration, referred to as an iteration bound [9-11] (see
also [8,12] in the context of asynchronous systems) in the remainder of the chapter. The
execution time of a single iteration is referred to as an iteration period, and a schedule is
said to be rate-optimal, if the iteration period is same as the iteration bound. Traditional

multiprocessor scheduling of these iterative flow graphs are based on critical path
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methods, which minimize the iteration period over one iteration of the program [13-14].
These techniques do not exploit the repetitive nature of the program, and rarely achieve
an iteration period equal to the iteration bound. Often the program can be retimed to
achiéve a reduced iteration period, but the retiming [15-17] of a program cannot guaran-
tee a rate-optimal implementation.

Past efforts towards rate-optimal scheduling of iterative flow graphs have been
based on construction of cyclo-static schedules [18-22]. These schedules exploit the
repetitiveness of the data-flow programs. A cyclo-static schedule is characterized by a
lattice PxT, where P corresponds to the processor displacement and T is the time dis-
placement (same as the iteration period). A processor displacement P in a schedule
implies that if the iteration i of a certain task is scheduled in processor p, then the itera-
tion (i +1) of the same task is scheduled in processor (p+P) modulo Py, where Py is the
end point of the processor lattice (which can be multidimensional). A time displacement
T implies that if the iteration i of a task is scheduled at time ¢, then the iteration (i+1) of
the same task is scheduled in time (¢+7). Table 2.1 shows a partial schedule of two
iterations of a cyclo-static schedule (from [18]). The symbol A; denotes the i -th invoca-
tion or i -th iteration of task A. In the example of Table 2.1, there are 10 tasks in each
iteration, and 4 processors arranged in a 1-D space. The processor displacement in this
schedule is 2 units, and the time displacement or the iteration period is a_lso 2 units. As an
example, task 3; (i.e. iteration 1 of task 3) is scheduled in processor P, at time unit 1,
and task 3, in processor P3 at time unit 3. Task 33 can be scheduled in processor P,
(which is 3+2 modulo 4) at time unit 5 (not shown in the Table). The PxT lattice for this
schedule is 2x2.
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Table 2.1: A Cyclo-Static Schedule

Pj - - 7, | 8 92 -
Py -1 L 14 12,]10] - -
Py 317 | 8 19 - - -

A schedule is fully-static, if the processor displacement is zero, i.e. P component of the
PxT lattice is 0. In other words, all iterations or invocations of a specified node or task
are scheduled in the same processor. Table 2.2 shows a partial schedule of two iterations
of a fully-static schedule [18], which has a processor-time lattice 0x2. In ﬁ fully-static
schedule, all tasks comresponding to a single iteration are first scheduled, and this

schedule is then replicated for all other iterations with 0 processor displacement.

Table 2.2: A Fully-Static Schedule

Processor F Schedules |
- - 2 10 | 22| 1

Py - 1 2 | 10, |
Pj - 1= 141914 19 -
P, |- IL 8 11 8% -1_-

P, Wl 1317 - - -

Whether fully-static rate-optimal multiprocessor schedules of iterative data-flow
programs can always be constructed has so far remained an open question. In this
chapter, we explore unfolding of these data-flow programs, and construction of fully-
static rate-optimal schedules of the unfolded program. Unfolding of the program leads to
an increased number of tasks, which can be more evenly distributed. Although unfolding
or blocking of iterative data-flow programs has been considered in [7,18-22], systematic
properties of unfolded data-flow graphs have so far not been studied. One question
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remains to be answered in this context. Is it possible to find an unfolding factor which
can guarantee a rate-optimal fully-static schedule? We study properties of unfolded
data-flow programs, and prove that an unfolding factor equal to the least common multi-
ple of the delays in the loops of the program always results in an admissible rate-optimal
fully-static schedule. It is also shown that th* worst-case complexity of constructing
fully-static rate-optimal schedules is polynomial (in number of nodes), as opposed to the

exponential complexity of constructing cyclo-static rate-optimal schedules [18-22].

The outline of the chapter is as follows. Section 2.2 describes the static data-flow
program model, which are described by data-flow graphs. Section 2.3 reviews the notion
of iteration bound. Section 2.4 reviews retiming of data-flow programs. In section 2.5, we
introduce the notion of a perfect data-flow program. These perfect programs always
achieve rate-optimal schedules requiring no unfolding and no retiming operations at all.
Section 2.6 studies properties of unfolded data-flow programs. The construction of
rate-optimal schedules by optimum unfolding of the data-flow program is addressed in
section 2.7. Section 2.8 outlines extensions of retiming and program unfolding tech-
niques to multiple-rate data-flow program graphs, and section 2.9 addresses applications
of program unfolding techniques to scheduling in non-homogeneous processor imple-

mentations.

2.2. ITERATIVE DATA-FLOW PROGRAM MODEL

The iterative data-flow programs are assumed to be synchronous in nature, and are
represented by data-flow graphs (DFGs). The nodes in the DFGs represent program or
code segments or tasks, and execute the code when invoked. The directed arcs

correspond to communication between the nodes, and have delays associated with them.
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These delays represent the states in the DFG, and are dictated by initial conditions during
the first iteration of the DFG. An arc with a single delay from node u to node v implies
that the instance v; depends upon ug, v, depends upon u; etc. By transitivity, this
implies that v; depends upon u;_; and all other past instances or iterations of u. Similar
argument applies to self loops also, i.e. where u; depends upon u;_;. Thus, if a task ¥; is
dependent upon ¥;_3, ¥;-3 etc., then we model this iterative computation with a self loop
and a single delay around the loop (similar to the reduced dependence graph model
[23]). It may be noted that modeling the program by reduced dependence is appropriate
for large-grain parallel compilation. However, it is necessary to consider complete
dependence to exploit fine-grain parallelism. The arcs without delays represent pre-
cedence relation, i.e., if there is an arc from node 4 to node v with no delay associated
with it, then node v must be scheduled after execution of node u is complete. But the
arcs with delays do not imply precedence. This is because if there is an arc from node u
to node v with a delay, node v can be executed using the available state information due

to the past iteration of u, and independent of the execution of the current iteration of u.

We assume the DFG to be computable, i.e. all loops in the DFG have one or more
delays. We assume that the DFG performs repetitive tasks on infinite time series. In
other words, we are concerned with non-terminating programs and feriod.ic schedules.
We assume the node computation times to be fixed, i.e. we are concerned with deter-
ministic schedules. This is a natural model for most real-time signal and image process-
ing systems. Each repetition of the DFG is referred to as an iteration, and the scheduling
period of a single iteration is referred to as the iteration period. We assume that we can-
not improve the functionality or granularity of any node in the DFG. By this it is meant

that a node cannot be broken into two or more nodes. The DFGs considered in .this
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chapter correspond to large-grain synchronous data-flow graphs. These DFGs can
correspond to either homogeneous or multiple sample rate systems. In a homogeneous
sample rate system, each node in the DFG is invoked only once during an iteration, and
produces a single sample to each of its outgoing arcs and consumes a single sample from
each of its incoming arcs when invoked. In multiple sample rate systems, different nodes
are invoked a different number of times in a single cycle (see [7] for theory of multiple-
rate DFGs). Sections 2.3 through 2.7 are devoted to study of homogeneous DFGs, and
the discussion of the multiple-rate DFGs is addressed in section 2.8.

Now we define some terminologies in a DFG.
Definition 2.1: A node in a DFG is an initial node, if and only if all of its incoming arcs

have delays.

Definition 2.2: A node in a DFG is a terminal node, if and only if all of its outgoing arcs

have delays associated with them.

Definition 2.3: A node v is a successor of node u, if there is a path from u to v with no

delay in the path. Then node u is referred to as the predecessor of node v.

Definition 2.4: A node v is an immediate successor of node u, if there is a directed arc

from u to v with no delay. Then, node u is an immediate predecessor of node v.

Any node which is simultaneously an initial node and a terminal node is represented as
an isolated component in the acyclic precedence graph. In the DFG of Fig. 2.1(a), node
B is an initial node, and nodes A and C are terminal nodes. The acyclic precedence
graph of this DFG is shown in Fig. 2.1(b).
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Fig. 2.1: (a) A DFG with three loops. L 3 corresponds to a self loop. The
node computation times are 10, 20 and 40 units for A, B,and C
respectively. The iteration bound is 35 units, and loop L, is the critical
loop, (b) Directed acyclic precedence graph, (c): Schedule with itera-
tion period of 60 units.
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2.3. ITERATION BOUND

Any DFG involving loops or recursions or feedback has an upper bound on the
computation rate or a lower bound on the iteration period [9-11). This iteration period

bound is given by

T.=Max {%’T} s - @.13)

where the maximum is taken over all loops / in the DFG, and T; is the sum of the com-
putation times associated with all the nodes in loop /, and D; is the number of delay ele-

ments in loop /. The loop bound for the I-th loop can be written as

T <DiTa. (2.1b)

T,
The loop 1o for which -Dlll is maximum is referred to as the critical loop, and the ine-
[

quality becomes a strict equality for this loop.

Example 2.1: Consider the DFG in Fig. 2.1(a) with 3 loops. The bounds imposed on the

iteration period by the three loops are respectively given by:

Li: tg+tp+1. 2T (2.2a)
Ly: 13T, (2.2c)

where 1, &, and 1. respectively represent the computation times associated with the

nodes A, B, and C. The iteration bound is given by

To=Max(fa ¥ ¥l

o+, t). O (2.3)
Fig. 2.1(b) shows the acyclic precedence graph associated with the DFG. The dou-

ble arrow represents the critical path in the precedence graph (a convention followed
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throughout this chapter). Since node B has a delay at its input, it can be invoked first.
Nodes C and A can be invoked only after the execution of node B is complete. A two-
processor schedule is shown in Fig. 2.1(c) for t, = 10, #, = 20, and r. = 40. The actual
iteration period is 60 units, although the iteration period bound is only 35 units for this

example. The loop L here is the critical loop.

24. RETIMING

Retiming was proposed by Leiserson, Rose, and Saxe to improve the clock rate in
synchronous circuits (see [15]), and is applied here to improve the iteration period of
multiprocessor schedules in DFGs. The process of retiming involves moving around the
delays in the DFG such that the total number of delays in any loop remains unaltered,
and the steady state input-output behavior of the system is preserved (see [15]). Removal
of a fixed number of delays from each of the incoming arcs of any node, and addition of
the same fixed number of delays to each of the outgoing arcs of the same node is an
example of a valid retiming operation applied locally to a node. Note that this also
corresponds to a cutset transformation around the node [16]. Thus, any local retiming
operation can be performed at a node, only if all of its incoming arcs have delays associ-
ated with them. Any valid global retiming operation can always be described as a linear
combination of such local retiming operations. Since the retiming operation preserves the
number of delays in a loop [15] and the loop computation times, it also preserves the
jteration bound of the DFG. The retiming operation can change the total number of
delays in the DFG. This can be verified by locally retiming a node in a DFG, where
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Fig. 2.2: (a) A retimed version of the DFG of Fig. 2.1(a), (b) Pre-
cedence graph, () Schedule with iteration period of 40 units.
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the number of outgoing arcs is different from the number of incoming arcs.

Fig. 2.2(a) shows a retimed version of the DFG of Fig. 2.1(a), obtained by perform-
ing retiming operation locally at node B. Note that the number of delays in each loop is
unaltered (but, the total number of delays in the DFG has changed). The retiming process
creates new initial conditions, and therefore, new precedence relations, new initial and
terminal nodes and new schedules. The precedence graph and the schedule corresponding
to the retimed DFG in Fig. 2(a) are respectively shown in Fig. 2.2(b) and Fig. 2.2(c). The
iteration period of the retimed DFG is 40 units, which is 5 units greater than the iteration
period bound, but 20 units less than the iteration period corresponding to the schedule in
Fig. 2.1(c).

The retiming process attempts to evenly distribute the delays, i.e. it tries to equalize
the computation times associated with all the nodes between any two delays in the criti-
cal loop. But it cannof guarantee an exactly even distribution of the delays, since an
exactly even distribution would require splitting of nodes, which is not permitted.
Because of this uneven distribution of delays, the actual iteration period is greater than

the iteration bound.

2.5. PERFECT DATA-FLOW PROGRAMS

In this section, we introduce the notion of perfect data-flow programs described by

perfect graphs. We will make considerable use of these graphs in later sections.

Definition 2.5: Any DFG which has one and only one delay in each loop is defined as a

perfect graph.

The DFG shown in Fig. 2.3(a) is an example of a perfect graph. This DFG has one initial
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Fig. 2.3: (a) A Perfect Graph, (b) Precedence graph, (c) Partial
schedule of two iterations. The iteration period of 3 units is obtained by
overlapping two successive iterations. This schedule is rate-optimal.
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node (node D ), one terminal node (node E ), and three loops, and all the loops are critical
(assuming unit execution time fof each node or task). The iteration bound for this DFG
is 3 units of time (u.t.). The precedence graph for the DFG is shown in Fig. 2.3(b), and
the length of the critical path is 5 u.t Hence, any CPM schedule would require an itera-
tion period of 5 u.t. However, we can exploit the periodicity or cyclic nature of the
schedules, and overlap consecutive iterations to obtain a rate-optimal fully-static
schedule as shown in Fig. 2.3(c). Note that the DFG did not need to be refimed to obtain
a rate-optimal schedule. In fact, the perfect graphs have the property that they directly
lead to rate-optimal fully-static schedules (and therefore completely eliminate the need
for retiming or program unfolding), and it is this property that makes the notion of per-
fect graphs useful and important. The schedule in Fig. 2.3(c) has an iteration period of 3
(which is rate-optimal), and an input-to-output delay of 5 (the input-to-output delay is
defined to be the maximum delay or latency from any initial node to any terminal node).
Fig. 2.4 shows several retimed versions of the DFG in Fig. 2.3(a), and the
corresponding rate-optimal fully-static schedules. Even though all the schedules in Fig.
2.3 and 2.4 are rate-optimal, the schedule in Fig. 2.4(c) is only delay-optimal, which has
an input-to-output delay of 3 u.t. Thus, retiming perfect graphs does not improve the

iteration period, but may improve the input-to-output delay.

One might have already observed that not all the initial nodes necessarily start at the
same time. For example, the executions of the starting nodes D and E in the perfect
graph of Fig. 2.4(a) are skewed by one unit of time. The skewing of initial nodes permits
overlap of consecutive iterations, and is often essential for construction of rate-optimal

schedules.
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Fig. 2.4: Several retimed versions of the perfect graph of Fig. 2.3(a),
and corresponding rate-optimal schedules.
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Definition 2.6: An arc from node u to node v is said to be rransitive, if there is a path
from node u to v, and the number of delays associated with the arc u—»v and the path
from u to v are identical (similar to the definition in [24] for a directed acyclic graph). A
gingle path can have more than one associated transitive arcs. The number of delays in

the transitive arc ¥ —v can be either 1 or 0 in a perfect DFG.

Example 22: See Fig. 2.5 for examples of transitive arcs. In Fig. 2.5(a) and Fig. 2.5(b),
the path A 5B —C and the arc A —C contain equal number of delays (0 in Fig. 2.5(a)
and 1 in Fig. 2.5(b)). Hence, the arc A—=C is transitive. In Fig. 2.5(a), the path
A —B —C implies that there is a precedence constraint between invocations of task A
and C. The transitive arc A =C also dictates the same constraint, and is therefore redun-

dant. O

Definition 2.7: A loop is said to be a maximal loop if it does not contain any transitive

arcs. A loop which is not maximal is referred to as a non-maximal loop.

Example 2.3: The perfect graph in Fig. 2.5(c) has a single maximal loop. This is because
the graph contains two transitive arcs, and after deletion of these two transitive arcs the
DFG contains a single maximal loop, which is A =B —-C —D —A . This maximal loop
has 3 non-maximal loops associated with it. The loop bounds of the associated non-
maximal loops can be derived from that of the corresponding maximal loop by deleting
the computation times of the appropriate nodes. The loop bound for the maximal loop in
Fig. 2.5(c) is given by

tag+tp+tc+13 <Te.. (2.4a)
The loop bounds of the three associated non-maximal loops are given by
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Fig. 2.5: Ilustration of transitive arcs.



PROGRAM UNFOLDING 29

:¢+t,,+t,<T...t,+tc<T..,t¢+t;,+:¢<T-. (2.4b)
The above non-maximal loop bounds are obtained by deleting the computation times of
the appropriate nodes. Note that the loop bounds for the associated non-maximal loops
are automatically satisfied if the loop bounds for the corresponding maximal loops are
satisfied. D

Lemma 2.1: The number of loop delays in a maximal loop and its associated non-
maximal loops are same. This is true since the non-maximal loop consists of transitive
arcs and from definition 2.6, the number of delays in a transitive arc and its associated

path are same.

Lemma 2.2: A non-maximal loop can never be a critical loop.
Proof: This follows from lemma 2.1 and definition 2.6. From lemma 2.1, the maximal
loop and the associated non-maximal loops have the sane number of delays, and from
definition 2.6, the maximal loop contains all the nodes belonging to the associated
non-maximal loop as well as additional nodes. The total computation time of the max-
imal loop is greater (for identical number of loop delay operators) than the non-

maximal loop, and so the maximal loop has a more critical loop bound. O

Lemma 2.3: A schedule for the graph obtained after deleting all the transitive arcs in the
original DFG is an admissible schedule for the original DFG.
Proof: Deletion of a transitive arc does not alter the precedence constraints. Thus,
deletion of all transitive arcs from the DFG does not alter its precedence constraints.
Hence an admissible schedule for the graph obtained from the DFG after deletion of

all the transitive arcs is also an admissible schedule for the original DFG. O
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Definition 2.8: A schedule of a list of Q nodes Ny—N2— -+ —Np is said to be con-
tiguous if the nodes are scheduled in that order without any intermediate gap or idle time.
Note that any node can be scheduled in any processor in a multiprocessor implementa-

tion.

Now consider the following algorithm for scheduling of the recursive nodes of ‘ ie per-
fect DFG (that is, the scheduling of the nodes not belonging to any loop is nct con-
sidered).

Algorithm 2.1: First, we remove all the transitive arcs from the perfect graph, sance the
precedence relations due to these are automatically satisfied (see lemma 2.3). All the
remaining loops of the DFG are maximal. The maximal loops are then ordered, and
scheduled according to the decreasing order of their loop computation times. The nodes
in each maximal loop are also ordered to form a list with the node containing the loop
delay at its input arc as the leading node of the list, and the other nodes are placed so as
to satisfy the precedence constraints. A separate processor is assigned for scheduling of
each maximal loop. First, the nodes of the critical loop are scheduled contiguously in
processor 1. Then, the nodes of the next critical loop are scheduled in processor 2 such
that the schedules completed so far are preserved. In other words, if some of the nodes of
this loop also belong to the critical loop (an;l therefore have already been scheduled in
processor 1), then their schedule should remain unaltered. This process is repeated until
scheduling of all the maximal loops is complete.

Remark: Note that we do not assume the scheduling of all the maximal loops to begin at

- the same time unit. In other words, the scheduling of the maximal loops in different pro-
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cessors can be skewed in time. This skewed scheduling separates consecutive iterations
of the DEG by a non-vertical boundary. Also note that it is possible to merge the tasks of
two or more processors to reduce the number of processors in a post-processing step, but
this is not considered here as a part of the algorithm. The complexity of the above fully-
static scheduling algorithm is polynomial in the number of nodes, whereas the complex-

ity of the cyclo-static scheduling algorithm proposed in [18-22] is exponential.
Some properties of scheduling algorithm 2.1 are summarized in the following lemmas.

Lemma 2.4: Nodes in any maximal loop of a perfect DFG are scheduled non-
contiguously (i.e. with intermediate gaps) if and only if a path consisting of nodes of this

loop has an associated parallel path with a longer path computation time.

Proof: In algorithm 2.1, nodes of maximal loops are ordered to form a list with the
node containing the loop delay as its leading node. A path corresponding to the maxi-
mal loop refers to a set of connected nodes, which are members of this list. To prove
the "if" portion, consider the path N—N3—N 4 corresponding to some maximal loop,
and its associated parallel path N;—N3—N 4, and assume the computation time of N
to be shorter than that of N3. This precedence results in a gap in scheduling of the
nodes of this loop, since N4 can be scheduled only after the execution of N 3 is com-
plete. To prove the “only if" portion, assume that there exists some gap between com-
pletion of N, and invocation of N3 in the scheduling of some path
«umN 9NN 3=N4—.... (call this path P;) corresponding to a maximal loop.
This would occur if the invocation of N is constrained by completion of another node

(say Ns). Denote the path ....—N5s—N3—..... as P3. If N3 is the only common node
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between P, and P, (i.e. Py and P have no node in common to the left of N3), then
the schedule of the nodes in the list ...—N1—N could be right-shifted so that com-
pletion of N, and N5 coincide. However, the existence of the gap in the schedule
implies that the the nodes to the left of N3 in paths P, and P, are dependent, and have
at least one node in common. This implies the existence of an associated parallel path.

This associated parallel path has a longer computation time. [

Remark: Two paralle] paths in a perfect DFG must have the same number of delays
(which can be either 1 or 0). If this were not the case, the two maximal loops containing
the two paralle]l paths would have different number of loop delays, and the DFG would
be imaperfect.

Lemma 2.5: A contiguous scheduling of the nodes of the critical loop of the perfect DFGs
is admissible.

Proof: From lemma 2.4, two parallel paths with different path computation times lead
tc a non-contiguous schedule, and the nodes of the path with less path computation
time are scheduled with an intermediate gap. Since the paths of the critical loop have
the largest path computation time, they can be scheduled without any intermediate

gap. Any loop with gaps in the schedule must be non-critical. O

Now we define two different types of processor idle time in the scheduling of the recur-
sive nodes of a perfect DFG (recall recursive nodes are nodes which belong to at least

one loop in the DFG).

Definition 2.9: The idle time of a processor is referred to as a gap delay (or gap time), if
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this idle time is a result of a non-contiguous schedule (i.c. there exist two parallel paths
with different path compumion' times). Any idle time, which is not a gap delay, is
referred to as a slack delay or slack time (also referred to as skew delay or shimming
delay).

Theorem 2.1: For any perfect graph, we can construct fully-static rate-optimal schedules

without requiring any retiming transformation.

Proof: The nodes of the critical loop can be scheduled contiguously requiring a period
equal to the critical loop computation time or the iteration bound. This schedule can
be replicated over successive iterations with no gap at all in the same processor with a
time displacement equal to the iteration bound. For each gap in the scheduling of
nodes (of non-critical loops), there exists a path with longer computation time. This
implies that the sum of the computation tiqxe and the gap time of any loop cannot
exceed the critical loop computation time (or the iteration bound), and therefore the
algorithm 2.1 results in a rate-optimal schedule. The schedule of the single iteration
can be replicated with zero processor displacement and with a time displacement
equal to the iteration period bound, and hence the schedule is fully-static. Note that
this results in a non-negative loop slack time equal to the difference of the iteration

bound and sum of the loop computation time and the loop gap time. O

Theorem 2.2: The number of maximal loops in a perfect graph represents an upper bound
on the number of processors to schedule the recursive nodes in a fully-static and rate-

optimal manner.
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Proof: The scheduling algorithm 2.1 assigns a separate processor to each maximal
loop. Hence, the upper bounds on the number of processors is equal to the number of
maximal loops of the perfect DFG. O

Example 2 .4: Consider the DFG of Fig. 2.6, and the corresponding schedules in Fig. 2.7.
The execution times of nodes D and F are 2 units each, and that of other nodes is 1 unit.
The perfect graph has 2 initial nodes (rodes H and F'), and two terminal nodes (nodes D
and G ). The loops are first ordered as HIABCEGH , FABCEF , and ABCDA . The critical
loop HIABCEGH is first scheduled in processor P1 (set.: Fig. 2.7(a)). Then, the nodes of
the next critical loop are scheduled in processor P2. Finally, the nodes of the last loop
are scheduled in processor P3. We observe that we can merge the tasks in processors P2
and P3 to a single processor as shown in Fig. 2.7(b). This permits us to obtain a rate-
optimal fully-schedule using 2 processors. [J

2.6. UNFOLDED DATA-FLOW PROGRAM GRAPHS

In this section, we study properties of unfolded or blocked data-flow program
graphs. An unfolded DFG with an unfolding factor J contains J invocations of each
node. The number of nodes and arcs in the unfolded DFG are respectively JN and JE,
where N and E respectively represent the number of nodes and arcs in the original DFG.
An execution cycle (or simply a cycle) of the unfolded DFG constitutes execution of JN

nodes, and corresponds to merged execution of J successive iterations of the original

DFG.

In the unfolded DFG, a node X; computes the results of iteration x;,xs at the k-th
cycle. As an example, let X be a node in the original DFG, and let X, X, and X3

represent the corresponding three nodes in the unfolded DFG forJ = 3.
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Fig. 2.8: (s) An equivalent unfolded DFG of the DFG in Fig. 2.1(a) for
unfolding factor of two. This unfolded DFG is a perfect graph, (b) Pre-
cedence graph, (c) Rate-optimal schedule.
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Then, the node X ; performs the iterations x3, X4, X7 in cycles 1, 2, and 3 respectively,
node X ; performs the iterations xlz, x5, xg in cycles 1, 2, and 3 respectively, and similarly
for X3. We assume the convention that xg is the initial condition. This implies that the
output of any arc with a unit delay from the node X3 will correspond to the initial condi-
tion x¢. To be more precise, an arc with a delay from the node X ; will not correspond to
Xg, but to x_3. This block delay notion is important in the framework of this chapter. To
conclude, a unit delay in the unfolded DFG is a J-slow delay.

The unfolded DFG can be constructed very easily from the original DFG (see [18]
for a systematic procedure). We illustrate this procedure here using the DFG of Fig.
2.1(a) as an example. Since each cycle in the unfolded DFG is periodic, and corresponds
to J iterations of the original DFG, we need to consider only first J iterations. ForJ =2,
we consider only the first two iteraticns of each node. The precedence constraints for the

two iterations of the DFG of Fig. 2.1(a) are summarized as below:

A1=fa(A0.B1,C0),B1=fp(A0),C1=fc(B)), (2.52)

A2=fs(A1,B2,Cy) . B2=fp(A1),C2=fc(B2), (2.5b)
where f; (.) represents the functionality associated with the node i. The dependence rela-

tions in (2.5a) correspond to the first iteration, and those in (2.5b) for the next iteration.
Note that the relations in (2.5b) are obtained from (2.5a) by shifting the indices appropri-
ately. The unfolded DFG is constructed by incorporating the precedence relations in
(2.5) and by inserting arcs with a unit delay from node A, to A, and B, and from C; to
A (to realize the initial conditions A g and C g respectively). The unfolded DFG is shown
in Fig. 2.8(a). The only initial node of the DFG is B, and the terminal nodes are A ; and
C 1. The precedence relations for this DFG are shown in Fig. 2.8(b). This unfolded DFG

has several nice properties. One can verify that the DFG is indeed a perfect graph (this is
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not a coincidence; systematic construction of perfect graphs from any DFG by unfolding
is studied in section 2.7). Thmfore, the unfolded DFG can be scheduled rate-optimally
in a fully-static manner as shown in Fig. 2.8(c). Now we study some properties of the
unfolded DFGs.

Lemma 2.6: The iteration bound associated with an unfolded DFG with an unfolding fac-
tor J is JT .., where T, is the iteration bound of the original DFG. The unfolded DFG
schedules J iterations of the original DFG in JT .. units of time, and the iteration bound

per iteration is not altered by unfolding.

Property 2.1: The number of delays in the unfolded DFG is exactly the same as that in
the original DFG.

Proof: The delays represent initial szates at the beginning of the execution. These
delays activate the invocations, and are updated each cycle. Let Dr denote the total
number of delays in the DFG. Then each iteration of the DFG updates Dy states to be
used during the next iteration. We know that the termination of each iteration updates
Dr values and the termination of the J-th iteration of the execution cycle of the
unfolded DFG must also update Dy values to be used for the next execution cycle of
the unfolded DFG. Thus unfolding conserves the number of delays in a DFG. As an
example, the DFG in Fig. 2.1(a) and the unfolded DFG in Fig. 2.8(a) both contain 3
delays. O

Property 22: Let T; and D; respectively correspond to the sum of all computation times

and the delay count associated with the i -th loop in the unfolded DFG. Then
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T; SJT..D; (2.6)
must hold.

Proof: Let T’.. be the iteration bound of the unfolded DFG. Then, T; ST’.D; must
hold. But, T’..=JT .. (due to lemma 2.6), and hence (2.6) must hold. O

Lemma 2.7: Any linear additive combination of the non-critical maximal loop bounds of

the original DFG can never correspond to a critical loop bound of the unfolded DFG.

Proof: Consider three non-critical maximal loops Ly, L2, and L3. Then, Ty <T.D;
and T,<T.D; and T3<T.Di;. Thus the linear additive combination
T1+T2+T3<T(D;+D3s+D3) can never be a critical loop, since this contains a
strict inequality, and a critical loop must contain a strict equality. The argument gen-

eralizes. 0O

Corollary: A critical loop bound in the unfolded DFG corresponds to a linear additive
combination of critical loop bounds of the original DFG. However, any linear additive

combination of loop bounds of the original DFG may not correspond to a critical loop

bound of the unfolded DFG.

Property 2.3: Any loop bound relation of the type (2.6) in the unfolded DFG can be
obtained either by multiplying a loop bound relation in the original DFG by a constant, or
by taking linear additive combinations of the loop bounds of the original DFG such that

the right side is a multiple of J.

Proof: The right side of the loop bound for any loop in the unfolded DFG must be a

multiple of J (when expressed in terms of T., the iteration bound of the original
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DFG) due to property 2.2. Assume that the i-th loop of the original DFG has a bound
T; $D;T... Any linear additive combination of one or more 160p bounds in the origi-
nal DFG, which corresponds to a loop bound in the unfolded DFG, must be of the

form

gaiTi s ('gai D)., Q.7

where N is the number of loops of the original DFG, and fla..o.- is divisible by J.
i=

Any loop bound in the unfolded DFG, which is not of the form (2.7), will imply an
entirely new loop bound in the original DFG. But this is not possible, since unfolding

does not create new loop bounds. O

Note that any linear additive combination of the loop bounds of the original DFG of the
form (2.7) may not correspond to a loop bound in the unfolded DFG. Now we discuss
four important special cases of (2.7) in the context of a single loop bound. Let the loop
bound of some loop in the original DFG be T S DT .., where T is the loop computation
time, D the loop delay count, and T ., the iteration bound of the original DFG. The itera-

tion bound of the unfolded DFG is T/ =JT o

Case I: J divisible by D : Let us assume J = QD and Q is an integer. Then a loop bound
of the unfolded DFG will be of the form QT € (JT..) or QT < T'.. This implies that one
loop of the unfolded DFG will contain a single delay and Q instances of the nodes of the
loop of the original DFG. Since the unfolded DFG contains J = QD instances of each
node and D delays (due to delay conservation, property 2.1), it must contain D distinct

loops with a single delay in each loop.
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Case II: D divisible by J: Assume PJ =D. The loop bound of the unfolded DFG is of
the form T € PT’.. The unfolded DFG contains J distinct loops, and P delays in each of

these loops.

Case III: D and J coprime: For this case, a loop bound in the unfolded DFG is of the
form JT €D (JT..) or JT SDT’.. The unfolded DFG contains one distinct loop with D

loop delays.

Case IV: General Case: Assume PJ = QD , where P and Q are coprime. The loop bound

of the unfolded DFG is of the form QT S PT’... The unfolded DFG contains -é- = -1’?-

distinc: loops with P delays in each of these loops.

Example 2.5: Consider the DFG of Fig. 2.1(a) and its unfolded DFG of Fig. 2.8(a). The
original loop bounds are

Ly ST lg+1p SToy 1+ 1 +8 S2T.,. (2.8a)
The loop bounds of the unfolded DFG (with unfolding factor two) are

2, ST a2t + 2t ST s tg +1p + 8 ST 0, 215 +8, ST'we,
which are linear additive combinations of the original DFG loop bounds. 0O

Property 2.4: Any loop in the original DFG with D loop delays leads to D distinct loops
in the unfolded DFG for an unfolding factor of KD . Each of these distinct loops contains
a unit loop delay, and K instances of each node belonging to the loop in the original
DFG.

Proof: This follows from special Case I of property 2.3. O
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gig. 2.9: (a) A DFG, (b) Equivalent unfolded DFG for unfolding factor
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Example 2.6: Consider the simple example of a two node DFG in Fig. 2.9(a). Fig. 2.9(b)
shows an equivalent unfolded DFG for an unfolding factor 6. The original DFG has 2
delaysintheloop.andtheunfoldedDFGhadeistinctloopswithasingledelayineach
loop. Each loop in the unfolded DFG contains 3 instances of the nodes of the original
loop for an unfolding factor of 6. O

2.7. FULLY-STATIC RATE-OPTIMAL SCHEDULING

This section uses the results of the previous sections to prove that the tasks of any

DFG can be scheduled rate-optimally in a fully-static manner.

One might conjecture that we can always achicve a rate-optimal schedule by using
an unfolding factor equal to the delay count in the critical loop and then by retiming the
unfolded DFG. This is because, the critical loop in the equivalent unfolded DFG would
contain a single delay, and the tasks in the critical loop of the unfolded DFG can then be
evenly distributed. However, this conjecture is not true! Although the single delay in the
critical loop permits an even distribution of the tasks in that loop of tke unfolded DFG,
another non-critical loop might suffer from an uneven distribution of tasks, and may lead
to an iteration period greater than the iteration bound. This is illustrated using the DFG
example in Fig. 2.10, where the loop delay counts in the DFG are 2 and 3 respectively.
The execution times of nodes A, B, C, D, and E in Fig. 2.10(a) are respectively 20, 5,
10, 10, and 2, and the iteration bound is 16, and corresponds to the critical loop L. The
precedence relation of the DFG is shown in Fig. 2.10(b), and the length of the critical

path (or equivalently the iteration period for this DFG) is 20 units.
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(b)

Fig. 2.10: (a) A DFG. The node execution times are 20, S, 10, 10, and 2
units for nodes A, B, C, D, and E respectively, (b) Precedence graph.
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Dy — E; — A

Cq

(b)

Fig. 2.11: () Unfolded DFG for the DFG in Fig. 2.10(a) with unfolding
factor 2, (b) Precedence graph
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Since the number of delays in the critical loop is 2, we construct an equivalent unfolded
DFG with J =2 as shown in Fig.‘z.ll(a). The precedence graph for the unfolded DFG is
shown in Fig. 2.11(b), and leads to an iteration period of 20 units. We can improve the
iteration period by retiming the unfolded DFG (since this unfolded DFG is not a perfect
graph). Fig. 2.12(a) shows the retimed ersion of the unfolded DFG, and Fig. 2.12(b)
shows the corresponding precedence relition. From the critical path in the unfolded

DFG, we observe that the cycle time corresponds to 35 units, or equivalently the iteration
period is -3‘25- =17.5 units (which is greater than the bound by 1.5 units). This is the
minimum iteration period that can be achieved with an unfolding factor of 2.

Now we proceed to prove that an unfolding factor given by the least common multi-
ple of the number of delays of the loops in a DFG will lead to a perfect unfolded DFG,
which can then be scheduled in a fully-static rate-optimal manner without requiring any
retiming at all. Before we prove this, let us consider the example of the DFG in Fig.
2.10(a). Since the delay counts in the maximal loops are 2 ad 3 respectively, the least
common multiple is 6, and hence we need an unfolding factor of 6 to obtain a rate-
optimal schedule. The unfolded DFG is shown in Fig. 2.13(a) for an unfolding factor of
6, and one can verify that it is indeed a perfect graph. The precedence graph of this
unfolded DFG is shown in Fig. 2.13(b), and the length of the critical path is 96, which
corresponds to an iteration period of 16 units, equal to the iteration bound. Now we
proceed to prove that fully-static rate-optimal scheduling of DFGs is admissible, and we
then derive an upper bound on the number of processors to achieve a rate-optimal

schedule.
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-

— A

Cy——> B2

By ———>>a,——> D,

o

(b)

Fig. 2.12: (a) Retimed version of the unfolded DFG in Fig. 2.11(a), (b)
Precedence graph



in Fig. 2.10(a) for unfolding
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Theorem 2.3: Any unfolded DFG with an unfolding factor equal to the least common

multiple of the loop delay counts of the original DFG corresponds to a perfect graph.

Proof: Since the unfolding factor is the least common multiple of the delay counts, it
is a multiple of the delay count in every loop. From property 2.4, any loop with D
delays must transform to D distinct maximal loops in the unfolded DFG, and all loops
in the unfolded DFG must have a single delay inside each loop. Since all loop delay
counts in the original DFG are less than the unfolding factor, any linear additive com-
bination will also lead to a single loop delay in the unfolded DFG. Since every loop
in the unfolded DFG has a single delay, the unfolded DFG is a perfect graph. From
theorem 2.1, the nodes in perfect graphs can always be scheduled in a fully-static

rate-optimal manner. O

Theorem 2 4: Recursive nodes (i.e. nodes belonging to one or more loops) of any DFG
can be scheduled in a rate-optimal fully-static manner by using at most P processors,

where P is the sum of the delay counts in all the maximal loops in the original DFG.

Proof: Since the unfolding factor is the least common multiple of the delay counts in
all the loops, each maximal loop with K delays transforms to K distinct maximal
loops in the unfolded DFG. Thus, the upper bound on the number of distinct tr;aximal
loops in the unfolded DFG (which is a perfect graph) is equal to the sum of the delay
counts in all the maximal loops of the original DFG. This is the upper bound on the
number of processors to schedule all the recursive nodes, since the upper bound on the
number of processors to achieve a rate-optimal fully-static schedule in a perfect graph

is equal to the number of maximal loops.
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Example 2.7: Fig. 2.13(b) shows the precedence graph of the unfolded DFG of Fig.
2.13(a). From the precedence graph, it is clear that the rate-optimal fully-static schedule
can be achieved with 4 processors. The upper bound on the number of processors for this
example is 5, since the 2 maximal loops in the original DFG contain respectively 2 and 3

loop delays. O

2.8. MULTIPLE-RATE DFGS

Multiple-rate DFG representations are useful in many signal and image processing
applications, typically in interpolation and decimation schemes. In such systems, dif-
ferent nodes are invoked different number of times in a cycle; the nodes consume dif-
ferent number of samples from each input arc, and produce different number of samples

to each outgoing arc [7].

12D 16D

8D 24D

Fig. 2.14: Local retiming in mulirate DFG. The node A is executed
two times in each cycle.
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Fig. 2.14(a) shows an example of a node of a multiple-rate DFG, which shows that
each invocation of node A consuines 2 and 3 samples from the two input arcs, and pro-
duces 4, 5, and 6 samples to the three outgoing arcs respectively. The numbers associated
with the arcs near the nodes represent number of samples consumed or produced and the
numbers in the middle of any arc represent the number of delays or buffer locations asso-
ciated with that arc. Any multiple-rate DFG can be equivalently described in terms of a
homogeneous or single-rate DFG. Therefore, the framework discussed so far will be
directly applicable to the homogeneous equivalents of the multiple-rate DFGs. From the
equivalent homogeneous DFG, we can determine the iteration bound, optimum unfolding
or blocking factor, and the processor bound of the multiple-rate DFG. The objective of
this section is to extend the notions of retiming to the case of multiple-rate DFGs, and to
use this extension to find an upper bound on the unfolding factor for the multiple-rate

DFGs, thereby bypassing the need to obtain an equivalent homogeneous DFG.

In homogeneous DFGs, removal of C number of delays from each input arc and
addition of C delays to each outgoing arc of a node constitutes a valid local retiming [15]
or cutset transformation [16] (where C is some fixed number). In multirate DFGs, remo-
val of Q; number of delays from the i-th incoming arc, and addition of Q; number of
delays to the j -th outgoing arc constitutes a valid local retiming, where

Qi =Cqb; ,Qj =Cqa; ,
and q is the number of invocations of the node in each cycle, a; is the number of samples
produced by the node to its j-th outgoing arc, and b; is the number of samples consumed
from the i -th incoming arc by the node in each invocation. An example of a local retim-
ing at a node in a multirate DFG is illustrated in Fig. 2.14. The node A is assumed to be

executed twice in a cycle. One invocation of A consumes 2 and 3 samples respectively
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from the two incoming arcs, and produces 4, 5, and 6 samples to each of the outgoing
arcs respectively. The retimed graph is obtained by removing 4 and 6 delays from the
two incoming arcs, and by adding 8, 10, and 12 delays to the three outgoing arcs respec-
tively.

In a homogeneous DFG, the retiming does not change the number of delays in a
loop. We can easily derive a similar condition for the multirate DFG case. We define a

normalized delay for the i-th arc u —v as

D; = a.-Dc;u N 'b% ' @9
where D; is the normalized delay of the i-th arc, D; is the number of delays associated
with the i -th arc of the multirate DFG, g; is the number of samples produced by the node
u in each invocation on arc i, b; is the number of samples consumed by node v in each
invocation from the arc i; and ¢, and g, respectively represent the number of invoca-
tions of nodes u and v in each cycle. It is easy to verify that the retiming operation con-
serves the sum of the normalized delays in any loop in a multirate DFG. One can also
verify that the total number of delays in a maximal loop of the homogeneous equivalent
DFG is equal to the sum.of the normalized delays in the corresponding loop in the mul-
tirate DFG. Therefore, from our earlier results, the upper bound on the unfolding factor
is the least common multiple of the normalized loop delay counts in the maximal loops
of the multirate DFG. A loop in a multirate DFG is maximal if it does not contain any
transitive arc. An arc ¥ —v in a multirate DFG is transitive if there exists a path from u
to v such that the sum of the normalized delays in the path equals the normalized delay

of the arc u —v.
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Fig. 2.15: (a) A multirate DFG, (b) An equivaient homogeneous DFG,

(c) A retimed multirate DFG.

54
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Example 2.8: Consider the multirate DFG in Fig. 2.15(a). In each cycle, the nodes A, B
and C are respectively invoked 2, 1, and 2 times. This DFG contains 2 maximal loops
A —B —A and A—B —-C—A, and the normalized delay counts in the loops are respec-
tively 2 and 1. Fig. 2.15(b) shows the equivalent homogeneous DFG. One can verify that
the loop delay counts in the' maximal loops in the equivalent homogeneous DFG are 2
and 1 also. Fig. 2.15(c) shows a retimed version of the multirate DFG, which is obtained
by applying a local retiming operation at node A in the multirate DFG of Fig. 2.15(a).
O

2.9. NON-HOMOGENEOUS PROCESSOR SCHEDULING

The rate-optimal fully-stetic scheduling approach presented in this chapter is based
on ideal inter-processor interconnection, availability of large number of processors, and
homogeneity of the processors with respect to functionality and speed. Often real imple-
mentations are based on a fixed number of processors, or fixed interconnections, or pro-
cessors non-homogeneous in functionality and/or speed. Unfortunately, the rate-optimal
schedules under these assumptions belong to the class of NP-Complete problems [25].
Most of these problems will need to be solved by the use of heuristics. The objective of
this section is to give an example to show that the program unfolding approach can be
used to exploit fine-grain parallelism, and to obtain efficient schedules in the context of

non-homogeneous processor implementations.
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Fig. 2.16: DFG corresponding to a second order all pole digital filter
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>

Fig. 2.17(a): Unfolded DFG of the all pole filter for unfolding factor of
two.
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C{ ——> Bi = A= Co———>B,—> A

P1

P2

(c)

Fig. 2.17: (b) Precedence graph of the unfolded DFG in Fig. 2.17(a),
(c) Partial schedule for non-homogeneous processors.
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Consider the example of a second order all-pole filter DFG shown in Fig. 2.16. In
the figure, the small circles represent fork nodes, the operations A and B are addition
operations, and C and D are multiplication operations. Let us assume that we are given
two processors; processor Py capable of performing only multiplications in 10 units of
time, and the processor P capable of performing addition in 2 units of time and multipli-
cation in 20 units of time (i.e. processor P is slower). Simple CPM schedule for this
case would require an iteration period of 24 units of time (as evident from the precedence
graph of Fig. 2.16). However, we can obtain an iteration period of 19 units by first
obtaining the unfolded DFG with an unfolding factor of 2 and then by scheduling the
tasks as illustrated in Fig. 2.17. We are able to exploit concurrency to the finest possible
granularity, because the unfolding by a factor of 2 reduced the second order all pole filter
to an equivalent perfect data-flow program graph. The non-homogeneous processors lead
to efficient hardware utilization, because we are able to assign a slower processor to the
tasks corresponding to the outer non-critical loop and a faster processor to the tasks of the

innermost or critical loop.

2.10. CONCLUSION

The major contribution of this chapter is finding the optimum unfolding factor for
any data-flow program, and the use of this unfolding to systematically prove the
existence of fully-static rate-optima! multiprocessor schedules in iterative data-flow pro-
gram models. This is an important result, since the existence of rate-optimal fully-static
schedules had so far remained an open question. This approach also clearly shows the
synergy between the existing cyclo-static scheduling and our approach to fully-static

scheduling. This synergy is demonstrated by the fact that the scheduling of several itera-
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tions of a specified task in a‘ single cycle are carried out by different processors, and
hence are not fully-static thhm the cycle of the unfolded program. With optimum
unfolding, we can construct rate-optimal fully-static multiprocessor schedules without
requiring any retiming operation at all. It is hoped that the approach provided in this
chapter will find use in task scheduling and synthesis of multiprocessor programmable
and/or custom VLSI digital signal processors, both in the context of homog:neous and

non-homogeneous Processors.

In this chapter, we have established the notion of the iteration bound in recursive or
iterative algorithms. The subsequent chapters focus on linear recursive sysiems, and are
devoted to developing algorithm transformation techniques, which can find equivalent

alternative hardware-efficient architectures for these systems.
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PIPELINING IN RECURSIVE FILTERS

3.1. INTRODUCTION

In order to exploit VLSI for high performance dedicated system implementations,
~e need to understand the characteristics of the scaled VLSI technologies. For example,
VLSI offers a greater potential for complexity than speed, favors replication of one func-
tion, and imposes a high cost in performance for non-localized comﬁmnicaﬁon. Design
costs can be minimized by composing the system as a replication of simple processing
elements. These considerations favor implementations which feature arrays of identical
¢r easily parametrized processing elements (since, these are easily given a software pro-
cedural definition) with mostly localized interconnections (for reduced communication

costs). This has led to an interest in systolic- and wavefront-array implementations [1,2].

High performance can be achieved by either using exotic high speed technologies,
such as bipolar or GaAs which allow us to gain performance without modification of the
algorithm. On the other hand, we can use a low cost VLSI technology such as CMOS and

-yet gain impressive performance by exploiting concurrency. Concurrency is usually man-
ifested in the form of pipelining or parallelism or both. Concurrent architectures can be
derived by implementing the existing algorithms in new ways. To be more precise, we do

not change the transfer function or the input-output characteristics of the algorithm, but
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we do change the internal structure of the algorithm, thereby impacting the finite preci-
sion effects but nothing else. This is referred to as recasting the structure of the algo-
rithm. Different forms of recasting a specified algorithm can lead to realizations with
entirely different properties and implementation complexities. In this chapter, we show
that appropriately recesting the structure of an algorithm can have a dramatic effect on

the performance of an implementation.

The challenge in achieving high performance implementations is mostly in recur-
sive systems, since the recursion or the internal feedback negates the most obvious ways
of improving performrance. This is because the computational latency associated with the
feedback loop in recursive systems limits the opportunities for pipelining and/or parallel
processing. In non-recursive systems, we can place latches across any feed-forward -
cutset without changing the transfer function (at the expense of latency) and achieve
desired level of pipelining. However, recursive systems cannot be pipelined at arbitrary
level by simply inserting latches, since the pipelining latches would change the number
of delay operators in :he loop, and hence the transfer function of the implementation. We
can overcome this recursive bottleneck by changing the internal structure of the algo-
rithm to create additional logical delay operators inside the recursive loop, which can

then be used for pipelining.

High sampling rate realizations of recursive digital filters using block processing
have been suggested [3-17]). In block processing, input samples are processed in the
form of non-overlapping blocks and outputs are also generated block by block. We can
increase the block size arbitrarily to achieve arbitrarily high sampling rate recursive sys-

tem realizations. The best known block structures reported so far for recursive digital
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filtering require a square multiplication complexity with respect to the block size. In the
next chapter, we discuss block ﬁmcessing structures, and derive our new incremental

block filter with linear complexity in block size.

Loomis and Sinha recently used the concept of block processing to derive a pipe-
_ lined realization of direct form recursive digital filters [18]. Similsr approaches have also
been followed for recursive filter implementations using charge domain devices [19].
The block state update operation as well as the pipelining technique used by Loomis and
Sinha belong to the class of look-ahead computation techniques [20], and lead to a linear
complexity with respect to the block size or number of loop pipeline stages. This look-

ahead process is referred to as clustered look-ahead throughout this chapter.

We use look-ahead and decomposition algorithms to pipeline a first-order system
(i.e. where the state x(n) is expressed as a function of x(n-1)) [21-23]. In the 1nok-
ahead scheme, the algorithm is iterated as many times as desired to create the necessary
level of concurrency, and the iterated version is implemented. Specifically, for the first
order recursion, the state x (n) is expressed as a function of x (n—=M) to create M delay
operators inside the loop so that the loop can be pipelined by M stages. This iteration
process contributes to a non-recursive O (M) multiplication complexity. For cases where
M can be expressed as a power of 2, a decomposition technique is proposed to imple-
ment the non-recursive overhead in a decomposed manner to obtain a logarithmic multi-
plication complexity. This first order pipelined realization was also studied in [24] in the
context of static data-flow computer implementation, but without the decomposition

technique.
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In this chapter, we study efficient pipelining of higher order recursive systems. In
an N-th order recursive sysnem,'thc state x(n) is expressed as a function of the past N
states x(n—1), x(n=2), ..., and x (n =N +1). There are two types of look-ahead schemes in
the context of higher order filters; they include clustered look-ahead and scattered look-
ahead. In the clustered look-ahead pipelining scheme [18], the algorithm is iterated to
express the state x(n) as a function of N past consecutive or clustered states x(n—-M ).
x(n-M-1), ..., and x(n=M-N+1). This look-ahead process creates M loop delay opera-
tors, which can be used to pipeline the loop by M stages. In this technique, the original
N -th order filter is emulated by an (N+M~-1)-th order filter ((M—1) canceling poles and
zeros have been added). The multiplication complexity of the resulting pipelined filter is
O (M), which is linear with respect to M. Since the pipelined filter is derived by adding
poles and zeros, some of the modes or eigenvalues are either uncontrollable or unobserv-
able or both. Unfortunately, for higher order systems, the clustered look-ahead process

does not guarantee all the additional poles to lie inside the unit circle, and hence does not
guarantee stability.

We introduce a new scartered look-ahead approach to derive stable pipelined filters.
In this new look-ahead process, we express x (n) as a function of past N scattered states
x(n-M), x(n-2M), ..., and x(n=NM ), thus emulating the original N-th order filter by
an NM -th order filter. Note that the clustered look-ahead and the scattered look-ahead
approaches are identical for the first order case (since in both cases x (n) is expressed as a
function of x(n—M)). In the scattered look-ahead process, for each existing pole in the
original filter, we add (M -1) additional poles (and zeros at identical locations) with equal
angular spacing at a distance from the origin same as that of the original pole. The scat-

tered look-ahead process leads to O (NM ) complexity (much larger than that for clustered
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look-ahead), but guarantees stability. For cases where M can be expressed as a power of
2, we use the decomposition technique to implement the non-recursive portion with
O (N'log,M ) multiplication complexity. The upper bound on roundoff noise in these
pipelined filters improves with M. Based on the scattered look-ahead and the decomposi-
tion techniques, we derive pipelined realizations of direct form and state space form
recursive digital filters. Several pipelined bidirectional systolic arrays for recursive digi-
tal filtering have been proposed in [25-29]. However these structures require interleaving
of independent time series when pipelined. In this chapter, we present fully pipelined and
fully hardware efficient linear bidirectional and unidirectional ring systolic arrays for

recursive filtering using the scattered look-ahead technique.

The organization of this chapter is as follows. The iteration period bound in recur-
sive computations is reviewed in section 3.2. In section 3.3, we review the notion of
pipeline interleaving in the context of recursive digital filtering. Sections 3.4 and 3.5
address pipelined realization of direct form and state space form linear time-invariant
recursive digital filters respectively using scattered look-ahead and the decomposition

techniques.

3.2. ITERATION BOUND REVISITED

Let S; represent the set of loops in the recursive computation graph, D, represent
the latency associated with the computation in loop /, and M; represent the number of
latches or logical delay operators inside the loop /. Let each latch in the computation
graph be L—slow, i.e. the clock rate of each latch is L times slower than the sample rate,
or equivalently the implementation corresponds to a block implementation with block

size L (the block size is assumed to be constant throughout). Then the iteration period
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bound is given by

D
T.=1 P& {1?17] : G.1)

The maximum achievable sampling rate for the computation graph is -7!- The loop lp

for which T..= -EDM";— is satisfied is called the critical loop. For unity block size (i.c.,
0 .

L = 1), this definition reduces to the iteration bound definition in [30-31].

The iteration period bound can be improved by increasing either the number of
pipeline stages inside the recursive loop (M), or the block size (L) or both. In the sequel,
we assume M; to be same for all loops and refer to it as M. By using M pipeline stages
inside the recursive loop and a block size of L, the sample rate can be increased by a fac-
tor LM. Since, pipelined realizations can be achieved with logarithmic increase in
hardware (as opposed to linear increase as in block processing), it is efficient to use pipe-
lined algorithms (i.e. with L = 1) first for high speed IR filter implementations, and then
combine block processing with pipelining only if sufficient speed cannot be generated by
using pipelining alone. Thus, block processing in itself is an inefficient way of imple-
menting high-speed custom IIR digital filters. However, block processing is useful for
software-programmable implementations on general-purpose coarse-grain multiproces-

SOrS.

3.3. PIPELINE INTERLEAVED DIGITAL FILTERS

Pipeline interleaving notion is an old idea, and has been used in general purpose
computers. Pipeline interleaving approach has also been proposed for programmable
implementation of signal processing systems using deeply pipelined programmable digi-

tal signal processors [32], and for cyclostatic implementation of these systems [33].
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In this section, we review the nction of pipeline interleaving in the context of a sim-
ple first order recursive digital ﬂwr. In particular, we discuss three forms of pipeline
interleaving, (i) Inefficient Single/multi-channel interleaving, (ii) Efficient single channel
interleaving, and (iii) Efficient multi-channel interleaving. In (i), the loop is pipelined
without changing the structure of the algorithm and hardware is not fully utilized, since
zero samples need to be interleaved to preserve the integrity of the algorithm. In (ii) and
(iii), the internal structure of the algorithm is changed in a way that the pipeline is maxi-
mally or fully utilized.

3.3.1. Inefficient Single/Muiti-Channel Interleaving
Consider a first-order linear time-invariant recursion described by

x(n+l)=ax(n)+bu(n) 3.2)
and shown in Fig. 3.1(a) in the form of a computation graph. The iteration period bound
of this computation graph is (T,, + T,), where T,, and T, respectively represent the
word-level multiplication time, and addition time. Consider obtaining a M —stage pipe-
lined version of this implementation by placing or inserting (M — 1) additional latches
inside the loop as shown in Fig. 3.1(b) (at the appropriate places). Then the clock period
of this implementation can, in principle, be reduced by M times, but the latency associ-
ated with the loop computation and the sample period of the implementation will
increase to M clock periods. As an example for M =5, if we begin with a state x1(0) in
clock period 0, the next state x1(1) will be available in clock period 5. Hence for the case
of a single time series, this array will be useful for only 20% of the time. (Trying to input
samples of a single time series each clock period would implement a different algorithm,

since the number of logical delays inside the loop has been changed.)
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u(n)

0 o ° 5D x(n)

Fig. 3.1(b): The first order LTI recursion after inserting (M -1) delay
operators inside the loop (for M = 5).
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Fig.3.1(c): A partial schedule for the implementation in (b). The input
time series are S5-way interleaved, i.e. 5 independent time series are
being filtered simultaneously. The state x/(n) corresponds to the state
of the i-th time series at time index n.
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Hence, the sampling rate of this implementation is 5 times slower than the clock rate, and
is no higher than that of the unﬁipelined version (in fact is worse due to the delay time
introduced due to the additional latches). However, if 5 independent time series are avail-
able to be filtered by the same hardware, then the hardware can be fully utilized as shown
in the schedule of Fig. 3.1(c), although all the independent time series must be filtered at
the slow rate. Independent time series can correspond to outputs of each first or second
order cascade stage (since these elements can be separated by a feed-forward cutset), or
can correspond to independent channels requiring identical filtering operation. As an
example, for a 10-th order recursive filter implemented as cascaded second order sec-
tions, the five section outputs are independent and can be interleaved in the pipeline (of
course, each at 5-slow rate). Thus pibeline interleaving approach is well suited for appli-
cations requiring nominal concurrency. To conclude, if a recursive loop with a single
delay clement is pipelined by M -stages by inserting (M —1) additional delay elements,
then the input data must be M -way interleaved, i.c. (M —1) zero time series or indepen-
}d‘ent time series are interleaved with the given data stream (otherwise, the transfer func-
tion of the algorithm will be changed), and nothing has been achieved with respect to the
sample rate with which a single time series can be filtered. This implementation has also
been referred to as M -slow circuit in the literature [1,34-36). The hardware in this slow
interleaved implementation is inefficiently utilized if M independent computations are

pot available to be interleaved.
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Fig. 3.2(a): An equivalent realization of Fig. 3.1(a) obtained without

the use of the look-ahead transformation.
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Fig.3.2(b): Another equivalent first order LTI recursion obtained with

the use of look-ahead computation.
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3.3.2. Efficient Single-Channel Interleaving

Ruling out the interleaving .of independent time series, the two problems with M -
slow implementations are (i) a sampling rate M times slower than the clock rate, and (ii)
inefficient utilization of processing elements. Now we show that both these problems
can be overcome by using the look-ahead transformation [20,21], in which the given

linear recursion is first iterated a few times to creare additional concurrency.

Consider the first order LTI recursion of (3.2). By recasting this recursion, we can

express x (n+2) as a function of x () to obtain

x(n+2) = a[ax (n)+bu(n )] +bu(n+l1). (3.3a)
A realization of this recursion is shown in Fig. 3.2(a). The iteration bound of this recur-

sion is E(-I'-"-zﬂl and is same as that of Fig. 3.1(a). This is because, the amount of com-

putation and the number of logical delays inside the recursive loop are both doubled as
compared to that in Fig. 3.1(a) leading to no net improvement. However, another recur-

sion equivalent to that of (3.3a) is

x(n+2)=ax(n)+abu(n)+ bu(n+1) (3.3b)
as shown in Fig. 3.2(b). The iteration period bound of this realization, &;-TL, is a fac-
tor of two lower than that of the realizations in Fig. 3.1(a) and Fig. 3.2(a)!

Applying (M—1)-steps of look-ahead to the iteration of (3.2), we can obtain an

equivalent implementation described by

x(n+M)=aMx(n)+‘ga‘°bu (n+M-=1-i) (3.3c)
]
and shown in Fig. 3.3(a). Note that the loop delay corresponds to z-M instead of z-1.

This implies that the loop computation must be completed after M iteration cycles rather
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Fig. 3.3(b): A partial schedule for the structure in Fig. 3.3(a) for M = 5.
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E"—‘ﬁﬂl, which

than 1. The iteration period bound of this computation graph is
corresponds to a sample rate M times higher than that for the original computation graph
(although the complexity and system latency are now linearly increased). A portion of
the schedule for the realization of Fig. 3.3(a) is shown in Fig. 3.3(b) for M =5. The
terms ab.a2b,...aM-1b,aM in (3.3c) can be precomputed and are referred to as the
precomputation terms. The second term on the right hand side of (3.3c) represents the
look-ahead computation term, and its complexity is referred to as the look-ahead com-
plexity. Since the look-ahead computation term is non-recursive, it can be pipelined by
placing latches at the appropriate feed-forward cutsets.

The steady state input-output behavior is not altered by the look-ahead technique.
By this it is meant that for sufficiently old inputs, the outputs of the transformed system
and the original systems will be identical. However, it is also possible to recaste the ini-
tial states of the transformed system so that the input-output behavior of the transformed
and the original system are identical for all inputs, as long as the original system is
causal. Consider the schedule shown in Fig. 3.3(b) corresponding to the implementation
of Fig. 3.3(a), where we start with M independent initial states x (-M +1), x(-M +2), ...,
x(0) (for M = 5). In the original system of (3.2), the state x (1) is computed in terms of
the initial state x (0),

x(1)=ax )+ bu(0). (3.4a)
For the transformed system of (3.3c), the state x (1) is calculated in terms of x (=M + 1),

x(1) = a5x (=4) + bu (0) (3.4b)
for M =5 (since u (=4), - - - ,u(~1) are all 0 due to causality). From (3.4a) and (3.4b),

x(=4)=a=4%x(0). (3.4c)
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}

Fig. 3.4(a): A compu'ation graph.

u(n)
D

Fig. 3.4(b): Equivalent retimed computation graph.
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A similar analysis can be carried out to obtain the M initial states

x(=i)=a-x(0), i=12,.,M-1). 3.5)
In the transformed system, we start with M initial states and compute the next M states
in a pipelined interleaved manner (see Fig. 3.3(b)). In this regard, look-ahead computa-
tion can be treated as an application of pipeline interleaving. Look-ahead computation
has allowed us to transform a single serial computation into M independent concurrent
computations, and to pipeline the feedback loop to achieve high speed filtering of a sin-
gle time series while maintaining full hardware utilization.

Provided the multiplier and the adder can be conveniently pipelined, the iteration
bound can be achieved by refiming or cutset transformation [1, 34-36]. The retiming
process involves moving the delays around in the feedback loop in such a way that the
number of delays in any loop remains unaltered (thereby not affecting the transfer func-

tion). A simple example of retiming is illustrated in Fig. 3.4. The iteration period bound
for the realization in Fig. 3.4(a) is (—T‘—H.g':@, whereas the actual iteration period is

(To+Tp+Tc), where T; corresponds to the computation time of block i. The iteration
period for an equivalent realization in Fig. 3.4(b) (obtained after redistributing the
delays) is Max (T4 ,Tp Tc). If the computational latencies Ty, T, and T¢ are identical,

then this realization has an iteration period equal to the iteration period bound.

Another example of retiming is illustrated in Fig. 3.5. Fig. 3.5(a) shows a pipelined
cellular array multiplier in two’s complement arithmetic for a multiplier and multiplicand
word-length of three. In a non-recursive implementation, this multiplier can be pipelined
as shown in Fig. 3.5(a). This multiplier has a latency of five cycles when pipelined at

bit-level. However, when used inside a recursive loop, the multiplier cannot be pipe-
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lined. In Fig. 3.5(b), we use look-ahead to create four additional latches. The structure in
Fig. 3.5(b) is retimed to obtain an equivalent structure in Fig. 3.5(c). The number of
delays in any loop in Fig. 3.5(c) is five. Furthermore, the input-to-output delay in any
path is also constant. The serious reader will observe that, in order to perform the retim-
ing operation in a rigorous manner, all inputs in Fig. 3.5(b) should have four extra
latches, and all outputs in Fig. 3.5(c) should have the same four extra latches. We have

omitted these latches to keep the illustration simple.

x=x2x1xo
' 0 V.0
0 0 0 a0
0 (o 30)4{a,
/¥ . (cell-A)

0 / 39 aq a2 0 .
0 NWL AW/ S s.'=surn(s.a-x.c)

r c=carry(s,a+x,c)
0 82 a2 as 52

|17

(a)

Fig. 3.5(a): A bit-level pipelined array multiplier for word-length of 3.
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Fig. 3.5(c): Retimed multiply-add structure.
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3.3.3. Efficient Multi-Channel Interieaving

We can extend look-ahead to the case where multiple independent channels require
identical filtering operation. Consider the same first-order linear recursion of (3.2) for the
case of two channels, and six pipeline stages inside the recursive loop. Then, without use
of look-ahead, the hardwa-= will be utilized only one third of the time. To get full utiliza-
tion of hardware, we iterate the recursion two times, and interleave the computation of
two time series. In general, if P independent time series are available, and the loop is
pipelined by M -stages (assume M = PQ ), then the recursion needs to be iterated (Q - 1)
times. For this example, the iterated recursion corresponds to

xi(n+3)=a3xi(n)+a%bui(n) +abui(n+1) + bui(n+2),i =1,2 3.6)
Fig. 3.6 shows a partial schedule corresponding to the processing of time series x! and x2

in an interleaved manner.

3.4. PIPELINING DIRECT FORM RECURSIVE FILTERS

The clustered look-ahead based pipelining in [18] requires a linear complexity in
the number of loop pipeline stages, and does not guarantee stability. In this section, we
present a scattered look-ahead approach to derive stable pipelined filters of complexity
linear with respect to the number of loop pipeline stages. We then introduce a decompo-
sition technique to obtain an implementation with logarithmic increase in hardware with
respect to the number of loop pipeline stages. The decomposition technique is the key in
obtaining area-efficient implementations, and makes pipelined realizations attractive for
high speed VLSI IIR filter implementations. We also present fully pipelined and fully
hardware efficient linear bidirectional systolic arrays for recursive filters based on scat-

tered look-ahead.
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Let the transfer function of a direct form recursive filter be described by

)= 'gb.-z"'

-l—-—‘g‘-zi—;‘_- . 3.7)

Equivalently, the output sample y (1) can be described in terms of the input sample u(n),
and the past input and output samples, and is given by

ym = $aye-n+ Lbue-n=Faya-D+:@). 3.8)
The sample rate of this recursive filter realization is limited by the throughput of a single

multiplication and N additions (since the critical loop contains a single delay operator or

latch).
7:";‘ 0 1 2 3 4 s 6 7 8 9 10 1 12
STATE | 1 1 9 1 1 1
xm |X'(-2 -2 |- [«A-0] x%0) | =0 | ') | 20 | '@ | &2 | ') | %) | =@

Fig. 3.6: A partial schedule for a two channel implementation with six
loop pipelining stages obtained using two steps of look-ahead.
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3.4.1. Clustered Look-Ahead Computation

We can transform the transfer function of (3.7) such that the coefficients of z-, ...,
z=(M-1) jn the denominator of the transfer function are zero, i.e. the denominator contains
the terms z-M, z-M+1), __ and z-N+¥-1), Such a transfer function corresponds to an
M -stage pipelined implementation, since the output sample y(n) can be described in
terms of the cluster of N past outputs y (n=M), y(n=M-1), ...., and y(n-M-N+1). A

time domain description of such an equivalent filter is given by (see appendix 3.2)

=1 . =1 R
y(n)=:§[ k;ﬂ a rj+M-k] y(n-J-M)-l-l:; rj z(n=j) (3.9a)
where
z2(n)= gb,- u(n—iy, (39b)

and the sequence 7; is defined in appendix 3.1. The equivalent transfer function of this
pipelined realization is given by (see appendix 3.2)

ogares
H(@)= —~— —.
1 -7:( $ ajriauj) 2764
i j=+l

Note that the coefficients in brackets in (3.9) and (3.10) are computed off line. This

(3.10}

transfer function has been derived by multiplying Aglr,-z"' both in the numerator and the
s

denominator, introducing (M -1) additional canceling poles and zeros.

Since the critical loop of this implementation contains M delay operators and a sin-
gle multiplication operation, this loop can be pipelined by M stages, and the sample rate
can be increased by a factor of M. The numerator or the non-recursive portion of (3.10)
can be implemented with (N+M ) multiplications, and the denominator or the recursive

portion can be implemented with N multiplications. The total complexity of this
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pipelined implementation is (2N+M ) multiplications, and is linear with respect to the
number of loop pipeline stages (M ) or speedup or increase in the sample rate.

We illustrate the instability problem in the pipelined recursive filters derived by
using the clustered look-ahead approach using an example.

Example 3.1: Consider the example of an all-pole second order IIR filter with poles at
=3 and z = 3 (see Fig. 3.7(a)). This original filter is described by the transfer func-
tion

1
H(@)= .
1- %z"l + %—2‘2

(3.11a)
A 2-stage pipelined equivalent recursive digital filter can be derived by multiplying the

numerator and denominator by (1 + %—z'l), or equivalently by intoducing a pole and a

zero at z =2 (see Fig. 3.7(b)), and is given by

5. -
14+ 3271
T
. (3.11b)
0,5, 5,5 |

H@z)=

Similarly a 3-stage pipelined realization can be derived by eliminating the z~! and z-2

terms in the denominator of (3.11a) and is given by

%z’l +

1+ -%%z‘z

H@G)=

’ (3.11¢)
1- -2—2'3 + T2'8'57 z—4

and has poles at z =0.5,0.75 and z =0.625 £ j0.893 (see Fig. 3.7(c)). Note that the
complex conjugate canceling poles are outside the unity circle. Thus both the 2- and 3-
stage equivalent pipelined realizations in (3.11b) and (3.11c) are unstable, even though

the original configuration of (3.11a) is stable.
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3.4.2. Scattered Look-Ahead Witkout Decomposition

In scattered look-ahead approach [37], the denominator of the transfer function in
(3.7) is transformed in a way that it contains the N terms z-¥, z-2¥_ __ and z-V¥,
Equivalently, the state y(n) is computed in terms of N past scartered states y(n—M),
y(n=2M), ...., and y(n~NM). In this look-ahead process, for each pole in the original
filter, we introduce (M -1) canceling poles and zemé with equal angular spacing at a dis-

tance from the origin same as that of the original pole. For example, if the original filter

i
has a pole at z =p, we add (M -1) poles and zeros at z =pe fork=1,2,..,M=-1)
to derive a pipelined realization with M loop pipeline stages. The pipelining process
using scattered look-ahead approach can be described by

_ i 25tk
NG N(z)'ﬁ_ D(ze M) NG
H(z)=D-2-}= S =N (3.12)
d E‘D(ze‘ﬂ’) by

Now we illustrate scattered look-ahead based pipelining in recursive filters using the fol-

lowing examples.

Example 3.2: Consider the first order filter

- 1
H(z)—l—_—a;:r, (3.13a)
which has a pole at z =a. A 3-stage pipelined equivalent stable filter can be derived by

j2n j2n
adding poles and zeros at z =ael3_andz=ae , and is given by

-1 -2
HE)=1tatan? (3.13b)

Example 3.3: Consider the second order filter transfer function
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= 1
H() e T=azZ (3.14a)

A 3-stage equivalent pipelined filter is given by

14+ayz71+(ag+ax)z2-aa2"3+a3z
1-(ap +3a1a2)2°-a7z"°

H@z)= (3.14b)

Example 3.4: Consider the second order filter with complex conjugate poles at z =re j8,

The transfer function of the filter is given by

_ 1
HG) 1-2rcos@z=14rsz-2 ° (3.152)

We can pipeline this filter by three stages by introducing four additional poles and zeros
j@+3F) 2j@-3F) : _— .
atz =re I z=re . The equivalent pipelined filter is given by

_ 14 2rcosfz-! + (1+2c0s20)r2z-2 + 2r3cos@z-3 + réz—4
H@)= l(-2r3cos3)9z'3+ réz-6 * : (3.150)

Example 3.5: Consider the second order filter with real poles at z =r; and z =r;. The

transfer function is given by

- 1
H@)= 1=(ry+r)z=  +ryrgz=2 -’ (3.16a)

j2n

A 3 stage pipelined realization is derived by adding poles (and zeros) at z = rl-e*JT,
+i2n - o

z=rae . The pipelined realization is given by

14 (ry+r)z- 4+ (re4ryretrd)z2 4 rira(ritr)z3 + rgrzz4
1-(ri+r7)z>3+rprgz=®

The scattered look-ahead approach leads to stable pipelined filters if the original

H@)= {(3.16b)

filter is stable, since the distance of the canceling poles from the origin is same as that of
the original pole. The complexity of the non-recursive portion in (3.12) is (NM +1), and

of the recursive portion is N, leading to a total complexity (NM+N+1) pipelined multi-
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plications, a linear complexity with respect to M. Even though this complexity is linear
with respect to M, it is much greater than that of clustered look-ahead.

The scattered look-ahead algorithm is different from the recursive doubling algo-
rithm, developed by Kogge and Stone [38-40], used for parallel implementation of higher
order linear recurrence systems [41-43] (they are identical for the first order system).
Although the recursive doubling algorithm leads to a logarithmic complexity, for higher
order systems the coefficient of the logarithmic complexity in [40] is much greater than
ours. Indeed, the scattered look-ahead algorithm is similar to the cyclic reduction algo-
rithm discovered by Hockney [44] and used in the context of parallel solution of partial
differential equations [45-49]. The scattered look-ahead approach has also been dis-
cussed in [50] in the context of zero-input recursive systems (not a filtering operation).
The denominator of the pipelined filter transfer function also has the same form as in
each phase of a polyphase network [S1]. The pipelining of the recursive filters using
scattered look-ahead algorithm and the canceling pole-zero interpretation was first
discovered in [37].

We now derive another pipelined realization using a decomposition technique
which leads to a logarithmic increase in hardware with respect to speedup or increase in

the sampling rate.

3.4.3. Scattered Look-Ahead with Power of Two Decomposition

In this decomposed implementation, the output sample y(n) is computed using N
past scattered output samples y(n—M),y(n=-2M), - -+ ,y(n—NM) and the numerator
(or the non-recursive portion) is implemented in a decomposed or factored form (for

cases where M can be expressed as a power of 2) [22-23]. The use of this technique leads



PIPELINING RECURSIVE FILTERS 88

to a logarithmic increase in hardware with respect to M.
Let the recursive portion of a digital filter with K pipeline latches inside the critical
loop be described by

H(z)=

1
1- ﬁ"‘ (K)z-& (3.17)
=
The original transfer function corresponds to a single stage pipelined implementation for

K =1, and hence g; (1) =a;. We can derive an equivalent 2K -stage pipelined implemen-

tation by multiplying by (1 - ﬂ(—l )iq; (K )z~ in the numerator and denominator. The
=

equivalent 2K -stage pipelined implementation is described by

1- 3 1ig @)K 1- £V

KK (1= C(1¥a: (K r-iK) 1= S, -2k
(- Fa@E) LV aEeE)  1- $q0K)
where the sequence g;(2£) is derived in terms of the sequence ¢;(K) in appendix 3.3.

H@)=

(3.18)

We can apply this transformation to the original single stage pipelined transfer func-
tion to obtain a two stage pipelined implementation, and subsequent transformations lead
to four, eight, and sixteen stage pipelined implementations respectively. Thus to obtain
an M -stage pipelined implementation, we need to apply loga M sets of such transforma-
tions. Each transformation leads to an increase in multiplication complexity by N while
increasing the speed (or sample rate) or the number of pipeline stages inside the critical
recursive loop by a factor 2. A series of such transformations then lead to a geometric
increase in the number of loop pipeline stages or speed while requiring only an arithmetic

increase in hardware complexity!

We apply (log2 M—1) sets of such transformations to derive an equivalent transfer

function (with M pipelinitig stages inside the recursive loop), which is described by '
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, Joga M-1 , .
Goian™f] - Eerraena-
H (z) = [ ] = .
1- 3 a0
and requires a complexity of (2N +V log; M +1) multiplications, a logarithmic complexity

(3.19)

with respect to speedup or M. Note that although the number of multiply operations is
logarithmic, the number of delays or latches is linear. The total number of latches in the
implementation is approximately NM (logsM + 1), out of which about NM delays are
required for implementation of the non-recursive portions, and about NMlog,M delays
are required to pipeline each of the NlogoM multiplications by M stages. This imple-
mentation has been derived by incorporating N (M —1) canceling poles and zeros. In the
decomposed realization, the first stage implements an N-th order non-recursive section,
and the subsequent stages respectively implement 2N, 4N, ..., I—VQ-’- order non-recursive
sections. Due to the symmetry of coefficients, each of these non-recursive sections can be
implemented with N multiplications independent of the order of that section! An alter-

‘native treatment of this decomposition algorithm is given in [52]. Now we consider

examples to illustrate scattered look-ahead and decomposition based pipelining in recur-

sive filters.
Im[Z)
Z-Plane
3 RelZ]
1
1-az

Fig. 3.8(a): A single pole filter.
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Fig. 3.8(b): Pole zero representation of an 8-stage pipelined single pole
filter.

Im(Z]

Z-Plane

- Re[Z]
.0

utn) —> 1+aZl [ 1+a22 2] 1+a' 74—

1-a8z78 [ y(n)

Fig. 3.8(c): Decomposition based pipelined implementation
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Example 3.6: First-Order Section:

Consider a first-order recursive filter transfer function described by

-1

He)=1E . (3.202)
For this transfer function,

q(l)=a, ¢(2K)=q¥K)=a%X . (3.20b)
The equivalent pipelined transfer function can be derived using the decomposition tech-
nique, and is described by

ogs M -1 loga M -1
-1 iyy—2 -1 2 =2
. bz "11 A+q@u™) b “g (1+a?z?) 3200
1-qM)z~™ 1-agMzM )

This pipelined implementation has been derived by adding (M -1) poles and zeros at

identical locations. The original transfer function has a single pole at z =a (see Fig.
_ : . % AR
3.8(a)). The pipelined transfer function has poles at locations a, ae M qe ,

-g_(‘u) -gM-lI_@)
ae’ \ o GE (see Fig. 3.8(b) for M =8). The decomposition of canceling
zeros in the pipelined transfer function is shown in Fig. 3.8(c). The i-th stage of the

non-recursive portion implements 2¢ zeros located at

:(2n+1
z=ae’ ?'E, n=01, -+ (2-1) (3.20d)
and requires a single pipelined multiplication operation (independent of the stage number

i). The total complexity of the pipelined implementation is (log 2 M +2) multiplications.
The decomposition based pipelined implementation can also be equivalently

explained using the time domain approach. The original recursive filter description is

given by

y(n+l)=ay(n)+bu(n) (3.21a)
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and the pipelined realization is given by

y(n+M)=aMy(n) +‘S;‘ai bu(n+M-1-i). (321b)

As an example, for M=8, we have
y(n+8)=ady(n) + ‘ga"bu(nﬂ-i) 3.21c)
=a8y(n)+§aifo(u+7-i). where fo(n)=bu(n)
=aty(n)+ 3671 1(n47-20), where £1(n)=af on=1) +f oln)

=aby(n)+ 'ga“"f 2(n+7-4i), where f3(n)=a%f (n-2) +f1(n).
A block diagram of an 8-stage pipelined decomposed implementation is shown in Fig.
3.8(d).
Although the pipelined recursive filter realizations are stable under infinite precision
conditions, they are sensitive to filter coefficients under finite precision. In a finite preci-

sion implementation, the poles of the first order M -stage pipelined filter are located at

1
= - A
p=@M+A¥=ag(1+ ek
where A corresponds to the finite precision error in representing a¥ . This pole location is
more sensitive for smaller values of a (that is when poles are closer to the origin). For-
tunately this is not a problem, since the instability problem for the filter with poles closer

to origin is not severe.

In addition to the instability problem, finite precision pipelined filters suffer from
inexact pole zero cancelation (see Fig. 3.8(e)), which leads to magnitude and phase error.
These errors can be reduced by increasing word-length, but a thorough analysis of this is

beyond the scope of this thesis.
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» x(n)

Fig. 3.8(d): Time domain decomposition of the pipelined filter.

Fig. 3.8(¢): Inexact pole zero cancelation in a finite word-len -
pipelined first order filter. h 8-siage
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Z-Plane

—3p Ra(Z]

®)

Fig. 3.9: (a) Pole zero diagram of the second order filter, (b) Pole zero
representation of the pipelined second order direct form filter with 8
loop pipelining stages.
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Example 3.7: Second Order System:

Consider a second order recursive filter described by

_Y© _ bo+blz“+bgz“2 3.22a
H(z)—v%— 1-2rcos@zT+r%z-2 " (3-222)

The poles of the system are located at re*/® and re~7@ (see Fig. 3.9(2)). For this filter,

q1(1)=2rcosh, g2(1)=-r2, (3.22b)
and

§12K)=q2(K)+292(K) =2rcos2K 0 ,42(2K ) =—qF (K)=-r*K . (3.22c)
The pipelined transfer function is described by

( gbx’ z-i )bﬁ-l (1+q 1(2‘. )2‘2‘ - q2(2i )2-2"‘)

- (3.23)
HE@)=- 1-q M)z~ = qs(M 2=

. Joga M—1 .
(gbi z™) i l (1 +2r%cos2i0z-2 + r2'z-2")

-t [

- 1-2r¥cosM0z-1 + r M ;-H

The 2M poles of the transformed transfer function are located at

+ ;0. 20
z=re /W 12012, ... (M-1)
and are shown in Fig. 3.9(b). The decomposed implementation of the pipelined filter is

shown in Fig. 3.9(c) and 9(d). The pipelined filter can be implemented with an imple-
mentation complexity of (2logz M +5) multiplications. The quantization error due to the
recursive portion of a pipelined second order section is studied in appendix 3.4, and it is
shown that the upper bound on the quantization error in the pipelined filter decreases
with increase in the number of loop pipeline stages. Intuitively this should be expected,
since as M increases, the IIR filter closely approximates an FIR filter, for which the

quantization error is inherently less.
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_ (1+2rcos8z '+r’z°) (1+2r'c0s202 2,474 (1+2r' cos4 Bz +®z%)

-8 16-16
1-2r°cosaez°+r Z

H(2)

Fig. 3.9(c): Decomposition of poles and zezos of the 8-stage pipelined

second order filter.
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-2
y(n-2) x
x
utn) S 5 2rcosfy - )
G W
+ x
0 bo b4 b2 + D] y(n-1)
y(n)
u(n) | D D D D 20| 2D
0 bo by b2 2rcosf r2 2rc0s2 ré

—18
x y(n-16)
2r8co0s86 8D
x

f »[sp - y(n-8)

y(n)

Fig. 3.9(d): Implementation of the original and the pipelined second
order recursive digital filter using decomposition technique for 8 pipe-
lining stages inside the recursive loop.
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Im(Z]
A
Z-Plane
A 1.0—’ RelZ]
— ! >
1-az"!

Fig. 3.10(a): Pole zero representation of a 12-stage pipelined first-order
filter.
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A single-chip implementation of a fourth-order recursive digital filter (organized as
two cascaded second order sections) using four stages of loop pipelining and running at
hundred million samples per second rate has been reported in [53]. This chip uses the
scattered look-ahead and the decomposition algorithms developed in this thesis. The chip
is implemented in 0.9 micron double-layer metal CMOS technology by the AT&T Bell
Laboratories. It uses a silicon area of 14mm2, and has a transistor density of 0.6 million
devices per cm2. The total computing power of the chip is 1.7 billion multiply operations
per second. The reader is referred to [53] for details of the integrated circuit chip imple-

mentation aspects.

3.4.4. Scattered Look-Ahead With General Decomposition

We have so far concentrated on power-of-two decompositions only, which leads to
hardware-efficient implementations. However, the decomposition of canceling zeros
extends for any arbitrary number of loop pipeline stages. The time-domain interpretation
of simple M ;M, decomposition was studied in [54]. We now illustrate decomposition of

canceling zeros for arbitrary M.

In an N-th order filter with M -levels of pipelining, there are N (M-1) canceling
zeros. First consider the simple case of M = MM, decomposition [54]. In this imple-
mentation, the system has N(MM2—1) canceling zeros. The first stage implements
N (M-1) zeros, and the second stage implements NM (M 2-1) zeros. In a MMM,
decomposition, the first stage implements N (M 1~1) zeros, the second stage implements
NM (M »=1) zeros, and the third stage implements NM jM 2(M 3—1) zeros. In general, in a

M =M M, .... Mp decomposition, the P non-recursive stages respectively implement
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NM-1), NM (M), ..., NMM; --- Mp_j(Mp-1) zeros, totaling N (M~1) zeros.
The non-recursive portion of the general decomposition requires about NM delays and

Nﬁ(M,-—l) multipliers (each of these multipliers also requires M latches for pipelining).

Example 3.8: Consider the first order transfer function in (3.20a). A 12-stage pipelined

decomposed implementation is given by

i g
H(z)= ga ‘ =(d+azh)(1+a222+a%H 1+ a‘z") (3.24a)
(1 a 122-12) (1 a 122-12)

The above implementation corresponds to a 2x3x2 decomposition. The pole-zero

configuration of the 12 stage pipelined filter is shown in Fig. 3.10(a). The decomposition
of 11 canceling zeros of this filter is shown in Fig. 3.10(b), where the three sections

respectively implement 1, 4, and 6 zeros respectively. Here the first section implements
[% j2n
the zero at —a, the second section implements four zeros at aeﬂr and aeﬂ'-‘_, and the

in jSn
third section implements six zeros at tja, aei"r, and aei‘L‘-. Another decomposed

transfer function given by

_(+az ) +a222) (1 +a%4+a8:-%)
H@)= (1-ai2-17)

corresponds to 2x2x3 decomposition. In this implementation, the first non-recursive sec-

(3.24b)

tion implements one zero at —g, the second section implements two zeros at +ja, and the

i® in 2% i Sn
third section implements eight zeros at aet'%_, aeﬂ’-, aeiﬁ—. and ae>6 . The 3x2x2

decomposition is given by

2, -
H(z)= (1+az-l+a ilz) lel-zl-zt_zfzz) 3) (l+a5z‘5) (3.24¢)

and the three sections respectively implement 2, 3, and 6 zeros. The first section imple-
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ments two zeros at aetj%g. the second implements three zeros at —a and aetj’“-, and the
third section implements six zeros at ae*j‘t'. tja,and aeﬂ%n_.

Any higher order recursive filter can be factored in terms of first order sections.
Decomposition similar to the above example can be applied to the first order sections,
and then the complex conjugate section:: can be combined to obtain the decomposed
form in terms of rcal multiplications. A matrix interpretation of the above transfer func-

tion decomposition has been studied in [52]. The ordering of decomposition factors can

be exploited to minimize roundoff errors..

3.4.5. FIR vs IIR Filters

We can start with frequency domain specifications of a digital filter, and implement
the filter as an FIR or an IIR filter. Let the order of an FIR filter be Npjp and the order of
an IIR filter to satisfy the same requirement be Nz . For the same speed (or equivalently,
for same level of pipelining), the complexity of the FIR filter in terms of M -stage pipe-
lined multipliers is Nrjr, and that for che IIR filter is (2Nyr + NyrlogoM + 1). Hence,

the IR filter realization is preferable if

2N;r + NyplogoM +1 < Nppg (3.25a)
or equivalently, if
Nrm =1
M<?d Fa 4 (3.25b)

where | x] represents the floor function of x. As an example, in Rabiner e al [55], it is
shown that a filter spectrum can be implemented as a 6-th order IIR filter or as a 4]1-st
order FIR filter. Then for this filter, M must be less than 16 for the IIR filter to be

hardware-efficient as compared with its FIR counterpart.
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3.4.6. Linear Bidirectional Systolic Array Architectures

All bidirectional systolic arr#y implementations of pipelined recursive digital filters
presented so far require many-way interleaving [1, 25-29]. In this section, we derive
linear bidirectional pipelined systolic arrays for direct form recursive digital filters using
the scattered look-ahead algorithm. These arrays are highly concurrent, fully pipelined,
and do not require any interleaving of input samples. Since the aon-recursive portion can
be implemented with arbitrary level of pipelining, we restrict our attention to only the
recursive portion.

Consider the recursive algorithm described by

y ()= 34,00y (n=id) +x(0) (3.26)
where x(n) corresponds to the output of the non-recursive portion. This algorithm
corresponds to an M stage pipelined implementation. A flow graph corresponding to the
above algorithm is shown in the Fig. 3.11(a). For M =1, the bidirectional array cannot
be fully pipelined without requiring interleaving. However, a pipeline interleaved version
can be achieved, which is useful for applications requiring moderate amount of con-
currency, and where multiple independent time series need to be filtered similarly in an

interleaved manner.

For M 22, a fully pipelined systolic array can be implemented. In this implementa-
tion, all the procg:‘ssing elements operate in a pipelined manner, and the operations inside
each processing element can. also be deeply pipelined. The M delays or latches can be
moved around the loop to pipeline inter-stage operations as well as the
multiplication/addition operation (intra-stage pipeline). Out of M delays, 2 delays are

used for inter-stage pipelining, and the (M —2) delays are used to pipeline the
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x(n) 3 3 F Pe= 0

qy (M) Gz (M) 95 (M)

y(n) MD e TLRIye=om) -3

Fig. 3.11(a): Linear systolic implementation of a recursive filter.

=204 0

q3 (M)

x(n) &

y(n)«

Fig. 3.11(b): Fully pipelined linear bidirectional systolic array.
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multiplication/addition operation inside each stage. This technique of moving around
* delays without changing the input-output behavior is referred to as retiming or cutset
transformation [1,34-36]. The pipelined linear systolic array implementation is shown in
Fig. 3.11(b).

3.4.7. Pipelined Systolic Ring Implementation

We first review the unidirectional pipelined systolic ring implementation of the
direct form recursive filter algorithm, which was presented in [29], and then present pipe-

lined ring implementation of the scattered look-ahead recursive filter algorithm.

Consider implementation of the (N —1)-th order recursion

y(n) =':g a;y(n—i) 3.27)
using R unidirectional systolic rings as shown in Fig. 3.12(a). Note that the input and
output connections to the external world from the ring architecture have been omitted for
clarity. Since the total number of multiplication/addition operations needed is N (where

1 dummy operation has been included) and R processor rings are available, any output
computation traverses each processor ring -%’- number of times. For instance, for N =9

and R =3, each computation requires a total of 9 operations, and 3 operations per ring.
However, since the order of the filter is 8, each processor holds a single output for 9 con-
secutive cycles in a single 9-slow (in general N -slow) latch and uses this to contribute to
the computation of (N-1) consecutive outputs. For example, processor P uses y3 for 9
cycles for computation of y4 through y;; (with one dummy cycle). Consider the compu-

tation of the output

ys=agyo+aiy1+agy2+asys+tags+ays+ayetarys, (3.28)
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Fig. 3.12(a): Ring implementation of a recursive filter for N =8 and
R=3.

Fig. 3.12(b): Fully pipelined ring implementation for N =8 andR =3,
and M =2.
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and let processor P compute the term agys in cycle O (note that processor P doesn’t
need to store yo any more). The processors P2 and P3 contribute to the terms a7y and
a gy respectively. Processor P can contribute to the term a5y only in cycle 6 (since, y3
is stored during cycles 1 through 9, and is used for computations of y4 through y; fol-
lowing a dummy operation step). Hence, the total number of pipeline delays inside the
loop must be 6, or in other words, each processor ring can be pipelined by 2 stages in a
fully hardware efficient realization (pipelining each ring by more than 2 stages will lead
to interleaving and inefficient hardware utilization). In general, for an (N -1 )-order filter
and R rings, each processor can be pipelined by (-’RY-— 1) pipeline stages in a fully
hardware efficient realizaticn. In this realization, R outputs ar> computed in N cycles,

which implies a single output is available in -IRY- cycles, i.e. this realization is %’--slow.

The processor P; computes Yiri+i-1. The N coefficients (where the dunimy coefficient is
0) in this realization are implemented using another ring consisting of N latches. Furth-
ermore, the latency of a single computation is R(N-R) cycles, where the latency

corresponds to the number of cycles between the beginning and the end of computation

of a single sample.

Now consider the implementation of the recursive portion of the scattered look-

ahead algorithm

=1) ,
y()="8" 0:00) y(n-i) (3.29)
using unidirectional pipelined systolic rings. The scattered look-ahead algorithm leads to

M independent computations which can be performed in an interleaved manner, thereby

permitting the rings to be pipelinable by M (I]Y- — 1) stages. This pipelined implementa-
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tion is still M -slow and requires identical number of cycles per output sample as in the
case of M =1, but since the processor ring is pipelined by a factor of M stages higher,
the cycle time and the sample period are a factor of M lower. Because of the interleav-
ing, each processor uses M past output samples in an interleaved manner for NM con-
secutive cycles. For example, for the 8-th order filter and M = 2, processor P, uses the
sample y¢ in all even cycles and the sample y7 in all odd cycles between the cycles 0
through 18. Between cycles 19 through 37, it uses y;, and y,3 in even and odd cycles
respectively. This is realized by using M NM -slow latches for sampling the outputs, and

by using M M -slow latches each switched at a rate ]17 for computing the outputs as

shown in Fig. 3.12(b). Furthermore, because the M independent computations require
identical coefficients, each coefficient is repeatedly used for M cycles by each processor.
Thus, the NM coefficients (N coefficients and M consecutive copies of each coefficient)
are stored in a ring fashion using NM latches. The latency of a single computation is
MR (N-R) cycles (which is independent of M in terms of absolute time). In this realiza-

tion, processor P; COMPULES YirMi +i-1+ YERMi +i+ - YkRMi+i+M -2 in an interleaved manner.

3.5. PIPELINING IN STATE SPACE FILTERS

The clustered look-ahead and scattered look-ahead processes are identical for the
state space filter. Pipelining in state space filters using the look-ahead computation tech-
nique (without the use of decomposition) was introduced in [21] at the expense of a
linear increase in complexity with respect to loop pipeline stages. In this section, we
derive a decomposition based pipelined realization for state space recursive digital filters

of logarithmic complexity with respect to the number of loop pipeline stages.
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Consider the state space recursive filter described by

x(n+1)=Ax(n) +bu(n) (3.30a)

y(n)=cTx(n)+du(n), (3.30b)
where the state x(n) is N x1, the state update matrix A is NxN,b and care Nx1,and d,

input sample u(n) and output sample y (n) are scalars, and N is the order of the filter.
Fig. 3.13(a) shows a block diagram corresponding to (3.30). The transfer function of the
state space filter is given by
H@)=cT (zI-AYlb+d. (3.30c)
The state space representation of any transfer function is not unique. The transfer func-
tion remains unaltered if the state space representation undergoes a similarity transforma-
tion
x—sA"Ix; Abcd—>A-TAAA- D ATed | (3.30d)
The complexity of the implementation will depend upon the number of non-zero
elements in the state update matrix, which in turn depends upon the form of digital filter
realization. A parallel realization of first order sections with real coefficients can be
described in terms of a diagonal state update matrix, and a cascaded realization of these
sections can be described by a triangular state update matrix. Second order sections can
be described by a quasi-diagonal state update matrix when implemented in a parallel
manner, or a quasi-triangular matrix when implemented in a cascade manner. State
space representation of lattice filters can be described by a quasi-triangular state update
matrix. Full, triangular and quasi-triangular state update matrices lead to O (N2) multi-
plication complexity, whereas diagonal and quasi-diagonal matrices lead to O (N) multi-
plication complexity, where N is the order of the filter. In what follows, we assume the

filter to be described by a quasi-diagonal state update matrix, i.e. the filter has no real .
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4

X(n)
X(n+1)

Fig. 3.13(a): A state space recursive digital filter.

(o)
u(n+7) u(n)
$
- —) c-r
N X(n)
X(n+8)
y(n)

Fig. 3.13(b): A pipelined state space recursive digital filter with 8 loop
pipelining stages obiained using the decomposition algorithm.
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pole of multiplicity greater than two, and no complex pole of multiplicity greater than
unity. Similar results can be easily derived for all other configurations.

Let the maximum number of non-zero elements among all rows of the state update
matrix be N’. Then the iteration period of this implementation corresponds to the time
required for a single multiplication and N’ additions, and the sample rate corresponds to
the reciprocal of the iteration period. Applying M steps of look-ahead, we obtain an
equivalent M stage pipelined algorithm

X(n+M) = AMx(n) + " S Aibu (n+M-1-i) , (3.31)
which has an iteration period bound (sample rate) M times lower (higher) than the origi-
nal algorithm. The output equation (3.30b) is non-recursive, and does not require any
transformation. Let N be the filter ordér, and N, represent the number of real first order
poles. Then the state update implementation complexity in (3.31) corresponds to
(NM+2N-N;) multiplications, and the output computation complexity in (3.30b)
corresponds to (N +1) multiplications. The total complexity is (NM +3N+1-N ;) multipli-
cations, which is linear with respect to the number of pipeline stages M.

Now we illustrate use of decomposition for the case where M is a power of 2. The
decomposed stages of the pipelined state update realization are described by:

zZi(n+M-1) =bu(n+M-1) + Abu (n+M-2) (3.32a)

Zia(n+M-1)=z;(n+M-1) + A?z;(n+M-1-2i),i = 1,2, ..., (log2 M-1)(3.32b)

x(n+M)=AMx(n) + zip y (n+M-1), (3.32¢)
and is shown in Fig. 3.13(b) (for M = 8). This pipelined algorithm leads to a multiplica-

tion complexity [2N(logzM +1)=Nlog; M] for state update implementation, and

(N+1) for output computation; leading to a total complexity of
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[m (ogza M +3)—Nylogz M + 1] multiplications, which is logarithmic with respect to
the number of loop pipeline stages.

The roundoff error in the state space pipelined filter is studied in appendix 3.5, and

is shown to improve monotonically with increase in the number of loop pipeline stages.

3.6. CONCLUSIONS

We have presented a new scattered look-ahead approach and a decomposition tech-
nique to transform recursive filter algorithms to derive equivalent area-efficient pipelired
realizations. Another approach to pipeline recursive filters using signed-digit reduncant
arithmetic has recently been proposed in [55). Our approaches can be combined with the
approach in [55] to pipeline signed-digit recursive filters at bit or digit level with
minimum look-ahead. A drawback of the signed-digit representations is that they require
a longer word-length for a specified dynamic range (compared to two’s complement
representation). These representations may also suffer from degraded performance due to

overflow problems. These issues require further study.

The pipelinability criteria derived in this chapter can be used to synthesize pipeiined
filter transfer functions directly from frequency domain specifications thereby eliminat-
ing the intermediate transformation procedure. Further research is needed in synthesis of
these pipelined recursive filters using constrained iterative design techniques. The itera-
tive techniques have been successfully used in the context of traditional recursive filter
design [56-59]. We hope by appropriately constraining these iterative techniques, we can

satisfy the pipelinability criteria and design pipelined filters directly from specifications.



PIPELINING RECURSIVE FILTERS 113

The pipelined algorithm described in this chapter suffers from inexact cancellation
of poles and zeros, which will lead to error in magnitude and phase response of the filter.
However, the word length can be increased to minimize this error. The word-length and
roundoff error tradeoffs in the pipelined filters requires further study. Since the
coefficients of the pipelined filter correspond to higher power of the original coefficients,
they are too small, and may be less than what a finite number of bits can hold. This is
another issue that needs further study.

The ultimate speed in the pipelined implementations will be limited by practical
limitations such as clock skew, packaging delay etc. Hence, once pipelining is used to
maximum possible extent, we need to combine pipelining with block processing to
achieve further speedup in the sample rate. In the next chapter, we combine pipelining
and incremental block filtering approaches to derive area-efficient architectures for direct

form and state space form recursive digital filters.

3.7. APPENDICES

3.7.1. Appendix 3.1

In this appendix, we define the sequence r; , and study some related recursive rela-
tions. The sequence r; is useful in the context of clustered look-ahead based pipelined
and/or block implementation of direct form recursive digital filters. For an N-th order

direct form recursive digital filter, we define

r;=0 fori=12,.,(N-1),ro=1
and
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r= g s Tig, i >0 (A3.)

For the sequence r;, we can prove the following theorem:

Theorem A3.1: The values of 7 .., can be computed using:

-1 .
TL a =2 [ Jgan-j'mj-k ] TL-N+k - (A3.2)

Proof (by induction): Assume the theorem to hold for m, and prove that theorem also

holds for m+1. The value of rz .m+ is given by

-1
TLim+1 = ‘gaz [g{;) aN-j 'm-l+j-k+l} ’L-N+k]
1
=Z ﬁ gal ON—j Tm—isj—k+1 | TL-N+k
.1
=g ,g) ay-j g Q) Tmolsj—k+l | TL-N+k

from which (A3.2) follows.

3.7.2. Appendix 3.2

In this appendix, we derive a pipelined realization of the direct form recursive digi-
tal filter using the clusrered look-ahead computation technique. We also study the time

domain and frequency domain interpretations of this transformation.

Theorem A32: Any direct form recursive digital filter of the form (3.8) can be

equivalently described by
=1 . =1 .
y(n)='§[ 3 o ’j+M-k])’(n-J-M)+A§'j2(n-l) (A33)
J k=j+1 J

which corresponds to an M -stage pipelined realization.
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Proof (by induction): Assume the above to be true for M, and prove that it also holds for

M+1. The above expression can be rewritten as

yn)=ry y(n—M)+”z,[ ﬁlat 'j-m-t] y(n-j-M)+'§ ri 2(n=j) (A3.4)

=1
A e

=ry [Jgajy (n=M~j)+ z(u-M)] +’§[gﬁ 1a,cr,-,\,;,.,;] y(n-M—j) +’:§rjz (n=j)

=j+

'-‘Jg[gj a "j+u-k] )’(n-M-J')"'Jg) riz(n=j)
from which (A3.3) follows.

Theorem A3.3: Any transfer function of the form (3.7) is equivalent to the form (3.10)

Proof: Multiply the numerator and denominator by a (M —1) order polynomial bg:rj 27,
_ J

The denominator D (z) can be expressed as:

D(z)=[l-£“a.-z"'] [14-'&_: rj z'J] since ro=1 (A3.4)
= J:
. Mzl . =1 "
=1- ﬁ‘a,-z" +‘: riz= - i‘t‘ a;irjz—G+),
= = = J:

The last term of the right hand side of the above equation is given by

,

1| iz e =1 1 . Neyg] mz r
tg[;gajr,—_j] z .+igl[t§ ai-jri|z ‘+i=g+l Ljé-Nai-jrj] 2=t N2M

=1 ..
= = f o' R _l R -l .
g 'z_;ajr.-_j z“-l'.k gajr;.j 27+ +§{ o ajri-jlz=
tc- J= isN+l} = i= L]=l- +1

N<M (A3.5)
from which (3.10) follows.
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3.7.3. Appendix 3.3

Theorem A3.4: The sequence ¢;(2K) is related to the sequence g;(K) by the following

relations:

012K) = g (K) +242K), qu(2K)= (1M *1g3(K) (A36)
For even filter order N,

. 202(K) + CYGAK) + 28 1V Ky ), i =2, . §
a(K)=) . _° N (A37)
+g2K) +2 § (DG K- K), i =F+1, . N-1
j=i+l

For odd filter order N,

202 (K) + -1741g2K) + 25 -1V*1g; KiK. i =2, . Bl
@@K)=1 CDGHER)+ 23D 0 K), i=2FL (azg)
DK +2 § g K)gz), i =22, N1

-

Proof. We have
1- g‘q.- (2K)z-2%K = [l - gq.- X )z""‘] [l -2 g )z“"‘]
LY , . .
=1-2 £ qu()r 2K + 315 2K )22
) g ‘i’,(-l)iq-(x)qz.--wx)z-ﬁx +2 'f,‘ $ 1)ig;K)qa K )z-2K
=2 j= J 7 ; -2-] +lj=‘+l J )

Matching the powers of z, the above relations can be derived.
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3.7.4. Appendix 3.4

In this appendix, we study the quantization error due to the recursive portion of a
pipelined second order recursive filter derived by using scattered look-ahead and decom-
position techniques. We show that as the number of pipeline stages inside the recursive
loop increases, the upper bound on the quantization error of the pipelined filter strictly

decreases. Consider the second order recursive filter transfer function

_ 1 _ 1
H@) = iy Gore 7871 = Toq (g (A3.9)
In the pipelined filter 2(M~1) poles are introduced on the circle r units apart in the Z-

plane. Since, the distance of the additional poles remains unaltered from the origin, the
pipelined filter remains stable if the original filter is stable. The recursive portion of the

pipelined transfer function with M pipeline stages inside the recursive loop is given by

Hi@)= e ey
’ij(l —re’ @M1y 1 e 7T (A3.10)

The quantization error of this filter can be derived by. evaluating the residues of

H\(z)H (z71)
z

for all poles inside the unit circle, and then taking the sum. We derive

the quantization error of this filter in three steps.

., 20
Step 1: Consider the pole p; at re’(ehﬂ'), and let its residue be denoted as R;;. Let R;,
denote the residue at the complex conjugate pole of p;. Then we can prove that R;, is the

complex conjugate of R;y. This proof is straightforward and is omitted.

Step 2: In the pipelined filter, (M —1) additional poles are introduced for each pole in the
original filter. We show that the residue at each of the added pole is identical to that at

the corresponding pole of the original filter.
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Proof: For the pipelined filter, we have

Hq(z)H (z‘l) = : _ 1 :
o fHa-r’ O T 1)1 — e V) (A3.11)
1

i3]
ﬁ(l re"w 2)(1 = re™ @1y

Ve derive the residue at the pole for i =/ and show that this residue is independent of 7.

After some manipulation, the residue R;; can be derived to be

Ri= (zo+l> 2o 25 A3.12
(1-e"ﬂ’)‘11«1 2 BN BN 2 iy (A312)
=
- 1
M (1=r 2T )(1—r 21 ¢ 72T (1—¢ =7 219) °*
which is independent of /.

Step 3: The total quantization error is proportional to (also referred to as normalized

error)

= _ 14r2M 1 .
E =M Rix+Ri2) = g 1o B eabf o - (A3.13)

In terms of the coefficients of the pipelined filter, the normalized error is given by

1-g2(M)
E =Yg TG ¥ty (A3.19)

The upper bound on the error expression in (A3.13) strictly decreases with increase in M.
Furthermore, the expression (A3.14) also holds for the case of two real poles. A similar
analysis can be carried out for any arbitrary order recursive digital filter, and the bound
on quantization error of the pipelined realization can be shown to improve with increase

inM.
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PIPIELINED INCREMENTAL BLOCK FILTER

4.1. INTRODUCTION

In chapter 3, we proposed the scattered look-ahead and decomposition techniques to
pipeline direct form and state space form recursive digital filters with a logarithmic
increase in hardware with respect to the number of loop pipeline stages.

Another approach to achieving concurrency in recursive digital filters is by the use
of "block processing” [1-19]. In block realizations, input samples are processed in the
form of non-overlapping blocks to generate non-overlapping blocks of output samples
(see Fig. 4.1). The block of multiple inputs are derived from the single serial input by
using a serial-to-parallel converter at the input, and the serial output is derived from the
block of outputs by using a parallel-to-serial converter at the output. Because of this
serial-to-parallel conversion, the multiple-input-multiple-output (MIMO) or the block
system operates at a rate L times slower than that of the converter circuits, where L is the
block size. The clock period of each latch in the MIMO system is L times greater than
that of the sample period, or equivalently each block delay operator in the MIMO system
is L-slow [20-22]. Hence, for a given technology, we can increase the block size to
obtain arbitrarily high sampling rate filter realizations. Due to this L—slow block delay

operator, the block state update operation requires updating the state x(kL+L) based on
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the past state x(kL ). Note that in'the block state update operation, the (L —1) intermediate
states x(kL +1), x(kL +2), ..., and x(kL +L—1) have been missed, unlike in pipelined reali-
zations where each state is computed. This block state update operation can be achieved
by iterating the original recursion (L-1) times (using the clustered look-ahead approach)

to create a single L—slow delay operator in the recursive loop.

=1 SISO System yin)
H(z)
fmmm— e m s s -
. ' serial t0
- LA l = | 2 Subsample | spearallel
| /4
‘ at rate 1 ! converter
' ---------
b - - - = - o o= - an om -
kL) ] xke-n | xkL-20]  xtkL-3) - -
ykL) | :-1 i
! 1
u |
yikL=1) | -y | “ '
System y |  to seria
4 L L1, | converter
H1(Z ) s | |
| -1 |
I )
Ll =--—-2
yin)

Fig. 4.1. Block implementation of digital filters (for block size of 4).
Each latch in the MIMO system is 4-slow.
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In the block filter, for a stable system, the poles (eigenvalues) of the block filter
move closer to the origin than that for the word-serial system (since, the eigenvalues of
the block system are L -th power of those of the word-serial system). These block struc-
tures offer several advantages over the word-serial realizations. These include (i) a
linearly proportional increase (decrease) in the sampling rate (iteration period) with
increase in block size, and (ii) a linearly proportional decrease in the average roundoff
noise at the output. One approach to implement the block filter is to use the concurrent
scattered look-ahead algorithms without decomposition derived in the last chapter with
replicated parallel hardware instead of pipelined hardware. However, each output
requires an O (NL) multiplication complexity, and this block structure requires a total of
O (NL?2) multiplication/addition operations, which is square in block size. In this parallel
hardware block implementation, the decomposition technique can no longer be exploited
because each delay now is a block delay. Furthermore, all existing approaches to block
recursive digital filtering also lead to a square multiplication complexity in block size. It
is the objective of this chapter to derive block recursive digital filter structures with mul-
tiplication complexity linear in block size.

In direct form recursive block digital filters, the block of L outputs are computed
using past block of outputs, and this leads to a square complexity (since the block state
update operation is expensive). Sung and Mitra recently computed L blocks of outputs
(with block size L) and first exploited inter-block parallelism and then intra-block paral-
lelism to get a linear speedup with respect to the number of processors, at the expense of
a larger memory space [12]. Wu and Cappello proposed a new scheme to implement
second order direct form recursive digital filters [13-14] of complexity lmcar in block

size L. Instead of updating the whole block of L outputs, they updated only N outputs



-

PIPELINED INCREMENTAL BLOCK FILTER 126

(where N is the filter order) and computed the remaining (L-N) outputs in a non-
recursive or sequential manner uﬁng these updated N outputs. This process of comput-
ing the outputs is referred to as incremental output compusation. In this chapter, we
extend Wu and Cappello’s direct form structure from second order to higher order case
(with a slight variation, we update the first N outputs in each block, whereas the structure
in [13-14] updates the last N outputs in each block). This block filter complexity is linear
with respect to block size, and the complexity per output sample is independent of block
size.

We propose a new technique of incremental output computation in state space digi-
tal filters. Here we compute the outputs incrementally in a sequential manner using the
non-recursively computed intermediate states (which were missed in the block state
update process). As an example, for a block size of 20 and an increment size of 5, we
compute y (20k) through y (20k+4) using the state x(20k), then we compute the inter-
mediate state x(20k+5) non-recursively (which was missed due to the block state update
process), and compute the incremental outputs y(20k+5) through y (20k+9) using this
state. Then we compute the state x(20k +10) and use this to compute y (20k +10) through
y (20k+14), and finally compute x(20k+15) and use this to compute the last incremental
output y (20k +15) through y (20k+19). A family of filter structures can be described with
different values of increment size. In particular, the existing block state filter structure
corresponds to the case where the increment size equals the block size. We derive the
optimum increment size as a function of the filter order in a way that minimizes the mul-
tiplication complexity of the incremental block filter. The incremental block state filter is

also extended to the multirate filtering case.
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It is preferable to use pipelining to the maximum possible extent first, since pipelin-
ing exploits concurrency with ﬁduced bardware (i.e. with logarithmic increase as
opposed to linear as in block processing). This conclusion is clear from Table 4.1, which
compares the number of multiply/add operations for a second order recursive filter, for
direct and state space forms, for pipelining and incremental block processing approaches,

for typical factors of speedup or increase in the sample rate.

Table 4.1: Complexity of Pipelined and Block Second Order Filters

Direct Form State Space Form

Speedup 5o ined | Block | Pipelined | Block
1 5 5 9 9

2 7 1 13 15

4 9 25 17 30

8 1 53 21 67

16 13 109 25 142

Note that all the multipliers in the pipelined filter are pipelined by M levels or stages, and
these pipelined multipliers require additional area for the latches. In contrast, the multi-
piirs in the block implementation require single stage pipelining. The latch areas in the
pipelined implementation cannot be simply neglected, since each binary latch costs about
one third to one fourth of a binary adder in terms of silicon area. However, if we compare
the complexities of the block filter and the pipelined filter, we observe that the pipelined
filter is far more attractive for implementation, even after accounting for the latch areas
in the pipelined structure. If sufficient speed cannot be generated by pipelining alone,
then we can combine pipelining with block processing (i.e. we can get a speedup by a
factor of LM using a block size of L, and M pipeline stages inside the recursive loop of

the block filter) [16-18].
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In this chapter, we combine pipeline interleaving and incremental block filtering
approaches to derive extensively' pipelined direct form and state space form incremental
block filters by introducing several pipeline stages inside the recursive loop of the incre-

| mental block filter. The pipelined block realizations are derived by using the techniques
of scattered look-ahead computation (to intr-duce several loop pipeline stages), decom-
position (to obtain logarithmic complexity realization with respect to pipelining),
clustered look-ahead computation (for block state update operation), and incremental
output computation (for linear complexity in block size). The total multiplication com-
plexity of our pipelined block filters is lincar in block size, logarithmic with respect to
the number of loop pipeline stages, and the complexities due to pipelining and block pro-
cessing are additive. Because of the scattered look-ahead approach, the distance of the
poles or the eigenvalues of the fine-grain pipelined block filter from the origin is identical
to that of the block filter with a single latch inside the recursive loop. Thus, the stability

of these filters is not affected due to fine-grain pipelining inside the block filter.

The organization of this chapter is as follows. The incremental block filter structure
is derived in sections 4.2 and 4.3 respectively for direct form and state space form recur-
sive filters. In sections 4.4 and 4.5, we derive fine-grain pipelined block filter structures

for direct form and state space form recursive filters respectively.

4.2. DIRECT FORM BLOCK FILTERS

Consider the N -th order direct form filter described by
y(n)='£“asy(n—i)+2(n). 4.1a)

z(n)=§_"bb.-u(n-i). (4:1b)
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We can transform the above description to an equivalent block description, where we
compute L outputs using L inpuﬁ for a block size of L. The state update operation in
block filters is based on the clustered look-ahead approach described in chapter 3. In the
clustered look-ahead approach, the output sample y (n) is computed in terms of past N
clustered samples y (n=M), y(n=M-1), ..., and y (n-M -N+1) (i.e. bypassing (M-1)

immediate past outpus), and is given by

=1 =1 .
y(n)='§ [ 2‘ azr,-m.g] y(n-i—M)+'§ rj z(n=j). 4.2)
J k=j+1 J
This relation was derived in appendix 3.2 in the context of pipelining, and is used here in
the context of block filtering. Let a block of samples be denoted by
yo)i)= [y @), y@i+1),...y@ +L—l)] T, 4.3)
In the existing block structures, the block of outputs y£) kL +L ) are updated based on the

past block of outputs yL)(kL ), with a square complexity in block size.

In the incremental block filter, we update only N states recursively using the
clustered look-ahead approach, and compute the remaining (L-N) states in a non-
recursive or sequential manner using these N updated states. The schedule of such an
incremental block filter is shown in Fig. 4.2, where the outputs y(kL+L) through
y (kL+L+N-1) are updated recursively, and the remaining (L—N) outputs y (kL+L+N)
through y (kL +2L~-1) are computed in a non-recursive manner. This incremental output
computation is the key in obtaining a linear complexity implementation in block size. If
the block size is less than the filter order, the complexity is inherently proportional to
square of the block size, but this is not a problem since the block size is not large. Below
we formulate the block filter for the cases where the block size is greater than and less

than the filter order respectively.
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STATE UPDATE INCREMENTAL OUTPUT
") COMPUTATION
y(1
B y(N),y(N+D), 0000,y (L=1)
y(N-1)
yiL
y(L+1)
= y(L+N),y(L+N+1) 0000, y(2L-1)
y(L+N--1)
y(2L)
y(2L+1)
- (2L +N),y 2L +N+1),0000,y(3L-1)
y(2L+N=1)

Fig. 4.2: Incremental output computation in direct form block recursive
digital filter.
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Casel. L2N
We can update N out of the L outputs using (see appendix 4.1)

yVIKL+L) = AL )yN XKL )+ B(L)ZEXKL+N) (4.42)
where y¥Xi) is a Nx1 column vector, A(L) is a NxN matrix, and B(L) is a NxL

matrix. The elements of A(L) and B(_) are defined by (see appendix 4.1)
[A(L )] ij= Z;an-mrz.-m:-ju-l »iJ=12,.,N (4.4b)

[B(L )] ij STL-N+i-j - (4.4¢)
The (L-N) outputs y (kL+N), y (kL +N+1), ..., y (kL+L~1) can be computed non-

recursively in a sequential manner using the past outputs and the corresponding inputs.
The multiplication complexity of the above state update implementation (i.e. for
updating N outputs or states) is [LN +N2- MNT"'—D-] , of which (LN - NN+l ) is

due to the B(L) matrix and N2 is due to the A(L) matrix. The computation of z (kL ),
z(kL+1), ..., z(kL+L-1) requires (N+1)L multiplications, and the computation of the

last (L-N) outputs can be done usi..g the past outputs with N (L —N) multiplications. The
total multiplication complexity of the direct form block filter is [L (3N +1) - NN+l ] .
which is linear in block size L. Another direct form block structure [15] has a multiplica-
tion complexity [ZLN + L(-Lz"'—ll] , which is square in block size.

Fig. 4.3(a) shows a second order direct form word-serial recursive digital filter, and
Fig. 4.3(b) shows the corresponding block filter for a block size of 5. In this structure,

the states y (5k) and y (5k+1) are updated each block, and the outputs y (5k+2), y (5k+3),

and y (5k +4) are computed incrementally in a non-recursive or sequential manner.
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ulSk+6)

uiSk+4)
ul8k+3)
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u(Sk+1)

133
2(8k+6)
2(5k+S)

— y(5k)
yiske1)
y(5k+2)
y(5ke+3)
y({Sk+4)

Fig. 4.3(b): Block implementation of the second order recursive digital

filter for block size of S.
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The multiplication complexity of this second order filter is (7L -3), and is same as that of
the structure proposed in [13-14].

CaseIll: L <N

For the case when block size L is less than the filter order N, only L states need to
be updated, each based on N past states using the clustered lcok-ahead approach, and the
remaining (N-L ) states can be derived by delaying the availoble L states appropriately.
For example if L =3 and N =8, then we can compute the outputs y (3k+3), y (3k+4),
and y (3k+5) using y (3k), y (3k+1), and y (3k+2) and their celayed samples y (3k-1), ...,
y(3k-5). Note that y(3k—1) and y(3k—4) can be obtiined by delaying y(3k+2),
y (3k—2) and y (3k—5) can be derived by delaying y (3k+1), and y (3k—3) can be obtained
by delaying y (3k).

The direct form block filter can be described by (see appendix 4.1)

yCXkL+L)= AL )y‘” XkL+L-N) +B(L)ZLXKL+L) (4.5a)
where

[A(L)] ij = g‘an-mri-ju-x vi=12,.,L;j=12,.,N (4.5b)

[B(L )] ij STizj» (4.5¢)

and A(L)is LxN,B(L)is LxL.
The complexity required for computing ZENKL+L) is L(N+1), for computing
B(L)2 kL +L) is LEZL) and that due to AQ) is NL multiplications. Thus the total

multiplication complexity is (2N + L'z'i)l., which is square in block size. Fortunately,

for this case L is small.
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43. STATE SPACE BLOCK DIGITAL FILTERS
Consider the state space recursive filter described by

x(n+1)= Ax(n) + bu(n) (4.6a)

y(n)=cTx(n)+du(n) (4.6b)
where the state x(n) is N x1, the state update matrix A is NxN, b and c are Nxl,endd,

input sample u(n) and output sample y(n) are scalars, and N is the order of the flter.
Fig. 4.4(a) shows a block diagram corresponding to (4.6). For th.e purposes of this
chapter, the state update matrix is assumed to be quasi-diagonal (i.c. all real poles of the
system are of multiplicity less than or equal to two, and all complex poles are of multipli-
city unity), and N is assumed to represent the number of real poles of unity multiplicity.

The quasi-diagonal state update matrix has N blocks of dimension unity, and —r(N.Nl)

blocks of dimension 2x2. The total number of non-zero elements in A is (2N-N)),

which is linear in filter order N.

u(n)

x(n)

Fig. 4.4(a): A word-serial state space recursive filter.
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Fig. 4.4(b): Block-state space recursive digital filter.
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Fig. 4.4(c): Definition of processing elements.
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Unlike the direct form representation, the state space representation consists of a state
update portion, and an output cozhputation portion. Similarly, the block state space filter
representation also consists of a block state update portion and a block output computa-
tion portion. The block state update operation has a linear complexity in block size. The
block output computation in the existing block-statz and parallel block-state structures
leads to a square complexity in block size. In this :ection, we review the existing block
state [6] and the pai'allcl block state filter structures [10]. Then we present the incremen-
tal output computation approach, and using this we derive the incremental block state
filter of complexity linear in block size [11). The average quantization noise at the output
of the incremental block-state structure is same as that of the block-state structure and
less than the parallel block-state structure. We also extend the incremental block state

filter structure for the case of multirate recursive filtering.

4.3.1. Block-State Implementation

In the block structure with block size L, each implementable latch is L—slow, i.e.
the clock rate of the latch in the block filter is L Lmes slower than the input sample rate.
Hence, the state of the system needs to be updated block by block, i.c. the state X(kL+L)
is updated using x(kL ), and the (L—-1) intermediate states x(kL+1), ..., X(kL+L-1) are
missed in the block state update process. The state update representation of the block-
state structure [6] can be derived by iterating the single-input-single-output (SISO) state
update equation (4.6a) (L—1) times, and is given by

x((k+1)L) = ACX(KL) + BEEIKL ) (4.7a)
where

AL)= AL (4.7b)
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BL) = [AL“b Al-?p ... b] 4.7¢c)

u€Xn)= [u () u(n+l) ... u(n+L-1)] T 4.7d)
and A®) is NxN, BL) is NxL, ub)(kL ) is Lx1.

In the block-state structure, the block of outputs y(kL), y(kL+1), ..., and
y (kL+L-1) are computed based on the single state x(kL ) and the corresponding inputs.
This is based on the assumption that the (L 1) intermediate states are not s vailable (since

they are missed due to the block state update process). The block output equation is

described by
yEI L ) = CLx(KL ) + DL XKL ) @.7e)
where
u(3k+2) ul(3k+1) u(3k) 0 0

| e

S OHELHGE

y(3k)  y(3k+1  y(3k+2)

Fig. 4.5: Block state implementation of a first order state space recur-
sive filter for block size of 3.
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STATE OUTPUT COMPUTATION
UPDATE
1 _

x(0) —a y(0),y(1),...,y(L=1

x (L) f—————— y(lL),y(L+1),..,,y(2L-1

_
x (2L) }——— y(2L),y(2L+1),...,y(3L-1)

A

x (3L) p———> y(3L),y(3L+1),...,y(4L-1)

Fig. 4.6: Partial schedule of a block state space implementation.
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+
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e 3 e
I

Fig. 4.7(a): A parallel block state implementation for block size 3.
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cor=(e T o Fac)T @70
0 i<j
[D(L>] ;=1 d i=j 4.7g)

cT AG=j-Dp i>j
.

y&)(n)= |y (n) y(n+l) ... ¥(n +L-l)] T, (4.7h)

In the output equation, C&) is LxN, D&) is LxL and lower triangular, and y&) is L x1.
The block diagram of the block-state filter is shown in Fig. 4.4(b). The blocks marked
B®), CE), DX) represent matrix vector :nultipliers, and the block marked A() represents
the state update network (see Fig. 4.4(::) for definition of the processing elements). Fig.
4.5 shows the block state implementation of a first order recursive filter for a block size
of three. In the block state filter, we use x(0) to compute the block of outputs y£)(0), and
to update x(L) (see partial schedule in Fig. 4.6). In the next cycle, x(L ) is used to com-
pute next block of outputs y&)(L), and to update the state x(2L), and the schedule

repeats itself.

For the case of a quasi-diagonal state update matrix, the complexity (in terms of
multiplications) of the state update representation is (NL+2N-N,;), and the output

L(L+1

representation is (NL+ ) where N, L, and N respectively represent the order of

the system, block size, and number of real poles with unity multiplicity. The total multi-

plication complexity of the block-state structure (Cp ) is given by

Cr=2N@+n+LEAD N, 4.8)
and is O (L2) for a block size of L. The asymptotic complexity per output sample is
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4.3.2. Parallel Block-State Implementation

In parallel block-state structure [10], the system state x(n) is first decomposed into

L section states x;(n), Xa(n), - Xz (n), which are related by

xi(n)
x2(n)

x(n)= [AL'l AL-2 . l] (4.92)

x.(n)
Since each implementable latch of &'ne block structure is L—slow , the states in each sec-

tion are updated block by block, i.¢. in section i the state x; (kL +L) is computed based on
the state x; (kL ). Using each section state, L partial outputs are computed and the L sys-
tem ousputs are obtained by adding the corresponding L partial outputs (see Fig. 4.7(a)).
Substituting (4.9a) in (4.7a) and (4.7e), the state update and output representations of the

parallel block-state structure can be derived to be [10]

x;(KL+L)= ALx; (kL) + bu(RL+i-1), i=12,..L 1 (4.9b)
[ 1 | TaL-1 TaL-2 T xi(kL)
FEEEY Far A s Fa | |
: =| Dol ) (4.9¢)
y (kL 4L~1) cTA2L-2 ¢TAZL-3 [ [ [ ¢TAL- | x, (kL)
- - ol } 4L J -
O BNt 1 B =)
o Dol ;
cTAL-2h ¢TAL-3p . . . d | |u(kL+L-1)

For the case of a quasi-diagonal state update matrix, the state update complexity is
L(3N-N,) and the output computation complexity is (NL2 + L(ZL+1 ), leading to a total
multiplication complexity of

Cp =NL@L+3)+ L&) N1 (4.10)

The asymptotic complexity of the parallel block-state structure is O (NL 2), which is N
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yi3k)

‘o 0 0
ul3k+1) ’ - »{ d bec
0 b el ac alc adc L
1-3 I -
\0 l 0 0
w(dk+2l » d
0 b ad c ac alc
3 I

{3k+1)
5%(&02)

Fig. 4.7(b): Parallel block implementation of a first order recursive

filter.
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times higher than that of the block-state structure. The complexity per output sample is
(N(L+3)+£‘2'i—-N 1). The decomposition of the system state leads to this higher com-

plexity. Fig. 4.7(b) shows the parallel block implementation of a first order recursive
filter for a block size of 3. (Note that in [10], the author represented the multiplication
complexity of the parallel block-state structure to be much less than that of the block-

state structure. The error resulted from not including a factor of L in the complexity

expression.)

4.3.3. Incremental Block-State Implementation

In the incremental block-state structure, the state x(kL + L) is updated based on the
state x(kL ) as in the block-state case. However, the output computation, which is non-
recursive, is done in a differ?.-;nt way. Rather than calculating the block of outputs in terms
of the updated state every L samples, we first calculate the intermediate states (which
were missed due to the block state update process) every I samples nonrecursively
(where I is the increment size), and then calculate the outputs incrementally in a sequen-
tial manner using these intermediate states. It is this novel output computation which

leads to an O (L) complexity in the incremental block-state structure for a block size of

L.

In the incremental block-state structure with increment 7, / outputs y (kL +pl),
y (kL+pl +1), ..., y (kL+pI+I-1) are computed using the state x(kL+p/) and the inputs
u(kL+pl), u(kL+pI+1), ..., u(kL+pI+I-1) respectively, and the intermediate state
x(kL+pI +I) is non-recursively computed using x(kL+p/ ) for computation of next / out-
puts. Thus using x(kL ), we can compute y (kL), ..., y (kL +/-1) and can non-recursively

compute x(kL +/ ) for computation of next / outputs. The size of the increment / is
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STATE
UPDATE OUTPUT COMPUTATION

D aad —R
x(D x(20 —==x@31 _ (g, yl1-1

3 YD), y(21=1)

x(0)

e y(2D),...,y(31-1)

3 y(3D),...,y(41-1)

e % (5 )} —- x(6 ) —3=x(T 1)
— y(41),...,y(51=1)

—3 y(51),...,y(6l=1)

x(41)

= Y(6),...,y(7I=1

L y(7D),...,y(8I=1)

x(81)

Fig. 4.9: Partial schedule of an incremental block state digital filter
@L=4).
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chosen to minimize the multiplication complexity. Let the block size L correspond to

(PI+Q), where I is the increment, and P and Q respectively represent the quotient and

remainder of %’- Then the size of the last increment is (/+Q), i.e. the computation of the
last (/+Q ) outputs is performed based on the state x(kL +PI-T).

The state update representation of the incremental block-state structure is identical
to that of the block-state structure and is described by (4.7a). The computation of / out-

puts y (KL+pI), ..., y (kL+pl +I-1) and the intermediate state x(kL+pl +]) is performed

[ B ] [ e 00 ] [ Jeren, ] p=01,.P-2. @.112)
The computation of the last (/+Q ) outputs is carried out using

yI+@)XKL +PI -1 ) = CU+Q) x(kL +PI~I ) + DU+ kL +PI-T), (4.11b)
where the meaning of the symbols stand as defined in (4.7). A block diagram of the
incremental block-state structure is shown in Fig. 4.8, and its partial schedule is shown in
Fig. 4.9 for L =4l . Fig. 4.10(a) and 4.10(b) show the incremental block state implemen-
tation of a first order state space recursive digital filter for a block size of four for incre-

ment sizes one and two respectively.
A family of block structures can be described by the incremental block-state struc-
ture for different values of the increment /. A value of / Zslz‘- (i.e. P =1) leads to the

block-state structure described in section 4.3.1. An optimum value of the increment /
can be derived to minimize the multiplication complexity of the incremental block-state
structure. The optimum increment will depend upon the exact custom VLSI implementa-

tion architecture, or scheduling in case of a software-programmable parallel processor
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realization. For example, if it is not possible to exploit the lower triangular nature of the
D matrix, then the complexity of the full matrix will need to be accounted for. In the
sequel, we assume that it is possible to exploit the lower triangular nature of D matrix,
and consider the case of the quasi-diagonal state update matrix. A similar analysis can be

carried out for all other cases.

In an incremental block-state realization, the complexity of the state update equa-

tion is (2N-N;+NL), and is independent of the increment /. The output computation
commplexity for first (P~1) increments (of size I each) is (P-1)(2IN+2N-N+L1(LFL)),

and the last increment (of size (/+Q)) is (/+Q)N + S’_"'Q)%ﬁ).). The total com-

plexity of the incremental block-state structure is given by
Ci=2NP+L)+ L o QTH0) 4 Ny p-1)-NP, 4.12)

where P and Q are respectively quotient and remainder of -I"- In the asymptotic case,

we need to minimize the complexity per output in the output equation which is given by

2N-N;  I+1

C'.‘o =2N+—I—+—2—', (4.13)
and is minimized for
1 =[\/2(2N -N)1, (4.14)

where [x] represents the integer nearest to x. At the optimum increment value, the mul-
tiplication complexity associated with the computation of the intermediate state and that
of the I outputs are approximately the same. In the asymptotic case (i.e. very large L
and Q =0), the complexity of the incremental block-state structure with optimum / (for

a quasi-diagonal state update matrix) is given by
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o 20N -NHIN2ONNDR 1 | v e GoN NS
C; —L[3N+ 2IN2N-N )] 7| -NIN2N-N)], 4.15)

and is linear in block size. For the special case of the incremental block-state structure

with unity increment (/ = 1), the complexity per output sample is (SN —N; + 1).

Table 4.2 summarizes the asymptotic complexity (in terms of number of multiplica-
tions) per output sample for various structures for the case of a quasi-diagonal state

update matrix.

" Table 4.2: Asymptotic Implementation Complexity per Output Sample

Implementation Number of Multiplications per Sample
Direct 2N +1
SISO State Space 4N -N; +1
Block-State 2N + L+l
Parallel Block-State 3N +NL + i’:if-ll -N;
2(2N-N \22N-N 12 1
Incremental Block-State 3N + SVZQN N ] + -

Table 4.3 summarizes the multiplication complexity (Comp) in terms of number of mul-
tiplications for typical filter orders (V) and block sizes (L) for block-state (BS), parallel
block-state (PBS), and incremental block-state (IBS) structure with optimum increment

(I)forN;=0.
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Table 4.3: Complexity Comparison for Different Block Structures

L=20 L=40 L=60
N| B |[ps | B Bs | s | BS Bs | pes | B
Comp | Comp | Comp | I | Comp | Comp | Comp | 1 | Comp | Comp | Comp | I
2| 294 1130 179 |3 984 4260 366 | 3| 2074 9390 §54 | 3
4 | 378 2050 310 | 6 | 1148 7700 644 | 4 | 2318 | 16950 974 | 4
6] 462 2970 425 | 7| 1312 | 11140 892 | 6| 2562 | 24510 | 1372 | 7
8 | S46 3890 §27 | 7| 1476 | 14580 | 1134 | 7 | 2806 | 32070 | 1742 | 7

For large block sizes, it is possible to achieve linear speedup (in execution time) in
case of a mMm—mmble parallel processor implementation (using the incremen-
tal block-state recursive digital filter) as the number of processors increases. In the case
of a custom VLSI realization, a linear increase in sampling rate can be achieved by using

block processing at the expense of a linearly proportional increase in hardware.

Since the recursive state update for block-state and incremental block-state struc-
tures are identical, the average roundoff noise at the output is the same for these two
structures (under the assumption that the roundoff is performed at the output of state vari-
ables and at the system outputs, and the noise sources are white stationary with zero
mean and statistically independent). The roundoff noise for the incremental block filter is
derived in appendix 4.2. It has been shown in [10] that the average roundoff noise at the
output of the parallel block-state structure is greater than that of the block-state structure

(and hence than the incremental block-state structure).
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4.3.4. Multi-Rate Incremental Block-State Filter

In this section, we study the incremental block state realization of multi-rate recur-
sive digita! filters. Multi-rate block recursive filtering based on the block-state structure

has been studied in [19].

u(o)_—»l h('..) P Y(')J
(t,) | “y""u)

K
J-K SHIFT-INVARIANT
SYSTEM

Fig. 4.11(a): A multirate recursive digital filter.

u— 44 ——>| hes,*) |——> VK >y
(fy)

J
) (i) (fy=3 )

Fig. 4.11(b): An equivalent representation the filter in (a).
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Any multirate system with sampling rate alteration by a factor of % can be realized
using a 1-to-J interpolator at the input, and a K-to-1 decimator at the output (where the
greatest common divisor of J and K is unity) (see Fig. 4.11(a) and 11(b)). Thus, only
one out of J inputs is non-zero and only one out of K outputs needs to be computed. We
assume each J-th input to be non-zero and the 1-st (of each of the X') outputs to be com-
puted to obtain minimum complexity. Thus for an input (output) block size of KL (JL),
KL non-zero inputs u (pKJL+J-1), u(pKIL+?J -1), ..., u(pKJL+KLJ 1) are processed
to generate JL non-zero outputs y (pKJL), y pKJL+K), ..., y PKJLHJL-1)K) (see Fig.
4.11(c)). In the incremental block-state structure with an input (output) increment K7
(J1), JI outputs y(pKJL+qKJI), y (pKIL+qKJI+K), ..., y (PKIL+qKJI +HJI-1)K) are
computed using the state x(pK.JL +gKJI'), and KI non-zero inputs u (pKJL +gKJI +J-1),
u (PKJL+qKJI+27 -1), ..., u(pKJL +qKJI+KIJ-1). The state x(pKJL +(q+1)KJI) is then
computed non-recursively using the state X(pKJL +qKJI') and the KI non-zero inputs (to
be used for the computation of the next output increment). The size of the first (P-1)

output increments is J/, and that of the last is J(/+Q) where P and Q are respectively

the quotient and remainder of -L,‘-

The state update equation of the incremental block-state recursive multirate filter is
described by

x((p+1)KJL)= AKILX(pKJL ) + BRILWWKILXpK]L ) 4.16)

and has a multiplication complexity of (2N —N; +KLN) (since number of non-zero

inputs is only KL).

The computation of J outputs y (pKJL +qKJI+rKJ), y (pKIL+qKJI+rKJ+K), ...,
y (PKJL +qKJI+rKJ +KJ -K) of the (g+1)-th increment can be described by
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TR, | | S

y(pKJL-i-qKJI +rKJ +KJ-K ) o Arﬂm-x
I

FHERD, FHEDD, ;:;' KGR

P A(rK-l)lﬂJ-l)K o7 A(rx-iv«l-l)x u(pKJL+qKJl+rKI+KJ—1)

x(pKJL +qKJT) +

q=0,1,...,(P=2);r=0,1,....(d -l). . {4.17a)

The complexity associated with the computation of above J outputs is (JN +rKJ +A) mul-
tiplications, where
A=l 3]+ KfL) o 4| 20K (4.17b)

and| x| represents the floor function of x. The complexity associated with computation
of JI outputs (i.c. for r = 0-to-(I-1)) is (JIN+ A+ZELI=1) y myltiplications. A partial

schedule of a multirate incremental block recursive digital filter is shown in Fig. 4.12 (for
L =4l).

The non-recursive state update equation for the (¢+1)-th increment is described by
x(pKJL+(q+1)KJI) = A&Dx(pKJIL +qKJI ) + BEDu®IXpKJIL +qKJT) , (4.18)
and leads to a complexity of (2N-N;+KIN) multiplications (since only K7 inputs are

non-zero). Thus the complexity associated with each (except last) increment (of input

size K7 and output size JI') is given by

JIC', =1A+ IKLA=D) 4 jIN 4 @QN-Ny) +KIN , (4.19)

where C’;, represents the complexity per output sample in the output equation of the

incremental block structure. The above complexity is minimized for
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1=r\ 220, 420)

With the above optimum increment, the asymptotic complexity per output sample (in

terms of number of multiplications) is approximately given by

A e e e B S .

= - 5 + T 4.21)
2\ 2N,

ard is independent of block size. Note that the asymptotic complexity per output sample

of the block-state recursive filter in [19] is | KN4N+EKL-K 18| which is linearly
TN STTTNT

proportional to block size, and much larger than that of the incremental block-state struc-

ture presented in this chapter.

Interpolation and decimation by integer factors are special cases of the general
multi-rate filtering case. A sampling rate increase (interpolation) by factor J can be
obtained with unity X, and a sampling rate decrease (decimation) by factor X' can be

obtained with unity J. For both these cases, the value of A is unity.

4.4. DIRECT FORM PIPELINED BLOCK RECURSIVE FILTERS

We can get a speedup by a factor of LM by using a block size L and M stages of
pipelining inside the recursive loop [16-18]. The pipelined block state update operations
for the cases when the block size (L) is greater than the filter order (V) and less than the
filter order need to be studied separately. We assume M to be a power of 2 to exploit the
decomposition of the non-recursive portion in an efficient manner. We first consider the

case L2N and then the case L<N.
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Casel:L2N:

The direct form block filter is described by
YNIL+L)=AL)yNXkL)+B(L)ZLIKL+N) . (4.22)
In a pipelined block realization with M loop pipeline stages, we need to update
y¥XkL+ML) using the state yW)(kL ). We can derive a pipelined block state update real-

ization by iterating (4.1) by (M —1) times to be given by

YVXRL+ML) = AM (L )yV)KL ) + ':g'A" L)zo(k+M=i-DL+N),  (4.23a)
where

20(m) =B(L)zLXm) , (4.23b)
and the elements of AM (L) are derived in appendix 4.3. The representation of (4.23) can

be rewritten (using the decomposition technique) as

z;a(m)=2;(m)+ A%z;(m - 2'L), i =0,1, ..., (log2M — 1) (4.24a)

YNV XU(L+ML) = AM (L)yNXKL ) + Zjog,u (k+M-1)L+N) . (4.24b)

The above pipelined block state update operation of (4.23) can also be derived alter-

natively starting from the block filter representation. We can us: a block size of ML in
(4.4a) to get

yN)L+ML) = AML))yWN)X(kL) + B(ML)zMLYKL+N), (4.25)
which reduces to (4.23) after using (A4.11) and (A4.13).

In the pipelined block implementation, z&)((k+M—1)L+N) is computed using the
L inputs, and is successively delayed to obtain 2L (k+i )L+N) for i = (M -2) through 0.

This computation requires L (N +1) multiplication operations. The computation of zo(m )

requires (NL - M%"’—l)-) multiplication operations. The state update implementation of
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(4.24) requires N(log2M + 1) multiplication operations. The final (L-N') outputs are
computed non-recursively in an incremental manner using N (L-N ) multiplication opera-

tions. Thus, the total multiplication complexity of the pipelined direct form filter is
[L (3N+1) + N2logM — ﬂ’}*—‘)—] , which is linear in block size, logarithmic in loop

pipeline stages, and pipelining and block processing complexities are additive. Fig. 4.13
shows the implementation of a second order direct form recursive digital filter for a block
size of 5, and 4 pipelining stages inside the recursive loop using the decomposition, and

incremental output computation techniques.

Casell.L<N:

For this case, we need to compute (as well as update) only L states, and the (N-L)
states can be derived from the L available states. The L outputs y&)(kL+ML) could be
updated using the states yN)XkL—(N-L)) using the clustered look-ahead approach. In
this implementation, each of the states y (kL —(NV =L )) through y (kL —1) can be derived by
delaying the L available states y (kL ), y (kL+1), ..., and y (kL +L-1). However, such a
realization will contain a single isolated loop delay operator, and hence the decomposi-
tion technique cannot be exploited thus leading to a linear complexity in M. Instead we
can obtain another realization in which all loops contain M delay operators, so that we
can exploit the decomposition technique to get a logarithmic complexity with respect to
M. In this new pipelined block realization, we express yEXkL+ML) in terms of

YEXL), YL RL~ML), ..., and yEXKL-RML), where R is| 4L .

Let N=RL+S, where R and S respectively comrespond to the quotient and

remainder of -I}j- In the block filter in (4.5), we update the block of states y&)(kL+L)
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using yEXAL ), yEXRL-L), ..., and YEXKL-RL ). The block filter in (4.5) can be rewrit-

ten as

yEXRL+L) = go.-a(l)ym«k-f)m +BzLXKL+L), (4.262)

where

[01a0)] =[@um 1@m 1 - 1) . (4260)
and the explicit dependence of the Q; and B matrices on L has been omitted for simpli-
city, and Q;(1)'s and B are LxL, and 0 is Lx(L=S). Since only last S states of
yEX (k=R )L ) are needed, the first (L—S) columns of Qg.3(1) correspond to zero. Hence,
each matrix vector multiplication Q;,;(1)y&X(k—i)L) leads to L2 multiplications for i
ranging from 0 to R-1, and SL multiplications for i equal to R. The B matrix has
LJ%_—I)- elements which are neither zero nor unity, and leads to L(L-1 multiplication
complexity. The derivation of z&)(kL +L) requires L (N+1) multiplications. Thus, the

total multiplication complexity of the block filter is RL2 + SL + LLL{—I)- +L(N+1) or

2NL+£(!-211)-.

In the decomposition based fine-grain pipelined block processing implementation,
we compute the L states yL)kL+ML) using the states yEXKL), yLIRL-ML), ...,
y&XkL—-RML). Here each of the states yE)kL—-ML), ..., YEXkL-RML) can be derived
from y )KL ) by using M delay operators. By going through the decomposition steps as

in section 3.4.3, we can derive the M stage pipelined block realization to be given by

yEXUL+ML) = gqm(u WXL ~iML ) + Ziogpg (RL+ML) , @.272)

where
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2;((RL+ML)=12; (kL+ML) + Jg(-l)" Qj+1(2))z; (RL+ML-2!(j+1)L),, (4.27b)

i=0,1, ..., (log,M-1)

Zo(kL+ML)=BzLXKL+ML) , (4.27¢c)
and Q;(2K) can be expressed in terms of Q;(K) using the matrix versions of (A3.6)

through (A3.8). The above can be proved by induction or by following the method out-
lined in section 3.4.3. Notice that the first (L=S) coluzans of Qg.1(2%) are zero for any
k. The complexity corresponding to the implementation f ZEXkL+ML) is L (N +1) mul-
tiplications, and that for BzLXKL+ML) is 5%-—1)- multiplications. The multiplication

complexity to implement (4.27b) is NL for each i or NL (log oM) for all i’s. The com-
plexity of implementing (4.27a) is also NL. The tota’ multiplication complexity of this

implementation is L[2N+£‘z*l] + NL (log M), which is logarithmic with respect to M,

linear in L, and is additive with respect to combining pipelining and block processing.

4.5. STATE SPACE FORM PIPELINED BLOCK DIGITAL FILTERS

We can use the techniques of decomposition and incremental output computation to
obtain efficient realization of pipelined state space block recursive digital filters. The

state update representation in (4.6) can be recaste as

uX((k+M-1L
) Rl R
X(KL+ML) = AMLX(KL) + [nm | ALBD) | --- | A«M-nf-)s(m] :

ul ).(kL )

(4.282)
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where
AL)=AL (4.28b)
B@L)= [AL'lb | AL=2p | --- | b] (4.28¢c)
ubn)= [u(n) u(n+1) --- u(n+L—l)] T (4.28d)

and AL) is NxN, BE) is NxL, and u®) is L x1. Using the decomposition technique, the

state update representation of (4.28) can be rewritten as (for the case where M can be

expressed as a power of 2)
X(KL+ML) = AML (kL Y+ Zjogm (K+M—-1)L) (4.29a)
where
Z; 1 ((k+M-1)L) = 2;(k+M -1)L ) + AL2'z; (k+M -1-2¢)L), (4.29b)

i=0_2,..,logsM-1

2o((k+M -1)L) = BEuE X (k+M-1)L) . (4.29c¢)
The multiplication complexity to implement (4.29¢) is NL, (4.29b) is (2N — N;)(log :M)

for the case of a quasi-diagonal state update matrix, and that for (4.29a) is (2V —N)).
The total state update implementation complexity is (2N =N )(log M +1) + NL multipli-
cations. The L outputs y (kL), ..., y (kL+L~1) are computed incrementally using (4.11)
(exactly in the same manner as described in section 4.3.3). Adding the output computa-
tion complexity of (4.13) to the state update complexity, we can derive the total multipli-

cation complexity of this realization to be

| 2y 2@V -NHNRGN NP 1 NI ND
C;=L|3N+ 22NN + +(2N-N logsM ~-N [V2(2N-N)}1 , (4.30)

which is linear in L, logarithmic in M, and the complexities due to pipelining and block
processing are additive. Fig. 4.14 shows a pipelined block implementation of a pipelined

block filter with L = 4/+Q, and M loop pipeline stages. Fig. 4.15 shows pipelined block
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implementation of a first order recursive digital filter for block size of 4, increment size
2, and 4 pipeline stages inside the recursive loop. The roundoff error in pipelined incre-
mental block state filter is studied in appendix 4.4, and it is shown that the average

roundoff error strictly improves with increase in the number of loop pipeline stages.

ulax+18)
ulak+14)
u(ak+13)
ulak+12)

@— ulak+3)

E.‘-!I ulak+2) - - - . 3
utek+® ; " o
= 1 l

» ¢ o] sc e c ac

b5 -

xiak)
x4k +16) xaxe2) o

= s ~ o
- > * -
= 3 s 3
- > -

Fig. 4.15: 4-stage pipelined incremental first order block filter for a

block size of four and increment size of two obtained usi
position technique. ueing the decom-
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To conclude, in a block realization, the eigenvalues of the system move much closer
to the origin (the eigenvalues of ‘the block filter are L-th power of that of the original
filter for block size L). In a pipelined filter with M loop pipeline stages, the distance of
the canceling poles from the origin is same as that of the original filter, and for each pole
in the original filter, (M -1) additional poles ev¢ added at equal angular and radial spac-
ing. In a pipelined block filter with M loop pip:line stages and block size L, the distance
of the poles are same as that of the block filter with block size L (and M =1). As an
example, for a first order system with block size 3, and 4 loop pipeline stages, the eigen-
values are at £ a3 and  ja3, where a is the cigenvalue of the original system. The same
sample rate can also be achieved with a block structure with block size 12, and this sys-
tem would have a single pole at a12. If we pipeline the loop by 12 stages to achieve the
same sample rate, then the pipelined system would have 12 poles spaced 30 degrees apart
on the circle at a distance g units apart from the origin (the pole at a is the original pole

at a, and the remaining 11 are canceling poles).

4.6. CONCLUSION

We have proposed an incremental output computation technique, and using this we
have derived incremental block filter structures for direct form and state space form
recursive digital filters of complgxity linear in block size. We have combined the incre-
mental block filtering and the scattered look-ahead and decomposition based pipelining
approaches to derive fine-grain pipelined block filter realizations of direct form and state
space form recursive digital filters with complexity linear in block size, logarithmic in
number of loop pipeline stages, and additive with respect to combining pipelining and

block filtering.
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In the next chapter, we extend the look-ahead and scattered look-ahead computa-
tion, and incremental block ﬁlt&ing techniques to derive high performance architectures

of time-varying and adaptive digital filters.
4.7. APPENDICES

4.7.1. Appendix 4.1

In this appendix, we derive the block state update operation of the direct form recur-

sive digital filter.
In appendix 3.2, we derived
—1 ) =1 .
y(n)=N§b[ ﬁ azr,-m-z]y(n-J-M )+A§r,-z(n—1) (A4.1)
JF0| I=p+1 J

in the context of clustered look-ahead based pipelined realization of recursive digital

filters. The above can be rewritten as
=1 ] . =1 .
y="5| & oot yo-MN1)) + " iz (-1 xA42)
[ y  ma '

=‘:§b P RN y(n-M—~+1+J)+‘;§m.j-xz(n-u+l+n

L =

Casel: L2N

For the case where the block size is greater than the filter order, we need to express
the N states y(kL+L) through y (kL +L+N~-1) in terms of the N clustered past states
y (kL) through y (k\L+N-1). Substituting n =kL+L+i and M =L-N+i+1 in (A4.2), we
have

. =1 £ o LN+ .
y(kL+L+;)=C§[§{a~.mn.~m.-.,--x] y(L+j)+ Jg*‘n.m.-.,-z(uwm . (A43)

The matrix formulation for computing the N outputs can be derived by substituting
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i =0,1, ..., N-1 in the above equation, and is given in (4.4a).

Casell: L<N

For the case when the block size is less than the filter order, we need to compute the
L outputs y(kL+L) through y(kL+2L-1) using the clustered N states y (kL+L-N)
through y (kL +L~1). Substituting n =kL+L+ and M =i+1in (A4.2), we have

=11 J . i .
yKL+L+i)= ‘; [gaN-hlrl-n’—j—l] ykL+L-N+j)+ j ri-jz(kL+L+j) .(A4.4)
The matrix formulation -for computing the L outputs can be derived by substituting

i =0,1, ...,L-11in (A4.4), and is given by (4.5a).

4.7.2. Appendix 4.2

In this appendix, we derive an expression for the roundoff noise error in an incre-
mental block state filter, and show that the average noise level at the outputs of the incre-
mental block-state filter is same as that of the block-state filter and less than the parallel
block-state filter. For comparison purposes, we assume that the roundoff is performed
only at the outputs of the state-variable summing nodes, and at the summing nodes of the
filter outputs. All roundoff noise sources are assumed to be statistically independent and

stationary white with zero mean.

The roundoff error at the summing nodes of the state variables can be described by

KL +L)=ALX(kL)+es;(kL), (A4.5)
where e, is of dimension N x1 and

E[e, e,T] =0p2ly . (A4.6)

The matrix Iy represents the unity matrix of dimension N. The variance of the errors at

the summing nodes of the state variables is described by the covariance matrix
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Q=E[iif] = ALQUAT): + oy =og? F AL ATYE . (A4T)
: P

The error at the summing node of the i -th output is described by

YL +i)=cTAiR(kL) + e (kL+i), (A4.8)
where the last term corresponds to the error at the output summation node and

E [ez(kL-H' )] =0¢.
The variance of the error at the i -th output summing node is given by (using (A4.7))
2 . - .
%‘&.chA'p%APL (ATYPL(ATYc+1. (A4.9)

The average roundoff noise at the outputs is given by (using (A4.9))

S,
o3 I.I:b'

= =17 T (A4.10)
—0?_ -L_0'3- rc p%AP (AT yc+1l.
The average roundoff noise for the block-state filter has been verified to be exactly same

as that given by (A4.10) [8). In [11] the roundoff noise of the parallel block-state has
been derived and shown to be greater than that of the block-state filter. Hence, to con-
clude, the average roundoff noise of the incremental block-state filter is same as that of

the block-state filter and less than that of the parallel block-state filter.

4.7.3. Appendix 4.3

In this appendix, we derive an expression for the elements of A¥ (L) as a function
of filter coefficients and the sequence r; (for the case when M can be expressed as a
power of 2). This expression is useful for deriving pipelined block realization of direct
form recursive digital filters for the case L2N. The sequence 7; has been defined in

appendix 3.1.

Theorem A4.1: The elements of AM (L) are given by
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[AM(L)] . =za~_,rq,_m.-.m (A4.11)

Proof: (by induction): Assume (A4.11) is true for M, and then prove that it also holds for
2M. The elements of A2¥ (L) are given by

[A?M (L)] 5= g’ [AM (L)] 4 [A"‘ (L)] , (A4.12)

g{gdmknx-na-m] [Zoaﬂ-mrm—hlﬂ-jm]

P =00N-m g"[gau-k "z.u-na-m] TLM-N+l-j+m

.
-

=m GN-m TUM-N+i-j+#m  Using theorem (A3.1) QED.

)

Corollary: AM(KL)=AKM(L).

Theorem A42:
BML)= [AM “1(L)B(L) AM-2(L)B(L) -+ B )] (A4.13)
Proof. From (4.5c), we have
[B(ML )] i AL +j = TML-N+i—kL-j - (Ad.14a)
We need to prove that the above element must be the ij-th element of AM-1-k(LYB(L).
This element is given by
[aveama)] ;= 4 [a4 )] [B2)] m (A4.14b)
m=
=1
= ﬁ [gaN-sr(M-l-k)L-N-bi-m-:] TL-N+m-j
m=zl| s

=rpmL-N+i-i-j Using theorem A3.1 QED .
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4.7.4. Appendix 4.4

In this appendix, we derive fhe roundoff error in a pipelined block state space filter
with block size L and M loop pipeline stages, and show that this error is strictly less than
that of a block filter with block size L (i.e. with M = 1) under the assumptions stated in

appendix 4.2.

The roundoff error at the summing nodes of the state variables of the pipelined

block filter is described by

KL + ML)=AMLX(KL)+e,(kL + ML), (A4.15)
where e, is of dimension N x1 and

E[e,e,"] =cg2ly . (A4.16)
The matrix Iy represents the unity matrix of dimension N. The variance of the errors at

the summing nodes of the state variables is described by the covariance matrix

Q:E[ﬁT] = AMLQATML + Gg2ly =oozp§mw- (ATYML (A4.17)

The error at the summing node of the i -th output of the block filter is described by

YKL+i)=cT Aix(kL) + e (kL +i), (A4.18)
where the last term corresponds to the error at the output summation node and

E[e’(kLﬂ')] =o¢.
The variance of the error at the i -th output summing node is given by (using (A4.17))
0‘2 CT . &0 .
=cTAi $° APML (AT WML (AT .
% S APMEATPM AT e+ (A4.19)
The average roundoff noise at the outputs is given by (using (A4.19))

S
c3 1‘};‘ 1

= = 10| $ APMLATYML | (AT Ve + 1 (A4.20)
it E [,% ( ””]‘ Vesl,
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which is a strictly decreasing function in M.
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ADAPTIVE DIGITAL FILTERS

5.1. INTRODUCTION

In chapters 3 and 4, we proposed look-ahead and decomposition techniques to
implement recursive digital filters using fine-grain pipelining, and developed the incre-
mental block filter structure for block implementation of recursive digital filters. Many
real-time applications, such as high-end storage devices, system identification, spectrum
estimation, and image processing require high sample rate implementation of adaptive
digital filters. Unlike in recursive filters, the coefficients in adaptive digital filters need to
be updated each sampie period (so as to minimize some error criterion). The tap
coefficients are usually updated using the error innovations and the past coefficients. This
updating of the tap coefficients in the adaptive filters in each sample period makes their

high-speed implementation difficult and challenging.

The notion of block processing [1-12] was used in [13] to derive an architecture for
high-speed implementation of adaptive digital filters. Although the block architecture
improves the iteration bound [14-15] in adaptive filters, it does so at a considerable
expense in hardware. The block structures are also often referred to as word-parallel or
vector processing in the literature (see Fig. 5.1 for definition of word-serial/word-paraliel,

bit-serial/bit-parallel terminologies). These block filters contain a single L-slow [16]
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latch inside the loop, and belong to the class of word-level pipelined architectures. In
this chapter, we use the look-ahead and decomposition techniques [6,17-19] to develop
high sampling rate architectures for adaptive digital filters using fine-grain pipelining.
Our implementations are pipelined at bit- or multi-bit level, and require logarithmic com-
plexity with respect to speedup or level of loop pipelining. When pipelining is not ade-
quate to achieve the desired speedup, we combine incremental block processing with
fine-grain pipelining to achieve high-speed [12].
FLOW DIRECTION

—

WORD SERIAL
BIT SERIAL ] ] ] 000 i
WORD SERIAL I I I cee
BIT PARALLEL
—
WORD PARALLEL —
BIT SERIAL

WORD PARALLEL
BIT PARALLEL

Fig. 5.1: System terminologies: data flow in word-serial/word-parallel

bit-serial/bit-parallel realizations.

b eoo — —f —i [oee]
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Iﬁ a block implementation with block size L and M loop pipeline stages, the imple-
mentable loop delay operator eorresponds to z-IM (at the sample rate). However, the
delay operator available in most recursive algorithms corresponds to z-1. The additional
concurrency is created by using (LM -1) steps of look-ahead and LM -way interleaving is
not needed. The complexity of our fine-grain pipelined block architecture is linear in
block size and is asymptotically same as that of the non-recursive systems (for both bit-
 serial and bit-parallel realizations).

Look-ahead computation applies to digital filters, and also to adaptive filters since
the recursive portion of such filters is linear for all the adaptation algorithms proposed to
date. Adaptive systems can be implemented by using transversal structures [20, ch.3].
triangular arrays based on QR decomposition [21-25], or lattice structures [20, ch.4,6).
The triangular arrays and state space based transversal filters require O (V'2) complexity,
where N is the order of the adaptive filter. Furthermore, pipelining the least square struc-
tures will lead to much higher complexity since the loop computation in these structures
involves square root and division, and these operations lead to an O (W 2) latency as com-
pared to O (W) latency in multiplications for a word length of W. To avoid the global
error adaptation bottleneck in the adaptive filter (as shown in Fig. 5.2), block adaptation
scheme (not to be confused with block or word-parallel structures discussed in this
chapter) has been proposed [26-27], but these structures suffer from slower tracking
capability at high sampling rates. Adaptive lattice filters lead to a complexity linear in
filter order, and avoid the global error bottleneck, since the coefficient of each stage is
adapted order-recursively based on the error residual of the previous stage. These struc-
tures are best suited for high sampling rate realizations, since the adaptation coefficient

recursion inside each stage is linear in nature. Hence, we have concluded that the best
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adaptive filter structure for high sampling rate implementations is the adaptive lattice
filter. Specifically, the coefﬁcienf update of any lattice stage simplifies to a first-order
linear time-varying recursion, which can be implemented with arbitrary concurrency.

The organization of the chapter is as follows. The look-ahead and decomposition
teéhniques are extended to linear time-varying recursive systems in section 5.2. Fine-
grain pipelined block architectures for adaptive lattice filters are derived in section 5.3
using the normalized stochastic gradient lattice filter as an example. The complexity and

latency issues are addressed in section 5.4, and the implementation methodology trade-

offs are discussed in section §5.5.

y(n-1) y(n-i+2) y(n=i+1)
y(n)__r_.z-1 oo —i; seoe

ef(n)

Fig. 5.2: Global esror bottleneck in transversal adaptive filter.
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aln)

u(n) D

x(n)
x(n+1)

Fig. 5.3(a): A first-order linear time-varying recursion.

a(n+7)

WUN+7 )t

Fig. 5.3(b): An equivalent pipelined recursion obtained using look-
ahead with 8 pipeline stages inside the recursive loop,
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$.2. LOOK-AHEAD IN TIME-VARYING FILTERS

First we address look-ahead and decomposition in first-order linear time-varying

system and then in higher order time-varying systems.

§.2.1. First Order Linear Time-Varying Recursion
Consider the first-order linear time-varying recursion shown in Fig. 5.3(a) and
described by

x(n+l)=a(n)x(n)+u@), x(0)=xq. (5.1a)
An equivalent recursion using (M -1)-steps of look-ahead can be obtained as:

ISR

] = ]
z(uﬂl)-ua(u-u-i-l):(u)-o-[la(n-hll-l) a(nHM—i-1) - ﬁa(u-i-ﬂl-i—l)] . (5.1b)

u(n)
The initial states can again be precomputed as in the time-invariant case. For a causal

input sequence, the starting initial states can be derived to be [17]

x(0)=xo, x(=i)= [,13“ &J )] -lxo , i=12,..,(M-1), (5.1¢c)
where the values of the non-zero time-varying coefficients a(~1), -+ + ,a(-M+1) can be
chosen arbitrarily. The implementation of this recursion is shown in Fig. 5.3(b), and has
a multiplication complexity (2M —1), which is linear in steps of look-ahead. The product
of the coefficients can no longer be pre-computed because of the time-varying nature of
the recursion. However, these can be dynamically computed by a separate array, which
can be fully pipelined because it is non-recursive. Hence, as in the time-invariant filter,
full pipelining of the recursive portion of the system can be achieved using look-ahead

computation.

For situations where M can be expressed as a power of 2, we can use the decompo-

sition technique to obtain an implementation, which requires a logarithmic increase in
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hardware with respect to the number of steps of look-ahead. The decomposed state
update implementation is described by
x(n+M)=fw(n+M—l)x(n)+zbw(n+M-l) R (5.2a)
where
fin(n+M=1)=f;(n+M-1)f;(n+M-1=2°), fo(n+M-1)=a(n+M-1), (5.2b)
zin(n+M=1) = z;(n+M~-1) + f; (n+M~1)z; (n +M -1-2}), (5.2c)

zoln+M-1)=u(@+M-1),i =0,1, ..., (log2M-1),
and requires a complexity of (2log,M + 1) multiplications. A pipelined decomposed

implementation of the first-order time-varying system is shown in Fig. 5.3(c) for M =8.

D 20 40
aln+7) . »{ x X x
otgin+7) f,(n+7) fatn+7) 1ain+?
D 20 4D
uln+7) 8o n
ez(n+7) 24(n+7) zp(n+7) 24(n+7) x(n+8) xtn

Fig. 5.3(c): Pipelined decomposed first-order time-varying recursion.
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5.2.2. Higher Order Linear Time-Varying Filters

Now we illustrate the application of scattered look-ahead and decomposition princi-
ples for pipelining of higher order time-varying filters using a second-order time-varying
filter as an example. Consider the system

x(n)=a;(n)x(n-1)+ax(n) x(n-2)+u(n). (5.3a)
We can use the scattered look-ahead approach to express x (n) as a function of x (n-M)
and x (n—2M ), and exploit the decomposition technique to obtain a logarithmic complex-
ity. After some manipulation, the M stage pipelined filter is

x(n+M)=f|,mM(n+M)x(n)+3W(n+M)x(n—M)+sz(n+M) » (5.3b)
where

fi(n+M)g;(n+M=2})

fin(n+M)=fi(n+M )fi(n+M=2")+ g;(n+M) + .M —2) (5.3¢)

, __ fi(n+M)g;i(n+M=2!)g; (n+M—2:*1)
gin(n+M)= fi(n+M=2+T) (5.3d)
21 (n4M) =2 (n M) + fi(n+M )z (n4M =2y - L (”f""(‘: T 2) 11 (n+M=241)
(5.3e)

Lo AN, i =0.1, ... (log M1 |
+ = + » = s &9 eceey - - .
M) = un M) 8 M=) ' 630

This realization can be implemented with (5logoM + 2) multipliers (each pipelined by M
stages), and logoM pipelined dividers. Note that although the original realization did not
require a divider, the pipelined realization does require dividers for the scattered look-
ahead technique to be applicable. Since the adaptive lattice filter stages correspond to a

first order time-varying filter, we will not pursue the higher order time-varying filters
further in this chapter.
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5.3. HIGH SAMPLE RATE ADAPTIVE.FILTER]NG

In this section, we derive hiéh sampling rate architectures for adaptive lattice filters
based on the techniques of look-ahead computation, decomposition, and incremental out-
put computation using the normalized stochastic gradient lattice filter algorithm as an
example. These techniques combined together lead to asymptotically optimal realizations
and provide a “"system solution" to area-efficient high speed adaptive filtering. These
basic techniques apply to other lattice filter and joint process estimator algorithms as

well.

The block diagram of a word-serial lattice filter realization is shown in Fig. 5.4(a)
and the word-parallel or block or vectorized version is shown in Fig. 5.4(b). First we
define the symbols. The time indices are referred to as n for a word-serial realization
and kL in a word-parallel realization with block size L. The adaptive filter is assumed to

be of order N and any intermediate stage is referred to as the p -th stage.

5.3.1. Initialization Lattice Stage

The initialization section of the normalized stochastic gradient lattice filter is

described by
e(n) =Ae(n-1)+y2n), e(-1)=0 (54w
e (n10)=es(n 10)= FLL, (5.4b)

and is shown in Fig. 5.5(a). This implementation can be transformed into an equivalent
pipelined block implementation using the look-ahead computation technique. An
equivalent state update realization for a block size L with M stages of pipelining inside

the recursive loop is described by
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y IdA—ML-lg
YHkL+ML-2
e(kL+ML-1) =ML e(kL-1) + [l AAZ --- ).W-"] : » (539
yXL)
and has a multiplication/square complexity of 2ML. The non-recursive look-ahead term

of the above state update implementation can again be implemented with the use of the

decomposition technique (see section 5.2). The LxM decomposed implementation is
described by

Sl l y(n)

L

v

€3(k) }

| D y(n-1)

8 8
£ =
- 0
(-] [

Fig. 5.5(a): Word-serial representation of initialization normalized sto-
chastic gradient adaptive lattice stage. The processing elements are
defined in Fig. 5.5(b).
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Fig. 5.5(b): Word-paralle! initialization lattice stage with block size of
3 and 4 stages of loop pipelining obtained using look-ahead, decompo-

sition, and incremental omputation.
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L +ML—1)= ML e(kL 1) + [ 10 A2 - AM-1X] (5.5b)

where

(kL) ='§aj y2(LAL—~1~i) . (5.5¢)
The decomposition technique can be exploited further to obtain an implementation with
state update complexity of (2L+log.M) multiplication/square operations (see Fig.
5.5(b)).

The forward and backward error innovations are calculated in a sequential or itera-
tive manner using the incrementally computed intermediate states, i.e.
e(kL ), e(kL+1), ..., e(kL+L—-2) (which were missed due to the block state update process)
based on the known state e(kL~1), and the corresponding inputs. Based on the tech-
niques of look-ahead computation, decomposed state update implementation, and incre-
mental output computation, a pipelined block realization of the initialization section is
shown in Fig. 5.5(b) for a block size of 3, and 4-stages of pipelining inside the recursive
loop. The implementation complexity of the initialization stage is (3L+log2M-1)

multiplication/square operations, and 2L division/square root operations.

§.3.2. Typical Lattice Stage

In a typical lattice stage, the error innovations are calculated in an order-recursive
manner based on the emror innovations generated by the previous stage, and the
coefficients inside each stage are linearly adapted in a time-recursive manner. A typical

lattice stage is described by
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Fig. 5.6(a): Word-serial typical lattice stage.

189



ADAPTIVE FILTERS 190

er(-1lp)=ey(-11p)=kpy(~1)=0, OspsN-1 (5.6a)

er(n \p+1)= LE1P )'l’i kzp’;‘(’n)"'l p) (5.6b)
es(nip+n= 201 Pk s (nlp) (5.6¢)
p+

172
kpa(n)= [{1 -eZ(nlp )}{l -e%(n-1lp )}] k,s1(n = 1) (5.6d)

+er(niplep(n-1ip),
and is shown in Fig. 5.6(a). The time-recursive coefficient or state update corresponds to

a first-order linear time-varying recursion (as described in section 5.2) where a, +1(n) and

Up+1(n) are described by
1
Gps1(n) = [{l ~-e2s(n Ip)}{l -epd(n-1 Ip)H (5.7a)
up1(n)=er(nlples(n—1ip). (5.7b)

An example of a word-parallel or block implementation for a block size of 3 ar.d 4-stage
pipelining of the multiplier inside the recursive loop is shown in Fig. 5.6(b) for a typical
normalized stochastic gradient lattice stage using the techniques of look-ahead transfor-

mation, decomposition, and incremental output computatio®..

§4. COMPLEXITY AND LATENCY

Now we study the complexity and latency aspects of high-speed pipelined block
filters using the typical normalized stochastic gradient lattice stage as an example. The
complexity of the pipelined block stochastic gradient realization is (10L+2logM -2)
multiplications/squares, 2L divisions, and 2L square roots for a block size of L and M
stages of pipelining inside the recursive loop (assuming M to be a power of two) (see

Fig. 5.6(b)).
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Fig. 5.6(b): Word-parallel typical lattice stage with block size of 3 and

4 stages of pipelining.



ADAPTIVE FILTERS 192

Before we derive the system latency, let us consider the latency of each computa-
tional element such as multiplichtion/square. square root and division. For a bit-level
pipelined implementation with clock period 7,, an upper bound on latency is 2Wr, for a
multiplication/square operation, and W2, for a division/square root operation (1,
corresponds to the clock period of a one-bit controlled binary adder-subtractor cell). In
our implementation, the recursive loop involves a multiplication operation and is pipe-

lined by M stages. Hence, the clock period of the M stage pipelined multiplier approxi-
mately corresponds to -z}av-t.. With this clock rate, the division/square root operation will
require %‘1 stages of pipelining. Thus, the latency of a multiplication/square operation
(T,») is about M clock periods, and that of a division/square root operation (7) is about
l‘g‘i clock periods or cycles. Note that, each clock period corresponds to L sample
periods in a word-parallel or block implementation with block size L.

The latency of each stage is [(ZL +log M +2)T,, + 41'4] , where T,,, and T4 respec-
tively represent word-level multiplication/square and division/square root computational
latency. The per-stage latency in terms of clock periods is M [2L+log oM +2W +2] and in

terms of sample periods is LM [2L+log oM +2W+2] , where W is the word-length.

5.5. IMPLEMENTATION METHODOLOGY TRADEOFFS

In this section, we compare the complexity and latency of a word-level pipelined
(i.c. with one pipelining stage inside the recursive loop) word-parallel architecture of the
typical normalized stochastic gradient adaptive filter with that of the fine-grain pipelined
word-parallel architecture using M -stages of pipelining inside the recursiye loop. We

show that for a speciﬁéd sampling rate realization of the adaptive lattice filter, the
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amount of hardware and system latency can be saved by about a factor of M in the latter
case. These conclusions hold goéd for any other high-speed adaptive filter or joint pro-
cess estimator architectures as well.

The pipelined word-parallel implementations can be implemented using either bit-
serial [29-32] or bit-paralle] cellular arithmetic structures [33-35]. Then, we compare
performunce of a bit-level pipelined bit-serial word-parallel (BSWP) architecture with
bit-level pipelined bit-parallel word-parallel (BPWP) architecture for a specified sam-
pling rate realization.

§.5.1. Word-level Pipelining vs M -stage Pipelining

Let the specified sampling rate of an adaptive filter be KMf ., where f, is the clock
rate of a word-level pipelined word-serial filter (i.c. with one pipelining latch inside the
recursive loop). The specified sampling rate can be achieved by using a word-level pipe-
lined word-parallel architecture with block size XM, or u-sing a pipelined word-parallel
architecrure with M -stages of pipelining inside the recursive loop, and a block size of X .
The complexity of the word-level pipelined word-parallel realization with block size KM
is (10KM-2) multiplications/square operations, and 4KM division/square root opera-
tions, and has a latency of KM (2KM +2W+2) sample periods. The complexity of the
word-parallel realization using M stages of pipelining inside the recursive loop and block
size K is (10K+2log,M -2) multiplication/square operations, and 4K division/square
root operations, and has a latency of KM (2K +log ;M +2W +2) sample periods. Thus, by
using M -stages of pipelining inside the recursive loop, we can save the amount of
hardware by about a factor of M and reduce the system latency by a factor of M asymp-

totically with respectto X .
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Fig. 5.7: Number of word-level operations vs speedup as a function of

number of pipelining stages inside the recursive loop.
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The number of word-level operations are compared in Fig. 5.7 for a desired speedup
(or increase in sampling rate) for various stages of pipelining inside the recursive loop. In
the figure, the speedup corresponds to the product LM, and the number of word-level
operations corresponds to the sum of word-level multiplication, division, square and
square root units. We observe that for a desired speedup, the number of word-level

operations reduces about linearly as M increases.

5.5.2. Bit-Serial vs Bit-Parallel

In this section, we compare the performance of bit-level pipelined bit-serial word-
paralle] (BSWP) and bit-level pipelined bit-parallel word-parallel (BPWP) methodolo-
gies.

For a word-paralle] implementation with M -stages of pipelining in the recursive
loop and block size L, each implementable delay corresponds to LM at the sample rate.
In a bit-level pipelined multiplication operation, the latency corresponds to 2W clock
periods (one clock period represents shimming delay). Hence, M is 2W in bit-parallel
methodology. Since 2W clock or bit periods represent 2 sample periods in bit-serial
methodology, M corresponds to 2 in bit-serial.

With a block size of unity, the achievable sample rate corresponds to f, in bit-

paralle! methodology, and -{f,- in bit-serial methodology, where W is word length, and

f o corresponds to the throughput of a latched binary controlled adder-subtractor (a single
cell). The slow speed of the bit-serial can be made up with larger bldck sizes to match
with the speed of the bit-parallel. Let us assume that a sampling rate of Kf; is required.

This can be achieved with a block size of K in bit-level pipelined bit-parallel methodol-



ADAPTIVE FILTERS 196

ogy, and KW in bit-serial methodology. Note that, the latches in the converter circuits
operate at a speed Kf ; in bit-parallel methodology, and KW, in bit-serial methodology.
The technology boundary requirement in the bit-serial methodology is thus W times
higher than that in the bit-parallel methodology. Table 5.1 summarizes the complexities

in bit-serial and bit-parallel methodologies for a sampling rate of Kf,.

Table §.1: Bit-Serial Word-Parallel vs Bit-Parallel Word-Parallel Comparison

BPWP BSWP
Characteristics Mult/Sqr Div/Sqrt | Mult/Sqr | Div/Sqrt
Complexity (word-level) | 10K +log ;W 4K 10KW 4KW
Complexity (cell-level) (10K +log ;W)W?2 | 4KW?2 10KW2 4KW?2

The complexity of bit-serial and bit-parallel are asymptotically identical for a specified
sampling rate. The system complexity (of all N stages) of the pipelined block filter is
linearly proportional to the system order and block size. This complexity requirement is

asymptotically identical to that of the non-recursive systems.

For a sampling rate of K, the latency of the bit-level pipelined bit-parallel word-
paralle] implementation is 2KW (2K +log ;W +2W +3) sample periods, and that of the bit-
serial word-parallel is 2KW (2KW +2W +3) sample periods. Thus for a specified sampling
rate, the latency of the bit-serial is much longer than that of the bit-parallel. The bit-serial
implementation can realize a wider range of sampling rates, and is particularly desirable
for low sampling rates. Furthermore, bit-serial implementations are easy to test. The
pinout requirements are identical for bit-serial and bit-parallel. However, for a specified
sampling rate, the bit-serial requires a wider technology boundary. These implementa-

tion methodology comparisons are consistent with that for recursive filters as well [19].
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5.6. CONCLUSION

Based on the techniques of look-ahead computation, decomposition based state
update implementation, and incremental output computation, we have presented pipe-
lined block implementations of high sampling rate adaptive lattice filters of complexity
linear in filter order and block size. The techniques presented in this chapter are also
applicable to joint process estimators. The implementations derived in this chapter
belong to the class of systolic [36] and wavefront type architectures [28]. The complex-
ity of each cell in our realization is that of a latched binary-controlled adder-subtractor.
The cellular arrays for the division, square, and square root can be found in [33-35]. The
data flow in division/square root arrays in [33-35] is bidirectional, and will lead to inter-
leaving when pipelined. The cellular array based architectures with unidirectional data
flow can be derived with some modifications, and these can be pipelined without requir-
ing interleaving. We have developed pipelinable cellular architectures for arithmetic
computations (such as, multiplication, division, and square root) in both bit-serial and

bit-parallel methodologies, which are beyond the scope of this thesis.

The word-level pipelined architecture is suitable for software-programmable imple-
mentation using a coarse-grain parallel processor and can lead to linear speedup with
respect to the number of processors. The pipelined word-serial architecture can lead to an
exponential speedup with respect to the number of processors when a fine-grain parallel
processor is available. The pipelined word-parallel architecture (with M -stages of loop
pipelining and L block size) can be implemented using a fine-grain parallel processor to

achieve speedup by about a factor of M with respect to the number of processors.
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So far we have addressed high-speed implementation of one-dimensional recursive

and adaptive filters. In the ncxt.chapter. we derive high-speed implementation of two-

dimensional recursive digital filters, which are useful for real-time digital filtering of

video images.
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DIGITAL FILTERS FOR IMAGE PROCESSING

6.1. INTRODUCTION

In this chapter, we propose high sample rate architectures for two-dimensional
recursive filters. These filters are useful for high-speed filtering of digital images, and
will find applications in high-definition televisions (which require bandwidths of order of
100 to 200 Mhz), high-speed image transmission, and other real-time image processing
applications. Achieving concurrency in two-dimensional non-recursive systems by the
use of pipelining and/or block processing is straightforward [1]. However, the inherent
sequential nature of recursive computations limits the opportunities for achieving high
speed by the‘use of pipelining and/or parallelism. This inherent bottleneck in recursive
computations dictates a lower (upper) bound on the iteration period (maximum achiev-
able sampling rate) [2-3]. This iteration period bound in a two-dimensional recursive sys-

tem with a block size LyxL3 is given by

D
Te=7r; [‘{,_Ag[ﬂi_] : (6.1)

where S; represents the set of loops in the computation graph, D; represents the total
computational latency associated with loop 1, and M; represents the number of latches or

delay operators inside the loop /. The maximum achievable sampling rate for the com-
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putation graph is -, For a non-block implementation (L. with unity Ly and L), this
definition of iteration period bound reduces to that in [2-3].

It is necessary to transform these sequential computations into equivalent con-
current computations, which can then be used to achieve high speed realizations by
exploiting pipelining and/or parallelism. In the previous chapters, we studied these
transformation techniques in the context of one dimensional recursive and feed-forward
adaptive lattice filters [4-7]. Specifically, we introduced new look-ahead and decomposi-
tion techniques to pipeline one dimensional recursive and adaptive filters with loga-
rithmic increase in hardware with respect to the number of loop pipeline stages [6-7]. A
second approach to achieving concurrency is by block processing, where a block of
inputs are processed concurrently to generate a block of outputs [4-6, 8-31]). Several
block structures have been presented in [:1-6, 8-20] for block implementation of one
dimensional recursive digital filters. In chapter 4, we introduced an incremental block
filter structure [S] for block implementation of one dimensional state space recursive
digital filters with linear complexity in block size as opposed to the square complexity
needed in the block-state structure first proposed by Barnes [12] or the parallel block-
state structure proposed by Nikias [16]. A direct form one-dimensional recursive filter
block structure with linear complexity has also been recently introduced by Wu and Cap-
pello in [19-20].

This chapter addresses efficient implementation of concurrent two-dimensional
recursive digital filters using the techniques of pipeline interleaving with M pipeline
stages inside the recursive loop and/or block processing with block size L XL 2. In a pipe-

lined implementation with M loop delays, M independent computations are processed in
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an interleaved manner. In a block implementation with block size LyxLj, we process
L,L, samples simultaneously. First we define two types of block implementations for a

two dimensional filter.

Déefinition 6.1: A block implementation is referred to as a one-dimensional block imple-

mentation if either L, or L3 i . unity.

Definition 6.2: A block implementation is referred to as a two-dimensional block imple-

mentation if both L and L, are greater than unity.

In general, if the dimension of block size of a block structure (K') is less than the filter
dimension (N), then this blcck filter is referred to as a K -dimensional block filter. When
the dimension of the block size equals the filter dimension N, we refer to it as an N-
dimensional block filter, or simply a block filter. Unlike one dimensional systems, two
and multi-dimensional linear recursive computations possess large amount of inherent
concurrency. We refer to the locus of the samples which can be concurrently computed
as the concurrent compusation region. We exploit this concurrency to derive pipelined
and one-dimensional block architectures for two-dimensional recursive digital filter,
without requiring any algorithm transformation, and without any extra hardware over-
head (except the area required for pipeline latches). Full hardware utilization is achieved
by interleaving or indexing the input samples in a way that eliminates the sequential
dependency problem [32-34). The major attractiveness in achieving high speed using
one-dimensional block processing approach results due to the fact that it does not require
any hardware overhead (unlike two-dimensional block processing approach), and the

implementation aspect of the system is exactly identical to that of a system without any
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recursion or feedback.

Two-dimensional block implementation of two-dimensional recursive digital filters
are derived using algorithm transformation techniques. Many two-dimensional block
structures have been presented in [21-30). In this chapter, we extend the look-ahead
technique to two-dimensional case, and use this to extend the one-dimensional incremen-
tal blqck- filter [5,19-20] to the tv)o—dimensional case [31]. This two-dimensional incre-
mental block filter has a multiplication complexity O (Max (L ¢L2,L,L2)) for a block
size of LyxL3, as opposed to an O(L£L#) multiplication complexity in the two-
dimensional block structures in [21-30]. It is also possible to exploit fast transform [35-
39] and short convolution techniques [40] in our new incremental block filter to reduce
the multiplication complexity of the block structure (in a manner similar to the existing

block filters [25,27]).

The pipeline interleaving approach is area-efficient, since it exploits concurrency
with no hardware penalty. If sufficient speed cannot be achieved by pipelining alone,
then we need to combine pipelining with one-dimensional block processing (since, one-
dimensional block processing requires a linear increase in hardware), and if the speedup
is still not adequate, then only we need to combine pipelining with: (two-dimensional)
block processing.

The organization of the chapter is as follows. Section 6.2 addresses the inherent
concurrency in two-dimensional recursive systems, and presents techniques to exploit
this concurrency in the context of one-dimensional block processing and pipeline inter-
leaving, and pipelined one-dimensional block processing. The two-dimensional incre-

mental block digital filter is derived in section 6.3. Efficient structures which combine
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pipeline interleaving and two-dimensional block filtering approaches are studied in Sec-
tion 6.4. The extension of the coi:cmnt computation region, pipeline interleaving and

the incremental block filtering concepts to higher dimensions is outlined in section 6.5.

6.2. PIPELINING AND ONE-DIMENSIONAL BLOCK PROCESSING
In this section, we discuss concurrency in direct form and local state space form 2D

recursive digital filters. Let a linear shift invariant quarter plane two-dimensional causal

recursive digital filter be described by

X . . "'x “iz
Y(12D) _ ,g&;o"""" 22

- i 0. 6.2

Ve g % 8;,i21'22" ©2

H=0 i
(G1ia) #0.0)

H(z)29)=

6.2.1. Direct Form 2D Filters

The direct form representation of the 2D filter in (6.2) is described by

for each (ny=0to (J2-1)) {
for each (n; =00 (J; - 1)) {

N N . . N N | . .
y(nx.nz)=('.‘2=.(:J %)anw(na-lmz—lzﬂ Ai;bixizu(”l“lﬁz-'z) (6.3)
$1:8 "

B

where u(n,n2) and y (n1,n2) respectively represent input and output samples. The "for
each” statements indicate sequential processing with respect to the corresponding loop
index. The numbering of the first and second indices of the samples in a frame of size
J1xJ is shown in Fig. 6.1. The above sequential processing requires J1J2 steps or

cycles. The samples in a frame can be processed row by row, column by column, or
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diagonally. For the purposes of this chapter, we assume row by row processing of the

samples.

6.2.1.1. Sequential Processing

In a traditional row by row processing of the filter in (6.3), the outputs are processed
sequentially in the order y (0,0), ¥ (1,0), ..., y(/1=1,0%; ¥ 0,1), y(1,1), ..., y U 1-1,1); ...i;
y(©0J 1), y(1J2-1), ...., y (J ;=1 2-1). In this ordering, the computation of the output
y(n1,n2) begins at time index or cycle (n1+J/1n2). The mapping of the spacial sample

location to its time index is referred to as an index mapping function [41], and is given by

I(ny,n)=ny+J1n, 6.4)
for a row by row processing. This index mapping function is not unique, and similar

index mapping functions can be obtained for column by column and diagonal processing.

©03) 13) @3) 33

02) 12) 22) B2)
2 X X

©1) LD @1 G

©00) L0 20 GO

Fig. 6.1: Indexing of samples in a 4%4 Frame.
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The index mapping function is sufficient to describe the delay operators in two-
dimensional filtering. We illustrate this with a simple example. The sample (n1,1) will
be processed in cycle (n1+J1n2) (from (6.4)). The next sample in the row (n,+1,n2) will
be processed in cycle (n1+Jn2+1). This implies the row delay operator z{! comresponds
to a single delay. Similarly the sample y(n.nz+1) will be processed in cycle
(ny+Jn2+J1). This implies the column delay operator z3! represents J delays (often
referred to as a line delay in literature). These delay operators are obvious from examina-
tion of the coefficients of n, and n, in (6.4) also. In (6.4), the coefficients of n, and n;
are respectively 1 and J, and these correspond to the row and column delay operators.
Fig. 6.2 shows a block diagram of a two-dimensional block filter for N =N =1 using
appropriate row and column delay operators. The iteration bound for this implementa-

tion is the time required for a word leve! multiplication and two additions.

ulngny) an
X
y{n-tny-1)
D_] 801 o]
ulngn,-1 Y
12
(J~0D + X
1 y(ngny=1)
340 W00
u(n‘-l,nz) D + X
u(ﬂ1-1.nz“‘)

b | O -
o 6~

s+ax

Fig. 6.2: A two-dimensional recursive digital filter.
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We define a segment to correspond to the number of rows being processed con-
currently, and we assume the ﬁliering process to be performed by appending the begin-
ning of the next segment to the end of the current segment temporally. In the traditional
row by row processing, a single row is processed at any time, and the beginning of the
second row is appended to the end of the first row, and the beginning of the third row is
appended to the end of the second row etc. Thus, a segment in this realization

corresponds to a single row.

6.2.1.2. Concurrency in Two-Dimensional Filters

In a two-dimensional recursive system, several outputs can be computed con-
currently, since these computations are not mutually constrained by any precedence rela-
tion. For example, the outputs y (5,0), ¥ (4,1), ¥ (3,2), ¥ (2,3), y (1,4), and y (0,5) are mutu-
ally independent and can be computed in parallel. Fig. 6.3 illustrates the precedence rela-
tion in a two-dimensional processing system. From these precedence relations, one can
observe that the samples along the diagonals ny + n2=c, where ¢ is a constant, can be
computed in parallel. The locus of the sample locations, which can be computed in paral-
lel, is a straight line with slope "-1". We refer to this locus of the mutually independent
set of computations as the concurrent computation region (CCR). In general, the CCR
corresponds to a (N-1)-dimensional hyperplane for a N-dimensional filter. For the one-
dimensional filter, the CCR is a single sample, and for a two-dimensional filter, the CCR

consists of samples along a straight line.

The parallel computation of all the samples along the diagonals can be described by
the parallel loop



DIGITAL FILTERS FOR IMAGE PROCESSING 208

foreach (n’1=0t0 (J1+J2-2)) {
for all (n’,=Max (0, n’y=J1 + 1) to Min(n"1, J2—1) {

y(n'1—n'yn)= ‘);, %} 83,y ("1 = i 7)) 6.5)
(luz) 0)

N, N
+ ‘g, ;b b, i (n’y—n'y-iynz-iz)
b}

1L
where the "for all" statement represents parallel computation of all the values with

respect to the corresponding loop index. The parallel loop is obtained from (6.3) by an

index transformation,

n’1=n1+ny n'2=n;. (6.6)

©0)

VAN

@0) (LD ©2)

NN

/m{.. /QK./M\./\.

“o G 3 04)

/ \/\/\/\/\

5.0) @) Q2 a4

v \/\/\/\/\/\

Fig. 6.3: Precedence relation in a two-dimensional recursive system.
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The parallel loop in (6.5) can be executed in (J, +J2 — 1) steps using Min (J4, J2) pro-
cessors, as opposed 10 J1J 3 steps needed in the sequential computation in (6.3) using a
single processor. Thus, although the available concurrency is greater in a two-
dimensional system, it is still bounded by the number of diagonal lines in a frame. This
bound is overcome by two-dimensional look-ahead and two-dimensional block process-
ing in section 6.3.

The representation in (6.6) exploits the maximal amount of parallelism in the two-
dimensional filtering problem, and requires maximum number of processors. Often, we
may exploit the parallelism only partially using reduced number of processors. Let us
assume that P processors are available, and assume P to be divisible by J; for simpli-
city. We rearrange the samples of the frame in the following manner. We augment the
samples in rows P through (2P~1) to the end of rows 0 through (P-1). Similarly, the
samples in rows 2P through (3P-1) are augmented to the end of rows P through
(2P -1). The rearranged frame now has P rows and J1J2/P columns. The rearranged
data can be processed in (J1J2/P + P —1) steps using P processors. This augmented
processing corresponds to a segmented processing with segment size P, and is illustrated

in Fig. 6.4.

In the subsequent sections, we exploit this inherent concurrency in the context of
one-dimensional block processing, pipeline interleaving, and combination of pipeline

interleaving and one-dimensional block processing.
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6.2.1.3. One-Dimensional Block Processing

In one-dimensional block processing with size 1xL 2, we process L2 samples along a
column in one cycle. The processing takes place in an augmented manner as shown in
Fig. 6.4 with P =L,. A typical way to do the one-dimensional block processing (for
L,=3) is 0 compute y(0,0), y(0,1), ¥ 0,2) in cycle 0; y(1,0), ¥(1,1), (1,2) in cycle 1;
y(2,0), y C.,1), ¥ (2,2) in cycle 2 etc. Although this is a valid one-dimensional block pro-
cessing sequence, the samples in a block do not form a set of independent computations.
For example, the samples y (0,0), y (0,1), and y (0,2) cannot be computed within a single
cycle, as the computation of these samples is interdependent (although these can be com-
puted concurrently with look-ahead computation and at the expense of hardware over-
head, see section 6.3). Thus, we need to slightly alter the sequence such that the L, sam-
ples belong to the concurren: computation region. This is achieved by computing the L,
samples along the diagonal concurrently. Table 6.1 shows a portion of the parallel

schedule for L, = 3 using three processors, where the processor P; operates on row i.

Table 6.1 : Concurrent One-Dimensional Block Processing

Processor versus Time Schedule
P1 | y0,0) | y1,0) | v2.0) | y(3.0) | y4,0) | y(50) | v(6.0) | y(7.0)
P2 | - y©0,1) | y1,1) | y@.1) | y3.1) | y@4.1 | y6,D | v6.1)
P3| - - y(0,2) | v(1,2) | v(2.2) | v(3.2) | y42) | y5.2)

In this segmented processing, the output y (n1,n2) is processed at time index

I(nna)=ny+na+| -,’%J Ui1-Ly), 6.7)
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Fig. 6.4: Segment by segment processing in a two dimensional system.
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where| x| represents the integer part of x (or the floor function). To illustrate the use of
index mapping function, consider the processing of the sample y(14,0). Substituting
value of n; = 14 and n, =0, we find that this sample is processed in cycle 14. As another
example, the sample y(0,3) is processed in cycle 15 for a frame size of 15x15. We can
derive the delay operators by examining the coefficients of #; and n2 in (6.7). A row
delay operator zi! in this realization corresponds to a single delay (since th: coefficient
of n; in the index mapping function in (6.7) is 1). The column delay operator z3!
corresponds to a single delay if the two consecutive samples (of a specified column)
belong to the same segment, or (J1—L 2+1) delays if they belong to two coasecutive seg-
ments. However, in the block implementation, single column delay operators are not

implementable. Instead, we need to implement block column delay operators. A block

column delay operator is defined as zz"" or L, column delays at the sample rate. As an
example, we derive y(0,2) by delaying y (0,5), and not by delaying y (0,3) or y (0,4) (for
L2=3). The element y(n;,koL2) is obtained by delaying the corresponding sample
¥(nykaLl2+L) of the consecutive segment using J; delays (which is a lir-e delay). This

is because

I(nykalotLly) =1(nykala)=Jy.
Thus the block column delay operator corresponds to J; delays. The row and column

delay operators are shown in Fig. 6.5(a).

The samples inside a single segment are obtained by using appropriate number of
row delay operators zil. As an example, y(n;~1koL2+i) is obtained by delaying
¥ (n1,k2L 2+i ) using one delay or latch (since a row delay operator corresponds to a single

delay).
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Now we introduce the notion of a quasi block column delay operator. The J, delays of
the block column delay operator can be split to two parts, one part of i delays, and
another of (J,;—i) delays. If the input to the block column delay operator is
y (n1,k2L 2+L2), then the output of the first part is y (ny — i ,k2L2 + L), and the output of
ths second part is y(njkoLl2). Using the delay spliing principle, we can derive
yiny,ksl ) from y(ny~i kaLz+L2) using (J1—=i) delays. This operation corresponds to i
advance operations along the n; dimension and a block delay operation along the n,
dimension (therefore the name quasi column block delay operator). This delay splitting

principle of the block column delay operator is shown in Fig. 6.5(b).

A parallel hardware architecture for concurrent processing of L, samples can be
derived using appropriate row, block column, and split block column delay operators,
and is shown in Fig. 6.5(c) for the case N, =Np =1 and L =3. We input L, samples
u(nykala), u(nykala+ 1), ..., u(nykalz+L2-1), and compute the corresponding L,
outputs. In the snapshot of Fig. 6.5(c), the outputs y(6,3), y (5,4), and y (4,5) are com-

puted in parallel. These outputs are respectively given by

¥(6,3)=a0,y(6:2) + a1, (5.3) + 31,17 (5.2) (6.82)
+boou(6,3) + boau(6,2) + by ,ou(53) + b114(5.2)

y(5.4) =a01y(5.3) + a0y (4.4) + a1,y (4.3) (6.8b)
+boou(5.4) + bou(5,3) + by ou(4,4)+ by u(4,3)

y(@4,5)=ag1y 4.4 +a10y(3.5) +a11y(34) (6.8¢)

+boou(4,5) + bou(4,4) +brou(3.5)+ b1,1uG4) .
Note that y (6,2) is derived from y (3,5) using a quasi block column delay operator with

(J1 - 3) delays. Fig. 6.5(c) needs some additional clearing signals to accommodate ini-

tial conditions at the frame boundary, and these have been omitted for clarity.
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Fig. 6.5(c): Concurrent processing of a 2D recursive filter usi
using parall
hardware for N, =N, = 1and L, = 3. s .
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The one-dimensional block processing of the complete frame requires
(J1J2/L2+ Ly~ 1) number of cycles. This realization does not require any algorithm
transformation (since these block of samples form a set of independent computations),
and leads to a complexity Lo(2(N +1)(Np+1)-1), which is linear with respect to speedup
L. In contrast, the LyL, outputs in a two-dimensional block processing structure with
block size L %L, do not form a set of independent computations, ai:d hence require algo-

rithm transformations. These general block structures are addressed in section 6.3.

6.2.1.4. Fine-Grain Pipelined 2D Fiitering

Any set of M independent jobs requiring identical process:ng can be processed in
an interleaved manner through a single set of resources or processing units with M stages
of pipelining or buffering. The pipelined computation is hardware efficient, since it -
achieves an equivalent speedup of factor of M with just M buffering units, as opposed to
replicating the set of resources or processors by a factor of M as in one-dimensional
block processing case (note that in a M -stage pipelined realization, the system latency
grows by a factor of M also. But in most applications, the sysiem throughput is much
more important than the system latency). We have already seen that the samples along
the diagonals in a two-dimensional filter form a set of independent computations, and we
process these samples concurrently in an interleaved manner. One should note that the
M -stages of pipelining here is at the processor level, i.c. each set of processing units
(which consists of one multiply and few add operations) is pipelined at M levels (as
opposed to at word level as in the block filter structures). This is also often referred to as

two-level pipelining in the literature.
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Fig. 6.6: A partial schedule for the pipelined filter in Fig. 6.2 for M =3

with row by row processing.
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Fig. 6.7: Row and Column delay operators in a M -stage pipelined two
dimensional recursive digital filter,
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Now consider pipelining the recursive state update loop of Fig. 6.2 by M stages by
introducing (M -1) additional latcites or delays (recall that the state variables here refer to
the outputs y (n3,m2)). In this realization, the output of a computation is available only
after M cycles (see the schedule of Fig. 6.6). In Fig. 6.6, the computation of y(5,0)
begins in cycle 15 and ends in cycle 18 (for M = 3). Hence the computation of y (6,0) can
begin only in cycle 18 (since this computation can begin only after y (5,0) is available). If
we process the samples row by row, then the hardware will be utilized only one third of
the time. However as described in the context of parallel hardware, there are enough
concurrent tasks in two-dimensional system, and these concurrent tasks can be processed

in an interleaved manner with full hardware efficiency.

For the case when M =3, we can process the samples along the diagonals of the
segment consisting of one segment of M rows in an interleaved manner (note that P in
Fig. 6.4 corresponds to M for this case). Since the computations y (r1,0), y (n 1~1,1), and
y(n1-2,2) belong to the concurrent computation region, these can be processed in an
interleaved manner as illustrated in the schedule of Fig. 6.6. While we wait for the com-
putation of y (5,0) to finish, we can begin computation of y (4,1) and y (3,2). Similarly the
computations y (6,0), y (5,1), and y (4,2) can be concurrently processed, etc. This way, we
can obtain full hardware utilization by processing a segment of M rows simultaneously

in a skew interleaved manner.

In the pipelined implementation, some cycles are wasted at the beginning and end
of the computation for setting up of the pipeline (or skewing the samples) and for flush-

ing the pipeline (or deskewing the samples) respectively. The total number of wasted

cycles is M(M~1), of which MM=D i wagted at the beginning and MM =1 i
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wasted at the end of computation of the complete frame. Tables 6.2 and 6.3 respectively
illustrate the wasted cycles at the beginning and end of of a 15x15 size frame.

Table 6.2: Initial Portion of the Schedule

Cycle 0 112 3 4 5 6 7 8
Output | y©0,0) | - | - | yO.1) | y1,00 | - | y@0) | y(.1) | y(0.2)

Table 6.3: Final Portion of the Schedule

Cycle | 222 223 224 |225| 226 227 12281229 | 230
Output | y(14,12) | v(13,13) | y(12,14) | - |v(14,13) [v(13,14)| - | - |y(14,14)
The hardware utilization factor of this architecture is given by
_ JiJ2
=TI M- ©9)
With the interleaved processing, the index mapping function is characterized by
I(an)=mM +nM+1)+| 33 MU 1-1-M), (6.10)

where | x| represents the floor function, and J;xJ; is the frame size. We use this index
mapping function to derive the implementable delay operators in the pipeline interleaved
realization. Because of the skew pipelined interleaved processing of the rows, the pro-
cessing periods of the two consecutive samples in a row are separated by M time indices
(since the coefficient of n; is M in (6.10)). The operator zi! corresponds to M delays or

latches. This can also be verified from the schedule of Fig. 6.6,
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which shows processing of sample (5,0) in cycle 15 and of sample (6,0) in cycle 18 for
M =3 case. Similarly, the operator 23! corresponds to (M +1) delays if the two consecu-
tive elements of a column belong to the same segment. However, if they belong to two
consecutive segments, then they are separated by (M +1+M (J;-M 1)) time indices (see
(6.10) also). One way of implementing the z3! operator is to have a two-way multi-
plexed delayed path, one with (M+1) delay operators and the other with
M +14M (J1—M -1)) delay 'opcrators. However, this implementation is inefficient. Notice
that we need to store only the top most row outputs in each segment (since the other out-
puts can be derived from these outputs). Hence the 25! operator can be efficiently real-
ized with (M+1) delay operators followed by a two-way multiplexed delayed path, one

with no delay and the other with (J ;=M ~1) M~slow delays (i.e. by subsampling the out-
put samples at rate -IM), leading to considerable saving in required number of memory

elements. These delay operators are depicted in Fig. 6.7, and with the use of these opera-
tors, a block diagram of an M -stage pipelined architecture of a direct form 2D filter for
N, =N, =1 is shown in Fig. 6.8. The innermost loop now has M delays, and these
delays can be redistributed to pipeline the multiplier and adders by M stages. The imple-
mentable delay operator in the pipelined two-dimensional filter architecture is derived by
appropriate indexing of the input samples and without any hardware overhead unlike in
one dimensional systems, where this operator was derived by algorithm transformation

and at the expense of hardware increase [4-7].
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The improved iteration bound is actually achieved by using the technique of retim-
ing [42) or cutset rransformation [43]. The retiming process involves moving the delays
around the feedback loop in such a way that the number of delays in any loop remains
unaltered, and the actual period is as close as possible to the iteration bougd of the com-

putation graph. A simple example of system retiming is illustrated in Fig. 6.9. The itera-
. . T— . Ty +T,4)
tion period bound for the realization in Fig. 6.9(a) is — 7 whereas the actual

iteration period is (Ty+T, ), where Ty and T, represent computation time of the multi-
plier and adder blocks M and A respectively. The iteration period for an equivalent
retimed realization in Fig. 6.9(b) (obtained after redistributing the delays) is
Max (Tp, Ty, Tm,+ Ta). Here, the multiplier component is broken into three com-
ponents M, M, and M3. If the computational latencies of blocks M, M5, and M3 and

A are identical, then this realization has an iteration period equal to the iteration bound.

(W)

u(n) (A)—E—— ym

[—- M, —1J M, —Dl— M,

u(n) @ —{n}

y(n)

Fig. 6.9(a): A computation graph, M and A respectively represent mul-
tiply and add operations, (b) An equivalent computation graph obtained
using the retiming technique, the multiplier block has been decom-
posed to three blocks.
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6.2.2. Pipelining and One-Dimensional Block Processing

We can pipeline the loop of a one-dimensional block architecture with block size
1xL, to get a speedup by a factor of LoM as compared with sequential processing. This
pipelined one-dimensional block structure can be realized without requiring any algo-
rithm transformation (by performing computations within the concurrent computation
region).

Here M sets of L, independent samples are processed in an iﬁtcrleaved manner.
With M loop pipeline stages, each computation is completed in M cycles, and the imple-
mentation is M -way interleaved. For example, if we start processing the samples y (3,0),
¥ (2,1) in cycle 6 (for L, = 2), this computation will be -completed in cycle 8 for M =2.
The computation of the samples y (4,0), y (3,1) can begin in cycle 8 (since, these compu-
tations can begin only after the samples y (3,0) and y(2,1) are available). However, we
can fill up the pipeline by interleaving the computations of the samples y(1,2), ¥ (0,3) in
cycle 7 (which will be available in cycle 9, and y (2,2), y(1,3) in cycle 9, etc. Thus we
process L,M rows in an interleaved parallel manner. One segment in this realization
corresponds to LoM rows, i.e. P =L,M in Fig. 6.4. Table 6.4 shows the initial portion
of the schedule forLy=2 and M =2.

Table 6.4 : Pipelined One-Dimensional Block Processing

Processor versus Time Schedule
Pl | y0,0) | - | y(1,0) | - | ¥(2,0) | ¥0.2) | y3,0) | v(1,2) | v(4,0) | y(2.2)
- - 1 y0,1) | -1 y(1,1D - y(2,1) | y(0,3) | y@3.1) | y(1,3)

The index mapping function for this pipeline interleaved one-dimensional block proces-
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sor is given by

I(nyny)=nM +nM +| 7’%] +| -L";)’WJ M -LM=1) (6.11)
which reduces to (6.7) and (6.10) as special cases. In this processing, a pipelined row
delay operator corresponds to M delays, and a pipelined block column delay operator
(that is Lo-slow column delay operator, vliich represents z{"’ at the sample rate)
corresponds to (LM + 1) delays if the two simples separated by a block belong to the
same segment, or to (LM + 1+ M (Jy = LM — 1)) delays if the two samples are spaced
L, distance apart and lie on the same column, but belong to two consecutive segments.
This implementable pipelined block column delay operator can be implemented with
(LM +1) delays, followed by a multiplexed path, one with no delay, and the other with
(J1-LoM — 1) M-slow delays. However, we can reduce the number of memory loca-
tions further by implementing the block column delay operator with one delay, followed
by L, M -slow delays, followed by a multiplexed path, one with no delay, and the other
with (J; — LM - 1) M-slow delays. The quasi block column delay operators can also
be interpreted in a manner similar to that i1 section 6.2.1.3. To derive y (ny,k2L2) from
y(ny—i koL +Ly), we need one delay followed by (/4 —LM +Ly=i~-1) M-slow
delays (i.e. the inputs to these are delays subsampled at a rate 1/M) if the samples belong |
to two consecutive segments, and one delay followed by (L, —i) M-slow delays if the

samples belong to the same segment. This is because,

. _J1+M,-LM +Ly—i —1) for same scgment
I(ny=ikoLatL2)—1(nykal2) ‘{ 1 +M1(L2-2i) for consecutive segments .

The row, block column, and quasi block column delay operators are illustrated in Fig.
6.10(a). Fig. 6.10(b) shows the recursive portion of a pipelined one-dimensional block

processor for L, =2 and M =2, and for N, =N, = 1. Each loop has at least 2 delays,
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and two sequences of tasks (each task of length 2) are being processed in an interleaved
manner. The impressive performance of pipelining can only be achieved after retiming
the flow graph, i.e. after redistributing the two loop delays to pipeline the multiplier and
the two adders. The snap shot shows processing of y (6,4) and y (5,5) interleaved with
processing of y(3,6) and y(2,7). In the figure, z(n),n2) represents the effects of the
current input term u (n1,n2) and its delayed versions. The output y (6,3) is derived from

y(4,5) using a quasi block column delay operator.

y(n,.kzl. ) MD y(n,-tkzl.z)

ROW DELAY OPERATOR

VM
(ngk,lotLo)
yingkalatts ) A 0 -
_.(J,-LG-oo_j

BLOCK COLUMN DELAY OPERATOR

M
ying-ikolaely) 5] A Ty . yingkoL o)

o (4L M-1D

QUASI BLOCK COLUMN DELAY OPERATOR

yin k, Lo}
- 1722

Fig. 6.10(a): Delay operators in pipelined one dimensional block pro-
CessoT.
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6.2.3. Local State Space Form 2D Filters

The transfer function of (6.2) can be equivalently represented in terms of a local

state space description given by [44-45]

h(ny+1n2)| | An Ap |B(rind| by
[V(n 1-’!2"'1)] = [Azx Azz] [V(n 1.!!2)] + [bz] u(ny,nz (6.12a)
y(n1,n2) = ch(ny,n2) + c2v(ny,n2) + du(nyng), (6.12b)

where the horizontal state h(n,n5) is N1x1, the vertical state v(n,n2) is Nox1, the input
u(ny,n2) and output y (n,,n,) are scalars, and all other matrices are of appropriate dimen-
sions. If the order of horizontal states N is chosen to be same as N,, then a local state
space realization with the order of vertical states (N2) less than or equal to 2N, can
always be found [44].

This recursive state update representation takes the horizontal and vertical states at
sample point (n1,n2) and computes the horizontal state at (n1+1,n2) and vertical state at
(n1.nz+1). Similar to the direct form filter case, many independent computations also
exist in the state space form filter, and this concurrency can be exploited in the context of
either parallel (i.c. one-dimensional block processing) and/or pipelined hardware imple-
mentations. In the context of parallel hardware realization, we can process the L, output
samples y (ny,k2L2), y(ny — 1,koLa+ 1), ...,and y(ny — L2+ 1,k2L2 + L2 — 1) in parallel
using O (L,) processors (which is a linear increase with respect to L;). This one-
dimensional block implementation is useful for software programmable coarse-grain
parallel processor implementations. Alternatively, we can exploit this concurrency in the

context of pipeline interleaving to obtain a hardware efficient custom VLSI realization.
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In the pipelined realization with M loop pipeline stages, if we start the processing of the
sample point (n1,n2) using h(ﬁl,nz) and v(n;,n7) at time index n, then the states
h(n+1,n2) and v(n;,n2+1) will be available only at time index (n+M). We cannot begin
the computation at the sample point (n1+1,12) until time index (n+M). However, just as
in the direct form filter case, we can fill up the pipeline by processing M rows con-
currently in a skew pipelined interleaved manner, and improve the iteration bound by
about a factor of M. In the pipelined implementation, the state update operations (for the
first segment) at sample points (7,,0), (#,-1,1), ...., and (n =M +1,M -1) are performed
concurrently in an interleaved manner. The efficiency and the index mapping function of
this implementation are same as in (6.9) and (6.10) respectively. The delay operators in
Fig. 6.7 also hold good for this case. In the local state space realization, the updated hor-
izontal states are used up within the same segment, and do not need to be stored. How-
ever, we need to store the vertical states of the top row only for each segment to be used
for processing of the next segment, and these are stored using M -slow latches. A pipe-
lined architecture for local state space filter is shown in Fig. 6.11(a) and the correspond-
ing partial schedule is shown in Fig. 6.11(b) for M = 3. Once again, we will need to
retime the flow graph to redistribute the delays for pipelining the multiply/add opera-
tions. We can also combine pipeline interleaving and parallelism (or one-dimensional
block processing) as described in section 6.2.2, and the index mapping function of (6.11)
and the corresponding operators hold good for this case.
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6.3. TWO-DIMENSIONAL INCREMENTAL BLOCK FILTER

In this section, we study WMOM block implementation of direct form and -
local state space form two dimensional recursive digital filters. In a two-dimensional
block (or simply block) implementation with block size LixL3, LiL2 outputs are com-
puted in each cycle. Let the column by column representation of a block of outputs be
denoted by

WLk (L1 koL 2
YH(‘L’)(er*l.ksz)

yErladk Ly koLo) = . (6.132)

YL AL +Ly=1 kL)
and a row by row representation be given by -

{‘L"”(k 1L1k2L2)
yED(k Ly koL r+1)

pyErld(k Ly kol 2) = : (6.13b)

yEuD(k Ly koL r+L2-1)
where L i

£k Ly koLo) = [y (kyL1kaL2), y (kiLykaLotl), ...,y (k le.ksz-i-Lz-l)] T (6.13c)

YOO L kol ) = [y (i1 kol ),y il it KoL, oy (sl p+Li=LkaL )] T (6130
and p is the column by column to row by row transformation operator.

Thus, block processing with a block size L xL, improves the iteration period (and
the sample rate) by a factor of LiL4 (see (6.1)). Often in the literature, L, and L, are
optimized with respect to the filter order to minimize the multiplication complexity of the
realization. But, it should be noted that the parameters L; and L, are independent of the

filter order, and are dictated by the speedup required, or equivalently the number of pro-
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cessing elements available. In the sequel, we assume that J1L, samples of L, consecu-
tive rows are processed in J /L nme steps and the JJ, samples of the complete frame
are processed in J 1J 5/L 1L 2 number of such steps. For simplicity, we assume J, and J; to
be respectively divisible by L, and L, (otherwise, 0 samples can be appended to the end
of the frame to satisfy this). For this case, a segment corresponds to L, rows, since L,
rows are processed concur ently. The index mapping function for the block filter realiza-
tion is given by

Ry,

= J1, n2 '
I(nyna)=| I +’LT{ ’EZJ . . (6.14)
The delay operators for the block realization are shown in Fig. 6.12. A row delay opera-

tor corresponds to a single Ly~slow latch, and a column delay operator corresponds to

J /Ly Ly~slow latches.

L -glow

ylksLitly L) =——>1 D — Yk LKoLo)

Row block delay operator

Lz’Slow

J
¥k, L koLo*Ly) T D ylksLykoly)

Column block delay operator

Fig. 6.12: Row and column delay operators in two-dimensional block
realizations
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In section 6.2, it was pointed out that the L, samples y(n 1kal2), y(n1=1koLo+1),
we Y(my=Lo+l oL+l 1) can'be processed in parallel without using any algorithm
transformation and with linear increase in hardware. In contrast, we need to use algo-
rithm transformation for block filters if the block of samples of size LyxL3 encompass a
rectangular region (that is if both Ly and L are greater than unity). In this transforma-
tion, the necessary level of concurrency is derived by using the look-ahead computation
techniques [4], i.e. iterating the original recursion as many times as desired (of course, at
the expense of an increase in hardware), and this concurrency is exploited to obtain
implementable row and column block delay operators in the block filter structure. Thus,
unlike pipeline interleaving approach or one-dimensional block filtering with 1xL,
blocks of samples belonging to the concurrent computation region, two-dimensional
block filtering approach leads to an increase in hardware, and is not area efficient for

high sampling rate realizations.

Several block filters have been proposed for block implementation of direct form as
well as local state space form filters. The block filters in [21-29] require a square multi-
plication complexity with respect to the block size. The parallel block filter proposed in
[30] requires much higher complexity than the block state case [21-29]. In this section,
we derive our new incremental block filters for implementation of direct form as well as
local state space form filters of multiplication complexity much less than the existing
structures. The direct form incremental block filter is an extension of the one dimensional
structure in [19-20], and the local state space form incremental block filter is an exten-
sion of the one dimensional incremental block state filter presented in [5]. We derive the
look-ahead computation principle for 2D recursive computations, and use this to derive

the direct form incremental block filter structure. The state update computation is same
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for the incremental block state and the existing block state structures (for block imple-
mentation of local state space filters), but not the output computation. We reformulate
the State update computation for the local state space based block filters, which are more
appealing and easily extensible to higher dimensions. The output computation in our
incremental block state filter is done incrementally in a sequential manner rather than all

at once as in the block state case.

6.3.1. Direct Form 2D Incremental Block Filter

In the direct form block filter in [24-28], all the block of L L, outputs are computed.
using outputs of past blocks, i.e. y& £k L +L1ksLo+L2) is computed in terms of
yErLd(k L+ 1,kaL2), yELD(k Ly kaLo+L o), and yEED(k Ly koL,). This output
update operation requires that the L ;L outputs be updated in each block. Since the block
output update operation is expensive (as we will see later), this leads to an implementa-
tion complexity O (L £L #). However, for the case where L1>N,, and La>N,, we can use
an incremental output computation technique [5,19-20], where we need to update
(NgLy+NyL1-N;Np) outputs only, and use these to compute the remaining
(L1~N,)(L2~N) outputs in a non-recursive or sequential manner with total multiplica-
tion complexity O (Max (L £L2,L1L2)). For the case, where either L <N, or L2<N, or
both, the multiplication complexity is inherently O (L £L#), which may not be critical

since L, and L, are small.
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(Ng, 1

Y (n-Ngny) x X =

y (n‘,nz-Nb)
Y (ng=Ngt Np)
(a)
Na M,
- (n1,n2)

(N.0M2+ 1)
Y (ny=M=Ng,np-Mp)—

3 > »x X X
3 3 [ »x X X

X

X

X

X

X

X
/ \ (M1 "'10Nb)
(N N) Y (n,—M,.nz-Mz-Nb)
y (n1 "M1 ‘Nannz-Mz-Nb)

(b)
Fig. 6.13: Illustration of look-ahead in direct form 2D recursive compu-

tations: (a) traditional computation (b) look-ahead version where the
output is computed bypassing (M +1)(M z+1)-1 neighboring outputs
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In the direct form representation in (6.3), y (1) is expressed in terms of neigh-
boring (N, +1)(Vp+1)~1 outputs, i.e. y (n1,15) is expressed in terms of y¥e-1(n ;-N, ,n,),
yNeNo)(51 1N, 12~Np ), and y™)(n 1,n N, ) (see Fig. 6.13(a)). Now consider express-
ing y(n1,n2) as a function of (N;+M 1+1)(Np+M 2+1)-1 outputs, M, samples apart in 7,
direction and M, samples in a3 Mon. ie. as a functon of
yMeMz1)(y 1-1‘.'1-N¢ Ar-My), yMNeNs)(n =M =Nz ,n M z-Np), and
yM 1Ny My n~M 7-Np ) (see Fig. 6.13(b)). The look-ahead iteration is given by

Ne N | N N ) )
y(nin2)= ,% ‘%, [.2 3 aix.i{i:-inx.iz-jﬁug]Y(nl‘il‘MhnZ“IZ‘MZ)
0)

Nn=yYya=i

M=1 N, N, . .
+ % Ig)jg 8j\jlirjriz-jrtMa| ¥ (n1=i1n—ir-M2)
=43

N, M1 . .
+ "r:ﬁ ; };“sz’u-nmw—u y(n=iy=M1,n2-i2)

' JI"U
M\ M . .
+ Aglm.izz (ny1=iynz-iz) (6.152)
where
N, N, . .
2(nyno) = uz.u:;b““"“ (n1=ipnzia) , (6.15b)

and the sequence r,, ,, is defined in appendix 7.1. In look-ahead, we compute y (ny,n2)
while bypassing its (M ;+1)(M 2+1)~1 neighboring past outputs. This representation is

used to derive the two-dimensional direct form block filters.

Case I. L\2N, and L22N,
We divide the L,L, outputs in a block into two portions, (i) (L1Np +L2Ng —NgNp)

outputs  yNeMo )k Li4LykoLoALy),  YErNeMod(k L +L4+N,y koLytLs),  and
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Mo LeN)(k oL 1+L 1 koL y+L 7+N,), which are updated every cycle in a recursive manner,
ie. these outputs are states which are updated; (ii) the remaining (L1~Ng)(L2-N}) out-
puts y&rNeLe¥oX(k 1\ +L 1+N, J 2L 7+L 7+Np ), which are computed non-recursively in a
sequential manner using these updated outputs (see Fig. 6.14(a)). The updated outputs are
computed using look-ahead computation, where as the non-recursively incremented out-
puts are simply calculated using (6.3) and the available outputs without any algorithm
transformation. For example, for the case where Ly =6, L2 =8, N, =2 and Np =3, we
update the outputs y®3)6k+6,8k1+8), y43)(6k1+8,8k7+8), and y(>X6k+6,8k2+11)
using corresponding delayed block of outputs. The incremental output computation
proceeds as follows. First we use these updated outputs to compute y (6k 1+8,8k+11)
using (6.3). Then we use the updated outputs and y(6k;+8,8k2+11) to compute
y(6k1+9,8kz+11). We continue this process until we compute y (6k1+1 1,8k+11); thg.n
we compute y(6k1+8,8k+12) through y (6k+11,8k2+12). We continue until we finish
the computation of all 20 incremental outputs in a sequential manner ending with
y (6k1+11,8k7+15). Thus, this incremental output computation is carried out outside the
feedback loop. The recursive output update oﬁeration is performed by using (6.15) with
M=L,-N,+p and M, = Ly-Ny+q to update the state y (k\L+L 1+p JkoLy+Lo+q). For
example with above values of Ly,La, N, and Np, (M,M2) respectively correspond to
(5,5) for y (6k +7,8k+8), and (9,7) for y (6k1+11,8k 2+10). The general process of incre-
mental computation is illustrated in Fig. 6.14(b), where the hashed portions represents
outputs which are updated, and the blank or white portions are outputs which are com-

puted sequentially. The numbering of the blocks represents the processing sequence.
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A matrix formulation for the above block output update computation can be derived
to be of the form

§G Lo+l kol +L2) = Ay §(k oLy koLl 2+L2) + Ag§(kLy+L 1 ,kaLl o) + As§(k1L 1 koL 2)
+ Bzl L L (4L y oL o+l 2) + Byz®1Ed(k Ly koL 7+L o)
+ Boz®1ba(k L 14L y koL ) + B3z#1Ld(kyL 1 koL o) (6.162)

yNeLNo ) L 14L 1 oL 2+L 24N )
§U L+l kol otLg)=|  yNeNO L4l kol +ly) |, (6.16b)
NNk \L 1+L 1+Ng koL 2+L 2)

and the elements of the matrices can be obtained in terms of the filter coefficients and the
sequence 7, ,, using appropriate values of M; and M, in (6.15). Tne vectors
2Ll Ly kol 7+L), 281 L9k L+L 1 koL o), and 281k Ly koL o) are derived by
delaying the vector zEE2(k,L (4L koL 2+L3). The total complexity of this incremental
direct form block implementation is O (Max(L£L2,L1L2)) (see appendix 7.2) as
opposed to O (L £L2) as in the block filter in [21-28].
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Fig. 6.14(b): Incremental Two-Dimensional block processing.
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Although the formulation of (6.16) appears similar to the direct form filter formula-
tions in [21-28], the number of outputs that need to be updated every block in these
representations differ. The size of the updated states in (6.16) is (L iNp+L2Ng=NyNp),
whereas the size of the outputs to be updated in [21-28] is L L. The incremental compu-
tatior permits us to update a reduced number of outputs recursively and compute the
remanining outputs in a non-recursive manner, i.c. outside the recursive or feedback
loop. Table 6.5 compares the multiplication complexity per sample for the standard
direct form filter and the incremental filter. The standard direct form filter complexity is
based on the formulae given in [25]. The incremental filter has much less complexity

comipared to that of standard block filter.

Table 6.5: Per Output Complexities of Direct Form Block and Incremental Block Filters

(Ng =Np =2)
inc. block

(Ng =Ny =4)
inc. block

(8.8 124 133

(16,16) 240 243
(32,32) 568 443
(64,64) 1608 831
(128,128) 5224 1601
(256,256) 18600 3128

Several high speed algorithms for direct form block filter implementations using
fast convolution and transform techniques [35-40] have been reported [25,27]). These
techniques are applicable to the incremental block filter presented in this chapter as well.
For example, we can achieve a multiplication complexity identical to the fast or short

convolution [40] and FFT based block filter implementation in [27] by computing the Bo,
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B,, B,, and B; in (6.16a) via FFT; and A;, A3, and A3 by short convolutions.

Case Il: L1<N, and/or L2<N,

In this case, we need to update all L;L states in a block by block manner, and the
technique of incremental output computation is not applicable. This block statc update
operation can be carried out using (6.15) with M, =p and M2 =¢q for updating the state
y (koL +L 14p kol 2+L2+q). The multiplication complexity in this case is O (L#LZ) (see
appendix 7.2). This complexity may not be very large, since N, and N, (and therefore
L, and L5) are small.

6.3.2. Local State Space 2D Incremental Block State Filters

A block state space recursive digital filter has been proposed in [27-29] for block
implementation of the local state space model in (6.12). However, this structure has a
complexity O (L £L#) multiplications. In this section, we derive the incremental block
state structure, which has a complexity O (Max (L £L L ;L 2)) multiplications. This struc-
ture is based on a novel output computation strategy (although the state update is same as
in the block state case), and it is this novel output computation which leads to reduced
complexity.

Let the column by column representation of the block of horizontal and vertical

states corresponding to block size L 1xL, be defined by

WL L kL o)

hA LIk L 1+1,k2L2)
WLk Ly koly) = : (3.17a)
WALk, L +L1~1k,L )

and the row by row representation be defined by .




242

DIGITAL FILTERS FOR IMAGE PROCESSING

“J9UY 2AI1SIAs Joeds
aEs [e20] g7 © W vonesado Jtepdn yEIs 300iq Aq ¥o0id S1°9 ‘Bid

G1541-"1+ 1A
S5+ A

Gt A

A

[

[ ]

[
e

-

- Gty
- 15ty

Gt g

aSBt ey Ly N TN
[ J

o N._ °

- aF1+5 %ty

a-21rhtn g <

G110+ TN e
ata e iale ) Sy

F1:3%1- 1A <



DIGITAL FILTERS FOR IMAGE PROCESSING 243

W&k Ly koL 2)
- By koL o+1)

ph®Ed(k Ly kol ) = (6.17b)

bEWDGk Ly koL L 1)
where - -

hOL(k L1 kaLo) = [h(lel.kng), h(kyL kol z+1), ...., (kL 1}:2L2+L2-l)] T 6.170)

&)k, Ly koLo) = [h(k 1L1kal2), B(kyLy+1,koL ), ..., h(kyLy+L 1—1,ksz)] T (6.179)
and the block of vertical states are also defined similarly. In the existing block state

structure as well as our new incremental block-state structure, the horizontal states
WLk L +L koL ) and the vertical states v&11)(k L1, koL o+L ) are updated using the
corresponding  past horizontal and vertical states h(£d(k,L, kL) and
vk, L,.kaL2) (see Fig. 6.15). In this block state update process, the horizontal states

h&-1LD(k L1 +1,k,L ) and the vertical states v LT D(k L 1 kL 2+1) are missed.

In the existing block-state structure, the block of outputs yE1£2(k,L1,koL,) are
computed using the available horizontal and vertical states h£2(k;L, k,L,) and
vk L1 koL) only. This output computation leads to an O (L £L#) multiplication
complexity. In our new incremental block state structure, instead of computing all L1L,
outputs all at once, we compute the outputs increment by increment in a sequential
manner. Let the size of an increment be /1x/5, and let /| and 7, be divisible by L, and L,
for simplicity (however this need not be the case). In the incremental block state filter,
we use the states h0/D(k L, .kaL5) and vV)(k,L,.ksL5) to compute the incremental
output y/1+/d(k,L,kaL5), and to non-recursively compute the intermediate horizontal
and vertical states (kL 41, koL) and v 3k (L, koL y+5) (which were missed

due to the block state update process, but are computed non-recursively) (see Fig. 6.16).
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Fig. 6.16: Four increments of the block. The boundary states represent
block state update operation, and the states inside the block correspond
to non-recursive or sequential intermediate state computation (which
were missed due to block state update) to be used for incremental out-
put computation.
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By non-recursive computation, it is meant that these states are not updated in a recursive
manner using their past values, But are computed using the available states outside the
state update feedback loop. These intermediate states are used for computing the next
incremental outputs. A family of block structures can be derived with different values of
increment sizes, and the existing block state structure is a special case of the incremental
block state structure where the increment size equals the block size. The size of the
increment is chosen to minimize the total multiplication complexity. The typical incre-

ment size parameters are 1x1 or 2x2.

As an example, for Ly=4,L,=6 and I, =2 and I, =3, each block consists of 4
increments. First, we use h(13)(4k,,6k,) and v(>1)(4k,,6k;) to compute y&3)(4k,,6k7),
and the missed intermediate states h(-3)(4k+2,6k2), and v(Z1X(4k,6kz+3). We use these
intermediate horizontal states and the. available vertical states v(%1)(4k42,6k3) to com-
pute y@3)(4k,+2,6k,), and the missed intermediate vertical states V(Z1X(4k 1+2,6k+3).
Then we use available horizontal states h(1-3)(4k,6k 2+3) and already computed vertical
states v(21X(4k ,6k2+3) to compute y3)(4k,,6ko+3), and the missed horizontal states
h(13)(4k+2,6k2+3). Finally, we compute the output of the last increment
y@&3)(4k,+2,6k+3) using cumrently available states h(3X4k+2,6k2+3) and
v&1)(4k 1 42,6k 7+3).

We can use the technique of look-ahead and iterate (6.12) successively to obtain
L1
bk L1+L 1 koL 7+s) = ‘gAfi"'"h(k 1L1kaLo+t) + ‘g AL vk \Ly+t koLy)  (6.18a)

L
+ plrr+ls— +r- =01, ...,
gg‘ ! w(k\Li+r=1kaoLatt), s=0,1,..., L)
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L
V(kiL14p koLl L)) = g’ AR (kL koL o) + ;Afz"‘t"'(knbxﬂ kal2)  (6.18b)

' L
+ 'g'gbf"'l""”u(kll. i+ koL gr=1),p =0, 1,...., L1-1)

where
Afy=AnAfT + ApAdTl, Af0=1 (6.18¢)
Afd= A ATV + ApAdsl, AR=0 (6.184)
Adj = AnAfy-1 + ApAly-1, A0 =0 (6.18¢)
Adyi = Ay A1 + ApAdy-1, AB0=1 (6.180)
for (i ,)>(0,0) and
Afy=Afd=Ady=AkI=0 for (i,j)<(0,0) (6.18g)
Aft=ARt=AK0=A%0=0 for k >0 (6.18h)

The recurrence relations for b{J and b4 are given by

biv= Afflib, + Af by, (1,/)>(0,0) (6.18i)
bjv = AdTlib; + Ay -1by, (1,/)>(0,0) (6.18))

and

bPrk=bt0=0, k>0
These sequences can also be alternatively defined as
by = Anb{~1 + Appbi-1v: (i,j)>(L,1), b}0=b, (6.18Kk)

bjy = Agybfv-1+ Agbii1 (i ,j)>(L1), b =b, (6.181)
These recursive relations can be derived by successive iterations or by the method of

induction. These relations are different from those derived in [27] and are easily extensi-
ble to higher dimensions. In this state update reformulation, we do not need any dummy

zero states as in [27].
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Using (6.18), we can derive a matrix version of the two-dimensional block update
operation of the horizantal and vertical states, and this formulation is given in (A6.7).

The multiplication complexity of this formulation is given by

C,rLy= 2282 0Nz + LGNz 4 on oLy (619)

Loy, | LilalpD)

Now we derive the output computation representation for the block state filter, and
then for our incremental block state filter. The output y (kjL1+p k2L 2+¢) can be com-

_puted in terms of the available boundary states using

y(kiLy#p koLzg) = 3.cP 4~ h(kiLykalztt) + 3 e~ 4v(k L 1+t k2L 2X6.20a)

+§ dP—r+14-4y (kL 1+r=1koL 2+1)
H r=

where
cfv=c1Afy + cAdy (6.20b)
civ = Ay + ALY (6.20c)
div =c)b{J+¢b4v +dd(i j), d90=d . (6.20d)

Using (6.20), a matrix version of the block output computation is formulated in (A6.8)

(see appendix 7.3). The multiplication complexity for computing L ;XL block of outputs

is

CO(LI.Lz)z NILILZ(LT"l) + NleLé(Ll"'l) + LILZ(L1+1)(L2+1) (6.21)

2 .\

= %Ii[(l,ﬁl)(z.r«-l) + 2N (Lo+1) + 2N2(L1+1)]

and is O (L £L 7). The total multiplication complexity of the block state filter is the sum

of the state update complexity and the output computation complexity, and is given by
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Cp=Cs(L1,L)+Co(LyL2). (6.22)

In our incremental block state filter, the outputs are computed using the non-
recursively computed intermediate states (which were missed due to the block state
* update process) and the corresponding inputs. For a block size of L1xL and an incre-
ment size /XI5, the total number of state computation operations (each state computa-

tion operation includes computing 7, vertical states and / horizontal states) amounts to
(-Ifll - l)(-ll'zi - 1) (since the boundary states are already computed by the block state

update operation). The multiplication complexity of the incremental block state filter is
the sum of the recursive state update complexity, the non-recursive intermediate state

computation complexity, and the incremental output computation complexity, and is

given by
Ci=Callilp + (5L~ (G2 - DC, T+ Fr2CoUuTD) (6:23)

This complexity can be verified to be independent of O (L ¢L2) term. The size of the

increment I, and I, are chosen to minimize the output computation complexity.

Table 6.6 shows the multiplication complexities per sample for a 2D recursive digi-
tal filter with N, =N, =4 for the block state structure and the incremental block state
structure with typical increment values. We observe that for large values of block size,
we can save the multiplication complexity by about an order of magnitude by using the

incremental block state structure as compared with the existing block state structure.
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Table 6.6: Per Output Complexities of Block State and Incremental Block State Filters

Block State |Incremental Blrack State
L1,L2)

Complexity | Complexity | (I,I2)
(16,16) 257 188 (1,1)
(32,32) 586 254 2.2)
(64,64) 1635 390 2,2)
(128,128) | 5250 671 1,1)
(256,256) | 18311 1159 (1,1)
(512,512) | 68665 2174 (1,1)

The roundoff noise for the block state and the incremental block state structures are
the same under the assumption of linear additive white gaussian noise, since the recursive
state update operation is the same for these two schemes. Ju and Alexander have studied
the quantization noise of multidimensional block filters in [46-47], and these results are
also applicable to the structures proposed in this chapter. They also studied the stability
aspects of multidimensional IIR filters [48] using methods which are also applicable to
polyphase networks [49]. The standard direct form block filters for half plane recursive
filters have been derived in [50]. Our techniques presented here can also be extended to

derive efficient architectures for the half plane recursive digital filters.

6.4. PIPELINING AND TWO-DIMENSIONAL BLOCK PROCESSING

In this section, we achieve a speedup by a factor of L LM with a block size L %L,

and M stages of pipelining inside the recursive loop.
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Consider pipelining the 2D block recursive digital filter by M stages. For this case,
if we begin the computation of the block y¥£9(k,L1k,L) at time index n, then the
result of this computation will be available at time index (n+M ) due to the latency intro-
duced due to pipelining. We cannot begin the computation of the next block
y¥&1L(k 1L 1+L k2L ) until time index (n+M). This might imply that (M~1) cycles out
of M cycles have been wasted, which is not true! Just as in the non-blocked pipelining
case (see section 6.2), we can keep the pipeline busy by proper indexing or interleaving
of blocks of input samples (as opposed to interleaving one by one input sample as in
non-blocked pipelining case). Thus the impleraentable delay operator is obtained by
appropriate interleaving of blocks of samples, ard a pipelined realization is obtained with
no hardware overhead. Let a segment be defined to consist of LM consecutive rows of
input samples. Then with M stages of pipelining and for processing the first segment, the
M blocks  yRLukL),  yEGDLLGPDLY), . and
yELd((ky=M+1)L,(ko+M —1)L ) can be skew interleaved and processed in a pipelined
manner. Similarly in the case of a local state spae filter, the block of horizontal and vert-
ical states corresponding to M skewed blocks can be interleaved in the pipeline. The

index mapping function for pipelined block implementation is given by

I(nun)=| {-i-j M +| 7’%] M+1)+| 7.%1271 M({‘T-M-l). (6.24)
“This index mapping function holds good for direct form as well as local state space form
filters, and reduces to those in (6.10) and (6.14) as special cases. The delay operator can
be derived by inspecting the index mapping function. The loop delay operator with
respect to the index n; corresponds to M Ly—slow delays, and that with respect to the

index n, corresponds to (M +1) L—slow delays followed by a multiplexed path, one with
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no delay (for the case where the signal and its delayed version belong to the same seg-
ment), and the other with ('?1‘ — M — 1) LaM—slow delays (for the case where the signal

and its delayed version belong to two consecutive segments). These delay operators are
shown in Fig. 6.17. Using these loop delay operators, a block diagram of the state update
portion of a local state space form 2D recursive digital filter with block size L;xL2 and

M stages of loop pipelining latches is shown in Fig. 6.18.

Similar to the non-blocked pipelining case, the total number of wasted cycles is

M (M -1), and hence, the hardware utilization efficiency of this realization is given by

JJ2
zlzz

.72 .
T +MM-1)

(6.25)

1'8|0w

ylkyLy+Ly koL)——] MD ——y(k L, koL ,)

Row pipeline block delay operator

L,-slow

yik L koL+L,) (M+1D —
1rene e I | I y(k,LykoLy)
1
¥ !
I—— (2 -m-11D
L1

L,M-slow

Column pipeline block delay operator

Fig. 6.17: Row and column delay operators in a M stage pipelined
block realization with block size LyxL .
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6.5S. MULTIDIMENSIONAL RECURSIVE FILTERS

In this section, we outline tize extension of the pipeline interleaving and the incre-
mental block filtering concepts to N -dimensional recursive digital filters.

With the increase in the number of dimensions, the number of independent compu-

tations (that is computations which are not mutually constrained by precedence relations)

also increases, and the size of the concurrent computation region (CCR) grows. For an N

dimensional filter, the CCR corresponds to the (N-1)-dimensional hyperplane f‘n; =c
=

(where ¢ is as constant). For example, the CCR in a three-dimensional system
corresponds to a triangle (which is a two-dimensional surface or a plane). Therefore,
pipeline interleaving or sub-dimensional block processing approach can be adopted with
no hardware penalty using the samples belonging to the CCR in a manner similar to the
two dimensional case. The implementable delay operator can be derived by choosing an
appropriate index mapping function (which is non-unique).

The incremental block digital filtering approach can also be used in the context of
higher dimensional digital filters. In the case of direct form N dimensional digital filters

with filter onders NyxNzx...xNy, and block size LixLsX...xLy, (ﬁL,- - ﬁ(L,--—N,- )

states o outputs can be recursively updated in each block, and the remaining ﬁ(L; -N))

outputs can be incrementally computed in a sequential manner. In the case of local state
space N dimensional recursive digital filter case, the states can be updated block by
block; but the outputs can be incrementally computed using non-recursively computed
intermediate states (which were missed due to the block by block state update process) in

a sequential manner. The multiplication complexity of the N dimensional incremental
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block filter can be verified to be 0 ; Y%, € g:.z» as opposed to O (ﬂLE) in higher
: - =

dimensional block filters [47]. Note that the dominant complexity in the incremental
block recursive digital filter is due to the block state update operation, unlike that due to
the output computation as in the existing block filters. Furthermore, pipeline interleaving
and incremental block filtering approaci.es can also be combined to obtain efficient mul-
tidimensional filters as in the two dimens.onal case.

6.6. CONCLUSION

We have presented several approaches to achieving concurrency in two dimensional
recursive digital filters. These approaches lead to an understanding of concurrent process-
ing of tasks in image processing systems. We have shown that it is much more hardware
efficient to exploit the inherent concurrency available in the processing of two-
dimensional data, either in the context of pipeline interleaving and/or one-dimensional
block processing, rather than using two-dimensional block processing. Although several
concurrent techniques have been presented in this chapter, most of them are too complex
to implement on VLSI chips due to large hardware complexity and severe 1/O con-
straints, except the case of pipeline interleaved processing (i.e. with no block processing)

and one-dimensional block processing.

So far we have studied transformations on specific linear digital filter algorithms.
These techniques can also be locally applied to linear recursive nodes in any general data

flow signal processing program. These issues are studied in the next chapter.
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6.7. APPENDICES

6.7.1. Appendix 7.1

In this appendix, we define a sequence 7y, ,, Which is used in the context of the

direct form block digital filter. This sequence is defined by
Tmy 2= ‘g) ‘% Gividn=ivnz-ia (A6.1)
(i1i2) #(0.0)

roo=1, ro,=0for i1>0,r;i,= Ofor i2>0. (A6.2)
In (A6.1), 7a, », is expressed recursively as a function of neighboring ((Ny+1)(Np+1)-1)

values of r;, ;,. Suppose we are interested in expressing 7, », as a function of values of
ri,i, M samples away with respect to the index n,, and M ; samples away with respect to

the index n, (see Fig. 6.13(b)), then we can iterate (A6.1) appropriately. to obtair:

N,
r'll.!lz= '.%

N,
(.l 2 ‘%6) Lngdz;izah'jzr‘ l'jﬁMx-ir.iz'FMz] r“l-il‘ux.ﬂr‘.z-uz (A6.3)
I g

M -1 N, iy N,

+ -; 2‘) %2 8jrjirjrvizjrtMa| Thy=isnz-ir-Ma
H=VIFE _Jl =i j

-

M| N
+ ; 2 ):“jw'z’ iy=jtMyizja| TRy=ir=-Minris -
n=li =0 ]

=

This iterated relation can be derived either by successively iterating (A6.1) or by using
induction. Here the value of 7r,, is expressed as a function of

(NgM 24+Np M 1+(N,+1)(Np+1)-1) values of r;, ;,.
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6.7.2. Appendix 7.2

In this appendix, we compute the multiplication complexity of a direct form two-
dimensional block recursive digital filter with block size LyxL; for the cases where the
block sizes are greater than filter order as well as less than filter order. Note that the mul-
tiplication complexity for updating a single state using previous states M samples apart
in ny direction and M in n, direction can be obtained from (6.15) and is given by

F (M1 M3) = (Ng+1)Np+1)1+Np M 13N M 7+ (M 1+1)(M 2+1)-2 (A6.4)
where multiplication by unity has been excluded.

CaseI. L\>N, and Ly>N)

The total multiplication complexity for this case is the sum of the multiplication
complexity due to the state update operation of (N, Np+(L1=Ng)Np+Ng(L2—Np)) states
with  appropriate (M;,M7) values, that needed for computation of
2Lk Ly+LyksLo+Ly) and that for incremental output computation of

(L1=N,)(L2=Np) outputs. The total multiplication complexity is given by

c =M:§;’ ‘ﬂ;-g:lf (M1M2)+M$:N.M:§:Mf M1M2) (A6.5)

Lt BE com LLo(Na+1)Np +1) + (L1=N )L 7~Np X (Na+1)(Np+1)-1
+0 B T MM+ LLNH)NH) + Li-Na)E N XMt D +1)-D)

The above can be simplified to verify that C is independent of O (L £L2) term.

Case Il: L <N, and/or L,<N,

For this case, the multiplication complexity is the sum of the state update complex-
ity and the complexity to compute &Lk (L +L 1 koL o+L 7). The multiplication com-

plexity is given by
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Ly-11-1 4
C= u?' .,méo f (M1.M2) + LyLay(Ng+1)(Np+1) (A6.6)
and is an O (L £L2) complexity.
6.7.3. Appendix 7.3

We use use (6.18) to derive a matrix version of the two-dimensional block state

update operation to be

WAL\ Ly+L kol y)| _ | (Arn)Er (AgFt| | ROLD(kLy KoL) '
vEDR Ly koL L) | (Agn)ts (Aol | vED(k L1 koL 2) (A6.72)

BFp| anLy
+| M 1 ,
@) | ¢ (k1L k2L 2)
where RALD(k (L1 koL 7) is NLax1, v 1k Ly koL o) is NoLix1, wrEbd(k Ly koL,) is
L,L,x1, and other submatrices are of appropriate dimensions. Note that the submatrices

(AP, (Ap)F?, (By)L* and (B,)!* are triangular. Using (6.18), the elements of these

matrices can be derived to be
AK; = AR, A = A+t (A6.7b)
(Ag)K; = AdT1E-i4, (Ap)K; = Adzi K (A6.7¢)
[(ﬁx).’f,-] g = bf-1+1is, [(ﬁz).‘S-] y =biiK=I (A6.7d)

Note that (ﬁl),’f,- represents a NyxL vector and [(ﬁl),’f,-] ; Tepresents the [-th element of
the row vector of dimension N;x1. Similarly (ﬁz),’f, represents a NoxL, vector and
[(flz),'fj] ; Tepresents the /-th element of the row vector of dimension N2x1. The multi-
plication complexity for the above block state update operation is given by (6.19).

We use (6.20) to derive a matrix version of the output computation
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WLa) e tats (@ tats] | BOF20kL kL)
y(l- (k1L 1.k2L2) = [(CI)L (éz)" ’] V(L"l)(k:L: kala) (A6.823)
+ @Y L@l L koL,
or equivalently,
LLD(k 1L 1,koL ) €)1 (€20
ya(‘l"’(leﬁl.k:la) (C1)2 (C2 WL L 1 koL ) AG5h
- o . v Ly JeoL o) (A6.8b)
YLk Li+L-1koL)| | (€0, €D,
L J [ ] 1T A
M o u LAk, Ly koL o)

where (C,)p is LoxN 1L, (Cp)p is L3XN3Ly, and (D), is L2XL7 and are triangular. The"

@2 On 3 8 || uEdkiLy+koLy)

a‘).)L; (ﬁ)lrx e (ﬁ)l Il(l'l")(k WL l-i'Ll-l,ksz)

ij -th elements of these submatrices are given by

h(él)p] i =074, p=1.2,..L (A6.8¢)
L(éz)p] ij = c!-j.l"-i' p=l ’2’--"141 (A6-8d)
L(ﬁ),,] j=dP (A6.8¢)

The multiplication complexity for the the block output computation is given by (6.21).
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CONCURRENT DATA-FLOW SIGNAL PROCESSING

7.1. INTRODUCTION

In chapter 2, we studied the program unfolding approach for creating concurrency
in data-flow programs. In chapters 3 through 6, we proposed look-ahead transformations
to derive high sample rate realizations of one- and two-dimcnsional recursive and adap-
tive digital filters. In this chapter, '.we combine look-ahead and program unfolding
approaches to perform local transformations in general data-flow signal processing pro-

grams to create additional concurrency.

In section 7.2, we review the look-ahead transformation in single node programs.
All the digital filter algorithms studied in earlier chapters can be described by these pro-
grams. In section 7.3, we illustrate application of look-ahead transformation in general
single-rate iterative data-flow programs, and in section 7.4, we illustrate transformations
in multirate iterative data-flow programs. These transformations improve the iteration
period bound of these programs, and increase the level of concurrency in their implemen-
tations. These transformations are useful for high-performance implementation of real-
time applications, especially where the iteration period bound of the algorithms is greater

than the iteration period required by real-time constraints.
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Fig. 7.1: (a) Transformation of a single node program by look-ahead,
(b) Pipelining and retiming of the transformed program, (c) Unfolding
ofmeu'ansfonnedprombyafmofM.miscomspondsma
block implementation with block size M. (d) Unfolding of the
transformed program by a factor of M /2. This corresponds to a block
implementation with block size M/2 and for 2-stages of loop pipelin-
ing.
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7.2. SINGLE-NODE PROGRAMS

Consider the single node program in Fig. 7.1(a), which shows the node variable to
be Y with a self loop containing a single delay. The self loop implies that the invocation
Yn is a function of the past invocations Ys-1, Ya-2, s Ya-N» Where N represents the
memory of the system, also called the order of the system. Let the iteration period brand
of this program be #,. We can apply the scattered look-ahead algorithm describec in
chapter 2 of this thesis to transform the program to another equivalent program with the
same variable Y with a self loop containing M delays (see Fig. 7.1(a)). In the
transformed program, the invocation y, is a function of Ya_s, Ya-2Ms s Ya-NM. The
iteration period bound of the new program is improved by a factor of M. However, in
order to exploit the new iteration period bound, we need to either pipeline and retime the
entire loop operation as shown in Fig. 7.1(b), or perform program unfolding (as discussed
in chapter 2). If we unfold the transformed program by a factor of M, then we will have
M independent or isolated loops, where each loop contains a single delay. This follows
from the unfolding property of chapter 2. Furthermore, unfolding by a factor of M leads
to a perfect program. This perfect program (which corresponds to a block implementa-
tion with block size M in the context of earlier chapters) is shown in Fig. 7.1(c). It is also
possible to combine pipelining and retiming with program unfolding. This operation
corresponds to unfolding by a divisor of M. Fig. 7.1(d) shows unfolded program with
unfolding factor M /2. The program in Fig. 7.1(d) has M /2 isolated loops each containing
2 delays in the self loop (note that delay conservation property is satisfied). In this pro-
gram, the unfolding factor is M /2, and each unfolded program is pipelined (and retimed)

by two stages.
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7.3. SINGLE-RATE ITERATIVE PROGRAMS

Consider the two node iterative program in Fig. 7.2(a). Assume that the execution

time of node X is greater than that of node Y. The iteration bound of this program is

To=Max iy g ) =1y . @.1)
This iteration bound can be improved by performing local transformation around node X

(since node X is the critical node). If we perform scattered look-ahead at node X by a

factor of 2 (assume the operation at node X is linear), then we obtain the transformed
program shown in Fig. 7.2(b), which has an iteration bound of £, Fig. 7.2(c) shows

the unfolded version of the program in Fig. 7.2(b) for an unfolding factor of two, and one
can verify that the unfolded program is a perfect program.

D
D
= ty<t,
20 (a)
D
D
' Q;/—D\
(]

Fig. 7.2: (a) A two-node single-rate iterative Data Flow program, (b)
Transformed data flow program obtained by applying look-ahead
locally at node X, (c) Unfolding of the program in Fig. 7.2(b) by a fac-
tor od 2 leads to a perfect program.
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Fig. 7.3: (a) A two-node multiple rate data flow program, (b) An

equivalent single rate data flow i :
cedence graph, program, (c) Directed acyclic pre-
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7.4. MULTIRATE ITERATIVE PROGRAMS

Now we illustrate the application of the look-ahead computation technique to

minimize the iteration period in a class of multiple rate iterative data flow programs.

Consider the multi-rate data flow example of Fig. 7.3(a), where each cycle requires
invocation of two instances of the node A and one instance of the node B. The
equivﬂent single-rate data flow program is shown in Fig. 7.3(b) and the corresponding
precedence relation is shown in Fig. 7.3(c). From the precedence relation, it can be seen
that the iteration period is (2t, + ¢, ) for processing of two inputs, where ¢, and 7, respec-
tively stand for the time required for executing single instances of nodes A and B respec-
tively.

Assuming the recursive computation associated with node A to be linear in nature,
we can apply one-step of look-ahead locally at ncde A to create additional concurrency
in the recursive self-loop of node A, which can then be used to make the schedule of the
instance A, independent of that of A (see Fig. 7.4), and the iteration period is reduced to
(tz + 1) for processing of two inputs. In Fig. 7.4, the node is marked as A’ since it differs
slightly from node A in functionality. In order to achieve further concurrency, the steps
of look-ahead must be proportionately increased (i.e. for (L—1)-steps of look-ahead at
node B, (2L-1)-steps of look-ahead must be applied at node A). Of course, the
transformed data flow program must be retimed in order to actually achieve this

improved iteration bound.
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Fig. 7.4: (a) An equivalent multiple rate data flow program obtained by
applying look-ahead locally at node A, (b) An equivalent single rate
data flow program, (c) Precedence graph of the transformed program.
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7.5. CONCLUSION

In this chapter, we have illustrated the use of look-ahead algorithms to perform
local transformations in general iterative data flow programs. The key idea is to create
additional concurrency in some arc of the crirical loop, which also belongs to a non-
critical loop. The advantage of this technique is that the look-ahead computation penalty
is reduced, since the penalty introduced is due to the non-critical loop only. These
transformations may prove useful in systems, where the algorithms are unable to meet

the requirements of the real-time constraints.
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FURTHER WORK

The program unfolding and the look-ahead algorithms are both very useful tech-
niques for high performance implementation of signal processing systems. The program
unfolding approach leads to rate-optimal fully-static multiprocessor schedules. The
look-ahead and its companion algorithms create concurrency, and therefore lead to high

sample rate implementations.

Although several algorithms for high performance implementations have been pro-

posed, still many open issues remain. They are

o Study of finite precision effects, which accounts for inexact pole-zero cancellation in

pipelined recursive filters,

o Synthesis of pipelined recursive filters directly from filter spectrum using constrained

filter design techniques,
e Hardware implementation of an adaptive filter chip using fine-grain pipelining,

o Filter layout generation of digital filters which can be used as a front-end of an existing

architecture-specific computer-aided design system,
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o Partitioning techniques to obtain multiple chip systems,

e Construction of architecture and interconnection constrained multiprocessor schedules

(for homogeneous and non-homogeneous processors),

o Construction of an architecture synthesis system using the techniques discovered in this

thesis.

All the above problems can be independently pursued to greater depth. A computer aided
design system, capable of simulations in the front-end to account for finite precision
effects, and of generating chip layout to meet specified performance constraints would be
very useful. Out of the above list of problems, the first one is of theoretical nature, and

the remaining involve either hardware and/or software implementations.
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