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ABSTRACT

This thesis explores systematic approaches to design ofhigh-speed algorithms and

architectures for real-time signal and image processing in general, and for one- and two-

dimensional recursive and adaptive digital filters in particular. First we address rate-

optimal software-programmable multiprocessor implementation of signal processing

algorithms described by data-flow programs. We introduce the notion ofperfect date-

flaw programs* and prove that fully-static rate-optimal multiprocessor schedules can

always be constructed for such programs using no retiming at all. We study properties of

program unfolding transformations, and derive an expression for the optimum unfolding

factor to reduce any data-flow signal processing program to an equivalent perfect data

flow program, which can then be scheduled rate-optimally in a fully-static manner. Ai

upper bound on the number of processors to achieve a rate-optimal schedule is also

derived.

Next we develop high-speed algorithms for one- and two-dimensional recursive and

adaptive digital filters. Look-ahead algorithms are proposed to change the basic linear

filter structures (while maintaining identical input-output behavior) and to create addi

tional concurrency. Scattered look-ahead and decomposition algorithms are used to

implement high-speed recursive and adaptive digital filters using fine-grain pipelining,

with logarithmic increase in hardware for a linear increase in the sample rate. A



technique of incremental output computation is proposed and used toderive incremental

block digital filters of linear multiplication complexity in block size, as opposed to the

square multiplication complexity in all previous block filter structures. Two-dimensional

recursive digital filters inherently possess large amount of concurrency. An index map

ping transformation isused toexploit this concurrency, and toderive fine-grain pipelined

and one-dimensional block implementation of two-dimensional recursive digital filters.

Look-ahead and incremental computation techniques are extended to two-dimensions,

and are used to derive an efficient incremental two-dimensional recursive block digital

filter architecture.

Look-ahead and program unfolding transformations are performed on general itera

tive data-flow signal processing programs to increase concurrency. These transforma

tions are useiul where the designed algorithms are unable to meet the real-time require

ments of the target application.

(David G. Messerschmitt)

Chairman of Committee
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INTRODUCTION

1.1. INTRODUCTION

The continuing advancement of scaled VLSI technologies has made it possible to

implement very complex functions on single chips at low cost The computer aids for

design of integrated circuits (ICs) have also advanced to a point that a designer can

quickly design a chip starting with architecture design specifications. As an example,

many designs that required two or three years of design time five years agocan be done

within only two to three months today (for an identical size design team). However, in

order to fully utilize the silicon area in an efficient manner for any specific application, it

is necessary to optimize the algorithms and/or architectures by applying suitable transfor

mations. For example, one can make more dramatic improvements in silicon area of an

IC chip implementation by finding amoreefficient algorithm or a betterarchitecture of a

given algorithm, as opposed to finding a minimum transistor circuit realization for the

building blocks (such as adder unitsormemorycells)of the system.

While the process of chip design from architecture specifications has been well

understood and fairly well automated, the algorithm and architecture design from appli

cation or problem specifications still remains a difficult task. Over the past decade,

researchers have succeeded in systematically mapping a class of regular iterative
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algorithms on systolicarrays starting with algorithm specifications (see [1-8]). However,

finding efficient solutions to implementation of general irregular algorithms still remains

an open problem. Several computer-aids for algorithm-specific custom implementations

have also been developed in the last five years. Examples of these systems include the

Lager design, system at Berkeley [9], the Cathedral design system at IMEG, Belgium

[10], and the silicon compilerdeveloped at the GE R&D Center [11]. These design sys

tems currentiy lack the ability to perform transformations on algorithms. These systems

are also architecture-specific; they do not explore the entire algorithm and architecture

design spaze.

The goal of this thesis is to develop algorithm and architecture designs for high

speed real-time digital signal and image processing systems. Systematic approaches are

explored to transform existing algorithms to create concurrency. These transformation

schemes can be applied to a class of algorithms without altering their input-output

behavior or functionality. The transformation schemes developed in this thesis can be

basically divided into four broad categories. They are program unfolding, retiming,

look-ahead and decomposition, and index mapping transformations. Program unfolding

transformation increases the number of tasks, which can then be distributed more evenly

among multiple processors. This transformation does not alter the basic algorithm, but

does alter the sequencing or scheduling of the tasks of the algorithm. With an optimum

unfolding factor, we can always construct a minimum-time or rate-optimal fully-static

multiprocessor schedule. The retiming transformation involves moving around the

delays in a data-flow program. This transformation can lead to areduced iteration period,

but cannot guarantee a rate-optimal schedule. The third category of transformation

involves look-ahead computation schemes, which change the structures of linear
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recursive algorithms (while maintaining identical input-output behavior) to create addi

tional concurrency. The decomposition algorithms reduce the implementation complex

ity in these algorithms from linear to logarithmic (with respect to steps of look-ahead).

The look-ahead schemes apply to linear recursive systems, and are demonstrated in this

thesis in the context of digital filters. The indexmapping transformation is used to exploit

the inherent concurrency in the twc-dimensional recursive digital filters.

These algorithm transformations can often result in an efficient high performance

implementation (the efficiency measure is based on area-throughput tradeoff, and the

throughput is assumed to be reflected by the sample rate of the system, and not neces

sarily the clock rate). This is because an algorithmtransformation on a particular system

can lead to a dramatic improvement in the implementation. The transformation tech

niques developed in this thesis can form the core of an architecture synthesis system, and

can serve as the front end to one of the existing architecture-specific vertically-integrated

computer-aided design systems.

1.2. CONTRIBUTIONS OF THE THESIS

Chapter 2 of this thesis concentrates on the program unfolding transformation,

which leads to the construction of minimum-time fully-static multiprocessor schedules.

The basic idea of this transformation is to exploit the repetitive nature of operation in sig

nal and image processing systems (which operate on infinite time series). These systems

and the corresponding iterative data-flow programs are non-terminating in nature. The

scheduling and task sequencing issues have been studied in great detail over last two

decades in the context of assembly line job scheduling and computer science. Minimiz

ing the execution time over single pass of the program has been the goal in these sys-
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terns. However, in signal and image processing systems, the same tasks are performed

repetitively, and therefore we need to minimize the execution time of a single iteration

while exploiting maTiirmm possible overlap of successive iterations.

The loop or feedback or recursion inthe algorithms described byiterative data-flow

programs imposes alower bound on the iteration or sample period. This bound is funda

mental and cannot be broken even if infinite processors are available. The non-recursive

systems do not have any feedback, and do not have any lower bound on the iteration

period. The actual iteration period of any data-flow program may be much greater than

the iteration bound. A retiming transformation can improve the iteration period, but can

not guarantee aniteration period equal to theiteration bound.

Unfolding a data-flow program leads to a new program with replicated tasks

corresponding to successive iterations. For example, if aprogram contains 20tasks and is

unfolded by a factor of 5, then the unfolded program will contain 100 tasks belonging to

5 consecutive iterations. Unfolding of iterative data-flow programs can lead to greater

concurrency in high performance implementations. Program unfolding increases the

number of tasks to be executed, and these unfolded tasks can be more evenly distributed

at compile time among multiple processors leading to reduced program execution time.

Whether an iteration period equal to the iteration bound can always be achieved by pro

gram unfolding with a finite unfolding factor had remained an open question. We show

that unfolding the program beyond acertain factor does notlead to any further reduction

in the execution time. It is shown that this optimum unfolding factor is given by the least

common multiple of the loop delay operators in the data-flow program graph. This

unfolding factor leads to an exactly even distribution of the iterative tasks, and executes
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the program in minimum possible time. We derive upper bounds on the number of pro

cessors to achieve minimum time schedules. In this context, we introduce the notion of a

perfect data-flow program* which can always be executed in minimum time without

requiring any unfolding orany retiming operation atall. We study properties ofunfolded

data-flow programs, and show that an unfolding operation with the optimum unfolding

factor reduces any iterative data-flow program to an equivalent perfect data-flow pro

gram. Wealso present extensions tomultiple rate data-flow programs, and applications to

scheduling in non-homogeneous processor system implementations.

Many image processing, video signal processing, radar, sonar, and seismic signal

processing applications require very high sample rate implementations. As an example,

consider an implementation of a 5x5 convolver image processing system implementa

tion. For a 512x512 frame size, and a frame rate of 30 frames per second, we need a

computation rate of 200 million multiply operations per second, which can never be

achieved by using a general purpose programmable signal processor implementation.

These high performance systems canbe implemented with low-cost (Le. with lowsilicon

area) by using dedicated custom IC chips, which use fine-grain pipelining and parallel

ism. Many dedicated chipshave been implemented using fine-grain pipelining in general

and bit-level pipelining in particular in the lasttwo decades using bit-parallel [12-23] and

bit-serial [24-33] approaches.

The two basic approaches to achieving concurrency are pipelining and parallelism

or block processing. Suppose a single multiply/add operation can be clocked at 25 Mhz

in some technology, and we require a sample rate of 100 Mhz. Then, one way to imple

ment this system is to pipeline the multiply/add operation by four stages, i.e. insert four
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pipeline delays or buffers or latches in intermediate portions of die multiply/add circuit

Anotherapproach is to duplicate the hardware by four times. In thiscase,we can in each

cycle operate on four input samples, and generate four output samples (the four non-

overlapping samples form a block).With a clock period of 25 Mhz, and a block size of

fom\ we can achieve an effective system system samplerate of 100 Mhz. Naturally, any

combination of pipelining and parallelism can also be exploited. In the above example,

yet another alternative would be to pipeline the multiply/add hardware by two stages, and

duplicate the hardware by two times. In general, with M stages or levels of pipelining,

aid with a block size L, we can get an effective improvement in samplerate by a factor

ofLM. Pipelining is preferred to block processing, since pipelining exploits concurrency

with reduced hardware penalty.

Exploiting fine-^rain pipelining and block processing techniques in non-recursive

systems is straightforward. Howeverexploiting thesetechniques in recursive systems is a

real challenge [23]. This is because the computational latency associated with the inter

nal recursion or feedback in recursive systems limits the opportunities to use fine-grain

pipelining and block processing techniques to achieve high sample rate realizations. In

chapter 3, we develop techniques to pipeline recursive digital filters in an area-efficient

manner. Fine-grain pipelining of recursive loops by simply inserting latches is useful for

applications requiring moderate sample rates and where multiple independent computa

tions are available to be interleaved in the pipeline; but not where a single recursive

operationneeds to be performed at very high samplerates.

We introduce a new look-ahead approach (referred to as scattered look-ahead) to

pipeline recursive loops. In the look-ahead algorithm, we iterate the recursive state
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update representation, and implement the new recursion. This approach also improves

the iteration bound of the realization. It is shown that the existing clustered look-ahead

approach to pipelining recursive filters does not guarantee stability, whereas our new

scattered look-ahead approach does guarantee stability. We also propose a new decom

position technique to implement the non-recursive portion (generated due to the scattered

look-ahead process) in a decomposed manner (for cases where the number of loop pipe

line stages can be expressed as a power of 2) to obtain concurrent stable pipelined reali

zations of logarithmic implementation complexity with respect to the number of loop

pipeline stages (as opposed to linear). The upper bound on the roundoff error in these

pipelined filters is shown to improve with an increase in the number of loop pipeline

stages. We derive efficient pipelined realizations of both direct form and state space

form recursive digital filters. Based on the scattered look-ahead technique, we present

fully pipelined and fully hardware efficient linear bidirectional and unidirectional ring

systolic arrays forrecursive digital filters.

In chapter 4, we. address block implementation and fine-grain pipelined block

implementation of recursive digital filters. In a block implementation, we process sam

ples in non-overlapping blocks. With a block sizeof L, we can increase the sample rate

by a factor of L. We extend an existing linear complexity direct form block filter struc

ture to higher order systems, and refer to it as the incremental block filter. Block imple

mentation of state space recursive digital filters hasbeenknown for a long time. The two

existing popular block structures are theblock-state structure, and the parallel block-state

structure. However the multiplication complexity of these structures is proportional to

the square of theblock size. The block state update operation in these filter structures is

performed based on the clustered look-ahead computation* and requires a linear
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complexity in block size. But, theoutput computation of the complete block is done all at

once and requires a square complexity in block size. We introduce a new technique of

incremental output computation that has linear complexity in block size. Based on the

clustered look-ahead andincremental outputcomputation approaches, we derive ournew

incremental block-state structure for block implementation of state space filters of multi

plication complexity linear in block size. The incremental block-ttate structure is also

extended to the multirate recursive filtering case. We combine the techniques of scat

tered look-ahead, clustered look-ahead, decomposition, and incremental output computa

tion to introduce several pipeline stages inside the recursive loop of the block filter. We

derive deeply pipelined block filter structures for implementation of direct form and state

space form recursive digital filters. The multiplication complexity of these deeply pipe

lined block filters is linear with respect to the block size, logarithmic with respect to the

number of loop pipeline stages, and thecomplexities due to pipelining and blockprocess

ing are additive. In summary, we can increase the sample rate in recursive digital filters

by a factor LM with 0(L}+0(log2M) multiplication complexity using our techniques,

as opposed to O(L2M2) multiplication complexity using previous approaches.

In chapter 5, we address high performance implementation of adaptive and time-

varying recursive digital filters. We extend thelook-ahead and decomposition algorithms

to time-varying systems. Previous approaches to high sample rate adaptive lattice filter

implementations have been based on word-level pipelined word-parallel (or "block")

realizations. We show that adaptive filters can be implemented in an area-efficient

manner by first using fine-grain pipelining, and then using block processing in combina

tion with pipelining if further increase in the sample rate is needed. We show that with

the use of the decomposition technique* high speed realizations can be achieved using
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pipelining with alogarithmic increase inhardware (the block realizations require alinear

increase). We derive pipelined word-parallel realizations of high sample rate adaptive

lattice filters using the techniques of look-ahead computation* decomposed state update

implementation* and incremental output computation. These three techniques combined

together make it possible to achieve asymptotically optimal complexity realizations (i.e.

asymptotically the same complexity as non-recursive systems) of high speed adaptive lat

tice filters (in bothbit-serial and bit-parallel methodologies) and provide a "system solu

tion" to high speed adaptive filtering. The adaptive lattice filter structures are ideal for

high sample rate implementations, since the coefficients of a particular stage are adapted

order-recursively based on theerror innovations of the previous stage, and the coefficient

update recursion inside each stage is linear in nature. An example of a normalized sto

chastic gradient adaptive lattice filter is presented, and its complexity, latency, and

implementation methodology tradeoffs are studied.

Chapter 6 focuses on exploiting concurrency in direct-form and local state-space

form two-dimensional recursive digital filters to obtain efficientimplementations. Unlike

one dimensional recursive systems, two-dimensional recursive digital filter algorithms

possess large amount of inherent concurrency, which can beexploited for fine-grain pipe

lining and/or parallelism. The locus of these concurrent computations is referred toas the

concurrent computation region. We use an index mapping transformation to exploit this

concurrency, and derive fine-grain pipelined and one-dimensional block filter architec

tures for the implementation of two-dimensional recursive digital filters. This transfor

mation leads to appropriate interleaving (or indexing) of the input samples, and does not

require any algorithm transformation, and does not lead toany hardware overhead.



INTRODUCTION 10

Another approach to achieving concurrency isbytwo-dimensional block processing

using algorithm transformation techniques. We extend the look-ahead computation and

the incremental output computation principles to the two-dimensional case, and derive a

new two-dimensional incremental block filter structure. The multiplication complexity

of our newincremental block filter with ablock size LixL2is O(Max(L}L^*L\L})\ as

opposed to O(L ?L£) of the existing block-state filter structures. We then combine pipe

line interleaving and incremental block filtering approaches to derive efficient filter struc

tures. The notion of an index mapping function is usedto derive the implementable delay

and quasi delay operators for the concurrent pipelined and/or blocked two-dimensional

architectures. The quasi delay operators represent delay operator in one dimension and

an advance operator in the other. We show that for an N-dimensional recursive filter, die

concurrent computation region corresponds to an (N—l)-dimensional hyperplane. The

pipeline interleaving and the block processing concepts are also extended to higher

dimensional cases.

In chapter 7, we create concurrency in general iterative data-flow programs by

applying the look-ahead transformations locally to some critical nodes. This chapter uses

the theory of program unfolding and look-ahead transformations developed in chapters 2

through 6 of the thesis. The local transformations of iterative data-flow programs are par

ticularly useful in systems where the algorithms cannot meet the real-time constraints of

the target application. Chapter 8 concludes the dissertation with suggestions for future

work.
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PROGRAM UNFOLDING

2.1. INTRODUCTION

The data-flow representation of algorithms clearly exhibits the available con

currency, and forms a natural basis for program specifications in a multiprocessor

environment Althoughthe concept of data-flow computation has existed for quite some

time [1-2], only in recent years it has received wide attention [3-8]. In this chapter, we

consider non-preemptible deterministic periodic scheduling of iterative static large-grain

synchronous data-flow programs. In particular, we consider construction of minimum-

time multiprocessor schedules for these programs. The iterative programs are assumed to

be non-terminating in nature; in other words we assume the program is executed a very

large number of times, such that it can be considered an infinite number of times. This

nature of computation is frequently found in many real-time systems, typically in signal

and image processing applications. The loops in these programs lead to a lower bound

on the execution time of a single iteration, referred to as an iteration bound [9-11] (see

also [8,12] in the context of asynchronous systems) in the remainder of the chapter. The

execution time of a single iteration is referred to asan iteration period, and a schedule is

said to be rate-optimal* if the iteration period is same asthe iteration bound. Traditional

multiprocessor scheduling of these iterative flow graphs are based on critical path
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methods, which minimize the iteration period overone iteration of the program [13-14].

These techniques do not exploit the repetitive nature of the program, and rarely achieve

an iteration period equal to the iteration bound. Often the program can be retimed to

achieve a reduced iteration period, but the retiming [15-17] of a program cannot guaran

tee a rate-optimal implementation.

Past efforts towards rate-optimal scheduling of iterative flow graphs have been

based on construction of cyclo-static schedules [18-22]. These schedules exploit the

repetitiveness of the data-flow programs. A cyclo-static schedule is characterized by a

lattice Px7\ where P corresponds to the processor displacement and T is the time dis

placement (same as the iteration period). A processor displacement P in a schedule

implies that if the iteration i of a certain task is scheduled in processor p, then the itera

tion (i+1) of the same task is scheduled in processor(p+P) modulo P#, where P# is the

end point of the processor lattice (which can be multidimensional). A time displacement

T implies that if the iteration i of a task is scheduled at time t, then the iteration (i+1)of

the same task is scheduled in time (t+T). Table 2.1 shows a partial schedule of two

iterations of a cyclo-static schedule (from [18]). The symbol A; denotes the i -th invoca

tion or i-th iteration of task A. In the example of Table 2.1, there are 10 tasks in each

iteration, and 4 processors arranged in a 1-D space. The processor displacement in this

schedule is 2 units, and the time displacement or the iteration period is also 2 units. As an

example, task 3i (i.e. iteration 1 of task 3) is scheduled in processor Pi at time unit 1,

and task 32 in processor P3 at time unit 3. Task 33 can be scheduled in processor Pi

(which is 3+2 modulo 4) at time unit 5 (not shown in the Table). The PxT lattice for this

schedule is 2x2.
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Table 2.1: A Cyclo-Static Schedule

Processor Schedules

Pa - - - h H h 10*

P* - - 3? 72 «2 h
Pi - 1? *» 2, 10, - -

Pi 3i h 8i '» - -

15

A schedule isfully-static* if the processor displacement is zero, i.e. P component of the

PxT lattice is 0. In other words, all iterations or invocations of a specified node or task

are scheduled in the sameprocessor. Table 22 shows a partial schedule of two iterations

of a fully-static schedule [18], which has a processor-time lattice 0x2. In a fully-static

schedule, all tasks corresponding to a single iteration are first scheduled, and this

schedule is then replicated for all otheriterations with0 processordisplacement

Table 22: A Fully-Static Schedule

Processor Schedules

Pa - - - 2, 10, 22 102

P3 - - *l 9j H 9* -

Pi - 1} «1 h h -

Pi 3l_ 7j h 1% - -

Whether fully-static rate-optimal multiprocessor schedules of iterative data-flow

programs can always be constructed has so far remained an open question. In this

chapter, we explore unfolding of these data-flow programs, and construction of fully-

static rate-optimal schedules of theunfolded program. Unfolding of the program leads to

an increased number of tasks, which can be more evenly distributed. Although unfolding

or blocking of iterative data-flow programs has been considered in [7,18-22], systematic

properties of unfolded data-flow graphs have so far not been studied. One question
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remains to be answered in this context. Is it possible to find an unfolding factor which

can guarantee a rate-optimal fully-static schedule? We study properties of unfolded

data-flow programs, and prove that an unfolding factor equal to the least common multi

ple of the delays in the loops of the program always results in an admissible rate-optimal

fully-static schedule. It is also shown that tb *. worst-case complexity of constructing

fully-static rate-optimal schedules is polynomial (in number of nodes), as opposed to the

exponential complexity of constructing cyclo-staticrate-optimal schedules [18-22].

The outline of the chapter is as follows. Section 2.2 describes the static data-flow

program model, which are described by data-flow graphs. Section 2.3 reviews the notion

of iteration bound. Section 2.4 reviews retiming ofdata-flow programs. In section 2.5, we

introduce the notion of a perfect data-flow program. These perfect programs always

achieve rate-optimal schedules requiring no unfolding and no retiming operations at all.

Section 2.6 studies properties of unfolded data-flow programs. The construction of

rate-optimal schedules by optimum unfolding of the data-flow program is addressed in

section 2.7. Section 2.8 outlines extensions of retiming and program unfolding tech

niques to multiple-rate data-flow program graphs, and section 2.9 addresses applications

of program unfolding techniques to scheduling in non-homogeneous processor imple

mentations.

22. ITERATIVE DATA-FLOW PROGRAM MODEL

The iterative data-flow programs are assumed to be synchronous in nature, and are

represented by data-flow graphs (DFGs). The nodes in the DFGs represent program or

code segments or tasks, and execute the code when invoked. The directed arcs

correspond to communication between the nodes, and have delays associated with them.
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Thesedelays represent thestates in theDFG, and are dictated by initial conditions during

the first iteration of the DFG. An arc with a singledelay from node u to node v implies

mat the instance vj depends upon «o» v2 depends upon U\ etc. By transitivity, this

Implies that v, depends upon u,_i and all other past instances or iterations of u. Similar

argument applies to self loops also, i.e. where u; depends uponk,_i. Thus, if a task ut is

dependent upon ui-\* k,_2 etc., then we model this iterative computation with a self loop

and a single delay around the loop (similar to the reduced dependence graph model

[23]). It may be noted that modeling the program by reduced dependence is appropriate

for large-grain parallel compilation. However, it is necessary to consider complete

dependence to exploit fine-grain parallelism The arcs without delays represent pre

cedence relation, i.e., if there is an arc from node u to node v with no delay associated

with it, then node v must be scheduled after execution of node u is complete. But the

arcs with delays do not imply precedence. This is because if there is an arc from node u

to node v with a delay, node v can be executed using the available state information due

to the pastiteration ofu*andindependent of the execution of the current iteration of u.

We assume the DFG to be computable, i.e. all loops in the DFG have one or more

delays. We assume that the DFG performs repetitive tasks on infinite time series. In

other words, we are concerned with non-terminating programs and periodic schedules.

We assume the node computation times to be fixed, i.e. we are concerned with deter

ministic schedules. This is a natural model for most real-time signal and image process

ing systems. Each repetitionof the DFGis referred to as an iteration, and the scheduling

periodof a single iteration is referred to as the iteration period. We assume mat we can

not improve the functionality or granularity of any node in the DFG. By this it is meant

that a node cannot be broken into two or more nodes. The DFGs considered in this



PROGRAM UNFOLDING 18

chapter correspond to large-grain synchronous data-flow graphs. These DFGs can

correspond to either homogeneous or multiple sample rate systems. In a homogeneous

sample rate system, each node in the DFG is invoked only once during an iteration, and

produces a single sampleto each of its outgoing arcs andconsumes a single sample from

each of its incoming arcswhen invoked. In multiple sample rate systems, different nodes

are invoked a different number of times in a single cycle (see [7] for theory of multiple-

rate DFGs). Sections 2.3 through 2.7 are devoted to study of homogeneous DFGs, and

the discussion of the multiple-rate DFGs is addressedin section 2.8.

Now we define some terminologies in a DFG.

Definition 2.1: A node in a DFG is an initial node, if and only if all of its incoming arcs

have delays.

Definition 22: A node in a DFG is a terminal node, if and only if all of its outgoing arcs

have delays associated with them.

Definition 23: A node v is a successor of node u*if there is a path from u to v with no

delay in the path. Then node u is referred to as the predecessor of node v.

Definition 2.4: A node v is an immediate successor of node u* if there is a directed arc

from u to v with no delay. Then, node u is an immediate predecessor of node v.

Any node which is simultaneously an initial node and a terminal node is represented as

an isolated component in the acyclic precedence graph. In the DFG of Fig. 2.1(a), node

B is an initial node, and nodes A and C are terminal nodes. The acyclic precedence

graph of this DFG is shown in Fig. 2.1(b).
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(a)

1i 20 40 -1

* r '1

Pt B C

P2: ^ A

Z ^ '///.
10

(c)

Fig. 2.1: (a) A DFG with three loops. L% corresponds toaself loop. The
node computation times are 10, 20 and 40 units for A* B* and C
respectively. The iteration bound is35 units, and loop L\ is the critical
loop, (b) Directed acyclic precedence graph, (c): Schedule with itera
tion periodof 60 units.

19
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23. ITERATION BOUND

Any DFG involving loops or recursions or feedback has an upper bound on the

computation rate or a lower bound on the iteration period [9-11]. This iteration period

bound is given by

{«}•T..=Max<jfrY* (2.1a)

where the nm»iwiiim is taken overall loops / in the DFG, and 7/ is the sumof the com

putation times associated with all the nodes in loop /, and D/ is the number ofdelay ele

ments in loop /. The loop bound for the /-thloop can bewritten as

TtZDtT-. (2.1b)

The loop /o for which -jX is maximum is referred to as the critical loop* and the ine

quality becomes a strict equality for this loop.

Example 2.1: Consider the DFG inFig. 2.1(a) with 3 loops. The bounds imposed on the

iteration period by the three loops are respectively given by:

L\\ ta+tb+tc&T* (2.2a)

L2: ta+tb&o* (22b)

L3: ta£T„* (2.2c)

where ta* tb* and te respectively represent the computation times associated with the

nodes A, B, and C. The iteration bound is given by

7-=w^(i£±^±i£-,rfl+r,,rfl). D (2.3)
Fig. 2.1(b) shows the acyclic precedence graph associated with the DFG. The dou

ble arrow represents the critical path in the precedence graph (a convention followed
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throughout this chapter). Since node B has adelay at its input, it can be invoked first.

Nodes C and A can beinvoked only after the execution ofnode 5 is complete. A two-

processor schedule is shown in Fig. 2.1(c) for ta =10, tb =20, and tc - 40. The actual

iteration period is 60 units, although the iteration period bound is only 35 units for this

example. Theloop L\ here is the critical loop.

2.4. RETIMING

Retiming was proposed by Leiserson, Rose, and Saxe to improve the clock rate in

synchronous circuits (see [15]), and is applied here to improve the iteration period of

multiprocessor schedules in DFGs. The process ofretiming involves moving around the

delays in the DFG such that the total number ofdelays in any loop remains unaltered,

and the steady state input-output behavior ofthe system ispreserved (see [15]). Removal

of a fixed number ofdelays from each of the mcoming arcs of any node, and addition of

the same fixed number of delays to each of the outgoing arcs of the same node is an

example of a valid retiming operation applied locally to a node. Note mat this also

corresponds to a cutset transformation around the node [16]. Thus, any local retiming

operation can be performed at a node, only ifall ofits incoming arcs have delays associ

ated with them. Any valid global retiming operation can always be described as a linear

combination of such local retiming operations. Since the retiming operation preserves the

number of delays in a loop [15] and the loop computation times, it also preserves the

iteration bound of the DFG. The retiming operation can change the total number of

delays inthe DFG. This can be verified by locally retiming anode in aDFG, where
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Fig. 22: (a) A retimed version of the DFG of Fig. 2.1(a). (b) Pre
cedence graph, (c) Schedule with iteration period of40 units.

22



PROGRAM UNFOLDING 23

the number of outgoing arcs is different from thenumber of incoming arcs.

Fig. 2.2(a) shows a retimed version of the DFG ofFig. 2.1(a), obtained byperform

ingretiming operation locally at node B. Note that the number of delays in each loop is

unaltered (but, the total number of delays in theDFGhaschanged). Hie retiming process

creates new initial conditions, and therefore, new precedence relations, new initial and

terminal nodesand new schedules. The precedence graphand the schedule corresponding

to theretimed DFG inFig.2(a) arerespectively shown in Fig. 2.2(b) andFig.2.2(c). The

iteration period of theretimed DFG is 40 units, which is 5 units greater than theiteration

period bound, but20 units less than the iteration period corresponding to the schedule in

Fig. 2.1(c).

The retiming process attempts to evenly distribute the delays, i.e. it tries to equalize

the computation times associated with all the nodes between any two delays in the criti

cal loop. But it cannot guarantee an exactly even distribution of the delays, since an

exactly even distribution would require splitting of nodes, which is not permitted.

Because of this uneven distribution of delays, the actual iteration period is greater than

the iteration bound.

2.5. PERFECT DATA-FLOW PROGRAMS

In this section, we introduce the notion of perfect data-flow programs described by

perfect graphs. We will make considerable use of these graphs in latersections.

Definition 25: Any DFG which has one and onlyone delay in each loop is defined as a

perfect graph.

TheDFG shown inFig. 2.3(a) is anexample ofa perfect graph. This DFG has oneinitial



PROGRAM UNFOLDING

(a)

f^C >A ^B

(b)

P1: dJc, Al °2 c2 A2

pa
f—f

I Bl E1 B2 E2

(c)
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Fig. 23: (a) A Perfect Graph, (b) Precedence graph, (c) Partial
schedule of two iterations. The iteration period of 3 units is obtained by
overlapping two successive iterations. This schedule is rate-optimal.
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node (node D), one terminal node(node £), andthreeloops, and all the loopsarecritical

(assuming unit execution time for each node or task). The iteration bound for this DFG

is 3 units of time (u.t). The precedence graph for the DFG is shown in Fig. 2.3(b), and

the length of the critical path is 5 u.t Hence, anyCPM schedule would require an itera

tion period of 5 u.t However, we can exploit the periodicity or cyclic nature of the

schedules, and overlap consecutive iterations to obtain a rate-optimal fully-static

schedule as shown in Fig. 2.3(c). Note that the DFG did not need to be retimed to obtain

a rate-optimal schedule. In fact, the perfect graphs have the property that they directly

lead to rate-optimal fully-static schedules (and therefore completely eliminate the need

for retiming or program unfolding), and it is tliis property that makes the notion of per

fect graphs useful and important. The schedule in Fig. 2.3(c) has an iteration period of 3

(which is rate-optimal), and an input-to-output delay of 5 (the input-to-output delay is

defined to be the ma*innnn delay or latency from any initial node to any terminal node).

Fig. 2.4 shows several retimed versions of the DFG in Fig. 2.3(a), and the

corresponding rate-optimal fully-static schedules. Even though all the schedules in Fig.

2.3 and 2.4 are rate-optimal, the schedule in Fig. 2.4(c) is only delay-optimal, which has

an input-to-output delay of 3 u.t Thus, retiming perfect graphs does not improve the

iteration period, but may improve the input-to-output delay.

One might have already observed that not all the initial nodesnecessarily start at the

same time. For example, the executions of the starting nodes D and £ in the perfect

graph of Fig.2.4(a) are skewed by oneunitof time. The skewing of initial nodes permits

overlap of consecutive iterations, and is often essential for construction of rate-optimal

schedules.
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Rg. 2.4: Several retimed versions of the perfect graph ofFig. 23(a),
and corresponding rate-optimal schedules.
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Definition 2.6: An arc from node u to node v is said to be transitive* if there is a path

from node u to v, and the number of delays associated with the arc i*->v and the path

from ii tov are identical (similar to the definition in [24] for a directed acyclic graph). A

single path can have more than one associated transitive arcs. The number of delays in

the transitive arc u-*v can be either 1 or 0 in a perfect DFG.

Example 22: See Fig. 2.5 for examples of transitive arcs. In Fig. 2.5(a) and Fig. 2.5(b),

the path A->£->C and the arc A-»C contain equal number of delays (0 in Fig. 2.5(a)

and 1 in Fig. 2.5(b)). Hence, the arc A->C is transitive. In Fig. 2.5(a), the path

A->B->C implies that there is a precedence constraint between invocations of task A

and C. The transitive arc A -»C also dictates the same constraint, and is therefore redun

dant D

Definition 2.7: A loop is said to be a maximal loop if it does not contain any transitive

arcs. A loop whichis not maximal is referred to asa non-maximal loop.

Example 23: The perfect graph in Fig. 2.5(c) has a single maximal loop. This is because

the graph contains two transitive arcs, and after deletion of these two transitive arcs the

DFG contains a single maximal loop, which is A -»2? ->C-»D ->A. This maximal loop

has 3 non-maximal loops associated with it The loop bounds of the associated non-

maximal loops can be derived from that of the corresponding maximal loop by deleting

thecomputation times of the appropriate nodes. The loop bound for the maximal loop in

Rg. 2.5(c) is given by

ta+tb+tc+td<T„. (2.4a)

The loopbounds of the three associated non-maximal loops are given by
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(a)

(c)

Rg. 2.5: Illustration of transitive arcs.
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ta+tb+tc <T„ta +rc <T„ta +r* +rc <r_. (2.4b)
The above non-niaximal loop bounds are obtained bydeleting the computation times of

the appropriate nodes. Note that the loop bounds for the associated mm-inaximal loops

are automatically satisfied if the loop bounds for the corresponding maximal loops are

satisfied. D

Lemma 2.1: The number of loop delays in a nsaximal loop and its associated non-

maximal loops are same. This is true since the non-maximal loop consists of transitive

arcs and from definition 2.6, the number of delays in a transitive arc and its associated

path are same.

Lemma 22: A non-maximal loop canneverbe a critical loop.

Proof. This follows from lemma 2.1 and definition 2.6. From lemma 2.1, the maximal

loop and the associated non-maximal loops have the same number ofdelays, and from

definition 2.6, the maximal loop contains all the nodes belonging to the associated

non-maximal loop as well as additional nodes. The total computation time of the max

imal loop is greater (for identical number of loop delay operators) than the non-

maximal loop, and so the maximal loop has amore critical loop bound. •

Lemma 23: A schedule for the graph obtained after deleting all the transitive arcs in the

original DFG is an admissible schedule for the original DFG.

Proof. Deletion of a transitive arc does not alter the precedence constraints. Thus,

deletion of all transitive arcs from the DFG does not alter its precedence constraints.

Hence an admissible schedule for the graph obtained from the DFG after deletion of

all the transitive arcs is also an admissible schedule for the original DFG. D
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Definition 2.8: A schedule of a list of Q nodes Ni-*N2-+ •*• ->Nq is said to be con

tiguous if the nodes are scheduled in thatorder without anyintermediate gapor idle time.

Note mat any node can be scheduled in any processor in a multiprocessor implementa

tion.

Now consider the following algorithm for scheduling of the recursive nodes of' lie per

fect DFG (that is, the scheduling of the nodes not belonging to any loop is nc t con

sidered).

Algorithm 2.1: First, we remove all the transitive arcs from the perfect graph, since the

precedence relations due to these are automatically satisfied (see lemma 2.3). All the

remaining loops of the DFG are maximal. The maximal loops are then ordered, and

scheduled according to the decreasing order of their loop computation times. The nodes

in each maximal loop are also ordered to form a list with the node containing the loop

delay at its input arc as the leading node of the list, and the other nodes are placed so as

to satisfy the precedence constraints. A separate processor is assigned for scheduling of

each maximal loop. First, the nodes of the critical loop are scheduled contiguously in

processor 1. Then, the nodes of the next critical loop are scheduled in processor 2 such

that the schedules completed so far are preserved. In other words, if someof the nodesof

this loop also belong to the critical loop (and therefore have already been scheduled in

processor 1), then their schedule should remain unaltered. This process is repeated until

scheduling of all the maximal loops is complete.

Remark: Note that we do not assume the scheduling of all the maximal loops to begin at

the same time unit. In other words, the scheduling of the maximal loops in different pro-
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cessors can be skewed in time. This skewed scheduling separates consecutive iterations

of the DFG byanon-vertical boundary. Also note that it is possible tomerge the tasks of

two ormore processors toreduce the number of processors in apost-processing step, but

mis is not considered here as a part of thealgorithm. The complexity of the above fully-

static scheduling algorithm is polynomial in thenumber of nodes, whereas the complex

ity of the cyclo-static scheduling algorithm proposed in [18-22] is exponential.

Some properties of scheduling algorithm 2.1 are summarized inthe following lemmas.

Lemma 2.4: Nodes in any maximal loop of a perfect DFG are scheduled non-

contiguously (Le. with intermediate gaps) if and only if a path consisting of nodes of this

loop has an associated parallel path witha longer path computation time.

Proof. In algorithm 2.1, nodes of maximal loops are ordered to form a list with the

node containing the loop delay as its leading node. A path corresponding to the maxi

mal loop refers to a setof connected nodes, which are members of this list To prove

the"if' portion, consider the path N\-4N2-^NA corresponding to some maximal loop,

and its associated parallel path Ni-^N^N** and assume the computation timeof N2

to be shorter than that of Af3. This precedence results in a gap in scheduling of the

nodes of this loop, since N4 can be scheduled only after the execution of N3 is com

plete. To prove the "only if' portion, assume that there exists some gap between com

pletion of N2 and invocation of #3 in the scheduling of some path

..„->Ni-+N2-+N3->N4->.... (call this path Pi) corresponding to a maximal loop.

This would occur if the invocation ofN3 is constrained by completion of another node

(say N$). Denote the path ->Ns->N2-+ as P2. If N3 is the only common node
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between P\ondP2 (Le. Pi and P2 have nonode in common to the leftof N3), then

the schedule of the nodes in the list ....-*Ni->N2 could be right-shifted so that com

pletion of N2 and N$ coincide. However, the existence of the gap in die schedule

implies that thethenodes to the left of#3 inpaths P1 and P% are dependent, and have

at least one nodein common. This implies the existence of an associated parallel path.

This associated parallel pathhasa longer computation time. D

Remark: Two parallel paths in a perfect DFG must have the same number of delays

(which can be either1 or 0). If thiswere not the case, the twomaximal loops containing

the two parallel paths would have different number of loop delays, and theDFG would

be imperfect.

Lemma 25: A contiguous scheduling of thenodes of thecritical loop of theperfect DFGs

is admissible.

Proof. From lemma 2.4, twoparallel paths with different path computation times lead

tc a non-contiguous schedule, and the nodes of the path with less path computation

time are scheduled with an intermediate gap. Since the paths of the critical loop have

the largest path computation time, they can be scheduled without any intermediate

gap. Any loop with gaps in theschedule must benon-critical. D

Now we define two different types of processor idle time in the scheduling of the recur

sive nodes of a perfect DFG (recall recursive nodes are nodes which belong to at least

one loop in the DFG).

Definition 2.9: The idle time of a processor is referred to asa gap delay (or gap time), if
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this idle time is a result of a non-contiguous schedule (i.e. there exist two parallel paths

with different path computation times). Any idle time, which is not a gap delay, is

referred to as a slack delay or slack time (also referred to as skew delay or shimming

delay).

Theorem 2.1: For any perfea graph, we canconstruct fully-static rate-optimal schedules

without requiring any retiming transformation.

Proof. The nodes of the critical loop can be scheduled contiguously requiring a period

equal to the critical loop computation time or the iteration bound. This schedule can

be replicated over successive iterations with no gap at all in the same processorwith a

time displacement equal to the iteration bound. For each gap in the scheduling of

nodes (of non-critical loops), there exists a path with longer computation time. This

implies that the sum of the computation time and the gap time of any loop cannot

exceed the critical loop computation time (or the iteration bound), and therefore the

algorithm 2.1 results in a rate-optimal schedule. The schedule of the single iteration

can be replicated with zero processor displacement and with a time displacement

equal to the iteration period bound, and hence the schedule is fully-static. Note that

this results in a non-negative loop slack time equal to the difference of the iteration

bound and sum of the loop computation time and the loop gap time. D

Theorem 22: The number of maximal loops in a perfect graph represents an upper bound

on the number of processors to schedule the recursive nodes in a fully-static and rate-

optimal manner.
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Rg. 2.6: A perfect graph with three loops.
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Rg. 2.7: (a) Rate-optimal scheduling with three processors, (b) Rate-
opdmal schedule withtwoprocessors.
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Proof. The scheduling algorithm 2.1 assigns a separate processor to each maximal

loop. Hence, the upper bounds on thenumber of processors is equalto the number of

maximal loops of the perfect DFG. D

Example 2.4: Considerthe DFG of Fig. 2.6, and the corresponding schedules in Fig. 2.7.

The execution times of nodes D and F are 2 units each, and that of other nodes is 1 unit

The perfect graph has 2 initial nodes (nodes H and F )* and two terminal nodes (nodes D

and G). The loops are first ordered as HIABCEGH* FABCEF* and ABCDA. The critical

loop HIABCEGH is first scheduled in processor PI (see Fig. 2.7(a)). Then, the nodesof

the next critical loop are scheduled in processor P2. Finally, the nodes of the last loop

are scheduledin processorP3. We observe that we can merge the tasks in processorsP2

and P3 to a single processor as shown in Rg. 2.7(b). This permits us to obtain a rate-

optimal fully-schedule using 2 processors. D

2.6. UNFOLDED DATA-FLOW PROGRAM GRAPHS

In this section, we study properties of unfolded or blocked data-flow program

graphs. An unfolded DFG with an unfolding factor J contains / invocations of each

node. The number of nodes and arcs in the unfolded DFG are respectively JN and JE *

where N and £ respectively represent the number of nodes and arcs in the original DFG.

An execution cycle (or simplya cycle) of the unfolded DFG constitutesexecution of JN

nodes, and corresponds to merged execution of J successive iterations of the original

DFG.

In the unfolded DFG, a node Xk computes the results of iteration *,+*/ at the £-th

cycle. As an example, let X be a node in the original DFG, and let X\* X2* and AT3

represent the corresponding three nodes in the unfolded DFG for / = 3.
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Fig. 2.8: (a) Anequivalent unfolded DFG of the DFG inFig. 2.1(a) for
unfolding factor of two. This unfolded DFG isa perfect graph, (b) Pre
cedence graph, (c)Rate-optimal schedule.
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Then, the node Xi performs the iterations x\* x+* x-j in cycles 1,2* and 3 respectively,

nodeX2performsthe iterations x2* x5* xg in cycles 1,2, and 3 respectively, and similarly

for X3. We assume the convention that xQ is the initial condition. This implies that the

output of any arc with a unit delayfrom the nodeX3 will correspond to the initial condi

tion jcr> To be more precise, an arc with a delay from the node X\ will not correspond to

jto, but to jc.2. This block delay notion is important in the framework of this chapter. To

conclude, a unit delay in the unfolded DFG is a J-slow delay.

The unfolded DFG can be constructed very easily from the original DFG (see [18]

for a systematic procedure). We illustrate this procedure here using the DFG of Fig.

2.1(a) as an example. Since each cycle in the unfolded DFG is periodic, and corresponds

to J iterations of the original DFG, we need to consider only first / iterations. For / = 2,

we consider only the first two iterations of each node. The precedence constraints for the

two iterations of the DFG of Fig. 2.1(a) are summarized as below:

Ai=fA(Ao>Bi>Co)*Bl=fB(A0)*C1=fc{Bi)* (2.5a)

A2=fA(AhB2*C1)*B2=fB(Al)*C2=fc{B2)* (2.5b)

where /,- (.) represents the functionality associatedwith the node i. The dependence rela

tions in (2.5a) correspond to the first iteration, and those in (2.5b) for the next iteration.

Note that the relations in (2.5b) are obtained from (2.5a) by shifting the indices appropri

ately. The unfolded DFG is constructed by incorporating the precedence relations in

(2.5) and by inserting arcs with a unit delay from node A2 to A i and B lv and from C2 to

A i (to realize the initial conditions Ao and Co respectively). The unfolded DFG is shown

in Fig. 2.8(a). The only initial node of the DFG is B i, and the terminal nodes are A2 and

C2.The precedencerelations for this DFG are shownin Fig. 2.8(b). This unfolded DFG

has several nice properties. One can verify that the DFG is indeed a perfect graph (this is
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not a coincidence; systematic construction of perfect graphs from any DFG by unfolding

is studied in section 2.7). Hierefore, the unfolded DFG can be scheduled rate-optimally

in a fully-static manner as shown in Fig. 2.8(c). Now we study some properties of the

unfolded DFGs.

Lemma 2.6: The iteration bound associated with an unfolded DFG with an unfolding fac

tor/is JT_ where T„ is the iteration bound of the original DFG. The unfolded DFG

schedules / iterations of the original DFGin JT- units of time, and the iteration bound

per iteration is not altered by unfolding.

Property 2J: The number of delays in the unfoldedDFG is exactly the same as that in

the original DFG.

Proof. The delays represent initial states at the beginning of the execution. These

delays activate the invocations, and are updated each cycle. Let Dj denote the total

number of delays in the DFG. Then each iteration of the DFGupdates Dj states to be

used during the next iteration. We know that the termination of eachiteration updates

Dj values and the termination of the /-th iteration of the execution cycle of the

unfolded DFG must also update Dj values to be used for the next execution cycle of

the unfolded DFG. Thus unfolding conserves the numberof delays in a DFG. As an

example, the DFG in Fig. 2.1(a) and the unfolded DFG in Fig. 2.8(a) both contain 3

delays. D

Property 22: Let Tt and D,- respectively correspond to the sumof all computation times

andthe delaycount associated with the i -th loopin the unfolded DFG. Then
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Ti ZJTJ). (2.6)

must hold.

Proof. Let 7*'M be the iteration bound of the unfolded DFG. Then, 7, £ T'J>i must

hold. But, T'm=JT„ (due to lemma 2.6), and hence (2.6) must hold. D

Lemma 2.7: Anylinear additive combination of the non-critical maximal loop bounds of

theoriginal DFG can never correspond toa critical loop bound of theunfolded DFG.

Proof. Consider three non-critical maximal loops L\* L2* and L3. Then, T\ < TJ2 \

and T2<TmJ>2* and Tz<TJ>i. Thus the linear additive combination

Ti + T2+ T$ < TJP\+D2+D$) can never be a critical loop, since this contains a

strict inequality, and a critical loop must contain a strict equality. The argument gen

eralizes. D

Corollary: A critical loop bound in the unfolded DFG corresponds to a linear additive

combination of critical loop bounds of the original DFG. However, any linear additive

combination of loop bounds of the original DFG may not correspond to a critical loop

bound of the unfolded DFG.

Property 23: Any loop bound relation of the type (2.6) in the unfolded DFG can be

obtainedeither by multiplying a loop bound relation in the originalDFG by a constant, or

by taking linear additive combinations of the loop bounds of the original DFG such that

the right side is a multiple of/.

Proof. The right side of the loop bound for any loop in the unfolded DFG must be a

multiple of / (when expressed in terms of T~* the iteration bound of the original
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DFG) due to property 22. Assume that the i-th loop of the original DFG has a bound

Ti £ Di7*. Any linear additive combination of one ormoreloop bounds in the origi

nal DFG, which corresponds to a loop bound in the unfolded DFG, must be of the

form

IfiTi £(£<% DiVm * (2.7)

whereN is the numberof loops of the original DFG, and £SkDi is divisible by /.

Any loop bound in the unfolded DFG, which is not of the form (2.7), will imply an

entirely new loop bound in the original DFG. But this is not possible, since unfolding

does not create new loop bounds. D

Note that any linear additive combination of the loop bounds of the original DFG of the

form (2.7) may not correspond to a loop bound in the unfolded DFG. Now we discuss

four important special cases of (2.7) in the context of a single loop bound. Let the loop

bound of some loop in the original DFG be T &DT^ where T is the loop computation

time,D the loop delay count, and T» the iteration bound of the original DFG. The itera

tion bound of the unfolded DFG is T'-=JT„

Case I: J divisible by D: Let us assume / =QD andQ is an integer. Then a loopbound

of the unfolded DFG will be of the form QT £ (/7«) or QT £ T'_ This implies that one

loop of the unfolded DFG will contain a single delay and Q instances of the nodes of the

loop of the original DFG. Since the unfolded DFG contains J = QD instances of each

node and D delays (due to delay conservation, property 2.1), it must contain D distinct

loops with a single delay in each loop.
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Case U: D divisible by/: Assume PJ =D. The loop bound of the unfolded DFG is of

me formT£PT^ The unfolded DFG contains/ distinct loops, and P delaysin eachof

these loops.

Case III: D and / coprime: For this case, a loop bound in the unfolded DFG is of the

form JT £D (JTJ) or JT £DT'„ The unfolded DFG contains one distinct loop with D

loop delays.

CaselV: General Case: AssumePJ=QD* whereP andg arecoprime. The loop bound

of the unfolded DFG is of the form QT &PT'-. The unfolded DFG contains -L =y-

distinc:loops with P delays in each of theseloops.

Example 25: Consider the DFG of Fig. 2.1(a) and its unfolded DFG of Fig. 2.8(a). The

original loop bounds are

ta £T„ta+tb sr-.ffl + fc+fc £2Tm. (2.8a)

Theloop bounds of theunfolded DFG (with unfolding factor two) are

2ta £7"_2rfl +2f* ZT'^ta +tb +rc £T'm*2ta +tb £T'„*

which are linear additive combinations of the original DFG loop bounds. D

Property 2.4: Any loop in the original DFG with D loop delays leads toD distinct loops

in the unfolded DFG for an unfolding factor of KD. Each of thesedistinct loopscontains

a unit loop delay, and K instances of each node belonging to the loop in the original

DFG.

Proof. This follows from special Case I of property 2.3. D
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Kg. 2.9: (a) ADPG, (b) Equivalent unfolded DFG for unfolding factor
6.
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Example 2.6: Consider the simple example of a two node DFG in Fig. 2.9(a). Fig. 2.9(b)

shows an equivalent unfolded DFG for an unfolding factor 6. The original DFG has 2

delays in the loop, and the unfolded DFG has 2distinct loops with a single delay in each

loop. Each loop in the unfolded DFG contains 3 instances of the nodes of the original

loop for an unfolding factorof 6. D

2.7. FULLY-STATIC RATE-OPTIMAL SCHEDULING

This section uses the results of the previous sections to prove that the tasks of any

DFG can be scheduled rate-optimally in a fully-static manner.

One mightconjecture that we can always achieve a rate-optimal schedule by using

an unfolding factor equal to thedelay count in the critical loop and then by retiming the

unfolded DFG. This is because, the critical loop in the equivalent unfolded DFG would

contain a singledelay, and the tasksin the critical loopof the unfolded DFG can then be

evenly distributed. However, thisconjecture is not true! Although the single delay in the

critical loop permits an even distribution of the tasks in that loop of the unfolded DFG,

another non-critical loop might suffer from an uneven distribution of tasks, and maylead

to an iteration period greater than the iteration bound. This is illustrated using the DFG

example in Fig. 2.10, where the loop delay counts in the DFG are 2 and 3 respectively.

The execution times of nodes A, B *C* D *and E in Fig. 2.10(a) are respectively 20, 5,

10,10, and 2, and the iteration bound is 16, and corresponds to the critical loop L\. The

precedence relation of the DFG is shown in Fig. 2.10(b), and the length of the critical

path(orequivalently the iteration period forthisDFG) is 20 units.
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(a)

(b)

Fig. 2.10: (a) A DPG. The node execution times are 20,5,10,10. and 2
units fornodesA *B*C*D *andE respectively, (b) Precedence graph.
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> D2 > C2

(b)

Rg. 2.11: (a) Unfolded DFG for the DPG in Fig. 110(a) with unfolding
fiactor 2, (b)Precedence graph
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Since the number of delays in the critical loop is 2, we construct an equivalent unfolded

DFGwith / = 2 as shownin Hg. 2.11(a). The precedence graph for the unfoldedDFG is

shown in Hg. 2.11(b), and leads to an iteration period of 20 units. We can improve the

iteration period by retiming the unfolded DFG (since thisunfolded DFG is not a perfect

graph). Fig. 2.12(a) shows the retimed version of the unfolded DFG, and Fig. 2.12(b)

shows the corresponding precedence relation. From the critical path in the unfolded

DFG,we observe that the cycle time corresponds to 35 units,or equivalentlythe iteration

period isy= 17.5 units (which is greater than the bound by 1.5 units). This is the

minimum iteration periodthat can be achievedwith anunfolding factor of 2.

Now we proceed to prove that anunfolding factor given by the leastcommon multi

ple of the numberof delays of the loops in a DFG will lead to a perfect unfolded DFG,

which can then be scheduled in a fully-static rate-optimal manner without requiring any

retiming at all. Before we prove this, let us consider the example of the DFG in Fig.

2.10(a). Since the delay counts in the maximal loops are 2 ad 3 respectively, the least

common multiple is 6, and hence we need an unfolding factor of 6 to obtain a rate-

optimal schedule. The unfolded DFG is shown in Fig. 2.13(a) for an unfolding factor of

6, and one can verify that it is indeed a perfect graph. The precedence graph of this

unfolded DFG is shown in Fig. 2.13(b), and the length of the critical path is 96, which

corresponds to an iteration period of 16 units, equal to the iteration bound. Now we

proceed to prove that fully-static rate-optimal scheduling of DFGs is admissible, and we

then derive an upper bound on the number of processors to achieve a rate-optimal

schedule.
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B. >A2=>D1
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Fig. 2.12: (a) Retimed version of theunfolded DFG in Fig. 2.11(a), (b)
Precedence graph
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Fig. 2.13(a): Unfolded DFG for the DFG in Fig.2.10(a) for unfolding
factor of six.
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Theorem 23: Any unfolded DFG with an unfolding factor equal to the least common

multiple of theloop delay counts of the original DFG corresponds to aperfect graph.

Proof. Since the unfolding factor is the least common multiple of the delay counts, it

is a multiple of the delay count in every loop. From property 2.4, any loop with D

delays must transform toD distinct maximal loops in the unfolded DFG, and all loops

in the unfolded DFG must have a single delay inside each loop. Since all loop delay

counts in the original DFG are less than theunfolding factor, anylinear additive com

bination will also lead to a single loop delay in the unfolded DFG. Since every loop

in the unfolded DFG has a single delay, the unfolded DFG is a perfect graph. From

theorem 2.1, the nodes in perfect graphs can always be scheduled in a fully-static

rate-optimal manner. D

Theorem 2.4: Recursive nodes (i.e. nodes belonging to one or more loops) of any DFG

can be scheduled in a rate-optimal fully-static manner by using at most P processors,

where P is the sum of the delay countsin all the maximal loops in the original DFG.

Proof: Since the unfolding factor is the least common multiple of the delay counts in

all the loops, each mammal loop with K delays transforms to K distinct maximal

loops in the unfolded DFG. Thus, the upper bound on the number of distinct maximal

loops in the unfolded DFG (which is a perfect graph) is equal to the sum of the delay

counts in all the maximal loops of the original DFG. This is the upper bound on the

numberof processors to schedule all the recursive nodes, since the upper bound on the

numberof processors to achieve arate-optimal fully-static schedule in a perfect graph

is equal to the number of maximal loops.
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Example 2.7: Fig. 2.13(b) shows the precedence graph of the unfolded DFG of Fig.

2.13(a). From the precedence graph, it is clear that the rate-optimal fully-static schedule

can beachieved with 4 processors. The upper bound on the number of processors for this

example is5, since the 2maximal loops in the original DFG contain respectively 2and 3

loop delays. O

2.8. MULTIPLE-RATE DFGS

Multiple-rate DFG representations are useful in many signal and image processing

applications, typically in interpolation and decimation schemes. In such systems, dif

ferent nodes are invoked different number of times in a cycle; the nodes consume dif

ferent number of samples from each input arc, and produce different number of samples

to each outgoing arc [7].
12D 16 D

V*

24D

Fig. 2.14: Local retiming in multirate DFG. The node A is executed
two times in each cycle.
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Fig. 2.14(a) shows an example of a node of a multiple-rate DFG, which shows that

each invocation of node A consumes 2 and 3 samples from the two input arcs, and pro

duces 4,5, and 6 samplesto the three outgoing arcs respectively. The numbersassociated

with the arcs near the nodes represent number of samples consumed or produced and the

numbers in the middle of anyarcrepresent thenumber of delays or buffer locations asso

ciated with that arc. Any multiple-rate DFG canbe equivalently described in terms of a

homogeneous or single-rate DFG. Therefore, the framework discussed so far will be

directly applicable to the homogeneous equivalents of the multiple-rate DFGs. From the

equivalent homogeneous DFG, wecandetermine the iteration bound, optimum unfolding

or blocking factor, and theprocessor bound of the multiple-rate DFG. The objective of

this section is to extend the notions of retiming to the case of multiple-rateDFGs, and to

use this extension to find an upper bound on the unfolding factor for the multiple-rate

DFGs, thereby bypassing the needto obtain an equivalent homogeneous DFG.

In homogeneous DFGs, removal of C number of delays from each input arc and

addition of C delays to eachoutgoing arcof a node constitutes a valid localretiming [15]

or cutset transformation [16] (where C is some fixed number). In multirate DFGs, remo

val of Qi number of delays from the i-th incoming arc, and addition of Qj number of

delays to the j -th outgoing arc constitutes a valid localretiming, where

Qi=Cqbi*Qj=Cqaj*

and q is the number of invocations of the node ineach cycle, aj is thenumber of samples

produced bythe node to its/-th outgoing arc, and bi is the number of samples consumed

from the i -th incoming arc by the node in each invocation. Anexample of a local retim

ingat a node in a multirate DFG is illustrated in Fig. 2.14. The node A is assumed to be

executed twice in a cycle. One invocation of A consumes 2 and 3 samples respectively
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from the two incoming arcs, and produces 4, 5, and 6 samples to each of the outgoing

arcs respectively. The retimed graph is obtained by removing 4 and 6 delays from the

two incoming arcs, and by adding 8,10, and 12delays to the three outgoing arcs respec

tively.

In a homogeneous DFG, the retiming does not change the number of delays in a

loop. We can easily derive a similar condition for the multirate DFG case. We define a

normalized delay for the i -th arc i* ->v as

|J,-JL- ^L., (2.9)
1 *i<lu Wv

where £>, is the normalized delay of the i -th arc, Dx is the number of delays associated

with the /-th arc of the multirate DFG, aK is the number of samples produced by the node

u in each invocation on arc /, bt is the number of samples consumed by node v in each

invocation from the arc i; and qu and qv respectively represent the number of invoca

tions of nodes u and v in each cycle. It is easy to verify that the retiming operation con

serves the sum of the normalized delays in any loop in a multirate DFG. One can also

verify that the total numberof delays in a maximal loop of the homogeneous equivalent

DFGis equal to the sum of the normalized delays in the corresponding loop in the mul

tirate DFG. Therefore, from our earlier results, the upper bound on the unfolding factor

is the least common multiple of the normalized loop delay counts in the maximal loops

of the multirate DFG. A loop in a multirate DFG is maximal if it does not contain any

transitive arc. An arc w-»v in a multirate DFG is transitive if there exists a path from u

to v such that the sum of the normalized delays in the path equals the normalized delay

ofthearcK-»v.
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(a)

(c)

Fig. 2.15: (a) A multirate DFG, (b) An equivalent homogeneous DFG,
(c) A retimed multirate DPG.
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Example 2.8: Consider the multirate DFG inRg. 2.15(a). Ineach cycle, the nodes A*B

and C are respectively invoked 2,1, and 2 times. This DFG contains 2 maximal loops

A->B -*A and A->B->C-*A *and the normalized delay counts in die loops are respec

tively 2and 1. Fig. 2.15(b) shows the equivalent homogeneous DFG. One can verify that

the loop delay counts in the maximal loops in the equivalent homogeneous DFG are 2

and 1also. Fig. 2.15(c) shows aretimed version ofthe multirate DFG, which isobtained

by applying a local retiming operation at node A in the multirate DFG ofFig. 2.15(a).

D

23. NON-HOMOGENEOUS PROCESSOR SCHEDULING

The rate-optimal fully-static scheduling approach presented in this chapter is based

on ideal inter-processor interconnection, availability of large number of processors, and

homogeneity of the processors with respect to functionality and speed. Often real imple

mentations are based on a fixed number of processors, or fixed interconnections, or pro

cessors non-homogeneous in functionality and/or speed. Unfortunately, the rate-optimal

schedules under these assumptions belong to the class of NP-Complete problems [25].

Most of these problems will need to besolved by the use of heuristics. The objective of

this section is to give an example to show that the program unfolding approach can be

used to exploit fine-grain parallelism, and toobtain efficient schedules in the context of

non-homogeneous processorimplementations.
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Fig. 2.16: DPG corresponding toa second order allpole digital filter
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Fig. 117(a): Unfolded DFG ofthe all pole filter for unfolding factor of
two.
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S
B. C2 2>B2 s* A2

S
(b)

Fig. 2.17: (b) Precedence graph of the unfolded DFG in Fig. 2.17(a),
(c) Partial schedule for non-homogeneous processors.
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Consider the example of a second order all-pole filter DFG shown in Fig. 2.16. In

the figure, the small circles represent fork nodes, the operations A and B are addition

operations, and C and D are multiplication operations. Let us assume that we are given

two processors; processor Pi capable of performing only multiplications in 10 units of

time, and the processor P2capable ofr^rforming addition in2 units oftime and multipli

cation in 20 units of time (i.e. processor P2 is slower). Simple CPM schedule for this

case would require aniteration period of24 units oftime (as evident from the precedence

graph of Fig. 2.16). However, we can obtain an iteration period of 19 units by first

obtaining the unfolded DFG with an unfolding factor of 2 and then by scheduling the

tasks as illustrated in Fig. 2.17. Weare able to exploit concurrency to the finest possible

granularity, because the unfolding by a factor of2reduced the second order all pole filter

to an equivalent perfect data-flow program graph. The non-homogeneous processors lead

to efficient hardware utilization, because we are able to assign a slower processor to the

tasks corresponding to the outer non-critical loop and a faster processor to the tasks of the

innermost or critical loop.

2.10. CONCLUSION

The major contribution of this chapter is finding the optimum unfolding factor for

any data-flow program, and the use of this unfolding to systematically prove the

existence of fully-static rate-optimal multiprocessor schedules in iterative data-flow pro

gram models. This is an important result, since the existence of rate-optimal fully-static

schedules had so far remained an open question. This approach also clearly shows the

synergy between the existing cyclo-static scheduling and our approach to fully-static

scheduling. This synergy is demonstrated by the fact that the scheduling of several itera-
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tions of a specified task in a single cycle are carried out by different processors, and

hence are not fully-static within the cycle of the unfolded program. With optimum

unfolding, we can construct rate-optimal fully-static multiprocessor schedules without

requiring any retiming operation at all. It is hoped that the approach provided in this

chapter will find use in task scheduling and synthesis of multiprocessor programmable

and/or custom VLSI digital signal processors, both in the context of homogeneous and

non-homogeneous processors.

In this chapter, we have established the notion of the iteration bound in recursive or

iterative algorithms. The subsequent chapters focus on linear recursive systems, and are

devoted to developing algorithm transformation techniques, which can find equivalent

alternative hardware-efficient architectures for these systems.
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PIPELINING IN RECURSIVE FILTERS

3.1. INTRODUCTION

In order to exploit VLSI for high performance dedicated system implementations,

we need to understand the characteristics of the scaled VLSI technologies. For example,

VLSI offers a greater potential for complexity than speed, favors replication of one func

tion, and imposes a high cost in performance for non-localized communication. Design

costs can be minimized by composing the system as a replication of simple processing

elements. These considerations favor implementations which feature arrays of identical

or easily parametrized processingelements (since, these are easily given a softwarepro

cedural definition) with mostly localized interconnections (for reduced communication

costs). This has led to an interest in systolic- and wavefront-array implementations [1,2].

High performance can be achieved by either using exotic high speed technologies,

such as bipolaror GaAs which allow us to gain performance without modification of the

algorithm. On the other hand,we can use a lowcostVLSI technology suchas CMOS and

yet gain impressive performance by exploiting concurrency. Concurrency is usually man

ifested in the form of pipelining or parallelism or both. Concurrent architectures can be

derived by implementing the existing algorithms in new ways. To be moreprecise, wedo

not change the transfer function or the input-output characteristics of the algorithm, but
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we do change the internal structure of the algorithm, thereby impacting the finite preci

sion effects but nothing else. This is referred to as recasting the structure of the algo

rithm. Different forms of recasting a specified algorithm can lead to realizations with

entirely different properties and implementation complexities. In this chapter, we show

that appropriately recasting the structure of an algorithm can have a dramatic effect on

the performance of animplementation.

The challenge in achieving high performance implementations is mostly in recur

sive systems, since the recursion or the internal feedback negates the most obvious ways

of improving perfonrance. This is because thecomputational latency associated with the

feedback loop in recursive systems limits the opportunities for pipelining and/or parallel

processing. In non-recursive systems, we can place latches across any feed-forward

cutset without changing the transfer function (at the expense of latency) and achieve

desired level of pipelining. However, recursive systems cannot be pipelined at arbitrary

level by simply inserting latches, since the pipelining latches would change the number

of delay operators in Jie loop, and hence the transfer function of the implementation. We

can overcome this recursive bottleneck by changing the internal structure of the algo

rithm to create additional logical delay operators inside the recursive loop, which can

then be used for pipelining.

High sampling rate realizations of recursive digital filters using block processing

have been suggested [3-17]. In block processing, input samples are processed in the

form of non-overlapping blocks and outputs are also generated block by block. We can

increase the block size arbitrarily to achieve arbitrarily high sampling rate recursive sys

tem realizations. The best known block structures reported so far for recursive digital
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filtering require a square multiplication complexity with respect to the block size. In the

next chapter, we discuss block processing structures, and derive our new incremental

block filter with linear complexity in block size.

Loomis and Sinha recently used the concept of block processing to derive a pipe

lined realization of direct form recursive digital filters [18]. Similar approaches have also

been followed for recursive filter implementations using charge domain devices [19].

The block state update operation as well as the pipelining technique used by Loomis and

Sinha belong tothe class of look-ahead computation techniques [20], and lead toa linear

complexity with respect to the block size ornumber of loop pipeline stages. This look-

ahead process is referred toasclustered look-ahead throughout this chapter.

We use look-ahead and decomposition algorithms to pipeline a first-order system

(i.e. where the state x(n) is expressed as a function ofx(n-l)) [21-23]. In the l«>ok-

ahead scheme, the algorithm is iterated as many times as desired to create the necessary

level of concurrency, and the iterated version is implemented. Specifically, for the first

order recursion, the state x(n) is expressed as a function of*(/i-Af) to create M delay

operators inside the loop so that the loop can be pipelined by M stages. This iteration

process contributes toanon-recursive 0(M)multiplication complexity. For cases where

M can be expressed as a power of 2, a decomposition technique is proposed to imple

ment the non-recursive overhead in a decomposed manner to obtain a logarithmic multi

plication complexity. This first order pipelined realization was also studied in [24] in the

context of static data-flow computer implementation, but without the decomposition

technique.
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In this chapter, we study efficient pipelining of higher order recursive systems. In

an tf-th order recursive system, the state jc(it) is expressed as a function of the past N

states x(n-l)* x (a-2),.... and x(n-#+l). There are two types of look-ahead schemes in

the context of higherorder filters; they include clustered look-ahead and scattered look-

ahead. In the clustered look-ahead pipelining scheme [18], the algorithm is iterated to

express the state x(/i) as a function of N past consecutive or clustered states x(n-M),

x (n-Af-1),.... and x(n-Af-#+l). This look-ahead process creates M loop delay opera

tors, which can be used to pipeline the loop by M stages. In this technique, the original

rV-th order filter is emulated by an (N+Af-l)-th order filter ((A/-1) canceling poles and

zeros have been added). The multiplication complexity of the resulting pipelined filter is

O (Af), which is linear with respect to M. Since the pipelined filter is derived by adding

poles and zeros, some of the modes or eigenvalues are either uncontrollable or unobserv-

able or both. Unfortunately, for higher order systems, the clustered look-ahead process

does not guarantee all the additional poles to lie inside the unit circle, and hence does not

guarantee stability.

We introduce a new scatteredlook-ahead approach to derive stable pipelined filters.

In this new look-ahead process, we express x(n) as a function of past N scattered states

x(n-M)* x(n-2M)* ...* and x(n-NM), thus emulating the original N-th order filter by

an NM-ih order filter. Note that the clustered look-ahead and the scattered look-ahead

approaches are identical for the first ordercase (since in both casesx (n) is expressed as a

function of x(n-M)). In the scattered look-ahead process, for each existing pole in the

original filter, we add (A/-1) additional poles (and zeros at identical locations)with equal

angular spacing at a distance from the origin same as that of the original pole. The scat

tered look-ahead process leads to O(NM) complexity (much larger than that for clustered
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look-ahead), but guarantees stability. For caseswhere M can be expressed as a powerof

2, we use the decomposition technique to implement the non-recursive portion with

OQflog2M) multiplication complexity. The upper bound on roundoff noise in these

pipelined filters improves withM. Based on the scattered look-ahead and the decomposi

tion techniques, we derive pipelined realizations of direct form and state space form

recursive digital filters. Several pipelined bidirectional systolic arrays for recursive digi

tal filtering have been proposed in [25-29]. However thesestructures requireinterleaving

of independent time serieswhenpipelined. In thischapter, wepresentfully pipelined and

fully hardware efficient linear bidirectional and unidirectional ring systolic arrays for

recursive filtering using the scattered look-aheadtechnique.

The organization of this chapter is as follows. The iteration period bound in recur

sive computations is reviewed in section 3.2. In section 3.3, we review the notion of

pipeline interleaving in the context of recursive digital filtering. Sections 3.4 and 3.5

address pipelined realization of direct form and state space form linear time-invariant

recursive digital filters respectively using scattered look-ahead and the decomposition

techniques.

3.2. ITERATION BOUND REVISITED

Let Si represent the set of loops in the recursive computation graph, D/ represent

the latency associated with the computation in loop /, and A// represent the numberof

latches or logical delay operators inside the loop /. Let each latch in the computation

graph be L-slow* i.e. the clock rate of each latch is L times slowerthan the sample rate,

or equivalently the implementation corresponds to a block implementation with block

size L (the block size is assumed to be constant throughout). Then the iteration period
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bound is given by

» •

""_>]• (31)
The maximum achievable sampling rate for the computation graph is y—. The loop /0

r--im

for which 7\.= -rrr- is satisfied is called the critical loop. For unity block size (i.e.,
LM/0

L = 1), this definition reduces to the iteration bound definition in [30-31].

The iteration period bound can be improved by increasing either the number of

pipeline stages inside the recursive loop (Af/),orthe block size (L) orboth. Inthe sequel,

we assume Af/ to be same for all loops and refer to it as Af. By using M pipeline stages

inside therecursive loop and a block size ofL*the sample ratecanbe increased bya fac

tor LM. Since, pipelined realizations can be achieved with logarithmic increase in

hardware (as opposed to linear increase asin block processing), it is efficient to use pipe

lined algorithms (i.e. with I = 1) first for high speed IIR filter implementations, and then

combine block processing with pipelining only if sufficient speed cannot be generated by

using pipelining alone. Thus, block processing in itself is an inefficient way of imple

menting high-speed custom IIR digital filters. However, block processing is useful for

software-programmable implementations on general-purpose coarse-grain multiproces

sors.

33. PIPELINE INTERLEAVED DIGITAL FILTERS

Pipeline interleaving notion is an old idea, and has been used in general purpose

computers. Pipeline interleaving approach has also been proposed for programmable

implementation of signal processing systems using deeply pipelined programmable digi

tal signal processors [32], and for cyclostatic implementation of these systems [33].
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In this section, we review the notion ofpipeline interleaving in the context ofa sim

ple first order recursive digital filter. In particular, we discuss three forms of pipeline

interleaving, ffl Inefficient Single/multi-channel interleaving, (ii) Efficient single channel

interleaving, and (iii) Efficient multi-channel interleaving. In (i), the loop is pipelined

without changing the structure of the algorithm and hardware is not fully utilized, since

zero samples need tobeinterleaved topreserve the integrity of the algorithm. In (ii) and

(iii), the internal structure of the algorithm is changed in a way that the pipeline is maxi

mally or fully utilized.

33.1. Inefficient Single/Multi-Channel Interleaving

Consider a first-order linear time-invariant recursion described by

x(n+l) = ar(n) + foi(/i) (3.2)

and shown in Fig. 3.1(a) in the form of a computation graph. The iteration period bound

of this computation graph is (Tm +7*a), where Tm and Ta respectively represent the

word-level multiplication time, and addition time. Consider obtaining a M-stage pipe

lined version of this implementation by placing or inserting (Af -1) additional latches

inside the loop as shownin Fig. 3.1(b) (at the appropriate places). Then the clock period

of this implementation can, in principle, be reduced by M times, but the latency associ

ated with the loop computation and the sample period of the implementation will

increase to M clock periods. As an example forM = 5, if we begin with a state jcHO) in

clock period 0, the next statexx(l) will be available in clock period 5. Hence for the case

of a single time series, this arraywill be useful for only 20% of the time. (Trying to input

samples of a single time serieseach clockperiodwould implement a different algorithm,

since the number of logical delays inside the loop has been changed.)
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u(n)

• x(n)

Fig. 3.1(b): The first order LTI recursion after inserting (Af-1) delay
operators inside theloop (for Af =5).

TIME
(n)

0 1 2 3 4 5 6 7 8 9 10

STATE
x(n)

x1(0> x2(0> x3(0) x4(0) x5(0) x^l) x2(1) x3(1) x4U> x5(1) x^lZ)

Fig.3.1(c): A partial schedule for the implementation in(b). The input
time series are S-way interleaved, i.e. 5 independent rime series are
being filtered simultaneously. The state x'(n) corresponds todie state
of the i-th time series at time index n.

70
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Hence, the sampling rate ofthis implementation is5times slower than the clock rate, and

is no higher than that of the unpipelined version (in fact is worse due to the delay time

introduced dueto the additional latches). However, if 5 independent time series are avail

able tobe filtered by the same hardware, then the hardware can be fully utilized as shown

in the schedule of Rg. 3.1(c), although all the independent time series must be filtered at

the slow rate. Independent time series can correspond to outputs of each first or second

order cascade stage (since these elements can be separated by a feed-forward cutset), or

can correspond to independent channels requiring identical filtering operation. As an

example, for a 10-th order recursive filter implemented as cascaded second order sec

tions, the five section outputs are independent and can be interleaved in the pipeline (of

course, each at 5-slow rate). Thus pipeline interleaving approach is well suited for appli

cations requiring nominal concurrency. To conclude, if a recursive loop with a single

delay element is pipelined by Af-stages by inserting (Af-1) additional delay elements,

then the input data must be Af-way interleaved, i.e. (Af-1) zero time series or indepen

dent time series are interleaved with the given data stream (otherwise, the transfer func

tion of the algorithm will bechanged), and nothing has been achieved withrespect to the

sample rate with which a single time series can be filtered. This implementation has also

been referred to as Af-slow circuit in the literature [1,34-36]. The hardware in this slow

interleaved implementation is inefficiently utilized if Af independent computations are

not available to be interleaved.
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uln+U

iXn+1)

• x(n)

Fig. 3.2(a): An equivalent reilization of Fig. 3.1(a) obtained without
the use of the look-ahead transformation.

0 H b
x(n)

x(n+2)

Fig.3.2(b): Another equivalent first order LTI recursion obtained with
the use of look-ahead computation.

72
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3J.2. Efficient Single-Channel Interleaving

Ruling out the interleaving of independent time series, the two problems with Af-

slow implementations are Q) a sampling rate Af times slower than the clock rate, and (ii)

inefficient utilization of processing elements. Now we show that both these problems

can be overcome by using the look-ahead transformation [20,21], in which the given

linear recursion is first iterated a few times to create additional concurrency.

Consider the first order LTI recursion of (3.2). By recasting this recursion, we can

express x (n +2)asa function ofx (n) toobtain

x(n+2)=a[flar(n) +fo<(/!)] +bu(n+\). (3.3a)
A realization of this recursion is shownin Hg. 3.2(a). The iteration bound of this recur

sion is 2Vm+Tg) m£ k ^jjjg ^ mat 0f pig. 3.1(a). This is because, the amount of com

putation and the number of logical delays inside the recursive loop are both doubled as

compared to that in Fig. 3.1(a) leading to no net improvement However, another recur

sion equivalent to that of (3.3a) is

x(n+2) = a2x(n) + abu(n) + bu(n+\) (3.3b)
T +7*as shown in Fig. 32(b). The iteration period bound of this realization, m^ a , is afac

tor of two lower than that of the realizations in Fig. 3.1(a) and Fig. 3.2(a)!

Applying (Af-l)-steps of look-ahead to the iteration of (3.2), we can obtain an

equivalent implementation described by

x(n+Af) =flwx(n)+^1fl^«(n+Af-W) (3.3c)
and shown in Rg. 3.3(a). Note that the loop delay corresponds to z^M instead of z"1.

This implies that the loop computation must be completed after Af iteration cycles rather
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u(n+M-D

Fig. 33(a): Equivalent first order LTI recursion obuuned using (Af-1)
steps of look-ahead.

74

TIME
(n) 0 1 2 3 4 5 6 7 8 9 10 11 12

STATE
x(n)

x(-4) i(-3> x<-2) x<-1) x(0) x(1> x(2) x(3) x(4) x(5) x<6> x(7) x(6)

Fig. 33(b): Apartial schedule for the structure in Fig. 33(a) foriV =5.



PIPELINING RECURSIVE FILTERS 75

(7* +7* )than 1. The iteration period bound of this computation graph is —my a , which

corresponds to a sample rate Af times higher than that for the original computation graph

(although the complexity and system latency are now linearly increased). A portion of

the schedule for the realization of Fig. 3.3(a) is shown in Fig. 3.3(b) for Af = 5. The

terms ab*a2b *...*aM~lb *aM in (3.3c) can be precomputed and are referred to as the

precomputation terms. The second term on the right hand side of (3.3c) represents the

look-ahead computation term, and its complexity is referred to as the look-ahead com

plexity. Since the look-ahead computation term is non-recursive, it can be pipelined by

placinglatches at the appropriate feed-forward cutsets.

The steady state input-output behavior is not altered by the look-ahead technique.

By this it is meant that for sufficiently old inputs, the outputs of the transformed system

and the original systems will be identical. However, it is also possible to recaste the ini

tial states of the transformed systemso that the input-output behavior of the transformed

and the original system are identical for all inputs, as long as the original system is

causal. Consider the schedule shown in Fig. 3.3(b) corresponding to the implementation

of Fig. 3.3(a), where we start with Af independent initial states jc(-Af+1), x(-Af +2),...,

jc(0) (for Af = 5). In the original system of (3.2), the state x(l) is computed in terms of

the initial state x(0),

x(l) = ar(0) + fo*(0). (3.4a)

For the transformed systemof (3.3c), the statex (1) is calculated in terms of x (-Af + 1),

x(l) = a5x(r4) + bu(0) (3.4b)

for Af = 5 (sinceu (-4), ♦ • •*u (-1) are all 0 due to causality). From (3.4a) and (3.4b),

x(-4) = fl-*x(0). (3.4c)
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u(n)

u(n)

Fig.3.4(a): A computation graph.

1 l

—^fp]—•A -~®- B CF\

yy(n)

Fig. 3.4(b): Equivalent retimed computation graph.
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A similar analysis can be carried outto obtain theAf initial states

xH) = fl-*jc(0), i = U,...,(Af -1). (3.5)
In the transformed system, we start with Af initial states and compute thenext Af states

in a pipelined interleaved manner (see Hg. 3.3(b)). In this regard, look-ahead computa

tion can be treated as an application of pipeline interleaving. Look-ahead computation

has allowed us to transform a single serial computation into Af independent concurrent

computations, and to pipeline the feedback loop to achieve high speed filtering of a sin

gle timeseries while maintaining full hardware utilization.

Provided the multiplier and the adder can be conveniently pipelined, the iteration

bound can be achieved by retiming or cutset transformation [1, 34-361. The retiming

process involves moving the delays around in the feedback loop in such a way that the

number of delays in any loop remains unaltered (thereby not affecting the transfer func

tion). A simple example of retiming is illustrated in Fig. 3.4. The iteration period bound

for the realization in Fig. 3.4(a) is ——|——* whereas the actual iteration period is

Od+Ti+Tc), where 7/ corresponds to the computation time of block i. The iteration

period for an equivalent realization in Fig. 3.4(b) (obtained after redistributing the

delays) is Afox(Ta Jb Jc )• If the computational latencies TA *Tg , and Tc are identical,

then this realization has an iterationperiod equal to the iteration period bound.

Another example of retiming is illustrated in Fig. 3.5. Fig. 3.5(a) shows a pipelined

cellular array multiplier in two'scomplement arithmetic fora multiplier and multiplicand

word-length of three. In a non-recursive implementation, this multiplier can bepipelined

as shown in Fig. 3.5(a). This multiplier has a latency of five cycles when pipelined at

bit-level. However, when used inside a recursive loop, the multiplier cannot be pipe-
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lined. In Fig. 3.5(b), we use look-ahead to create four additional latches. The structure in

Fig. 3.5(b) is retimed to obtain an equivalent structure in Fig. 3.5(c). The number of

delays in any loop in Fig. 3.5(c) is five. Furthermore, the input-to-output delay in any

path is also constant The serious reader will observe that, in orderto perform the retim

ing operation in a rigorous manner, all inputs in Fig. 3.5(b) should have four extra

latches, and all outputs in Hg. 3.5(c) should have the same four extra latches. We have

omitted these latches to keep the illustration simple.

a=a2a1a0 x2 x, x0

X=XoX<Xq

(a)

XjlC
S—Q— S'

x^c'
(cell-A)

x=x

s'ssum(s,a*x,c)
c,=carry(s,a»x,c)

Fig. 3.5(a): A bit-level pipelined array multiplier for word-length of3.
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0

0

0

ft

W

flW

flftBft

SKEW
LATCHES

00 »xo(n)

JQ *x<|(n)

*X2(n)

SKEW Rg 2J5QJ). a multiply-add operation inside a recursive loop after
LATCHES four.steps oflook-ahead.

XQ(n)

X2(n)

Fig. 33(c): Retimed multiply-add structure.
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33J. Efficient Multi-Channel Interleaving

We can extend look-ahead to the case where multiple independent channels require

identical filtering operation. Consider the samefirst-order linear recursion of (3.2) for the

case of two channels, and six pipeline stagesinsidethe recursiveloop.Then, withoutuse

of look-ahead, the hardwas will be utilized only one third of the time. To get full utiliza

tion of hardware, we iterate the recursion two times, and interleave the computation of

two time series. In general, if P independent time series are available, and the loop is

pipelined by Af-stages (assume M =PQ)* then the recursion needs to be iterated (Q - 1)

times. For this example, the iterated recursion corresponds to

x* (n+3) =aWiji) + a2bul{n) +abuHn+l)+bul(n+2), i = 1,2 (3.6)

Fig. 3.6shows a partial schedule corresponding to the processing of time series xl and x2

in an interleaved manner.

3.4. PIPELINING DIRECT FORM RECURSIVE FILTERS

The clustered look-ahead based pipelining in [18] requires a linear complexity in

the number of loop pipeline stages, and does not guarantee stability. In this section, we

present a scattered look-ahead approach to derive stable pipelined filters of complexity

linear with respect to the number of loop pipeline stages. We then introduce a decompo

sition technique to obtain an implementation with logarithmic increase in hardware with

respect to the number of loop pipeline stages. The decomposition technique is the key in

obtaining area-efficient implementations, and makes pipelined realizations attractive for

high speed VLSI IIR filter implementations. We also present fully pipelined and fully

hardware efficient linear bidirectional systolic arrays for recursive filters based on scat

tered look-ahead.
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Let the transfer function of a direct form recursive filter be described by

&*'
_ isH(z) = (3.7)

1=1

Equivalentiy, the output sample y(it) can be described in terms ofthe input sample u(n),

and the past inputand output samples, and is given by

y(n)= £qy(ji-i)+£M(n-0=jUy(it-i)+z(n). (3.8)
1=1 l=U 1=1

The sample rate of this recursive filter realization is limited by the throughput of a single

multiplication and N additions (since the critical loop contains a single delay operator or

latch).

TIME
0 1 2 3 4 5 6 7 8 9 10 11 12

STATE
*%i-Q **<-2) "'(-I) «*<-1) *%m *w ••d) K*<1) a1® **<2) ^P) x2^) l'(4)

Fig. 3.6: A partial schedule for a two channel implementation with six
loop pipeliningstagesobtainedusing two stepsof look-ahead.
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3.4.L Clustered Look-Ahead Computation

We can transformthe transfer function of (3.7) such that the coefficients of z~\ ...*

z-(M-i) m the denominator of the transfer function are zero, i.e. the denominator contains

the terms z"4** z-W+l\ .... and *-<P-tff-i). Such a transfer function corresponds to an

Af-stage pipelined implementation, since the output sample y (it) can be described in

terms of the cluster of N past outputsy (n-Af), y (it-Af-1),...., and y (n-M-N+l). A

time domaindescription of suchan equivalent filter is given by (seeappendix 3.2)

y(»)=A§ ki+1 «* r/+M-* yOi-y-J»#)+^ nroi-y) (3.9a)
where

z(*)=J^,k(ii-0, (3.9b)
and the sequence r, is defined in appendix 3.1. The equivalent transfer function of this

pipelined realization is given by (see appendix 3.2)

H(z) = hJ^n* • (3.10)
imi y=*+l

Note that the coefficients in brackets in (3.9) and (3.10) are computed off line. This

transfer function has been derived by multiplying ^x riz"1 both in the numerator and the

denominator, introducing (Af-1) additional canceling poles and zeros.

Since the critical loopof this implementation contains M delay operators and a sin

gle multiplication operation, this loop can be pipelined by M stages, and the sample rate

can be increased by a factor of Af. The numerator or the non-recursive portion of (3.10)

can be implemented with (N+Af) multiplications, and the denominator or the recursive

portion can be implemented with N multiplications. The total complexity of this
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pipelined implementation is (2N+M) multiplications, and is linear with respect to the

number of loop pipeline stages (Af) or speedup or increase in the sample rate.

We illustrate the instability problem in the pipelined recursive filters derived by

using the clustered look-ahead approach using an example.

Example 3.1: Consider the example of an all-pole second order IIR filter with poles at

z=A and z=x (see Fig' 3.7(a)). This original filter is described by the transfer func

tion

*(2)=73T^7|-r (3.11a)
A 2-stage pipelined equivalent recursive digital filter can be derived by multiplying the

numerator and denominator by (1 + -r2"1^ or equivalentiy by introducing a pole and a

zero at z =-4- (see Fig. 3.7(b)), and is given by

i +4-z-1

i - 44-z-2+42-z~3
1 TFZ + 1TZ

Similarly a 3-stage pipelined realization can be derived by eliminating the z"1 and z~2

terms in the denominator of (3.1la) and is given by

l+5z-1+19z-2

1 - 42-z"3 + .-„ r"4

and has poles at z =0.5,0.75 and z = 0.625 ±j0.893 (see Fig. 3.7(c)). Note that the

complex conjugate canceling poles are outside the unity circle. Thus both the 2- and 3-

stage equivalent pipelined realizations in (3.11b) and (3.11c) are unstable, even though

the original configuration of (3.11a) is stable.
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3.4.2. Scattered Look-Ahead Without Decomposition

In scattered look-ahead approach [37], die denominator of the transfer function in

(3.7) is transformed in a way that it contains the N terms z"44* z'2*4*—, and z"NM.

Equivalentiy, the state y(/i) is computed in terms of N past scattered states y(n-Af),

y (n-2Af ), , and y(n-NM). In this look-ahead process, for each pole in the original

filter, we introduce (Af-1) canceling poles and zeros with equal angular spacing at a dis

tance from the origin same as that of the original pole. For example, if the original filter

i2nk

has a pole at z =p, we add (Af-1) poles and zeros at z =pe M for k = 1,2 , (Af-1)

to derive a pipelined realization with Af loop pipeline stages. The pipelining process

using scattered look-ahead approach can be described by

W(z/ffl>(ze " )

Now we illustrate scattered look-ahead based pipelining in recursive filters using the fol

lowing examples.

Example 32: Consider the firstorder filter

*w"T=is=r. (313a)
which has a pole at z = a. A 3-stage pipelined equivalent stable filter can be derived by

adding polesandzerosat z =ae 3 andz =ae 3 , andis given by

//(z) =A±SCL+5£±. (3.13b)
1— a3z~s

Example33: Consider the second order filter transfer function

Hv=M= J m =-$$)• (312)
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H<2>• i „T-i „ «-a • <314a>l — a\z *"-ajz *

A 3-stage equivalent pipelined filter is givenby

Hiz) l-(g?+3aiaa)i-*-afr-* * (314b)

Example 3.4: Consider the second order filter with complex conjugate poles at z « re***.

The transfer function of the filter is given by

//(z)=-=—= \ \ j >> - (3.15a)
v ' l-2rcos6z-l+r2z-2

We can pipeline this filter by three stages by introducing four additional poles and zeros

at z as re±J T, z=re Ĵ *~ . The equivalent pipelined filter is given by

„r . = 1+2rcosSz-1 +(l+2cos2e)r2z-2 +2r3cos9z-3 +r*z~* „ l5b)
K} l-2r3cos36z-3 +r6z-* '

Example 35: Consider the second order filter with real poles at z =r\ and z = r2. The

transfer function is given by

#(*) = 1 / ^ x-i^ =r • (3.16a)l-(ri+r2)z J+rir2z 2 v

A 3 stage pipelined realization is derived by adding poles (and zeros) at z = r\e * ,

z=rje 3 . The pipelined realization is given by

„, v 1+(ri +^z-1 +(r2+rirz*r})z~2 +rir2(ri+r2)z~* +r}rjz^
"(Z)= l-(r?+r|)z-3+r?r^ (3*16b)

The scattered look-ahead approach leads to stable pipelined filters if the original

filter is stable, since the distance of the canceling poles from the origin is same as thatof

the original pole. The complexity of the non-recursive portion in (3.12) is (AfAf+1), and

of the recursive portion is N* leading to a total complexity (NAf+N+1) pipelined multi-



PIPELINING RECURSIVE FILTERS 87

plications, a linear complexity with respect to Af. Even though this complexity is linear

with respect to Af, it is much greater than that ofclustered look-ahead.

The scattered look-ahead algorithm is different from the recursive doubling algo

rithm, developed by Kogge and Stone [38-401, used for parallel implementation of higher

order linear recurrence systems [41-431 (they are identical for the first order system).

Although the recursive doubling algorithm leads to a logarithmic complexity, for higher

order systems the coefficient of the logarithmic complexity in [40] is much greater than

ours. Indeed, the scattered look-ahead algorithm is similar to the cyclic reduction algo

rithm discovered by Hockney [44] and used in the context of parallel solution of partial

differential equations [45-49]. The scattered look-ahead approach has also been dis

cussed in [50] in the context of zero-input recursive systems (not a filtering operation).

The denominator of the pipelined filter transfer function also has the same form as in

each phase of a polyphase network [51]. The pipelining of the recursive filters using

scattered look-ahead algorithm and the canceling pole-zero interpretation was first

discovered in [37].

We now derive another pipelined realization using a decomposition technique

which leads to a logarithmic increase in hardware with respect to speedup or increase in

the sampling rate.

3.4.3. Scattered Look-Ahead with Power of Two Decomposition

In this decomposed implementation, the output sample y(n) is computed usingN

past scattered output samples y(n-M),y(n-2Af), • • • *y{n-NM) and the numerator

(or the non-recursive portion) is implemented in a decomposed or factored form (for

cases where Af can be expressed as a power of 2) [22-23]. The useof this technique leads
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to a logarithmic increase in hardware with respect to Af.

Let the recursiveportion of a digital filter with K pipeline latches inside the critical

loop be described by

l-T<fc(AT)z-* (317)

The original transfer function correspondsto a single stage pipelined implementation for

K ss l, and hence qt (1) = a«. We can derive an equivalent 2K-stage pipelined implemen

tation by multiplying by (1 - £(-l)'ft 0T)r"*) in the numerator and denominator.. The

equivalent 2K-stage pipelined implementation is described by

1- iWtttfT)*-* 1- £(-1)*'*,(*)*-*
#(*) = e — 2 = % (3.18)(1 - JftCBDr*)i\-^-Vfqi</[yr*) l-f[qi(2K)z-2«
where the sequence qi(2X) is derived in terms of the sequence qi(K) in appendix 3.3.

We can apply this transformation to the original single stage pipelined transfer func

tion to obtain a two stage pipelined implementation, and subsequent transformations lead

to four, eight, and sixteen stage pipelined implementations respectively. Thus to obtain

an Af-stage pipelined implementation, we need to apply log2Af sets of such transforma

tions. Each transformation leads to an increase in multiplication complexity by N while

increasing the speed (or sample rate) or the number of pipeline stages inside the critical

recursive loop by a factor 2. A series of such transformations then lead to a geometric

increasein the numberof loop pipeline stages or speedwhile requiring only an arithmetic

increase in hardware complexity!

We apply (fog 2Af-1) sets of such transformations to derive an equivalent transfer

function (with Af pipelining stages inside the recursive loop), which is described by
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(£*»*"•> u o-iewftO1)!-1*1),_ 1=0 gap 151

and requires acomplexity of (2N+N\og2 Af+1) multiplications, a logarithmic complexity

with respect to speedup or Af. Note that although the number of multiply operations is

logarithmic, the number of delays orlatches is linear. The total number of latches in the

implementation is approximately NM(log2M +1), out of which about NM delays are

required for implementation of the non-recursive portions, and about AfAflog2Af delays

are required to pipeline each of the /Vlog2Af multiplications by Af stages. This imple

mentation has been derived by incorporating /V(Af-l) canceling polesand zeros. In the

decomposed realization, the first stage implements an Af-th order non-recursive section,

and the subsequent stages respectively implement 2N*4N*.... ^- order non-recursive

sections. Due to the symmetry of coefficients, each of these non-recursive sections can be

implemented with N multiplications independent of the order of that section! An alter

native treatment of this decomposition algorithm is given in [52]. Now we consider

examples to illustrate scattered look-ahead and decomposition based pipelining in recur

sive filters.

H(z) =

Z-Plane

Fig. 3.8(a): A single pole filter.

89

(3.19)
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Z-Plane

XL- » Re[Z]

Fig. 3.8(b): Pole zero representation of an 8-stage pipelined single pole
filter.

u(n)

Z-Plane

Re[Z]

• Re[Zl

1+az"1 -+\ l+a2z~2 1

1+a4£4 - 8-81-a°z °
-*-y(n)

Fig. 3.8(c): Decomposition based pipelined implementation

90

Re[Z]

Re[Z]
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Example 3.6: First-Order Section:

Consider a first-order recursive filter transfer function described by

//(z)= , bz~l i . (3.20a)
1-flZ l

For this transfer function,

q(1) = a*q(2K) =q\K) =a2* . (3.20b)
Theequivalent pipelined transfer function can be derived using the decomposition tech

nique, and is described by

te-.b1f(i+«(*)*-*) i^fl-W,*) (3.20c)
"Wb l-^(Af)z-^ = l-flwz-" '

This pipelined implementation has been derived by adding (Af-1) poles and zeros at

identical locations. The original transfer function has a single pole at z = a (see Fig.

3.8(a)). The pipelined transfer function has poles at locations a* ae1** ae M*

i3(2n) .-(Af-nOn)
ae***.... a*B (see Fig. 3.8(b) for Af = 8). The decomposmon of canceling

zeros in the pipelined transfer function is shown in Fig. 3.8(c). The i-th stage of the

non-recursive portion implements 2* zeros located at

.!*£!& (3>20d)
z=ae 2 *n =0,1, • •• .(21 - 1)

and requires a single pipelined multiplication operation (independent ofthe stage number

i). The total complexity ofthe pipelined implementation is(tog2Af+2) multiplications.

The decomposition based pipelined implementation can also be equivalentiy

explained using the time domain approach. The original recursive filter description is

given by

y{n+l) =ay(n) +bu(n) (3.21a)
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and the pipelined realizationis given by

y(it+Af)=aMy(»)+^1a/du(»+Af-W). (3.21b)
As an example, for Af=8, we have

y(«+8)=a^(/i)+ ;fa'taCi+7-0 (3.21c)

= a^y(n)+Tal/o(n+7-0. where fd(n) = bu(n)

=fl^(«)+ifl2l'/i('«+7-2i), where fi(n) =af0(n-l)+fdn)

=a*y(n) +j\a*f2{n+l-4i)* where /2(«) =<i2/i(«-2)+/i(n).

A block diagram of an 8-stage pipelined decomposed implementation is shown in Fig.

3.8(d).

Although the pipelined recursive filterrealizations are stable under infinite precision

conditions, they are sensitive to filter coefficients under finite precision. In a finite preci

sion implementation, the poles of the first order Af -stage pipelined filter are located at

whereA corresponds to the finite precision error in representing aM.This polelocation is

more sensitive for smaller values of a (that is when poles are closer to the origin). For

tunately this is not a problem, since the instability problem for the filter with poles closer

to origin is not severe.

In addition to the instability problem, finite precision pipelined filters suffer from

inexact pole zero cancelation (see Fig. 3.8(e)), which leads to magnitude and phase error.

These errors can be reduced by increasing word-length, but a thorough analysis of this is

beyond the scope of this thesis.
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u(n+7)-

80 jrtn)

x<rt*8)

Fig.3.8(d): Time domain decomposition of the pipelined filter.

Z-Plane

Re[Z]

Fig. 3.8(e): Inexact pole zero cancelation in afinite word-length 8-stage
pipelined first order filter.
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Z-Plane

(a)

• RelZl

1
.-1^.2^21-2rcos0z +rz"

• Re[Z]

Fig. 3.9: (a) Pole zero diagram of the second order filter, (b) Pole zero
representation of the pipelined second order direct form filter with 8
loop pipelining stages.

94



PIPELINING RECURSIVE FILTERS 95

Example 3.7:Second OrderSystem:

Consider a second order recursivefilterdescribedby

H<2\ - Z£i - fro+fri*-1*^-2 (3.22a)
H(z)-T7^7- l-2rcosez-UrV* '

The poles ofthe system are located atre+J* and re'i* (see Fig. 3.9(a)). For this filter,

$1(l)= 2rcose, tf2(l) =-r2. (3.22b)

and

qi(2K) =qHK)^2q2{K) =2r^cos7KQ^2^) =^HK) ='r^ . (3.22c)

The pipelinedtransfer function is described by

"(Z) l-f,(M)H'-?2(M)Z-W

(iVV'ira +2r*cctfax-* +r*V»")
_ 1=6 i=o

l-2rMcosM6z-M +r™z-™ *

The 2M poles of the transformedtransfer function are located at

z =re-*****, i =0,1,2,.... (A/-1)
and are shown in Fig. 3.9(b). The decomposed implementation of the pipelined filter is

shown in Fig. 3.9(c) and 9(d). The pipelined filter can be implemented with an imple

mentation complexity of (21og2 M+5) multiplications. The quantization error due to the

recursive portion of a pipelined second order section is studied in appendix 3.4, and it is

shown that the upper bound on the quantization error in the pipelined filter decreases

with increase in the number of loop pipeline stages. Intuitively this should be expected,

since as M increases, the IIR filter closely approximates an FIR filter, for which the

quantization error is inherently less.
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AlmlZl ilmlZl

Z-Plane

RelZ]

Z-Plane

RelZ]

-4 8-8,

H(Z)'
<1*2rcos0z*-V£2> H+o&mBtVz-4)(1+2r4cos40£ +r i )

1-2r8cos80zVlz

ition of poles and zeros of the 8-stage pipelinedFig. 3.9(c): Decomposition
second order filler

-8. 16-16
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u(n) f »| d| f »| D0

1 w w

0 *^j) *^) *{b^

u(n) f ») o

0-*^) *(b^ ^^bT)

I—HihI—T~*"

* ^fco84&--+Qy

y(n-16)

Fig. 3.9(d): Implementation of the original and the pipelined second
order recursive digital filter using decomposition technique for 8 pipe
liningstagesinsidethe recursive loop.
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Im[Z]

Z-Plane

Re[Z]

1-az"1

A lm[Z]

Z-Plane

Re[Z]

Fig. 3.10(a): Pole zero representation ofa12-stage pipelined first-order
filter.
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A single-chip implementation ofa fourth-order recursive digital filter (organized as

two cascaded second order sections) using four stages of loop pipelining and running at

hundred million samples per second rate has been reported in [53]. This chip uses the

scattered look-ahead and thedecomposition algorithms developed in this thesis. The chip

is implemented in 0.9 micron double-layer metal CMOS technology by the AT&T Bell

Laboratories. It uses a silicon area of 14mm2, and has a transistordensity of 0.6 million

devices per cm2. The total computing power of thechip is 1.7 billion multiply operations

per second. The reader is referred to [53] for details of the integrated circuit chip imple

mentation aspects.

3.4.4. Scattered Look-Ahead With General Decomposition

We have so far concentrated on power-of-two decompositions only, which leads to

hardware-efficient implementations. However, the decomposition of canceling zeros

extends for any arbitrary number of loop pipeline stages. The time-domain interpretation

of simple M\M2 decomposition was studied in [54]. We now illustrate decomposition of

canceling zeros for arbitrary M.

In an N-th order filter with M-levels of pipelining, there are N(M-\) canceling

zeros. First consider the simple case of M =M\Mi decomposition [54]. In this imple

mentation, the system has N(MiMx-l) canceling zeros. The first stage implements

NiMyl) zeros, and the second stage implements NMi(Af2-l) zeros. In a M1M2M3

decomposition, the first stage implements N(Mi~l) zeros, the second stage implements

NM\(Mz-\) zeros, and the third stage implements NM\M2(^3-1) zeros. In general, in a

M = M1M2 •••• Mp decomposition, the P non-recursive stages respectively implement



A
lm

tZ
]

Z
-P

la
n

e

A
lm

tZ
]

Z
-P

la
n

e

A
lm

tZ
]

3

R
el

Z
]

Fi
g.

3.1
0(

b)
:2

x3
x2

de
co

mp
os

iti
on

of
the

ze
ro

s.

s



PIPELINING RECURSIVE FILTERS 101

N(Mr-1), NMX(M2-1), ..~, JW#iAf2 *• • M/»-iW/»-l) zeros, totaling N(Af-l) zeros.

The non-recursive portion of the general decomposition requires about NM delays and

NtXMi-X) multipliers (each of these multipliers also requires M latches for pipelining).

Example 3J8: Consider the first order transfer function in (3.20a). A 12-stage pipelined

decomposed implementation is given by

£a'z~'
»/-* _ 1^ _ (1 + az-1) (l +ah-2 + a4!-4) (1 + ah-6) (3.24a)
*W-(l-tf«i-tt>- (1_flttz-i2) M L-

The above implementation corresponds to a 2x3x2 decomposition. The pole-zero

configuration of the 12stage pipelined filter is shown in Fig.3.10(a). Thedecomposition

of 11 canceling zeros of this filter is shown in Fig. 3.10(b), where the three sections

respectively implement 1,4, and 6 zeros respectively. Here the first section implements

±JZ. ±125.
the zero at -a, the second section implements four zeros at ae * and ae *^ and the

±Jn ±j5«
third section implements six zeros at ±jaf ae • , and ae *^. Another decomposed

transfer function given by

*(*)= <! +"-'> H+*?Xtft*++<%r*> (3.24b)
corresponds to 2x2x3 decomposition. In this implementation, the first non-recursive sec

tion implements one zero at -a, the second section implements two zeros at±ja, and the

third section implements eightzeros at ae *tae *\ae ~, and ae • . The 3x2x2

decomposition is given by

go- (i+«-'+«v^+«*»)(i+««»-«> t (324c)
and the three sections respectively implement 2, 3, and 6 zeros. The first section imple-
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ments two zeros at ae *\ the secondimplements threezerosat -a and ae 3 , and the

±J" ±J*L
third section implements six zerosat ae b ,±ja,wdae ° .

Any higher order recursive filter can be factored in terms of first order sections.

Decomposition similar to the above example can be applied to the first order sections,

and then the complex conjugate section:, can be combined to obtain the decomposed

form in terms of real multiplications. A matrix interpretation of the above transfer func

tion decomposition has been studied in [52]. The ordering of decomposition factors can

be exploited to minimize roundofferror*,.

3.4.5. FIR vs HR Filters

We canstartwith frequency domain specifications of a digital filter, and implement

the filter as an FIR or an IIR filter. Let the orderof an FIR filter be NFIR and the order of

an IIR filter to satisfy the same requirement be NUR. Forthe same speed (or equivalently,

for same level ofpipelining), the complexity of the FIR filter in terms ofM-stage pipe

lined multipliers is NFir, and that for the IIR filter is (2N//* +Afo*log2M + 1). Hence,

the IIR filter realization is preferable if

2NUr +N1IR log2M + 1< NFIR , (3.25a)

or equivalently, if

I*«pl-2J (3.25b)
M < 2 Na* ,

where [xj represents the floor function ofx. As an example, in Rabiner et al [55], it is

shown that a filter spectrum can be implemented as a 6-th order IIR filter or as a 41-st

order FIR filter. Then for this filter, M must be less than 16 for the IIR filter to be

hardware-efficient as compared with its FIR counterpart.
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3.4.6. Linear Bidirectional Systolic Array Architectures

All bidirectional systolic array implementations ofpipelined recursive digital filters

presented so far require many-way interleaving [1, 25-29]. In this section, we derive

linear bidirectional pipelined systolic arrays for direct form recursive digital filters using

the scattered look-ahead algorithm. These arrays are highly concurrent, fully pipelined,

and do not require any interleaving ofinput samples. Since the aon-recursive portion can

be implemented with arbitrary level of pipelining, we restrict our attention to only the

recursive portion.

Consider the recursive algorithm described by

y{n)= £ qi(M)y(n-iM)+x{n) (3.26)

where x(n) corresponds to the output of the non-recursive portion. This algorithm

corresponds to an M stage pipelined implementation. A flow graph corresponding to the

above algorithm is shown in the Fig. 3.11(a). For M=1, the bidirectional array cannot

be fully pipelined without requiring interleaving. However, apipeline interleaved version

can be achieved, which is useful for applications requiring moderate amount of con

currency, and where multiple independent time series need to be filtered similarly in an

interleaved manner.

For M£2, a fully pipelined systolic array can be implemented. In this implementa

tion, all the processing elements operate in apipelined manner, and the operations inside

each processing element can. also be deeply pipelined. The M delays or latches can be

moved around the loop to pipeline inter-stage operations as well as the

multiplication/addition operation (intra-stage pipeline). Out of M delays, 2 delays are

used for inter-stage pipelining, and the (Af-2) delays are used topipeline the
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y(n-M) ^LlliiJ y(n-2M)"^—•» y(n-3M)

Fig. 3.11(a): Linear systolic implementation ofarecursive filter.

x(n)-»(j>-fDhi(M-2)D

y(n)4

Fig. 3.11(b):Fully pipelinedlinearbidirectional systolicarray.
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multiplication/addition operation inside each stage. This technique of moving around

delays without changing the input-output behavior is referred to as retiming or cutset

transformation [1,34-361. The pipelined linear systolic array implementation is shown in

Fig. 3.11(b).

3.4.7. Pipelined Systolic Ring Implementation

We first review the unidirectional pipelined systolic ring implementation of the

direct form recursive filter algorithm, which was presented in [29], and then present pipe

lined ring implementation of the scattered look-ahead recursive filter algorithm.

Consider implementation of the (#-l>th order recursion

y(n)^aiy(n-i) (3.27)
using R unidirectional systolic rings as shown in Fig. 3.12(a). Note that the input and

output connections to theexternal world from the ring architecture have been omitted for

clarity. Since the total number of multiplication/addition operations needed is N (where

1 dummy operation has been included) and R processor rings are available, any output

computation traverses each processor ring 4*- number of times. For instance, for N=9

and R = 3, each computation requires a total of 9 operations, and 3 operations per ring.

However, since the orderof the filter is 8, each processor holds a single output for 9 con

secutive cycles in a single 9-slow (in general tf-slow) latch anduses this to contribute to

the computation of (N-l) consecutive outputs. For example, processor P i uses y3 for 9

cycles for computation of V4 through y n (with one dummy cycle). Consider the compu

tation of the output

V8 =*8V0 +*7V 1+ fl6y2 + fl5y3 + fl4y4 +03^5+ a2y6 +01^7 . (3.28)
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<> {jp\ 9 «3d| 9 1301 '

••—(ty^H—(ty^H—($y®—'
ir~ ir*. A"*.

I—JITI—' '—•TdI—» '—• d —

Fig. 3.12(a): Ring implementation of arecursive filter for N=8and
*=3.

Fig. 3.12(b): Fully pipelined ring implementation for N=8and R=3,
andM=2.
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and let processor Pi compute the term flgyg in cycle 0 (note that processor P\ doesn't

need to store y0 any more). TTie processors P2 and P* contribute to the terms a7y1and

<i6y2 respectively. ProcessorP\ can contribute to the term a&3 only in cycle 6(since, y3

is stored during cycles 1 through 9,and isused for computations ofy4through yn fol

lowing a dummy operation step). Hence, the total number ofpipeline delays inside the

loop must be 6, or in other words, each processor ring can be pipelined by 2 stages in a

fully hardware efficient realization (pipelining each ring by more than 2 stages will lead

to interleaving and inefficient hardware utilization). In general, for an (N-l)-order filter

and Rrings, each processor can be pipelined by (•£[•-1) pipeline stages in a fully

hardware efficient realization. In this realization, R outputs ars computed in N cycles,

which implies asingle output is available in ^ cycles, i.e. mis realization is ^--slow.

The processor Pi computes y«,+,-i. The N coefficients (where the dummy coefficient is

0) in this realization arc implemented using another ring consisting of N latches. Furth

ermore, the latency of a single computation is R(N-R) cycles, where the latency

corresponds to the number of cycles between the beginning and the end of computation

of a single sample.

Now consider the implementation of the recursive portion of the scattered look-

ahead algorithm

y(n) =Q£)qi(M)y(n-iM) (3.29)
using unidirectional pipelined systolic rings. Thescattered look-ahead algorithm leads to

M independent computations which can beperformed in an interleaved manner, thereby

permitting the rings to be pipelinable by M(^--1) stages. This pipelined implementa-
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tion is still M -slow and requires identical number of cycles per output sample as in the

case of M = 1, but since the processor ring is pipelined by a factor of M stages higher,

the cycle time and the sample period are a factor of M lower. Because of the interleav

ing, each processor uses M past output samples in an interleaved manner for NM con

secutive cycles. For example, for the 8-th order filter and M = 2, processor P \ uses the

sample y$ in all even cycles and the sampley7 in all odd cycles between the cycles 0

through 18. Between cycles 19 through 37, it uses y^ and y 13 in even and odd cycles

respectively. This is realized by using M NM-slow latches for sampling the outputs, and

by using MM-slow latches each switched at a rate Jr for computing the outputs as

shown in Fig. 3.12(b). Furthermore, because the M independent computations require

identical coefficients, each coefficient is repeatedly used for M cycles by each processor.

Thus, the NM coefficients (N coefficients and M consecutive copies of each coefficient)

are stored in a ring fashion using NM latches. The latency of a single computation is

MR (N-R) cycles (which is independent of M in terms of absolute time). In this realiza

tion, processorP,- computes yuwi+i-u ymii+i* •«. yutMi+i+M-2 hi an interleaved manner.

3.5. PIPELINING IN STATE SPACE FILTERS

The clustered look-ahead and scattered look-ahead processes are identical for the

state spacefilter. Pipelining in state space filters using the look-ahead computation tech

nique (without the use of decomposition) was introduced in [21] at the expense of a

linear increase in complexity with respect to loop pipeline stages. In this section, we

derive a decomposition based pipelined realization for state space recursive digital filters

of logarithmic complexity with respect to the number of loop pipeline stages.
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Consider the state space recursive filter described by

x(n+l) = Ax(n) +bu(n) (3.30a)

y(n) =cTx(n)+du(n), (3.30b)

where the state x(n) is JVxl, the state update matrix A isNxN, b and c are JVxl, and d,

input sample u(n) and output sample y(n) are scalars, and N is the order of the filter.

Fig. 3.13(a) shows a blockdiagram corresponding to (3.30). The transfer function of the

state space filter is given by

#(z) = cr (zI-A^b +d . (3.30c)

The state space representation of any transfer function is not unique. The transfer func

tion remains unaltered if the state space representation undergoes a similarity transforma

tion

x->A-xx; A,b,c,rf->A-1AAjV-1b,A7,c,d . (3.30d)

The complexity of the implementation will depend upon the number of non-zero

elements in the state update matrix, which in turn depends upon the form of digital filter

realization. A parallel realization of first order sections with real coefficients can be

described in terms of a diagonal state update matrix, and a cascaded realization of these

sections can be described by a triangular state update matrix. Second order sections can

be described by a quasi-diagonal state update matrix when implemented in a parallel

manner, or a quasi-triangular matrix when implemented in a cascade manner. State

space representation of lattice filters can be described by a quasi-triangular state update

matrix. Full, triangular and quasi-triangular state update matrices lead to O (N2) multi

plication complexity, whereas diagonal and quasi-diagonal matrices lead to 0(N) multi

plication complexity, where N is the order of the filter. In what follows, we assume the

filter to be described by a quasi-diagonal state update matrix, i.e. the filter hasno real
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u(n+7)

u(n)

X(n+1)

y(n)

Fig. 3.13(a): A state space recursive digital filter.

Fig. 3.13(b): A pipelined state space recursive digital filter with 8loop
pipelining stages obtained using the decomposition algorithm.
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pole of multiplicity greater than two, and no complex pole of multiplicity greater than

unity. Similar resultscanbe easilyderived forallotherconfigurations.

Let the nwiimnm number of non-zero elements among all rows of the state update

matrix be W. Then the iteration period of this implementation corresponds to the time

required for a single multiplication andN' additions, and the sample rate corresponds to

the reciprocal of the iteration period. Applying M steps of look-ahead, we obtain an

equivalent M stage pipelined algorithm

x(/i+Af)=Awx(n)+^1Al'bw(n+3/-l-j), (3.31)
which has an iteration period bound (sample rate) M times lower (higher) than the origi

nal algorithm. The output equation (3.30b) is non-recursive, and does not require any

transformation. Let N be the filter order, and N\ represent the number of real first order

poles. Then the state update implementation complexity in (3.31) corresponds to

(NM+2N-Ni) multiplications, and the output computation complexity in (3.30b)

corresponds to (JV+1) multiplications. The totalcomplexity is (NM+3N+1-Ni) multipli

cations, which is linear with respect to the number of pipeline stages M.

Now we illustrate use of decomposition for the case where M is a powerof 2. The

decomposed stages of the pipelined state update realization are described by:

Zi(n+Af-1) = bu(n+Af-l) + Abu (n+Af-2) (3.32a)

zl+1(/i+Af-l) =zi(n+A/-l) +A^ZiOi-rif-l^'). i = 1,2,.... (log2M-l) (3.32b)

x(/i+Af )=A*x(n) +ZiogjwOi+Af-l), (3.32c)

andis shown in Fig. 3.13(b) (forM = 8). TTiis pipelined algorithm leads to a multiplica

tion complexity \2N(log2M +^-A^k^Af for state update implementation, and

(N +1) for output computation; leading to a total complexity of
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2NQog2 M+«|») - tfilog2 M+1 multiplications, which is logarithmic with respect to

the number of loop pipeline stages.

The roundofferror in the state space pipelined filter is studied in appendix 3.5, and

is shown to improve monotonically withincrease in thenumber of loop pipeline stages.

3.6. CONCLUSIONS

We have presented a new scattered look-ahead approach and adecomposition tech

nique to transform recursive filter algorithms toderive equivalent area-efficient pipelined

realizations. Another approach to pipeline recursive filters using signed-digit redundant

arithmetic has recently been proposed in [55]. Our approaches can be combined with the

approach in [55] to pipeline signed-digit recursive filters at bit or digit level with

minimum look-ahead. A drawback of the signed-digit representations is thatthey require

a longer word-length for a specified dynamic range (compared to two's complement

representation). These representations may also suffer from degraded rjerformance due to

overflowproblems. These issues require further study.

The pipelinability criteria derived in this chapter can be used tosynthesize pipelined

filter transfer functions directly from frequency domain specifications thereby eliminat

ing the intermediate transformation procedure. Further research isneeded in synthesis of

these pipelined recursive filters using constrained iterative design techniques. The itera

tive techniques have been successfully used in the context of traditional recursive filter

design [56-59]. We hope by appropriately constraining these iterative techniques, wecan

satisfy the pipelinability criteria and design pipelined filters directly from specifications.
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The pipelined algorithm described in this chapter suffers from inexact cancellation

ofpoles and zeros, which will lead to error in magnitude and phase response ofthe filter.

However, the word length can be increased tonnnimize this error. The word-length and

roundoff error tradeoffs in the pipelined filters requires further study. Since the

coefficients ofthe pipelined filter correspond to higher power ofthe original coefficients,

they are too small, and may be less than what a finite number ofbits can hold. This is

another issue that needs further study.

The ultimate speed in the pipelined implementations will be limited by practical

limitations such as clock skew, packaging delay etc. Hence, once pipelining is used to

maximum possible extent, we need to combine pipelining with block processing to

achieve further speedup in the sample rate. In the next chapter, we combine pipelining

andincremental block filtering approaches to derive area-efficient architectures fordirect

form and state spaceform recursive digitalfilters.

3.7. APPENDICES

3.7.1. Appendix 3.1

In this appendix, we define the sequence r,- , and study some related recursive rela

tions. The sequence r,- is useful in the context of clustered look-ahead based pipelined

and/or block implementation of direct form recursive digital filters. For an Af-th order

direct form recursive digital filter, we define

r-i = 0 for i = 1,2,..., (W-l), r0 = 1

and
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For the sequence r,, we can prove the following theorem:

Theorem A3J: The values of r^+m can be computed using:

rL-> A = UN-J rm+./-* 1-#4* •
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(A3.1)

(A3.2)

Proof (by induction): Assume the theorem to hold for m, and prove that theorem also

holds for m+1. The value of ri+m+i is given by

l-tm+l

= 5 X i A/ ^-y 'm-Z+Z-Jk+l

* rL-N+k

1-tf+*

rL-N+*

from which (A3.2) follows.

3.7.2. Appendix 3.2

In this appendix, we derive a pipelined realization of the direct form recursive digi

tal filter using the clustered look-ahead computation technique. We also study the time

domain and frequency domain interpretations of this transformation.

Theorem A32: Any direct form recursive digital filter of the form (3.8) can be

equivalently described by

fj+M-k y{n-j-M) + %nz(n-j) (A3.3)

which corresponds to an M -stage pipelined realization.
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Proof (by induction): Assume the above to be true for M, and prove that italso holds for

M+l. The above expression canbe rewritten as

y{n) =rM y(n-Af)+*£ £ ak r>4A,J yto-J-M)+*£ rj z{n-j) (A3.4)
L J

=rM\j\ajy(n-M-j)+z{n-M) +*£ JL°*ri+*-k yin-M-tf+^rjzin-j)

y(n-M-j)+ £rj z(n-j)Ok rj+M-t

from which (A3.3) follows.

Theorem A33: Anytransfer function of the form (3.7) isequivalent tothe form (3.10)

Proof. Multiply the numerator and denominator by a(M-1) order polynomial ^ r,- z~i.

The denominator D{z) can be expressed as:

/so

D(z) = 1-XfliZ"' l+Yo-z-v since ro = 1 (A3.4)
i=j

=1- ffiz-t +̂V'* -Jj ^ atrjt-M

The last termof the righthand side of the above equation is givenby

z-ijVZM

=i

i=l y=
a^jZ^+J)*

I Si

N<M (A 3.5)

from which (3.10) follows.
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3.73. Appendix 3J

Theorem A3.4: The sequence ?<(2K) is related to the sequence qi(K) by the following

relations:

qlC2JC) = qHK)^2q2(K)t qNQK) = <rVf*qd(K) (A3.6)

For even filter order N,

«i<2ff>-<
2^2i(^)+(-iy+v(^)+2i!(-iy+i^(^^2iw^)''=2 -y

-/=* (A3 7)
(-iy+^rH^)+2^(-iy+i^(jr^2j.y<y). i*=£+i,...,iv-i'

For odd filter order N,

*i<2ffH

Proof. We have

Af-1iq2i{K)+(-ly+vcJO+2^(-iy+i^ar^2j-,/ar). *=2,..., ^
, JV+l(-iy+V(^) +2|J(-iy^(Ar^2i-y(^)» ' =i}TL (A3.8)

<-iy+VQD+2 £ (-ly+^ar^a-yar). »=̂ tf-i
7=«+i *

-20T-1-Xtt<2ff)z -Xi-£<7/(ff)z

N

-Xl-Y(-iyqi(K)z
i=j l=i

1*1 it
=1-21 qTiiK)*-™ + xeiyVflo*-2*

l=J l=J

r*i,.+2£ ¥(rDfqjiKfa-jWz-™ +2 V £ (rWq^^K):
£3 jsi i=f^l+i/=y+1

Matching the powers of z, the above relations can be derived.

-2i*
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3.7.4. Appendix 3.4

In this appendix, we study the quantization error due to the recursive portion of a

pipelined second order recursive filter derived by using scattered look-ahead and decom

position techniques. We show that as the number of pipeline stages inside the recursive

loop increases, the upper bound on the quantization error of the pipelined filter strictly

decreases. Consider the second order recursive filter transfer function

H{2) = (l-reJ«z-i)(l-r«r'°z-i) = l-^1(l)z-^2(l)z-i * <A39>
In the pipelined filter 2(Af-l) poles are introduced on the circle r units apart in the Z-

plane. Since, the distance of the additional poles remains unaltered from the origin, the

pipelined filter remains stable if the original filter is stable. The recursive portion of the

pipelined transferfunction withM pipeline stagesinside the recursive loop is given by

"!<*>=-^ TZ^-^(1 -«'<**V-%-«^*>f-i, ' (A310)
The quantization error of this filter can be derived by evaluating the residues of

—-——J for all poles inside the unit circle, and then taking the sum. We derive

the quantization error of this filter in three steps.

Step 1: Consider the pole pi at re1 "*, and let its residue be denoted as /?,-1. Let Ri2

denote the residue at the complex conjugate pole of/?;. Then we can prove that Ru is the

complex conjugate of/?n. This proof is straightforward and is omitted.

Step 2: In the pipelined filter, (A/-1) additional poles are introduced for each pole in the

original filter. We show that the residue at each of the added pole is identical to that at

the corresponding pole of the original filter.
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Proof. For the pipelined filter, we have

Hx{z)Hi{z-l)= «—I «=j
fta-n'^**Kl-rS+*>r*) (A3.1D

1
"5537 _:/ft_ W

We derive the residue at the pole for i =/ and show that this residue is independent of/.

After some manipulation, the residue Rj\ can be derived to be

*"=|f(W*>$(<!W^W*^*lW*>) <A312>
= Md-r^Kl-rWeyiMBxi-e-^B) •

which is independent of/.

Step 3: The total quantization error is proportional to (also referred to as normalized

error)

E^MiRn+Rn)^ j+j^ ^r^cos^e+r^ ' (A313)
In terms of the coefficients of the pipelined filter, the normalized error is given by

E" Uq^M) \-qxOMyqiOM) ' (A314)
The upper bound on the error expression in (A3.13) strictly decreases with increase in M.

Furthermore, the expression (A3.14) also holds for the case of two real poles. A similar

analysis can be carried out for any arbitrary order recursive digital filter, and the bound

on quantization error of the pipelined realization can be shown to improve with increase

inAf.
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3.7.5.Appendix3S

Inthisappendix,westudytheroundoffnoiseerrorinpipelinedstatespacefilters,

andshowthattheroundofferrorstricdyimproveswithincreaseinthenumberofloop

pipelinestagesM.Weassumetheroundoffoperationtobeperformedattheoutputof

thestatevariablesandatsystemoutputs.Thenoisesourcesarcassumedtobestationary

whitewithzeromean,andareassumedtobestatisticallyindependentofsignals.

TheoutputerroratthesummingnodeofthepipelinedstatespacefilterwithMloop

pipelinestagesisgivenby

x(n+Af)=Awx(n)+e,(n),(A3.15)

wheree,isofdimensionNxland

£[e,e/]=o02^.<A316>
ThematrixI#representstheunitymatrixofdimensionN.Thevarianceoftheerrorsat

thesunimingnodesofthestatevariablesisdescribedbythecovariancematrix

Q=e[xxt]=A"Q(Ary+o02IN=Go2§)APw(A7,)PM.(A3.17)
Theerroratthesummingnodeoftheoutputisdescribedby

y(n)=crx(n)+e(n),(A3.18)
wherethelasttermcorrespondstotheerrorattheoutputsummationnodeand

£[**(«)]=<tf.
Thevarianceoftheerrorattheoutputsummingnodeisgivenby(using(A3.17))

-5I=c*fJUHUPyHc+1,(A3.19)
whichisastrictlydecreasingfunctioninM.
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PIPIELINED INCREMENTAL BLOCK FILTER

4.1. INTRODUCTION

In chapter 3,we proposed the scattered look-ahead and decomposition techniques to

pipeline direct form and state space form recursive digital filters with a logarithmic

increase in hardware with respect to the number of loop pipeline stages.

Another approach to achieving concurrency in recursive digital filters is by the use

of "block processing" [1-19]. In block realizations, input samples are processed in the

form of non-overlapping blocks to generate non-overlapping blocks of output samples

(see Fig. 4.1). The block of multiple inputs are derived from the single serial input by

using a serial-to-parallel converter at the input, and the serial output is derived from the

block of outputs by using a parallel-to-serial converter at the output. Because of this

serial-to-parallel conversion, the multiple-input-multiple-output (MIMO) or the block

systemoperates at arate L times slower than that of theconverter circuits, where L is the

block size. The clock period of each latch in the MIMO system is L times greater than

that of the sample period, or equivalently each block delay operator in the MIMO system

is L-slow [20-22]. Hence, for a given technology, we can increase the block size to

obtain arbitrarily high sampling rate filter realizations. Due to this L-slow block delay

operator, the block state update operation requires updating the state x(kL+L) based on
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the past statex(kL). Note that in the block state update operation, the (L-1) intermediate

states x(AL+l), x(*L+2),..... and x(ifcL+L-l) have been missed, unlike in pipelined reali

zations where each state is computed. This block stateupdate operation can be achieved

by iterating the original recursion (L-1) times (using the clustered look-ahead approach)

to create a single L-slow delay operatorin the recursive loop.

K(n)

x(n)

x(kL>

SISO System
H(z)

ytn)

Subsample
MU.IU-,-, at rate 1/4 \ £££„
11 I _ — — ——J

1 serial to
! parallel

parallel
to serial
converter

— —j

y(n)

Fig. 4.1. Block implementation of digital filters (for block size of 4).
Each latch in the MIMO system is 4-slow.
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In the block filter, for a stable system, the poles (eigenvalues) of the block filter

move closer to the origin than that for the word-serial system (since, the eigenvalues of

the block system are L-th power of those of the word-serial system). These block struc

tures offer several advantages over the word-serial realizations. These include (i) a

linearly proportional increase (decrease) in the sampling rate (iteration period) with

increase in block size, and (ii) a linearly proportional decrease in the average roundoff

noise at the output One approach to implement the block filter is to use the concurrent

scattered look-ahead algorithms without decomposition derived in the last chapter with

replicated parallel hardware instead of pipelined hardware. However, each output

requires an O(NL) multiplication complexity, and this block structure requires a total of

O (NL2) multiplication/addition operations, which is square in block size. In this parallel

hardware block implementation, the decomposition technique can no longerbe exploited

because each delay now is a block delay. Furthermore, all existing approaches to block

recursive digital filtering also lead to a square multiplication complexity in block size. It

is the objective of this chapter to derive block recursive digital filter stnicttnes with mul

tiplication complexity linear in block size.

In direct form recursive block digital filters, the block of L outputs are computed

using past block of outputs, and this leads to a square complexity (since the block state

update operation is expensive). Sung and Mitra recently computed L blocks of outputs

(with block size L) and first exploited inter-block parallelism and then intra-block paral

lelism to get a linear speedup with respect to the numberof processors, at the expense of

a larger memory space [12]. Wu and Cappello proposed a new scheme to implement

second order direct form recursive digital filters [13-14] of complexity linear in block

size L. Instead of updating the whole block of L outputs, they updated only N outputs
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(where N is the filter order) and computed the remaining (L-N) outputs in a non-

recursive or sequential manner using these updated N outputs. This process of comput

ing the outputs is referred to as incremental output computation. In this chapter, we

extend Wu and Cappello's direct form structure from second order to higher order case

(with a slight variation, we update the first N outputs ineach block, whereas the structure

in [13-14] updates the last N outputs ineach block). This block filter complexity is linear

with respect toblock size, and the complexity per output sample is independent of block

size.

We propose anew technique of incremental output computation in state space digi

tal filters. Here we compute the outputs incrementally in a sequential manner using the

non-recursively computed intermediate states (which were missed in the block state

update process). As an example, for a block size of 20 and an increment size of 5, we

compute y(20*) through y(20*+4) using the state x(20*), then we compute the inter

mediate state x(20*+5) non-recursively (which was missed due to theblock state update

process), and compute the incremental outputs y(20*+5) through y(20*+9) using this

state. Then we compute the state x(20*+10) and use this tocompute y(20*+10) through

y(20*+14), and finally compute x(20*+15) and use this to compute the last incremental

output y(20k+15) through y(20*+19). A family of filter structures can be described with

different values of increment size. In particular, the existing block state filter structure

corresponds to the case where the increment size equals the block size. We derive the

optimum increment size as afunction ofthe filter order in away that minimizes the mul

tiplication complexity ofthe incremental block filter. The incremental block state filter is

also extended to the multirate filtering case.



PIPELINED INCREMENTAL BLOCK FILTER 127

It ispreferable to use pipelining to the maximum possible extent first, since pipelin

ing exploits concurrency with reduced hardware (i.e. with logarithmic increase as

opposed to linear as in block processing). This conclusion is clear from Table 4.1, which

compares the number ofmultiply/add operations for a second order recursive filter, for

direct and state space forms, for pipelining and incremental block processing approaches,

for typical factors of speedup or increase in thesample rate.

Table 4.1:Complexity of Pipelined and Block Second Order Filters

Speedup
Direct Form State Space Form

Pipelined Block Pipelined Block

1 5 5 9 9

2 7 11 13 15

4 9 25 17 30

8 11 53 21 67

16 13 109 25 142

Note thatall themultipliers in the pipelined filter arepipelined byM levels or stages, and

these pipelined multipliers require additional area for the latches. In contrast, the multi

pliers in the block implementation require single stage pipelining. The latch areas in the

pipelined implementation cannot besimply neglected, since each binary latch costs about

one third to one fourth of a binary adder in terms of silicon area. However, if we compare

the complexities of the block filter and the pipelined filter, we observe that thepipelined

filter is far more attractive for implementation, even after accounting for the latch areas

in the pipelined structure. If sufficient speed cannot be generated by pipelining alone,

then we can combine pipelining with block processing (i.e. we can get a speedup by a

factor of LM using a block sizeof L, and M pipeline stages inside the recursive loop of

the block filter) [16-18].
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In this chapter, we combine pipeline interleaving and incremental block filtering

approaches to derive extensively pipelined direct form and state spaceform incremental

block filters by introducing several pipeline stages inside the recursive loop of the incre

mental block filter. The pipelined blockrealizations are derivedby using the techniques

of scattered look-ahead computation (to intrduce several loop pipeline stages), decom

position (to obtain logarithmic complexity realization with respect to pipelining),

clustered look-ahead computation (for block state update operation), and incremental

output computation (for linear complexity in block size). The total multiplication com

plexity of our pipelined block filters is linear in block size, logarithmic with respect to

the number of looppipeline stages, andthe complexities due to pipelining andblock pro

cessing are additive. Because of the scattered look-ahead approach, the distance of the

poles or the eigenvalues of thefine-grain pipelined block filter from theorigin is identical

to that of the block filter with a single latch inside the recursive loop. Thus, the stability

of these filters is not affected due to fine-grain pipelininginside the block filter.

The organization of this chapter is as fallows. The incremental block filter structure

is derived in sections 4.2 and 4.3 respectively for direct form and state space form recur

sive filters. In sections 4.4 and 4.5, we derive fine-grain pipelined block filter structures

for direct form and state space form recursive filters respectively.

42. DIRECT FORM BLOCK FILTERS

Consider the N-th order direct form filter described by

y(n)=£fl,y(n-*) +z(n), (4.1a)

z(n)= YM(*-0. (4:1b)
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We can transform the above description to an equivalent block description, where we

compute L outputs using L inputs for ablock size ofL. The state update operation in

block filters is based onthe clustered look-ahead approach described inchapter 3. In the

clustered look-ahead approach, the output sample y(n) is computed in terms ofpast N

clustered samples y(n-M\ y(n-3#-l),..... and y(n-Af-AM-1) (i.e. bypassing (Af-1)

immediate pastoutpus), andis given by

y(n)=*£ £ Wj+M-k y(n-j-M)^M£rjz(n^j). (4.2)
jsb *=/+i /=°

This relation was derived inappendix 3.2 in the context ofpipelining, and is used here in

thecontext of block filtering. Leta block of samples bedenoted by

ytfO(i)= [y(i),y(i+D y(i+L-l)]T . (4.3)
In the existing block structures, the block ofoutputs y&XkL+L) are updated based on the

past block ofoutputs y<L>(*L), with asquare complexity in block size.

In the incremental block filter, we update only N states recursively using the

clustered look-ahead approach, and compute the remaining (L-N) states in a non-

recursive or sequential manner using these N updated states. The schedule of such an

incremental block filter is shown in Fig. 4.2, where the outputs y(kL+L) through

y(*L+L+N-l) are updated recursively, and the remaining (L-N) outputs y(kL+L+N)

through y(*L+2L-1) are computed in a non-recursive manner. This incremental output

computation is the key in obtaining a linear complexity implementation in block size. If

the block size is less than the filter order, the complexity is inherently proportional to

square ofthe block size, but this is not aproblem since the block size isnot large. Below

we formulate the block filter for the cases where the block size is greater than and less

than the filter order respectively.
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STATE UPDATE INCREMENTAL OUTPUT
COMPUTATION

y(N),y(N*i),«*",y(L-i>

y(L+N),y(L+N+1),"".y(2L-1)

y(2L+N),y2L+N+1)."",y(3L-1>

Fig. 42: Inaemental output computation indirect form block recursive
digital filter.
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CasehLZN

We can updateN out of the L outputsusing (see appendix 4.1)

yW(*L+L) ±1 A(L)y^\kL) + B(L)z^)(*L+N) (4.4a)

where y^Xi) is a Nxl column vector, A(L) is a NxN matrix, and B(L) is a NxL

matrix. The elements of A(L) and B(.L)are defined by (see appendix 4.1)

[A(L )J ij =̂ flAM+ia^+i-;>/-i, JJ=U AT (4.4b)
[B(L)]iy=rL^+w. (4.4c)

The (L-N) outputs y(kL+N), y (*L+W+1),..., y (*L+L-1) can be computed non-

recursively in a sequential manner using the past outputs and the corresponding inputs.

The multiplication complexity of the above state update implementation (i.e. for

updating N outputs or states) is uv+*2-M£±D. , of which (LN - N(^+lh is

due to the B(L) matrix and N2 is due to the A(L) matrix. The computation of z(*L),

z(*L+l), ..., z(*L+L-l) requires (A/+1)L multiplications, and the computation of the

last (L-N) outputs can be done usLig the past outputs with N(L-N) multiplications. The

total multiplication complexity of the direct form block filter is L(3N+1)-E<£M1

which is linear in block size L. Another direct form block structure [15] has a multiplica

tion complexity 2LN+L<k+l) , which is square in block size.

Fig. 4.3(a) shows a second order direct form word-serial recursive digital filter, and

Fig. 4.3(b) shows the corresponding block filter for a block size of 5. In this structure,

the states y (5k) and y (5*+l) are updated each block, and the outputs y (5*+2), y (5*+3),

and y (5k+4) are computed incrementally in a non-recursive or sequential manner.
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Fig. 43(b): Block implementation of the second order recursive digital
filter forblock size of 5.
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The multiplication complexity of this second order filter is (7L-3), andis same as thatof

the structure proposed in [13-14].

CaseII:L<N

For the case when block size L is less than the filter order N, only L states need to

be updated, each based onN paststates using theclustered look-ahead approach, andthe

remaining (N-L) states can be derived by delaying the available L states appropriately.

For example if L = 3 and N = 8, then we can compute the outputs y (3*+3), y (3*+4),

andy(3*+5) usingy(3*),y(3*+l), andy(3*+2) andtheirdelayed samples y (3*-1),...,

y(3*-5). Note that y(3*-l) and y(3*-4) can be obtained by delaying y(3*+2),

y (3*-2) andy (3*-5) can be derived by delaying y (3*+l), andy (3*-3) can be obtained

by delayingy (3k).

The direct form block filter can be described by (see appendix 4.1)

ytf->(*L+L) = A(L)yW(*L+L-AO + B(L)z^>(*L+L) (4.5a)

where

[A(L)J u=iaAM+ir/.y+M , i=1,2 L;j =IX...,N
[B(L)]v»rH, (4.5c)

and A(L) is LxN, B(L) is LxL.

The complexity required for computing z<L>(*L+L) is L(N+1), for computing

B(L)z^)(*L+L) is L^lT^ %and that due to A(L) is NL multiplications. Thus the total

multiplication complexity is (2N +=£^)L, which is square in block size. Fortunately,

for this case L is small.

(4.5b)
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43. STATE SPACE BLOCK DIGITAL FILTERS

Consider the state space recursive filter described by

x(»+l) =Ax(n) +btt(n) <46a>

y(n) =<?x(n) +du(n) <4-6b>
where the state x(n) is Nxl, the state update matrix A is NxN, b and c are Nxl, and d,

input sample u(n) and output sample y(n) are scalars, and N is the order of the 51ter.

Fig. 4.4(a) shows a block diagram corresponding to (4.6). For the purposes of this

chapter, the state update matrix is assumed to be quasi-diagonal (i.e. all real poles ofthe

system are ofmultiplicity less than or equal to two, and all complex poles are ofmultipli

city unity), and Ni is assumed to represent the number ofreal poles ofunity multiplicity.

(N-N\)
The quasi-diagonal state update matrix has N\ blocks ofdimension unity, and —j—

blocks of dimension 2x2. The total number of non-zero elements in A is (2N-N{),

which is linear in filter order N.

Fig.4.4(a): A word-serial statespace recursive filter.
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uiLW)

1L
JU

S^*\ Z(kL)
At)

X (kL)

J=>
±L

AL)

\y

y<U(kL)

Fig. 4.4(b): Block-state space recursive digital filter.
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x' z

«—©*! £«**" I ®
M-D4ays

Fig. 4.4(c): Definitionof processing elements.
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Unlike the direct form representation, the state space representation consists of a state

update portion, and an output computation portion. Similarly, the block state space filter

representation also consists of a block state update portion and a block output computa

tion portion. The block state update operation has a linear complexity in block size. The

block output computation in die existing block-state and parallel block-state structures

leads to a square complexity in block size. Inmis tection, we review the existing block

state [61 and the parallel block state filter structures [10]. Then we present the incremen

tal output computation approach, and using mis we derive the incremental block state

filter of complexity linear inblock size [11]. The average quantization noise at the output

of the incremental block-state structure is same as that of the block-state structure and

less than the parallel block-state structure. We also extend the incremental block state

filter structure for the case of multirate recursive filtering.

4.3.1. Block-State Implementation

In the block structure with block size L, each implementable latch is L-slow, i.e.

the clock rate of the latch in the block filter is L umes slower than the input sample rate.

Hence, the state of the system needs to beupdated block by block, i.e. the state x(kL+L)

is updated using x(kL), and the (L-1) intermediate states x(kL+\),..., x(*L+L-l) are

missed in the block state update process. The state update representation of the block-

state structure [6] can be derived by iterating the single-input-single-output (SISO) state

update equation (4.6a) (L-1) times, and is given by

x((k+l)L) = A^>x(*L) + B«<W>XkL) (4.7a)

where

ACM = AL (4.7b)
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B^>= (a*-^ A"b .... b] (4.7c)
„£)(„)= [U(n) n(n+l) .... tt(n+L-l)JT (4.7d)

and A^> is/Vx/v\ B^) istfxL, u^(kL) isLxl.

In the block-state structure, the block of outputs y(kL), y(kL+l\ ...., and

y (AL+L-1) are computed based on the single state x(kL) and the corresponding inputs.

This is based on the assumption that the (L-1) intermediate states are not available (since

they are missed due to the block state update process). The block output equation is

described by

y<LKkL) = C<*-h(kL) +T^Lk^\kL) (4.7e)

where

u(3k+2) u(3k+1)

y(3k) y(3k+1) y(3k+2>

Fig. 4.5: Block state implementation of a first order state space recur
sive filter for block size of 3.
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STATE

UPDATE

x(0)

x(L)

x(2L)

x(3L)

I

OUTPUT COMPUTATION

y(0).y(i),...,y(L-i)

y(L),y<L+1>....,y(2L-1>

-^> y(2L),y(2L+1> y(3L-1)

*- y(3L),y(3L+1) y(4L-1)

Fig.4.6: Partial scheduleofa block statespaceimplementation.
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Fig. 4.7(a): Aparallel block state implementation for block size 3.
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cfc>= CT eTA ... cTa*-1)]1" (4.7f)
0 i<y
d i=; (4.7g)H<ri

and

JCL)(«)= [y(«) y(n+l) .... ?(*+£-!)] T. (4.7h)
In the output equation, C^) isLxN, D&> is LxL and lower triangular, and y(L) is Lxl.

The block diagram of the block-state filter is shown in Fig. 4.4(b). The blocks marked

g(L)f £(L)a dcl) represent matrix vector multipliers, and theblock marked A(L> represents

the state update network (see Fig. 4.4(c) for definition of the processing elements). Fig.

4.5 shows the block state implementation of a first order recursive filter for a block size

of three. In theblock state filter, weuse x(0) to compute the block of outputs y^)(0), and

to update x(L) (see partial schedule in Fig. 4.6). In the next cycle, x(L) is used to com

pute next block of outputs y£)(L), and to update the state x(2L), and the schedule

repeats itself.

For the case of a quasi-diagonal state update matrix, the complexity (in terms of

multiplications) of the state update representation is (NL+2N-N\)t and the output

representation is (Mj+^A^ ') where N, L, and N\ respectively represent the order of

the system, block size, and number of real poles with unity multiplicity. The total multi

plication complexity of the block-state structure (Q,) is given by

Cb =2N(L +1) +M^tll-^1, (4.8)
and is 0(L2) for a block size of L. The asymptotic complexity per output sample is

(2^+^+i).
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43X Parallel Block-State Implementation

In parallel block-state structure [10], the system state x(n) is first decomposed into

L section states xi(n),x2(n)t ••• ^(n), which arerelated by

x2(n)x(h)=[a"A^-2...i] (4.9a)

Xl(»)

Since each implementable latch ofthe block structure isL-slow, the states in each sec

tion are updated block by block, Le. in section i the state x» (kL+L) iscomputed based on

the state x,- (kL). Using each section state, L partial outputs are computed and the L sys

tem outputs are obtained by adding the corresponding L partial outputs (see Fig. 4.7(a)).

Substituting (4.9a) in (4.7a) and (4.7e), the state update and output representations of the

parallel block-state structure can bederived tobe[10]

Xi(kL+L) = ALXi(kL) + bu(kL+i-l), i=l,2 L

y(kL+L-l)

qTaL-I f^AL-2
c^AL cTAL~l

cTAfc,-2 c^A2L-3

crb

cTA^-2b cTA^b

For the case of a quasi-diagonal state update matrix, the state update complexity is

L(3N-N{) and the output computation complexity is (NL2 +L*hj***)9 leading to atotal

multiplication complexity of

Cp =NL(L+3)+ L^+1> -NXL .

c^A

cTaL-i

8

d

xi(*L)
x2(kL)

*l(U<)

u(kL+L-l)

(4.9b)

(4.9c)

(4.10)

The asymptotic complexity ofthe parallel block-state structure is O(NL2), which is N
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u(3k)

u(3k*1)

u(3k*2>

Fig. 4.7(b): Parallel block implementation of afirst order recursive
filter.
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times higher than that of the block-state structure. The complexity per output sample is

(W(L+3HLt* -Nj). The decomposition of the system state leads to this higher com

plexity. Fig. 4.7(b) shows the parallel block implementation of a first order recursive

filter for a block size of 3. (Note that in [10], the author represented the multiplication

complexity of the parallel block-state structure to be much less than that of the block-

state structure. The error resulted from not including a factor of L in the complexity

expression.)

43.3. Incremental Block-State Implementation

In the incremental block-state structure, the state x(kL +L) is updated based on the

state x(kL) as in the block-state case. However, the output computation, which is non-

recursive, is done in a different way.Ratherthancalculating the blockof outputsin terms

of the updated state every L samples, we first calculate the intermediate states (which

were missed due to the block state update process) every / samples nonrecursively

(where/ is the increment size), and then calculate the outputs incrementally in a sequen

tial manner using these intermediate states. It is this novel output computation which

leads to an 0(L) complexity in the incremental block-state structure for a block size of

L.

In the incremental block-state structure with increment /, / outputs y(kL+pI),

y(*L+p/+l),..., y(kL+pI+I-l) are computed using the state x(kL+pI) and the inputs

u(kL+pI), u(kL+pI+l), .... i*(*L+p/+/-l) respectively, and titit intermediate state

x(*L+p/+/) is non-recursively computed using x(kL+pI) for computation of next / out

puts. Thus using x(kL), we can computey(kL), ...,y (*L+/-1) and can non-recursively

compute x(kL+I) for computation of next / outputs. The sizeof the increment / is
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STATE
UPDATE OUTPUT COMPUTATION

y(0),....y(M>

y(l)....,y(2M>

y(2l),...,y(3l-1)

y(3l) y(4l-1)

y(4l),...,y(5l-1>

y(5l),...,y(6l-1)

y(6l),...,y(7l-1)

y(7l) y(8l-D

F,g. 4.9: Partial schedule of an incre^tal Week sate digital filter
(L=4/).
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chosen to minimize the multiplication complexity. Let the block size L correspond to

(P/+G), where/ is the increment, andP and Q respectively represent the quotient and

remainder of k-. Then the size ofthe last increment is (I+Q), i.e. the computation ofthe

last (I+Q) outputs is performed based on the statex(kL+PI-I).

The state update representation of the incremental block-state structure is identical

to that of the block-state structure and is described by (4.7a). The computation of / out

puts y(kL+pI),..., y(kL+pI+I-\) and the intermediate state x(fcL+p/+7) is performed

using

ia%R»j-[ffiBj[jwfeiji,
The computation of the last (I+Q) outputsis carriedout using

yV+e\kL+PI-I) = C</42> x(kL+PI-l) + D^>u</'H2>(*iL+P7-7), (4.11b)
where the meaning of the symbols stand as defined in (4.7). A block diagram of the

incremental block-state structureis shown in Fig. 4.8, and its partial schedule is shownin

Fig. 4.9 forL = 47.Fig. 4.10(a) and4.10(b) show the incremental block state implemen

tation of a first order state space recursive digital filter for a block size of four for incre

ment sizes one and two respectively.

A family of block structures can be described by the incremental block-state struc

ture for different values of the increment /. Avalue of7£y 6.c P = 1) leads to the

block-state structure described in section 4.3.1. An optimum value of the increment /

can be derived to minimize the multiplication complexity of the incremental block-state

structure. The optimumincrement will depend upon the exact customVLSI implementa

tion architecture, or scheduling in case of a software-programmableparallel processor

, p=0X...J>-2. (4.11a)
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realization. For example, if it is notpossible to exploit the lower triangular nature of the

D matrix, then the complexity of the full matrix will need to be accounted for. In the

sequel, we assume that it is possible to exploit the lower triangular nature of D matrix,

andconsiderthe case of the quasi-diagonal stateupdate matrix. A similaranalysis can be

carried out for all other cases.

In an incremental block-state realization, the complexity of the state update equa

tion is (2N-Ni+NL), and is independent of the increment 7. The output computation

complexity for first (P-l) increments (of size 7each) is (P-l)(2IN+'2N-Ni+I(>I£l)),

and the last increment (of size (7+G)) is ((I+Q}N +Sl±Q^Q±H). The total com

plexity of the incremental block-state structure is givenby

Ci=2K(P+L) +^^+ 2(/+g) +N7(/>-l)-iV1/> , (4.12)
where P and Q are respectively quotient and remainder of h-. In the asymptotic case,

we need to minimizethe complexity per output in the outputequation whichis given by

7
^=2* +-?^+™., (4.13)

and is minimized for

7 = [V2(2N-iV*i)]I, (4.14)

where [x] represents the integernearest vox. At the optimum increment value, the mul

tiplication complexity associated with the computation of the intermediate state and that

of the 7 outputs are approximately the same. In the asymptotic case (i.e. very large L

and Q = 0), the complexity of the incremental block-state structure with optimum 7 (for

a quasi-diagonal state update matrix) is given by
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Ci^L
2QN-N^2(2N-N>)12 1

2^2(2^-^)1T -N[V2(2rV-tfi)], (4.15)

and is linear in block size. For the special case of the incremental block-state structure

with unity increment (/ = 1), the complexity per output sample is (5N -N\ + 1).

Table 4.2 summarizes the asymptotic complexity (in terms of number of multiplica

tions) per output sample for various structures for the case of a quasi-diagonal state

update matrix.

Table 42: Asymptotic Implementation Complexity per Output Sample

Implementation

Direct

SISO State Space

Block-State

Parallel Block-State

Number of Multiplications per Sample

2A/ + 1

3N+NL +&£)--Ni
. , ™. . ** * **t 2(2N-N^rt2(2N-Nil2 ^ \Incremental Block-State 3N + 2^2(2N-Nl)J +T

Table 4.3 summarizes the multiplication complexity (Comp) in terms of number of mul

tiplications for typical filter orders (N) and block sizes (L) for block-state (BS), parallel

block-state (PBS), and incremental block-state (IBS) structure with optimum increment

(7)forN! = 0.
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Table 43: ComplexityComparison for DifferentBlock Structures

N

L-20 L«40 L-60

BS

Comp

PBS

Comp

IBS
BS

Comp

PBS

Comp

IBS
BS

Comp

PBS

Comp

IBS

Comp I Comp I Comp I

2

4

6

8

294

378

462

546

1130

2050

2970

3890

179

310

425

527

3

6

7

7

984

1148

1312

1476

4260

7700

11140

14580

366

644

892

1134

3

4

6

7

2074

2318

2562

2806

9390

16950

24510

32070

554

974

1372

1742

3

4

7

7

For large block sizes, it is possible to achieve linear speedup (in execution time) in

caseof a software-programmable parallel processor implementation (using the incremen

tal block-state recursive digital filter) as the number of processors increases. In the case

of a custom VLSI realization, a linear increase in sampling rate can be achieved by using

block processing at theexpense of a linearly proportional increase in hardware.

Since the recursive state update for block-state and incremental block-state struc

tures are identical, the average roundoff noise at the output is the same for these two

structures(under the assumption that the roundoffis performedat the output of statevari

ables and at the system outputs, and the noise sources are white stationary with zero

mean and statistically independent). The roundoff noisefor the incremental block filter is

derived in appendix 4.2. It has been shown in [10] that the average roundoffnoiseat the

outputof the parallel block-state structure is greater than that of the block-state structure

(and hence than the incremental block-state structure).
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43.4. Multi-Rate Incremental Block-State Filter

In this section, we study the incremental block state realization of multi-rate recur

sive digital filters. Multi-rate block recursive filtering based on the block-state structure

has been studied in [19].

u(-)'

<fu>
J-K SHIFT-INVARIANT

SYSTEM

Fig.4.11(a): A multiraterecursive digital filter.

u(-)-

y(-)

<fy-£fU>

Fig. 4.11(b): An equivalent representation the filter in (a).

y(-)

(fy Kfu)
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Any multirate system with sampling rate alteration by afactor of -^ can be realized

using a 1-to-/ interpolator at the input, and aJC-to-1 decimator at the output (where the

greatest common divisor of/ and K is unity) (see Fig. 4.11(a) and 11(b)). Thus, only

one out of/ inputs isnon-zero and only one out ofAT outputs needs tobe computed. We

assume each /-th input to benon-zero and the 1-st (ofeach of the JO outputs to becom

puted to obtain minimum complexity. Thus for an input (output) block size ofKL (JL),

KL non-zero inputs u(pKJL+J-l), u(pKJL+2J-l) u(pKJL+KLJ-\) are processed

to generate JL non-zero outputs yipKJL), y(pKJL+K) y(pKJLMJL-\)K) (see Fig.

4.11(c)). In the incremental block-state structure with an input (output) increment KI

(//), // outputs y(pKJL+qKJI), y(pKJL+qKJI+K) y(pKJL+qKJI+(JI-l)K) are

computed using the state x(pKJL+qKJI), and KI non-zero inputs u(pKJL+qKJI+J-l),

u(pKJL+qKJI+2J-l), ...tu(pKJL+qKJI+KIJ-l). The state x(pKJL+(q+\)KJl) is then

computed non-recursively using the state x(pKJL+qKJI) and the KI non-zero inputs (to

be used for the computation of the next output increment). The size of the first (P-\)

output increments is //, and that of the last is /(/+fi) where P and Q are respectively

the quotient and remainder of-j-.

The state update equation of the incremental block-state recursive multirate filter is

described by

x((p+l)KJL) = AWL>x<pKJL) + BWWKlLXpKjL) (4.i6)

and has a multiplication complexity of (2N -N\ + KLN) (since number of non-zero

inputs is only KL).

The computation of/ outputs y(pKJL+qKJI+rKJ), y(pKJL+qKJI+rKJ+K), ...,

y(pKJL+qKJI+rKJ+KJ-K) of the fa+l)-th increment can be described by
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y (pKJL+qKJI+rKJ+KJ-K)

^TACrK-fy-K/-!)* cTA<rir-i>/+</-1>*:

trX7

cTAr/tf4jry-jr

u(pKJL+qKJl+rKJ+KJ-l)

157

x(pKJL+qKJI) +

$=0,l,...,(/>-2);r=0,l,...,(/-l). (4.17a)
Thecomplexity associated with the computation of above / outputs is (JN+rKJ+£) mul

tiplications, where

A=L jj +L-5jLJ +....+L ^j**1] (4.17b)
andLx| represents the floor function ofx. The complexity associated withcomputation

of // outputs (i.e. for r- 0-to-(/-l)) is (JIN+IA+JKI^'lh multiplications. Apartial

schedule of a multirate incremental block recursive digital filter is shown in Fig. 4.12 (for

L=47).

The non-recursive state updateequation for the (?+l)-th increment is described by

x(pKJL+(q+UK/7) = A<™hL(pKJL+qKJI) + BWrW™XpKJL+qKJI), (4.18)

and leads to a complexity of (2N-Ni+KIN) multiplications (since only KI inputs are

non-zero). Thus the complexity associated with each (except last) increment (of input

size KI and output size //) is given by

JIC'io^IA+lZy^^ +JIN +W^d +KIN, (4.19)
where C'u, represents the complexity per output sample in the output equation of the

incremental block structure. The above complexity is minimized for
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With the above optimum increment, the asymptotic complexity per output sample (in

terms of number of multiplications) is approximately given by

C—7-+*+ „^l2(2N-Nj), T T"
27[ \ ^j ]

atid is independent ofblock size. Note that the asymptotic complexity per output sample

of the block-state recursive filter in [19] is

proportional to block size, and much larger than that ofthe incremental block-state struc

ture presented in this chapter.

Interpolation and decimation by integer factors are special cases of the general

multi-rate filtering case. A sampling rate increase (interpolation) by factor / can be

obtained with unity K, and a sampling rate decrease (decimation) by factor K can be

obtained with unity /. Forboth these cases, the value ofAis unity.

4.4. DIRECT FORM PIPELINED BLOCK RECURSIVE FILTERS

We can get a speedup by a factor ofLM by using a block size L and M stages of

pipelining inside the recursive loop [16-18]. The pipelined block state update operations

for thecases when the block size (L) is greater than the filter order (AT) and less than the

filter order need tobe studied separately. We assume M tobe a power of2 toexploit the

decomposition ofthe non-recursive portion in an efficient manner. We first consider the

caseL>N and then the caseL<N.

KN.xr.KL KLA , which is linearly
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Casel.LZN:

The direct form block filter is described by

yvV>(*L+L) = A(JL)yWXkL) + B(f.)z^\kL+N). (4.22)

In a pipelined block realization with M loop pipeline stages, we need to update

y^XkL+ML) using the statey^XkL). We canderive a pipelined blockstateupdate real

ization by iterating (4.1) by (M-1) times to be given by

yW(*L+AfL) = A*(L)yW^ (4.23a)

where

Zo(m) = B(L)z^Xm)t (4.23b)

and the elements of KM(L) are derived in appendix 4.3. The representation of (4.23) can

be rewritten (using the decomposition technique) as

zl+1(m) = zl(m) + A2'z/(m -2'L), / =0,1,.... (log2M -1) (4.24a)

yW(*L+ML) = AM(L)y<NXkL) + zlogaW((*+M-l)L+AO. (4.24b)

The above pipelined block state update operation of (4.23) can also be derived alter

natively starting from the block filter representation. We can us; a block size of ML in

(4.4a) to get

yvV)(*L+ML) = A(ML )y<">(*L) + B(ML )z<MLXkL+N), (4.25)

which reduces to (4.23) after using (A4.U) and (A4.13).

In the pipelined block implementation, z&X(k+M-l)L+N) is computed using the

L inputs, and is successively delayed toobtain z^>((*+/)L+N) for i = (M-2) through 0.

This computation requires L(N+l) multiplication operations. The computation of zo(m)

requires (NL - M+ O multiplication operations. The state update implementation of
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(4.24) requires N2(log2M +1) multiplication operations. The final (L-N) outputs are

computed non-recursively inanincremental manner using N(L-N) multiplication opera

tions. Thus, the total multiplication complexity of the pipelined direct form filter is

L(3N+1)+N2log2Af - N(N+l)
2

pipeline stages, and pipelining and block processing complexities are additive. Fig. 4.13

shows theimplementation of a second order direct form recursive digital filter for a block

size of 5, and 4 pipelining stages inside the recursive loop using the decomposition, and

incremental output computation techniques.

CaseII:L<N:

For this case, we need to compute (as well as update) only L states, and the (N-L)

states can be derived from the L available states. The L outputs y&XkL+ML) could be

updated using the states y^XkL-(N-L)) using the clustered look-ahead approach. In

this implementation, each of the states y (kL-(N-L)) through y (kL-l) can be derived by

delaying the L available states y(kL), y(kL+l), ..., and y(*L+L-l). However, such a

realization will contain a single isolated loop delay operator, and hence the decomposi

tion technique cannot be exploited thus leading to a linear complexity in M. Instead we

can obtain another realization in which all loops contain M delay operators, so that we

can exploit the decomposition technique to get a logarithmic complexity with respect to

M. In this new pipelined block realization, we express y&XkL+ML) in terms of

yfcXkL),y^XkL-ML),...,andy<LXkL-RML),where/? is[ ••£].

Let N=RL+S, where R and S respectively correspond to the quotient and

remainder of j-. In the block filter in (4.5), we update the block of states y&XkL+L)

, which is linear in block size, logarithmic in loop
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using jG-XkL), yQ-XkL-L),...., and y^XkL-RL). The block filter in (4.5) can berewrit

ten as

yfc>(*L+L)= f\Qi+i(l)y«'X(k-i)L) +BzV>XkL+L), (4.26a)

where

[o IA(L)] =[q*+i(1) IQ*(D I•••IQi(l)] , (4.26b)
and the explicit dependence of the Q,- and B matrices on L has been omitted for simpli

city, and Qi(l)*s and B are LxL, and 0 is Lx(L-S). Since only last S states of

yQ'X(k-R)L) are needed, the first (L-S) columns of Qj?+i(l) correspond to zero. Hence,

each matrix vector multiplication Qi+i(l)y<L>((&-<)L) leads to L2 multiplications for i

ranging from 0 to J?-l, and SL multiplications for i equal to R. The B matrix has

**fe~*) elements which are neither zero nor unity, and leads to My*) multiplication

complexity. The derivation of z^XkL+L) requires L(N+1) multiplications. Thus, the

total multiplication complexity of the block filter is RL2 +SL +L^L^ +L(N+\) or

In the decomposition based fine-grain pipelined block processing implementation,

we compute the L states y&XkL+ML) using the states y^XkL), y&XkL-ML), ...,

yV-XkL-RML). Here each of the states y^XkL-ML),.... y&XkL-RML) can be derived

from y<L>(JfcL) by usingM delay operators. By going through the decomposition steps as

in section 3.4.3, we can derive the M stage pipelined block realization to be given by

yO-XkL+ML) =$Qi+i(M)y<LXkL-iML) +zlog3M(kL+ML), (4.27a)

where
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Zi+l(kL+ML)«Zi(kL+ML)+ f (-1)/Q>+i(20z,(^+AfL-2'(/+l)L), (4.27b)

i=0,l (log2M-l)

z*(kL+ML ) = Bz&XkL+ML ), (4.27c)
and Qi(2K) can be expressed in terms of Q,(AT) using the matrix versions of (A3.6)

through (A3.8). Theabove can be proved by induction or byfollowing themethod out

lined in section 3.4.3. Notice that the first (L-S) columns of Q*+i(2*) are zero for any

k.The complexity corresponding tothe implementation jf z^XkL+ML) isL(iV+1) mul

tiplications, and that for Bz&XkL+ML) is L(L£~l) multiplications. The multiplication

complexity to implement (4.27b) is NL for each i or NL(log2M) for all i 's. The com

plexity of implementing (4.27a) is also NL. The total multiplication complexity of this

L+limplementation is L 2N+- +NL(log2M), which is logarithmic withrespect to M,

linear in L, andis additive with respect to combining pipelining andblock processing.

4.5. STATE SPACE FORM PIPELINED BLOCK DIGITAL FILTERS

Wecan use the techniques ofdecomposition and incremental output computation to

obtain efficient realization of pipelined state space block recursive digital filters. The

state updaterepresentation in (4.6)can be recaste as

[(*L+ML) =A"*x(*L)+[bCM IAtf->B<L> I••• IA^-^^)]
u<LX(k+M-l)L)
u<LX(k+M-2)L)

uU-XkL)

(4.28a)
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where

A^>=A* (4.28b)

B0->= AL-*b IA^b I••• lb] (4.28c)
u(L)(n)= U(n)u(n+1) ••• ^(n+L-l)]7, (4.28d)

and A^> is NxN, B^> is NxL, and u^> is Lxl. Using the decomposition technique, the

state update representation of (4.28) can be rewritten as (for the case where M can be

expressed as a power of 2)

x(kL+ML) =A^xQdL >f ziog^Ob+Af-DL) (4.29a)

where

zi+i((k+M-l)L) =Zi((k+M-1)L) +A^2'z,((it+Af-l-2')L), (4.29b)

i=0,2,...,log2A/-l

ZQ((k+M-l)L) =Bd>uRGt4M-l)L). (4.29c)

The multiplication complexity to implement (4.29c) isNL, (4.29b) is (2N - Ni)(log2M)

for the case of a quasi-diagonal state update matrix, and that for (4.29a) is (2N -N\).

The total state update implementation complexity is (2N-N\)(log2M+l) + NL multipli

cations. The L outputs y(kL) y(kL+L-l) are computed incrementally using (4.11)

(exactly in the same manner as described in section 4.3.3). Adding the output computa

tion complexity of (4.13) to the state update complexity, wecan derive the total multipli

cation complexity of this realization to be

Q^L
... 2(2N-Ni>rrt2(2N-Nl)l2 1
*" 2IV2(2N-Ni)l T

+(7N-Ni)\og2M-NlV2(2tf-Ni)J , (4.30)

which is linear in L, logarithmic in M, and the complexities due to pipelining and block

processing are additive. Fig. 4.14 shows apipelined block implementation of apipelined

block filter with L =41+Q, and M loop pipeline stages. Fig. 4.15 shows pipelined block
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implementation ofa first order recursive digital filter for block size of4, increment size

2, and 4 pipeline stages inside the recursive loop. The roundoff error in pipelined incre

mental block state filter is studied in appendix 4.4, and it is shown mat the average

roundoff error strictly improves withincrease in thenumber of loop pipeline stages.

0-»

A M

Fig. 4.15: 4-stage pipelined inaemental first order block filter for a
block size of four and increment size of two obtained using the decom
position technique.
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To conclude, in a block realization, the eigenvaluesof the system move much closer

to the origin (the eigenvalues of the block filter are L-th power of that of the original

filter for block size L). In a pipelined filter with M loop pipeline stages, the distance of

the canceling poles from the origin is same asthat of the original filter, and for each pole

in the original filter, (M-1) additional poles ere added atequal angular and radial spac

ing. In a pipelined block filter with M loop pipeline stages and block size L, the distance

of the poles are same as that of the block filter with block size L (and M = 1). As an

example, for a first order system with block size 3,and 4 loop pipeline stages, the eigen

values are at±a3 and± ja3, where a is the eigenvalue of the original system. The same

sample rate can also be achieved with a block structure with block size 12, and this sys

tem would have a single pole at a12. If we pipeline the loop by 12 stages to achieve the

same sample rate, then the pipelined system would have 12 poles spaced 30degrees apart

on the circle at a distance a units apart from the origin (the pole at a is the original pole

at a, and the remaining 11 arecanceling poles).

4.6. CONCLUSION

We have proposed an incremental output computation technique, and using this we

have derived incremental block filter structures for direct form and state space form

recursive digital filters of complexity linear in block size. We have combined the incre

mental block filtering and the scattered look-ahead and decomposition based pipelining

approaches to derive fine-grain pipelined block filter realizations of direct form and state

space form recursive digital filters with complexity linear in block size, logarithmic in

number of loop pipeline stages, and additive with respect to combining pipelining and

block filtering.
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In the next chapter, we extend the look-ahead and scattered look-ahead computa

tion, and incremental block filtering techniques to derive high performance architectures

of time-varying and adaptive digitalfilters.

4.7. APPENDICES

4.7.1. Appendix 4.1

In thisappendix, we derive theblock state update operation of the direct formrecur

sive digital filter.

In appendix 3.2, we derived

atrj+M-i y(n-y-M)+A^1r>z(/i-y) (A4.1)
in the context of clustered look-ahead based pipelined realization of recursive digital

filters. The above can be rewritten as

'<->-%[,#,

-%
Casel.LZN

iJf-jPlfN-l-j+M-t

aN-l+^M+H-2

y(n-M^+l+j) +H£rM.Mz(n-M+l+JXA4.2)

y(n-M-N+1+j) +H^rM^.lz(n-M+\+j)

For the case where the block size is greater than the filter order, we need to express

the N states y(kL+L) through y(kL+L+N-l) in terms of the N clustered past states

y(kL) throughy(kL+N-l). Substituting n = AL+L+i and M =L-AJ+i+l in (A4.2), we

have

ydcL+L+i)**^ ,<*N-l+lrL-N+l+i-j-l y(kL+j)+L^lrL^,+Hz(kL+N+j). (A4.3)
The matrix formulation for computing the N outputs can be derived by substituting
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i = 0,1,...»N-l in the above equation, and is given in (4.4a).

CaseII:L<N

For the case when the block size is less than the filter order, we need to compute the

L outputs y(kL+L) through y(*L+2L-l) using the clustered N states y(kL+L-N)

through y(kL+L-1). Substituting n = kL+L+i and M= i+l in (A4.2), we have

y(kL+L+i) = £ ^./+irz+<w-1 y(*L4L-tf+/)+]£rwz<tf,+L+,/) .(A4.4)
The matrix formulation for computing the L outputs can be derived by substituting

j = 0,1,..., L-1 in (A4.4), and is given by (4.5a).

4.7.2. Appendix 42

In this appendix, we derive an expression for the roundoff noise error in an incre

mental block state filter, and showthat the average noiselevel at the outputsof the incre

mental block-state filter is same as that of the block-state filter and less than the parallel

block-state filter. For comparison purposes, we assume that the roundoff is performed

only at the outputs ofthe state-variable summing nodes, and at the summing nodes ofthe

filter outputs. All roundoff noise sources arc assumed to be statistically independent and

stationary white with zero mean.

Theroundoff error at the summing nodes ofthe state variables can bedescribed by

x(kL +L) =ALx(kL) + et(kL), (A4.5)

where e, is of dimension N xl and

The matrix 1# represents the unity matrix ofdimension N. The variance of the errors at

the summing nodes ofthe state variables isdescribed by the covariance matrix
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Q=e[x±t] =A*-Q(A*y +ofa -Co22^(AT>°L • (A4.7)
The errorat the summing node of the i -thoutput is described by

y(*L+i) =cTA'iQtL) +e(JkL+i), (A4.8)
where thelastterm corresponds to the error at theoutput summation node and

Efe^flL-tf)] =<tf.
The varianceof the error at the i -th outputsumming node is given by (using (A4.7))

-SUcTA'* f\APL(ATyL(ATyc+ 1. (A4.9)
The averageroundoffnoise at the outputsis givenby (using (A4.9))

^•=W=rcTAV(Ar)Pc+1-
(A4.10)

The average roundoff noise for the block-state filterhas been verified to be exactly same

as that given by (A4.10) [8]. In [11] the roundoff noise of the parallel block-state has

been derived and shown to be greater than that of the block-state filter. Hence, to con

clude, the average roundoff noise of the incremental block-state filter is same as that of

the block-state filter and less than that of the parallel block-state filter.

4.73. Appendix 43

In this appendix, we derive an expression for the elements of AM(L) as a function

of filter coefficients and the sequence r, (for the case when M can be expressed as a

power of 2). This expression is useful for deriving pipelined block realization of direct

form recursive digital filters for the case L2N. The sequence rx has been defined in

appendix 3.1.

Theorem A4.1: The elements of AM (L) are givenby
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[a*(L)] $j =j^-*ito#-**-*«* (A4.ll)
Proof, (by induction): Assume (A4.11) is true for A/, and then prove that it also holds for

2Af. The elements of A2*1 (L) are givenby

[a2W(L)] v-J [a"(I)] u[a"CL>] /y (A4.12)
=jL\ M*N-kr^i-N+i-t+k £*N-mrLM-N+H+m

=S>fl^l[i ,0N-*rUlf-A7+i-/+* rLW-JV+/-;+m

=^Jfl/v-m rjiM-N+i-j+m using theorem (A3.1) fiE£> .

Corollary: AM(KL) = A™(L).

Theorem A42:

B(ML)=[aw-HL)B(L) AW-2(L)B(L) ••• B(L)j (A4.13)

Proof. From (4.5c), we have

[B(ML)] iJkL+i =ruL-N+i-kL-j • (A4.14a)
We need to prove that the above element must be the (/-th element of AA/_1~*(L)B(L).

This element is given by

[a"-i-*(L)B(L)] „=JjA^"*(L)] [̂B(L)] m; (A4.14b)
f(A#-i_*)L-N+;-m-* 1-^+m-y

= r/nL-N+i-kL-j using theorem A3.1 fiED .
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4.7.4. Appendix 4.4

In this appendix, wederive the roundoff error in a pipelined block state space filter

with block sizeL andM loop pipeline stages, and show thatthiserroris strictly less than

mat of a block filter with block size L (i.e. with M-1) under the assumptions stated in

appendix 4.2.

The roundoff error at the summing nodes of the state variables of the pipelined

block filter is described by

x(kL + ML) = AMLi(kL) + es(kL +ML), (A4.15)

where e, is of dimension N xl and

E^e/j^o2^. (A4.16)
The matrix Is represents the unity matrixof dimension N. The variance of the errors at

the summingnodes of the state variablesis describedby the covariance matrx

Q=e[xxt] =A^CKA^ +Ob2fc =Oo2|̂ ApA^Ar)PM' . (A4.17)
The error at the summing node of the i -th output of the block filter is described by

?(kL+i) = c?A'iQfcL) + e(kL+i), (A4.18)

where the last term corresponds to the error at the output summation node and

e[«?2(*L+o] =<tf.
The variance of the error at the i -th output summing node is given by (using (A4.17))

V =c A!
p-

The average roundoff noise at the outputs is given by (using (A4.19))

T" =<^AI ZLA^L(A7)pAtt(Ar)lc+1 • (A4.19)

Gov _ i^6 ' = 1tf^pj
"oj Lai ~*E M f\APML(ATyML (AJ-yc+i. <A4-20>
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which is a strictly decreasing function in M.
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ADAPTIVE DIGITAL FILTERS

5.1. INTRODUCTION

In chapters 3 and 4, we proposed look-ahead and decomposition techniques to

implement recursive digital filters using fine-grain pipelining, and developed the incre

mental block filter structure for block implementation of recursive digital filters. Many

real-time applications, such as high-end storage devices, system identification, spectrum

estimation, and image processing require high sample rate implementation of adaptive

digital filters. Unlike in recursive filters, the coefficients in adaptive digital filters need to

be updated each sample period (so as to minimize some error criterion). The tap

coefficients are usually updated using the errorinnovations and the past coefficients. This

updating of the tap coefficients in the adaptive filters in each sample period makes their

high-speed implementation difficult and challenging.

The notion of block processing [1-12] was usedin [13] to derive an architecture for

high-speed implementation of adaptive digital filters. Although the block architecture

improves the iteration bound [14-15] in adaptive filters, it does so at a considerable

expense in hardware. The block structures are also often referred to as word-parallel or

vector processing in theliterature (see Fig. 5.1 for definition of word-serial/word-parallel,

bit-serial/bit-parallel terminologies). These block filters contain a single L-slow [16]



ADAPTIVE FILTERS 177

latch inside the loop, and belong to the class of word-level pipelined architectures. In

mis chapter, we use the look-ahead and decomposition techniques [6,17-19] to develop

high sampling rate architectures for adaptive digital filters using fine-grain pipelining.

Our implementations are pipelined at bit- or multi-bit level, and require logarithmic com

plexity with respect to speedup or level ofloop pipelining. When pipelining is not ade

quate to achieve the desired speedup, we combine incremental block processing with

fine-grain pipelining to achieve high-speed [12].
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BIT PARALLEL

WORD PARALLEL

BIT SERIAL

WORD PARALLEL

BIT PARALLEL

^

I I I —I

i
i
i

i



ADAPTIVE FILTERS 178

In a blockimplementation with block sizeL andM looppipeline stages, the imple-

mentable loop delay operator corresponds to z~UA (at the sample rate). However, the

delay operator available in most recursive algorithms corresponds tor"1. The additional

concurrency is created byusing (LM-l) steps of look-ahead and LM-way interleaving is

not needed. The complexity of our fine-grain pipelined block architecture is linear in

block sizeand is asymptotically same as that of the non-recursive systems (for both bit-

serial and bit-parallel realizations).

Look-ahead computation applies to digital filters, and also to adaptive filters since

therecursive portion of such filters is linear forall the adaptation algorithms proposed to

date. Adaptive systems can be implemented by using transversal structures [20, ch.3],

triangular arrays based on QR decomposition [21-25], or lattice structures [20, ch.4,6].

The triangular arrays and state space based transversal filters require O(N2) complexity,

whereN is the order of the adaptive filter. Furthermore, pipelining the least squarestruc

tures will lead to much highercomplexity since the loopcomputation in these structures

involves square root and division, and these operations lead to an O(IV2) latency as com

pared to O(W) latency in multiplications for a word length of W. To avoid the global

error adaptation bottleneck in the adaptive filter (as shown in Fig. 5.2), block adaptation

scheme (not to be confused with block or word-parallel structures discussed in this

chapter) has been proposed [26-27], but these structures suffer from slower tracking

capability at high sampling rates. Adaptive lattice filters lead to a complexity linear in

filter order, and avoid the global error bottleneck, since the coefficient of each stage is

adapted order-recursively based on the error residual of the previous stage. These struc

tures are best suited for high sampling rate realizations, since the adaptation coefficient

recursion inside each stage is linear in nature. Hence, we have concluded that the best
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adaptive filter structure for high sampling rate implementations is the adaptive lattice

filter. Specifically, the coefficient update of any lattice stage simplifies to a first-order

linear time-varying recursion, which can beimplemented with arbitrary concurrency.

The organization of the chapter is as follows. The look-ahead and decomposition

techniques are extended to linear time-varying recursive systems in section 5.2. Fine-

grain pipelined block architectures for adaptive lattice filters are derived in section 5.3

using thenormalized stochastic gradient lattice filter as an example. The complexity and

latency issues are addressed in section 5.4, and the implementation methodology trade

offs are discussed in section 5.5.

y(n-i+1)
• • • •

_ y(n-i+2>t—i yin

Fig. 52: Global error bottleneck in transversal adaptive filter.
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•(n+7)

udi+7) i m

a(n)

u(n)

Fig. 53(a): A first-order lineartime-varying recursion.

Hg. 5.3(b): An equivalent pipelined recursion obtained using look-
ahead with 8 pipeline stages inside therecursive loop.
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5X LOOK-AHEAD IN TIME-VARYING FILTERS

First we address look-ahead and decomposition in first-order linear time-varying

system and then in higher order time-varying systems.

5.2.L First Order Linear Time-Varying Recursion

Consider the first-order linear time-varying recursion shown in Fig. 5.3(a) and

described by

x(n+l) = a(n)x(n) + u(n), x(0)=xq. (5.1a)
Anequivalent recursion using (M-l)-steps of look-ahead can beobtained as:

x(ii+Af)-fj[a<ii4M-i-l)*0O* l«(«-tf#-l)j|j«(»+W-''-l) ••• ^a(«+M-M)

The initial states can again be precomputed as in the time-invariant case. For a causal

input sequence, the starting initial states can bederived tobe [17]

«##
. (5.1b)

x(0)=jr0. *(-!) = ijaH) "xo, i =1X~*(M-1), (5.1c)

wherethe values of the non-zero time-varying coefficients a (-1), • • • a (-A#+l) can be

chosen arbitrarily. The implementation of this recursion is shown in Fig. 5.3(b), and has

amultiplication complexity (2M-1), which is linear in steps of look-ahead. The product

of the coefficients can no longer be pre-computed because of the time-varying nature of

the recursion. However, these can be dynamically computed by a separate array, which

can be fully pipelined because it is non-recursive. Hence, as in the time-invariant filter,

full pipelining of the recursive portion of the system can be achieved using look-ahead

computation.

For situations whereM can be expressed as a powerof 2, we can use the decompo

sition technique to obtain an implementation, which requires a logarithmic increase in
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hardware with respect to the number of steps of look-ahead. The decomposed state

update implementation is described by

x(n+M)=f]08tf(n+M-l)x(n) + z]ogtf(n+M-l) (5.2a)

where

fi+i(n+M-l)s/ifo+Af-D/ifo+Af-l-*), fo(n+M-l) = a(n+M-l), (5.2b)

zl+i(n+A/-l) = 2l(»+A/-l)+/l(»+A/-l)rl(n+M-l-2/), (5.2c)

z&n+M-l) = u(n+M-1), i = 0,1 (log2M-l),

and requires a complexity of (21og2M +1) multiplications. A pipelined decomposed

implementation of the first-order time-varying system is shown inFig. 5.3(c) for M- 8.

•<n*7)

-to<n*7)

u(n+7)

-Zo<n*7)
A^Hs^,

x,(n*7r—' x^n*7* *^n+7) «(n*8»
•b

~<U -A- •♦•b

Hg. 53(c): Pipelined decomposed first-order time-varying recursion.
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522. Higher Order LinearTime-Varying Filters

Now weillustrate the application ofscattered look-ahead and decomposition princi

ples for pipelining ofhigher order time-varying filters using asecond-order time-varying

filter as an example. Consider the system

x(n) =ax(n)x(n-l) +a2(n)x(n-2) +u(n). (5.3a)
Wecanuse the scattered look-ahead approach to expressx(n) as a function ofx(n-M)

and jf (n-2M), and exploit the decomposition technique toobtain a logarithmic complex

ity. After some manipulation, the M stage pipelined filter is

x(n+M)=f)o^(n+M)x(n) +gto^(n+M)x(n-M) + Z)OEtf(n+M)t (5.3b)

where

< -ulo fi(n+M)gi(n+M-2^)gi(n-rM-2^)
gM(n+M) = fi(n+M-2^) (53d)

zM(n+M) -i|fo+W>+/ifo*Mto0i^-2O-

(5.3e)

/o(n+Af) = fli(ii+Af)
go(n+M)= a2(n+M), i = 0,1 (log2M-l). (5.30
zo(n+Af) = tt(n+Af)

This realization can be implemented with (51og2Af + 2) multipliers (each pipelined byM

stages), and log2M pipelined dividers. Note that although the original realization did not

require a divider, the pipelined realization does require dividers for the scattered look-

ahead technique to be applicable. Since the adaptive lattice filter stages correspond to a

first order time-varying filter, we will not pursue the higher order time-varying filters

further in this chapter.
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53. HIGH SAMPLE RATE ADAPTIVE FILTERING

In this section, we derive high sampling ratearchitectures for adaptive lattice filters

based on thetechniques of look-ahead computation, decomposition, andincremental out

put computation using the normalized stochastic gradient lattice filter algorithm as an

example. These techniques combined together lead to asymptotically optimal realizations

and provide a "system solution" to area-efficient high speed adaptive filtering. These

basic techniques apply to other lattice filter and joint process estimator algorithms as

well.

The block diagram of a word-serial lattice filter realization is shown in Fig. 5.4(a)

and the word-parallel or block or vectorized version is shown in Fig. 5.4(b). First we

define the symbols. The time indices are referred to as n for a word-serial realization

and kL in a word-parallel realization with blocksizeL. The adaptive filter is assumed to

be of order N and any intermediate stage is referred to as the p -th stage.

53.1. Initialization Lattice Stage

The initialization section of the normalized stochastic gradient lattice filter is

described by

e(n) = te(n-l)+y2(/i), e(-l) = 0 (5.4a)

ef(n\0) =eb(n\0) =-]$±, (5.4b)
and is shown in Fig. 5.5(a). This implementation can be transformed into an equivalent

pipelined block implementation using the look-ahead computation technique. An

equivalent state update realization for a block size L with M stages of pipelining inside

the recursive loop is described by
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yJfkL+ML-l)
r -, yHkL^ML-2)

e(JfcL4ML-l) =X^e(l&-l)+[lXX2 ••• \ML'l\
yHkL)

and has a multiplication/square complexity of 2ML. The non-recursive looK-ahead term

of the above state update implementation can again be implemented with the use of the

decomposition technique (see section 5.2). The LxM decomposed implementation is

described by

186

(5.5a)

(i2

<
f

v D —

1
€3(k)

*

y(n-1)

c

©"

I
c

©

Fig. 53(a): Word-serial representation of initialization normalized sto
chastic gradient adaptive lattice stage. The processing elements are
defined in Fig. 53(b).
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Fig. 53(b): Word-parallel initialization lattice stage with block size of
3and 4 stages ofloop pipelining obtained using look-ahead, decompo
sition,andincremental omputation.
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e(JtL4A£L-l) »X^eikL-l)+[1XL X21 •••W*-1*] (53b)

where

z(JUL) =V^y^+^-l-O • (5.5c)

The decomposition technique can be exploited further to obtain an implementation with

state update complexity of QL+logiM) multiplication/square operations (see Fig.

53(b)).

The forward and backward error innovations are calculated in a sequential or itera

tive manner using the incrementally computed intermediate states, i.e.

e(kL), e(kL+l),..., e(£L+L-2) (which were missed due to the block state update process)

based on the known state e(fcL-l), and the corresponding inputs. Based on the tech

niques of look-ahead computation, decomposed state update implementation, and incre

mental output computation, a pipelined block realization of the initialization section is

shown in Fig. 5.5(b) for a block size of 3, and4-stages of pipelining inside the recursive

loop. The implementation complexity of the initialization stage is QL+logzM-X)

multiplication/square operations, and2L division/square root operations.

S32. Typical Lattice Stage

Li a typical lattice stage, the error innovations are calculated in an order-recursive

manner based on the error innovations generated by the previous stage, and the

coefficients inside each stage are linearly adapted in a time-recursive manner. A typical

lattice stage is described by
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Fig. 5.6(a): Word-serial typical lattice stage.
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*/(-llp) = e>(-ll/>)= W-l) =0, 0S><W-1

- r i .ii ef(n\v)^kr^(n)eh(n-l\p)
ef{n ,p+1)" —vi-*Vio.)
* r i .11 ^(n-l\v)-kr^(n\ef(n\p)
ed(n,P+1)- Sl-k^n)
kp+i(n) =\\l-e2f(n \p)Hl-e2b(n-l\p)> k.t+l(n -1)

+ ef(n\p)eb(n-l\p)9
and is shown inFig. 5.6(a). The time-recursive coefficient or state update corresponds to

a first-order lineartime-varying recursion (as described in section 5.2) where ap+i(n) and

up+\(n ) aredescribed by

in..[[..aP+\(n) e2f(n\p)~ l-e&n-Up)
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(5.6a)

(5.6b)

(5.6c)

(5.6d)

(5.7a)

Up+i(n) =ef(n \p)eb(n-l \p). (5.7b)
An example of a word-parallel or block implementation for a block size of 3 and 4-stage

pipelining of the multiplier inside the recursive loop is shown inFig. 5.6(b) for a typical

normalized stochastic gradient lattice stage using the techniques of look-ahead transfor

mation, decomposition, andincremental output computation

5.4. COMPLEXITY AND LATENCY

Now we study the complexity and latency aspects of high-speed pipelined block

filters using the typical normalized stochastic gradient lattice stage as an example. The

complexity of the pipelined block stochastic gradient realization is (10L+21og2Af-2)

multiplications/squares, 2L divisions, and 2L square roots for a block size ofL and M

stages of pipelining inside the recursive loop (assuming M to be a power of two) (see

Fig. 5.6(b)).
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Fig. 5.6(b): Word-parallel typical lattice stage with block size of 3and
4 stages of pipelining.
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Before we derive the system latency, let us consider the latency of each computa

tional element such as multiplication/square, square root and division. For a bit-level

pipelined implementation with clock period ta, an upper bound on latency is 2Wta for a

multiplication/square operation, and W2ta for a division/square root operation (ta

corresponds to the clock period of a one-bit controlled binary adder-subtracter cell). In

our implementation, the recursive loop involves a multiplication operation and is pipe

lined by M stages. Hence, the clockperiod of the M stage pipelined multiplier approxi

mately corresponds to -nrp'a •With this clock rate, the division/square root operation will

require 2521 stages of pipelining. Thus, the latency of amultiplication/square operation

(Tm) is about M clock periods, and that of a division/square root operation (Td) is about

2521 clock periods or cycles. Note that, each clock period corresponds to L sample

periodsin a word-parallel or blockimplementation with blocksizeL.

The latency of each stage is | (2L+log2M+2)Tm +4Td\, where Tm and Td respec
tively represent word-level multiplication/square and division/square root computational

latency. The per-stage latency in terms of clock periods is Ml 2L+log 2M+2W+21 and in

terms of sampleperiods is LM\ 2L+log 2M+2W+2 , where W is the word-length.

S3. IMPLEMENTATION METHODOLOGY TRADEOFFS

In this section, we compare the complexity and latency of a word-level pipelined

(Le. with one pipelining stage inside therecursive loop) word-parallel architecture of the

typical normalized stochastic gradient adaptive filter with that of the fine-grain pipelined

word-parallel architecture using M-stages of pipelining inside the recursive loop. We

show that for a specified sampling rate realization of the adaptive lattice filter, the



ADAPTIVE FILTERS 193

amount of hardware and system latency can be saved by about a factor of M in the latter

case. These conclusions hold good for any other high-speed adaptive filter or joint pro

cess estimator architectures as well.

The pipelined word-parallel implementations can be implemented using either bit-

serial [29-32] or bit-parallel cellular arithmetic structures [33-35]. Then, we compare

performsjice of a bit-level pipelined bit-serial word-parallel (BSWP) architecture with

bit-level pipelined bit-parallel word-parallel (BPWP) architecture for a specified sam

pling rate realization.

S3.1. Word-level Pipelining vsM-stage Pipelining

Let the specified sampling rate of an adaptive filter be KMfe, wherefc is the clock

rate of a word-level pipelined word-serial filter (i.e. with one pipelining latch inside the

recursive loop). The specified sampling rate can be achieved by usinga word-level pipe

lined word-parallel architecture with block size KM, or using a pipelined word-parallel

architecture with M-stages of pipelining inside the recursive loop, and a block size of K.

The complexity of the word-level pipelined word-parallel realization with block size KM

is (10KM-2) multiplications/square operations, and 4KM division/square root opera

tions, and has a latency of KM(2KM+2W-¥2) sample periods. The complexity of the

word-parallel realization usingM stagesof pipelining inside the recursive loop and block

size K is (lOK+llo&M-l) multiplication/square operations, and 4K division/square

root operations, and has a latency of KM(2K+log2M+2W+2) sample periods. Thus, by

using M-stages of pipelining inside the recursive loop, we can save the amount of

hardware by about a factor of M and reduce the system latency by a factor of M asymp

totically with respect to K.



ADAPTIVE FILTERS

M = 1

M-4

96 128 160

Speedup

M°8

Fig. 5.7: Number of word-level operations vs speedup as afunction of
number ofpipelining stages inside the recursive loop.
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Thenumber of word-level operations are compared in Fig. 5.7fora desired speedup

(orincrease insampling rate) for various stages ofpipelining inside the recursive loop. In

the figure, the speedup corresponds to the product LM% and the number of word-level

operations corresponds to the sum of word-level multiplication, division, square and

square root units. We observe that for a desired speedup, the number of word-level

operationsreduces about linearlyas M increases.

5.5.2. Bit-Serial vs Bit-Parallel

In this section, we compare the performance of bit-level pipelined bit-serial word-

parallel (BSWP) and bit-level pipelined bit-parallel word-parallel (BPWP) methodolo

gies.

For a word-parallel implementation with M-stages of pipelining in the recursive

loop and block size L, each implementable delay corresponds to i~LM at the sample rate.

In a bit-level pipelined multiplication operation, the latency corresponds to 2W clock

periods (one clock period represents shimming delay). Hence, M is 2W in bit-parallel

methodology. Since 2W clock or bit periods represent 2 sample periods in bit-serial

methodology, M corresponds to 2 in bit-serial.

With a block size of unity, the achievable sample rate corresponds to fa in bit-

parallel methodology, and 4£- in bit-serial methodology, where W is word length, and

fa corresponds to the throughput of a latched binary controlled adder-subtractor (a single

cell). The slow speed of the bit-serial can be made up with larger block sizes to match

with the speed of the bit-parallel. Let us assume thata sampling rateof Kfa is required.

This can be achieved with a block size of K in bit-level pipelined bit-parallel methodol-
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ogy, and KW in bit-serial methodology. Note mat, the latches in the converter circuits

operate at a speed Kfa in bit-parallel methodology, and KWfa in bit-serial methodology.

The technology boundary requirement in the bit-serial methodology is thus W times

higher man that in the bit-parallel methodology. Table 5.1 summarizes the complexities

in bit-serial andbit-parallel methodologies fora sampling rateof Kfa.

Table 5.1: Bit-Serial Word-Parallel vs Bit-Parallel Word-Parallel Comparison

Characteristics

Complexity (word-level)
Complexity (cell-level)

BPWP

Mult/Sqr
10K+log2W

Div/Sqrt
AK

AKW2

BSWP

Mult/Sqr
IQKW

10KW2

Div/Sqrt
AKW

AKW2

The complexity of bit-serial and bit-parallel are asymptotically identical for a specified

sampling rate. The system complexity (of all AT stages) of the pipelined block filter is

linearly proportional to the system order and block size. This complexity requirement is

asymptotically identical to thatof the non-recursive systems.

For a sampling rate ofKfa, the latency of the bit-level pipelined bit-parallel word-

parallel implementation is 2KW(2/^+^2^+2^+3) sample periods, and that of the bit-

serial word-parallel is 2KW(2KW+2W+3) sample periods. Thus for a specified sampling

rate, thelatency of the bit-serial is much longer than that of the bit-parallel. The bit-serial

implementation can realize a wider range of sampling rates, and is particularly desirable

for low sampling rates. Furthermore, bit-serial implementations are easy to test. The

pinout requirements are identical for bit-serial and bit-parallel. However, for a specified

sampling rate, the bit-serial requires a wider technology boundary. These implementa

tion methodology comparisons are consistent with that for recursive filters aswell [19].
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5.6. CONCLUSION

Based on the techniques of look-ahead computation, decomposition based state

update implementation, and incremental output computation, we have presented pipe

lined block implementations of high sampling rate adaptive lattice filters of complexity

linear in filter order and block size. The techniques presented in mis chapter are also

applicable to joint process estimators. The implementations derived in this chapter

belong to the class of systolic [361 and wavefront type architectures [28]. The complex

ity of each cell in ourrealization is that of a latched binary-controlled adder-subtractor.

The cellular arrays for the division, square, and square rootcanbe found in [33-35]. The

data flow in division/square root arrays in [33-35] is bidirectional, and will lead to inter

leaving when pipelined. The cellular array based architectures with unidirectional data

flow can be derived with some modifications, and these can be pipelined without requir

ing interleaving. We have developed pipelinable cellular architectures for arithmetic

computations (such as, multiplication, division, and square root) in both bit-serial and

bit-parallel methodologies, whichare beyond the scope of this thesis.

The word-level pipelinedarchitecture is suitable for software-programmable imple

mentation using a coarse-grain parallel processor and can lead to linear speedup with

respect to the numberof processors. The pipelined word-serial architecture can lead to an

exponential speedup with respect to the numberof processors when a fine-grain parallel

processor is available. The pipelined word-parallel architecture (with M-stages of loop

pipelining and L block size) can be implemented using a fine-grain parallel processor to

achieve speedup by abouta factor ofM with respect to the number of processors.
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So far we have addressed high-speed implementation of one-dimensional recursive

and adaptive filters. In the next chapter, we derive high-speed implementation of two-

dimensional recursive digital filters, which are useful for real-time digital filtering of

video images.
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6.1. INTRODUCTION

In this chapter, we propose high sample rate architectures for two-dimensional

recursive filters. These filters are useful for high-speed filtering of digital images, and

will find applications in high-definition televisions (which require bandwidths oforder of

100 to 200 Mhz), high-speed image transmission, and other real-time image processing

applications. Achieving concurrency in two-dimensional non-recursive systems by the

use of pipelining and/or block processing is straightforward [1]. However, the inherent

sequential nature ofrecursive computations limits the opportunities for achieving high

speed by the use ofpipelining and/or parallelism. This inherent bottleneck in recursive

computations dictates alower (upper) bound on the iteration period (maximum achiev

able sampling rate) [2-3]. This iteration period bound in atwo-dimensional recursive sys

tem with a block size L \xL2 is given by

Di
w

(6.1)

where Si represents the set of loops in the computation graph, Dt represents the total

computational latency associated with loop /, and Mt represents the number oflatches or

delay operators inside the loop /. The maximum achievable sampling rate for the com-
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putation graph is -J-. For anon-block implementation (i.e. with unity L\ and L£, this

definition of iteration period bound reduces to that in [2-3].

It is necessary to transform these sequential computations into equivalent con

current computations, which can then be used to achieve high speed realizations by

exploiting pipelining and/or parallelism. In the previous chapters, we studied these

transformation techniques in the context of one dimensional recursive and feed-forward

adaptive lattice filters [4-7]. Specifically, we introduced new look-ahead and decomposi

tion techniques to pipeline one dimensional recursive and adaptive filters with loga

rithmic increase in hardware with respect to the numberof loop pipeline stages [6-7]. A

second approach to achieving concurrency is by block processing, where a block of

inputs are processed concurrently to generate a block of outputs [4-6, 8-31]. Several

block structures have been presented in [4-6, 8-20] for block implementation of one

dimensional recursive digital filters. In chapter 4, we introduced an incremental block

filter structure [5] for block implementation of one dimensional state space recursive

digital filters with linear complexity in block size as opposed to the square complexity

needed in the block-state structure first proposed by Barnes [12] or the parallel block-

state structure proposed by Nikias [16]. A direct form one-dimensional recursive filter

block structure with linear complexity has alsobeenrecently introduced by Wu and Cap-

pello in [19-20].

This chapter addresses efficient implementation of concurrent two-dimensional

recursive digital filters using the techniques of pipeline interleaving with M pipeline

stages insidethe recursive loop and/or block processing with blocksizeL\xL2. In a pipe

lined implementation withM loopdelays, M independent computations are processed in
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an interleaved manner. In a block implementation with block size L\yLi, we process

L\Li samples simultaneously. First we define twotypes of block implementations for a

two dimensional filter.

Definition 6J: A block implementation is referred to as a one-dimensional block imple

mentation if either L \ orL2 r. unity.

Definition 62: A block implementation is referred to as a two-dimensional block imple

mentation if both L1 and L2 are greater than unity.

In general, if the dimension of block size of a block structure (AT) is less than the filter

dimension (N)t then this blockfilter is referred to as a JT-dimensional blockfilter. When

the dimension of the block size equals the filter dimension N, we refer to it as an N-

dimensional block filter, or simply a block filter. Unlike one dimensional systems, two

and multi-dimensional linear recursive computations possess large amount of inherent

concurrency. We refer to the locus of the samples which can be concurrently computed

as the concurrent computavon region. We exploit this concurrency to derive pipelined

and one-dimensional block architectures for two-dimensional recursive digital filter,

without requiring any algorithm transformation, andwithout any extra hardware over

head (except the area required forpipeline latches). Full hardware utilization is achieved

by interleaving or indexing the input samples in a way that eliminates the sequential

dependency problem [32-34]. The major attractiveness in achieving high speed using

one-dimensional block processing approach results due to the fact that it does not require

any hardware overhead (unlike two-dimensional block processing approach), and the

implementation aspect of the system is exactly identical to that of a system without any
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recursion or feedback.

Two-dimensional block implementation of two-dimensional recursive digital filters

are derived using algorithm transformation techniques. Many two-dimensional block

structures have been presented in [21-30]. In this chapter, we extend the look-ahead

technique to two-dimensional case, and usethis to extend theone-dimensional incremen

tal block filter [5,19-20] to the two-dimensional case [31]. This two-dimensional incre

mental block filter has a multiplication complexity 0(A/ax(L?L2Xi^?)) for a block

size of LixL2, &s opposed to an 0(L}L}) multiplication complexity in the two-

dimensional block structures in [21-30]. It is also possible to exploit fast transform [35-

39] and short convolution techniques [40] in our new incremental block filter to reduce

the multiplication complexity of the block structure (in a manner similar to the existing

block filters [25,27]).

The pipeline interleaving approach is area-efficient, since it exploits concurrency

with no hardware penalty. If sufficient speed cannot be achieved by pipelining alone,

then we need to combine pipelining with one-dimensional block processing (since, one-

dimensional block processing requires a linear increase in hardware), and if the speedup

is still not adequate, then only we need to combine pipelining with (two-dimensional)

block processing.

The organization of the chapter is as follows. Section 6.2 addresses the inherent

concurrency in two-dimensional recursive systems, and presents techniques to exploit

this concurrency in the context of one-dimensional block processing and pipeline inter

leaving, and pipelined one-dimensional block processing. The two-dimensional incre

mental block digital filter is derived in section 6.3. Efficient structures which combine
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pipeline interleaving and two-dimensional block filtering approaches are studied in Sec

tion 6.4. The extension of the concurrent computation region, pipeline interleaving and

the incremental block filtering concepts to higher dimensions is outlinedin section 6.5.

6.2. PIPELINING AND ONE-DIMENSIONAL BLOCK PROCESSING

In this section, we discuss concurrency in direct form and local state space form 2D

recursive digital filters. Let a linear shift invariant quarter plane two-dimensional causal

recursive digital filter be described by

«Ul^2)-77777717 E—E 1 T' (6.2)

6.2.1. Direct Form 2D Filters

The direct form representation of the2D filter in (6.2) is described by

foreach(/i2 =0to(/2-l)) {

for each (wi^OtoC/i-l)) {

(«i.ia)WO0)

y(»i,n2)= ^ £ 4M(*i^i*r*d+jLfobiaplHr*i*r*v (6.3)

where ii(/ti,«2) and y(ni,n2) respectively represent input and output samples. The "for

each" statements indicate sequential processing with respect to the corresponding loop

index. The numbering of the first and second indices of the samples in a frame of size

/1X/2 is shown in Rg. 6.1. The above sequential processing requires J1J2 steps or

cycles. The samples in a frame can be processed row by row, column by column, or
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diagonally. For the purposes ofthis chapter, we assume row by row processing of the

samples.

6.2.1.L Sequential Processing

In a traditional rowbyrow processing of thefilter in (6.3), theoutputs areprocessed

sequentially in the order y (0,0), y(1,0),..... y(/i-l,0); y (0,1), y(1,1),...., yVi-1.1); .;

y (0^2-1). y(1^2"l) vC/r-li/r-1)' In this ordering, the computation of the output

y(n\,nz) begins at time index or cycle (ni+J\nj). The mapping of the spacial sample

location to its time index is referred to as an indexmappingfunction [41], and is given by

/(*i,/t2) = '|i+/i'|2 ^'^
for a row by row processing. This index mapping function is not unique, and similar

indexmapping functions can be obtained forcolumn by columnand diagonal processing.

x x x

(0,3) (1,3) (2,3) (3,3)

(0*2) (1*2) (&) (3*2)

(0*1) 04) (24) (3,D

(0*0) (1*0) (2*0) (3*0)
« Jl——

Fig. 6.1: Indexing of samples in a4x4 Frame.
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The index mapping function is sufficient to describe the delay operators in two-

dimensional filtering. We illustrate this with a simple example. The sample («1,112) will

beprocessed in cycle (/ii+/in2) (frotn (6.4)). The next sample in the row (ni+1,/12) will

be processed in cycle (n 1+/1*12+1)- This implies the row delay operator 2f1 corresponds

to a single delay. Similarly the sample y(»i^2+l) will be processed in cycle

(»i+/i/t2+7i). This implies the column delay operator zf1 represents J\ delays (often

referred to asa line delay in literature). These delay operators are obvious from examina

tion of the coefficients of n\ and n2 in (6.4) also. In (6.4), the coefficients of n1and n2

are respectively 1 and J\, and these correspond to the row and column delay operators.

Fig. 6.2 shows a block diagram ofa two-dimensional block filter for Na =Afc = 1 using

appropriate row and column delay operators. The iteration bound for this implementa

tionis the time required fora word leve? multiplication and twoadditions.

s+ax

I |a10 jur;

7y—(x>—:

y(a,.n2 yln^Lng)

Fig. 62: A two-dimensional recursive digital filter.
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We define a segment to correspond to the number of rows being processed con

currently, and we assume the filtering process to be performed by appending the begin

ning ofthe next segment to the end ofthe current segment temporally. In the traditional

row by row processing, a single row is processed at any time, and the beginning of the

second row is appended to the end of the first row, and the beginning of the third row is

appended to the end of the second row etc. Thus, a segment in this realization

corresponds to a single row.

6.2.1.2. Concurrency in Two-Dimensional Filters

In a two-dimensional recursive system, several outputs can be computed con

currently, since these computations are not mutually constrained by any precedence rela

tion. For example, the outputsy (5,0), y (4,1), y (3,2),y (2,3),y (1,4), andy (0,5) are mutu

ally independent and can be computed in parallel. Fig. 6.3 illustrates the precedence rela

tion in a two-dimensional processing system. From these precedence relations, one can

observe that the samples along the diagonals n i + /12 = c, where c is a constant, can be

computed in parallel. The locus of thesample locations, which can be computed in paral

lel, is a straight line with slope M". We refer to this locus of the mutually independent

set of computations as the concurrent computation region (CCR). In general, the CCR

corresponds to a (N-l)-dimensional hyperplane for a N-dimensional filter. For the one-

dimensional filter, the CCR is a single sample, and for a two-dimensional filter, the CCR

consists of samples along a straight line.

The parallel computation of all the samples along the diagonals can be described by

the parallel loop
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for each (n'i = 0to(/i+/2-2)){

foraD(n'2=M«(0,it'i-/i + l)toAfin(n'1,/2-l){

y(«'i-n'2^'2)= i X ^jfo'i-w'Hi."W2)
fi=D i*3)

+i i h^ji(n \ - nV i.«V2)

)K

208

(6.5)

where the "for all" statement represents parallel computation of all the values with

respect to the corresponding loop index. The parallel loop is obtained from (6.3) by an

index transformation,

n'i = ni + H2, "'2 = ^2.

(W»

dfi) (0.1).

(2,0) (W) CM)

0,0) (2.D (U) <W)

(4J0) 0.1) M 03) (0.4)

Rg. 63:Precedence relation in atwo-dimensional recursive system.

(6.6)
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The parallel loop in (6.5) can be executed in (/i +/2-1) steps using Min(J\9J$ pro

cessors, as opposed toJ\J2 steps needed in the sequential computation in (6.3) using a

single processor. Thus, although the available concurrency is greater in a two-

dimensional system, it is still bounded by the number of diagonal lines in a frame. This

bound is overcome by two-dimensional look-ahead and two-dimensional block process

ing in section 6.3.

The representation in (6.6) exploits themaximal amount of parallelism in the two-

dimensional filtering problem, and requires maximum number of processors. Often, we

may exploit the parallelism only partially using reduced number of processors. Let us

assume that P processors are available, and assume P to be divisible by J2 for simpli

city. We rearrange the samples of the frame in the following manner. We augment the

samples in rows P through (2P-1) to the end of rows 0 through (P-l). Similarly, the

samples in rows 2P through (3P-1) are augmented to the end of rows P through

(2P-1). The rearranged frame now has P rows and J\J2IP columns. The rearranged

data can be processed in (J\J2IP +P -1) steps using P processors. This augmented

processing corresponds to a segmented processing with segment size P, and is illustrated

in Fig. 6.4.

In the subsequent sections, we exploit this inherent concurrency in the context of

one-dimensional block processing, pipeline interleaving, and combination of pipeline

interleaving and one-dimensional blockprocessing.
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6.2.13. One-Dimensional Block Processing

In one-dimensional block processing with size 1x^2, we processL2 samplesalong a

column in one cycle. The processing takes place in an augmented manner as shown in

Hg. 6.4 with P =1*2. A typical way to do the one-dimensional block processing (for

L2=3) is to compute y (0,0), y (0,1), y (0,2) in cycle 0;y (1,0), y (1,1), y (1,2) in cycle 1;

y (2,0), yC',1), y (2,2) in cycle 2 etc. Although this is a valid one-dimensional block pro

cessing sequence, the samples ina block do not form a set of independent computations.

Forexample, the samples y(0,0), y(0,1), and y(02) cannot becomputed within a single

cycle, as the computation of these samples is interdependent (although these can be com

puted concurrently with look-ahead computation and at the expense of hardware over

head, see section 6.3). Thus, we need to slightly alter the sequence such that the L2sam

ples belong to the concurrent computation region. This is achieved by computing the L2

samples along the diagonal concurrently. Table 6.1 shows a portion of the parallel

schedule for L2= 3 usingthreeprocessors, where the processor Pt operateson row i.

Table 6.1: Concurrent One-Dimensional Block Processing

Processor versus Time Schedule

PI

P2

P3

v(0,0) v(l,0)

y«U)

y(2,Q)

y(U)
y(0,2)

y(3,Q)

y(2,D

y(U)

y(4,Q)

.yOU
y(2,2)

y(5,Q)

y(4,D

y(3,2)

y(6,Q)

y(5,D
y(4,2)

y(7,Q)
y(6,l)
y(5,2)

In thissegmented processing, theoutput y (ni,«2) is processed at time index

/(ii»*2) =rti +*2+L XTJ tfrW. (6.7)
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P Segment 3

J2 P Segment 2

Segment 1

a Segment 1 Segment 2 Segment 3

v2

Fig. 6.4: Segment bysegment processing in atwo dimensional system.
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where [ x] represents theinteger partofx (orthe floor function). To illustrate theuseof

index mapping function, consider the processing of the sample y(14,0). Substituting

value of ni = 14 and n2=0, we find that this sample is processed in cycle 14. As another

example, the sample y (0,3) is processed in cycle 15 for a frame size of 15x15. We can

derive the delay operators by examining the coefficients of ni and n2in (6.1). A row

delay operator zf1 in this realization corresponds to a singledelay (since ths coefficient

of ni in the index mapping function in (6.7) is 1). The column delay operator zf1

corresponds to a single delay if the two consecutive samples (of a specified column)

belong to the same segment, or (JyL^l) delays if they belong to two consecutive seg

ments. However, in the block implementation, single column delay opirrators are not

implementable. Instead, we need to implement block column delay operators. A block

columndelay operator is defined as z%*x or L2 column delays at the sample rate. As an

example, we derive y (0,2) by delaying y (0,5), and not by delaying y (0,3) or y (0,4) (for

1,2 = 3). The element y(n\Jc2L2) is obtained by delaying the corresponding sample

y(n\Jc2L2+L2) of the consecutive segment using J\ delays (which is a lire delay). This

is because

/(«i^2^2+^2)-/(«i^2^2)=^i •

Thus the block column delay operator corresponds to J\ delays. The row and column

delay operators are shown in Hg. 6.5(a).

The samples inside a single segment are obtained by using appropriate number of

row delay operators zf1. As an example, yOir-lJ^z+O is obtained by delaying

v (n\Jc2L2+i) usingone delay or latch (since a row delayoperatorcorresponds to a single

delay).
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Now we introduce the notion of a quasi block column delayoperator. The J\ delays of

the block column delay operator can be split to two parts, one part of i delays, and

another of (J\-i) delays. If the input to the block column delay operator is

y(n iJt2^2+^2). then the output of the first part isy(n \ -1 Jk2L2+£2). and the output of

tf'e second pan is yini&tLj). Using the delay splitting principle, we can derive

y1n1JC2L2) from y(n H ^2^2+^2) using (/H) delays. This operation corresponds to i

advance operations along the n\ dimension and a block delay operation along the n2

dimension (therefore the name quasi column block delay operator). Thisdelay splitting

principle of the block column delay operator is shown inFig. 6.5(b).

A parallel hardware architecture for concurrent processing of L2 samples can be

derived using appropriate row, block column, and split block column delay operators,

and is shown in Fig. 6.5(c) for the case Na =Nb = 1 and L2 = 3. We input L2 samples

ii(«i^2^2)» u(nilk2L2+ 1) , u(niJc2L2+L2-I), and compute the corresponding L2

outputs. In the snapshot of Fig. 6.5(c), the outputs y(6,3), y (5,4), and y(4,5) are com

puted in parallel. These outputs are respectively given by

y (6,3) =a0.iy (6,2) +aljSy (5,3) +a itly (5,2) (6.8a)

+ bo.ott (6,3) + &0.1" (6,2) + blSM (5,3) + buu (52)

y(5,4) =flo,iy (5,3) +auay (4,4) +ai,iy (4,3) (6.8b)

+ &0.0" (5,4) +b0.itt (5,3) +bUqu (4,4) + bw«(4,3)

y(4,5) =a0.iy (4,4) +alt& (3,5) +ahty (3,4) (6.8c)

+ bcow (4.5) + bo,iti (4,4) + b1.0M (3,5) + buu (3,4).
Note that y(62) isderived from y(3,5) using a quasi block column delay operator with

(J1- 3) delays. Fig. 6.5(c) needs some additional clearing signals to accommodate ini

tial conditions at the frame boundary, andthese have been omitted for clarity.
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*M>

Q—iaw

Fig. 6.5(c): Concurrent processing ofa2D recursive filter using parallel
hardware forJV. =Nb = 1andl2=3.
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The one-dimensional block processing of the complete frame requires

(J\J2IL2+L2-1) number of cycles. This realization does not require any algorithm

transformation (since these block of samples form a set of independent computations),

and leads to a complexity L2(2(Wa+l)(ty,+l)-l), which is linear with respect to speedup

L2. In contrast, the L\L2 outputs in a two-dimensional block processing structure with

block size L ixL2 do not form a set of independent computations, ai d hence require algo

rithm transformations. These general block structures are addressed in section 6.3.

6.2.1.4. Fine-Grain Pipelined 2D Filtering

Any set of M independent jobs requiring identical processing can be processed in

an interleaved manner through a single set of resources or processing units with M stages

of pipelining or buffering. The pipelined computation is hardware efficient, since it

achieves an equivalent speedup of factor of M with just M buffering units, as opposed to

replicating the set of resources or processors by a factor of M as in one-dimensional

block processing case (note that in a M -stage pipelined realization, the system latency

grows by a factor of M also. But in most applications, the system throughput is much

more important than the system latency). We have already seen that the samples along

the diagonals in a two-dimensional filter form a set of independent computations, and we

process these samples concurrently in an interleaved manner. One should note that the

M -stages of pipelining here is at the processor level, i.e. each set of processing units

(which consists of one multiply and few add operations) is pipelined at M levels (as

opposed to at word level as in the block filter structures). This is also often referred to as

two-level pipelining in the literature.



DIGITAL FILTERS FOR IMAGE PROCESSING

Cycle 15 16 17 18 19 20 21 22 23 24 25 26

Start of
Computation

(5.0) (4.1) (3.2) (6.0) (S.D (4.2) (7.0) (6.1) (5.2) (8.0) (7.1) (6.2)

End of
Computation

(4,0) (3.1) (2.2) (5.0) (4.1) (3.2) (6.0) (5.1) (4.2) (7,0) (6,1) H

Fig. 6.6: A partial schedule for the pipelined filter inFig. 62 for M=3
with row by row processing.

u(n1+1,n2)

<*<=>

*?<=>

ud^.rij)

Fig. 6.7: Row and Column delay operators in a M-stage pipelined two
dimensional recursive digital filter.
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Now considerpipelining the recursive state update loop of Fig. 62 by M stagesby

introducing (A#-l) additional latchesor delays (recall that the statevariables here refer to

the outputs y(n 1^2))* ^ this realization, the output of a computation is available only

after M cycles (see the schedule of Hg. 6.6). In Fig. 6.6, the computation of y (5,0)

begins in cycle 15 and ends incycle 18 (for M = 3). Hence the computation ofy(6,0) can

begin only in cycle 18 (since this computation can begin only aftery (5,0) is available). If

we process thesamples row byrow, then the hardware will be utilized only one third of

the time. However as described in the context of parallel hardware, there are enough

concurrent tasks in two-dimensional system, and theseconcurrent taskscan be processed

in an interleaved manner with full hardware efficiency.

For the case when M = 3, we can process the samples along the diagonals of the

segment consisting of one segment of M rows in an interleaved manner (note that P in

Fig. 6.4 corresponds toM forthis case). Since the computations y (n i,0), y (n i-l,l), and

y(n 1-2,2) belong to the concurrent computation region, these can be processed in an

interleaved manner as illustrated in the schedule of Fig. 6.6. While we wait for the com

putation ofy (5,0) to finish, wecan begin computation ofy(4,1) and y(3,2). Similarly the

computations y(6,0), y (5,1), and y (4,2) can beconcurrently processed, etc. This way, we

can obtain full hardware utilization by processing a segment of M rows simultaneously

in a skew interleaved manner.

In the pipelined implementation, some cycles are wasted at the beginning and end

of the computation for setting up of the pipeline (or skewing the samples) and for flush

ing the pipeline (or deskewing the samples) respectively. The total number of wasted

cycles is M(Af-1), of which M(M-1) ^ wasted at me beginning and M(M-1) js
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wasted at theend of computation of the complete frame. Tables 6.2and 6.3 respectively

illustrate the wasted cycles at the beginning and end of of a 15x15 sizeframe.

Table 62: Initial Portion of the Schedule

Cycle 0 1 2 3 4 5 6 7 8

Output y(0,0) - - y(0,l) y(l,0) - y(M) y(W) y(»)

Table 63: Final Portion of the Schedule

Cycle 222 223 224 225 226 227 228 229 230

Output y(14,12) y(13,13) v(12,14) - y(14,13) y(13,14) - - y(14,14)

The hardware utilization factor of this architecture is given by

J1J2

With the interleaved processing, the index mapping function is characterizedby

(6.9)

/(Jiltii2)s"itf +*2(A*+l)+l -Jfj MC/i-MO, (6.10)
where |_ xj represents the floor function, and J\xJ2 is the frame size.We use this index

mapping function to derive the implementable delayoperators in the pipeline interleaved

realization. Because of the skew pipelined interleaved processing of the rows, the pro

cessing periods of the two consecutive samples in a row are separated by M time indices

(since the coefficient of n\ is M in (6.10)). The operator z f1 corresponds to M delays or

latches. This can also be verified from the schedule ofFig. 6.6,
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which shows processing of sample (5,0) in cycle 15 and of sample (6,0) incycle 18 for

M= 3 case. Similarly, the operator z2l corresponds to(Af+1) delays if the two consecu

tiveelements of a column belong to the same segment However, if they belong to two

consecutive segments, then they are separated by (Af+1+Af(/H*f-1)) time indices (see

(6.10) also). One way of implementing the zf1 operator is to have a two-way multi

plexed delayed path, one with (Af+1) delay operators and the other with

(Af+1+Af (/i-Af-1))delay operators. However, this implementation isinefficient Notice

that we need to store only the top most row outputs in each segment (since the other out

puts can be derived from these outputs). Hence the zf1 operator can be efficiently real

ized with (Af+1) delay operators followed by a two-way multiplexed delayed path, one

with nodelay and the other with (Ji-Af-1) M-slow delays (i.e. bysubsampling the out

put samples at rate Jr), leading to considerable saving in required number of memory

elements. These delay operators aredepicted inFig. 6.7, andwith theuseof these opera

tors, a block diagram of an Af-stage pipelined architecture of a direct form 2D filter for

Na=Nb = \ is shown in Fig. 6.8. The innermost loop now has Af delays, and these

delays can beredistributed topipeline the multiplier and adders byAf stages. The imple

mentable delay operator in the pipelined two-dimensional filter architecture is derived by

appropriate indexing of the input samples and without any hardware overhead unlike in

one dimensional systems, where this operator was derived by algorithm transformation

and at the expenseof hardware increase [4-7].
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The improved iteration bound is actually achieved by using the technique of retim

ing [42] orcutset transformation [43]. The retiming process involves moving the delays

around the feedback loop in such a way that the number of delays in any loop remains

unaltered, and the actual period is asclose aspossible to the iteration bound of thecom

putation graph. Asimple example ofsystem retiming is illustrated in Fig. 6.9. The itera

tion period bound for the realization in Fig. 6.9(a) is \ >whereas the actual

iteration period is (TM+TA), where TM and TA represent computation time ofthe multi

plier and adder blocks Af and A respectively. The iteration period for an equivalent

retimed realization in Fig. 6.9(b) (obtained after redistributing the delays) is

MaxCTMiJuvThty+T/L). Here, the multiplier component is broken into three com

ponents Af i, Af2and Af3. If the computational latencies ofblocks Af 1, Af2, and Af3and

A are identical, then this realization has an iteration period equal to theiteration bound.

u(n)

u(n)

j—B
-©—

4
-GD-—[*]}—C&

CD

y(n)

M.

-" y(n)

Fig.6.9(a): A computation graph, M andA respectively represent mul
tiplyand addoperations, (b) An equivalent computation graph obtained
using the retiming technique, the multiplier block has been decom
posed to three blocks.
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6.2.2. Pipeliningand One-Dimensional Block Processing

We can pipeline the loop of a one-dimensional block architecture with block size

lxL2to geta speedup bya factor ofL2M ascompared with sequential processing. This

pipelined one-dimensional block structure can be realized without requiring any algo

rithm transformation (by performing computations within the concurrent computation

region).

Here M sets of L2 independent samples are processed in an interleaved manner.

With Af loop pipeline stages, each computation is completed in Af cycles, and the imple

mentation is Af-way interleaved. For example, if we start processing the samplesy (3,0),

y (2,1) in cycle 6 (for L2= 2), this computation will be completed in cycle 8 for Af = 2.

The computation of the samples y (4,0), y (3,1) can begin in cycle 8 (since, these compu

tations can begin only after the samples y (3,0) and y(2,l) are available). However, we

can fill up the pipeline by interleaving the computations of the samplesy (1,2),y (0,3) in

cycle 7 (which will be available in cycle 9, and y (22), y (13) in cycle 9, etc. Thus we

process L2M rows in an interleaved parallel manner. One segment in this realization

corresponds to L2M rows, i.e. P =L2M in Fig. 6.4. Table 6.4 shows the initial portion

of the schedule for L2=2 and Af = 2.

Table 6.4: Pipelined One-Dimensional Block Processing

Processor versus Time Schedule

PI y(0,0) • y(l,0) - y(2,0) y(0,2) y(3,0) y(l,2) y(4,0) y(2,2)

P2 - - y«U) - y(U) - y(2,i) y(0,3) y(3,l) y(l,3)

The index mapping function for this pipeline interleaved one-dimensional block proces-
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sor is given by

/(n1,»2) =«i^+»2Af +L x|J +L xjj^J Af (/!-L2Af-l) (6.11)
which reduces to (6.7) and (6.10) as special cases. In this processing, a pipelined row

delay operator corresponds to Af delays, and a pipelined block column delay operator

(that is Lrslow column delay operator, v!iich represents z^1 at the sample rate)

corresponds to (L2A* +1) delays if the two simples separated by a block belong to the

same segment, orto (L2Af +1 +Af(J\-L2M -1)) delays if the two samples are spaced

L2 distance apart and lie on the same column, but belong to two consecutive segments.

This implementable pipelined block column delay operator can be implemented with

(L2Af+1) delays, followed by a multiplexed path, one with no delay, and the other with

(/j -£2Af - 1) Af-slow delays. However, we can reduce the number of memory loca

tions further by implementing the block column delay operator with one delay, followed

by L2 Af-slow delays, followed by a multiplexed path, one with no delay, and the other

with (J\-L2M - 1) Af-slow delays. The quasi block column delay operators can also

be interpreted in a manner similar to that h section 6.2.1.3. To derive y(ft i,*2^2) fr°m

y(nx-i ^2^2+1*2). we need one delay followed by (J\-L2M +L2-i -1) Af-slow

delays (i.e. the inputs to these are delays subsampled at arate 1/Af) if the samples belong

to two consecutive segments, and one delay followed by (L2- i) Af-slow delays if the

samples belong to the same segment Thisis because,

-ir-LFx f/ w\ Jl+Af(/1-L2Af+L2-i-l)
/(/ii-1 *2L2+L2) -/(»i^2^2)=1 l+Af(L2-0 forconseci

The row, block column, and quasi block column delay operators are illustrated in Fig.

6.10(a). Fig. 6.10(b) shows the recursive portion of a pipelined one-dimensional block

processor for L2 =2 and Af = 2, and for Na=Nb = 1. Each loop has at least 2 delays,

;- i -1) for same segment
consecutive segments.
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and two sequences of tasks (each task of length 2) are being processed inan interleaved

manner. The impressive performance of pipelining can only be achieved after retiming

the flow graph, i.e. after redistributing the two loop delays to pipeline the multiplier and

the two adders. The snap shot shows processing of y (6,4) and y(5,5) interieaved with

processing of y(3,6) and y(2,7). In the figure, z(n1^i2) represents the effects of the

current input term u(n 1*2) and its delayed versions. The output y(6,3) is derived from

y (4,5) using a quasiblock column delay operator.

yin^gLj)
MD

y(n1-lk2l-2)

ROW DELAY OPERATOR

1/My«V2L2jLg)>[-}_^_|>p-s-|

BLOCK COLUMN DELAY OPERATOR

1/My(n1Htk2L2*!>_ r-1 J*»|D| cr o » <L2-»D

C^-LjM-DD

Uj-l^M-flD

QUASI BLOCK COLUMN DELAY OPERATOR

y(nvk2L2)

x~~
y(n1tk2L2)

-o >d »

Fig. 6.10(a): Delay operators in pipelined one dimensional block pro
cessor.
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623. Local State Space Form 2D Filters

The transfer function of (6.2) can be equivalently represented in terms of a local

statespace description given by [44-45]

h(n 1+1^12)
\(n 1^2+1)

An An
A21 A22

h(n 1,112)

V(«1^I2)
+

bi

b2 u(nhn2) (6.12a)

y(ni,n2) = Cih(ni,n2) +C2V(ni^2)-«-^(»l»»2). (6.12b)
where the horizontal state h(/ii,n2) is A/iXl, thevertical state v(ni,rt2) is N2xl, the input

u(n i,n2) and output y(n 1,112) are scalars, and allother matrices are of appropriate dimen

sions. If the order of horizontal states N\ is chosen to be same as Na, then a local state

space realization with the order of vertical states (N2) less than or equal to 2Nb can

always be found [44].

This recursive state update representation takes the horizontal and vertical states at

sample point (n\,ni) and computes the horizontal state at (ni+l,«2) and vertical state at

(n\jn2+I). Similar to the direct form filter case, many independent computations also

exist in the state spaceform filter, and this concurrency can be exploited in the contextof

either parallel (i.e. one-dimensional block processing) and/or pipelined hardware imple

mentations. In the context of parallel hardwarerealization, we can process the L2 output

samples y (niJ^l). y (n\ - \Jk2L2 + 1),...., andy (nx-L2+ \Jc2L2 + L2- 1) in parallel

using 0(Li) processors (which is a linear increase with respect to Li). This one-

dimensional block implementation is useful for software programmable coarse-grain

parallel processor implementations. Alternatively, we can exploit this concurrency in the

context of pipeline interleaving to obtain a hardware efficient custom VLSIrealization.
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In the pipelined realization with M loop pipeline stages, if we start the processing of the

sample point (n\,ni) using h(n\,n2) and v(ni,*2) at time index n, then the states

h(n 1+1,112) ^d y(n i»»2+l) ™H oe available only at time index (n+Af). We cannot begin

the computation at the sample point (n 1+1,112) until time index (n+Af). However, just as

in the direct form filter case, we can fill up the pipeline by processing M rows con

currently in a skew pipelined interleaved manner, and improve the iteration bound by

about a factor of Af. In the pipelined implementation, the state update operations (for the

first segment) at sample points (ni,0), (ni-1,1),..... and (ni-A#+l,A/-l) are performed

concurrently in an interleaved manner. The efficiency and the index mapping function of

this implementation are same as in (6.9) and (6.10) respectively. The delay operators in

Fig. 6.7 also hold good for this case. In the local state space realization, the updated hor

izontal states are used up within the same segment, and do notneed to be stored. How

ever, we need to store thevertical states of the top row only for each segment to be used

for processing of the next segment, and these are stored using M-slow latches. A pipe

lined architecture for local state space filter is shown in Fig. 6.11(a) and the correspond

ing partial schedule is shown in Fig. 6.11(b) for M=3. Once again, we will need to

retime the flow graph to redistribute the delays for pipelining the multiply/add opera

tions. We can also combine pipeline interleaving and parallelism (or one-dimensional

block processing) as described in section 6.2.2, and the index mapping function of (6.11)

andthe corresponding operators holdgood for thiscase.
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63. TWO-DIMENSIONAL INCREMENTAL BLOCK FILTER

In this section, we study two-dimensional block implementation of direct form and

local state space form two dimensional recursive digital filters. In a two-dimensional

block (or simply block) implementation with block sizeL\xL2, L\L2 outputs are com

puted in each cycle. Let the column bycolumn representation of a block of outputs be

denoted by

where

^^(kxLxML^

fr^(kxL^^2)
/^^jLi+UjLj)

jr<1^(ifc1Li+Li-U2L2)

and a row by row representation be given by

iL^\kxLxML^)
p/L^(*1L1^2L2) =

y^tfjL^z+Lz-l)

(6.13a)

(6.13b)

y(lx^iLiJk2^2)= [y(*iLiJb2L2).y(A:iLiJfc2L2+l). y(klLlJk2L2¥L7rl^ T(6.13c)
yCLl-1)»iLiJt2L2)= \y(kxLl*2L2),y(klLl+\Ji2L2) ,y»iL1+L1-U2^2)] T(6.13d)
and p is the column by column to row by row transformation operator.

Thus, block processing with a block size L\xL2 improves the iteration period (and

the sample rate) by a factor of L\L2 (see (6.1)). Often in the literature, L\ and L2 are

optimized with respect to the filter order to minimize the multiplication complexity of the

realization. But, it should be noted that the parameters L\ and L2 are independent of the

filter order, and are dictated by the speedup required, or equivalently the number of pro-
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cessing elements available. In the sequel, we assume that J\L2 samples of L2 consecu

tive rows are processed in J\IL\ time steps and the J\J2 samples of the complete frame

are processed in J\J2\L\L2 number of such steps. For simplicity, we assume J\ and J2 to

be respectively divisible by Li and L2 (otherwise, 0 samples can be appended to the end

of the frame to satisfy tJrV,). For this case, a segment corresponds to L2 rows, since L2

rows are processed concur rntly. The index mapping function for the block filter realiza

tion is given by

/(»i.»2)=ixr.!+xHxrJ. (614)
The delay operators for theblockrealization are shown in Fig. 6.12. A rowdelay opera

tor corresponds to a single L\-slow latch, and a column delay operator corresponds to

J\IL\Lz-slow latches.

L1 -slow

yOc^+L^Lj) »|d| -•y(k1L1,k2L2)
Row block delay operator

L2-slow

y(k1L1,k2L2+L2) y^Lj.k^)

Column block delay operator

Fig. 6.12: Row and column delay operators in two-dimensional block
realizations
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In section 6.2, it was pointed out that the L2 samples y(niJ^z). J0»i-WaLa+l>.

-., y(ni-L2+1^2^2+^2-l) can be processed in parallel without using any algorithm

transformation and with linear increase in hardware. In contrast, we need to use algo

rithm transformation forblock filters if the block of samples of size LpcL2 encompass a

rectangular region (that is ifboth L\ and L2 are greater than unity), fa this transforma

tion, the necessary level ofconcurrency is derived by using the look-ahead computation

techniques [4], ie. iterating the original recursion as many times as desired (of course, at

the expense of an increase in hardware), and this concurrency is exploited to obtain

implementable row and column block delay operators in the block filter structure. Thus,

unlike pipeline interleaving approach or one-dimensional block filtering with IXL2

blocks of samples belonging to the concurrent computation region, two-dimensional

block filtering approach leads to an increase in hardware, and is not area efficient for

highsampling rate realizations.

Several block filters have been proposed for block implementation ofdirect form as

well as local state space form filters. The block filters in [21-29] require a square multi

plication complexity with respect to the block size. The parallel block filter proposed in

[30] requires much higher complexity than the block state case [21-29]. In this section,

we derive our new incremental blockfilters for implementation of direct form as well as

local state space form filters of multiplication complexity much less than the existing

structures. The direct form incremental block filter is an extension of the one dimensional

structure in [19-20], and the local state space form incremental block filter is an exten

sion of the one dimensional incremental block state filter presented in [5]. Wederive the

look-ahead computation principle for 2D recursive computations, and use this to derive

the direct form incremental block filter structure. The state update computation is same
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for the incremental block state and the existing block state structures (for block imple

mentation of local state space filters), but not the output computation. We reformulate

the state update computation for the localstatespace based blockfilters, whichare more

appealing and easily extensible to higher dimensions. Hie output computation in our

incremental block state filter is done incrementally in a sequential manner rather than all

at once as in the block state case.

6.3.1. Direct Form 2D Incremental Block Filter

In the direct form block filter in [24-28], all the block ofL \L2 outputs are computed

using outputs of past blocks, i.e. y(LlXa)(*iLi+Li^2^2+^2) is computed in terms of

^^(kiLi+LiMLi)* yCLlXa)*iL1^2^2+^2). and y^^kiLi^L^. This output

update operation requires that theL\L2 outputs be updated in each block. Since the block

output update operation is expensive (as we will see later), this leads to an implementa

tioncomplexity 0(L}L}). However, for the case where L\>Na, andL2>Nb, we can use

an incremental output computation technique [5,19-20], where we need to update

(NaLz*NbLr-NaNi,) outputs only, and use these to compute the remaining

(Ly-NaXLx-Nt,) outputs in a non-recursive or sequential manner with total multiplica

tion complexity 0(Max(L?L2lLiL})). For the case, where eitherL\<Na orL2<Nb or

both, the multiplication complexity is inherently 0(L}L%), which may not be critical

since L\ andL2 are small.
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(N..D
y (n^rV*)

(I^.M2+1>

• <o,,n2>
®

(1.ND>
y (nvn2-Nb)

(Na.ND)

y (r^-rVV^W
(a)

\ (M^LN,

(Na.Nt,)
y (n1-M1,n2-M2-ND)

(b)

Fig.6.13: Illustration of look-ahead in direct form 2Drecursive compu
tations: (a) traditional computation (b) look-ahead version where the
outputis computed bypassing (Afi+l)(Mzf1)-1 neighboring outputs
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In the direct form representation in (6.3), y (n1,112) fe expressed in terms of neigh

boring (/V«+I)(ty,+1>-1 outputs, Le. y(«1^12)" expressed in terms ofyw»»1>(ni-Na,n2),

yW'^ni-Na*z~Nb\ and y<1JV*>(n ltn2~Nb) (see Fig. 6.13(a)). Now consider express

ing y(n1,112) as a function of (Na+Mi+lH/V^+Af2+lH outputs, Af1samples apart in /ii

direction and M2 samples in 112 direction, i.e. as a function of

yWi^fz+D(ni-Ar1_^|i^r-Af2). yW.M\n]rMl-Natnr.M2-Nb), and

y(Af,+i^*)(rt j-Af1^2-^2-^) (s«c Fig. 6.13(b)). The look-ahead iteration is given by

where

tf. A?*

7i=«v/2='a
y(ni.i2)= T T

(Ma)*©!

tf. Afr-1 & inu Mr-1 £4 A
+ X2, .2* JU*jijfiHr*Mdrh1^=1 iP) siaji/rPD

L

y (n i-i i-Af\jix-iz-M2)

y(n\-i1^2-'2-^2)

y(«rirAfi,nH2)

(6.15a)

tf. N*
z(ni^i2) =i i ^^("Hi^Ha)» (6.15b)

and the sequence rnx/i% is defined in appendix 7.1. In look-ahead, we compute y(nun2)

while bypassing its (Af i+l)(Af2+l)-l neighboring past outputs. This representation is

used to derive the two-dimensional direct form block filters.

Case I: L &Na and L&Nb

We divide the LiL2outputs inablock into two portions, (i) (L\Nb +L2Na "NaNb)

outputs y(A,^»>(itiLi+LiJt2^2+^2). jf-rNMXlt}Li+LY*Na*£2*t<2)* and
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yW.£r*fc)(*1Li+Li,*2L2+£z*#6).wnich are updated ^^ cyclt marecursive manner,

Le. these outputs are states which are updated; (ii) the remaining (l*r-Na)(I'r'Nb) out

puts y^1^v-XrJV»)(ifciLi+Li+iVfl Jb2^2+^2+^). which are computed non-recursively in a

sequential manner using these updated outputs (see Fig. 6.14(a)). The updated outputs are

computed using look-ahead computation, where as the non-recursively incremented out

puts are simply calculated using (6.3) and the available outputs without any algorithm

transformation. Forexample, for the case where L\ = 6,L2 = 8,Na = 2 and Nb = 3, we

update the outputs y^>(6*1+6,8*2+8), f4^\6k 1+8,8*2+8), and y<W>(6*1+6,8*2+11)

using corresponding delayed block of outputs. The incremental output computation

proceeds as follows. First we use these updated outputs to compute y (6*1+8,8*2+11)

using (6.3). Then we use the updated outputs and y(6*i + 8,8*2+ 11) to compute

y (6*i+9,8*2+H). We continue this process until we compute y(6*i+l 1,8*2+11); then

we compute y(6*1+8,8*2+12) through y(6*1+11,8*2+12). We continue until we finish

the computation of all 20 incremental outputs in a sequential manner ending with

y (6*1+11,8*2+15). Thus, this incremental output computation is carried out outside the

feedback loop. The recursive output update operation is performed by using (6.15) with

Afi =LHVfl+p and Af2=Lz-Nb+q toupdate the state y(k\Li+Li+pJc2L2+Li+q). For

example with above values of LXJL2, Na and Nb, (MxMt> respectively correspond to

(5,5) fory(6*1+7,8*2+8), and (9,7) for y(6*!+l1,8*2+10). The general process of incre

mental computation is illustrated in Fig. 6.14(b), where the hashed portions represents

outputs which are updated, and the blank or white portions are outputs which are com

puted sequentially. The numbering of the blocks represents the processing sequence.
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A matrix formulation for the above block output update computation can be derived

to be of the form

$(*lLi+Li,*2iL2+£2) = AiK*^lJt2^2+^2) + A2ft*iLi+Li,*2L2) + A3y(*i^i^2^2)

+B0z<L»^(*iLi+L1Jt2^2+^2) +BiZCLl«La)(*iLiJk2^2+^2)

+B2z(Ll'L2>(*iLi+Li^2^2) +VjP^Qt&itei) (6.16a)
where

K*iLi+L 1^:2^2+^2) =
y<jV-L^»)(*iLi+LiJt2L2+L2+^)

jV^XkxLx+Lxt&rirLi)
yP*rN.#>){klLy¥LvMaJklLr¥L£

(6.16b)

and the elements of the matrices can be obtained in terms of the filter coefficients and the

sequence r„lfrt2 using appropriate values of M\ and M2 in (6.15). Tne vectors

z^»'La>(*iLi^2^2+^2). z(LlX2>(*iL1+LiJt2L2), and ^^Qf.lLxJk2L2) are derived by

delaying the vector z^^^iLi+LiJtjLi+Lj). The total complexity of this incremental

direct form block implementation is 0(Max(L}L2,L\Li)) (see appendix 7.2) as

opposed to O (LfL} ) asin the block filter in [21-281.
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y(kiL1*L1',l2L2*L2*Nb1

(Lt-t^.L2-Nb)

l^^r'-Zi

Ck1L1+L1.l(iti'

*H

(N>Nb) V (k1L1*L1*N..k2L2*L2>
Y Ck^+MtLt*^

Fig. 6.14(a): State update and incremental output computation in a
direct form 2D block filter. The hashed portion corresponds to the
recursive state update portion, and the remaining portion corresponds
tothe incremental output computation operation.

Y77/V77. azi±

V77S '/777'/77

Yjhzz2zz22zz2/zzA

azz
7,

V77X/777{/77-//77l

T-ps

Fig. 6.14(b): Incremental Two-Dimensional block processing.
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Although the formulation of (6.16) appears similar to the direct form filter formula

tions in [21-28], the number of outputs that need to be updated every block in these

representations differ. The size of the updated states in (6.16) is (LiNb+L2Na-NaNb)t

whereas the sizeof the outputs to be updated in [21-28] isL\L2. Theincremental compu-

tatior permits us to update a reduced number of outputs recursively and compute the

reman<ning outputs in a non-recursive manner, Le. outside the recursive or feedback

loop. Table 6.5 compares the multiplication complexity per sample for the standard

direct form filter and the incremental filter. The standard direct form filter complexity is

based on the formulae given in [25]. The incremental filter has much less complexity

compared to that of standard block filter.

Table 6.5: Per Output Complexities of DirectForm Block and Incremental Block Filters

tf-1^2)
(Nfl=Nfc=2) <N««Na»4)

block inc. block block inc. block

(8,8)
(16,16)
(32,32)
(64,64)

(128,128)
(256,256)

64

148

412

1324

4684

17548

65

115

212

404

789

1557

124

240

568

1608

5224

18600

133

243

443

831

1601

3128

Several high speed algorithms for direct form block filter implementations using

fast convolution and transform techniques [35-40] have been reported [25,27]. These

techniques are applicable tothe incremental block filter presented inthis chapter as well.

For example, we can achieve a multiplication complexity identical to the fast or short

convolution [40] and FFT based block filter implementation in [27] by computing the Bo,
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Bi, B2, and B3 in (6.16a) viaFFT; and A1( A2, and A3 byshort convolutions.

CaseII:L\<Na and/orL2<Nb

In this case, we need to update allL\L2 states in a block by block manner, and the

technique of incremental output computation is not applicable. This block state update

operation can becarried out using (6.15) with M1 =p and M2 = q for updating the state

y(kXLi+L \+p X2L2JrL2Jrq). The multiplication complexity in this case isO(L }L%) (see

appendix 12). This complexity may not be very large, since Na and Nb (and therefore

L\ and Li) are small.

63.2. Local State Space 2D Incremental Block State Filters

A block state space recursive digital filter has been proposed in [27-29] for block

implementation of the local state space model in (6.12). However, this structure has a

complexity 0(L}Li) multiplications. In this section, we derive the incremental block

state structure, which has a complexity O(Max (L }L2JL XL})) multiplications. This struc

ture is based on a novel output computation strategy (although the stateupdate is same as

in the block state case), and it is this novel output computation which leads to reduced

complexity.

Let the column by column representation of the block of horizontal and vertical

states corresponding to block size LxxL2 be defined by

kaw»iIiJtaL2)
h(Ua)(A:iL1+lJt2^2)

h<Li'L*(kiLiJc2L2) =

h(U»)(A:iL1+L1-U2^2)

and the row by row representation be defined by

(3.17a)
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ph^*'>(*iL1,*2L2) =

where

ht'-'tytiLiJtaE*)
h^XkiL^zH)

\p-*lXkxLx*2L2+L2-\)

(6.17b)

h^Otili,*^=[h»iLlf*2^2>. n(*iLx,*rf<2+l) hftiLiJaLar^arl)] T(6.17c)
1,0.1.1)^^^^2) =̂ (^iL^aLj), h^^j+UaLj) h^L^-Vc^ r,(6.17d)
and the block of vertical states are also defined similarly. In the existing block state

structure as well as our new incremental block-state structure, the horizontal states

h(1Xa)(*iLi+Li,*2L2) and ** vcrtical states ^ul\kiL\JkJL2*L2i are updated using the

corresponding past horizontal and vertical states \tSlid^(kxLxJk2L2) and

^ul\kxLxJk2L2) (see Fig. 6.15). In this block state update process, the horizontal states

hCLi-U2)(^1L1+i^2L2) and the vertical states v^'^tyiLiJkrf'Z+l)ros missed.

In the existing block-state structure, the block of outputs y^^Hk^^kfa) are

computed using the available horizontal and vertical states bfi^ikiLiJczLi) rod

^•••^ftiLiJk^z) onty- This output computation leads to an 0(LfL}) multiplication

complexity. In our new incremental block state structure, instead of computing all LXL2

outputs all at once, we compute the outputs increment by increment in a sequential

manner. Let the size of an increment btlxxl2t and let Ix and I2 be divisible by L xand L2

for simplicity (however this need not be the case). In the incremental block state filter,

we use the states h^^ftiLiJk^z) rod v^1,1*(*iLiJfcrf'2) to compute the incremental

output y^^^ikiLiJtiLi), and to non-recursively compute the intermediate horizontal

and vertical states bPJ:*(kiLi+iiJtJ*2) rod ^lul\kxLxJk2L2¥l^ (which were missed

due to the block state update process, but are computed non-recursively) (see Fig. 6.16).
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Fig. 6.16: Four increments of theblock. The boundary states represent
blockstate update operation, and thestates inside theblockcorrespond
to non-recursive or sequential intermediate state computation (which
were missed due to block state update) to be used for incremental out
put computation.
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By non-recursive computation, it ismeant that these states are not updated in a recursive

manner using their past values, but are computed using the available states outside the

state update feedback loop. These intermediate states are used for computing the next

incremental outputs. Afamily ofblock structures can bederived with different values of

increment sizes, and the existing block state structure is a special caseof the incremental

block state structure where the increment size equals the block size. The size of the

increment is chosen to minimize the total multiplication complexity. The typical incre

ment size parameters are lxl or 2x2.

As an example, forL1 = 4,L2=6 and /i = 2 and I2 = 3, each block consists of 4

increments. First, we use h*1*3*^* 1,6*2) rod v<W>(4* 1,6*2) to compute y®*X*kx,6k2),

and the missed intermediate states h*1*3)^*1+2,6*2), rod v*2*1^*1,6*2+3). We use these

intermediate horizontal states and the available vertical states y&l\4k1+2,6*2) to com

pute yO^>(4*1+2,6*2), and the missed intermediate vertical states v&1)(4*i+2,6*2+3).

Then we use available horizontal states h(1*3)(4*i,6*2+3) and already computed vertical

states v*2*1^* i,6*2+3) to compute y<w>(4*1,6*2+3), and the missed horizontal states

h^\Ak1+2,6*2+3). Finally, we compute the output of the last increment

y^)(4*i+2,6*2+3) using currently available states h<1-3>(4*i+2,6*2+3) and

v^1^*1+2,6*2+3).

We can use the techniqueof look-ahead and iterate (6.12) successively to obtain

h(*iLi+Li,*2L2+J)=|:Afi^ (6.18a)

+tfebf^^^^iLi+r-UzLr+r), s=0,1 (L2-D
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•(*i£i+P Jt^2+^2)=Lf|A&Xr#h(*iLi^2^2«)+£AEtJ^&if<vH*if'7> (6.18b)

+̂^WXrr+1«<*l^l+^2L2+''-l).P =0, 1 (Li-1)
where

Afifc=AiiAfrw+AnAifH APi°= 1 (6.18c)

Ay=AnAfeW+Ai2AijH Afc0=0 (6.18d)

Ati=A21A1V'-1 +A22Air''-1, A&°«0 (6.18e)

A2V=A2iA/y-1 +A22A2V-1, A&°= 1 (6.18f)

for(ij)>(0,0)and

AfV' = A|V = Air1=Aif=0 for (1 J)<(0,0) (6.18g)

Aft*=Aft«:=Afr0=A|z0=0 for * >0 (6.18h)

The recurrence relations for b{*i andb^ are givenby

b^=AffWbi +AlV"1!^, (iJ)>(0,0) (6.18i)

bf/«AifWbi + AiV"1!^, 0* J)>(0,0) (6.18J)

and

bP«* =bf° =0, *>0

These sequencescan alsobe alternatively definedas

bfV=Anbf-W+Ai2bl-W. (/J)>(1,1), bP = bx (6.18k)

bi»/ =A2ibl'>-1 +A22bi^-1'a'J)>(l.l). W = b2 (6.181)
These recursive relations can be derived by successive iterations or by the method of

induction. These relations are different from those derived in [271 rod are easily extensi

ble to higher dimensions. In this state update reformulation, we do notneed any dummy

zero states as in [27].



DIGITAL FILTERS FOR IMAGE PROCESSING 247

Using (6.18), we can derive amatrix version ofthe two-dimensional block update

operation of the horizantal and vertical states, and this formulation is given in (A6.7).

The multiplication complexity of this formulation is given by

C,(Lili>= L2<ffl)N} +k^lNi +2NlN^lL2 (6.19)

Now we derive the output computation representation for the block state filter, and

then for our incremental block state filter. The output y (*iLi+pJc^j+q) can be com

puted in terms of theavailable boundary states using

y(kxLx+p Jc^z^q) =f cf•*-|h(*iLiJfc2L2+0+Jjcf-f^v(*iLi+r^2^2X6.20a)

+fL!i*dP-r+l4-lu(kxLx+r-ltk2L2+t)

where

cfJ=CiAfV+C2A2Y (6.20b)

c{J=CiAfV+C2A2V (620c)

d'V =Cibf«/+c2bi^+</5(/J), d°>°=d . (6.20d)

Using (6.20), a matrix version of the block output computation is formulated in (A6.8)

(see appendix 7.3). The multiplication complexity for computing LxyL2 blockof outputs

is

n n j x NxLxL2(L^l) , N^L^+1) . LXL2(L^Ddj+l) r62n
C0 (L1L2) = -jr + Y Tf

=̂l^Lj+lXLj+l)+2^i(L2+D+2^2(^1+1)]
and isO(L}L}). The total multiplication complexity of the block state filter is the sum

of the state update complexity and theoutput computation complexity, and is given by
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Cb = C,(LiX2) + C0(LXJL2). (6.22)

In our incremental block state filter, the outputs are computed using the non-

recursively computed intermediate states (which were missed due to the block state

update process) and the corresponding inputs. For a block size ofL1XL2 rod an incre

ment size /1X/2, the total number of state computation operations (each state computa

tion operation includes computing Ix vertical states and I2horizontal states) amounts to

(ii -1)(4^ -1) (since the boundary states are already computed by the block state
lx l2

update operation). The multiplication complexity of the incremental block state filter is

the sum of the recursive state update complexity, the non-recursive intermediate state

computation complexity, and the incremental output computation complexity, and is

given by

Ci-C.CLjW+CTi-lX^-l^CTiW+T^C^iW. (6.23)
This complexity can be verified to be independent of 0(L}Li) term. The size of the

increment Ix and I2are chosen tominimize the output computation complexity.

Table 6.6shows themultiplication complexities persample fora 2Drecursive digi

tal filter with Nx = N2= 4 for the block state structure and the incremental block state

structure with typical increment values. We observe that for large values of block size,

we can save the multiplication complexity by about an order of magnitude by using the

incremental block state structure as compared with the existing block state structure.
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Table 6.6: Per Output Complexities ofBlock State and Incremental Block Stete Filters

Block State Incremental Block State

(LiW

Complexity Complexity (I1J2)

(16,16) 257 188 (U)
(32,32) 586 254 (2,2)
(64,64) 1635 390 (2,2)
(128,128) 5250 671 (1.1)
(256,256) 18311 1159 (l.D
(512,512) 68665 2174 (1,1) 1

The roundoff noise for the block state and the incremental block state structures are

the same under the assumptionof linear additivewhite gaussian noise, since the recursive

state update operation is the same for these two schemes. Ju and Alexanderhave studied

the quantization noise of multidimensional block filters in [46-47], and these results are

also applicable to the structures proposed in this chapter. They also studied the stability

aspects of multidimensional IIR filters [48] using methods which are also applicable to

polyphase networks [49]. The standard direct form block filters for half plane recursive

filters have been derived in [50]. Our techniques presented here can also be extended to

derive efficient architectures for the half plane recursive digital filters.

6.4. PIPELINING AND TWO-DIMENSIONAL BLOCK PROCESSING

In this section, we achieve a speedup by a factor ofL XL2M with a block size L ixL2

and M stages ofpipelining inside the recursive loop.



DIGITAL FILTERS FOR IMAGE PROCESSING 250

Consider pipelining the 2D blockrecursive digital filter by M stages. For this case,

if we begin the computation of the block y(Ll,La)(*iI»i,*2£2) &* **** tad** n> men Ae

result of thiscomputation willbe available at time index (n+Af) due to thelatency intro

duced due to pipelining. We cannot begin the computation of the next block

^x^(kxLy¥LxJk2Li> until time index (n+Af). This might imply that (Af-1) cycles out

ofM cycles have been wasted, which is not true! Just as in the non-blocked pipelining

case (see section 6.2), we can keep thepipeline busy by proper indexing or interleaving

of blocks of input samples (as opposed to interleaving one by one input sample as in

non-blocked pipelining case). Thus the implementable delay operator is obtained by

appropriate interleaving ofblocks ofsamples, and apipelined realization isobtained with

no hardware overhead. Let a segment be defined to consist of L2M consecutive rows of

input samples. Then with M stages ofpipelining and for processing the first segment, the

M blocks ytf^tfiLi.*^, ^ftrWi^Wi) **

y^lX2)((*i-Af+l)Li,(*2+M-l)£2) can ** skew interleaved and processed in a pipelined

manner. Similarly in the case of a local state spa';c filter, the block ofhorizontal and vert

ical states corresponding to M skewed blocks can be interleaved in the pipeline. The

index mapping function for pipelined block implementation is given by

/("l."2)=L gj M+L £J (W+D+L 7^-J M(£L-A/-1). (6.24)
This index mapping function holds good for direct form as well as local state space form

filters, andreduces to those in (6.10) and (6.14) as special cases. Thedelay operator can

be derived by inspecting the index mapping function. The loop delay operator with

respect to the index nx corresponds to M Lx-slow delays, and that with respect to the

index n2 corresponds to(M+l) L^-slow delays followed by a multiplexed path, one with
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no delay (for the case where the signal and its delayed version belong to the same seg

ment), and the other with (•£*- - M-1)LiM-slow delays (for the case where the signal

and its delayed version belong to two consecutive segments). These delay operators are

shownin Fig. 6.17. Usingthese loop delay operators, ablockdiagram of the state update

portion of a local state space form 2D recursive digital filter with block size LxvL2 and

hi stages of looppipelining latches is shown in Fig. 6.18.

Similar to the non-blocked pipelining case, the total number of wasted cycles is

M (A/-1), and hence, the hardware utilization efficiency of this realization is given by

T| =
LXL2

J\Jl
(6.25)

r5t+l#cl#-1)

L-pslow

y<k, L1+L1,k2L2V MD •-y(k1L1,k2L2)

Row pipeline block delay operator

L2-slow

y(k1L1,k2L2+L2)- (M+UD

H 1 y(k1L1,k2L2)

u (^l-M-l)D

LgM-slOW

Column pipeline block delay operator

Fig. 6.17: Row and column delay operators in a M stage pipelined
block realization with block size L\xLz.
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6S. MULTIDIMENSIONAL RECURSIVE FILTERS

In this section, we outline the extension of the pipeline interleaving and the incre

mental blockfiltering concepts toN-dimensional recursive digital filters.

With the increase in the number of dimensions, the number of independent compu

tations (that is computations which are notmutually constrained by precedence relations)

also increases, and the size of the concurrent computation region (CCR) grows. ForanN

dimensional filter, the CCR corresponds to the (N-l)-dimensional hyperplane jj>,- =c

(where c is as constant). For example, the CCR in a three-dimensional system

corresponds to a triangle (which is a two-dimensional surface or a plane). Therefore,

pipeline interleaving or sub-dimensional block processing approach can be adopted with

no hardware penalty using the samples belonging to the CCR in a manner similar to the

two dimensional case. The implementable delay operator can be derived by choosing an

appropriate index mapping function (which is non-unique).

The incremental block digital filtering approach can also be used in the context of

higher dimensional digital filters. In the case of direct form N dimensional digital filters

with filter orders NxxN2x....xNNt and block size LxxL2x....xLN, (f\Li ~TUk-Ni))

states or outputs can be recursively updated in each block, and the remaining fl (Lj-Af,-)

outputs can be incrementally computed in a sequential manner. In the case of local state

space N dimensional recursive digital filter case, the states can be updated block by

block; but the outputs can be incrementally computed using non-recursively computed

intermediate states (which were missed due to the block by block state update process) in

a sequential manner. The multiplication complexity of the N dimensional incremental
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block filter can be verified to be OQffifaj(L,- f[Lg)) as opposed to O(ft*4?)» high

dimensional block filters [47]. Note that the dominant complexity in the incremental

block recursive digital filteris due to the block state update operation, unlike that due to

theoutputcomputation as in the existing block filters. Furthermore, pipeline interleaving

and incremental block filtering approacLes can also be combined to obtain efficient mul

tidimensional filters as in the two dimens.onal case.

6.6. CONCLUSION

We havepresented several approaches to achieving concurrency in twodimensional

recursive digital filters. These approaches leadto an understanding of concurrent process

ing of tasks in imageprocessing systems. We have shown that it is much morehardware

efficient to exploit the inherent concurrency available in the processing of two-

dimensional data, either in the context of pipeline interleaving and/or one-dimensional

block processing, rather than using two-dimensional block processing. Although several

concurrent techniques have been presented in this chapter, most of them are toocomplex

to implement on VLSI chips due to large hardware complexity and severe I/O con

straints, except the case of pipeline interleaved processing (i.e. with no blockprocessing)

and one-dimensional block processing.

So far we have studied transformations on specific linear digital filter algorithms.

These techniques can alsobe locally applied to linear recursive nodes in anygeneral data

flow signal processing program. Theseissues arestudied in the nextchapter.
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6.7. APPENDICES

6.7.L Appendix 7.1

In this appendix, we define a sequence rnxA% which is used in the context of the

direct form block digital filter. This sequence is defined by

r»l,»2 iisb i flW/»r«if»Ha (A6.1)
<«Va)WP.O)

and

r0,o = 1. r.lltl-2=0for 11>0, rix-it=0 for 12>0. (A6.2)

In (A6.1), rHlJl2 is expressed recursively as a function of neighboring ((Ak+l)(Ak+l)-l)

values of r<1<lr Suppose we are interested in expressing rHiAl as a function of values of

r,ltl-a Afi samples away with respect to the index ni, and Af2samples away with respect to

the index n2(see Rg. 6.13(b)), then we can iterate (A6.1) appropriately, to obtain

r*i.*i = X .2. Bjij/ii-jv+MiJr-JTiMz rn\-ir-M\jirirMt
i{5b t

(il.il) *<

+ .4.1 4.Ifliij/ir;i.'rMW!

(ii.ii) *(0.0)
7l=*i/2='2

Afc-1

11=1«:

N. h

X jL&jiJfiHi+MiJrh
Jl=HJf£

r«i-«i^«r-«r-^2

rnr-ir-Mijiz-i2

(A6.3)

This iterated relation can be derived either by successively iterating (A6.1) or by using

induction. Here the value of rHxA% is expressed as a function of

(NaM2+NfcAf i+(JVa+l)(Ak+l)-l) values of rilJr
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6.7.2. Appendix 72

In this appendix, we compute the multiplication complexity of a direct form two-

dimensional block recursive digital filter with block sizeLxxL2 for the cases where the

block sizes are greater than filter order as well as less than filter order. Note thatthemul

tiplication complexity for updating a single state using previous states Mx samples apart

in ni direction and Af2in n2direction can be obtained from (6.15) andis givenby

/ (Af i,Af2) = (iVa+l)(^+l)+N6Afi-riVflAf2+(Af i+l)(Af2+l)-2 (A6.4)

where multiplication by unity has been excluded.

Case I: L x>Na and L2>Nb

The total multiplication complexity for this case is the sum of the multiplication

complexity due to the state update operation of (NaNb+(Lx-Na)Nb+Na(L2-Nb)) states

with appropriate (MxMi) values, that needed for computation of

zCLl*La)(*iL1+Li,fc2£2+£2) and *** for incremental output computation of

(Lx-Na)(Lr-Nb) outputs. The totalmultiplication complexity is given by

C= £ X f<MxMi) + £ t fiHxMH (A6.5)

+2LlX-"1 Lf! /<MlJtf2> +£l£2vV,+l)^
The above can be simplified toverify that C is independent ofO(L }L}) term.

CaseII:Lx<Na and/or L2<A^

For this case, the multiplication complexity is the sum of the state update complex

ity and the complexity to compute z(LltL^(kxLx-¥LxJc2L2+L2). The multiplication com

plexity is given by
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Ia-ll»-l

and is an 0(£}L}) complexity.

(A6.6)

6.13. Appendix 73

We use use (6.18) to derive a matrix version of the two-dimensional block state

update operation to be

hfcMCJkiLi-AiJk^z)
v^tyiL^rhLj)

(Anfi(A^»
(A2i)L2(A22)L2

h(u^iLiJk2^2)
V*^>(itiLi^2^2)

uCWityiLi,*^.

(A6.7a)

where hCUty^Jk^z) isNjL2xl, v^tyjLiJfc^ isA^i*!. u^^iLi^i) is

L\L2x\, and other submatrices are of appropriate dimensions. Note that the submatrices

(An)*'1, (A22)La. (Bi^1 and (B2)z'2 are triangular. Using (6.18), the elements of these

matrices can be derived to be

(An)* =Afr'-A (kx2)Kj =Afi^+W-1 (A6.7b)

(A2i)# =Afr1'-^1. (A22)^ =K&* (A6.7c)

[(Bi)#] ,=bf-'+"->, [(62)$] ,=b2->*-'+1. (A6.7d)

Note that (Bi)tKj represents &NxxLx vector and (Bx)tKj l represents the /-th element of

the row vector of dimension Afixl. Similarly (£2)*' represents a N2xL2 vector and

&l)Fj 1represents the /-th element ofthe row vector ofdimension Af2x1. The multi

plication complexity for the above block state update operation is given by (6.19).

We use (6.20) to derive a matrix version of the output computation
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•*»"(*iLiJfcaLa)- [(Cxf^ (C^] tPUHjt&iJkJLt) (A6.8a)

+$fa»ifl'*L*(ltif,iJt£%),

orequivalently,

y<1^(*1L1+U2Z2)
(Ci)i (£2)1
(Cih (Oh

(Ci)Ll (tz)Ll
^^(kxLxJc2L2)

(A6.8b)

0?)i D
(D)2 (D)i

a>jL,(P)Lr-l

where (Ci), is L2xNxL2% (C^p is L2xN2LXt and (D)p is L2iLL2 and are triangular. The

(/-th elements of these submatrices are given by

8

(D)i

vP*-*XkxLxJk2Li)
u<M>(kxLx+\Jk2L2)

U<1«L^iLi+Li-lffc2^2)

(A6.8c)

(A6.8d)

[(Q),] tj «cf-W-A p=l,2 £1
[(C2)„] y=cf->.*-i, p=U X
[(D),] .. «^-W-i . (A6.8e)

The multiplication complexity forthe the blockoutput computation is givenby (6.21).
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CONCURRENT DATA-FLOW SIGNAL PROCESSING

7.1. INTRODUCTION

In chapter 2, we studied the program unfolding approach for creating concurrency

in data-flow prog:'ams. In chapters 3 through 6, we proposed look-ahead transformations

to derive high sample rate realizations of one- and two-dimensional recursive and adap

tive digital filters. In this chapter, we combine look-ahead and program unfolding

approaches to perform local transformations in general data-flow signal processing pro

grams to create additional concurrency.

In section 7.2, we review the look-ahead transformation in single node programs.

All the digital filter algorithms studied in earlier chapters can be described by these pro

grams. In section 7.3, we illustrate application of look-ahead transformation in general

single-rate iterative data-flow programs, and in section 7.4, we illustrate transformations

in multirate iterative data-flow programs. These transformations improve the iteration

period bound of these programs, andincrease the level of concurrency in theirimplemen

tations. These transformations are useful for high-performance implementation of real

time applications, especiallywhere the iteration period boundof the algorithms is greater

than the iteration period required by real-time constraints.
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'Q>

(C)

Rg. 7.1: (a) Transformation of a single node program by look-ahead,
(b) Pipelining and retiming of the transformed program, (c) Unfolding
of the transformed program by a factor of M. This corresponds to a
block implementation with block size Af. (d) Unfolding of the
transformed program bya factor of MIX This corresponds toablock
implementation with block size Mil and for 2-stages of loop pipelin
ing.
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7.2. SINGLE-NODE PROGRAMS

Consider the single node program in Fig. 7.1(a), which shows the node variable to

be Y with a self loop containing a single delay. The selfloop implies thatthe invocation

yn is a function of the past invocations y„_i, y»-2» .... y*-N> where N represents the

memory of the system, also called the order of the system. Letthe iteration period bound

of this program be ty. We can apply the scattered look-ahead algorithm describee in

chapter 2 of this thesis to transform the program to another equivalent program with the

same variable Y with a self loop containing M delays (see Hg. 7.1(a)). In the

transformed program, the invocation y„ is a function of yH-M> )h-2M> •••» Yn-NM- The

iteration period bound of the new program is improved by a factor of M. However, in

order to exploit the new iteration period bound, we need to either pipeline and retime the

entire loop operation asshown inFig. 7.1(b), orperform program unfolding (as discussed

in chapter 2). If we unfold the transformed program by a factor ofM, then we will have

M independent or isolated loops, where each loop contains a single delay. This follows

from the unfolding property of chapter 2. Furthermore, unfolding bya factor ofM leads

to a perfect program. This perfect program (which corresponds to a block implementa

tion with blocksizeM in the context of earlier chapters) is shown in Fig. 7.1(c). It is also

possible to combine pipelining and retiming with program unfolding. This operation

corresponds to unfolding by a divisor ofM. Fig. 7.1(d) shows unfolded program with

unfolding factor M/2. The program inFig. 7.1(d) has M/2isolated loops each containing

2 delays in the self loop (note that delay conservation property is satisfied). In this pro

gram, the unfolding factor isM/2, and each unfolded program ispipelined (and retimed)

by two stages.
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13. SINGLE-RATE ITERATIVE PROGRAMS

Consider the two node iterative program in Fig. 7.2(a). Assumethat the execution

timeofnode X is greater than that of node Y. Theiteration bound of this program is

Tm=Max(tx,±£*-) =tx. (7.D
This iteration bound can be improved by performing local transformation around node X

(since node X is the critical node). If we perform scattered look-ahead at node X by a

factor of 2 (assume the operation at node X is linear), then we obtain the transformed

program shown inFig. 7.2(b), which has an iteration bound of * » y ♦ ^S* ?-2(c) shows

the unfolded version of the program in Fig. 7.2(b) for an unfolding factor of two, and one

can verify that the unfolded programis a perfect program.

Fig. 72: (a) A two-node single-rate iterative Data Flow program, (b)
Transformed data flow program obtained by applying look-ahead
locally atnode X, (c)Unfolding of theprogram in Fig. 7.2(b) by a fac
tor od 2 leads to a perfect program.
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1 2D 2

Fig. 73: (a) A two-node multiple rate data flow program, (b) An
equivalent single rate data flow program, (c) Directed acyclic pre
cedence graph. * v
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7.4. MULTIRATE ITERATIVE PROGRAMS

Now we illustrate the application of the look-ahead computation technique to

minimi™ theiteration period in a class of multiple rate iterative dataflow programs.

Consider the multi-rate data flow exampleof Fig. 7.3(a), where each cycle requires

invocation of two instances of the node A and one instance of the node B. The

equivalent single-rate data flow program is shown in Fig. 7.3(b) and the corresponding

precedence relation is shown in Fig.7.3(c). From the precedence relation, it can be seen

that the iteration period is (2ta + tb)for processing of two inputs,where ta and tb respec

tively standfor the time required for executing single instances of nodesA andB respec

tively.

Assuming the recursive computation associated with node A to be linear in nature,

we can apply one-step of look-ahead locally at node A to create additional concurrency

in the recursive self-loop of node A, which can then be used to make the schedule of the

instance A2 independent of that of Ai (see Fig. 7.4), and the iteration period is reduced to

(ta + tb) for processing of twoinputs. In Fig. 7.4, the node is marked asA' sinceit differs

slightly from node A in functionality. In order to achieve further concurrency, the steps

of look-ahead must be proportionately increased (i.e. for (L-l)-steps of look-ahead at

node B, (2L-l)-steps of look-ahead must be applied at node A). Of course, the

transformed data flow program must be retimed in order to actually achieve this

improved iteration bound.
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1 2D 2

Fig. 7.4: (a) Anequivalent multiple rate data flow program obtained by
applying look-ahead locally atnode A. (b) An equivalent single rate
data flow program, (c) Precedence graph of the transformed program.
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IS. CONCLUSION

In this chapter, we have illustrated the use of look-ahead algorithms to perform

local transformations in general iterative data flow programs. The key idea is to create

additional concurrency in some arc of the critical loop, which also belongs to a non-

critical loop. The advantage of this technique is that the look-ahead computation penalty

is reduced, since the penalty introduced is due to the non-critical loop only. These

transformations may prove useful in systems, where the algorithms are unable to meet

the requirements of the real-time constraints.
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FURTHER WORK

The program unfolding and the look-ahead algorithms are both very useful tech

niques for high performance implementation of signal processing systems. The program

unfolding approach leads to rate-optimal fully-static multiprocessor schedules. The

look-ahead and its companion algorithms create concurrency, and therefore lead to high

sample rate implementations.

Although several algorithms for high performance implementations have been pro

posed, still many open issues remain. They are

• Study of finite precision effects, which accounts for inexact pole-zero cancellation in

pipelined recursive filters,

• Synthesis of pipelined recursive filters directly from filter spectrum using constrained

filter design techniques,

•Hardware implementation of anadaptive filter chip using fine-grain pipelining,

• Filter layout generation of digital filters which can be used asa front-end of an existing

architecture-specific computer-aided design system,
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•Partitioning techniques to obtain multiple chip systems,

• Construction of architecture and interconnection constrained multiprocessor schedules

(for homogeneous and non-homogeneous processors),

• Construction of an architecture synthesis system using the techniques discovered in this

thesis.

All the above problems canbe independendy pursued to greater depth. A computer aided

design system, capable of simulations in the front-end to account for finite precision

effects, and of generating chiplayout to meet specified performance constraints wouldbe

very useful Out of the above list of problems, the first one is of theoretical nature, and

the remaining involve eitherhardware and/or software implementations.
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