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ABSTRACT

A self-consistent solution for the dynamics of a high voltage, capacitive r.f. sheath driven by a

sinusoidal current source is obtained, under the assumptions of time-independent, collisional ion motion

and inertialess electrons. Results are: (1) the ion current density is 1.68e0(2«/M)1/273/2V/2^«/2» where

V is the d.c. self-bias voltage, sn is the sheath thickness, e/M is the ion charge-to-mass ratio, and e0 is

the free space permittivity; (2) the sheath capacitance per unit area for the fundamental voltage har

monic is l.52zo/sm; (3) the ratio of the d.c. to the peak value of the oscillating voltage is 0.40; (4) the

second and third voltage harmonics are respectively 19.3% and 5.3% of the fundamental; and (5) the

conductance per unit area for stochastic heating by the oscillating sheath is

2.17(e2ndmut)\33t&ism)l>3t where n0 is the ion density and XD is the Debye length at the plasma-

sheath edge, and ue = (&eTt/nm)l/2 is the mean electron speed.



I. INTRODUCTION

Low pressure capacitive, radio frequency (r.f.) discharges are widely used for materials processing

in the electronics industry. Typical discharge parameters are pressure p ~ 10-300 mTorr, r.f. frequency

ca/2it = 13.56 MHz, and r.f. voltage Vd ~ 50-500 volts. Almost all the applied voltage is dropped across

capacitive r.f. sheaths at the discharge electrodes. In order to develop adequate models for these

discharges, it is important to determine the dynamics and current-voltage characteristics of the sheaths.

The sheath dynamics are strongly nonlinear. Godyak and collaborators have developed a homogeneous

model of a collisionless sheath.1,2 Other authors have used a Child-Langmuir law for the ions within the

sheath to model the sheath dynamics.3-5 An approximate model of the effectof the time-average elec

tron density on the ion dynamics within the sheath has been developed.6 The self-consistent voltages for

a single sheath and for a symmetrically driven discharge having two sheaths 180° out of phase have

been given 7. While numerical solutions of the self-consistent dynamics can be obtained,8 they are not

particularly illuminating.

In a previous study9, the solution for a collisionless sheath driven by a sinusoidal r.f. current

source was found. The ion response to the average electric field E was assumed to be collisionless;

i.e., the force equation was taken to be Mduildt - eE, where e, M, and «,- are respectively the ion

charge, mass and velocity. To estimate the pressure regime where this is valid, we can compare the ion

mean free path X,- to the ion sheath thickness sn. For example, in an argon discharge, X* = (30Qp)_1

cm. For sm of order 1 cm, the sheath is collisionless (X* >sm) forp £ 3 mTorr. Therefore, the col

lisionless theory is not valid for typical materials processing pressures.

In this work we give an analytical, self-consistent solution for a coilisional sheath driven by a

sinusoidal, r.f. current source. We obtain the time-average electric field and potential within the sheath,

the nonlinear oscillation motion of the electron sheath boundary and the nonlinear oscillating sheath

voltage. Finally, we determine the effective sheath capacitance and conductance.

The assumptions of the analysis are:

(1) The ion motion is coilisional with X,- a constant within the sheath. The ions respond only to the

time-average electric field. The ion sheath-plasma boundary is stationary, and ions enter the



sheath with a Bohm presheath velocity uB = (eTJM)in, where Tt is the electron temperature (in

volts).

(2) The electrons are inertialess and respond to the instantaneous electric field. The electron Debye

length XD everywhere within the sheath is assumed to be much smaller than sm. This holds pro

vided Vrf > Te. Since XD <:sm, the electron density falls sharply (within a few Debye lengths)

from nt ~ Hi at the plasma side of the electron sheath boundary to ne ~ 0 at the electrode side.

The electron sheath oscillates between a maximum thickness of sm and a minimum thickness of a

few Debye lengths from the electrode surface.

H. BASIC EQUATIONS

The structure of the r.f. sheath is shown in Fig. 1. Ions crossing the ion sheath boundary at x = 0

accelerate within the sheath and strike the electrode with 50-500 volt energies. Since the ion flux /j,u(- is

conserved and u,- increases as ions transit the sheath, nt- drops. This is sketched as the heavy solid line

in Fig. 1. The ion particle and momentum conservation equations are respectively

niUi=n0uB (1)

_ 2eXi _Ui =HE =—p-E , (2)

where n0 is the plasma density at x = 0 and the mobility ji(- is itself a function of u,-; E, nt and ut are

functions of x. The factor 2/tc in (2) accounts for the time averaging of the ion velocity over the distri

bution of mean free paths to obtain the mean velocity ut. The Maxwell equation for the instantaneous

electric field E(x,t) within the sheath is

(3)
= 0, s(t)>x.

Here, s(t) is the distance from the ion sheath boundary at x = 0 to the electron sheath edge; the elec

tron sheath thickness issm - s(t). The instantaneous potential <X>(x,/) is determined from the equation
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Time-averaging (3) and (4) over an tS. cycle, we obtain the equations for the time-average electric field

E(x) and potential <5(x):

~dx =e^"'"^ ~"•**))• (5)

where n«(x) is the time-average electron density within the sheath. We can determine £, <& and n,

from j(0. For example, we note that nt(x J) = 0 during the part of the r.f. cycle when s(t) < x; other

wise, n«(x,f) = n,(x). We therefore have

««(*) =
27t

*(*) (7)

where 2(|>(jc) is the phase interval during which s(t) < x. Qualitatively, we sketch nt as the dashed line

in Fig. 1. For x near zero, s(t) < x during only a small part of the r.f. cycle; therefore 2<J> = 0 and

ne ~ n,(x). Forx near smts(t)<x during most of the r.f. cycle; therefore 2$ = 2iz and ne = 0.

To determine the time averages quantitatively, we assume that a sinusoidal r.f. current density

passes through the sheath:

^r/(0 =-5bsincor. (8)

Equating this displacement current to the conduction current at the electron sheath boundary, we obtain

the equation for the electron sheath motion:

ds-erii(j)— = -/<> sin <ot. (9)

m. SOLUTION

We integrate (3) to obtain



£=-f U(Q<*C s(t) <x,
(10)

= 0, s(t)>x.

We integrate (9) to obtain

— f »i(Q*C =—(1 - cos ©0, (11)

where we have chosen the integration constant so that s(t) = 0 at cor =0. From (10) and (11), we

obtain

E(x,m) =-f- J/»,•($<*£- -777(1 -cos cor), j(r) <x;
e0 ft Eoco

(12)

= 0, s(t)>x.

We must time average (12) to obtain E. Figure 2 shows a sketch of s(t) vs cor. We note that

j(f) = jc for co/ = ±fyt and that $(0 < x for -<>< ow < <|>. The time average is then

1 *£= -jj- J£(x,©/M(0)O. (13)

Inserting (12) into (13), we find

*<*> =7" "I J«.(0^C +7^r(sin <!> - $). (14)

Inserting (11) with s -xtm = <J> into (14) we obtain

Jo
E(x)= ——(sin <> - 4> cos <j>). (15)

EqCOTi

Using (6),

—t- = (sin <> —<> cos <|>). (16)

Solving (1) and (2) for n,-, we obtain



«i =/io"*(2<?X,£/jeM)"1/2

Inserting (17) into (9) with s = x, ©/ = <|>, we obtain

1/2

where

rf<t> _ «*
dr s0

nM

2eXt

3o = J</(e<Mo)

1
Sl/2E1,zsin<|>

(17)

(18)

(19)

is an effective oscillation amplitude.

Equations (15) and (18) are the fundamental equations of the self-consistent r.f. sheath. Inserting

(15) into (18) and integrating, we obtain

x/J0 =Hj(sinC - Ccos01/2sinC</C , (20)

where

H =
2X,S0

AJ

1/2

(21)

and XD = (Eq Te/en0)lf2 is the electron Debye length atx =0. In (20), we have used theboundary con

dition that x = 0 at <J> = 0. Setting x = s(t) and <> = cm in (20), we obtain the nonlinear oscillation

motion of the electron sheath, which is shown in Fig. 3. Setting s = sn at <J> = n in (20), we obtain the

ion sheath thickness

sm = 1.95//3?o.

Using (21) in (22) and solving for 3?o, we obtain

30=L09X^m2/3/Xi1/3.

The time-average potential is found by integrating (16), which yields

7 ^
<& = f(sin£ - CcosQ — </£ .

Too© i ^C

Using (18) and (19) in (24), we obtain

(22)

(23)

(24)



T"—TTrW-CcoiC^tinWC. (25)
Te n XI i

The total d.c. voltage across the sheath is related to the d.c. ion current and the ion sheath thickness by:

' M/2

Ji, = K 80
2*

M
w—, (26)
s2

where /,- = en0uB is the d.c. ion current and V = - <&(<!> = tc) is the voltage across the sheath. Setting

<|> = k and <fr = -V in (25) and evaluating the integral, we obtain

Using (21) and (23) in (27) and the definitions for XD and /,-, we obtain (26) with

JT. = 1.68 (VO1*. (28)

In contrast, the self-consistent result is AT/ =0.82 for collisionless ion motion in the sheath9. We see

that the current density scales as the inverse 5/2 power of the sheath thickness, in contrast to the (colli

sionless) Child law scaling as the inverse square power. We also note that for a fixed voltage and

current, ion collisions in the sheath lead to a reduction in the sheath thickness.

IV. SHEATH CAPACITANCE

The instantaneous electric field within the sheath is given by (12). Substituting (11) with s =x

and cor = <f> into (12), we obtain

Jo
£(x,/) = (cos cor - cos <b), sQ) <x,

£0®
(29)

= 0, s(t)>x.

Integrating with respect to x, we obtain the instantaneous voltage from the plasma to the electrode

across the sheath

V(t)= j E(x,t)dx. (30)
s

Changing variables from x to <> and using (29), we obtain



V(t) =— f (cos cor - cos $) ^L d$. (31)
Co© it d$

Using (15) and (18) to evaluate dxldty in (31) we obtain, for 0 < cor < 7C,

V(r) =(eno3o/eo)H j (coscor - cos(|))(sin<|) - <J>cos<|>)1/2sin<>rf<> . (32)
ox

V(t) is an even, periodic function of cor with period 2n. For -jc < cor < 0, we find that K(r) is given

by the right hand side of (32) with cor replaced by - cor. A plot of V versus cor is given in Fig. 4.

The peak value of V(t) occurs at cor =0:

V(0) =2.50tf(«i<>5o2/eo). (33)

Expanding V(t) in a Fourier series

V(0=Z V*cos(*cor),
*=o

we obtain

Vr0=Vr=1.00i/(e«oJo2/eo).

Vi = 1.28/f(*/io5o2/e0) •

72 =0^5H(€/»oSo2/eo). (34)
V3 = -.034//(enoJo/eo).

The second harmonic is 19.3% of the fundamental, and the third harmonic is 5.3% of the fundamental.

The ratio of the d.c. value to the peak value of the voltage is WV(0) = 0.40. Defining the effective

capacitance per unit area from the relation

- Jq sin cor = C/ —(V^ cos cor),
at

we obtain

C/ = 1.52eo/sw , (35)

where sm is the ion sheath thickness given by (22). In contrast, the coefficient in (35) is 1.23 for colli

sionless ion motion in the sheath9.



For a symmetrically-driven, parallel plate r.f. discharge (equal area plates) there are two r.f.

sheaths in series. We let V9(0 be the voltage on plate a with respect to the plasma and Vbp(t) be the

voltage on plateb with respect to the plasma. By symmetry, Vbp(m) - ^(cor - it). The series voltage

across both sheaths is V^ = V^ - Vbp. Using (32), we obtain, for 0 < cor < rc.

*2;
Vab = (enoSo/Zo) J(cos cor - cos 4>)(sin <> - <{> cos <j>)1/2 sin <j> d<j> +

J (cos cor +cos <|>)(sin <j> - <J> cos <f>)1/2 sin <j> d<j>

,aw

Jt

+

The peak-to-peak value of V^ is 2V(0), with V(0) given in (33). Expanding V^ in a Fourier series,

we obtain V^i =-2V^ and Vabi = -2V3. All even harmonics, including the d.c. value, are zero, as

expected for a symmetrically-driven discharge. The third harmonic is 5.3% of the fundamental, and the

higher harmonics are much smaller. Thus, to a very good approximation, a sinusoidal sheath current

leads to a linear response; i.e., a sinusoidal voltage across the discharge. Defining the effective capaci

tance per unit area of the series combination of the two sheaths from the relation

we obtain Cqm' - 0.76 z^s„.

V. SHEATH CONDUCTANCE

The r.f. conductance of the sheath is due to stochastic heating of the electrons by the oscillating

sheath. An electron that is reflected from a moving sheath experiences a change of energy. If the

sheath moves toward the electron, then the energy increases; if the sheath moves away, then the energy

decreases. For an oscillating sheath, some electrons gain energy and others lose energy. However,

averaging over an oscillation period, the net effect is an energy gain, corresponding to a dissipation in

the sheath. This mechanism also has been called "Fermi acceleration" 10"14 or "wave riding".4"5,15

If u is the parallel velocity (along z) of an incident electron at the electron sheath edge s(t) and

us(t) is the sheath velocity, then the reflected electron has a velocity ur = -u + 2us. We let/,(«,r) be

the electron velocity distribution at s, normalized so that



J /,(u,r)du=^(s(r)) =n,(r).
-oo

The electron flux r, incident on the sheath is

oo

r, = f uft(u,t)du . (36)

To determine the power transferred to the electrons, we note that in a time interval dt and for a

speed interval du, the number of electrons per unit area that collide with the sheath is given by

(u - uS)fs(utt)du dt. This results in a power transfer dS per unit area

dS =i- m(ur2- «2)(« - ua)fs{uyt)du. (37)

Using ur =-u + 2us and integrating over all incident velocities, we obtain

S=-2mj us(u - us)2ft(u,t)du . (38)

To determine /,, we first note that the sheath is oscillating because the electrons in the plasma

are oscillating in response to a time-varying electric field. If the velocity distribution function within

the plasma in the absence of the electric field is a Maxwellian go(u\ then the distribution within the

plasma is f0(u,t) = g0(u - u0), where u0(r) is the time-varying oscillation velocity of the plasma elec

trons. Because ns < n0, not all electrons having u > 0 at x = 0 collide with the sheath at s. Many

electrons are reflected within the region 0 <x < s where the ion density drops from n0 to ns. This

reflection is produced by a weak electric field whose value is such that ne = n,- at all times. The

transformation of /o across this region to obtain /, is complicated. However, the essential features to

determine the stochastic heating are seen if we approximate

/,=— So(k-"o). ">0. (39)
n0

Inserting (39) into (38) and transforming to a new variable u' = u - w0, we obtain

-10-



S(t) =-2m J usns[u'2-2u'(us-uo) +(us-uo)z]go(u')du' (40)

»*-"o

Assuming that \us - u0\ is much less than the characteristic electron thermal velocity, we can take the

lower limit of the integral in (40) to be zero. From (9) we note that

nsus = fion0sin<J),

and differentiating (20) with respect to <j> = cor, we obtain

us = uqH (sin § - 4>cos<t>)1/2sin<t>.

(41)

(42)

Averaging (40) over <{> = cor and noting that (41) and (42) are odd functions of $, the first and third

terms in (40) average to zero and we obtain

S - AmTsnox ((us - u0)usns)$ .

Noting that \u0\ <: Ius I for H > 1, inserting (41) and (42) into (43) and averaging, we obtain

S =0.49//mn0tt«2o .

where for a Maxwellian distribution g0t the incident flux is

Tj = "T riffle*

and

u. -

BeTe

ran

1/2

is the mean electron speed.

The sheath conductance G/ per unit area is defined through the relation

,r 1 Jo
S~ 2 GS '

where J0 = e/tofio. Equating (44) and (47), we obtain

1.02
<V =

H

e2n0
mue

11-

(43)

(44)

(45)

(46)

(47)

(48)



We note using (21) and (23) that

X
H = 0.47

We then obtain

G/ = 2.17

1/3 f 12/3
Sm

1/3

e2«o
|> J

(49)

2/3

(50)

This effective surface conductance per unit area represents a powerful electron heating mechanism in a

capacitive r.f. discharge. The quantity 2.17 (sm/Xi)m in (50) is replaced by the coefficient 2.98 for col

lisionless ion motion in the sheath9.

As an example, we choose V = 400 V, p =47 mTorr, Te = 3 eV, /,- = 0.5 mA/cm2,

co = 2jux 13.56 MHz, and M =40 amu (i.e., argon). Then we obtain A* = .070 cm, uB = 2.7 x10s

cm/s, n0= 1.2x 1010 cm-3, H = 4.1, J0= 10.8 mA/cm2, 30 =6.8x 1(T2 cm, XD = 1.2x 10"2 cm, sm =

0.54 cm, C/ = 0.25 pF/cm2, fio^-SxlO6 cm/s, «# = 1.2xl08 cm/s, 5 = 8.3x 10"3 W/cm2, and

G/ = 7.1 x \0~3 S/cm2. The d.c. ion power flux incident on theelectrode is Ss = /,- V - 02 W/cm2.

For a homogeneous (uniform ion density) sheath, ns = n0 and us = u0. Then the integral in (40)

vanishes and there is no stochastic heating; Gs' -> oo. We can understand this physically as follows: In

the accelerated frame moving with the plasma, the electron sheath edge at s(t) is stationary; therefore,

no energy is transferred to electrons that collide with the sheath. Thus the non-homogeneous nature of

the self-consistent ion density within the r.f. sheath is an essential feature of the stochastic heating

mechanism.
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Fig. 1. Structure of high voltage, capacitive r.f. sheath.
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Fig. Z Sketch of s(t) versus cor, showing the definition of the phase 4>(x).



1 JL
H £

1 -

2

IT

Fig. 3. Normalized position versus phase for the self-consistent r.f. sheath.
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Fig. 4. Normalized time-varying sheath voltage versus cor.
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