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ABSTRACT

We extend the Bloch wave calculation method to the case of a
periodic structure where the gain (loss) and the index of refraction depend
on frequency. We establish a procedure to find the propagation constants
and the reflection and transmission coefficients for the Bloch waves in the
general case, which has not been treated previously. ‘We then use the
results of this analysis to construct a model for a smface-emitﬁng laser
diode (SELD)[2,3], which has a vertical distributed feedback structure.
This model considers the laser as an amplifier driven by spontaneous
emission to compute the emission spectrum. At the present time it is valid
only below threshold. We present experimental results and compare the
measured emission spectrum with the theoretical one. The reasons for the
discrepancies and possible improvements to the device and to the theory
are then discussed.
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L Introduction

Propagation of waves in periodic structures has been studied extensively in the past
and a great number of methods has been used to solve the problem. (For a good sum-
mary and references on the subject, see the review paper by Elachi [1].) There are two
main types of such structures that are of practical interest for semiconductor laser diodes
(Fig.1): (a) periodic waveguides and (b) multilayers. The second case is encountered in
surface-emitting laser-diodes (SELD)[2,3]. These are basically distributed feedback

'(DFB) semiconductor lasers, with a vertical cax;ity and lateral p-n junction. The first
order grating is formed by alternating layers of GaAs and GaAlAs. This structure is very
advantageous for optoelectronic integration, since it does not need cleavage nor backside

etching to form a vertical cavity, as some other SELD’s require [4].

In most of the previous studies, the material characteristics of the periodic structures
were supposed to be constant across the band of frequency of interest. This is a good

approximation in usual edge-emitting distributed feedback (DFB) or distributed Bragg
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** Lockheed Missiles & Space Company, Palo Alto Research Lab, 3251 Hanover Street, Palo Alto, CA 94304.



-2-

reflector (DBR) laser-diodes, where we are looking at bands that are 2 to 3 nm wide.
However, for SELD’s, because of the strong coupling coefficients required, the stop-band
has a width of 35 nm or more (in the wavelength region of 850 to 900 nm). When we
have such a large bandwidth, material dispersion cannot be neglected anymore. The
index of refraction can change appreciably, but the main effect is gain and loss variations
with frequency in the semiconductor material. Also, because we have a multilayer where

only the GaAs is pumped, we have a simultaneous index and gain grating.

In this paper, we first give a summary of the modified eigenmode theory that takes
these effects into aécount. We élso consigier briefly what happens when the periodic
" structure does not have an even symmetry anymore. ‘(Most of the previous studies con-
sidered structures with even symmetry only.) Then, we check the results of eigenmode
theory by solving exactly the two layers case. Next, we derive the reflection and
transmission coefficients for the interface between a periodic waveguide and a uniform
waveguide. Using these results, we are able to compute the total reflectivity of the DFB
structure used to fabricate the SELD, as a function of wavelength and we compare this
result with the measured reflectivity. We then summarize the experimental data of the
fabricated device. Next, we compute the theoretical emission spectrum (below thres-
hold) and compare it to the measured eﬁssion spectrum. The model used for this calcu-
lation considers the laser as an amplifier driven by spontaneous emission. Finally, we

discuss possible improvements to the theory and to the device.

We will use an extension of the eigenmode theory for periodic structures, as first
developed in [5]. A good exposition can be found in [6]. The advantage over coupled
mode theory (see for example [7]) is that we are really working with independent modes,
which makes, in our opinion, the boundary conditions much easier to express. (Although
this has been much disputed, see [8,9].) Another advantage is that it allows us to get
analytical formulas for the output spectrum of a DFB laser. This is not possible with

coupled mode theory [10].



IL General Theory

The equation for the propagation of a scalar wave in a one-dimensional infinite
periodic medium is:
2
EBED) _(ga)- BN =0 M

where E(z,t,\) =E(z,A)e/! is an electric field component (o= 21:%), g(z.,A) is the gain (loss)

constant and f(z,A) is the propagation constant. Both g and B are periodic in z and
depend on A (the free space wavelength). (The dependence on A will not always be
explicit in the rest of this paper.) The usual assumption is that (g—jB) is an even periodic
function of z. Most of the review paper by Elachi [1] treats this case. Here, we will only

assume that g and p are periodic with the same period A, i.e., that we can write:
| . . | e . n T
8N =jBzN =gM) =iBoM+ X (€M-iBy W) exp(j29-2) 2
: o
(where g, and B, are complex in general).

It is well known that the solutions of (1) are of the Floquet-Bloch type {11]:
E(z=A@) e *+B(z)eT? 3)

where A(z) and B(z) are periodic functions of z and T is the propagation constant, which

is written as:
I'sG-K 4)

where G is the effective gain and K is the effective propagation constant. The usual
interpretation of (3) is to say that A(z) corresponds to a forward propagating mode and
B(z) corresponds to a backward propagating mode. We shall see below when this
interpretation is correct. When the Bragg condition is nearly satisfied (i.e., By close to
Kp), the waves reflected at each interface add constructively and the reflectivity becomes

high. In a passive medium, this gives a band of frequency in which I" has a big negative
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real part (as we will see below), which means that there is no propagation in that band.
Hence the name stop-band is used, which is similar to the forbidden band in semiconduc-

tors. The Bragg condition at normal incidence gives for Kg:

Bo=Kg=p+ )

Since the band around Kj is the one we are interested in, we will look at A(z) and B(z) in

that band. Because A(z) and B(z) correspond to independent solutions of (1), we can

treat them separately. \

We start by expanding A(z) and B(z) in Fourier series (which we can do since they

are periodic):
AGN=Ao+ 3, AN exp(2aE2) 6.2)
P@
qz0
gmtoo T
B(zM)=Bo+ X B exp(2q--2) (6.b)
qz0

Then we substitute (2), (3) and (6) in (1) and by neglecting second order terms and equat-

ing terms having the same exponential factor , we get after some approximations [6]:

%

AN =m%=s+(l)/\o : D
I S
B_,M)= Gragtiorom) Bo=s_A) By €]

where:
8=Kg-Bod  Sur=Kp—K
K =Bipti £ip =P tig, ®)

(In equations (7), (8), (9) and in the following, p is a positive integer.) The quantities A,
and B_; represent Bragg-scattered waves from A, and By respectively. Their amplitude

becomes significant only when f, is near Kz. We can then neglect the other components,



so that (3) becomes:
E(z,\)=A¢[1+s,(A) exp(j2Kpz)] €72+ By [1 +s_(A) exp(—2Kpz)] e T> (10)

Again, the usual interpretation is to say that the part in A, is a forward propagating mode
and the part in B is a backward propagating mode.

Let us notice that if (2) is an even function of z, we have: x,=x_ and s=s,=s_. In
general, we have Is,I=Is_| only if f(z)= g(z)-j(z) is: (1) an even function of z (x,= k),
(2) an odd function of z (x,=-x.), or (3) if f(z)= (go-jBp) +(g’-iBIh(z), with h(z) a real
periodic function of z. This last case gives: k= (g'-.]li»')cp and x_= (g-jB))c, (Where c, is
the pth Fourier coefficient of h(z) and cP mdlcates the complex conjugate of c), i.e.:
Ix,I= Ix_l. The last case includes pure index modulation (g’=0) and pure gam modula-
tion (B’=0). We will have I, !#Ix_| (and thus Is,I=Is_I) only if g(z) and B(z) have dif-
ferent "profiles”, i.e., if f(z)= (go-jBp)+ [g’h(2)-jB’P(2)] and p(2) is not proportional to h(z)
(both are real functions). ' |

Looking at the scattering of A,, and B_;, into Ay and B, respectively, bf the same
method as for (7) and (8), we get :

—jro 1
_ 11
B G 5 an
=% _1 [ :
B0 G P s 12

Substituting (7) into (11), or (8) into (12), we can now obtain the characteristic equation

(which also defines P):
P?=(Gj8e)? = (208 + K,k 13)
So that, by using (9) and (13) in (4):

I'=G+j84~Kp=P-iKp (14)
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The solutions of equation (13) in the case of even functions (k,=x_) are discussed
for example in [1],[6] and [8]. However, all these analysis assume either a pure index
modulation or a pure gain modulation and no material dispersion (i.e., the refractive
index and the gain are independent of frequency). This assumption is usually valid
because conventional edge-emitting DFB laser-diodes have stop-bands that are 2 to 3 nm
wide, so that index and gain (loss) variations can be neglected. But in the case of our
DFB-SELD structure [3], the stop-band is of the order of 35 nm and gain variations can-
not be neglected anymore, especially when the gain changes from negative to positive in
the stop-band, as we will see below. Also, in the case of our SELD, we have index and
gain modulation at the same time (since it is forined by alternating layers of GaAs and

GaAlAs and gain exists only in the GaAs; see reference [2] for details).

Looking at (13), one questian comes up: Which root do we choose for P? One of
these roots corresponds to the correct assignement of the forward propagating mode to
A(z) and the other root makes A(z) the backward propagating mode. This is an impor-
tant question since the proper definition of the reflection and uansrﬁission coefficients
depends on the correct assignement of forward and backward propagation to the modes.
In the previous analysis [6,8], P was chosen sucfx that G had the same sign as g, or,
equivalently, such that 8. had the same sign as 5. But this doesn’t work in the general
case and we have to find anotl;er way to decide which root defines the forward propagat-

ing mode as:
E(z)=Aq (1 +5, exp(j2Kpz)) e (15)

Intuitively, we see that in the stop band K=Ky (and §.4=0), so that the direction of
the net power flow can be found by comparing the intensities of the two components
(incident and backscattered) in each mode. Looking at (15), it is obvious that the direc-

tion is reversed when Is,| becomes greater than one.
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More rigourously, if (15) is the only non-zero electric field component, dividing the
average power flow per unit area by the average energy density, we obtain the energy
velocity [6]:

¢ K-1s,1%2Kg-K)
Bo 145,12

(16)

Vg=

where By=fioV}i€q, being the average effective index and c is the speed of light. So, if
(15) really represents a forward wave, vg has to be positive. From (16), we get then the

condition:

1+|S+|2 KB Kp 5@“
2—= =l+——=1 17
215,12 K Kg-84 ~ Kg an

since in general 8.4« Kg. And this gives us:
Is,1<1 (18.a2)
And similarly, for the term in B, to be the backward propagating wave, we need to have:
Is_1<1 (18.b)-

If we consider only the cases when Is,|=Is_1, there is no contradiction between (18.a)
and (18.b). There is then always a forward propagating mode and a backward propagat-
ing mode. Bt;t if we look at the general case, it is possible to have, for example (18.a)
being satisfied while (18.b) is not satisfied. To see more clearly what happens, let us

define: P,=G+j5e5 and P,=-G—jd.. Then, looking at (7),(8),(11) and (12), we see that:

1
(sp,

(S+)P 1 =

1
(s,

(e, = 19)

where the indices P, and P, mean that the coefficient is computed using that value for P.

Thus, when Is, I=Is_I=Is|, we have:

1
|S|Pz

ISIPI=
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.This shows that in this case, the choice of the root is unambiguous. Indeed, if P; gives a
Ist greater than one, P, will give Isl smaller than one and vice versa. Looking at the physi-
cal interpretation of s, and s_ from (7) and (8), we see that (18) simply says that the scat-
tered wave amplitude cannot be bigger than the incident wave amplitude, as we found
intuftively above.

But in the general case, if |k, ! is different from Ix_|, we will have Is,| different
from Is_| and in a certain frequency range, we could have for example Is,!>1 and
Is.1<1. Equations (19) then s};ow that this would be true for both roots of (13). If this is
not an effect of the approximations used, and there is no reason to believe that it is, what
does this mean? From the discussion above about the direction of the energy flow, the
interpretation of this result is that both mode have a net energy flow in the same direc-
tion (in this case, backward)! This does not mean that there is no energy going in the for-
ward direction, but only that there is more energy going backwards, i.e. that the reflected
wave is greater than the it;cident wave for one of the modes. This is possible since this is

an active structure.

The simplest structure that would exhibit this behavior is a three layers periodic
structure, for example: GaAs/Ga,_,Al,As/ Ga,,Al,As, with x=ty and current injection to
have 'gain in the GaAs layer only. This is because in this case g(z) and B(z) would have a
different "profile”. Wg appﬁed the theory to that three layers structure and for some gain
curves, we obtained the phenomenon mentioned above, i.e.: in both modes the net energy
flow iS in the same direction. We used these results to compute the reflectivity and
transmittivity of a finite multilayer structure [12]. We then used a transmission matrix
method similar to the one developed in [13] to check the reflectivity and transmittivity
obtained with the eigenmode theory.The agreement of the eigenmode theory with the

exact results was very good.



IT1. Two layers periodic structure

The case of the two layers periodic structure is interesting for several reasons. First,
it is the basic structure of our surface-emitting laser-diode (SELD) [2,3], which we will
analyze below. It is also a very common case in applications such as dielectric mirrors.
Second, we can get exact analytical solutions without too much difficulty and this will
allow us to compare them with those of the approximate theory of section II (which we

will call eigenmode theory).
The structure used for the calculation is shown in figure 2. The gain and propaga-
tion constants in one period are given by:

. g -ipA)=Ty(A) if-zy<z<0
@M -IBEN=1 g a)-iB,M)=Ty(0)  if0<z<z, (20)

' z
and z;+z;= A, the period of the structure. Let us notice that if we put the origin at z=-?l,

the function (g(z)-jB(z)) is even in z. However, to simplify the calculations, we will use
the coordihate system of ﬁgﬁre 2 and correct later when necessary. We will suppose that
we have a plane wave propagating in the direction normal to the plane of the layers, with
a linear polarization in the y direction, so that equation (1) is the equation for the y com-
ponent of the electric field. .

Séveral equivalent methods can be used to solve equation (1) in this case. We will
outline the one using solutions of the Floquet-Bloch type, i.e.: we start with equation (3).
(Another method is used in [14].) Since A(z) and B(z) correspond to two independent
solutions, we can work with them independently of one another. We will work out the
solutions for A(z), and B(z) can be obtained simply by replacing T by -TI" everywhere.

So, we substitute (3) in (1) and we get, for A(z):

PA LA o o
oz2 5+ - @) iB@)HA=0

Which gives us, with (g(2)-jB(z)) defined in (20):
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21)

A, exp(Y.12)+A_ exp(Yz2) if-z;<z<0
A@)=| A, exp(r2) + A expiygz)  if0<z<z,

where:

Y ==T+1  Yp=-T+
Ya==I-T) =-T-T;

and A(z) is a periodic function of z with period A=z;+ z,. Using the continuity of the
tangential components of the electric and magnetic fields at z=0 and between z=-z, and

2=z, (since A(z) is periodic), we get after some algebra:

[rll _]lr,] [i“_i] = [rlz _;,] [2*_2] (22.2)
and: .
Ll e ) A
® 7 reTm _p el [L,] = | ryef= e [ A‘J (22.b)
Eliminating A,, and A_,, we get: .
3 (&) -+[x]

where p=e" and:

I‘,z,- 1{ 2]
A=e " —| —+—| sinh(T,z,) + cosh(T,z,)
2 \ , I

(T, T;,]
_ Nz i 1 721 .
B=e - > ‘—-1_2 FIJ smh(l"zzz)]

T L L L
C=e > [ T, l_l] smh(l‘zzz)J

_ g 1|0 T
D=e ——| =+—| sinh(I',zy) +cosh(l",z,)
2|, I

Which gives for the eigenvalue p:
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1
oA T | (T2 |2 '
p=e -2:1:{(2) l] (24)
where T is the trace of the matrix and is given by:
I Tf :
T= ZCOSh(TIZl)COSh(rzbz) + F—+F smh(l", Z; )Smh(rzb))
2 I

In the case of no loss and no gain, this reduces to the result obtained in [14]. Let us
notice that the matrix in (23) is unimodular since AD-BC=1. This also means that the

two eigenvalues p; and p, will be inverse of one another:

TA
1 =€
M= 2 and {:: —eTA (25)

We can check that (24) satisfies this condition. This relation was expected for symmetry
reasons: One eigenvalue corresponds to the forward mode and the other one to the back-
ward mode. But here again, we have the same problem as we had for the approximate

solution: Which one is the forward mode and which one is the backward mode? Since

we have only e™, T is determined only up to a term of the form (jZm—E-) (where m is an

integer). This means that T+ jZm%)' is also a solution of (25), for all m. The two possi-

ble solutions for a forward wave are obtained by choosing m such that the wave vector

has a value close to Kz. We get then:
T'= G‘l'jsdr’JKB from 18] (26. a)
r=—G—J8eﬁ—ng from Ha2 (26.b)

And we use the same notation as in section II. We see that this is totally equivalent to the

choice of the root of equation (13).

Hence, we will use the same criterion as in section II: the direction of the net power
flow. To do that, we first have to compute the eigenvectors corresponding to the eigen-

values. We start by rewriting (21) as:
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A,y (exp(Y,12)+51 exp(1-12))  if —2;<z<0
A"’={A+1 (52 XP(Ua) +ssexplrs?))  if0<2<2; @n
Then, from (23), we get:
Ay p-A C
A B pD @8
And, with (22.a):
A,
S3= rf = 2+.2(1" 148 (T-T)
A2 _ 1
“=a, "I T=Tzts; () . (29)

- Notice that if we define: sF%: 2, we get:
2

S;+a . . I'~T,
with: a= AT,

2= 1+as;

This is a bilinear transformation in the complex plane, and if a#0 (i.e.: T}2I,), it maps the
disk 'lsl I<1 onto another disk, but with a part that has 1s,1>1. We can thus not rely on s,

or s, alone to get the direction of the power flow, in the way we looked at s in section II.

To find the direction of the power flow, we will look at the Poynting vector’s direc-
tion. But, because we have gain and/or loss in the structure, the Poynting vector is not
constant along z. Therefore, we will take an average over one spatial period (of the time

averaged vector):
171
<S>=-- [ S ReExi )z (30)

where we take: E,=A(z)exp(I'z) and A(z) is defined in (27). An explicit formula is
derived in Appendix A and it shows that the only non-zero component of the Poynting
vector is <S;>. The sign of <S,> will then give us the direction of the power flow: posi-

tive means forward propagation and negative means backward propagation.
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Another way to find the direction of the power flow is to find the s coefficient
defined in section II. To find s, we compute the first two coefficients of the Fourier series

expansion of A(z) and get s as their ratio. We can then look at sl as in section II. How-

Z
ever, we have to be careful about one thing: the point of even symmetry is at z=-?l and

that is where we have to put the origin when we compute s. If we do not do that, we will
have a phase difference between the s coefficient computed here and the one defined in

section II. Also, we would not have s,=s_=s. Taking that into account, we get :

Z Z
s=e ¥4 [A@)dz/ [A@)dz (31)

] -z

where the exponential factor is due to the change of origin, A(z) is given by (27) and
A’(z) also, but with the y;; replaced by v’ (i=1,2):

Yy =Ys—j2Kp
Explicitely:
Z ~fnZy o AL YoaZa_ Yoz
- Ya ¥-1 Y2 ¥-2

And the same for A’(z), but with the y,;’.

A comparison of the results obtained with Isi<1 and with the average of the Poynting

vector on the examples of the next section shows only negligible differences.

IV. Examples and discussion

To illustrate the theory outlined above, we will use the two-layer structure of our
surface-emitting laser-diode [2]. The layer structure is shown in figure 2 and the parame-
ters are given in table 1. Basically, we have alternating layers of GaAs and Gag7Alg3As.
The thickness of each layer is chosen to be Ay/4n;, where A, is the wavelength at which

we want maximum reflectivity and n; is the index of refraction of the layer (at A;). The
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GaAs layer will be layer number 1 and the GaAlAs layer will be layer number 2. The
loss in the GaAlAs layer is taken as independent of frequency and equal to 10 cm™!
(intensity loss). The gain in the GaAs layer depends on the carrier density. A semi-
empirical model (based on absorption curves in [15]) was developed to get analytical
expressions for the gain as a function of carrier density, temperature and wavelength.
Figure 3 shows typical gain curves for three different carrier densities at 300 K. These

will be used later in the examples.

Notice that the coupling constant for our structure (x= 4500 cm™) is two orders of
magnitude larger than for edge-emitting semiconductor DFB lasers. Also, since only the
GaAs layer will be pumped, we have not only a periodic variation of the index of refrac-

tion, but also of the gain constant. This structure has even symmetry and thus s=s,=s_.

Figure 4 shows the effect on G and 8.4 of the introduction of gain and then gain
modulation in this .structure. In fig. 4(a), there is no ldss or gain and we see that G is zero
everywhere, except in the stop-band, where it is negative (indicating total reflection, not
absorption). In fig. 4(b), a constant (independent of ﬁ'equencf and of z) gain of 2000
cm™! is introduced in the structure. And in fig. 4(c), the periodicity of the gain is taken
into account (i.e.: we have gain only in the GaAs layer, but with the same average gain).

We see that the effect of gain periodicity cannot be ignored.

Figure 5 shows G and 8. for different carrier densities. In this case, the gain is not
constant but depends on the wavelength. The intensity gain in the GaAs layers used for
these examples is shown in figure 3.‘ These calculations were done using the approximate
(eigenmode) method of section IT and the exact method of section IIl. The results of the
two methods for G and 8.4 are undistinguishable at the scale of this figure. The most
sufprising feature of these results is the sudden jump of G from a negative to a positive
value when N=1.0x10'"%cm™ (fig. 5(b)). Notice that this jump occurs at the wavelength

where the average gain (gp) changes from negative to positive.
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But this is not as surprising as it seems. If we look again at fig. 4(a) and 4(b), we
see that when the gain is changed from negative to pésitive, G (in the stop-band) changes
from a large negative value to a large positive value without going to zero. What hap-
pens here, in fig. 5(b), is that the gain changes sign in the stop-band and thus G changes
sign also. Mathematically, Isl becomes greater than one and thus we have to switch to the
other solution of (24) (or equivalently of (13)), which implies a sign change of G. Figure
6 shows a plot of Isl as a function of wavelength for the two possible solutions ((26.a) and
(26.b)). Since IsI>1 means that the direction of the power flow is reversed, we see that
the eigenmodes exchange their roles at the point where Isl=1: The mode that was pro-
pagating in the forward direction now becomes the backward propégating mode and

vice-versa.

Physically, as we can see from (16), the velocity of energy propagation is very small
in .the stop-'banci (Isl is close to one), because of the multiple reflections. Thus a small
loss or a small gain will be amplified a lot by the multiple mﬁecﬁons.‘ In fact, we have
[6]: '

G=g [ —"—] | (33)

VE

where v is the velocity of light in the medium (without the periodicity) and vg is the.
energy velocity defined in (16). But this jump is only a mathematical artifact due to the
method used here. The rate of change of the energy density (which is eque;l to gov= Gvg,
see [6]) is a continuous function of wavelength. If we compute the reflectivity or
transmitivity of a finite multilayer with these formulas, we get a perfectly continuous
curve (as we will see below).

Figures 5 and 6 also show that for N= 0.2x10'%cm™ and N= 2.0x10'cm=3, this
phenomenon does not occur. For N= 0.2x10'8cm™, the gain is always negative and we
don’t have any problem. For N= 2.0x10'8cm™, the sign change of the gain (g,) occurs

outside of the stop-band and we see that G changes sign also, but without any
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discontinuity. Figures 6(a) and 6(c) show that, for these cases, there is no exchange of

roles between the two modes.

In figure 7, we compare the real and imaginary part of s, as computed by the
approximate method (eq.(7)) and by the exact method (eq.(31)). We see that the differ-
ence is small and that for N= 1.0 x10'%cm™, the discontinuity occurs at exactly the same
wavelength. From this and the fact that that G and 8 4 are correct within a few percents
with the approximate method, we can conclude that the approximate method is a good
approximatibn. We are interested in the s coefficient because it will be used in the next

section to compute reflection coefficients and the emission spectrum of our DFB-SELD.

V. Reflection and transmission coefficients

We saw above that for a periodic one-dimensional medium with even symmetry, a

goc-ad approximation of the electric field is given by:

. E@)=Ag(145)e" >+ B(14s,)e T " (34.2)
where A, and B, are the amplitude coefficients for the forward and backward propagating
 modes respecti(rely and: |

sg=sexp(j2Kgz)

Sp =S8 exp(—j2Kyz) (34.b)

T, K and s have been defined in equations (4), (5) and (7), respectively.

From these definitions, we can immediately find the forward propagation factor

from z, to z, (with z,<2,)[6], that is the factor D; such that E(z))=D; E(z,) :

1+sexp(j2Kpz,) _1+se
" T+sexp(2Kgzy) ©  1+sg

£ (35.a)

where L=z,-2z,. Similarly, for the backward propagating factor D, (from z, to z,), such
that E(z,)=DyE(z,), we get:

_ 1+sexp(=j2Kpz,) rL_ 1+Se oJL
~ T+sexp(2Kgzy) = 1485

(35.b)
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One important point when using these formulas is that the origin of the z axis has to be at
a point of even symmetry. Otherwise, we would have made a mistake because the s
coefficient for the forward and backward modes would have a different phase (see the
definitions (7) and (8)).

A. One interface

Let us now look at what happens at the interface between a periodic region and a
uniform region (Fig.8). Expression (34) for the electric field in a periodic region is only
an approximation, but, as we saw above, it is a good approximation. We.will thus sup-
pose in the rest of this paper that the electric field in a periodic region is of the form
given by (34). In the uniform region, the electric field will be given by:

E,(2)=A" oe‘.ir w(zz) . g’ oeirn(z-ll) ‘ (36)

where T, is the complex propagation constant in the uniform region and A’y and B’y are
the amplitudes of the forward and backward propagating modes respectively. z, is the
position of the interface, which we can subtract from z in (36) to simplify the calcula-

tions, since, for a uniform region, the choice of the origin is arbitrary.

Figure 8 shows the meaning of the different reflection and transmission coefficients
we are going to compute. To find these coefficients, we express the continuity of the

tangential electric and magnetic fields at z=z, and we get:

(1+5)Age ™ +(1+5,)Boe T 2= A%g+B’,

- 37
(511 = DKgAE™ + (1 5,)KgBos ™ =—BoA o+ BB’ 67

where the index 1 for s; and sp indicates that they are computed at z=z, and where we
used I'=Kp (we are working near the Bragg wavelength) and I',=B,. Now, to find, for
example, R;, we have to take the ratio of the backward and forward propagating electric
fields at the interface in the periodic region:

_ Epna(@) _ Bo(l+sp)e™
U Eprorw(@)  Ag(1+sg)e

(38)
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when there is no mode incident from the right (B’,=0). We solve then (37) to find By/A,
and plug the result in (38). The other coefficients are found in a similar way. We get:

r=8n  1+8p Sp1—T
Ri= Ro=
! 1=rsy; 1+sg 2 1=rsy;
Ty = (14— 015! T2=(1-r)—llsi (39)
(1-rspy)(1+55) 1-rsy

where r is the reflection coefficient due to the change in propagation constant:

- Ksz-B, _ n-n,
KB+BU ﬁ-{-n“

r (40)

where 1 is the effective index of refraction in the periodic region at the Bragg wavelength
(n=Kp/ko and kg=2n/A). and n, is the index of refraction of the uniform region at the

same wavelength.

We see that in the limit of no periodicity (s going to zero), we recover the usual
expressions for the reﬂecti.on and transmission coefficients. And in the limit r going to
zero, we get the same results as in [6]. Now, if the periodic region is on the right instead
of on the left as in figure 8, we just have to exchange s; with s, R; with R, and T, with T,
in (39) to get the formulas for this case. If we call R, the new R; we obtain in this way,

R, the new R, and so on and if we replace z, by z’,, we find:

Ra= Sp-r _ r-s'n 1+sp
T 1-rsp T 1-rsp 145
_ +5p _ 1-5'p8'
B=0077e Ui @b

B. Phase shifter
In the following, we will also need expressions for global reflection (R’, R”) and
transmission (T’, T”) coefficients of a phase shifter. By phase shifter, we mean, in this

paper, a uniform region between two periodic regions (see figure 9). The R;’s and T;’s
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(i=1,2,3,4) are the coefficients given by (39) and (41). Notice that we are using two dif-
ferent coordinate systems. This is necessary because, as mentioned earlier, we have to
put the origin at a point of eveﬁ symmetry in a periodic region. But, in general, it is
impossible to have the origin (or its translation by a multiple of the period A) at a point of
even symmetry in the two periodic regions at the same time. Hence the use of z for the

left region and z’ for the right region.
The propagation factor for a uniform section of lenght L, and with propagation con-
stant I',=B,+j g, is:
P,=exp(=jTLy) | 42)
We will suppose here that the reflection coefficient r is equal to zero (i.e., i=n,, which is

apmoﬁmtely the case in our laser structure). We get then, using the method of muitiple

reflections:

P&S'R-Sn 1 +Sp)

‘e 43.a
1-Plsys'p 1+5n “a
_ Pu(l-5015p1) 1+5'p @3 -b)
1-Plsyisp 1450 .
”_ P}Sbl-S'bz l'l'S'a (43.c)
l—P&Sbls'a 1+s’b2 .
. P1-¢ 1
oo ML= 1oy (43.4)

1-Plspis, 14572

The prime on the s indicates that the s coefficient for the right region can be different

from the one for the left region.

V1. Reflectivity

Figure 10 and table 1 show the layer structure used for our surface emitting laser
diode (SELD). From the top, we have 20 pairs of layers, consisting of one GaAs layer

and one GaAlAs layer (each layer is one quarter of a wavelength thick), then we have a
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quarter-wavelength GaAs layer acting as phase-shifter and finally 60 more pairs of
GaAs/GaAlAs above the GaAs substrate (see [2,3]). This structure was chosen because
it allows lasing m the nﬁddle of the stop-band [16], and thereby avoids the degeneracy
problem of usual DFB lasers. The number of pairs at the top is smaller so that most of
the power output is through the surface and not in the substrate. -The structure was grown
by metallo-organic chemical vapor deposition (MOCVD) for the devices we will present
here, but'we have also several wafers grown by molecular beam epitaxy (MBE).

In this calculation, we will consider only plane waves at normal incidence, coming
from the air. Figure 11 shows the model used to cbmpute the reﬂectiviiy. L, is the
length of the 20 pairs section, L, is the length of the phase shifter and L; is the length of
the 60 pairs section. The R;’s and the T;’s we need are given by the formulas derived in

- the previous section and are summarized in Appendix B.

Using the method of multiple reflections, we find the total power reflectivity to be

given by:
Rp= IRyl? (44.a)
and
_ T TR P P2
Rr=Ri* TR PP,
44.b)
T4TRsPsP (
Ryg=Ry+ 204 P3Py

1-R4RsP3P4

where the P;’s are propagation factors of the type given by (35) (D and Dy) and R is an
effective reflection coefficient for the phase-shifter and everything that is to its right (in
fig. 11). If we look at the formulas we obtained, we see that a lot of factors of the form
(1+sg) or (1+s,) can be cancelled out. This can be done by omitting the factors between

square brackets in Appendix B.

Before we can compute the power reflectivity of our structure, we need to define

two more characteristics: the index of refraction and the absorption as functions of
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wavelength. We will assume that the index of refraction is constant and that the absorp-
tion coefficient in the GaAlAs layer is constant and equal to 10 cm™ (intensity

coefficient). For the GaAs layer, we will use:
1 1 -
= =+= cm™!
G(B) [ B ‘Y] fem™]

B=exp(4.85E +1.9552)
y=exp(118.84E — 159.9106) 5

where E is the photon energy in eV. This formula was obtained by fitting to a measured

absorption curve for small p-type doping given in [15].

Now we can compute the power reflectivity of our structure. Figure 12(a) gives the
result of the calculation for the structure as defined by figure 10 and Table 1. In Figure
12(b), we see a typical experimental result. The measurements were made using a
Perkin-Elmer Lambda 9 spectrometer with the Abéolute Reflectance Accessory. In this
apparatus, the beam normally reflects twice from the sample at two diffe;ent positions,
with an angle of 8 degrees. Because of the small size of the sample and of its non-
uniformity, an aluminium mirror was substituted at the second reflection point. We did a
first measurement with the sample, then replaced it with an aluminium reference mirror.
This allowed us to compute the absolute feﬂecﬁvity, knowing the reflectivity of the
aluminium. The fact that we were not at normal incidence (but 8 degrees off) slightly
increases the apparent thickness of the layers (less than 1%), but can otherwise be

neglected.

We can see that the experimental result is similar to the theoretical result of fig.
12(a), but that there are some differences also. The main difference is the double dip in
the middle of the stop-band for the experimental result. This can be explained by looking
at what ﬁappens when the thickness of each layer changes by one lattice constant (a=5.65
Angstroms). This gives us a change of tickness of about 0.9 %, which, for an original

Bragg wavelength of 890 nm (in vacuum), corresponds to a change of about 8 nm. This
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corresponds approximatively to the spacing of the two dips. What happens is that the
grown structure is not uniform across the wafer and the spot size for the reflectivity
measurement is several millimeters. The measured reflectivity is thus an average of two

different thicknesses.

We varied the parameters slightly to try to reproduce the experimental curve. Our
best result is the theoretical curve in Fig. 12(b) (but it is not an optimal fit). It was
obtained by a weighted average between a Bragg wavelength (A) of 889 nm (70 %) and
a Ag= 897 nm (30 %), with the thickness of the top GaAs layer (the one in contact with
air) reduced to 37 nm (instead of 67 nm). (This reduction in thickness could happen dur-
ing wafer processing and handling.)

We did not try to improve the agreement between theory and experiment because it
depends on too many unknown parameters, such as the exact dependence of the loss on
wavelength, and because the theory used here is ox{ly an app:roximation. We also
neglected the variation of the index of refraction with wavelength. However, we get
correctly the main characteristics of the curves and this gives us confidence for applying

the theory to the calculation of the emission spectrum of the SELD (in section VIII).

VII. The surface-emitting laser diode

As described previously in [2] and [3], the surface emitting laser diodes (SELD) are .
fabricated b)} starting from wafers having the layer structure described above (Fig. 10 and
Table 1). Mesas with dimensions ranging ﬁoﬁ 2 x 8 to 3 x 17 um? at the top surface are
formed by wet etching. Then a n-type GaggAly4As cladding layer is grown around the
mesas by selective liquid phase epitaxy (LPE). Finally, a lateral pn junction is formed by
selective zinc diffusion through an opening in a silicon nitride film, at a distance of 3 to 4
um away from the edge of the mesa. Figure 13(a) shows the structure of the laser and
Fig. 13(b) is a scanning electron microscope (SEM) picturé of a laser. The zinc diffusion

region is brigther in this picture. The total thickness of the structure is about 10 pm.
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Since the GaAs/GaAlAs multilayer is completely surrounded by GaAlAs, carrier
confinement in this structure should be comparable with that of buried heterostructures.
Carriers are injected predominantly in the GaAs layers and therefore we will assume in
the model that only the GaAs layers are pumped. There is however the possibility of

current leakage around the mesa. We believe this happens at high currents.

Figure 14 shows the light output versus dc current characteristics (L-I curve) of a
SELD at room temperature. We get what looks like typical threshold currents in the
range from 2 to 10 mA and differential quantum efficiencies from 0.3 % to 1.36 %.
Powers of 0.5 mW for a current of 50 mA have been observed for CW operation at room
temperature. More recently, we obtained quantum efficiencies up to S % for some dev-
. ices. Unfortunately, they were accidentely destroyed before their spectrum could be
measured.

Observation of the near-field pattern shows [2,3] that me light-emitting regfon is
confined within the rectangular top surface of the multilayer (at least when the current is
not too high). The far-field pattern is circular [2,3] and its beam divergence angle, for a
current of 20 mA, is 7 to 8 degrees. However the circular emission pattern is surprising
for a device with a rectangular emission surface. The 7 to 8 degrees angle corresponds
roughly to a width of about 3 pm for the rectangular opening, but the length of about 15
um should give a much narrower beam in that direction (about 3 degrees), if it were a
diffraction limited beam. Obviously, the beam is not diffraction limited in that direction.
A reason for that could be that there is no coherence between points more than 3 pm
apart.

Figure 15 shows the spectrum of the SELD at different currents, for CW operation
at room temperature. We see that there is a sharp emission line at 884 nm which
becomes obvious for a drive current of 1.6 mA. This is consistent with the L-I curve,
which shows what looks like a 2 mA threshold current. The half-width is rather large

(1.5 to 3 nm) compared to conventional edge-emitting laser diodes. The total width of
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the emission spectrum is also large (about 50 nm), compared to edge-emitting lasers.

In view of these results, one might ask whether these devices are really lasing? We
think they are. There may be several reasons for the low quantum efficiency: leakage
current around the mesa, non-radiative recombination at interfacial defects if the LPE
was not very good and a big spontaneous emission component. We explain below how
the shape of the mesa can lead to a lot of parasitic spontaneous emission which lower the

quantum efficiency and can also affect the spectrum.

VIIL. Emission spectrum of the SELD

In this section, we develop a model (figure 16) to reproduce and explain the emis-
sion spectrum, at least below threshold. It is very similar to the one used to compute the
reflectivity and we make the same assumptions, except that we will now have gain-in the
pumped section (which is taken as being the zinc diffused region). In addition, we
assume that this pumped section has a uniform carrier density (in the GaAs part of the
layers) and that the unpumped region is uniform and lossy. These assumptions are rough
approximations, but they allow us a relatively easy calculation using what we did in the

previous sections.

The reflection and transmission coefficients are given in Appendix B. E,, E, and E,,
E; are the electric fields amplitudes of the forward and backward propagating modes
respectively, at the two interfaces of the phase shifter region (L,). E,, is the amplitude of
the electric field of the light output. The §;’s are the equivalent sources for the electric
fields at the interfaces due to the spontaneous emission in sections L, and L; (we neglect

the spontaneous emission in the phase shifter).

If we express the electric fields as functions of one another and of the S;’s, we get

the following system of equations:

E;=R,P,P,E;+R;P;S,+$,

E;=R3;E, +T4E;

E;=RsP;P,Es+RsP,S4+S3 (46)
E4=R.E; +TsE,

Ewe=TRE, +T:3,
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If we eliminate the E;’s, we find:

N N T T
Eoul = (R2T2P1P23 +T7)Sl +(T. 2P23)Sz + (szzfl‘)83 + (R5T2P2P4 34)84 (47)

[ ]
where:

N=R3+RsP3P¢(T3T4—R3Ry)
D=(1-R;R3P1P2)(1-R4RsP3Py) - RoRsT5T4P P2P3Py

But what we are interested in is the output power. To convert the relation (47) between
the electric fields to a relation between the power in the modes, we have to remember

that the S;’s are really of the form given by (34), i.e.:
Si=Sio(1+s exp(£2jKpz;)) €
while we have:

%(Hn)

E,(z)=Eg e-j and E,,=E;(z)=E,

-Then, with the same cancellations of factors as for the reflectivities, we get:

' T
|Egy %= le'rzplpz% +T,1218;01%+ |T21>,%|2 1Sy01%+ IT,PZF“ 12185012
T4 2 2_ < 2
=l

where we have taken into account the fact that the S;’s ;1re not coherent with one another.
This formula is valid with the reflection and transmission coefficients as given in Appen-
dix B when we omit the factors between square brackets. Now, by computing the Poynt-
ing vector for a field of the type of (34), we find a relation between the power density P;
and 1S;p1%

1
pj=m[x-|s|=(2x3-x)] 1Sp12

And for the output power:

—_— 2
Poa=gg |Eol
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This gives us then the ouput power spectral density:

al SC (49)
o R sk | & P

where the C;’s were defined in (48) and the p;’s (defined below) are the spectral power

densities due to the spontaneous emission.

We see immediatly from (48) and (49) that we will have lasing when D=0. This
condition will give us the wavelengths of the modes and the corresponding gain thres-
holds. (Do not forget that the reflection and transmission coefficients are wavelength

dependent and that the propagation factors depend on the wavelength and on the gain.)

If we solve the equation D=0, we get several solutions, each one corresponding to a
mode. If we use Ag= 890 nm and a phase shifter thickness reduced to 0.4 A (instead of
0.5 A), we will see below that we get the best spectruin adjustment. This gives us a mode
at 884 nm with a threshold intensity gain of about 44 cmf‘ (for the material gain of
GaAs). With the model for the gain developed below, this corresponds, at that
wavelength to a threshold carrier density of about 1.6x10'® cm™. We can now estimate

the threshold current with:

tdN,,
T

In=q

where t= 2 um and l= 15 pm are the mesa dimensions and d= 3 um is the active layers’
thickness (without the GaAlAs layers) and 1= 4 ns is the spontaneous lifetime (q is the
electron charge). This gives us I, = 7.76 mA, which is in the range of observed threshold
currents. The other modes, which will give humps in the spectrum, have much higher

threshold gains (several thousands cm™ at least).

Let us now find expressions for the p;’s in terms of the spontaneous emission spec-
tral density rate and the device parameters. To simplify the calculations, we will suppose
a uniform spontaneous emission in the whole section (which is consistent with the uni-

form carrier density) and we correct then for the fact that we have emission only in the
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GaAs layers with a factor f. This factor f is equal to the ratio of the thickness of one
GaAs layer to one period. Now, to get the p;’s, we sum incoherently the amplified spon-
taneous emission in each section. For example, we get for p,:

L
P=fo Ery®)Y [ 17

where v is the fraction of the spontaneous emission coupling to the cavity mode, E is the
photon energy (in Joules) and r,,(E) is the spontaneous emission spectral density rate per
unit volume. The cavity cross-section, tx1, is taken as constant. The factor one half
comes from the fact that only one half of the spontaneous emission coupled to the cairity

mode goes in one direction. Using equation (14), we have:

lel%)2=¢
which gives us:
2GL; _
px=pz=f%5r,,,(ﬁ)7[ e l] (50.2)
and:
2“1*’-1
P3?P4=f—Br ®7 | (50.b)

Putting (49) and (50) together, we find:

o ko g0l 1 e?li_1
Pou=1>"EI4(E) K—151%2KaK) C+&) + (GG —55 182Y
Finally, let us notice that this is p,,(E). If we want p,,(A), since E=hc/A, we have to use:

- &, 5E
Pou(})=Pou(®) | ‘51 =Pou(E) =

The factor between square brackets in (51) has to be examined carefully. It can be
shown [17] that in a periodic waveguide, ¥ becomes dependent on wavelength and con-

tains a factor that cancels the denominator. The expression between square brackets is
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then equal to the v in an uniform waveguide times a factor of order unity depending on
wavelength. In this paper, we will neglect that factor, although it modifies somewhat the
spectrum [17]. '

Now, only two factors remain to be specified before we can compute the emission
spectrum. These are the spontaneous emission rate rg(E) and the GaAs material gain
81(E). Both will be functions of the carrier density. For the spontaneous emission rate,

we know [15] that for the non-thermal equilibrium case, we have:

__1 _-E%REN a3
I (E)= i e“‘-‘“%"‘“-l (Mm3s7) - (52)

where v is the light’s velocity in the material, E is the photon energy, kg is Boltzmann’s
constant and T is the temperature. The difference between the electron and hole quasi-
Fermi levels (Aeg) can be computed from the carrier density N by using the Fermi-Dirac
distribution and the parabolic approximation for the band extrema. Using this and exper-
imental absorption curves from [15], we developed a semi-empirical model for the gain
as a function of E, N, T and N, where N, is the acceptor concentration (zinc gives a'p-
type doping). Figure 17(a) shows typica} gain curves for different carrier densities, at
constant temperature, and figure 17(b) for different temperatures, at constant carrier den-
sity.

At this point, we have not yet incorporated rate equations in our model to allow us
to compute the L-I characteristic. Therefore, we will postulate a carrier density and com-
pute the shape of the emission spectrum, but we will not try to get the absblute values.
Thus we do not need to worry about the constants in (50) and (51). The final result is
shown in figure 18(a) and can be compared with the experimental spectra shown in figure
15 and 18(b). The resolution of the measurements in figure 18(b) is 0.7 nm. Figure 18(b)
was measured at much higher currents, in pulsed mode operation. We see that the theory
and the experiment are similar (with reasonable values of the parameters), but that the

relative intensities of the peaks are not reproduced. This may be due to the fact that our
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model is linear and cannot go above threshold since, as mentioned above, we do not use a
rate equation. Another problem is that we assumed a uniform carrier density in the
pumped section. This is most probably not true because the carrier injection is not uni-
form and the field in the cavity is not uniform either. The field is maximum at the phase
shifter and decreases exponentially above and below (see [16]). This will introduce a
non-uniformity in the carrier distribution that cannot be compensated for by the carrier
diffusion because of the layered structure. So, in the regions of low field, we will have
more spontaneous emission. Also, the bottom of the mesa, which is a low field region, is
much wider than the top (fig. 13(b)). This means that the light emitted on the sides sees a
different vertical structure and may alter the emission spectrum.

Notice in figure 18 the slight shift in peak position with increasing carrier density.
This is due to the change in the index of refraction of the GaAs layers with the carrier

density. In our model, we used [6]):
An=22x10"3N'R - 1.6x1071“N*? -9.75x10" 2N (20)

where An is the index change and N is the carrier density in cm™. We also incorporated a

dependence on temperature [15]:
An=4x10"* (T-300) (21)

where T is the absolute temperature in Kelvins. We assumed that the change in index of

refraction was the same for the GaAs and the GaAlAs layers.

This effect of the temperature on the index of refraction is responsible for the shift
in peak positions that we observe in figure 19, which shows the emission spectrum at
several temperatures (with the carrier density kept constant). Figure 19(a) shows the
theoretical calculations and figure 19(b) shows the experimental result. Once again, the
agreement is good, except for the relative peak amplitudes. We notice that when the
temperature changes, the relative peak amplitudes change also. This is due in part to the

modification of the gain spectrum with temperature, as shown in figure 17(b). This
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modification is due to a number of factors, the main ones being the change of the
bandgap and that of the density of states with temperature. We see that the waveléngth
of maximum gain changes and so does the value of that maximum gain. When the mode
position coincides with the maximum gain, the peak amplitude is maximum. This occurs
around 300K for the peak at 884 nm (at 300K). When we change the temperature, the
maximum gain and the mode shift at different rates and, as a result, the peak amplitude

decreases.

IX. Conclusions

In this paper, we have developed a way to compute the propagation constants of the
modes in a one-dimensional periodic structure over a certain band of frequency, when
material dispersion is present. The correct interpretation of the solutions is based on the
direction of the power flow. This led us to discover that, for a structure with even sym-
metry, the backward and forward propagating modes exchange their roles when the gain
changes sign in the stop-band. These results were checked in the two layers case by
obtaining an exact solution. We then derived the formulas for the reflection and

transmission coefficients at the interface between a periodic and a uniform section.

Using these results, we developed a model to compute the emission spectrum of the
surfaée-emitting laser diode (SELD) below threshold. We made several assumptions in
this model. The main ones are: (1) The Bloch wave description for the electric field is
accurate. (2) The carrier density-is uniform in the pumped region. (3) The horizontal
cross-section (parallel to the layers) is constant from the top to the bottom. We think that
the first assumption is a good approximation, but that the second and third ones are par-
tially responsible for the discrepancies between the theory and the experimental results.
Our confidence in the first assumption comes from the good agreement between theory

and experiment for the reflectivity of the layered structure (section VI).
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As mentioned in section VII and in the previous paragraph, the assumption of a
uniform carrier density is probably not a good one. A variation in carrier density will
result in a longitudinal gain non-uniformity, which may change the threshold gain for the
modes and hence explain the difference in the relative peak amplitudes between theory
and experiment. The fact that the cavity is really trapezoidal (and not rectangular, as
implied by the third assumption) may give a significant contribution to spontaneous
emission and modify the spectrum, since the light emitted on the sides sees a different

vertical structure (see fig. 13).

In conclusion, we can say that our model is sufficient to explain a lot of the
observed characteristics of the spectrum. To get a better agreement, we need to extend
its validity above threshold. To do that, we need to incorporate rate equations for the car-

rier density. The next step would be to take into account the longitudinal non-uniformity
of the carrier density, but that is much more difficult and can probably not be done using
the theo;y developed in this paper. One way to do it would be to use a transfer matrix for

each period (see for example [13]) and solve self-consistently.

On the experimental side, we are now working on several improvements, such as
using reactive ion-beam etching to get vertical side-walls to the cavity, which would
avqid the problems due to a trapezoidal cavity. We are considering replacing the zinc
diffusion, which is difficult to control, by a two steps LPE process. We grow first n-type
GaAlAs on one side of the mesa, then p-type GaAlAs on the other side, so that we still
get a transverse p-n junction. We are also working on distributed Bragg reflector
(DBR)-type structures, where we have a relatively long uniform active region (3-5 um)

between a bottom unpumped multilayer and a top dielectric multilayer.
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Appendix A
In this appendix, we derive the exact expression of the average over one period of

the time averaged Poynting vector. We start with an electric field of the form:
Ey= [c,e‘s‘jﬁ)‘+o;e"3‘jﬂ)‘] eiot (A.1)
Using Maxwell’s equations, this gives:
Hy ==L i - ) o (a2)

The time averaged Poynting vector is:

8= Re(Exi)=—Re(BH))E, (A3)
Which gives us:
=B [c12e8- 101267287 4+ —8 1| o*c, a2t
S,= Zmpo[lcll e~ Icy1%e ]+muom[c,qezﬁ] (A.4)

Now, for E,—A(z) , where A(z) is given by (27), the average of S, over one spatial
period is given by:

<s,>-—js dz
e

lAl'z{ B I l_e‘zﬂlzl 2 628131_1]
1

oA

+
N|;?

1 —e32Pi el 2Pr% _
+ Iml:glsl_-.'—;—ﬂ'l_—' +82535 41_1}} (A.5)
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Appendix B
This appendix gives the expressions for the reflection and transmission coefficients

and for the propagation factors used to compute the reflectivity, in (44), and the emission

spectrum, in (46)-(51). With L,=z,~z, and L= 2’42’5 (fig. 11 and 16), we have:

_ Sn-r e '
Ri= 1-rsq Ti= 1-rspy [1+snl
_ =5y | l48 1 1501801 [
2= l—rSn [ l+sbl] Tz—(l'ﬂ',' l“rSn 14‘851]
Rec Plsp-sp [ l+sy) T Py(1-5psp) [ 1455
T 1-Plgsg| 2| 0 1-Plugsg | Mg
PZsyo—Sps [ 1+sg | Py(1-5psp) [ 48|
= 2 T4= 2 (B~1)
1=PgspaSes | 14503 | © 1=Pgsysp | 14w
where
Pomerplgrifily md =gl ~3%
Kg+kg
145 ' 145,
P‘zD":[ 1+sn] da P2=D"=[ l-l-s:;] o
1 1+s
p,=[ l:f;] e p4=[ l-l-s::] e . (B.2)

The coefficients s; and s, are defined in (34). The numerical index indicates at which
position z; they are computed (and ko=27n/A).

‘Pox; the reflectivity calculation (44), we have (fig. 11):

1
Rs =-5f4[ 1::] Ts=(1-5gSp4) [ 'f_'}s;J (B.3)

Notice that for the emission spectrum calculation, L; is different from the L; in the

reflectivity calculation. For the spectrum (46)-(51), we get (fig. 16):
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T¢T7PsPeRg

Rs=Re* T_R;RyPsP, B4

where Rs is an effective reflection coefficient, for everything to the left of the Ly/L, inter-

face in figure 16. And we use (with Ly=2's~7",):

_ Sk [ 14spq 7o L5t [ 145l
1—-sfisps | 14504 | 1= s | Isgy |
[ ] - .
R Sba—Sps | 1+5f% T 1-s@spy | 145p4
T 1 —sfises | 14% T sl | 148 |
14sp5 1458 : 1+sp4
Rg=—5f| — s=| ——[e Pg=| ——| Ml (B.5)
14565 14544 1+5ps

The superscript u for s indicates here that it is the s of the unpumped section (L,) that has

to be used.
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Figure captions
Figure 1: Examples of periodic structure that give a one-dimensional wave equation: (a)

waveguides, (b) multilayers.
Figure 2: Definition of the parameters for the two-layers structure.

Figure 3: Intensity gain in GaAs, as a function of free space wavelength for three dif-
ferent carrier densities: (1) N=0.2x10¥cm™3, (2) N=1.0x10¥cm=3, (3)
N=2.0x10" cm™3,

Figure 4: G and 3. for the structure of table 1: (a) without gain or loss, (b) with 2000
cm™! average gain, but neglecting gainperiodicity, (c) as in b, but with gain periodi-
city (see text).

Figure 5: G and 6. for the structure of table 1 and the intensity gains of figure 3,
corresponding to three different carrier densities: (a) N=0.2x10%cm™3, (b)
N=1.0x10"® cm™?,c) N=2.0x10'® cm™>, '

Figure 6: Is| as a function of wavelength for the two solutions of eq. (13), at three diffrent
carrier densities (Fig. 3): (a) N=0.2x10"%cm™, (b) N=1.0x10"%cm>, (c)
N=2.0x10"® cm™3,

Figure 7: Re(s) and Im(s) as functions of wavelength, at three different carrier densities
(Fig. 3): (a) N=0.2x10'® cm™3, (b) N=1.0x10'® cm™3, (c) N=2.0x10'% cm™3.

Figure 8: Definition of the transmission and reflection coefficients at a periodic/uniform
regions interface (equation (39)).

Figure 9: Definition of the transmission and reflection coefficients at a phase shifter
(;.:quation 43)).

Figure 10: Model used for reflectivity and emission spectrum calculations. One pair con-
sists of a quater-wavelength layer of GaAs and a quarter-wavelength layer of GaA-

1As. Dimensions are given in Table 1.
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Figure 11: Definition of the coefficients for the reflectivity calculation (44).

Figure 12: (a) Result of the reflectivity calculation, with a center wavelength of Ay= 893
nm. (b) Comparaison of experiment with best theoretical result (see text).

Figure 13: (a) Structure of the surface-emitting laser diode (SELD). (b) Scanning elec-
tron microscope picture of a SELD.

Figure 14: L-I characteristic of a SELD at room temperature, CW operation.

Figure 15: Emission spectrum of a SELD at different drive currents, room temperature,
‘CW operation.

Figure 16: Definition of the coefficients for the emission spectrum calculation (equations
(46-51).

Figure 17: GaAs intensity gain curves (N, =2x10'8 cm™): (a) at T=300K, for several car-
rier densities, (b) at N=1.0x10'"® cm™ and several temperatures. These were
obtained with the same model as for figure 3.

.Figure 18: Emission spectrum for sev&al carrier densities (currents) at 300K: (a) theory
(Ao= 890 nm, phase shifter thickness = 0.4 A), (b) experiment (pulsed mode opera-
tion).

. Figure 19: Emission spectrum for several temperature, at constant carrier density

(current): (a) theory (N= 1.0x10'® cm™3, same parameters as in figure 18), (b) experi-

ment (I=320 mA, pulsed operation).



Table 1

Ao 890 nm
n(GaAs)=n, 3.59
n(Gag,Alg3As)=n, | 3.394
n (average index) | 3.494
z; 62 nm
73 65.6 nm
A 127.6 nm
Kp 2.467x10’ m™!
x=P,=P_; 4.4x10° m™!

Amplitude gains
21 1/2 of fig. 3or 17

82

- 500 m™!
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