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ABSTRACT

We extend the Bloch wave calculation method to the case of a

periodic structure where the gain floss) and the index of refraction depend
on frequency. We establish a procedure to find the propagation constants

and the reflection and transmission coefficients for the Bloch waves in the

general case, which has not been treated previously. .We then use the

results of this analysis to construct a model for a surface-emitting laser

diode (SELD)[2,3], which has a vertical distributed feedback structure.

This model considers the laser as an amplifier driven by spontaneous

emission to compute the emission spectrum. At the present time it is valid

only below threshold. We present experimental results and compare the

measured emission spectrum with the theoretical one. The reasons for the

discrepancies and possible improvements to the device and to the theory
are then discussed.
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I. Introduction

Propagation of waves in periodic structures has been studied extensively in the past

and a great number of methods has been used to solve the problem. (For a good sum

mary and references on the subject, see the review paper by Elachi [1].) There are two

main types of such structures that are of practical interest for semiconductor laser diodes

(Fig.l): (a) periodic waveguides and (b) multilayers. The second case is encountered in

surface-emitting laser-diodes (SELD)[2,3]. These are basically distributed feedback

(DFB) semiconductor lasers, with a vertical cavity and lateral p-n junction. The first

order grating is formed by alternating layersof GaAs and GaAlAs. This structure is very

advantageous for optoelectronic integration, since it does not need cleavage nor backside

etching to form a vertical cavity, as some other SELD's require [4].

In most of the previous studies, the material characteristics of the periodic structures

were supposed to be constant across the band of frequency of interest This is a good

approximation in usual edge-emitting distributed feedback (DFB) or distributed Bragg

* Electrotechnical Laboratory (ETL), 1-1-4 Umezono, Sakura-mura Niihari-gun, Ibaraki 305,Japan.

** Lockheed Missiles & Space Company, Palo Alio ResearchLab, 32S1 HanoverStreet, Palo Alto, CA 94304.



reflector (DBR) laser-diodes, where we are looking at bands that are 2 to 3 nm wide.

However, for SELD's, because of the strong coupling coefficients required, the stop-band

has a width of 35 nm or more (in the wavelength region of 850 to 900 nm). When we

have such a large bandwidth, material dispersion cannot be neglected anymore. The

index of refraction can change appreciably, but the main effect is gain and loss variations

with frequency in the semiconductor material. Also, because we have a multilayer where

only the GaAs is pumped, we have a simultaneous index and gain grating.

In this paper, we first give a summary of the modified eigenmode theory that takes

these effects into account We also consider briefly what happens when the periodic

structure does not have an even symmetry anymore. (Most of the previous studies con

sidered structures with even symmetry only.) Then, we check the results of eigenmode

theory by solving exactly the two layers case. Next, we derive the reflection and

transmission coefficients for the interface between a periodic waveguide and a uniform

waveguide. Using these results, we are able to compute the total reflectivity of the DFB

structure used to fabricate the SELD, as a function of wavelength and we compare this

result with the measured reflectivity. We then summarize the experimental data of the

fabricated device. Next, we compute the theoretical emission spectrum (below thres

hold) and compare it to the measured emission spectrum. The model used for this calcu

lation considers the laser as an amplifier driven by spontaneous emission. Finally, we

discuss possible improvements to the theory and to the device.

We will use an extension of the eigenmode theory for periodic structures, as first

developed in [5]. A good exposition can be found in [6]. The advantage over coupled

mode theory (see for example [7]) is that we are really working with independent modes,

which makes, in our opinion, the boundary conditions much easier to express. (Although

this has been much disputed, see [8,9].) Another advantage is that it allows us to get

analytical formulas for the output spectrum of a DFB laser. This is not possible with

coupled mode theory [10].



IL General Theory

The equation for the propagation of a scalar wave in a one-dimensional infinite

periodic medium is:

•^^-[g(zA)-jP(a)]2E(zA)=0 (1)

where E(z,tA.)=E(z,X.)ej0" is an electric field component (o>= 2rcy), g(z»^) is me gain (loss)

constant and P(zA) is the propagation constant Both g and P are periodic in z and

depend on X (the free space wavelength). (The dependence on k will not always be

explicit in the rest of this paper.) The usual assumption is that (g-jP) is an even periodic

function of z. Most of the review paper by Elachi [1] treats this case. Here, we will only

assume that g and p are periodic with the same period A, i.e., that we can write:

q*0

(where gq and pq are complex in general).

It is well known that the solutions of (1) are of the Floquet-Bloch type {11]:

E(z)= A(z) erz+B(z) e"1** (3)

where A(z) and B(z) are periodic functions of z and r is the propagation constant, which

is written as:

T=G-jK (4)

where G is the effective gain and K is the effective propagation constant The usual

interpretation of (3) is to say that A(z) corresponds to a forward propagating mode and

B(z) corresponds to a backward propagating mode. We shall see below when this

interpretation is correct. When the Bragg condition is nearly satisfied (i.e., po close to

KB), the waves reflected at each interface add constructively and the reflectivity becomes

high. In a passive medium, this gives a band of frequency in which r has a big negative

g(z,A)-jP(zA)=go(A.)-jp0a)+ 2 (gq(XHPqa))exp(j2q^z) (2)
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real part (as we will see below), which means that there is no propagation in that band.

Hence the name stop-band is used, which is similar to the forbidden band in semiconduc

tors. The Bragg condition at normal incidence gives for KB:

Po=KB=p^ (5)

Since the band around KB is the one we are interested in, we will look at A(z) and B(z) in

that band. Because A(z) and B(z) correspond to independent solutions of (1), we can

treat them separately.

We start by expanding A(z) and B(z) in Fourier series (which we can do since they

are periodic):

A(z,A)=Ao+ 2 Aq(X)exp(j2q-^z) (6.a)
q*0

B(z,A)=B0+ £ Bq(A)exp(j2q-^z) (6.b)
q*0

Then we substitute (2), (3) and (6) in (1) and by neglecting second order terms and equat

ing terms having the same exponential factor, we getafter someapproximations [6]:

M^oJ^Ao-s^Ao (7)

B->(X)=cdWJo=s-(*)Bo (8)
where:

8=KB-p0(A) 5eff=KB-K

K^P+p+j&p KL=P^+jg-p (9)

(In equations (7), (8), (9) and in the following, pis apositive integer.) The quantities A+p

and B_p represent Bragg-scattered waves from Ao and B0 respectively. Their amplitude

becomes significant only when p0 is near KB. We can then neglect the other components,
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so that (3) becomes:

E(zA)=Aq [1 +s+(A) exp(j2KBz)] erz+B0 [1 +s_(X)exp(-j2KBz)] e"rz (10)

Again, the usual inteipretation is to say that the part in Aq is a forward propagating mode

and the part in B0is a backward propagating mode.

Let us notice that if (2) is ah even function of z, we have: Kf=K_ and s=s+=s_. In

general, we have ls+l =ls_l only if f(z)= g(z)-jp(z) is: (1) an even function of z 0c«= k_),

(2) an odd function of z (k^kJ, or (3) if f(z)= (go-jpo) +(g,-jP')h(z), with h(z) a real

periodic function of z. This last case gives: 1^= (g'-jpOcp and k_= (g'-jpOcp* (where Cp is

the pth Fourier coefficient of h(z) and Cp* indicates the complex conjugate of Cp), i.e.:

IKfI= Ik_I. The last case includes pure index modulation (g'M)) and pure gain modula

tion (p'=0). We will have Ik,.I^Ik_I (and thus Is+1 * Is_I) only if g(z) and p(z) have dif

ferent "profiles", i.e., if f(z)= (go-jPo)+ [g^(z)-jP'p(z)] and p(z) is not proportional to h(z)

(both are real functions).

Looking at the scattering of A^, and B_p into A© and B0, respectively, by the same

method as for (7) and (8), we get:

-jic 1

^"(GrftWCiir?)^"^ (H)

Bo='(G^ifcoTB^=^, (12)
Substituting (7) into (11), or (8) into (12), we can now obtain the characteristic equation

(which also defines P):

P2=(G+j5eff)2=(g0+j5)2+icfKL (13)

So that, by using (9) and (13) in (4):

r=G+j8dr-jKB=P-jKB (14)



The solutions of equation (13) in the case of even functions (k^ic) are discussed

for example in [1],[6] and [8]. However, all these analysis assume either a pure index

modulation or a pure gain modulation and no material dispersion (i.e., the refractive

index and the gain are independent of frequency). This assumption is usually valid

because conventional edge-emitting DFB laser-diodes have stop-bands that are 2 to 3 nm

wide, so that index and gain (loss) variations can be neglected. But in the case of our

DFB-SELD structure [3], the stop-band is of the order of 35 nm and gain variations can

not be neglected anymore, especially when the gain changes from negative to positivein

the stop-band, as we will see below. Also, in the case of our SELD, we have index and

gain modulation at the same time (since it is formed by alternating layers of GaAs and

GaAlAs and gain exists only in the GaAs; seereference [2] fordetails).

Looking at (13), one question comes up: Which root do we choose for P? One of

these roots corresponds to the correct assignement of the forward propagating mode to

A(z) and the other root makes A(z) the backward propagating mode. This is an impor

tant question since the proper definition of the reflection and transmission coefficients

depends on the correct assignement of forward and backward propagation to the modes.

In the previous analysis [6,8], P was chosen such that G had the same sign as go, or,

equivalently, such that 5^ had the same sign as 5. But this doesn't work in the general

case and we have to find another way to decide whiqh root defines the forward propagat

ing mode as:

E(z)=Ao(l +s+expO'2KBz))er2 (15)

Intuitively, we see that in the stop band K=KB (and 5^=0), so that the direction of

the net power flow can be found by comparing the intensities of the two components

(incident and backscattered) in each mode. Looking at (15), it is obvious that the direc

tion is reversedwhen Is+1 becomes greater than one.
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More rigourously, if (15) is the only non-zero electric field component, dividing the

average power flow per unit area by the average energy density, we obtain the energy

velocity [6]:

c K-ls+l2(2KB-K)
Ve=r 7ir~a— <16>Po 1+1 s+r

where Po^oWuoeo, n being the average effective index and c is the speed of light So, if

(15) really represents a forward wave, vE has to be positive. From (16), we get then the

condition:

1-HsJ2 kg Kb S^
2ls+l2 K -Kb-S^"*14!^"1 {ll)

since in general 5^<l Kb. And this gives us:

Is+ISl (18.a)

And similarly, for the term in B0to be the backward propagating wave, we need to have:

IsJSl (18.b)

If we consider only the cases when ls+l=ls_l, there is no contradiction between (18.a)

and (18.b). There is then always a forward propagating mode and a backward propagat

ing mode. But if we look at the general case, it is possible to have, for example (18.a)

being satisfied while (18.b) is not satisfied. To see more clearly what happens, let us

define: P^+jScff and P2=-G-jcW Then, looking at (7),(8),(11) and (12), we see that:

1
(s+)p,=

(s-)p2

**-ofe (19)
where the indices p! and P2 mean that the coefficient is computed using that value for P.

Thus, when ls+l= ls_l=!sl, we have:
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This shows that in this case, the choice of the root is unambiguous. Indeed, if Pi gives a

Isl greater than one, P2 will give Isl smaller than one andvice versa. Looking at the physi

cal interpretation of s+ and s. from (7) and (8), we see that (18) simply says that the scat

tered wave amplitude cannot be bigger than the incident wave amplitude, as we found

intuitively above.

But in the general case, if Ik^I is different from Ik_I, we will have ls+l different

from IsJ and in a certain frequency range, we could have for example ls+l>l and

Isj<l. Equations (19) then show that this would be true for both roots of (13). If this is

not an effect of the approximations used, and there is no reason to believe that it is, what

does this mean? From the discussion above about the direction of the energy flow, the

interpretation of this result is that both mode have a net energy flow in the same direc

tion (in this case, backward)! This does notmean that there is no energy going in the for

ward direction, but only that there is more energy going backwards, i.e. that the reflected

wave is greater than the incident wave for oneof the modes. This is possible since this is

an active structure.

The simplest structure that would exhibit this behavior is a three layers periodic

structure, for example: GaAs/Ga^A^As/ Ga^AlyAs, with x*y and current injection to

have gain in the GaAs layer only. This is because in this case g(z) and p(z) wouldhave a

different "profile". We applied the theory to that three layers structure and for some gain

curves, we obtained the phenomenon mentioned above, i.e.: in bothmodes the net energy

flow is in the same direction. We used these results to compute the reflectivity and

transmittivity of a finite multilayer structure [12]. We then used a transmission matrix

method similar to the one developed in [13] to check the reflectivity and transmittivity

obtained with the eigenmode theory.The agreement of the eigenmode theory with the

exact results was very good.
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EI. Two layers periodic structure

The case of the two layers periodic structure is interesting for severalreasons. First,

it is the basic structure of our surface-emitting laser-diode (SELD) [2,3], which we will

analyze below. It is also a very common case in applications such as dielectric mirrors.

Second, we can get exact analytical solutions without too much difficulty and this will

allow us to compare them with those of the approximate theory of section II (which we

will call eigenmode theory).

The structure used for the calculation is shown in figure 2. The gain and propaga

tion constants in one period are given by:

fgi(M-jPi(X)=r,(X) if-zj <z<0g(z,X)-jP(a)=|g2a).jp2(X)=r2(X) if0<z<Z2 (20)

and Z!+Z2=A, the period of the structure. Let us notice that if we put the origin at z=—-,

the function (g(z)-jp(z)) is even in z. However, to simplify the calculations, we will use

the coordinate systemof figure 2 and correct later when necessary. We will suppose that

we have a plane wave propagating in the direction normal to the plane of the layers, with

a linear polarization in the y direction, so that equation (1) is the equation for the y com

ponent of the electric field.

Several equivalent methods can be used to solve equation (1) in this case. We will

outline the one using solutions of the Floquet-Bloch type, i.e.: we start with equation (3).

(Another method is used in [14].) Since A(z) and B(z) correspond to two independent

solutions, we can work with them independently of one another. We will work out the

solutions for A(z), and B(z) can be obtained simply by replacing r by -r everywhere.

So, we substitute (3) in (1) and we get, for A(z):

0+2r-^+(r2-(g(z)-jP(z))2)A=O
Which gives us, with (g(z)-jp(z)) defined in (20):
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{A+1exp(Y+1z)+A_1exp(Y_1z) if-Z!<z<0

A+2exp(y+2z)+A.2exp(Y_2z) ifO<z<Z2 (21)

rrn—r+rt Y+2=-r+r2

[Y-^-r-r! Y-2=-r-r2

and A(z) is a periodic function of z with period A=zj+ z2. Using the continuity of the

tangential components of the electric and magnetic fields at z=0 and between z=-zj and

z=Z2 (since A(z) is periodic), we get after some algebra:

and:

where u,=erA and:

A=er,Zl

B=er,Z|

C=e

sa

_o-r«2«D=e

'i r
r,-r,

An
A-,

=

'i r

r2-r2
A+2
A-2

e-r,z, /.*.
A+,
A-,

SiU e~**aZ&

r1e"r,Zl -r,erjZ'

Eliminating A+2 and A_2, we get:

Js*r2ela* -r*
.-rift

'AB
C D

A*
A-,

I J

= H
A+,
A-i

. a

Ti r2

r2 ry

r2 r,

r2"r!

sinhG^z^+cosh(T2Z2)

sinh(r2Z2)

sinh(T2Z2)

ri r2

r2 rx

Which gives for the eigenvalue \i:

sinh(r2Z2)+cosh(T2Z2)

r ^

A+2

A-2
V. J

(22.a)

(22.b)

(23)
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_ 1

H=erA=-±-± (f)M (24)

where T is the traceof the matrix and is given by:

T=2cosh(T1z1)cosh(r2z2)+ Ti+T*
r2 r,

sinh^z^sinhOr^

In the case of no loss and no gain, this reduces to the result obtained in [14]. Let us

notice that the matrix in (23) is unimodular since AD-BO1. This also means that the

two eigenvalues m and H2 will be inverse of one another

*"i ** IE? (25)
We can check that (24) satisfies this condition. This relation was expected for symmetry

reasons: One eigenvalue corresponds to the forward mode and the other one to the back

ward mode. But here again, we have the same problem as we had for the approximate

solution: Which one is the forward mode and which one is the backward mode? Since

we have only erA, r is determined only up to a term of the form (j2m-7-) (where m is an

integer). This means that (T±j2m-7-)is also a solutionof (25), for all m. The two possi-
A

ble solutions for a forward wave are obtained by choosing m such that the wave vector

has a value close to KB. We get then:

rsG+jSrfHKB from p., (26.a)

r=M3-j8efHKB ftom ^2 (26.b)

And we use the same notation as in section n. We see that this is totally equivalent to the

choice of the root of equation (13).

Hence, we will use the same criterion as in section II: the direction of the net power

flow. To do that, we first have to compute the eigenvectors corresponding to the eigen

values. We start by rewriting (21) as:
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AMJ An(exp(y+1z)+s1 exp(Y-iz)) if-z,<z<0
AW"|A+! (S3exp(Y+2z)+S4exp(Y_2z)) if0<z<z2 KZ/)

Then, from (23), we get:

hB±ml>±m-C^ (28)
A+! B U.-D v '

And, with (22.a):

S3=^"=2i7(ri+r2+Sl(r2"ri))

s4=-^-=2r7(rI-r2+s1(r2+r1)) (29)

Notice that if we define: S2=-r-^-= —,we get:
A+2 S3

si+a r2-ri
1+as! ' " Tz*Ti

This is a bilinear transformation in the complex plane, and if a*0 (i.e.: r^iy, it maps the

disk Is! I<1 onto another disk, butwith a part that has IS21 >1. We can thus notrely on Si

orS2 alone to get the direction of the power flow, in the way we looked at s in section n.

To find the direction of the power flow, we will look at the Poynting vector's direc

tion. But, because we have gain and/or loss in the structure, the Poynting vector is not

constant along z. Therefore, we will take an average over one spatial period (of the time

averaged vector):

<?>=i- Ji-Re(6xI?)dz (30)
A-Zi2

where we take: Ey=A(z)exp(rz) and A(z) is defined in (27). An explicit formula is

derived in Appendix A and it shows that the only non-zero component of the Poynting

vector is <S^>. The sign of <Sj> will then give us the direction of the power flow: posi

tive means forward propagation and negative means backward propagation.
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Another way to find the direction of the power flow is to find the s coefficient

defined in section n. To find s, we compute the first two coefficients of the Fourier series

expansion of A(z) and get s as their ratio. We can then look at Isl as in section EL How

ever, we have to be careful about one thing: the point of even symmetry is at z=—^- and

that is where we have to put the origin whenwe compute s. If we do not do that, we will

have a phase difference between the s coefficient computed here and the one defined in

section n. Also, we wouldnot haves+=s«=s. Taking that into account, we get :

s=e-jKaZ'
%

jA'(z)dz/ jA(z)dz (31)
-Zt -Z|

where the exponential factor is due to the change of origin, A(z) is given by (27) and

A'(z) also, but with the y^ replaced by yM' (i=l,2):

Y±i'=Y±»-J2KB

Explicitely:

1a, ^ 1-e** l-e^-'* e*lZM e^-l[A(z)dz= +81—^ +83-= =-+84-= -
i, Y+i Y-i Y+2 Y-2

(32)

And the same for A'(z), but with the Yn'-

A comparison of the resultsobtained withIskl and with the averageof the Poynting

vector on the examples of the next section shows only negligible differences.

IV. Examples and discussion

To illustrate the theory outlined above, we will use the two-layer structure of our

surface-emitting laser-diode [2]. The layer structure is shownin figure 2 and the parame

ters are given in table 1. Basically, we have alternating layers of GaAs and Gao.7Alo.3As.

The thickness of each layer is chosen to be V^, where Xo is the wavelength at which

we want maximum reflectivity and nj is the index of refraction of the layer (at Xo). The
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GaAs layer will be layer number 1 and the GaAlAs layer will be layer number 2. The

loss in the GaAlAs layer is taken as independent of frequency and equal to 10 cm'1

(intensity loss). The gain in the GaAs layer depends on the carrier density. A semi-

empirical model (based on absorption curves in [15]) was developed to get analytical

expressions for the gain as a function of carrier density, temperature and wavelength.

Figure 3 shows typical gain curves for three different carrier densities at 300 K. These

will be used later in the examples.

Notice that the coupling constant for our structure (k= 4500 cm"1) is two orders of

magnitude larger than for edge-emitting semiconductor DFB lasers. Also, since only the

GaAs layerwill be pumped, we have not only a periodic variation of the index of refrac

tion, but alsoof the gain constant This structure haseven symmetry andthus s=s+=s_.

Figure 4 shows the effect on G and $&of the introduction of gain and then gain

modulation in this structure. In fig. 4(a), there is no loss or gain and we see that G is zero

everywhere, except in the stop-band, where it is negative (indicating total reflection, not

absorption). In fig. 4(b), a constant (independent of frequency and of z) gain of 2000

cm-1 is introduced in the structure. And in fig. 4(c), the periodicity of the gain is taken

into account (i.e.: we have gain only in the GaAs layer, but with the same average gain).

We see that the effect of gain periodicity cannot be ignored.

Figure 5 showsG and 8^ for different carrier densities. In this case, the gain is not

constant but depends on the wavelength. The intensity gain in the GaAs layers used for

these examples is shown in figure 3. These calculations were done using the approximate

(eigenmode) method of section II and the exact method of section EL The results of the

two methods for G and 8^ are undistinguishable at the scale of this figure. The most

surprising feature of these results is the sudden jump of G from a negative to a positive

value when N=1.0xl018cm"3 (fig. 5(b)). Notice that this jump occurs at the wavelength

where the average gain (go) changes from negative to positive.
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But this is not as surprising as it seems. If we look again at fig. 4(a) and 4(b), we

see that when the gain is changed from negative to positive, G (in the stop-band) changes

from a large negative value to a large positive value without going to zero. What hap

pens here, in fig. 5(b), is that the gain changes sign in the stop-band and thus G changes

sign also. Mathematically, Isl becomes greaterthan one and thus we have to switch to the

other solution of (24) (or equivalently of (13)), which implies a sign change of G. Figure

6 shows a plot of Isl as a function of wavelength for the two possible solutions ((26.a) and

(26.b)). Since lsl>l means that the direction of the power flow is reversed, we see that

the eigenmodes exchange their roles at the point where lsl=l: The mode that was pro

pagating in the forward direction now becomes the backward propagating mode and

vice-versa.

Physically, as we can see from (16), the velocity of energy propagationis very small

in the stop-band (Isl is close to one), because of the multiple reflections: Thus a small

loss or a small gain will be amplified a lot by the multiple reflections. In fact, we have

[6]:

G=go
v

(33)

where v is the velocity of light in the medium (without the periodicity) and vE is the

energy velocity defined in (16). But this jump is only a mathematical artifact due to the

method used here. The rate of change of the energy density (which is equal to gov= GvE,

see [6]) is a continuous function of wavelength. If we compute the reflectivity or

transmitivity of a finite multilayer with these formulas, we get a perfectly continuous

curve (as we will see below).

Figures 5 and 6 also show that for N= 0.2xl018cm"3 and N= 2.0xl018cnT3, this

phenomenon does not occur. For N= 0.2xl018cm~3, the gain is always negative and we

don't have any problem. For N= 2.0xl018cm~3, the sign change of the gain (g0) occurs

outside of the stop-band and we see that G changes sign also, but without any
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discontinuity. Figures 6(a) and 6(c) show that, for these cases, there is no exchange of

roles between the two modes.

In figure 7, we compare the real and imaginary part of s, as computed by the

approximate method (eq.(7)) and by the exact method (eq.(31)). We see that the differ

ence is small and that for N= 1.0 xl018cm"3, the discontinuity occurs atexactly the same

wavelength. From this and the fact that that G and8^ are correct within a few percents

with the approximate method, we can conclude that the approximate method is a good

approximation. We are interested in the s coefficient because it will be used in the next

section to compute reflection coefficients andthe emission spectrum of our DFB-SELD.

V. Reflection and transmission coefficients

We saw above that for a periodic one-dimensional medium with even symmetry, a

good approximation of the electric field is given by:

• E(z)=A0(l+sf)erz+Bo(l+sb)e-rz (34.a)

where Aq and B0 are the amplitude coefficients for the forward and backward propagating

modes respectively and:

Sf=sexp(j2KBz)

sb=sexp(-j2KBz) <34-b>

r, KB and s have been defined in equations (4), (5) and(7), respectively.

From these definitions, we can immediately find the forward propagation factor

from zx to Z2 (with zl<z^)[6\t thatis the factor Df such that E(z2)=Df E(z,):

l+sexp02KBZ!) l+sn '

where L=z2-z1. Similarly, for the backward propagating factor Db (from z2 to zj), such

that E(z1)=DbE(z2), we get:

1+iespHZKazJ , l+sbl

^ l+sexp(-j2KBZ2) 1+Sb2 K '
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One important point when using these formulas is that the origin of the z axis has to be at

a point of even symmetry. Otherwise, we would have made a mistake because the s

coefficient for the forward and backward modes would have a different phase (see the

definitions (7) and (8)).

A. One interface

Let us now look at what happens at the interface between a periodic region and a

uniform region (Fig.8). Expression (34) for the electric field in a periodic region is only

an approximation, but, as we saw above, it is a good approximation. We. will thus sup

pose in the rest of this paper that the electric field in a periodic region is of the form

given by (34). In the uniform region, the electric field will be given by:

Eu(z)=A'0e-jrB(Zr^l)+B'0e,TB(*'z,) (36)

where ru is the complex propagation constant in the uniform region and A'0 and B'0 are

the amplitudes of the forward and backward propagating modes respectively. zx is the

position of the interface, which we can subtract from z in (36) to simplify the calcula

tions, since, for a uniform region, the choice of the origin is arbitrary.

Figure 8 shows the meaning of the different reflection and transmission coefficients

we are going to compute. To find these coefficients, we express the continuity of the

tangential electric and magnetic fields at z=zj and we get:

(1 +Sfl)Aoe^z,+(1+sbl)Boe-rz,=A'o+B'o

(Sfl- l)KBAoerzi+(l -Sb^KBBoe-^^-R '̂o+PoB'o (3?)

where the index 1 for Sf and sB indicates that they are computed at z=z} and where we

used T=KB (we are working near the Bragg wavelength) and ru =p„. Now, to find, for

example, Ru we have to take the ratio of the backward and forward propagating electric

fields at the interface in the periodic region:

_ Ep.back^l) B0(l+sbl)e

Ep,forw(Zl) Aod+Sn^2*
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when there is no mode incident from the right (B'0=0). We solve then (37) to find Bq/Aq

and plug the result in (38). The other coefficients are found in a similar way. We get:

D r-Sfl l+sbl Sb,-r
Ki — — - lv> =

1 l-rsbl l+sn 2 l-rsbl

(l-rsbl)(l+Sfi) 2 l-rsbl

where r is the reflection coefficient due to the change in propagation constant:

-trih^1 (40)kb+Pu n+n„

where n is the effective index of refraction in the periodic region at the Bragg wavelength

(n=KB/k0 and ko=2nA). and n,, is the index of refraction of the uniform region at the

same wavelength.

We see that in the limit of no periodicity (s going to zero), we recover the usual

expressions for the reflection and transmission coefficients. And in the limit r going to

zero, we get the same results as in [6]. Now, if the periodic region is on the right instead

of on the left as in figure 8, we just have to exchange sf with sb, Ri with R2and T} with T2

in (39) to get the formulas for this case. If we call R3 the new Rx we obtain in this way,

R4the new R2 and so on and if we replace z\ by z'2, we find:

affl-r* V-fa 1+Sq

3~ 1-r-s'c K4 l-r's'c l+s'̂

1+Sn 1""Sk2So

T^T7k t«-^0-^:^ (4i)

B. Phase shifter

In the following, we will also need expressions for global reflection (R', R") and

transmission (T, T") coefficients of a phase shifter. By phase shifter, we mean, in this

paper, a uniform region between two periodic regions (see figure 9). The Ri's and Tj's
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(i=l,2,3,4) are the coefficients given by (39) and (41). Notice that we are using two dif

ferent coordinate systems. This is necessary because, as mentioned earlier, we have to

put the origin at a point of even symmetry in a periodic region. But, in general, it is

impossible to have the origin (or its translation by a multiple of the period A) at a pointof

even symmetry in the two periodic regions at the same time. Hence the use of z for the

left region and z' for the right region.

The propagation factor for a uniform section of lenght L„ and with propagation con

stant T^Pu+j guis:

Pu=exp(-jruL0) (42)

We will supposehere that the reflection coefficientr is equal to zero (i.e., 5=1^, which is

approximately the case in our laser structure). We get then, using the method of multiple

reflections:

t/_ Pu^cSfl l+sbl
l-PuSbiSc l+sfi

^/i: ;^ (43.a)

y¥V_Pu(l-sflsbl) 1+s'q '
T= —-— * (43.b)

1-PuSblSQ 1+Sfi

„= PuSbl-S^ 1+S/G
l-Pu2SblS'C l+*'b2

• Pud-S^bz) 1+Sbl

l-Pu2SblS'f2 1+S'b2 {5^

The prime on the s indicates that the s coefficient for the right region can be different

from the one for the left region.

VI. Reflectivity

Figure 10 and table 1 show the layer structure used for our surface emitting laser

diode (SELD). From the top, we have 20 pairs of layers, consisting of one GaAs layer

and one GaAlAs layer (each layer is one quarter of a wavelength thick), then we have a
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quarter-wavelength GaAs layer acting as phase-shifter and finally 60 more pairs of

GaAs/GaAlAs above the GaAs substrate (see [2,3]). This structure was chosen because

it allows lasing in the middle of the stop-band [16], and thereby avoids the degeneracy

problem of usual DFB lasers. The number of pairs at the top is smaller so that most of

the power output is through the surface and not in the substrate. The structure was grown

by metallo-organic chemical vapor deposition (MOCVD) for the devices we will present

here, but"we have also several wafers grown by molecular beam epitaxy (MBE).

In this calculation, we will consider only plane waves at normal incidence, coming

from the air. Figure 11 shows the model used to compute the reflectivity. L! is the

length of the 20 pairs section, L*, is the length of the phase shifter and L3 is the length of

the 60 pairs section. The Rj's and the Ti's we need are given by the formulas derived in

the previous section and are summarized in Appendix B.

Using the method of multiple reflections, we find the total power reflectivity to be

given by:

RP=IRTI2 (44.a)

and

r» « , TiT2ReflPiP2
1-RZRefl^A

Rcff=R3+
T3T4R5P3P4 f44-^
1—R4R5P3P4

where the P^s are propagation factors of the type given by (35) (Df and DJ andR^ is an

effective reflection coefficient for the phase-shifter and everything that is to its right (in

fig. 11). If we look at the formulas we obtained, we see that a lot of factors of the form

(1 +Sf) or (1+Sh) can be cancelled out This can be done by omitting the factors between

square brackets in Appendix B.

Before we can compute the power reflectivity of our structure, we need to define

two more characteristics: the index of refraction and the absorption as functions of
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wavelength. We will assume that the index of refraction is constant and that the absorp

tion coefficient in the GaAlAs layer is constant and equal to 10 cm"1 (intensity

coefficient). For the GaAs layer, we will use:

-i

a(E)=
P+Y

-ii[cm-1]

P=exp(4.85E+1.9552)
Y=exp(118.84E-159.9106) <45)

where E is the photon energy in eV. This formula was obtained by fitting to a measured

absorption curve for small p-type doping given in [15].

Now we can compute the power reflectivity of our structure. Figure 12(a) gives the

result of the calculation for the structure as defined by figure 10 and Table 1. In Figure

12(b), we see a typical experimental result. The measurements were made using a

Perkin-Elmer Lambda 9 spectrometer with the Absolute Reflectance Accessory. In this

apparatus, the beam normally reflects twice from the sample at two different positions,

with an angle of 8 degrees. Because of the small size of the sample and of its non-

uniformity, an aluniinium imrror was substituted at the second reflection point. We did a

first measurement with the sample, then replaced it with an aluminium reference mirror.

This allowed us to compute the absolute reflectivity, knowing the reflectivity of the

aluminium. The fact that we were not at normal incidence (but 8 degrees off) slightly

increases the apparent thickness of the layers fless than 1%), but can otherwise be

neglected.

We can see that the experimental result is similar to the theoretical result of fig.

12(a), but that there are some differences also. The main difference is the double dip in

the middle of the stop-band for the experimental result This can beexplained by looking

at what happens when the thickness of each layer changes by one lattice constant (a=5.65

Angstroms). This gives us a change of tickness of about 0.9 %, which, for an original

Bragg wavelength of 890 nm (in vacuum), corresponds to a change of about 8 nm. This
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corresponds approximatively to the spacing of the two dips. What happens is that the

grown structure is not uniform across the wafer and the spot size for the reflectivity

measurement is several millimeters. The measured reflectivity is thus an average of two

different thicknesses.

We varied the parameters slightly to try to reproduce the experimental curve. Our

best result is the theoretical curve in Fig. 12(b) (but it is not an optimal fit). It was

obtained by a weighted average between a Bragg wavelength (Xq) of 889 nm (70 %) and

a Xo= 897 nm (30 %), with the thickness of the top GaAs layer (the one in contact with

air) reduced to 37 nm (instead of 67 nm). (This reduction in thickness could happen dur

ing wafer processing and handling.)

We did not try to improve the agreement between theory and experiment because it

depends on too many unknown parameters, such as the exact dependence of the loss on

wavelength, and because the theory used here is only an approximation. We also

neglected the variation of the index of refraction with wavelength. However, we get

correctly the main characteristics of the curves and this gives us confidence for applying

the theory to the calculation of the emission spectrum of the SELD (in section Vm).

VII. The surface-emitting laser diode

As described previously in [2] and [3], the surface emitting laser diodes (SELD) are

fabricated by startingfrom wafershaving the layer structure described above (Fig. 10 and

Table 1). Mesas withdimensions ranging from 2 x 8 to 3 x 17 nm2 at the top surface are

formed by wet etching. Then a n-type Gao.5Alo.4As cladding layer is grown around the

mesas by selective liquid phase epitaxy (LPE). Finally, a lateral pn junction is formed by

selective zinc diffusion through an opening in a silicon nitride film, at a distance of 3 to 4

um away from the edge of the mesa. Figure 13(a) shows the structure of the laser and

Fig. 13(b) is a scanning electron microscope (SEM) picture of a laser. The zinc diffusion

region is brigther in this picture. The total thickness of the structure is about 10 urn.
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Since the GaAs/GaAlAs multilayer is completely surrounded by GaAlAs, carrier

confinement in this structure should be comparable with that of buried heterostructures.

Carriers are injected predominantly in the GaAs layers and therefore we will assume in

the model that only the GaAs layers are pumped. There is however the possibility of

current leakage around the mesa. We believe this happens at high currents.

Figure 14 shows the light output versus dc current characteristics (L-I curve) of a

SELD at room temperature. We get what looks like typical threshold currents in the

range from 2 to 10 mA and differential quantum efficiencies from 0.3 % to 1.36 %.

Powers of 0.5 mW for a current of 50 mA have been observed for CW operation at room

temperature. More recently, we obtained quantum efficiencies up to 5 % for some dev

ices. Unfortunately, they were accidentely destroyed before their spectrum could be

measured.

Observation of the near-field pattern shows [2,3] that the light-emitting region is

confined within the rectangular top surface of the multilayer (at least when the current is

not too high). The far-field pattern is circular [2,3] and its beam divergence angle, for a

current of 20 mA, is 7 to 8 degrees. However the circular emission pattern is surprising

for a device with a rectangular emission surface. The 7 to 8 degrees angle corresponds

roughly to a width of about 3 um for the rectangular opening, but the length of about 15

jim should give a much narrower beam in that direction (about 3 degrees), if it were a

diffraction limited beam. Obviously, the beam is not diffraction limited in that direction.

A reason for that could be that there is no coherence between points more than 3 um

apart.

Figure 15 shows the spectrum of the SELD at different currents, for CW operation

at room temperature. We see that there is a sharp emission line at 884 nm which

becomes obvious for a drive current of 1.6 mA. This is consistent with the L-I curve,

which shows what looks like a 2 mA threshold current. The half-width is rather large

(1.5 to 3 nm) compared to conventional edge-emitting laser diodes. The total width of
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the emission spectrum is also large (about 50nm), compared toedge-emitting lasers.

In view of these results, one might ask whether these devices are really lasing? We

think they are. There may be several reasons for the low quantum efficiency: leakage

current around the mesa, non-radiative recombination at interfacial defects if the LPE

was not very good and a big spontaneous emission component We explain below how

theshape of the mesa canlead to a lotof parasitic spontaneous emission which lower the

quantumefficiency and can also affect the spectrum.

Vm. Emission spectrum of the SELD

In this section, we develop a model (figure 16) to reproduce and explain the emis

sion spectrum, at least below threshold. It isvery similar to the one used to compute the

reflectivity and we make the same assumptions, except that we will now have gain-in the

pumped section (which is taken as being the zinc diffused region). In addition, we

assume that this pumped section has a uniform carrier density (in the GaAs part of the

layers) and that the unpumped region is uniform and lossy. These assumptions are rough

approximations, but they allow us a relatively easy calculation using what we did in the

previous sections.

The reflection and transmission coefficients are given inAppendix B. EbE4 and E2,

E3 are the electric fields amplitudes of the forward and backward propagating modes

respectively, at the two interfaces ofthe phase shifter region (Lj). E^ is the amplitude of

the electric field of the light output The S^s are the equivalent sources for the electric

fields at the interfaces due to the spontaneous emission in sections L! and L3 (we neglect

the spontaneous emission in thephase shifter).

If we express the electric fields as functions ofone another and of the Si's, we get

the following systemof equations:

El=R2P1P2E2+R2P1S1+S2

E2=R3E^+T4E3

E3 =R5P3P4E4+R5P4S4+S3 (46)

E4=R4E3+T3E j

Eo^=TaPtE2+T,5f
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If we eliminate the Ei's, we find:

Eout=(R2T2PlP2^+T2)S1 +Cr2P2^)S2+Cr2P23-)S3+(R5T2P2P43-)S4 (47)

where:

N=R3 +R5P3P4(T3T4 -R3R4)

D=(1-R2R3P1P2)(1-R4R5P3P4)-R2R5T3T4P1P2P3P4

But what we are interested in is the output power. To convert the relation (47) between

the electric fields to a relation between the power in the modes, we have to remember

that the Si's arereally of the form given by (34), i.e.:

S^S^l-ttexp^jKBZitte^

while we have:

-J-r-(a«i)
Eair(z)=Eoe •* and Eo^E^z^Eq

Then, with the samecancellations of factors as forthe reflectivities, we get:

iE^I^IR^P^+Ti^lSjoP+ITjP^^^oP+IT^^-I^Saol2

+IR5T2P2P4^.|2IS4ol2= £cjlSj0l

where we have taken into account the fact that the Si's arenot coherent with one another.

This formula is valid with thereflection and transmission coefficients as given in Appen

dix B when we omit the factors between square brackets. Now, by computing the Poynt

ing vector for a field of the type of (34), we find arelation between the power density Dj

and ISj0l2:

And for the output power:

Pj=2^o-[K-lsl2(2KB-K)]ISj0l:

*o ...2
Pout= « 'Eq

2©Uq

(48)
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This gives us then the ouput power spectral density:

ko_ l 4
K-lsl2(2KB-K) IJ3fa% ,„w ^Jsqpjh <49>

where the Cj's were defined in (48) and the pi's (defined below) are the spectral power

densities due to the spontaneous emission.

We see immediady from (48) and (49) that we will have lasing when D=0. This

condition will give us the wavelengths of the modes and the corresponding gain thres

holds. (Do not forget that the reflection and transmission coefficients are wavelength

dependent and that the propagation factors depend on the wavelength and on the gain.)

If we solve theequation D=0, we get several solutions, each onecorresponding to a

mode. If we use Xq= 890 nm and a phase shifter thickness reduced to 0.4 A (instead of

0.5 A), we will see below that we get the best spectrum adjustment This gives us a mode

at 884 nm with a threshold intensity gain of about 44 cm"1 (for the material gain of

GaAs). With the model for the gain developed below, this corresponds, at that

wavelength to a threshold carrier density of about 1.6xl018 cm"3. We can now estimate

the threshold current with:

. tldNfc

where t= 2 um and 1= 15 urn are the mesa dimensions and d= 3 um is the active layers'

thickness (without the GaAlAs layers) and t= 4 ns is the spontaneous lifetime (q is the

electron charge). This gives us IA =7.76 mA, which is in the range of observed threshold

currents. The other modes, which will give humps in the spectrum, have much higher

thresholdgains (several thousands cm"1 at least).

Let us now find expressions for the Pi's in terms of the spontaneous emission spec

tral density rate and the device parameters. To simplify the calculations, wewill suppose

a uniform spontaneous emission in the whole section (which is consistent with the uni

form carrier density) and we correct then for the fact that we have emission only in the
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GaAs layers with a factor f. This factor f is equal to the ratio of the thickness of one

GaAs layer to one period. Now, to get the pi's, we sum incoherendy the amplified spon

taneous emission in each section. For example, we get for pt:

l,

p1=f^Ersp(E)Yjler*l2dz
z o

where y is the fraction of the spontaneous emission coupling to the cavity mode, E is the

photon energy (in Joules) and r,p(E) is the spontaneous emission spectral density rate per

unit volume. The cavity cross-section, txl, is taken as constant The factor one half

comes from the fact that only one halfof the spontaneous emission coupled to the cavity

mode goes in one direction. Using equation(14), we have:

,erz,2=e2Gz

which gives us:

Pi=P2=fVEr«p(E)'y
e2GL,-l

2G
(50.a)

and:

P3=P4=fV]Er«p(E)Y e^-l
2G

(50.b)

Putting (49) and (50) together, we find:

Pout=fyErsp(E) Yko

K-lsl2(2KB-K)
(Ci+cy

e2GL'-l
2G

+ (C3+C4)
e^-l

2G
(51)

Finally, let us notice thatthis is p«a(E). If we wantPom(X), sinceE=hcA, we have to use:

dE E2PouA)=Poui(E) I-^ Î PoJF)—

The factor between square brackets in (51) has to be examined carefully. It can be

shown [17] that in a periodic waveguide, y becomes dependent on wavelength and con

tains a factor that cancels the denominator. The expression between square brackets is
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then equal to the y in an uniform waveguide times a factor of order unity depending on

wavelength. In this paper, we will neglect that factor, although it modifies somewhat the

spectrum [17].

Now, only two factors remain to be specified before we can compute the emission

spectrum. These are the spontaneous emission rate rv(E) and the GaAs material gain

gi(E). Both will be functions of the carrier density. For the spontaneous emission rate,

we know [15] that for the non-thermal equilibrium case, we have:

r ro= 1 -E2g(E,N) rrtn-Vh (*1\rspW-^^ e(E^Ep)^lT_i [rm s ] (52)

where v is the light's velocity in the material, E is the photon energy, kB is Boltzmann's

constant and T is the temperature. The difference between the electron and hole quasi-

Fermi levels (AeF) can becomputed from the carrier density N by using the Fermi-Dirac

distribution and the parabolic approximation for the band extrema. Using this and exper

imental absorption curves from [15], we developed a semi-empirical model for the gain

as a function of E, N, T and NA, where NA is the acceptor concentration (zinc gives a p-

type doping). Figure 17(a) shows typical gain curves for different carrier densities, at

constant temperature, and figure 17(b) for different temperatures, at constant carrier den

sity."

At this point, we have not yet incorporated rate equations in ourmodel to allow us

to compute the L-I characteristic. Therefore, we willpostulate acarrier density and com

pute the shape of the emission spectrum, but we will not try to get the absolute values.

Thus we do not need to worry about the constants in (50) and (51). The final result is

shown in figure 18(a) and can be compared with the experimental spectra shown in figure

15 and 18(b). The resolution of the measurements in figure 18(b) is 0.7 nm. Figure 18(b)

was measured atmuch higher currents, in pulsed mode operation. We see that the theory

and the experiment are similar (with reasonable values of the parameters), but that the

relative intensities of the peaks are not reproduced. This may be due to the fact that our
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model is linear and cannot go above threshold since, as mentioned above, we do not use a

rate equation. Another problem is that we assumed a uniform carrier density in the

pumped section. This is most probably not true because the carrier injection is not uni

form and the field in the cavity is not uniform either. The field is maximum at the phase

shifter and decreases exponentially above and below (see [16]). This will introduce a

non-uniformity in the carrier distribution that cannot be compensated for by the carrier

diffusion because of the layered structure. So, in the regions of low field, we will have

more spontaneous emission. Also, the bottom of the mesa, which is a low field region, is

much wider than the top (fig. 13(b)). This means that the light emitted on the sides sees a

different vertical structure and may alterthe emission spectrum.

Notice in figure 18 the slight shift in peak position with increasing carrier density.

This is due to the change in the index of refraction of the GaAs layers with the carrier

density. In our model, we used [6]:

An=2.2xl(T8N1/3 - 1.6xlO"14N2y3 r 9.75xlfJT2aN (20)

where An is the index change and-N is the carrier density in cm"3. We also incorporated a

dependence on temperature [15]:

An=4xl0"4(T-300) (21)

where T is the absolute temperature in Kelvins. We assumed that the change in index of

refraction was the same for the GaAs andthe GaAlAs layers.

This effect of the temperature on the index of refraction is responsible for the shift

in peak positions that we observe in figure 19, which shows the emission spectrum at

several temperatures (with the carrier density kept constant). Figure 19(a) shows the

theoretical calculations and figure 19(b) shows the experimental result. Once again, the

agreement is good, except for the relative peak amplitudes. We notice that when the

temperature changes, the relative peak amplitudes change also. This is due in part to the

modification of the gain spectrum with temperature, as shown in figure 17(b). This
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modification is due to a number of factors, the main ones being the change of the

bandgap and that of the density of states with temperature. We see that the wavelength

of maximum gain changes and so does the value of that maximum gain. When the mode

position coincides with the maximum gain, the peak amplitudeis maximum. This occurs

around 300K for the peak at 884 nm (at 300K). When we change the temperature, the

maximum gain and the mode shift at different rates and, as a result, the peak amplitude

decreases.

IX. Conclusions

In this paper, we have developed a way to compute the propagation constants of the

modes in a one-dimensional periodic structure over a certain band of frequency, when

material dispersion is present The correct interpretation of the solutions is based on the

direction of the power flow. This led us to discover that, for a structure with even sym

metry, the backward and forward propagating modes exchange their roles when the gain

changes sign in the stop-band. These results were checked in the two layers case by

obtaining an exact solution. We then derived the formulas for the reflection and

transmission coefficients at the interface between a periodic anda uniform section.

Using these results, we developed a model to compute the emission spectrum of the

surface-emitting laser diode (SELD) below threshold. We made several assumptions in

this model. The main ones are: (1) The Bloch wave description for the electric field is

accurate. (2) The carrier density is uniform in the pumped region. (3) The horizontal

cross-section (parallel to the layers) is constant from the top to the bottom. We think that

the first assumption is a good approximation, but that the second andthird ones are par

tially responsible for the discrepancies between the theory and the experimental results.

Our confidence in the first assumption comes from the good agreement between theory

and experiment for the reflectivity of the layered structure (section VI).
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As mentioned in section VHI and in the previous paragraph, the assumption of a

uniform carrier density is probably not a good one. A variation in carrier density will

result in a longitudinal gain non-uniformity, which may change the threshold gain for the

modes and hence explain the difference in the relative peak amplitudes between theory

and experiment The fact that the cavity is really trapezoidal (and not rectangular, as

implied by the third assumption) may give a significant contribution to spontaneous

emission and modify the spectrum, since the light emitted on the sides sees a different

vertical structure (see fig. 13).

In conclusion, we can say that our model is sufficient to explain a lot of the

observed characteristics of the spectrum. To get a better agreement, we need to extend

its validity above threshold. To do that, we need to incorporate rateequations for the car

rier density. The next step wouldbe to take into account the longitudinal non-uniformity

of the carrier density, but that is much more difficult and can probably not be done using

the theory developed in this paper. One way to do it would be to use a transfer matrix for

each period (see forexample [13]) andsolve self-consistendy.

On the experimental side, we are now working on several improvements, such as

using reactive ion-beam etching to get vertical side-walls to the cavity, which would

avoid the problems due to a trapezoidal cavity. We are considering replacing the zinc

diffusion, which is difficult to control, by a two steps LPE process. We grow first n-type

GaAlAs on one side of the mesa, then p-type GaAlAs on the other side, so that we still

get a transverse p-n junction. We are also working on distributed Bragg reflector

(DBR)-type structures, where we have a relatively long uniform active region (3-5 urn)

betweena bottom unpumped multilayer and a top dielectric multilayer.
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Appendix A

In this appendix, we derive the exact expression of the average over one period of

the time averaged Poynting vector. We start with an electric field of the form:

Ey= [c,e(«-JP)2+C2e-<8-JWz] e*01 (A.1)

Using Maxwell's equations, this gives:

Hx=-^(g-JP)[c1e^>z-c2e-<8-^] e*" (A.2)

The time averaged Poynting vector is:

3= yRe^xi?)=-i-Re(EyHx')^ (A.3)

Which gives us:

s*=dy ICilV8°-IC2lVJ81] ^K^^l (A-4)
Now, for Ey=A(z)erz, where A(z) is given by (27), the average of S2 over one spatial

period is given by:

1 *<Sz>=^-JSzdz

_'A1l2fpiri.e^B"» [ |2e2**-l
©mA [ 2[ 2g! Sl 2g!

P2
2g2 2g2

-2ga2i

+ Im SlSl
l-.e*** . e***-!

J2Pi
+ g2S3S4-

J2P2
(A.5)
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Appendix B

This appendix gives the expressions for the refiection and transmission coefficients

and for the propagation factors used to compute the reflectivity, in (44), and the emission

spectrum, in (46)-(51). With Li=zx-zi and 1-3= zV-z'3 (fig- H and 16), we have:

where

Ri =
l-rsn

R2=

R,=

R*=

r-sbl 1+Sfl

l-rsfi 1+Sbl

PqSB-%2

1—PuSb2Sf3

1~Pusb2sf3

l-rsf!

T,=

T.=

llrt1"sflsbl 1

"I+Sq"
1-Kfc

1+sb2

1+Sb3,

1 ir;

Pu(i—Sf2sb2)

1~Pusb2sG

PjiO- S£3sb3)

1~Pusb2sf3

Pu=exp(g2-jp2)L2) and r=
KB-ko

KB+ko

Pi=Df=
1+Sq
1+Sfl

P* =
1+Sf4

1+Sq
JU

JT-i

p*=

p2=I>b=
" 1+Sbl"

1+Sb2_

l+sb3
e1^

l+sM

JT-i

(B.l)

(B.2)

The coefficients sf and sb are defined in (34). The numerical index indicates at which

position zj they are computed (and ko=2nA).

For the reflectivity calculation (44), we have (fig. 11):

R5=-sf4
1+Sib4

l+sf4
T5=(l-sf4sb4)

1+Sf4
(B.3)

Notice that for the emission spectrum calculation, L3 is different from the L3 in the

reflectivity calculation. Forthe spectrum(46)-(51), we get (fig. 16):



R5=R6+
T^I^PgRg

1—R7RgP5P6

35-

(B.4)

where R5 is an effective reflection coefficient, for everything to the left of the L3/L4 inter

face in figure 16. And we use (with L4=z'5-z'4)-

R6=

R7=

Sf4-Sf4 1+Sm

l-sftSl* l+Sf4

Sb4-S& 1+sfl

l-sf4Sb4 1+Sb4

T*=

T7=

R»=-sS Ps=
1+sfi

l-Sf4SM • 1+sfl"
l-sflsw

l-sfls&

.1+Sf4.

" l+sw"
l-sfisw . 1+s&

X.U
P*=

l+s&

1+sfe
*r.u (B.5)

The superscript u for s indicates here that it is the s of theunpumped section (L4) that has

to be used.
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Figure captions

Figure 1: Examples of periodic structure that give a one-dimensional wave equation: (a)

waveguides, (b) multilayers.

Figure 2: Definition of the parameters for the two-layers structure.

Figure 3: Intensity gain in GaAs, as a function of free space wavelength for three dif

ferent carrier densities: (1) N=0.2xl018 cm"3, (2) N=1.0xl018cnT3, (3)

N=2.0xl018cm"3.

Figure 4: G and 5^. for the structure of table 1: (a) without gain or loss, (b) with 2000

cm"1 average gain, butneglecting gain periodicity, (c) as in b, butwith gain periodi

city (see text).

Figure 5: G and 5^ for the structure of table 1 and the intensity gains of figure 3,

corresponding to three different carrier densities: (a) N=0.2xl018 cm"3, (b)

N=1.0xl018 cm"3„(c) N=2.0xl018 cm"3.

Figure 6: Isl as a function of wavelength for the two solutions of eq. (13), at three diffrent

carrier densities (Fig. 3): (a) N=0.2xl018 cm"3, (b) N=1.0xl018cm"3, (c)

N=2.0xl018cm"3.

Figure 7: Re(s) and Im(s) as functions of wavelength, at three different carrier densities

(Fig. 3): (a) N=0.2xl018 cm"3, (b) N=1.0xl018 cm"3, (c) N=2.0xl018 cm"3.

Figure 8: Definition of the transmission and refiection coefficients at a periodic/uniform

regions interface (equation (39)).

Figure 9: Definition of the transmission and reflection coefficients at a phase shifter

(equation (43)).

Figure 10: Model used for reflectivity and emission spectrum calculations. One pair con

sists of a quater-wavelength layer of GaAs and a quarter-wavelength layer of GaA

lAs. Dimensions are given in Table 1.
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Figure 11: Definition of the coefficients for the reflectivity calculation (44).

Figure 12: (a) Result of the reflectivity calculation, with a center wavelength of Xo= 893

nm. (b) Comparison of experiment with best theoretical result (see text).

Figure 13: (a) Structure of the surface-emitting laser diode (SELD). (b) Scanning elec

tron microscope picture of a SELD.

Figure 14: L-I characteristic of a SELD at room temperature, CW operation.

Figure 15: Emission spectrum of a SELD at different drive currents, room temperature,

CW operation.

Figure 16: Definition of the coefficients for theemission spectrum calculation (equations

(46-51).

Figure 17: GaAs intensity gain curves (NA=2xl018 cm"3): (a) at T=300K, for several car

rier densities, (b) at N=1.0xl018 cm"3 and several temperatures. These were

obtained with the same model as for figure 3.

Figure 18: Emission spectrum for several carrier densities (currents) at 300K: (a) theory

(Ao= 890 nm, phase shifter thickness =0.4 A), (b) experiment (pulsed mode opera

tion).

Figure 19: Emission spectrum for several temperature, at constant carrier density

(current): (a) theory (N= l.OxlO18 cm"3, same parameters as in figure 18), (b) experi

ment (1=320 mA, pulsed operation).
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Table 1

** 890 nm

n(GaAs)=n! 3.59

n(Ga07Al(UAs)=n2 3.394

n (average index) 3.494

Zl 62 nm

22 65.6 nm

A 127.6 nm

KB 2.467xl07m"1

k=Pi=P_i 4.4x10s m"1

Amplitude gains

gi 1/2 of fig. 3 or 17

i
82 -500 m"1
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