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i~ B, = Z Bra-BS T mes (33)
k=i

Hence B; sﬁ——;- for all i sufficiently large, which contradicts the definition of B It follows that

lim; , .B; = ﬁ n
Lemma 3.2:  Suppose that the sequences of real numbers ( ¥; }2; and { n; )2, satisfy the following
conditions: (i) M;20, for all ie N, (i) Y= M; <o , and (iii) ¥y < %Y, + ¥ +n; for all

i € IN. Then either { v; }2; converges, ory; = —c0asi = oo,
Proof: LetB; 4 max(y;, v ). Clearly,

Yo Smax( ¥, ¥ }+M=Bi+ i, 34
which shows that B;,; < B; + n;. Making use of Lemma 3.1, we conclude that either B; — —oo , or else
ﬁ A lim; _, .B; exists. If B; — —oo, then so does the sequence { ¥; }2; . We will show by contradic-
tion that lim; _, . v, = B. Let & > 0 be arbitrary and suppose that there is no ip such that ¥; > - € for
all i 2ip. Clearly, there exists an i such that 3. My <e/8, and I; - Bi<e/8, for all i 2i;. By

assumption, there exists an i 2 i;, such that y; < IB - &. Hence, by definition of B; we must have that

Y1 = Bi. Hence we obtain that

'Yi+15%(Yi*"Yi-l)"'ﬂiSVl(ﬁ-e‘"ﬁ"";‘)*%53'1—563- (3.5)

Since y; < ﬁ — &, it follows from (3.4) that f;,; < B— e Next, for any j > i+1,

B = z Bri-BI< T ms . 36)

k=il

Combining (3.5) and (3.6), we obtain that for all j > i+1,

A 3
. N 3.
B<B-—ze. X))
which contradicts the definition of ﬁ It follows that lim; _, .y; = ﬁ =
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A BARRIER FUNCTION METHOD FOR MINIMAX PROBLEMS"

E. Polak!, J. E. Higgins' and D. Q. Mayne?

ABSTRACT

This paper presents an algorithm based on barrier functions, for solving semi-infinite minimax
problems which arise in an engineering design setting. The algorithm bears a resemblance to some of
the current interior penalty function methods used to solve constrained minimization problems. Global
convergence is proven, and numerical results are reported which show that the algorithm is exception-
ally robust, and that its peformance is comparable, while its structure is simpler than that of current
first-order minimax algorithms.
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1. INTRODUCTION

Following Karmarkar’s spectacular success in utilizing a barrier function technique in his linear
programming algorithm [Kar.1], there has been a flutter of activity reevaluating homotopy and barrier
function methods for both linear and nonlinear programming (see, e.g., [Gol.1, Gon.1, Jar.l, Jar.2,
Son.1, Son.2, Ye.l]). Barrier function methods have considerable potential for solving minimax prob-
lems arising in engineering design (see, e.g., [Pol.1] for a discussion of these problems). These prob-
lems are often semi-infinite; in addition, because of their complexity, computation of the gradients of
the component functions (of the max function) is expensive, while computation of Hessians is often
impractical. Frequently, only feasibility is required, in which case the advantages of higher order
methods over first-order methods are substantially reduced. In computer-aided-design applications, run
times of over 100 hours are not infrequent; hence algorithms which may fail to converge, even to a
local solution, are deemed undesirable. On-line applications are increasingly more common, for exam-
ple, optimization for control of batch processes (see, e.g., [Pol.2]). In such applications, algorithms
must be implemented using microprocessors or dedicated VLSI chips, and hence there isa premium on

algorithms that are simple and that do not call massive subroutines.

Very few algorithxﬁs successfully address these engineering problems. We present in this paper a
barrier function method which constructs solutions to semi-infinite minimax problems under hypotheses
which are much less restrictive than those required by by nearly all existing algorithms. The new algo-
rithm has a simple structure and it requires small memory (it does not utilize, for example, linear or
quadratic programming subroutines). Furthermore, it has very strong theoretical and experimental con-
vergence properties. Hence it meets the major criteria for engineering applications. The numerical per-
formance of the new algorithm is, in most of the examples studied, superior or comparable to that of
the only other first-order algorithm (Algorithm 5.2 in [Pol.2]) which can solve semi-infinite minimax
problems of the same generality. Significandly, it is less affectcd by ill-conditioning than Algorithm 5.2
in [Pol.2]: it computes solutions for problems on which Algorithm 5.2 in [Pol.2] fails because of ill-
conditioning. When applied to finite minimax problems, it is again distinguished by exccptional robust-
ness: it does not fail on many problems which causc several excellent competing algorithms to fail. On

more benign problems its performance is either comparable or not significantly inferior to that of other



first-order minimax algorithms.

We address the minimax prdblem:

MMP: min y(x), (1.1a)

xe R*

where the function y:R"® — R is defined by

y(&) 4 max [f‘(x). L 'rqn?oﬁ] olx, 0, ... .‘glﬁ(u o'Cx, t)] ' (1.1b)

and the component functions f*:R"— R and ¢/:R*x[0,1]] > R satisfy cerain continuity
hypotheses.

Engineering design problems often have at least one max-function (¢/(- ,-)), arising from, for
example, constraints on time or frequency responses. In addition, in many cases the presence of meas-
urement and modeling inaccuracies often means that it is not worthwhile obtaining accurate solutions.

The essential features of the barrier function algorithm can be explained by considering the case

of MMP where y(-) is defined in terms of a single function, i.e.,

ye) 4 [max oGz, 9 (1.2a)

The barrier function employed in our algorithm is defined by

A —1
p(x.a)_[o{n R (1.2b)

where & > y(x). For such a, the function p(- , o) is continuously differentiable on the set

C)d{xe R*Iy®<al. (1.3
It is shown later that p(-, &) is a barrier function for the set C(0), so that, if {o;} is a monotone
decreasing sequence which converges to minx; e V(). then the sets argmin_ _ . p(x , ;) must con-
verge to argmin]“E g Y(x). The conceptual algorithm which, at iteration i, sets o; = y(x;) and selects x;
as any element in argmin_ _ .. p(x , @;) generates such a sequence. Our algorithm is a practical version

of the conceptual algorithm, in which, inter alia, exact minimization of plx , o) is replaced by approxi-

mate minimization. Under mild continuity assumptions, all accumulation points generated by the algo-



rithm satisfy first order optimality conditions.

The early literature on semi-infinite optimization was devoted to linear problems. A conceptual
algorithm for solving nonlinaer semi-infinite optimization problems is presented in [Oet.1]. The first
implementable algorithm for solving nonlinear, nonconvex semi-infinite programs, such as
min{ fx) | y(x) < w }, (with y(:) defined as above, and w = 0), appears in [Pol.4], where a first order
algorithm is described and global convergence established (all accumulation points satisfy first order
conditions of optimality). An improved version of the algorithm [Gon.1] has been extensively used in
complex control design problems. The algorithm can be used to solve minimax problems by replacing
fix) by w, i.e., determining (x , w) to solve min{ w | y(x) < w }. However, in our experience, probably
because the transcribed problem is not as well conditioned, it often takes more time to solve a minimax

problem in transcribed form than in original form.

A basic assumption, in all the above implementable algorithms, is that the sets
T8 (11¢*,)=y(x*) )}, je L8 (1,2,..,1), are finite at any local solution x* to MMP !.
With additional assumptions ((¢.(x*.#) >0 for all ¢t e T/, all j € J), it is possible to obtain quadrati-
cally convergent algorithms [Het.1, May.1, Pol.5]. Similar results have been independently obtained by
Coope and Watson [Coo.1], Conn and Gould [Con.1] and others. The only algorithms which dispense
with the assumption that the sets T/ (of maximizers of ¢/(x* , -)) are finite for all j € I appear to be
Algorithm 5.2 in [Pol.1] (a first order method which uses a proximity algorithm to generate search
directions) and the algorithm presented in this paper. Global convergence has been established for
these algorithms.

The literature dealing with the finite minimax problem (y(x) A min; ¢ fi()) is, of course,
much more extensive - see, for example, [Psh.1, Cha.l, Mur.1, Han.1, Hal.1, Wom.1, Pol.1] and the
references contained therein. Both first and second order algorithms have been proposed; some of the
first order algorithms achieve superlinear convergence of the Haar condition is satisfied. However, it is

not clear how often this condition is satisfied in practice. Finally, by transcription into the form

! This assumption is not always valid for engineering design problems with constraints on dynamic responses. For example,
it does not hold in the design of obstacle avoidance paths for robotic manipulators.



min{ wlfix)-w < 0}, (1.4a)

one can solve the finite minimax problem using many nonlinear programming algorithms. One can
generate a barrier function method for solving (1.4a), which is quite close to our minimax algorithm for
the finite minimax problem, by combining the parameter free Fiacco-McCormick penalty function

[Fia.1]

_ A 1 1
plx,w,o)8 prp +j§ o= (1.4b)

with the Mifflin truncation rule [Mif.1]
WVl , we , )1 S K, (1.4b)

and with the Tremolieres penalty adjustment rule [Tre.1]
O = Oy + Yolwpy — o] . (1.4c)

However, our numerical results in Section 5 show that this method computes considerably slower than

our direct minimax algorithm.

As we have already mentioned, the performance of our algorithm on finite minimax problems is
mainly distinguished by robustness: it is to be used on problems that cause other algorithms to fail.
Nevertheless, we expect that the main use for our algorithm will be in solving semi-infinite engineering
optimization problems, where it offers advantages of reliability, speed, and ease of on-line implementa-
tion.

In the next section we describe the conceptual and implementable algorithms and prove that the
conceptual algorithm constructs a minimizing sequence. In Section 3, we establish global convergence
of the implementable algorithm. The results of our numerical experiments, on both finite and semi-

infinite minimax problems, are presented in Section 4. We draw a few conclusions in Section 5.

2. THE ALGORITHM

We associate with the problem MMP the barricr function



px.) & ¥

1 1
- ——eee dt .
jem (@ —fi(x)) * k§1 [d.[u (- 9*x. ) f @.1)

where a > y(x). However, to simplify the exposition we note that, without loss of generality, we may

assume that all the functions in (1.1b) are max-functions, and that y(°) is given by:

v(x) 2 max [max o'x. 0, ... , max o'x, t)] 2)

e [0,1] € (0.1}

This follows since any ordinary function f:IR® — R may be trivially converted into a max-function by

defining ¢ :IR” x [0,1] - R to be ¢(x, /) & fAx). In this case, the barrier function simplifies out to the

form
A —1
Px. @) kze:j_ [oj.;l (@-o%x. ) ‘ (@-3a)

We will assume that the following hypothesis holds:

Assumption 1:  For each k € [, the function ¢*: R” x [0,1] = R is continuous, and has a continuous
first derivative V,¢%- , ). In addition, for each compact § < IR”, there exists a finite Lg such that for

each x € §, the function ¢*(x , ) is Lipschitz continuous on [0,1], with constant Ls. |

It should be clear that under the above assumptions, the function p(:, ) is continuously
differentiable on C(c) for any a such that C(c)) # . For any such o, the derivative of p(- , @), is

given by

A x¢ (x )]
Vaple, o) k§1[ 1] (a. ¢k(x 02

(2.3b)
For ordinary functions, Assumption 1 is equivalent to requiring continuous differentiability.

It is straightforward to see, in the finite case, that the function (2.1) is a barrier function for the
set C(a). The fact that the function (2.1) is also a barrier function follows from the following lemma.

Some additional notation is necessary at this point. Define the set C by
d (x.)eRMIyw<al, 24

and let the e-active sets A¥(x) < [0,1), k € 1, be defined by:

-6-



Al 8 (te 01O, )2y -¢) . 2.5)

Lemma 2.1: Suppose that Assumption 1 holds, and that C, is a bounded subset of C. Then there
exists a constant L > 0, such that for all (x, o) € C,,

2
L2 ]

1
px,o0)2 7 log[l + c—v@D | (2.6)

Proof:  Since C, is bounded, so is the projection IT of C, onto R". Hence by assumption there exists
a Lipschitz constant, L < oo, such that each ¢*(x , *) is uniformly Lipschitz in ¢ on [0,1], for all x e II.
Without loss of generality, we may assume (since C, is bounded) that L>a — y(x), for all

(x,0) € C,. Let ke Lbe such that Af(x) is nonempty, let 1, € A%(x) be given and let t € [0, 1].

Then we have that
o', 02 Mx, )~ Lt-tl=y®) -Lit-1). | 2.7
Consequently, we have:
1
y )2 | ——————
Sl B @8
1
2 [0‘!‘,1 (00— y(x) +LIt - 1)) d 29)
1 (& = y(x) + Le)(o — w(x) + L(1 - 1))
2 -1 2.10
L °g[ @- vy ] @10
2
1 L2
2 L log[l + m] , 2.11)
where (2.11) is obtained by minimizing (2.10) with respect to ¢,. u

Consequently, if o € R is such that C(c) # ¢ and (x;)20 < C(a) is a bounded sequence such that

Y(x) - o as i — oo, then p(x; , @) = 0 as § —» oo, i.c., p(- , @) is indeed a barrier function for C(a).

We now establish that our conjecture, made in Scction 1, that the following conceptual algorithm

constructs a minimizing sequence.

Algorithm 1 (Minimizes y(-)).

-



Data: x € R*
Step0:  Seti=0.
Step1:  Seto; 2 y(x).

Step 2: Compute x;,, € arg méx(lai) plx, o).
xQ

Step 3:  Replace i by i+1 and go to Step 1. [ ]

D>

Let G A arg min__ o, W(x). We see that Algorithm 1 defines the iteration function

A :R* — 2%°, defined on the complement of G as follows:

AW=arg  min p(¥. (), ifxe G. 2.12)

To complete the definition of A(), we set

AW=3G.ifxe§. (2.13)
Now suppose that the set C(y(xo)) is bounded, and consider the sequence {x;}z=o constructed by Algo-
rithm 1. ﬁen, there is an infinite subset X < IN and vectors x* , x**, such that x; f) x* and x;, f) x**
as i = oo, Since the sequence {y(x;))=o is monotone decreasing, and since y(-) is continuous, we must
have that y(x;) — y(x*), as i — oo, and hence that y(x*) = y(x**). For the sake of contradiction, sup-
pose that x* & G. Then the set C(y(x*)) is nonempty, and hence for any x" € A(x*), y(x") < y(x*) must

hold. Let x' € A(x*), then it follows that x € C(y(x;)) for all i By construction,
Py W(x)) < p(¥ , W(x)). Continuity implies that p(x’, y(x)) = p(x’ , y(x*)). However, Lemma
2.1 implies that p(x;,; , W(x;)) = <o, which yields a contradiction. Hence we must have that x* € G.

To convert Algorithm 1 into an implementable form, we introduce two modifications. First, we
relax Step 2, which requires that x;,, € arg min, . cty P(x » 0;), by accepting any x;,, € C(;) which
satisfies IV p(x;,, , o)l £ K, for some fixed K > 0. Clearly, such an x;, can be computed in a finite
number of operations by means of any number of descent algorithms. Next, because x; & C(a;) and

since an initial point in C(¢) is necded for the computation of x;,; by means of a descent method, we

replace the construction in Step 1 by setting o; 2 Y%(y(x,)+y(x)), and using cither x; or X

8-



(whichever has the smaller y(-) value) as an initial point for the routine that computes x;;. It is still
possible that w(x;;) = y(x;), in which case we increase o; by a suitably small amount. The resulting

implementable algorithm is as follows:

Algorithm 2 (Minimizes y(-)).

Data: X1, Xp€ R", K20, { N )0 such that ;> 0, and Y M < oo,
=0

Step0: Seti=0.

Step 1: Set
A Ya(y(xiy) + y(x)) if i) #yix),
G,' = 1 . - (2. 14)
Blyei) + YD)+ I wxe) = yix) ,
X; if yie) 2y(x) .,
a . 2.1
% @ {xH i WYxer) < WG - @19
Step 2:  Using y; as an initial point, use any method to generate a x;,; € C(e;) satisfying
Vo0 N SK. (2.16)
Step 3:  Replace i by i+1 and go to Step 1. |

Before proceeding with the proofs of convergence, we make the following observations.

(i) Step 2, of Algorithm 2, may require a few iterations of a descent method. In an effort to simplify
the algorithm, one is tempted to hypothesize that a single iteration of the method of steepest descent
(with exact line search on C(0)), applied to p(- , o), instead of the full Step 2, might suffice. Unfor-
tunately, it is possible to show that this strategy does not work, by applying this "one-inner-iteration”
algorithm to the simple problem min; cmemax{ 2d +x2 , —x'}, with x; =, 1), x=(0,0).

The “simplified” algorithm constructs a sequence {x;}%, which converges to a non-stationary point.
(i) The convergence properties of Algorithm 2 are unaffected when the term Y(y(xay) + y(x;)) in
(2.14) is replaced by the term ((1 — p) y(x;) + pw(x))) for any fixed p € (0, 1). However, the proofs
of convergence are slightly simpler for the case p = % and hence we use that value in our analysis.
(iii) Because the evaluation of the barricr function may be quite expensive, conjugate gradient methods

with an exact line search seem to be unsatisfactory for computing an x;,, satisfying (2.16). Hence, a

9.



reasonable approach seems to be to use an algorithm of the Gauss-Newton type, which does not require

second order derivatives. This algorithm is described in the Appendix.

(iv) It is possible, due to the nature of the function p(: , -), that as the iterates (x; , 0;_;) approach a solu-
tion,_the number of inner steps required to satisfy (2.16) grow rapidly. By briefly examining the proof
of convergence in Section 3, it can be seen that the test (é.l6) in Step 2 can be replaced by the follow-
ing, much less restrictive test:

Step 2’:  Use any method to generate an x;,, € C(0,) satisfying

1

V(i , oIS K 1, ——, .
(X1 » ) max{ @ \v(xm))‘} .17

where § € [0, 1) (in fact, if only ordinary functions are presenf. this condition may be relaxed to
requiring that 8 € [0,2)).

(v) The sequence { M, }i=o need not be specified completely at the outset. An essential requirement is
that whenever y(x.) = y(x;), we have 7; >0, so that a usable starting point for Step 2 is generated.
With this in mind, the sequence { M }io may be generated in the following manner. Initially choose
some Vo > 0. In iteration i, if W(x1) # w(x), then set n; = 0 and v;,; = Vv;, otherwise set 1); = v; and

Vi1 = V; / 1.1. Clearly, the resulting sequence { 1, )i has a convergent sum.

(v) Rather than using y; as an initial point in Step 2, a variant of a homotopy method can be used to
generate an alternative starting point. Ideally, we would like to compute a new starting point

X € C(oy) such that
Vo, 0)l<K. (2.18)

In this case, Step 2 would require zero iterations to satisfy (2.16). Since at the previous iteration, we

have computed a pair (x; , o) satisfying
IVo(x; , o 1<K . 2.19)
a sufficient condition which guarantees satisfaction of (2.18) is that x’ satisfies

vlp(x’ ’ al) = vzp(xi ’ ai-l) . (2-20)

-10-



Using Taylor’s Theorem (under suitable differentiability hypotheses and ignoring higher order terms)

we expand the function V,p(- , -) about the point (x; , 0t:;) to get

V(X' , &) = Vop(x; , 0iy) + pral®i , 00X = %) + Pas(Xi 4 01)(04 — Oicy) . (2.21)
This suggests that ‘
X 8 x— (P, ) Paalr; s )0 — 0iy) (2.22)

might be a reasonable starting point for Step 2 (assuming that ¥’ € C(c)). A straightforward computa-
tion shows that (under smoothness assumptions) the Hessian (with respect to x) of the barrier function is

given by

Vbx, ) Vo, 7 Oulx , 1) ] , 2.23)

y A
P, 0) € kel (o'.[u [ (@ - o, ) * (o -, )

Since we wish to avoid computing Hessian information (and making an additional smoothness

hypothesis), we approximate the Hessian p.(x;, 0;y) in expression (2.22) by the positive definite

matrix
~ Vidix, ) Vid(x, o)F
H(x,(x) é z j‘ [ x¢(x t) z¢(x31) + ol > ]dt , (2.24)
ke 1[0,1] (- d(x, ) (- ¢(x, )
where o > 0 is some fixed constant. This yields the following formula
X 8 x— (H , 0V Pon®; o 0er)(04 — 041) 2.25)

Before using the X’ estimated by this calculation, we must, of course, verify that X’ € C(c;). A similar
type of initialization may be obtained by replacing (2.20) by

Vool ) = Vop(x;, 0y) (2.26)
where A € [0,1), and repeating the above expansions.

Before concluding this section, we note that we have tacitly assumed that w(), p(-,-) and
V.o(- , *) can be evaluated exactly. Consequently, Algorithm 2 should be viewed as a conceptual algo-
rithm. An implementable algorithm may be developed in a manner similar to that presented in [Kle.1],

by adopting a suitable discretization scheme for the interval [0,1].

-11-



3. PROOF OF CONVERGENCE
The main theorem of this section shows that any accumulation point %, of a sequence produced by
Algorithm 2 satisfies 0 € dy(%) (where dy(®) denotes the Clarke generalized gradient [Cla.1] of y(-) at
%). Our proof requires the following definition of the set valued function Gy : R* — 28™",
T et
ta [0,1)

It is straightforward to show that Gy(*) is an augmented convergent direction finding (a.c.d.f.) map for
WY() (see [Pol.1], Definition 5.1). In particular, we use two properties of Gy(-): (i) Gy(") is upper semi-

continuous (See [Ber.1]), and (ii) 0 € Gy(%) if and only if 0 € Jy(%).

The proof of convergence depends on the following two technical lemmas, which generalize the

fact that a decreasing sequence either converges or diverges properly to — oo,

Lemma 3.1: Suppose that the sequences of real numbers ( B; }p and { M; }=¢ satisfy the following
conditions: (i) Nni20forallie N, (i) 2:0 MNi<oo,and, (iii) Bi'l-l < Bi +7; forallie IN.

Then either the sequence { B; }J=o converges, or f; > — 0 asi — oo,

Proof: It is clear from the assumptions that the following holds:
-1 oo
Ba=Bo=X Bm-BIS T ;. (3.2)
=0 =0
Hence, B; is bounded from above, and thercfore ﬁ 4 lim; _, «P; < o Obviously, if ﬁ = —oo, then
Bi > —asi—oo.

Now suppose thatﬁ >—oo. To prove convergence of the sequence { B; }Zo, we will show by con-
tradiction that lim; _, .j3; z’B. Thus, let € > 0 be arbitrary, and suppose that there is no iy such that
B: >ﬁ- € for all i > iy. Clearly, there exists an i, such that Y. m, <&/ 2 for all i >i,. It follows

from our hypothesis that there exists an i, 2 i), such that B,-2 s'ﬁ— e. It follows from (3.2) that for

i> i,

12-



-1 oo
Bi‘Biz=§2(Bk+l‘Bk)5§2ﬂk5%- 33)

Hence B; 53— % for all i sufficiently large, which contradicts the definition of ﬁ It follows that

lim; _, o-Bi = B- u
Lemma 3.2: Suppose that the sequences of real numbers { ¥; }=; and { n; )20 satisfy the following
conditions: (i) M;20, for all ie N, (i) Yz M;<e , and (i) Yy < A(Y; + ¥iy) + M; for all

i € IN. Then either { v; J=._, converges, ory; = —coasi — oo,
Proof: LetB; & max( vy, v ). Clearly,

Yer SMAX{ ¥, Y } + =B +m;, (34)
which shows that 8;,; < B; + n;. Making use of Lemma 3.1, we conclude that either B; - —eo , or else
B 2 lim;, B exists. If B; — —oo, then so does the sequence { ¥; Jo; . We will show by contradic-
tion that lim; , . %;=B. Let & >0 be arbitrary and suppose that there is no iy such that y; > B¢ for
all i 2i5. Clearly, there exists an i; such that 3. m,<e/8, and lB,--ﬁl<e/8, for all i 2i,. By
assumption, there exists an i 2 i;, such that y; SB— €. Hence, by definition of f; we must have that
Yi-1 = Bi. Hence we obtain that

YmS‘/z(y.-+7,-.x)+m5‘/z(ﬁ—e+ﬁ+§)+-§-Sﬁ-nge- 3.5

Since ¥; sﬁ — &, it follows from (3.4) that §;,; < ﬁ - liﬁe' Next, for any j > i+1,

1 -
Bi-Bui=Y Bu-BI< 3 ms<. (3.6)
i+l k=il 8

k=i

Combining (3.5) and (3.6), we obtain that for all j > i+1,

ﬁ 3

< — — .7)
B’ - 16 €. G
which contradicts the definition of ﬁ It follows that lim; _, ..y; = ﬁ u

13-



The following lemmas derive inequalities which are used in Theorem 3.5.

Lemma 3.3: Suppose that Assumption 1 holds, that € > 0, and that (x,a) € C. Then for each
t ¢Akx), witht e [0,]]and k € [,

—o=vl) vyt |
@0, OF < (a-y®) ol 3.8)

Proof: Since ¢ ¢ AX(x), we have that ¢*(x, f) < y(x) — . Hence,
a-dx,)>a-y@ +e>¢e , (3.9
from which the desired inequality follows. n

Lemma 34: Suppose that Assumption 1 holds, and that C, is a bounded subset of C. Then there

exists a constant A > 0, such that for all (x, ) € C,,

-y ¥ |

1
R—S—" | ] 3,10
Kerp,y (@—¢%x, ) (3.10)

Proof: Since C, is bounded, so is the projection IT of C, onto IR*. Hence by assumption there exists
a Lipschitz constant, L < e, such that each ¢*(x , -) is uniformly Lipschitz in ¢ on [0,1], for all x € TI.
Without loss of generality, we may assume (since C, is. bounded) that L 2 o — y(x), for all
(x,0) € C,. Let ke [ be such that A§(x) is nonempty, let ¢, € A§(x) be given and let e [0, 1].

Then we have that

ofx, D208, ) - L=t =y(x) = LIt -} . (3.11)
Now suppose that 0<e<L. Then {re [0,1]1lt—1t)< % } c AYx), and hence m(AX(x)) > %
where m(-) denotes the Lebesque measure on R. Hence we conclude that

oo V® gy 0¥ g, B 0ol

Z o)y @ee. o7 ,,g(,, @-0%.0F L (@-y@)+ep @.12)

Setting € = a0 — y(x), and A = 1/ 4L, we obtain the desired result. |

s
The essence of the proof of Theorem 3.5 is to show that, if x; — %, there exist elements

— N — —
E; € Gy(x) such that E; - 0. Upper scmi-continuity of Gy(-) allows us to conclude that 0 € Gy(®),

-14-



which is equivalent to 0 € Jy(%).
Theorem 3.5: Suppose that Assumption 1 holds. If { x; }2., is any sequence produced by Algorithm

2, when applied to Problem MMP , then any accumulation point %, of { x; }2,, satisfies 0 & ().

s
Proof:  Suppose that x; — X, as i — e for some infinite subset § N, By construction x;,, € C(a)

for all i € N, and hence it follows that
Yx) < o5 < Ya(yixy) + wx)) + 1 (3.13)
Therefore the sequence { w(x) )i, satisfies the conditions of Lemma 3.2. Since w(-) is continuous, we

s
must have that y(x;) — y(%), and hence, because of Lemma 3.2, the whole sequence { y(x;) }=-, con-

verges to y(%). As a consequence, the sequence { o; }2, also converges to y(X). By construction, we

have forallie N, i> 0,

Vo, eI <K . (3.14)
Since (0 — Y(x)) —> 0 as i = oo , it follows that

ili_{“_ (051 — y(x)) Vop(x; , 0:) =0, .15
For each k € ], define pf:[0,1] —» R by

O — Y(x)
s - O O ©-16)

HON

Since { (@i, x) }; ¢ 5 is contained in some bounded subset of C, we conclude from Lemma 3.4 that

there exists a A > O such that for all i € S,

vid ¥ [ plwarza G.17)

ke l1[0,1)

It follows from (3.15) and (3.17) that

=3 [ POV, 0a S (3.18)
Vikei(0,1)

Furthermore, since { x; };¢ 5 is bounded, there exists some constant B such that w(x) - o%(x; , 1) < B,

for all ¢ € [0,1), and for all i € S. Consequently, for any € > 0,
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T | PO we) - w0 e (3.19)

kelfo0,1]

J o0 ) - G e+ [ ol (i) - 0%Cu 0) (3.20)
ke 1 Az(’i) Ak(x‘,)c
< Vi + (g - YD) éw. (21)

It follows from (3.19)-(3.21) that

-3 I o) (wCx) - 0z ) dt > . (3.22)

Virget

Since pX(®) > 0 for all i, &, ¢, convexity of Gy(-) implies

. A l k W(x,) - ¢k(xi ’ l) Al
s Vi k§}_ 0.1 P (‘)[ Vx‘bf(x.' ) ] dt € Gy(x). (G.23)

— s — —
Since (3.18) and (3.22) imply &; — O, upper semi-continuity of Gy(-) implies 0 € Gy(X). This com-

pletes the proof. |

4. NUMERICAL RESULTS

We will now present a number of numerical examples which illustrate the performance of Algo-
rithm 2. Since there is a scarcity of semi-infinite minimax test problems in the literature, we have (i)
constructed three semi-infinite minimax problems by converting three constrained problems in [Tan.1]
into semi-infinite minimax problems using .. exact penalty functions, and (ii) we took from thé control
literature two semi-infinite minimax problems which correspond to the very important task of construct-
ing a stabilizing compensator for a multivariable linear feedback system. Finally, to determine if our
algorithm has any advantages in solving finite dimensional minimax problems, we have applied it to a

few problems of varying degree of difficulty and compared its performance to existing algorithms.

In our experiments, the computations in Step 2 of Algorithm 2 were carried out using Algorithm
A (presented in the Appendix). To improve performance, we used the homotopy type initialization
described in observation (vi) of Section 2. All the computations were performed in double precision on

a Sun 3 microcomputer with a floating point accelerator. For cach of the problems below, the Armijo
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step size parameters in Algorithm A were set to a = 0.0001, B = 0.1. The parameters o (of Algorithm
A) and K were chosen in an ad-hoc fashion. The algorithm performance was reasonably insensitive to
moderate changes of these parameters. The heuristic used for choosing these parameters was as fol-
lows: (i) Choose X so that initially, the number of inner iterations is approximately one or two, and (ii)
choose & to be small, with the proviso that the Armijo procedure (Step 3) of Algorithm A should not

repeatedly choose points in C(ax)°.

A potential numerical problem with Algorithm 2 arrises from the fact that if the sequence
{ x; J&-1 which it constructs converges, then lim; _, .. DP(xi4y , ;) = oo, In practice however, this did not

create any difficulties.

For semi-infinite problems, we compared Algorithm 2 with a modified version of Algorithm 52
in [Pol.1] (see Example 5.1 and Corollary 5.1 in [Pol.1] for details), since it seems to be the only other
first-order minimax algorithm in the literature which can be proved to be globally convergent under

equally weak assumptions. Our test problems were as follows:

Problem TFI1: This is a modification of Problem 1 of [Tan.1]. In this problem, and in Problems
TFI2, TFI3, the exact penalty has been adjusted so that the minimax problem has the same solution as
the original problem. Here y(x) = max({ f1(x) , max,q (o, 0'(x, 1) }, where £(-), g(-, ) (defined in

[Tan.1]) and ¢'(-, ) are given by:

1@ 4 &2+ 02+ ()2, @.1)
8.0 & X+ 2e™ + & - 2sin(dr), @42
o'x, 1) 8 flx) +100g(x, ), @.3)
Initial points: x_; = x = (1,1,1)7. ]

Problem TFI2: In this problem W(x) = max( f(x) , max,¢ o, ;;0'(x , {) )}, where ¢'(x , #) is defined

as above (4.3), but using the functions f!(-), and g(- , -) of Problem 2(a) [Tan.1] defined by:

i) 4 X'+ 222+ 23, @4.4)
g(x, 0 4 wun()-x! - (D - () @.5)
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Initial points: x_; = xo = (0,0,0)". ]

Problem TFI3: In this problem y(x) = max{ f'(x) , max, ¢ o, 10'(x . #) }, where ¢'(x, 1) is defined
as above (4.3), but using the functions £1(-), and g(- , -) of Problem 3 [Tan.1] defined by:

i 4 e+, @.6)
Al a2

.0 & —— 2 - (P - @O )}

Initial points: x, =xp= (1, 0.5, 0)". n

In [Pol.3], we find a method for designing stabilizing compensators for linear multi-variable feed-
back systems via semi-infinite optimization. We use this method here to compute a parameter vector
x € R" (with components denoted by superscripts) which results in all the eigenvalues of the following

matrix? having strictly negative real parts:

0 0 —x!' —2x24x! —3x2-3x
0 0 = 25" -31%-3x°
AP 2 I £ -3 -4 -2 |. 4.8)
0 0 1 0 0
Y B2 0 -2 -4

As is shown in [Pol.3], the eigenvalues of the matrix A(x) have strictly negative real parts if y(x) < 0,

where y(x) = max{ max; ¢ 5 f/(x) , maxe ¢ 0 (x , ©) ), with
Fix) A —x"4+0001, jes5. 4.9

and

1 A _ det(j(60w)! — A(x))
¢, @) £ 0001-Re ((7600)2 + x°(j600) + x'%)((j60w)? + x*'(j60w) + x!2)((j60) + x'*)

(4.10)

Note that in this problem we do not need to find a minimizer, only a point x which makes y(x) nega-
tive. We used two different initial points, as stated below:
Problem MODNYQI: Determine x € R'? such that w(x) < 0.

Initial points: x_; = xo = (10,9.9,9.8,9.7,-9.6,-9.5,-9.4,-9.3,1,1,3.7341,3.4561,37.642)T.

2 For the purpose of testing our algorithm, we deliberately overspecified the number of design variables 10 make the result-
ing minimization problem ill-conditioned.
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Problem MODNYQ2: Determine x € IR'? such that y(x) < 0.
Initial points: x_, = xp = (~1,0,0-1,1,0,0,1,2,1,6.2055.9.1530,2)". n

Table 1, below, summarizes the results in terms of the number of function evaluations (NF) and

gradient evaluations (NG) required to achieve the specified accuracy. For the Problems TFI1-TFI3, we

terminated computation at the first iterate x; which satisfies the test Ix; — %I, < 1074, where % is the
corresponding solution. We compared the performance of Algorithm 2 with that of the linearization
method, Algorithm 5.2 in [Pol.1]. On Problems TFI1 and TFI3, both algorithms performed similarly,
while the linearization method [Pol.1] fails to achieve the required accuracy on Problem TFI2. The
linearization method [Pol.1] fails to obtain a solution to Problem MODNYQI in 200 iterations (and
over 5 hours !). In this case, Algorithm 2 obtained a solution reasonably quickly. Figure 1 plots the
function y(-) versus iteration number for both of these élgorithms when applied to Problem MOD-
NYQ1. The difference in performance of the two algorithms on Problem MODNYQ?2 is not as
dramatic, but is nonetheless substantial. For the purposes of illustration, Figure 2 shows the semi-

infinite function (4.10) at various iterations for Problem MODNYQ2.

Problem Algorithm 2 (NE/NG) | [Pol.1] (NF/NG)
TFI1 70/37 14727
TFI2 122/74 FAILS
TFI3 34125 63/13
MODNYQ1 63/42 FAILS
MODNYQ2 6/6 55/14

Table 1. Performance on semi-infinite problems.

To illustrate the behavior of Algorithm 2 on finite minimax problems, we begin by applying it to

the following particularly difficult problem with spiral level sets, as shown in Figure 3.

Problem SPIRAL: In this problem, n=2, m=2 and the functions f/:RZ25 R, j=1,2, are
defined by:

10 8 & - Ve + (P cos(Ve) + (D)2 + 0.005 (()? + (D) | @4.11)
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7 4 - Y&h? + (D%sinVeN)E + (D)2 + 0.005 ()2 + (D)) . 4.12)

The solution of this problem is %=(0,0), and we wused the initial points
X1 = X9 = (141831 , —4.79462)", |

Table 2 gives the number of iterations (I), the time in seconds (T), and the number of function
evaluations (NF) and gradient evaluations (NG) required to satisfy lx; - I, < e, for various values of €.
We present figures for Algorithm 2, the linearization method of [Pol.1] (Algorithm 5.2), and the excep-
tionally effective combined LP/Quasi-Newton method of [Hal.1).

Algorithm 2 [Pol.1] (Hal.1]

NE/NG I T NE/NG I NENG

0/0 01 0 0/0 0 0/0
29 | 9.56 | 469/176 | 224 | 18.7 | 2306/224 | 1743 | 1743/1743
29 | 9.56 | 469/176 | 398 | 32.58 | 3904/398 | 3903 [ 3903/3903
30 | 1132 | 562210 | 640 | 4748 | 5592/640 | 5005 | 5005/5005
31 | 15.08 | 782/290 | 732 | 53.32 | 6247/732 | 5248 | 5248/5248
32 | 1682 | 890/321 | 811 | 57.98 | 6717/811 | 5325 | 5325/5325
le-04 | 33 | 17.68 | 9407335 | 876 | 61.92 | 7069/876 | 5337 | 5337/5337
1e-07 | 33 | 17.68 | 940/335 | 894 | 63.58 | 7270/894 | 5344 | 5344/5344
le-10 | 34 | 19 1032/356 | 912 | 65.18 | 7469/912 | 5357 | 5357/5357

m
(V)]
oH
|

-t
%o—&w#

Table 2. Performance on Problem SPIRAL.

The behavior of Algorithm 2 on Problem SPIRAL highlights a number of points. Algorithm 2
quickly achieves a reasonable level of accuracy with relatively few function and gradient evaluations.
On this difficult problem, it outperforms the methods of [Pol.1] and [Hal.1], both in terms of evalua-
tions and time (the method of [Hal.1] required significantly more time than the other algorithms). As
would be expected, the number of inner iterations (required by Algorithm A to satisfy Step 2) grows as
a solution is approached. Figure 4 illustrates this by plotiing the number of inner iterations versus the
iteration number. For reasonable levels of accuracy, however, this growth is not too severe. Further-

more, this may be alleviated somewhat by replacing the Step 2 acceptance criterion by that of remark

(iv) of Section 2.

Next we applied Algorithm 2 to the finite minimax problems below. These problems are consid-

erably less difficult than SPIRAL.
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Problem WF: This is the example in [Wom.1] (p. 512) on which the algorithm of [Wom.1] fails to

converge. Here w(x) 4 max; 3 f/(x), where

Al ( 10x!
fix) 4 > :cl-l- 0D +2(x2)2], @4.13)
208 A l’_ 10! 2
fP(x) A 2.x1+(x1+0.D+2(x')], 4.14)
1 [ 10x!
i 8 2 jr‘ ~ @400 +.2(x2)‘]. 4.15)
Initial Points: x; = xy= (3, 1)7. [

Problem M:  This is the second problem of (Mad.1). Here y(x) 4 max;¢ ¢ Fi(x), where

F'@ & @2+ +2d2, 0 8w, 4.16)
£fo dsin), o2 e, @.17)

/@8 s, @8 . (4.18)

Initial Points: x_; = x = (3, 1)T. [ ]

Problem RB:  This is Example 1 from [Hal.1). Here w(x) & max; 4 f(x), where

i@ 2 1062- D, £ 8 e, 4.19)
fmii1-2, fu b - (4.20)
Initial Points: x; =xp=(1,1, 1), =

Problem CB2: This is Problem CB2 of [Wom.1]. Here w(x) & max; . 3 f/(x), where

i 4 &2+ @4, @4.21)
i) 8 -2+ -2, 4.22)
f3(x) é 28-11 ...,2. 4.23)
Initial Points: x; = xp = (2, 2)". =

Problem CB3: This is Problem CB3 of [Wom.1]. Here y(x) 4 max; . 3 fi(x), where

1) & @Y+ (A2, (4.24)
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0 & @-M+e-22, ' @.25)
) 4 277+7 (4.26)
Initial Points: x; = xo = (2, 2)". ]
The results obtained (and comparable results from the literature) are presented in Table 3. It
should be pointed out that each algorithm has a different stopping criterion, and so care must be taken
when interpreting the results. We executed both Algorithm 2 and Algorithm 5.2 [Pol.1] until the first
iteration which satisfied the test Ir;— %1, < 10™. In addition, we have compared our algorithm with
the Fiacco-McCormick-Mifflin-Tremolieres (FMMT) algorithm mentioned in the introduction (1.4a-c).
To provide a fair comparison, we have augmented the FMMT scheme by adding a homotopy type ini-
tialization, similar to that presented in remark (vi) of Section 2. As in previoﬁs tables, NF refers to the
number of function evaluations, and NG to the number of gradient evaluations. If these numbers are

not explicitly given in the literature, we indicate this by (-).

Algorithm 2 | [Pol.1] | [Mur.1] | [Wom.1] | [Cha.l] | [Hal.l] | FMMT

Problem
NE/NG NENG | NE/NG | NFNG | NF/NG | NENG | NENG
WF 25/25 FAILS FAILS FAILS 149/88
M 42/25 58/11 19/- 2222 187/115
RB 87/41 56/10 37129 21721 249/145
CB2 24/14 150725 6/- 12/7 21/- 11/11 109/72
CB3 33/21 40/8 6/10 8/- 99 181/114

Table 3. Evaluation count for finite minimax problems.

It is clear from our experimental results that Algorithm 2 is exceptionally robust and that it is
quite effective on semi-infinite minimax problems for which it was primarily intended. When applied
to finite minimax problems, its performance is only fair on easy to moderately difficult problems. How-
ever, on severely ill-conditioned problems, such as SPIRAL and WF, it has considerable advantages
since it computes results when other methods fail. Finally we note that the related constrained non-

linear programming algorithrm FMMT performs poorly in comparison with Algorithm 2.
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5. CONCLUSION

We have presented a first-order minimax algorithm based on barrier function techniques which
resemble parameter-free interior penalty function methods used in constrained optimization. The use of
an Armijo-Gauss-Newton type routine which is initialized by means of a primitive homotopy approach

appears to mitigate the scaling difficulties caused by the barrier functions in the inner problem.

Theoretically, our algorithm can be generalized to solve problems where the "max-parameter” is
an element of (0, 1]* (for some integer k > 1) rather than [0, 1]. This generalization requires raising
the denominators of (2.1) to a suitable power. However, the problem of implementation of this new
algorithm, as well as of any other currently known semi-inifinite minimax algorithm, is bound to

become more severe.

Our new algorithm offers two major advantages. The first is that no special purpose search direc-
tion routine is required (such as a quadratic program solver) which makes it particularly suitable for
dedicated VLSI implementation in on-line applications where computing speed and component reliabil-
ity are essential. The second advantage is that of robustness combined with reasonable speed: limited
numerical experiments indicate that our algorithm does not fail when others do, that it converges
linearly (with respect to the outer iterations), and that its computing times are comparable to those of

other first-order minimax algorithms.

6. APPENDIX: A PROCEDURE FOR SOLVING THE INNER PROBLEM

The inner problem, defined by Step 2 of Algorithm 2, requires the computation of a point
X1 € C(o;) which satisfies:

Vo, o) <K , (A.1)

for a given K > 0 and a given initial point y; € C(a;). Clearly, in general, such a point can be obtained
in a finite number of iterations by means of any number of descent algorithms, including the Armijo

gradient method [Arm.1].



However, as a solution of Problem (MMP) is approached, some of the terms in (2.1), become
very large and hence the penalty function p(- , ), defined by (2.1) tends to become badly scaled. After
some experimentation with alternatives, we have concluded that an effective way to deal with this
difficulty, as well as with the fact that the penalty function can be quite expensive to evaluate (which
discourages complex step size calculations, as well as computation of second order derivatives), is to
solve the inner problem by means of the following Armijo-Gauss-Newton variant. In this variant, we
approximate the hessian of p(- , o), defined by (2.23), by the expression (2.24). The resulting procedure

is as follows:

Algorithm A (Solve Step 2 of Algorithm 2)

Data: 0o, )€ C,K20,,Be (0,1), S & (B*)20 0>0.
Step0:  Seti=0.

Step 1:  If IV, p(y; . o)l S K, set x;,; = y; and stop.

Step 2:  Set i;=—H(y; , o)™ V.p(y; , 0).

Step 3:  Compute the step size:

A A max{Ae Sly,+Ale CO), pyi+Ah,o)—py;, o) <aldy, Vo, o)) .
Step 4: Set yu1 =i + M.

Step §:  Replace i by i+1 and go to Step 1. | |

It is straightforward to prove that Algorithm A either finds a point x;,, satisfying (A.1) in a finite

number of iterations, or lyl — = asi — oo,
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Figure 1. y(x;) versus iteration (i) for Problem MODNYQ1.
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Figure 2. $'(x;, @) for various iterations for Problem MODNYQ2.
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Figure 4. Inncr itcrations versus itcration for Problem SPIRAL.
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