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ABSTRACT

In this technical report we present an alternative proof of the main result
proven in [2]. The proof presented here is more complex and technical than that
in [2], but is direct and self-contained, in contradiction to the one in [2], which is
indirect and relies heavily on results from the stability theory of tandem queueing
networks.

The problem is the following. Consider an ordered set of processes, each
consisting of Ke7Z.+ tasks, to be processed in the specified order by a system of
K processors in tandem. Each process, immediately after having its i-th
(1 < i <K) task served by the i -th processor, is queued up in a first-come-first-
served basis for processing of its (i + l)-st task by the (i + l)-st processor, until
all its tasks have been served. Define the makespan (execution time) to be the
time to serve all the processes in the set.

Given that the processes form a stationary and ergodic sequence, as far as
the processing times of the tasks are concerned, the asymptotic makespan is first
explicitly computed, as thenumber of processes tends to infinity. This is done by
directly computing the asymptotics of a known analytic formula for this mak
espan.

1. Introduction.

The purpose of this technical report is to present a direct and self-contained proofof the
main result in [2], in contradiction to the proof of the same result in [2], which is indirect and
relies heavily on results from the stability theory of tandem queueing networks. The proof given
here is technically more complex than that in [2]. However, it is based on acompletely different
method, which requires some new interesting techniques with wider potential applications, mak
ing it worthdocumenting asa technical report.

Consider an infinite random sequence of multi-tasked processes of the form
A= {a,=(oj,of, ••• cf),je'Z.} and a set of Ke%.+ processors, indexed by
/<= {0,1,2, ••• K}. Let oj be the processing time of the i -th task in the /-th process. In each
process, the /-th task has to be served by the /-th processor.
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For m, neZ, m<ny define i4mn ={a; =(o^, a/, ••• of), je [m + 1, m+2, •••
n -1, /i}}. The processes in i4mtn are served in the order specified by the index /. Each pro

cess, immediately after having its i-th (1 £ i: £ K -1) task processed by the i-th processor, is
queued up on a first-come-first-served basis for servicing of its (i + l)-st task by the (i + l)-st
processor, until all its tasks have been processed. Therefore, each processor is specialized in
serving just the corresponding task in each process.

Define the makespan (execution time) T(Amn)e IR+ to be the time to process all the processes in
thesetAmtfl.

It is assumed that the random sequence A, defined on some probability space (Q,F,P), is
1 0

stationary and ergodic under the transformation 9/A= {a._/ =(a.-_/,o._/,
D

•'' °m)» /e Z}, /e 2Z. Recall that stationary means that 8/A = A, for any /e Z, the symbol
D

= indicating equality of the finite dimensional distributions of the two random sequences. Also,
ergodicity means that every 6-invariant set of realizations of A has probability 0 or 1. A 9-
invariant set of realizations of A is any measurable set U of realizations of A, such that Ae U if
and only if 6/Ag U, for all /e 7L. Since A is 9-stationary, define E[&]=E[a}], for every / e TL,
ze{l,2, ••• K). It is also assumed that max{£[o1'](i€{ 1,2, ••• K})<°°.

Given the above setup, we are interested in computing the quantities km [ J and
n —•«> n — m

T(Am n)
lim [ :—], that is, the asymptotic behavior of the makespan, as the number of processes

goes to infinity, provided thatthe multi-tasked processes form a stationary and ergodic sequence.

Formotivation and practical impact of this problem see the paper [2].

At this point we need to definevarious constructions thatwill be of use later.

First, define the grid Gm>rt, m,n€2Z,m <n, as the directed graph G =(V,£) with node set
V = {(/,/),*€ {1,2, ••" /n,/e{m+l,m+2, •" n-\,n}} and edge set
£ = {((/,/), (i+l),/) and ((/, /),(«, /+l)),/e{l, 2, ••• K),je[m + l,m +2, ••• n-1}}.
Then, define a traversing chain c(m, n), m, ne 2£, m <n of the grid Gm, „ to be a subset of V,
such that:

1) (1,m + 1) and (K, n) both belong to c(m, n) c V (are the end-points)and

2) if (if/)ec(m, n), theneither (i + l,/)or(/,/ + 1) (but notboth) belongs to c(m, n).

Finally, define Cm% n to bethe setof all the traversing chains of the grid Gmn.
For any m,ne%.,m <n, the execution time of the set

Am,n =(<*/» a/, ••• of), /e {m +1, m+2, ••• n- 1, n)} ofmulti-tasked processes, has been
shown to be

T(Am9H)= max { £ <*jl W

This is proven by adouble induction argument on the indices i, / (see Bellman et al [1], pg. 141).

In this technical report, provided that A is stationary and ergodic, we provethat

\im[T(Am'n))= lim [I^-l]a!max{£[o'-]./e{lf2, • •K}}, (2)

by directly exploiting relation (1).



2. The Asymptotic Makespan.

In this section weexplicitly compute the asymptotic execution time by working on therela
tion (1). In order to do that we need to study carefully the asymptotic structure of the set of
traversing chains used ultimately in this relation. Through a series of definitions, observations
and lemmas the result is finally presented in Theorem 1.

First observe that application of Birkoffs Individual Ergodic Theorem on the function oj
under the measure preserving transformations 9/ and 9_/, / e Z, yields

lim [—5— £ <*/]= lim [—*— £ o}] =E[&], ze{l,2, •••K), (3)
n-*oo n-mjssm+l «-»-« n-mjz3fn+l

almost surely. Also, by (3), we have lim [—] = 0, for every i e {1,2, • • • K}.
n —•«> n

Now, define /+c{l,2, ..Jf} to be the set of indices, on which the quantity
E [& ], i g {1,2, • • • K} attains its maximum value. That is

max{E[&],le[l92,..X))**E[&], iel+ (4)

and

max{£[ox'],/e{l,2,..^}}>£[o1'], i"e{l,2, ••• K)-I„ (5)

Let /+= {i'i, i*2t •*' Ja.Wit •*• i'lI. £ = I/*I (I I denoting the cardinality of the set) and
la ^ 'a+i. foreverya € {1,2, • • • L -1}. Observe that theset /„, is neverempty.

Define also the sets /0={ie{l,2, ••• K) : i <ix), Ia = {ie {1,2, ••• K) :ia <i <ii+l), for
every ae {1,2, • • • L - 1}, and IL = [ie {1,2, • • • K):iL<i). Observe that the previously
defined sets are pairwisedisjoint and each one may be empty. Also,

/*U(U/a)={1'2' '•• *}• (6)

In view of (1), for any fixed m,neZ,m<n define a maximal traversing chain
c%(m,«)eCm>rt to be a traversing chain of the grid Gmn, on which the quantity

2) Oj,ceCmn achieves its maximum value, over all the traversing chains inCm% n. That is,

£ oj = max { £ °j) =T(Am,.). (7)
(i,;)€c*(m,n) C6C"-" (i.yjec

Observe that there may be more thanone maximal traversing chains.

Reflecting on how a maximal traversing chain is defined above, we construct the following
sets on one specific maximal traversing chain cjim,n). For any fixed ie {1,2, • • • K}, define
M,(m,n)= {(/,/):(/,/) ec^m.n)}, m,neZ,m<n. Observe that the sets
M,(m,n), 16(1,2, ••• K) are non-empty and are pairwise disjoint. Furthermore, as easily
seen,

K

cJim,n)=\jMi(m,n), (8)
* = i

for every m,n^7L,m <n, and, by (7), we have

r(AmfJI)=£[ £ ?/]• (9)
i = 1 (i,j)eMj(m,n)
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Finally, for any fixed *e{l,2, ••• K), define fyOn, n) = mf {jeTZ: (i,j) <zMi(m, n)} and

61-* = sup(/€Z:(/,/)€Af;(m,/i)}, m,n*7L,m<n. Observe that bi(m,n) < bi*(m,n),
bi*Qn,n) = bi+lQn,n), and Mi(m,n) = [(i,j) :bi(m,n) £ / £ b*(m,n)), for every
/e{1.2, ••• K).

Recall that all the above quantities aredefined on one specific maximal traversing chain.

The following Lemmas 1,2 and 3 provide the necessary asymptotic results on the structure
of the maximal traversing chain, to be used in the proof of Theorem 1. The lemmas have been
written in a consistent logical order, so that Lemma 1 is used in the proof of Lemma 2. However,
it might be a good idea for the reader to first study Lemma 2 and then come back and study
Lemma 1, since the proof of the second lemma provides the motivation for the firstone.

Lemma 1

For the stationary and ergodic sequence A={a;- =(o/, of, ••• of), yeZj.we have
b;(m,n) , M

lim6l*(m,/i) = oo=> lim [— ]= 1, (10)
n ->« n -»» bi*(m,n)

almost surely, for every i s la * 0, any a e {1,2, • • • L}, and any fixed m g 2Z.

Proof:

Fix somem g 2£, some ae {1,2, • • • L}, and some iela * 0.

We shall first prove that, if lim b*(m,«) = «», /e/a *0, then lim b$(m,n) = °°, for
/! —> oo rt —>oo

every kg {ia, ia + 1, • • • i - 1, i}.

Indeed, first suppose that lim bj*(m , /i) =°° and liminf6,11 (m, n) =liminf bt(m, n) = 5 <<».
rt —»oo /J _»0O ft —»<»

Then, there is an increasing subsequence {/i„,[i6Z+} with lim «„=«>, such that

lim 6,*(m, nu) = °° and lim fy(m, n„) = 5 < «».

Construct now, for each jig2Z+, the traversing chain c0(m, n^ g COTf v by
i« &,*(/n,nH) i if

Co(m,n^) =(uMic)u( U Kf«.W})u( U {(K.*,-*(m,«|1)J)u( U MJjn%n$).
K=l Xs&iKm./t^+l V=»'a+1 K=i'+1

a:

Recall also that c^m, n^) = {jM^m, n^ is defined to be amaximal traversing chain, for each
K=l

jig "Z+.

Then,

lim [-i Ki-] = lim [—-i -{ £ of - £ (tf }] = (12)

1 6j*(m,/i(l) 61*(m,nH)

= limtTi^i—r< E <tf - E °i)i+ <13>

+ lim[— -{ E of - I ( E <£)}]+ lim [— £ <♦(»..«J-
n-»~ bi*(m%ny) x=fc£(m,«ll)+i K=«a+i x»fr«&n.M|l) ^-*°° &i C^.«n)K=ia +i

The first limit in (14) is zero, because lim bt(m, /i„) = 6 <°°, so the nominator always consists



of a finite number of terms and is thus finite. The second limit in (14) is also zero, as easily seen,
by use of (3). Finally, for the limit in (13), we have

lim[* £ «tf-oi)]= lim [—•* E ax]-lim[-— £ ofl-

« fei(/n,rt^)-l

-lim[ - £ (aj(:-ci)] =£[o'*]-£[oa']>0, (16)
p-^oo b*(m,n^ x=i

since lim 6,*(m , n„)= «> and lim bt(m,nv)< «>, andby using (3). Thus,

X (m, /i 11)lim [—f- ^-] =£[a,-]-£[al]>0, (17)
p^oo b*(m,n^)

and so there is a finite Uq g 2Z+, such that

xo».»,j = E <tf - E of >o> (18>
(k, X) e co(/n, n,u) (k, X) e c*(m, n^.)

which contradicts the fact that cjjn,n,yj is a maximal traversing chain. So, indeed,
lim bi*(m,«) = «> implies lim b-t (m, n) = lim 6/11 (m, n) = «». Recursive application of the

rt —>°° « —*<*> rt —»«»

above arguments yields immediately that, if lim b*(m,n) = oot then lim b£{m,«) = «>, for
rt —»oo A —*°°

every kg [ia,ia +1,.../- 1,/}.
h (vv% rt \

We shall now prove that, if lim b*(m,n) = oof /<=/a *0, then lim [——'• ]= 1, for
n ->oo n ->~ b*(m,n)

every k g {/a + 1, ia + 2, • • • i - 1, i}.

Given that lim 6,*(m, /i) =°°, first recall that lim 6 *(m, n)= lim 6K+\(m, «) =«>, for every
rt —»oo n —»oo n —*«>

bJm,n)
ice(ifl,ifl+l, • • • i - 1, i}. Recall also that < 1.

b*(m,n)

Arguing by contradiction, suppose that there exists a ye [ia + 1, ia +2, • • i - 1, i}, such that
6.y(m, n ) bJm, ai )

liminf [—f- -] =1- e< 1, eg(0,1), and lim [—- ]=1, for every
«->- bf(m,n) «->« b£(m,n)
kg [ia + 1, ia +2, ••• y-2, y- 1}. Then, there exists an increasing subsequence [nv, vg2£+}

• u i- t. L ,. b^m,nv) bJm,nv)
with lim*v =oo, such that lim [—J- ]=l-e<land lim [—^ —] = 1, for every

v^°° v-»~ bf(m,nv) v-»oo b£(m,nv)
KG{/a + l,/a +2, ••• y-2,y-1}.

Construct now, for each vgZ+, the traversing chain c(m, nv) gCOTi „v, by

c(m,nv)=(uMK)u( u {(/a,X)})u( U {(K,6*(m,/iv))})U( u Af^m./iy)).
K=l X= fei* (m,rtv)+1 K=/a +l K=y+1

Recall also that c%(m, nv)= ^j A/^/n, nv) is defined to be a maximal traversing chain, for each
K=l

vsZ+.

Then,

Y (m n ^

!imlh*t ' \]=miT7T—7( £ a" " 2 ofl]= (20)
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=vlim[7^7i 7 £ {*"z"°<<tf-o©}]+ta[—-i Y£ a,>(ffI>/Xv)].(21)
oi

Recall that Urn [—] = 0, for every ie{l,2, ••• K}.
n -><» It

But, for each fixed k g {ia + 1, ia + 2, • • • y- 1, y}, we have
b * frn ft )

O(k) =Urn [—-i "£ * (of - o©] = (22)
v-»~ ^y*(m,nv)x=d«(/n,«v)

6*(m,rtv) />£(/»,«,)-1

b*(m,ny) x=i bjm,nv) x=i n ,0<a.
= lim [ { ( ) — }]. (23)

v-»~ bf(m,nw) bg(m,nv) b£(m,nv) o^/n ,nv)

byfjn, /iv)
Taking the limits in (23), using (3), and recalling that lim [ ]= 1, for every

v-»~ b$(m,nv)
kg {/a + 1, ia + 2, • • • y-2, y-1}, we get <&(k) = 0, for every

bSjn, nv)
k g [ia + 1, ia + 2, • • • y-2,y- 1}. But, for k=y, since lim [—i ]= 1-e < 1, we get

«-*°° bf(m,nv)
0(y) = e^to1-] -£[0*]) >0. Also, the second limit in the expansion (21), is easily seen to be
zero, by using (3). Substituting in (21), we get

Y (m n ^

lim [ ' ]=e(£[o4] -E[& ]) >0, (24)
v-»~ 6Y*(m,/iv)

so there is a finite v 0g Z£+, such that

Y(m,ny}= £ of - £ of >0, (25)
(ic,X)ec(m,rtO (K,X)ec*(m,rtvO

which contradicts the fact that cJim, nVo) is amaximal traversing chain.
b-Xm,n)

So, there is no ye[ia+l,ia+2, •- i-\,i), such that liminf[—! ]<1 and
«-»- bf(m,n)

bJjn,n) . ,.
lim [ ]= 1, for every kg [ia + 1, ia +2, •• • y- !)• Recursive application of the

« -»~ b£{m,n)
above implies that, given that lim V(m, ") =°°» iela*0, we have that

rt —»oo

bJjn,n) bt(m,n)
lim [ ]= 1, for every kg {/a +l,/a +2, ••• / -l,/},so lim [ ]= l.This

n-+eob£(m,n) « -+~ 6,*(m, n)
completes the proof of the lemma.

•

Lemma 2

For the stationary and ergodic sequence A={a; =[of, of, ••• of), jeZ), we have
. . bi*(m,n)

lim [—— £ o})= lim [—!— £ aj-]=0, (26)

almost surely, for every /G/a * 0, any a g {1,2, • • • L}, andany fixed me 2£.



Proof:

Fix some m g 2£, a g {1,2, • • • L}, and / g7a * 0. Arguing by contradiction, suppose that

limsup[—J— £ oj] =limsup[—!— £ oj] =5>0. (27)

Then, expanding the second expression in (27), we see that there is an increasing subsequence
{«„, jig 7L+\, such that lim n„ = °oand

/>,*(m, «|i) . b((m, «^)- 1

lim [— £-{^_i ( l^)-T7:i—r-}] =«. (28)
ii->- rtR-m b*{m,n^ VQii.n,,) bi(m,nj

Using (3), it is easily seen that the second term of the product in the limit in (28) is positive and
bounded from above independently of u.gZ+. Thus, (28) guarantees that

/V(m,rtu)limsup [ ]=e>0. This implies that there is an increasing subsequence [n^, vg TL+},
n^-m

such that lim n „ = <» and
V-»oo *"

thus, lim b:*(m, /in) = <».

b*{m, n„)
lim [ —] = e > 0, (29)

V->oo /In—/W

Then, by Lemma 1,since1G/a * 0, a g {1,2, •• • L}, we have

£,•("!, flu)
lim[7^ ^] =1' (30)V->oo &.*(m,,IMv)

so lim^(m,nn) = oo. Using (30) and (3), we get
V —»<»

fcf*(m, n^.) 6,- (m, n^.) - 1
Z oj £ aj

/ =1 y bi(m,nn) r?. J
}im[~Zt ;-(TT, T)TT —]=E[&]-lE[&]=0. (31)v-*~ bfim^yj b-*(yn,np) ^(m.rt^J

The above, togetherwith (29), contradict (28). Thus,

lim[~r7L^ 2 °i] =a (32>
Also, arguing inexactly the same way as above, we get

j bi*(m, n)
lim[T-T E <J/] =0. (33)

"•*- n'mj^bi(m,n)+\

This completes the proof of the lemma.

•
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Lemma 3

For the stationary and ergodic sequence A={a7 ={of, of, ••• of),;'eZ},we have
1 . i bi*(m,n)

lim[ £ oj]= lim [—^— £ oj']=0, (34)
«-»«» n-m(iJ)eMiimn) „->~ n-mjabiimn)+l

almost surely, for every / g /0 * 0, and any fixed m g X

Proof:

We shall first prove that limsup &,-*_ i (m, n) < <» (/0 * 0 ). Indeed, arguing by contradic-

tion, suppose that limsup fyjL^/w, «)=«>. Then, there is an increasing subsequence
« —>»

{/i„, u.g 2Z+) with lim n„= », such that lim b* \ (m, rt„) =°°

As will be proven just below (in the second paragraph), this implies that lim bt Qn, n „)= «>, for

every iel0, including i = 1, which contradicts the fact that b\(m, n^) =m + 1<<», for every
u. g X Thus, limsup fy*_ i (/w, n) < <», and so limsup bi(m,n)< limsup bfQn ,n)<°°, for

rt —»oo rt —•<» rt —>oo

every i g/0 * 0. Then, recallingthe definition ofMt, the result follows immediately.

As mentioned above, we still have to prove that, if lim &,* \{m, rt „)= <», then

lim 6,(m, aIm) = °o, for every ielo*0. For this, it is enough to prove that, if

bi(m,n)
lim &,*_ j (m, n) = «>, then lim [ ]= 1, for every ie {1,2, • • • il -2, ix - 1}. Recall

n -»oo rt -• oo ^J*(m, n)

\hdtbi(m,n) < b*(m,n) = bt +\{m,n).

Arguing by contradiction, suppose that, given that lim &,*_i(m, «) = «», there exists a
« —>*>

bJm,n)
Yg{1,2, ix-2,ix-\), such that liminf[—- ]=l-e<l, eg(0, 1), and

»-»• bf(m,n)
byJim,n)

lim [ ]= 1, for every kg {y+ 1,y+2, • • • ix -2, i{ -1}. Then, there exists an
« -»« b£{m, n)

bSpi, nv)
increasing subsequence (n^veZ+J with lim nv = ~, such that lim [—! ]= 1-e< 1

v-»~ v->« b*(m,nv)
bK(jn, nv)

and lim [ ]= 1, for every kg {y+1, y+2, ••• i\-2, i\-l}.
v-»« b£(m,nv)

Constructnow, foreach vg 2£+, the traversing chain c (m, nv) g Cm> rtv, by

Y-i ii K-i *
c(m,nv) = (\<jMvHm,nv)) \^j (^j {(k, b{m,nv)})\^j ( ^j {(/lf X)}) ^ ( ^M^m,nv)).

k= 1 K=y X= 6T(m,«») k=«i

a:

Recall also thatcjm, nv)= ^j Af^m, /iv) is defined to be a maximal traversing chain, for each
K=l

Then,

lim[?lT"V\]=limK*fl J 2 <tf - Z <tfH= (36)v-»~ bf(m,nv) v-x» &*(m,/lv) (K,X)ec~(m,«v) (K,X)ee*(m,rtv)
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i *i —1 b * (m, «v) i *i-1
= lim[—-i -£{ £ (o{'-ofl}]+lim [— £ a£(m>nv)] (37)

v->~ bf(m,nv) K=Y X=6«(m,«w) v-*°° of (m,nv)K=Y+i

Recall that lim [—] = 0, for every ie{l,2, •• - K). But, for each fixed
« —»* n

KG{y,y+l, ••• ii-2, ii-1}, we have

¥(K)=lim[—-* £ (oi>-o£)} = (38)
v-»~ bf(m,nv)xmb4ntnj

b*(m,ny) fe*(m,rt»)-l

=lim[&K(m,nv){_^, (»«fr.i».))_x-i _}] (39)
v-+°° bf(m,nv) b£(m,nv) b$(m,nv) b^jn ,nv)

byfjn, nv)
Taking the limits in (39), using (3), and recalling that lim [ ]= 1, for every

v-»~ &*(m,nv)
KG{y+l,y+2, ••• 1^-2,/j-l}, we get *F(k) = 0, for every

bJjn, nv)
KG{y+l,y+2, ••• i1-2,i1-1}. But, for K=y, since lim [—l ]= 1-e< 1, we get

« -»- bf(jn,nv)
¥(y)=e(£[ct|] -E[&}) > 0. Also, the second limit in the expansion (37), is easily seen to be
zero, by using (3). Substituting in (), we get

7 (m n \

lim L*, ' VJ =Wlo^-Elo1]) >0, (40)
v-»~ bf(m,nv)

so there is a finite v 0 g Z+, such that

Z(m,«Vo) = £ o{ - £ o{ >0, (41)
(K,X)6c"(m,rtv.) (K,X)ec*(/n, nv.)

which contradicts the fact thatcJm, nVo) is amaximal traversing chain.

limii
«->°° bf(m,n)

o .. ~ bSm,n)
So, there is no yg {1,2, • •• i1-2,i !-1}, such that fiminff—E ]<1 and

^^m.rt)
lim ^TTZ r] = 1' for every KG{y+l,y+2, ••• /1-2,i1-l}. Recursive application of

n ~*°° b£(m,n)

the above implies that, given that lim b*_ {(m, n) =°°, we have that lim [——'• ]= 1, for
/t -»oo „ _>„> bi*(m,n)

every / g{1,2, ••• i1-2,i1-l}. As easily seen, this forces lim bt(jn,«) =«>, for every
rt —»oo

/g {1,2, ••• /1 —2, /x —1}, including i = 1, which leads to the contradiction explained in the
first paragraph of this proof. This completes the proofof this lemma.

•

Theorem 1

For the stationary and ergodic sequence A={ay =(oj, of, ••• of), j e"Z}, we have
T(A ) T(A )

lim[ ^-]= lim [ ^^-] =max{£[a'],/G{l,2, ••• K}}, (42)
/i -»oo n—m m ->-<» n—m
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almost surely.

Proof:

First define the integer quantities d\(jn,n) = m +\,da(m,n) = biaQn,n), for every
ae{2, ••• K),dL + i(m,n) = n,m,ne2Z.,m <n. Then consider the quantity,

A(m,«)=—^£{ £ of) (43)
n "ma =l y=^(m,i»)

We shall prove that the lim A(m,«) =max{£[oi],/G {1,2, • • K}}. Recall that

E[ou] =max{£[ai], is {1,2, ••• K}, for every ae {1,2, ••• L}. First observe that from ()
we have

1 £ 4,+i(m,rt) 4(m,n)-l <
A(m,n) =—— £{ £ of - £ o?}= (44)

n"ma =l ;=m j =m
i rt Li 4.(w,«) . <4(m,«)-l

y =/n a ~ ^ j —m j —m

We shall now prove that

da{m,n) <t(/n,rt)-l

(45)

lim[—!—( £ or/-1- £ of)]=0, (46)
y =*/n y =m

for every a g {2,3, • • • L}.

Indeed, arguing by contradiction, suppose that
^ 4.(m,rt) 4,(«,«)-l

limsup [——( £ of''- £ o/)] =e>0, (47)

for some fixed a e {2,3, ••• L}. Then, there is an increasing subsequence [n^, u-gZ+J with
lim Am =°°, such that

da(m,n^ <4(m,rt,J-l

., , Z of/"' Z <»/•
lim [4(W,^'B(-P- „/- , )] =e>0. (48)

n^oo n^ —m aa{m,nvj-'m aa\m,nyj —m

Using (3), it is easily seen that the second term of the product in the limit in (48) is bounded from
aboveand below independently of jig 2Z+. Thus, (48) guaranties that there is anincreasing subse
quence {/!„,, vg 2£+} with lim «„ = «>, such that

lim [ ^ ]=?>0, (49)
v->~ n^ —m

thus lim da(m, /i„) =°°. Then, using (3), we get
rt —»«>

da(m, rt,i.) da(m, rt,i.)- 1

e <*r e <>/•
1^ [ , I =m x , /"" , )1 =E[&-l]-E[&'] =0. (50)v_»oo da(m,np)-m daQn^pJ-m

The above, together with (49), contradict (48). So, (46) is true.
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Using now (3) and (46) in (45), we get

Urn [A(m,n)]= lim [—i— £ { £ a/,}]=max{E[o£Ue{li2, ••• K}. (51)

But, by using Lemmas 2 and 3, and by reflecting on the construction of the M{'s and the da 's, we
see that the only possibly surviving components (their limit is not zero) in (51) are the

lim [ £ oj], for ie/% ={ii, i2. ••*K}, so,
"-»- n~m(i,j)eM,(m,n)

lim [A(m,n)]= lim [—!— £ { £ oj)] =max{E[&],ie {1,2, ••• AT}. (52)

Again by Lemmas 2 and 3, we have

lim[—^— £ { £ oj}] =0. (53)
/,_>«> n -/Wie{if2, .. *}-/* (i.yJeWiCOT.n)

Combining (52) and (53), we have

1 K T(Am „)lim [A(/w,n)] =max{E[ol],/G{l,2, ••• K}}= lim [—^— £ { £ o/}]= lim [ '

completing one part of the theorem.

The other part of the theorem is completely analogously proven, by applying the same con
structions and arguments, which have been used so far, but with m -» - «> and n fixed. This
completes the proofof the theorem.
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