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ABSTRACT

A non-invasive microwave diagnostic is used to determine the plasma density in a complex

geometry rf discharge chamber. Experimentally determined relative spatial density and

electric field profiles are used in Slater's perturbation equation to determine the peak and

average density. Data have been obtained using several cavity modes and a wide range of

pressures and powers. The measured peak densities are approximately a factor of two lower

than those obtained from Langmuir probe measurements.

PACS number 52.70.Gw



I . INTRODUCTION

RF discharges have found many applications in materials processing, including sputter

ing, plasma etching and plasma enhanced chemical vapor deposition.1 To understand and

control the processes requires accurate measurement of important parameters such as elec

tron density and temperature, ion velocity distribution, collisionality, etc. It is desirable to

perform measurements with as little disturbance of the plasma as possible, i.e. not insert

physical objects into the plasma. This is further required because processing plasmas are

chemically active; thus such standard techniques as the use of Langmuir probes to measure

the electron density are often difiicult or inappropriate.

Alternative techniques for measuring plasma density, which are non-invasive, have em

ployed microwave measurements.2 Loss processes and the electron collision frequency have

also been found by looking at the change in cavity Qof microwave resonances.3-4 More re

cently, microwave techniques have been used to measure plasma lifetimes in reactive ion

plasmas.5'6 For irregularly shaped plasmas, the plasma density has been measured both

by microwave cutoff7 and cavity mode perturbation.8 These mode perturbation measure

ments have generally been done on small volume plasmas compared to the resonant cavity

volume.2'3'8 Perturbation of simple cavity modes at low plasma density has also been used on

large volume plasmas for determining the density.5'9 Most cavity perturbation measurements

have been used to measure densities with plasma frequency less than the probing microwave

frequency. It has been shown, however, that ifthe skin depth of the plasma is larger than its

characteristic length, then high density measurement is possible.8 Theoretical work has been

done investigating the range of validity of cavity perturbation density measurements.10'11

This paper presents cavity perturbation density measurements applied to alarge volume,
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low density plasma in a chamber with complex mode geometry. Experiments are performed

in an rf excited argon plasma with pressures in the range 3-10 mT and powers in the range

1-100 W. Densities are found in the range 109 to 1010 cm-3.

We use Slater's perturbation formula for the relative frequency shift,12

Au _ lfP-EdV*
"o " ~2/6o|E|2<< (1)

where E is the unperturbed resonance electric field, P is the polarization, u>0 is the unper

turbed resonant frequency, the integral dV* is over the plasma volume, and the integral dV0

is over the total cavity volume. For an unmagnetized plasma in the frequency range where

the plasma frequency wp « w0 and the collision frequency v « w0, we can use (1) to relate

the square of the average plasma frequency (proportional to the average electron density) to

the relative shift in resonance frequency, Aw/w0,8

a« = i fu2Pm2dv>
u>o 2uo / |E|2dV0 - ( >

In evaluating these integrals, most previous calculations have used cylindrical cavity

modes such as the TMnm0 modes (for example, see2,5,9). In our discharge chamber, however,

there are no pure cylindrical modes because of the complex geometry, shown in figure 1.

We see that the electrode diameter is significantly smaller than the outer chamber diameter.

Furthermore, the electrodes are positioned in a re-entrant geometry so that the concept of

simpleTE or TM cavity modesno longer applies. We haveinsteadexperimentallydetermined

the electric field profiles of several modes. We have also measured the spatial density profile

in order to evaluate the integral in the numerator of (2), although estimates of the profile

would only slightly modify the results.



II . EXPERIMENTAL METHOD

Measurements are performed using an HP 8753A Network Analyzer and an HP 85044A

Transmission/Reflection Test Set. These instruments are used to sweep an applied signal

over a desired frequency range and measure the reflection and transmission coefficients from

the plasma discharge chamber. The instruments greatly reduce the complexity of the ex

perimental setup compared to, for example, Biondi and Brown.2 The system is shown in

figure 2. The excitation schemeconsists of two small loops at the mid-plane of the chamber

180° apart along a diameter. Two glass inverted ports allow the loops to enter the chamber

without being under vacuum. One of the loops introduces the applied signal, and the other

receives the transmitted signal. Resonances are determined by peaks in the transmitted

signal. The probing port positions at 45° and 90° from the loops are also shown.

Since we do not have simple TMnm0 modes in our discharge chamber, the electric field

profiles of the modes are determined by measuring their frequency shifts versus the position

of a small dielectric sphere. We use (1), evaluating the polarization P for a dielectric sphere

of radius a and permitivity e1 immersed in a uniform electric field to obtain

Au; _ 47ro3€o^^|E(r0^0^0)|'
"o 2e0/ \E\2dV0

where (r0, </>Q, z0) is the location of the center of the sphere. Four different modes were used

to measure densities, with resonant frequencies at 443 MHz, 506 MHz, 1.9 GHz and 2.6 GHz.

We measure the radial variation of the electric field along diameters 45° and 90° from the

loops, as shown by the dashed lines in figure 2. Because the spacing between the discharge

plates is much smaller than the plate diameter and comparable to or smaller than a free

space wavelength, we assume the electric field is uniform along z. For the higher frequency
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resonances where lambda is on the order of the plate spacing (10 cm) this may not be a

good assumption. The mode identification measurements are done at atmospheric pressure

because of the support used to hold the dielectric sphere. The data for a particular mode

are fitted to a simple functional form that is used when evaluating the integrals of equation

(2). Since the perturbation equation is a variational formula, first order corrections in the

electric field profile lead to only second order corrections in the frequency shift.

The spatial density variation of the plasma was determined from Langmuir probe mea

surements. The probe is moved in the r and z directions and the data normalized to the

peak density. The normalized data are fit to a polynomial to obtain an expression for the

density profile. In fact, the value of the average density is only weakly dependent on the

polynomial form chosen, as will be shown in the data analysis. Thus the relative density

measurements using Langmuir probes are not an essential part of the method.

Once the electric field and plasma density profile are known, the calculation of plasma

density from the measured frequency shift is relatively straightforward. Langmuir probe

measurements of the peak density were performed along with the microwave perturbation

measurements for comparison.



Ill . RESULTS

Radial variations of the electric field were measured using a dielectric sphere (Silly

Putty) 3 cm in diameter with er«5 (this is approximate for unvulcanized rubber) on the

end of a nylon rod. The ratio of chamber volume to sphere volume is estimated to be 500.

The frequency shift of a mode is measured in the range Au/uj0 » 10~2-10~3, and equation

(3) leads to avalue for |E|2. For the two high frequency resonances (1.9 GHz and 2.6 GHz),

we have data along the 90° diameter shown in figures 3a and 3b, and assume that there is

no variation with </>. For the two low frequency resonances (443 MHz and 506 MHz), we

have |E| data along both the 45° and 90° diameters. As shown in figures 3c and 3d, the

measurements give similar distributions with position, indicating that there is little or no

variation in <f> for either of these modes. Curve fits to these data are used to evaluate the

integrals in (2).

Langmuir probe measurements of the density profile of discharges operating in the pres

sure range of 3-10 mT (about 1 Pa) and a power of 100 W have been made. The density

profile versus z is plotted in figure 4, and versus r in figure 5. Polynomial fits are shown

along with the data. In fitting the data, we assume that the density is equal to zero at the

sheath edge, and that the r and z dependences are separable. The form of the density chosen

to fit the data is

.-^-(i^).)(!_(£)«), (4)

where the fitted constants for the data in figures 4 and 5 are Zmax = 0.5 cm, Z0 = 4.0 cm,

and Rq = 14.75 cm.



Using the curve fits of the profiles for the density from (4) in (2), we obtain

_„0a„ =„0| ^ }{ r5(r)|V» I' (5)

where the field profiles are shown in figure 3. Using the best fit constants (given above) for

the radial density data shown in figure 5, we obtain, for the braced term with the integrals

over r, 1.20 for the 1.9 GHz resonance and 1.26 for the 2.6 GHz resonance. If we use the

alternative analytic forms for the radial density variation (given in figure 5), the r integral

factor becomes 1.55 for both resonances using the 1 —(r/R0)2 variation, and 1.77 for the

1.9 GHz resonance and 1.71 for the 2.6 GHz resonance using the J0 variation. The small

variation in these numbers indicates that the relative Langmuir probe measurements are not

essential to obtain average plasma density, but are only needed if an accurate density profile

is required. For the high frequency resonances where the plate spacing, /0, is on the order of

the free space wavelength, there may be a z dependence of |E|, which would modify the z

integrals in (5). As a worst case, if there is a symmetric half wavelength variation of |E| our

data for n0 must be multiplied by 0.680. Peak density (rc0) data for plasmas at 3 and 5 mT

for powers in the range 10-100 W are shown in figure 6 and compared with simultaneous

measurements using Langmuir probes.13

The two loop method of detecting the resonance shifts has the disadvantage that the

loops must be inserted into the plasma cavity near the wall. We can, however, perform the

measurements in another way to avoid this problem. We connect the network analyzer output

to the grounded plate of the chamber through a high pass filter and observe the reflected

signal. This is similar to the setup of de Vries, van Roosmalen, and Puylaert.7 Results

obtained with this method are very similar to those obtained with the loop excitation. Data
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for a 10 mT plasma for powers in the range of 1-10 Ware shown in figure 7. The power levels

and thus the density were lower for this measurement, so lower frequency cavity resonances

were used. The disagreement between the microwave results and the Langmuir probe results

for this data is smaller than that obtained at the higher densities and is well within a factor

of two.

IV . DISCUSSION AND CONCLUSIONS

We have shown that a cavity perturbation measurement can be performed in complex

discharge geometries provided the frequency of the probing fields are well above the plasma

frequency. By experimentally determining the density and field profiles, we can determine

the peak density. The peak densities obtained with this method are about a factor of two

smaller than the peak densities measured by aLangmuir probe. Considering the difficulty in

measuring absolute density with aLangmuir probe, particularly in the presence of rf fields, it

is not obvious which method gives the more accurate results. The two independent resonance

measurements give data that agree with each other quite well, as seen in figure 6.

For accurate average density measurements it is necessary tomeasure the mode structure

of the probing electric field, which can be combined with a reasonable density profile in the

perturbation formula. Determination of the peak density requires more accurate plasma

profile measurements, but would generally be less important acharacteristic than the average

density. Within a factor of two, the average density measurements are insensitive to both

field and density profiles.
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FIGURES

Figure 1: Scale drawing of the cylindrical plasma discharge chamber. The electrode

diameter is 22.9 cm, the inner diameter of the cavity is 30.2 cm, and the spacing /0 between

electrodes is 10 cm.
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Figure 2: Microwave excitation system. The loops are inserted about 3.8 cm from the

chamber wall. Dashed lines show the diameter connecting the probes and the two diameters

used to measure the electric field magnitude.
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Figure 3a: Normalized |E| of 1.9 GHz resonance. Open circles represent the data taken

along the diameter 90° from the probes. Data are subsequently fit to |«/i(&nr)|, where

ktl = 0.253 is the first zero of the Jx Bessel function divided by the chamber radius R.
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Figure 3b: Normalized |E| of 2.6 GHz resonance. Open circles represent the data taken

along the diameter 90° from the probes. Data are subsequently fit to |»/i(A:12r)|, where

k12 = 0.463 is the second zero of the Jx Bessel function divided by the chamber radius R.
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Figure 3c: Normalized |E| of 443 MHz resonance. Open circles represent the data taken

along the diameter 90° from the probes, and open squares the data taken along the diameter

45° from the probes. Both sets of data are subsequently fit to 1- (£)2, where R is the

chamber radius.
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Figure 3d: Normalized |E| of 506 MHz resonance. Open circles represent the data taken

along the diameter 90° from the probes, and open squares the data taken along the diameter

45° from the probes. Both sets of data are subsequently fit to 1- (i^)2, where R is the

chamber radius.
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Figure 4: Normalized z variation of density. Open circles and open squares represent two

different sets of Langmuir probe density data. The powered electrode is at —5 cm, and the

grounded electrode at 5 cm. Sheaths are at approximately —3.5 and 4.5 cm. A quadratic fit

to the data is shown by the solid line.
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Figure 5: Normalized r variation of density. Open circles represent the Langmuir probe

density data. The sheath is observed to be at about Rq = 14.75 cm. Three different curve

fits are shown for the data: the solid line is a plot of 1 —(r/i?0)4, the dashed Une a plot of

1- (r/i20)2, and the dotted-dashed line a plot of J0(k01r), where kQ1 = 0.163 is the first zero

of the J0 Bessel function divided by Rq. All fits have a zero slope at r = 0 and go to zero at

the sheath edge.
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Figure 6a: Density versus power, two loop method. Open circles represent data from the

1.9 GHz resonance, open squares data from the 2.6 GHz resonance, and open triangles data

from the Langmuir probe. Data are for a 3 mT plasma.
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Figure 6b: Density versus power, two loop method. Open circles represent data from the

1.9 GHz resonance, open squares data from the 2.6 GHz resonance, and open triangles data

from the Langmuir probe. Data are for a 5 mT plasma.
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Figure 7: Density versus power, ground electrode reflection method. Open circles represent

data from the 443 MHz resonance, open squares data from the 506 MHz resonance, and open

triangles data from the Langmuir probe. Data are for a 10 mT plasma.
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