

Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN EXPERIMENTAL CHARACTERIZATION

SYSTEM FOR DEEP ULTRA-VIOLET (UV)

PHOTORESISTS

by

Dean M. Drako

Memorandum No. UCB/ERL M88/84

22 December 1988

AN EXPERIMENTAL CHARACTERIZATION

SYSTEM FOR DEEP ULTRA-VIOLET (UV)

PHOTORESISTS

by

Dean M. Drako

Memorandum No. UCB/ERL M88/84

22 December 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

This research was supported by the Semiconductor Research Corporation and
SEMATECH.

This research was supported by the Semiconductor Research Corporation and
SEMATECH

AN EXPERIMENTAL CHARACTERIZATION

SYSTEM FOR DEEP ULTRA-VIOLET (UV)

PHOTORESISTS

by

Dean M. Drako

Memorandum No. UCB/ERL M88/84

22 December 1988

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720

This research was supported by the Semiconductor Research Corporation and
SEMATECH.

An Experimental Characterization System

for Deep Ultra-Violet (UV) Photoresists

Dean M. Drako

Abstract

Aversatile system designed specifically for experimental automated photoresist
characterization has been constructed utilizing an excimer laser source for exposure at
248nm. The system was assembled, as much as possible, from commercially available
components in order to facilitate its replication. The controlling software was written in
"C" and is documented in this report. For these reasons other research groups can
easily replicate the Characterization System.

An IBM PC-AT compatible computer controls the excimer laser, operates the
Fourier Transform Infrared Spectrometer (FTIR), measures and records the energy of
each laser pulse (incident, reflected, and transmitted), opens and closes shutters, and
operates two linear stages for sample movement. All operations (except FTIR data
reduction) are managed by a control program written in the "C" language.

The system is capable of measuring total exposure dose, performing bleaching
measurements, creating and recording exposure pulse sequences, and generating
exposure patterns suitable for multiple channel monitoring of the development. The

total exposure energy, energy per pulse, and pulse rate are selectable over a wide

range. The system contains an in-situ Fourier Transform Infrared Spectrometer for
qualitative and quantitative analysis of the photoresist baking and exposure processes
(baking is not done in-situ). FTIR may be performed in transmission or reflection. The

FTIR data will form the basis ofcomprehensive multi-state resist models.

The system's versatility facilitates the development of new automated and repeat-
able experiments. Simple controlling software, utilizing the provided interface sub-rou
tines, can be written to control newexperiments and collect data.

Page ii

Table of Contents

1) Introduction 1
Motivation 1
ASolution 2

2) Hardware 4
Analog to Digital Subsystem 5
Stepper Motor Controller Subsystem 6
FTIR Subsystem 6
Laser Firing Control 7
Laser Energy Measurement 8
Adjustment of the Integrator Unit Potentiometers 12
Diode Module 12
Shutter System 13
Motion Control System 14

3) Software User's Guide 21
Executing the Program 21
Main Menu 21
DRM Exposure Parameters Menu 22
Generate DRM Exposure Matrix 24
Bleaching Parameters Menu 25
Perform Bleaching Measurement 25
Detector Parameter Menu 26
Hardware Parameters Menu 28
Miscellaneous Parameter Menu 29
Load and Save Parameter Set 30
Manual Operations 30

4) Software Internals 32
Development Environment 32
Module and Library Names 32
Variable Standardization 33
Expose.c 34
Expconf.c 34
Expmenu.c 35
Expfunc.c 36
Filer.c 38
Graphics.c 39
Laser.c 40
Query.c 41
Stepper.c 42
Controlling the FTIR System 43

Appendix A - Vendors 44
Appendix B - Global Variables 46
AppendixC - Software Listings 47
Index 47

Page iii

Chapter 1

Introduction

Motivation

The semiconductor industry currently uses photoresist and photolithography for pat
tern transfer. The pattern transfer resolution is reaching limits due, in part, to the expos
ing light's wavelength. This has prompted research into exposure systems with shorter
wavelengths*1! and new photoresists suitable for use at these wavelengths*2-4*. To ob
tain the best performance from new photoresists they must be characterized, under
stood, and modeled*5*. No equipment or experimental apparatus is readily available to
facilitate the large numberof experiments needed.

An excimer laser (a candidate deep-uv, 248nm, light source) is a pulse type laser.
Pulsed light is inherently different than the continuous light currently used for exposure.
The laser itself and the light pulsing introduce additional exposure effects (eg. ablation,
interference) and additional variables (eg. pulse rate) to the exposure process. The
consequences must be examined and understood.

Commercially available equipment may be produced for the characterization of pho
toresist using excimer sources. Commercial equipment, however, rarely lends itself to
the research environment. Acommercial system typically provides data for well known

models, well understood effects, orfor a single variable. Rarely can one examine multi

ple effects simultaneously using different analysis techniques. In a research
environment one wishes to pursue data for new models and less understood effects.

Commercial equipment has repeatedly proven inadequate for these applications*67*.
To overcome the problems with commercial equipment research labs typically must

develop their own equipment to perform the desired experiments. This leads to a re
dundant effort by different laboratories working in the same field.

Page 1

A Solution

A system or "experiment environment" was designed to overcome these three basic

problems: 1) lack of equipment for deep-uv exposure characterization, 2) the problems
associated with using commercial equipment in a research environment, and 3) the re
dundant development work performed by different laboratories. The results are a

versatile hardware system, suitable for experimental research, constructed from

commercially available components. Astandard IBM PC-AT compatible computer con
trols numerous building block components. These components and other optics are
configured on a standard optical table (this allows for changes in the optical path etc.).
The computer controls the entire experiment and collects the data. Once an experiment
is performed it may be easily repeated by a lab technician. Experiments are built on a
semi-permanent basis and available as analysis equipment. Atypical configuration is
shown in Figure 1. It is useful for doing in-situ FTIR, DRM exposure matrix generation,
and bleaching measurements.

Detector Module

I
Shutter

>: ^ •!Mirror^ I

Mask

Detector Module

Excimer Laser

Detector Module

Figure 1. Typical Optical Configuration

Page 2

Other laboratories may easily duplicate the Characterization System because it is
constructed from commercially available hardware and is documented. The controlling
software is written in a standard language, "C", and is also documented. The software
includes interface sub-routines for writing additional programs for new experiments. It
provides a foundation for experiment development.

This report documents the design and operation ofthe Photoresist Characterization
System. It is split into three major sections: Chapter 2 describes the hardware de
signed and purchased (Appendix A lists vendors). Chapter 3 describes the software's
operation. Chapter 4 describes the internals of the software (Appendix Bcontains vari
able listings and Appendix Ccontains program listings).

[1] Victor Pol, James HBennewitz, Gary C. Escher, Martin Feldman, Victor A. Firtion, Tanya E Jewell
Bruce E. Wilcomb, and James T. Clemens, SPIE Vol 633 Optical Mfcrolithography V, 1986.

[2] T.M. Wolf, R.L Hartless, A. Shugard, G.N. Taylor, "The Evaluation of Positive Acting Resists for
Lithoography at 248 nm, J.Vac. Sci. Technology, Vol 5, No. 1, Jan/Feb 1987.

131 ?™*Lyons* "Reslst Materials For Deep UV Lithography", University of California, Berkeley CA
EECS 243 Class Report, 1988. '

[4] C. Grant Wilson, Robert D. Miller, Dennis R. McKean, Lester A. Pederson, and Manfred Regitz "New
Diazoketone Dissolution Inhibitors for Deep UV Photolithography", SPIE Vol 771, Advances in Resist
Technology IV, 1987.

[5] F.H. Dill, A.R. Neureuther, J.A. Tuttle, and E.J. Walker, "Modeling Projection Printing of Positive
Photoresists, IEEE Transactions on Electron Devices, Vol Ed-22, No. 7July, 1975.

[6] M. Exterkamp, W. Wong, H. Damar, A.R. Neureuther, C.H. Ting, and W.G. Oldham "Resist
Characterization: procedures, parameters, and profiles," SPIE Vol 334 Optical MicrolithoaraDhv -
Technology forthe Mld-1980's, 1982.

[7] K.L Konnerth and F.H. Dill, "In-Situ Measurement of Dielectric Thickness During Etching or
Developing Processes," IEEE Transactions on Electron Devices, Vol ED-22, No. 7, JUiy 1975.

Page 3

Chapter 2

Hardware

This chapter describes the hardware of the Characterization System. An IBM PC-
AT compatible computer is used to collect the data and control the experiments.
Several basic subsystems have been added to expand its capabilities. Acomplete list of
the equipment, product numbers, and vendors is provided in Appendix A. The
subsystems are:

1) Data Translation DT2801-A ~an eight channel differential analog to
digital (A/D) converter with 16 channels of digital input/output
(I/O)

2) TECMAR Dual Stepper Motor Controller

3) Analect Instruments RFX-65 Fourier Transform Infrared
Spectrometer (note that the IBM PC-AT compatible was actually
supplied by Analect)

Each of the subsystems requires aboard in the IBM PC-AT compatible. The DT2801-A
(hereafter referred to as DT2801) is used for data collection and experiment control.
The A/D channels are connected to three Integrator Units which measure the energy in
asingle laser pulse. The DT2801's digital I/O is utilized for firing the laser, opening and
closing a shutter, and setting the Integrator Unit's gain. The TECMAR Stepper Motor
Controller operates two linear stages. The Fourier Transform Infrared Spectrometer
(FTIR) Interface controls the operation of, and collects data from the FTIR system.

As much of the system as possible was constructed from commercially available
products. This allows other research facilities to easily duplicate the system's hard
ware.

Page 4

Analog to Digital Subsystem

The DT2801 performs the general system I/O. It is a 12 bit A/D conversion system
capable of operation at27.5 kHz (36 microseconds per conversion). The eight differen
tial channels are multiplexed to a single A/D converter pair. The system is configured
for bipolar operation with a maximum input voltage swing of +-10V. The 16channels of
digital I/O areTTL compatible. The DT2801 is a single board system which sits in the

FIRE

SIGNALS

SHUTTER

SIGNAL

GAIN CONTROL 1
GAIN CONTROL 2
GAIN CONTROL 3-

Ribbon Cable Connection
To DT2801 in IBM PC AT

Digital I/O

0

Digital I/O

0

0
0
0

0
0
0

0
0
0

0

0
0

0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0

0
0

0

0
0
0

0
0
0

A/D Inputs

0

0
0
0

0
0
0

0
0
0

0

0
0

0

0
0
0

0
0
©

A/D Inputs

0

0
0
0

0
REF 0

0

&
0

REF 0
0

0
0

REF 0

0
0
0

0
0
0

Integator Unit#3
DATA SIGNAL REF
DATA SIGNAL

Integator Unit#2
DATA SIGNAL REF
DATA SIGNAL

Integator Unit #1
DATA SIGNAL REF
DATA SIGNAL

Figure 2. Terminal Block Board and Connections

IBM PC-AT compatible. A 50 wire ribbon cable connects the DT2801 to a Terminal

Page 5

Block Board (Data Translation part no. DT707) used for all external connections
(see Figure 2, page 5). The connections on the Terminal Block Board are detailed
later.

The DT2801 's 12 bit converters provide 4.88 mV resolution over 20 volts. If we as
sume half scale (10 volts) utilization and single bit noise we obtain 9.8 mV resolution
and 0.1 %error. These values are adequate for the laser energy measurement.

Stepper Motor Controller Subsystem

ATECMAR Stepper Motor Controller Board in the IBM PC-AT compatible and a
simple Power Amplifier Board form the Stepper Motor Control Subsystem. The
TECMAR board is capable of controlling two standard 4phase stepper motors. Three
14 wire ribbon cables connect the TECMAR board to a Power Amplifier Board external
to the IBM PC-AT compatible. The Power Amplifier Board interfaces the TECMAR
board to the stepper motors and to the linear stages. The Motion Control System sec
tion in this chapter details the Power Amplifier Board and the linear stages.

Fourier Transform Infrared Spectrometer Subsystem
The FTIR system is a commercially available RFX-65 from Analect Instruments.

The system interfaces to the IBM PC-AT compatible through adedicated local area net
work interface. All data collection and analysis are performed by the IBM PC-AT com
patible. The RFX-65 is ideal for a research environment because of its modular nature.
The interferometer and detector modules are small and designed to mount directly to a
standard optical table. Experimental set ups for in-situ FTIR measurement are easily
constructed. The electronics and controlling hardware are removed from the optical
table and the interferometer and detector maneuvered to set up the experiment
(see Figure 3, page 7).

Page 6

FTIR

Electronics

IR

Source
Power

Supply

•^ Water Cooling

Nitrogen Purge

Figure 3. FTIR Setup

Laser Firing Control

The laser is a 248nm excimer laser manufactured by Cymer Laser, Inc. It provides
pulsed output of 20 Watts. The laser firing can be directly controlled by a TTL level sig
nal when the laser is in "triggered mode." The Laser is placed into triggered mode
using its own control panel. When triggered the laser begins a "burst." The "burst
count" of the laser should be set to one for proper laser energy measurement. This ef
fectively gives complete control of the laser's firing to the IBM PC-AT compatible com
puter.

The Cymer laser is controlled by the computer through the DT2801's digital I/O.
Digital I/O bit 0 is configured for output. It is connected to the trigger input of the laser
(see Figure 4, page 8). When the laser is in the "triggered mode" the computer will-
have direct control of the laser. The computer brings the FIRE SIGNAL high to begin
pre-charge of the laser's capacitors. Pre-charge lasts from 4 to 8 milliseconds
(depending on laser model). After completing pre-charge the computer drives the FIRE
SIGNAL low and the laser fires (with a jitter of less than 2 microseconds). If the

Page 7

computer drives the signal low before the pre-charge is complete the laser will not fire
until after the pre-charge has finished. Note that if this occurs the laser energy mea
surement system will not obtain correct data. For a 200 Hz Cymer laser a 4.1
millisecond high pulse is recommended. The pulse is software configurable (see
Software User's Guide ~Hardware Parameters, page 28).

Figure 4. Laser FIRE SIGNAL Connections

Trigger
Input

The laser's capacitors may be held in the charged state for an extended period of time
by holding the FIRE SIGNAL high. This is NOT recommended because of the extra
stress on the capacitors which will reduce the laser's lifetime.

Laser Energy Measurement

The characterization system is capable of measuring the laser pulse energy at up
to three locations (for example incident, reflected, and transmitted energy can be
measured simultaneously). Any of the eight A/D channels may be used for data
collection. Normally channels zero, one, and two are used. The operating channels,
however, are software selectable. Each of the channels used for laser energy

Page 8

measurement is connected to an Integrator Unit which in turn is connected to a Diode
Module (see Figure 5, page 9). The Integrator Unit is responsible for integrating the en
ergy in asingle laser pulse to yield avoltage. It converts acharge pulse (which is pro
portional to light energy) from the Diode Module to a voltage that the A/D subsystem
can use. Commercial units are available to perform this function, however, they are typ
ically much more complex and much too costly for such asimple application. For these
reasons a custom circuit was utilized.

The FIRE SIGNAL is connected to the Integrator Units in addition to the laser.
When pre-charge of the laser begins (the FIRE SIGNAL is driven high) the Integrator
Units zero their stored voltages. Once the computer fires the laser (drives the FIRE
SIGNAL low) the Integrator Units begin integrating charge received from the Diode
Module. The charge integration proceeds for approximately 40 microseconds after the

D
IBM PC Compatible

DT2801

Terminal

Block

Board

FIRE SIGNAL

GAIN CONTROL

DATA SIGNAL

Black:= GND

D.C. Power Redo +5V

Green = +12V

White = -12V

.4-
Integrator
Unit

POWER+12V

DIODE SIGNAL

r-r----0
Diode

Module

Figure 5. LaserPulse Energy Measurement

laser fire pulse is given. The integration time is determined by an RC time constant in
each Integrator Unit. The laser must fire and the diode respond fully during this 40
microsecond period. At the end of the 40 microseconds a sample a hold circuit records

Page 9

the integrated voltage value. The integrated voltage is later converted to adigital num
ber using the A/D subsystem. The short integration period eliminates data corruption
from ambient light. If problems from ambient light are observed the integration period
can be shortened by reducing the value ofcapacitor C2.

A circuit diagram of the Integrator Unit is given in Figure 6on page 11. The
Integrator Unit functions as follows. While the FIRE SIGNAL is high (the laser is pre-
charging) the output Qof U4a will be low. This will effectively turn on the J-Fet (U2c)
causing the output of the op amp (U1) to tend towards ground (this assume negligible
input current from the diode, which is true). The integration capacitor (C3 or C4) is dis
charged during this period and the output voltage of the operational amplifier is zero.
When the FIRE SIGNAL is driven low (the laser will fire in 2microseconds), the J-Fet is
turned off. The op amp then acts as anear ideal integrator (its input impedance is 1012
Ohms). When the laser light illuminates the photodiode it generates acurrent pulse.
The charge in this pulse is integrated on the integration capacitor and avoltage is
formed at the output of the Op Amp. When the J-Fet is turned off, however, it injects a
certain amount of charge onto the integration capacitor because of its internal capaci
tance. This is canceled by capacitor C5 and an inverter (U4b) which brings the output
reference back to zero volts.

At the falling edge of the FIRE SIGNAL (this fires the laser) the inverter(U4a) cre
ates arising edge. This rising edge triggers the Multistage (U5a) which outputs a40-
60 microsecond long logic high pulse. The length of this pulse is determined by R3
and C2. The pulse is used as asample window for the sample and hold circuit (U3).
The sample and hold circuit samples during the 40 to 60 microseconds following the
FIRE SIGNAL'S falling edge. It then holds the data until the laser fires again. The sam
ple and hold provides ample time for the IBM PC-AT compatible and the DT2801 to per
form the A/D conversion.

Page 10

CONTROL

FIRE

SIGNA

Figure 6. Integrator Unit Circuit Diagram

Page 11

Adjustment of the Integrator Unit Potentiometers

The potentiometers should be adjusted using the following technique. The Diode
Module should be disconnected or covered such that it receives no light. Aclocking
signal should be applied to the FIRE SIGNAL input (this can be accomplished by plac
ing the computer into Continuous Fire Mode see Chapter 3- Manual Operations for de
tails, page 30). An oscilloscope probe should be placed at pin 6of the Op Amp (U1). A
large gain setting should be used on the scope (100 mV per division or so). Adjust P1
until the signal observed on the scope is as flat as possible. Disconnect the scope.
Connect an accurate voltmeter to the same location. Drive the FIRE SIGNAL high (the
IBM PC-AT can be used to do this too). This will turn on the J-Fet. Adjust P2 until the
voltage on the voltmeter is zero using as much accuracy as possible (approx. 2mV).

Connect the voltmeter to the Data Out line of the Integrator Unit. Connect aclocking
signal to the FIRE SIGNAL input as was done earlier. Adjust P3 until a zero voltage
reading is obtained.

After the laser fires the IBM PC-AT performs an A/D conversion on each of the in
puts. Aconversion takes approximately 36 microseconds per channel. The decay of
the signal in the Integrator Unit's sample and hold circuit during this time is negligible.
The computer uses the data collected to determine the amount of light energy in the
pulse at each of the detector locations. See the Chapter 3 Software User's Guide -
Detector Parameters (page 26) for the exact calculations.

Diode Module

The Diode Modules consist of a PIN Silicon Photodiode with fused silica windows
mounted in a holder. The diodes are reverse biased with 12 volts to improve their
linearity. Components are included at the diode location to limit the D.C. current
(see Figure 7, page 13). The photodiodes are mounted in an aluminum holder to provide
simple mounting and movement. Alens is mounted in front of the diode to reduce the
susceptibility to angular alignment and collect the light in a larger area. Acollar on the
front of the diode mounts is used to hold optical filters or other components. The diodes
are extremely sensitive and a filter is typically required to avoid saturation. The
photodiodes have an approximate sensitivity of 0.11 A/W at 248nm. (Hamamatsu part

Page 12

no. S1722-02). If we assume a 2000 pF integration capacitor we can calculate:

•-[o^2000"]
= 18.2 nJ/Volt

Where Ois the sensitivity of the Diode Module and Integrator Unit. Atypical measured

value for O is 18.75 nJ/Volt.

POWER

+12V

DIODE

SIGNAL

mini coax

&

mini coax

10k 5%

-vw-

1/4 Watt

Hamamatsu

S1722-02

10OOOpF ceramic caps -dtp-
(use 3 in parallel)

Figure 7. Diode Module Circuit Diagram

Shutter System

Alarge aperture shutter is integrated into the system for various experiments. It is
primarily used as a laser beam block. The laser can be fired and its energy measured
before the sample is illuminated. This allows a check on the laser's energy before pro
ceeding with the experiment. The laser's energy varies with gas quality and voltage
and should be checked before any experiments.

The shutter is operated through the DT2801 digital I/O section. It utilizes bit 1 of

the interface. The shutter is a 35 mm electronic shutter from Ealing Electro-Optics (part

Page 13

no. 22-8411) with a basic shutter power supply. The basic shutter power supply allows
an operator to open and close the shutter with a switch. The basic shutter supply was

modified to place the shutter under computer control. Acircuit diagram is shown in
Figure 8. The modifications allow the IBM PC-AT compatible to open and close the
shutter with a TTL level signal from the DT2801.

DT2801
Bit 1

Figure 8. Shutter System Circuit

Connected in series
with the manual toggle
switch.

Motion Control System

The motion control system was added to the IBM PC-AT compatible to provide au
tomated sample movement. The system consists of a TECMAR Stepper Motor
Controller Board installed in the IBM PC-AT compatible computer. The TECMAR board
is connected to the Power Amplifier Board which drives the stepper motors. The
stepper motors are connected to a pair of linear stages which provide automated
sample movement. The Power Amplifier Board also provides interface signals for
monitoring the stages' limit switches. The stepper motor/stage combination provide a
resolution of 1mil. The accuracy is comparable to 1mil but has never been accurately
measured.

The TECMAR Stepper Motor Controller Board provides two semi-intelligent
stepper motor controller chips (Cybernetic Micro Systems CY512). The TECMAR
board interfaces the two chips to the IBM PC-AT internal bus. In addition, the TECMAR
board provides several TTL input and output channels. The input channels are used to

Page 14

monitor the stages' limit switches. All connections to the TECMAR board are made

through the Power

Amplifier Board. The two

boards are connected to

each other by three 16

conductor ribbon cables

(see Figure 9). One

cable is used for each

stepper motor and anoth

er cable is used for the

TTL input channels. Only

one of the four TECMAR

TTL I/O connectors is uti

lized (IN B). The Power

Amplifier Board connects

to the stepper motors and

to the limit switches on

the linear stages. It iso

lates the computer system from the noise and power associated with the motors. A

separate power supply (+12 Volts) is utilized for the

stepper motors. Completely separating the logic and

motor power supplies increases the system's reliabil

ity. The motor power supply is connected to the

Power Amplifier Board (see Figure 13, page 19). The

TECMAR board provides the signals shown on the

chart titled TECMAR STEPPER MOTOR RIBBON

CABLE PINOUT for each of the stepper motors. The

Phase 1-4 signals are the only ones, besides Vdd

and GND, which are needed. These signals are pro

vided directly by the CY512 stepper motor controller

chips. For details see the CY512 data book. The

OUT A

OUTB

Figure 9. TECMAR/Power Amplifier Connections

Tecmar Stepper Motor
Ribbon Cable Pinout

RIBBON CABLE
PIN NUMBER FUNCTION

1 Phase 1
2 Phase 2
3 Phase 3
4 Phase 4
5 DRCTN
6 CNTRL
7 PULSE
8 -MOTCNTL
10 -RUN
12 -SLEW
15 GND

16 Vdd (+5)

Page 15

Power Amplifier Board amplifies the Phase 1-4 signals to create drive for the stepper
motors. The Vdd and GND signals from the TECMAR board power the buffer chip on
the Power Amplifier Board (see Figure 12).

Acircuit diagram for one of the amplifier channels on the Power Amplifier Board is
shown in Figure 12. The board actually contains two copies of this circuit (one for the X
channel and one for the Y channel). The coils shown on the diagram are not on the
Power Amplifier Board itself (they are in the motors) but are included for clarity. The
Phase signals generated by the TECMAR board are buffered (by the TTL 7406), opti
cally isolated from the motors (by the TIL154), and amplified (by the IRFD110). Note
the complete separation of both the power and the ground planes between the comput
er and the motors. The IRFD110 is capable of conducting one ampere. This implies
that the system is capable of driving stepper motors with up to one amp per phase.

The Power Amplifier Board is connected to the two stepper motors and to the limit
switches of the linear stages. The connections are shown in Figure 13.

The stepper motors are standard 4phase, 1.8 degrees/step, 0.5 amp per phase
units manufactured by Oriental Motors. The motors operate directly from a 12 Volt
power supply and provide 58 Ounce/In of torque. They have a standard NEMA 23
mount which connects directly to

the linear stages. The motors

have six wires which are con

nected to the Power Amplifier

Board. The connections are

clarified in Figure 13 and

Figure 10.

The linear stages include

home and limit switches. The

limit switches are connected to

provide TTL level signals to the

TECMAR board through the Power Amplifier Board. The TECMAR "IN Bw port pinout is
shown in the chart titled TECMAR IN BRIBBON CABLE PINOUT. The limit switch in
puts to the TECMAR board (IN B) are connected to the Vdd power supply through 1k

Phase 1 (Red)
Phase 2 (Green)

Commonl (White)
Phase 3 (Blue)

Phase 4 (Black)

Common2 (Yellow)

Figure 10. Stepper Motor Wiring

Page 16

TECMAR IN B

Ribbon Cable Pinout &Signals

RIBBON CABLE
PIN NUMRFFj FUNCTION

1 Data Bit 0
2 Data Bit 1
3 Data Bit 2
4 Data Bit 3
5 Data Bit 4
6 Data Bit 5
7 Data Bit 6
8 Data Bit 7
9-16 GND

•

CW Limit N.O. (Red)

CW Limit N.C. (Blue)
CW Limit Common (White)

CCW Umit N.O. (Yellow)
CCW Limit N.C. (Orange)

CCW Limit Common (Green)
Home Umit N.O. (Purple)

Home Umit N.C. (Brown)
Home Limit Common (Black)

pullup resistors. These inputs are grounded if the

switch on the linear stage closes. A circuit dia

gram of the switches is shown in Figure 14. The

"CW" and "CCW abbreviations stand for clock

wise and counter-clockwise respectively. The
DAEDEL stages are provided complete with pre-
mounted limit switches and cables. Only four of

the nine (see Figure 11, page 17) connections on

the stage are connected to the Power Amplifier
Board. The CW Common, CCW Common, CW

Normally Open (N.O.), and CCW Normally Open
connections are used. The remainder are not connected. The connections to the
Power Amplifier Board are shown in Figure 13.

The DAEDEL linear stages provide a six inch square base with four inches of trav
el. They were drilled with an array of tapped holes on one inch centers. They provide a
versatile base for sample movement.

Figure 11. DAEDEL Stage Limit Switch Cable

Page 17

VDD (+5) VMOTOR (+12)^
•1N4003 Phase 1

TECMAR 1h*w _ 2¥^L| iJ|— -JPhase 1-^^fKJl^^;-

TECMAR
Phase 2

TECMAR
Phase 3

TECMAR
Phase 4

TECMAR
VDD (+5)

TECMAR

GND

VDD (+5)

VDD (+5)

VMOTOR (+12)
1N4003 Phase 2

VMOTOR (+12)
.ifuooa Phase 3

Motor PowerSupply
Ground (M)

Figure 12. Power Amplifier Board Circuit Diagram

VMOTOR (+12)

VMOTOR (+12)

VMOTOR (+12)

Page 18

8

o
Ui
I-

oo
oe
••

oe
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

Motor X

B

oo

Power

Amplifier
Board

Limit Switches

Motor Y

Ground (M) VMOTOR (+12)

<D
<D
(D
<D
<D
O

0
<D
0

L£

Stepper motorpowersupply

Figure 13. PowerAmplifier Board Diagram

Stepper Motor
Connections

Phase 1

Phase 2

Commonl (+12V)
Phase 3
Phase 4

,Common2(+12V)

Limit CW
Limit CW
Limit CCW
Limit CCW

Phase 1

Phase 2

' Commonl (+12V)
Phase 3

Phase 4

•Common2 (+12V)

Limit CW

Limit CW

Limit CCW
Limit CCW

Page 19

TECMAR
B IN bit 0

TECMAR
B IN bit 1

TECMAR

B IN bit 2

TECMAR
B IN bit 3

X

X

VDD (+5)

1k

VDD (+5)

1k

VDD (+5)

1k

VDD (+5)

1k

Limit CWX

Limit CWX

Limit CCW X

Limit CCW X

Limit CW Y

Limit CW Y

Umit CCW Y

Limit CCW Y

r CW Common

/,
i> CW Limit N.O.

/
CCW

Common

CCW Umit N.O.

SWITCHES ON
LINEAR

/,
CW Common

STAGE

,0 CW Limit N.O.

/
CCW

Common

.0 CCW Limit N.O.

Figure 14. Limit Switch Circuit on Power Amplifier Board

Page 20

Chapter 3

Software Users Guide

This chapter describes the operation of the Photoresist Characterization System
Software. Details on the software routines and information for writing additional soft
ware are not provided in this chapter. Chapter 4provides internal and programming re
lated detail. This chapter discusses only the software's operation.

Executing the Program

The Exposure Characterization program is normally called "expose.exe" and is lo
cated in the "ecs" directory on the computer's C: drive. The program is executed by
changing to the ecs directory (using the cd command) and entering "expose". In order
to execute the expose program the PCLAB driver must be installed as a system device.
The PCLAB driver acts asa link between the Characterization System Software and the
DT2801 A/D system. The driver is installed by changing the config.sys file. Aline con
taining "device=pcldrv.sys" is entered into the file. The pcldrv.sys file must be located in
the root directory.

When executed the Exposure Characterization program will attempt to initialize the
hardware subsystems. If any problems are discovered it will inform the operator. If the
hardware is satisfactory (as far as the computer can tell) it will ask for the Experiment
Session Data. The operator may enter two lines of descriptive data. The Experiment
Session Data will be saved and/or printed with all the experiment data collected by the
system. The Experiment Session Data can be changed from the Miscellaneous
Parameters Menu (see page 29).

After entering the Experiment Session Data the system displays the main menu.
The main menu and its options are described in the remainder of this chapter.

Main Menu

The main menu is shown on the screen below. The first two options are
for creating matrices which vary the resist's exposure level over a specified range. The

Page 21

samples may be used in the multi- j£
channel dissolution rate monitor]

(DRM) to observe the develop

ment process with varying expo

sure dose. Option A is used to

change the parameters associated

with creating such samples.

Option B actually fires the laser,

moves the sample, and creates

the exposure matrix. Options C &

D are used for bleaching measure

ments. The sample may be exposed and data collected on transmittance and reflec

tance as the exposure proceeds. The data can be used to obtain ABC™ parameters for
the modeling. Options E, F, &G are used to edit parameters which are hardware and
preference dependent. Options I&J will load and save complete parameter sets. All
parameters are initialized to appropriate defaults at start up. The operator, however,
can load and save parameter sets which he has created for particular experiments.
Option J provides access to lower level functions via another menu (see the Manual
Operations section in this chapter on page 30).

DRM Exposure Parameters Menu

The DRM Exposure Parameters menu is shown below. The six parameters at the
top determine the energy and position of each of the exposure sites. The parameters
may be changed. Use the arrow keys to move the cursor around the screen. When the
cursor is over a parameters value it may be changed. Press the F10 Function Key
when done making changes. The PAGE DOWN and PAGE UP keys may be used to
move the cursor left or right an entire field (the left and right cursor keys move the cur
sor within a particular field). The menu's operation depends on the Mode selection
made on the menu. The Mode is used to select automated sequences of exposure en
ergies. Three modes are possible:

MAIN MENU

Edit DRM exposure Parameters
Generate DRM exposure matrix
Edit Bleaching Parameters
Perform Bleaching Measurement
Edit Detector Parameters
Edit Hardware Parameters
Edit Misc Parameters
Load Parameters Set

Save Parameters Set
Manual Operations
Exit

Page 22

=^

0) Arithmetic Mode - The Start Energy and End Energy will be used to calcu
late an arithmetic sequence spanning the Number of Exposure Sites.

1) Exponential Mode - The Start Energy and End Energy will be used to cal
culate an exponential sequence spanning the Number of Exposure
Sites.

2) The Start Energy and End Energy will be ignored and the values entered in

the lower portion ofthe menu (Exposure Energy Target Values) will be
used for the specified Number of Exposure Sites.

If mode 0 or 1 is selected jhe data in the Exposure Energy Target Values will change
when the menu is rf^ ^^^^^^^

ff DRM EXPOSURE PARAMETERS \DRM EXPOSURE PARAMETERS

Start Energy (mJ/cm2):
End Energy (mJ/cm2):
Number of Exposure Sites:
Mode:

Starting Distance from center (mils)
Step Size (mils):

Exposure Energy Target Values:

exited (by pressing

F10 or moving the

cursor off the bot

tom). The system

will calculate new

Exposure Energy

Target Values and

ask the operator if

they are acceptable.

If mode 2 is selected

the Exposure Energy

Target Values will

not be changed

when the menu is exited.

The Step Size parameter controls the distance the linear stage will move between

each exposure site. A large value can cause the stage to jam (by asking it to move fur

ther than is possible). Values up to 300 mils are reasonable. The Starting Distance

From Centerspecifies how far from stage center the system should begin the matrix ex
posure.

^

1:10

2:20

3:30

4:40

5:50

6:60

7:70

8:80

9:90

10:100

11:110

12:120

13:130

14:140

15:150

16:160

17:170

18:180

19:190

20:200

10

100

10

0

1000

100

Page 23

J

Generate DRM Exposure Matrix

Option Bon the main menu will generate the exposure matrix. When option Bis se
lected the DRM Parameter Menu will be displayed and the operator will be asked if the
energies and parameters are acceptable. If the operator indicates the parameters are
appropriate he is queried about the laser status. The laser must be on, in triggered
mode, and have the burst count set equal to one. If the operator indicates the laser is
ready he is warned that the laser will fire when a key is pressed. Goggles and other
protective measures should be in place at this point. The operator is given an opportu
nity to abort. If he continues the software fires the laser and displays the energies mea
sured by each detector. The laser is repeatedly fired until another key is pressed. The
operator can use the continuous firing to adjust the optics until appropriate energies are
measured. After the operator stops the firing, the system asks if the energies are ac
ceptable. Apositive reply obtains a request for wafer installation and awarning that the
exposure will begin when a key is pressed.

The exposure process consists of the following steps: 1) Align and center the linear
stage, 2) offset stage from center by the amount specified in DRM Parameter Menu, 3)
open the shutter, 4) pulse the laser until the specified total energy is reached for the cur
rent exposure site, 5) move the stage to the next site (distance specified in DRM
Parameter Menu), 6) repeat 4&5until all sites have been exposed. The Exposure
Target Energies, the actual energies, and the number of pulses are displayed while the
exposure proceeds.

Once the exposure matrix is complete the system allows the operator to save and/or
print the data. If the data is printed or saved the operator will be asked to enter two
lines of data which describe the experiment. When the data is saved and/or printed
these two lines, along with the Experiment Session Data (entered at start-up), and the
date and time will be saved and/or printed too. The filename used to save the data
must be specified by the operator. Afile extension of ".drm" is automatically appended
and the file is placed in the "C:\ecs\ecsdata" directory. The directory where the data is
saved may be changed on the Miscellaneous Parameters Menu (see page 29).

Page 24

Bleaching Parameters Menu

The Bleaching Parameters menu is shown below. Option Con the main menu se
lects the Bleaching Parameter menu. It contains four parameters which control the

c mg process. ^BLEACRllJG parameters menu ^>
The menu may be

traversed and chang

es made using the

methods explained

for the DRM

Exposure

Parameters Menu. ^^
The Maximum Dose

is the bleaching process ending energy. The exposure site will be exposed until the in
tegrated energy is equal to the Maximum Dose. The Energy per Measurement (high)
initially controls the data collected during bleaching. The system keeps track of the total
energy incident on the sample. When the total incident energy reaches the Energy per
Measurement (high) value the system saves the total incident energy, reflected energy,
transmitted energy, and pulse count. The totals are then zeroed and the process re
peated until the grand total incident energy reaches the Measurement Density Drop Off
Point. Once the Drop Off is reached data is saved using the Energy per Measurement
(low) parameter. The process continues until the grand total incident energy reaches
the Maximum Dose. This simple technique allows a high density of data points at the
beginning, a large total dose, and keeps the number of data points within reason.
WARNING - The total number of data points may not exceed 2000. The system will
stop taking data if the number of points exceeds 2000.

Perform Bleaching Measurement

The Perform Bleaching Measurement function exposes the sample and saves the
energy measurement data. The operator is queried about the status of the laser. The

laser must be on, in triggered mode, and have its burst count setto one. If the operator
indicates all of the above are true he is warned that the laser will fire when he presses a

Page 25

Maximum Dose: iqO
Measurement Density Drop Off Point: 10
Energy per Measurement (high): .1
Energy per Measurement (low): 1

key. Goggles and other protective measures should be in place at this point. If the op
erator continues the system repeatedly fires the laser and displays the energies mea
sured by each detector. The system stops when another key is pressed. The operator
can use the continuous firing to adjust the optical set-up until appropriate energies are
observed. After the operator stops the continuous firing, the system asks if the energies
are acceptable. An affirmative reply obtains a request for wafer installation and a warn
ing that the exposure will begin when a key is pressed.

The shutter will open and the exposure will begin. The sample will be bleached
using the parameters seton the Bleaching Parameter Menu. Data will be collected and
stored in memory. Once the bleaching is complete the system allows the operator to
save and/or print the data. If the data is printed or saved the operator is asked to enter
two lines of experiment description. When the data is saved and/or printed these two
lines, along with the Experiment Session Data (entered at start-up), and the date and
time will be saved and/or printed too. The filename used to save the data must be
specified by the operator. Afile extension of ".ble" is automatically appended and the
file is placed in the "C:\ecs\ecsdata" directory. The directory where the data is saved
may be changed on the Miscellaneous Parameters Menu. If the file already exist the
operator isgiven an opportunity to append, overwrite, orabort.

Detector Parameter Menu

The Detector Parameters control the operation of the DT2801 A/D system and the
conversion from voltage to energy. The Detector Parameter Menu is shown below.
Each of the eight possible detectors has 3constants associated with it. Calibration is
the milliJoules per volt of the detector hardware. This value depends on the electronics
of the detector and is obtained by comparing the detector to an absolutely calibrated
Joulemeter. Aperture is the amount of area (cm2) which the detector receives light en
ergy from. These two parameters allow the calculation of milliJoules per cm2 (energy
density) from the DT2801 digitized voltages. The scaling constant is used to account
for beam splitters and the like. For example the detector used for incident energy mea
surement

Page 26

typically receives only 50% of the incident energy. The Scaling parameter would be set
to 2to account for this. The equation used to obtain detector energy is:

E =
(V)(C)(S)

Where Eis the detector energy density returned, V is the voltage from the DT2801 A/D
conversion system, C is the Calibration parameter, S is the Scaling parameter, and A is
the Aperture param- &
eter.

The three A/D

parameters listed

after the detector pa

rameters are hard

ware dependent.

The two voltages de

fine the voltages

which correspond to

the minimum and

maximum values re

turned by the

DT2801. The A/D

DETECTOR PARAMETER MENU

Detector 1

Detector 2

Detector 3

Detector 4

Detector 5

Detector 6

Detector 7

Detector 8

Calibration Aperture

A/D High Voltage:
A/D Low Voltage:
A/D Resolution:
Active Detector Channel 1
Active Detector Channel 2
Active Detector Channel 3

v^

10

-10

4096
1

2

3

^
Scaling

1

1

1

1

1

1

1

1

Resolution defines the number of discrete values the A/D system has over the specified
voltage range. The DT2801 voltage is calculated using these parameters.

The remaining three parameters, the Active Detector Channels (1,2,3), define which

of the eight detector channels are used for energy measurement. The first detector

specified is the incident energy detector, the second is the transmitted energy, and the
third is the reflected energy.

Page 27

Hardware Parameters Menu

The Hardware Parameters Menu is shown below. The Hardware Parameters con
trol the operation of the linear stage, the stepper motors, and the laser FIRE SIGNAL
The parameters may ^^~M"^^^^=*^^^^^M^^^^^^^^^M^^"
be changed in a

manner identical to

that explained in the

DRM Exposure

Parameters section.

The Fire Delay

Count High and the

Fire Delay Count

Low control the

shape and size of

the pulse used to fire

the laser. See Chapter 2- Laser Fire Control for details (page 7). Fire Delay Count
High is how long the pulse will remain high. The Fire Delay Count Low is used to slow
the rate at which the laser fires (never use the High parameter for this because it will
place the laser in pre-charge for an extended period of time). The FIRE SIGNAL re
mains low for a time determined by the sum of the Fire Delay Count Low and the time
needed to collect and process the detector data. The two counts are simply the number
of times anull loop is executed to create the delay. The IBM PC-AT environment does
not provide an absolute time delay. All delays will depend on the CPU clock rate.

The A/D Board Type and A/D Microcode Revision parameters are set by the soft
ware. They are not currently utilized but provide information for the operator.

The Stepper Motor Rate is the speed at which the stepper motors are driven. The
Stepper Motor Factor is acontrol parameter for the TECMAR Stepper Motor Controller
Board. See the TECMAR manual for details. The Stepper Motor Slope is the rate at
which the stepper motor is accelerated to full speed. The Manual Step Size defines
how many steps the system will make when told to "Step Left" or "Step Right" from the
Manual Operation Menu. The Auto Step Size defines how many steps will be made in a

HARDWARE PARAMETERS MENU

Fire Delay Count High:
Fire Delay Count Low:
A/D Board Type:
A/D Microcode Revision:
Stepper Motor Rate:
Stepper Motor Factor:
Stepper Motor Slope:
Manual Step Size:
Auto Step Size:
Stepper Ready Delay:
Stepper Operate Delay: "
Center Offset (mils):

1660

1

0

0

160

16

1

100

100

3000

30000

2040

Page 28

single operation when homing the linear stage. Avalue larger than 100 may cause the
stage to jam. The Stepper Ready Delay and Stepper Operate Delay parameters ac
count for the finite amount of time it takes the stepper motor to operate. They control in
ternal delays. The Center Offset (mils) is the distance from the limit switch to the cen
ter. When the system attempts to home and center the stage it moves the stage until a
limit switches closes. It then moves the stage the amount specified by the Center Offset
in orderto obtain the center position.

Miscellaneous Parameter Menu

The Miscellaneous Parameter Menu contains more parameters which may be
changed by the operator. The menu is shown below. The Average Mode Count is
used by the Averaqe ^r

7 if MISCELLANEOUS PARAMETERS MENU
Fire Mode on the

Manual Operations

Menu. It sets the

number of laser puls

es which be be aver

aged (2000 maxi

mum). The Session

Data and Experiment

Data are the 4 lines

Average Mode Count:

Session Data

Line 1:

Line 2:

Experiment Data
Line 1:

Line 2:

Data Path: C:\ecs\ecsdata\
Param Path: C:\ecs\ecsparam\

^

^
20

of text used to describe data whenever it is saved or printed. The Session Data is en

tered when the system is started. It can be changed on this menu. The Experiment
Data is reentered every time data is saved or printed. It can also be changed on this
menu. Either set of data may be defaulted to its current value rather than reentered.

The Data Path is the MSDOS Path used to store all data files. The Param Path is the

MSDOS Path used to save all parameter files. The paths may be changed using this
menu. Their default values are shown above.

Page 29

Load and Save Parameter Set

Parameter sets consist of the data on all the aforementioned menus. They can be
loaded and saved to facilitate different experimental set ups. When either option is re
quested the operator must enter a filename. The entered filename will have the exten
sion ".ecf added.. The system will then use the directory specified in the Param Path to
either loador save the parameters.

Manual Operations

The Manual Operations Menu contains functions useful for the calibration of the sys
tem and development of new experiments. It also contains functions which assist opti
cal alignment and testing. The Manual Operations Menu is shown below. ThP fiinnio
Shot Mode is en

tered by selecting A.

In Single Shot Mode

every press of the

space bar fires the

laser and displays

the measured ener

gies. Any other key

exits the mode.

Continuous Fire

Mode is entered by

selecting B. It fires

the laser repeatedly until akey is pressed. Multiple Average Shot Mode fires the laser
the number of times specified on the Miscellaneous Parameter Menu. The energy data
and averages are displayed and may saved or printed. Open Shutter and Close Shutter
open and close the shutter. Move Stage Left and Move Stage Right move the stage the
number of steps specified in the Manual Step Size (see Hardware Parameter Menu,
page 28). Align Stage and Move to Home Position is self descriptive. The Set Fire
Signal commands are used for adjusting the potentiometers in the Integrator Units (see
Hardware Chapter). The Set Capacitor Gain options switch the relays in the Integrator

MANUAL OPERATIONS MENU

A) Single Shot Mode
B) Continuous Fire Mode
C) Multiple/Average Shot Mode
D) Open Shutter
E) Close Shutter
F) Move Stage Left
G) Move Stage Right
H) Align Stage and Move to Home Position
I) Set Fire Signal = 0
J) Set Fire Signal = 1
K) Set Capacitor Gain = 0
L) Set Capacitor Gain = 1
X) Exit to Main Menu

Page 30

Units to obtain a different integration capacitor and therefore a different gain. These
functions should be used with caution because the energy calculations will be in error if
the Detector Calibration parameters are not modified.

[1] F.H. Dill, W.P. Homberger, P.S. Hauge, and J.M. Shaw, "Characterization of Positive Photoresists"
IEEE Transactions on Electron Devices, Vol ED-22, No. 7,1975.

Page 31

Chapter 4

Software Internals

The Software Internals chapter details the "C" programs and the development envi
ronment of the Characterization System. This chapter contains information for opera
tors wishing to change or write "C" programs related to the Characterization System.

Development Environment

An IBM PC-AT compatible was used for all development work. Microsoft C version
5.0 compiled all the programs. Microsoft Cwas chosen because of its ANSI CStandard
compatability, its completeness, and its widespread acceptance. Two specialized librar
ies were utilized to augment the standard Microsoft libraries. The first library was
PCLAB from Data Translation. PCLAB is acollection of Ccalls which provide a simple
interface between the DT2801 A/D converter and the Clanguage. The second library
was Windows For Data (WFD) from Vermont Creative Software. WFD is a collection of
routines for window management. It will be difficult to examine any of the expose relat
ed programs without the WFD documentation1.

Module and Library Names

The program modules and libraries needed for the complete Characterization
System are listed below:

pcc4llib.lib Library of the PCLAB software package. Provides Ccalls for
A/D conversion.

pcldrv.sys Device driver which must be installed in order for the above
library to function.

wfdl.lib &wfcl.lib Libraries for Windows For Data (WFD).
expose.mak Make file for automatically compiling and linking the

Characterization System Software.
expose.c The expose program. Defines global variables and contains

main().
expconf.c Global variable definitions. Included in most modules to de

fine the global variables.

1" Softw^e3 Rfchfold *v^erenCe and Wlnd0ws For cReference (version 2.1), Vermont Creative

Page 32

wfa-h Include file needed for Windows For Data. Included in all
modules which make WFD calls. Note that this file
includes other files supplied with the WFD system.

pclerrs.c File supplied with PCLAB which contains ASCII descriptions
of errors. Included to describe errors (if they occur).

expmenu.c C Module which contains all menu operations.
expfunc.c C module which contains all major exposure functions.
filer.c C module which performs all file related operations.
graphics.c C module which performs all graphics.
query.c C module which contain sub-routines to query the operator.
laser.c C module which fires the laser and reads the detectors.
stepper.c C module which controls the Linear Stages via the TECMAR

Stepper Motor Controller Board.

Additional standard include files are used from the Microsoft C libraries. These are

all ANSI standard include files. The following sections will describe the sub-routines

and some ofthe variables in each of the modules. Listings for all modules are given in
Appendix C. Appendix Bcontainsglobal variable descriptions.

Variable Standardization

All variables used in the program include an extension which defines their type. The

conventions used are shown in the table below. The STANDARD column contains the

extension used for normal variables. The POINTER column contains the extension

used for a pointer to a variable.

VARIABLE TYPE

char

constant char

int

short

long
unsigned char
unsigned
unsigned short
unsigned long
float

double

long double
window

boolean

STANDARD POINTER

c -PC
_C -PC
_i _Pi

s JDS
J _pl
_uc _puc
_u _pu

us _pus
ul _pul
f J>f

_d _pd
_e _pe

w _pw
_b -Pb

Page 33

form

field

memory file

fm

fd

mf

_pfm
_pfd
__pmf

Expose.c

Expose.c is the main program. It defines general global variables and initializes the

configuration structure (config_u). The configuration structure type (configjype_union)
is defined in expconf.c. This structure is loaded and saved by the parameter load and
save options on the main menu.

Expose.c contains only a single routine, main(). Main() performs initialization func
tions and then calls the menu() function. Menu() displays the main menu and executes
the functions requested by the operator using WFD calls.

Expconf.c

Expconf.c contains the configuration structure definition. Expconf.c defines a union
type (config_type_union). This type must be used in the including module to define the
structure as either internal or external. Expose.c declares the union as internal (defines
it). All other modules declare it as external. The variables included in the union are list
ed below with a brief description. All the variables appear on one of the parameter
menus.

Variable and Type
longfire_delay_counth_l
longfire_delay_countlJ
int average_count_i
double high_voltage_d
double low_voltage_d
double nocj
int board_type_i
int mlcrocodej
double det_callb_pd[8]
double det_apera_pd[8]
double det_scale_pd[8J
long toggledelayj
intdetchannel_i[8]
double startenergy_d
double endenergy_d
int sequence_i

Description
Fire DelayCount High
Fire Delay Count Low
Average Mode Count
A/DHigh Voltage
A/D LowVoltage
A/D Resolution
A/DBoard Type
A/D Microcode Revision
Detector Calibration Values
Detector Aperture Values
Detector Scale Values
not used

Detector Channels in use
DRM Start Energy
DRM End Energy
DRM Mode

Page 34

int steps_i DRM Number ofExposure Sites
double targetenergy_pd[21] DRM Exposure Target Energies
int stepperratej Stepper Motor Rate
int setpperfactorj Stepper Motor Factor
int stepperslopej Stepper Motor Slope
int manualstepsizej Manual Step Size
int autostepsizej Auto Step Size
int readydelayj Stepper Ready Delay
long stepperdelayj Stepper Operate Delay
intcenteroffsetj Center Offset
int drnstartj DRM Starting Distance From Center
int drmstepsizej DRM StepSize
double elow_d Bleaching Energy Per Measurement Low
double ehigh_d Bleaching Energy Per Measurement High
double maxdose_d Bleaching Maximum Dose
double measdens_d Bleaching Measurement Density Drop Off Point

Expmenu.c

Expmenu.c contains the menus and two functions to control the window environ

ment. lnitwindows() is called by main() to initialize the WFD package. Endwindows() is
called by main() prior to exiting the program to close all windows. Menu() is called by
main() once and does not return until the operator selects the exit option. Menu() dis
plays the main menu and requests the operator's selection. Based on the selection it

executes a call. Manualmenu() is called from menu(). It displays an additional menu

containing more options and requests the operator's selection again. Based on the se
lection it also executes a call.

Editdetparams() is called from menu() to edit the Detector Parameters. The

Detector Parameters are displayed and the operator may modify them. Editdetparams()
returns to menu(). Edithardparams() functions as editdetparams() except the operator
may change the Hardware Parameters. Editdrmparams() is used to edit the DRM

Exposure Parameters. Editdrmparams() may call calcenergy() to calculate the target
energies if an automatic mode is selected by the operator. Editabcparams() allows the
operator to change the Bleaching Parameters. Editmiscparams() allows the operator to
change the Miscellaneous Parameters. All editing is accomplished using WFD calls.

Exitmenu() is called either by menu() or by manualmenu(). It tells the calling func
tion to return up a level in the menu system. Exitmenu() will cause Manualmenu() to re-

Page 35

turn to menu() and menu() to return to main().

CalcenergyO is called by editdrmparams() to calculate the Exposure Target
Energies. The Exposure Target Energies are calculated based on the DRM Exposure
Parameter settings. Either an arithmetic or a exponential sequence is inserted into the
Exposure Target Energy parameters. The routine verifies that the sequence Is of finite
length.

Stepleft1(), stepright1(), and flndhome1() may be called from manualmenu(). They
call their more general counterparts (stepieft() and steprightO) to perform the action re
quested. StepleftlO steps stage one left by the Manual Step Size. Findhome1() per
forms ahoming and centering operation on stage one. These functions are necessary
because the WFD menu system will not allow parameter passing.

Expfuncc

Expfuncc contains the major exposure functions. Routines to perform bleaching,
fire the laser, and perform drm matrix generation are included. Most of the functions are
called directly from menuO or manualmenu().

Abcexpose() performs ableaching measurement. Several variables are established
by this routinewhich include:

^2da6!£ Description
mt pointcountj maintains the current number of data points
char file™ ,Wfln, n® P°inteJ USed ",he 0perator saves data l° *«'*char filename_pc[80] filename data will besaved into
double totalenergyi_d total incident energy during bleaching
double tote energyr_d total reflected energy during bleaching
double totalenergyt.d total transmitted energy during bleaching
n^h! energy,-d incremental incident energy during bleaching
double en3"H Omental incident energy during bleachingdouble energyt_d incremental incident energy during bleaching

AbcexposeO calls laserready(), testfire(), and genmessage() to verify that the laser is
ready, that the laser energy is acceptable, and that the wafer is loaded. If everything is
correct it opens the shutter and begins pulsing the laser. Two WHILE loops pulse the
laser, one for the Measurement Density (high) and one for Measurement Density (low).

Page 36

Data returned from pulsetoenergy() is displayed and saved in 4 arrays. The shutter is
closed and the data is graphed by graphbleachdata(). Savedata() is called to save the
bleaching data.

Testfire() is called by several different routines. It warns the operator that the laser
is about to fire and requests that he press akey to begin. After the keypress it fires the
laser and displays the energy measured. It uses readdet() to read the detector energy
data and printdetdata() to display it. It asks the operator if these energies are accept
able and returns aTRUE if the operator indicates they are. It returns aFALSE if the op
erator indicates they are not. The return value is typically used to determine if a pro
cess should proceed (such as in abcexpose()) or abort.

Fireone() is called from the manualmenu() for single shot mode. It verifies that the
laser is ready and then fires the laser every time the space bar is pressed. It uses the
readdet() routine to read the detector data and printdetdata() to display it.

Fireaverage() is called from manualmenu() to fire the laser a specified number of
times, record the energies, and calculate the averages. The number of times it fires are

passed as a parameter (pulsecountj). A FOR loop executes pulsecountj times to fire
the laser. Firelaser() is called to fire the laser and readdet() is called to obtain the ener

gies. Data from each pulse is stored in an array and also displayed for the operator.
The percent transmittance and percent reflectance are calculated and displayed too. A
running energy total (total_pd[3]) is maintained for each detector. Once the laser has

fired the specified number of times, averages are calculated from the totals and the

number of pulses. The operator may save or print the data (savedata()).

Firecont() is similar to fireone() except it fires the laser continuously instead of wait
ing for the space bar to be pressed. When a key is pressed it stops firing.

Drmexpose() creates an exposure matrice. It calls editdrmparams(), laserready(),
testfire(), and genmessage() to verify that the parameters are acceptable, the laser is
ready, the laser energies are acceptable, and the wafer is loaded, respectively. If all the
above are fine it proceeds. The stage is homed (findhome()) and then moved to the

start position (stepleft(), distance determined by Starting Distance From Center). It then
sequences creating the specified number of exposures. Pulsetoenergy() is called with

the appropriate energy value and the actual energies returned by Pulsetoenergy() are

Page 37

saved. Stepright() is called to move the stage to the next exposure site. After the spec
ified number of exposures have been created the operator may save the data (saveda-
ta()).

Filer.c

Filer.c contains the routines for handling file input, file output, and printing.
LoadparamsO is called by main() to load the parameter file. It changes the directory to
ecsparam_path_pc and requests a filename from the operator using getfilename(). It
concatenates filepost_ecf_PC (this is normally ".ecf) to the filename end and attempts
to read the parameter file using readparamfi!e(). If an error occurs it reports the prob
lem.

ReadparamfileO is called by loadparams() with a filename (filename_pc). It at
tempts to open the file (open()), read the data (read()) and close the file (close()). If an
error occurs at any stage it reports the problem using fileerror(). The data read is the

structure configjj which isoftype configjypejinion defined in expconf.c.
Saveparams() is called by main() to save a parameter file. It changes directories

and requests a filename similar to loadparams(). It checks the directory (directory()),
checks the file (checkfile()), and calls writeparamfile() to write the data if the checks are
passed.

WriteparamfileO is called by saveparams() to write the data. The filename is passed
to writeparamfile() via filenamejjc. It attempts to open the file (open()), write the data
(write()) and close the file (close()). If an error occurs at any stages it reports the prob
lem using fileerror(). The data written is the structure configjj. Config_u is of type con-
figjypejjnion which is defined in expconf.c.

Checkfile() is called with a three parameters. The first parameter is the window title
(title_pc), the second is the filename to be checked (pathj>c), and the third is aboolean
control variable controlling concatenation (concat_b). Concat_b is only important if the
file exists when the check is performed. Checkfile() attempts to open the file. If the file
does not exist it quits and returns a1to the calling routine. If the file exists the operator
is informed so and asked if the file should be overwritten or the operation aborted. If
concatj) is TRUE the operator is offered the option of concatenating to the file's end.

Page 38

The returned value is 1 if the file does not exist or the operator selects overwrite. The
returned value is 2 if the operator selects concatenate. The returned value is 0 if the
operator aborts. Querychar() is usedto question the operator.

Savedata() is called from all functions which collect data and give the operator a
chance to save or print it. Five parameters are passed to savedata(): a file pointer (out-
file), the experiment title (experimenttit_pc), two description lines (experiment _pc,
experiment2_pc), and a filename extension (filepost_pc). Savedata() uses querychar()
to ask the operator if he wants to save or print the data. If the operator selects Fto
save the data savedata() requests a filename using getfilename(). Filepost_pc is ap
pended to the the filename. Savedata() performs a checkfile() on the filename If the
operator selects P to print the data the filename request is bypassed and a filename of
"PRN" is automatically used (this will cause MSDOS to print on the printer). The file is
opened (append mode may be observed if checkfile() indicated this was necessary) and
getexpdata() is called to request the experiment description from the operator. The ex
periment title, date, time, description, and session description are all written to the file
(or printed). Savedata() returns a1if a file is open. This indicates to the calling routine
that it should write its data and close the file. If it returns a zero the operator indicated
he did not want to save or print. Typically savedata() is repeatedly called until the oper
ator quits (thus allowing the operator to print and save the same data). Savedata() does
not actually write the data to the file. The calling program must do this. This task divi

sion allowsthe calling routines to use different data formats.

DirectoryO is passed a pointer to a string variable (path_pc). It attempts to change
directories to pathjDc. If an error occurs it uses genmessage() to report the problem.

Graphics.c

Graphics.c contains only four routines. Initgraphics() is called by main() to initialize
the graphics system at start up. Graphicson() is called to turn the graphics screen on.
Graphicsoff() is called turn the graphics screen off and return to normal text display.

Graphbleachdata() is called by abcexpose() to graph the bleaching data on the
screen. This allows the operator to view the data before saving or printing it. It turns
the graphic screen on (graphicson()) and uses Microsoft library routines to create a sim-

Page 39

pie x-y graph. It plots %transmission versus total incident energy and labels the graph.

Laser.c

Laser.c contains functions related to controlling the laser and the DT2801 interface.
InitpclabO is called by main() to initialize the DT2801 and the PCLAB subroutine library.
It verifies that the DT2801 card is installed and enables the digital I/O section for output.
If an error occurs it displays the PCLAB error number using errorwno().

Readdet() is the routine which reads and calculates the energies observed by the
detectors. Readdet() is a passed a pointer to an array of doubles (det_pd). Detjsd is
updated to the energy values read from each detector. The three detector channels are
read using the ADC_VALUE() function of PCLAB. After the channels are read energy
calculations are performed to obtain the values for detjDd. Acheck is made on the gain
utilized for the A/D conversion. If the values are out of the ideal resolution range the
gain for the next conversion is changed. The dynamic gain scaling of the A/D converter
yields constant resolution even at low voltage readings.

Printdetdata() is called to print a single line which contains the detector energy read
ings. The routine is used by almost all the routines which display energy data.

Openshutter() and closeshutter() output adigital value on the DT2801 digital I/O port
to open or close the shutter. GainO() and gainl () are called by manualmenu() to change
the capacitor gain. FiresignalO() and firesignah () are called by manualmenu() to
change the FIRE SIGNAL. The routines simply toggle adigital output bit on the DT2801

Laserready() is called by functions to query the user about the laser's status. It uses
queryboolO to verify that the laser is on, in triggered mode, and has the burst count set
equal to one. It returns the operators reply.

Firelaser() is called to fire the laser. It uses the Fire Delay Count (low) to wait in a
loop. After the loop is complete it changes the FIRE SIGNAL to a high value to begin
pre-charge. It uses Fire Delay Count (high) to wait in another loop. After the second
loop is complete it changes the FIRE SIGNAL to a low value.

Pulsetoenergy() is passed 5variables. The target energy (targeted) is the only one
used by the routine. The other four are used to return data to the calling routine.
Pulsetoenergy() uses firelaser() and readdet() to fire the laser until the specified total

Page 40

energy (targeted) Is reached. It returns the actual total incident energy (totali_pd), the
total transmitted energy (totaltjxl), the total reflected energy (totalr_pd), and the pulse
count (pulsecount_pl). The returned values are determined by summing the energies of
each pulse.

Query.c

Query.c contains routines for displaying data and obtaining data from the operator.
These routines are used by many of the functions in the Characterization System
Software.

Querybool() queries the operator on a yes/no question. It creates a window, dis
plays the question, waits for an answer, and returns the answer to the calling routine.

QuerycharO operates as querybool, however, it allows a single character response.
Querybool2() has a slightly different display format than querybool() but functions

the same.

Fileerror() iscalled when a file related error occurs. It uses genmessage() to display
the error number and error message.

Errorwno() is used to display a general error message which contains a number. It

converts the number to a string and then uses genmessage() to display the error mes
sage.

Genmessage() is passed a window title (errormesstit_pc) and three lines of informa

tion (errormessijdc, errormess2_pc, and errormess3_pc). It creates a window with the

title and displays the three lines. It asks the operator to press a key to continue. It eras

es the window and returns.

Getexpdata() is called with four parameters. It creates a window with a title (qtit_pc)

and asks the operator to enter two lines ofASCII data (qvar1_pc and qvar2_pc). It de

scribes the requested lines using qdescription_pc. This function is called to obtain the

Session Description Data and the Experiment Description Data.

Getfilename() is called whenever a filename is requested. It asks the operator to

enter a filename and returns the result (reply_pc) to the calling routine. It allows only 8

characters to be entered and titles the window with qtit_pc. Q1_pc is used to describe

the requested filename.

Page 41

Stepper.c

Stepperc contains the functions related to stepper motor control and stage move
ment. It also translates from CCW and CW to left and right motion.

InitstepperO initializes the TECMAR Stepper Motor Controller Board and the two
CY512s located on the board. The commands sent to the CY512s and their functions
will not be detailed here. The interested reader is referred to the CY512 databook2 and
TECMAR manuaP. Some documentation is supplied in the Characterization System
Software. Stepperok.b is set TRUE to indicate that the stepper motors are functioning.
SteprightO and stepleft() are called to move the stage and verify they really are function
ing. SteprightO and stepleft() will set stepperok_b to false if any problems are discov
ered. If stepperokjj is false all stepper related routines will be skipped.

Stepclockwise() is called to change the direction to clockwise. The routine is
passed the motor number (motorj). It sends commands to the appropriate CY512
using dochara() to change the direction. It sets the variable stagedirectionj to one, in
dicating clockwise.

StepcclockwiseO is called to change the direction to counter-clockwise. The routine
is passed the motor number (motorj). It sends commands to the appropriate CY512
using docharaO to change the direction. It sets stagedirectionj to two, indicating
counter-clockwise.

StepleftO is called to step the stage left aspecified stepsize. The routine is passed
the motor number (motorj) and the stepsize (stepsizej). If stepperokjj is FALSE (ie.
the stepper motors are not functioning) the routine performs no actions. If stepperok_b
is TRUE the routine proceeds. The routine checks the stage direction. If it is correct it
continues. If the stage direction is incorrect it calls stepclockwise() to change it
StepleftO checks the limit switch on the stage. If the limit switch is open it proceeds with
aseries of commands to move the stage. If the limit switch is closed (0) it does nothing.
After moving the stage it updates the stage position variable (stagepositionj).
SteprightO functions identically to steplef()t except in the other direction

3. TECMAR IBM Stepper Motor Controller, TECMAR, 1982

Page 42

Findhome() is called by the drmexpose() and manualmenu() functions. It puts the
stage through a series of action in order to center it. If the stage has been homed previ
ously the function will simply execute movehome() to center the stage. If the function
has not been executed before it moves the stage to the left using stepleft() until the limit
switch closes. It uses the step size set by the Auto Step Size parameter (Hardware
Parameters Menu). When the limit switch closes the routine moves the stage to the
right two Auto Step Size parameters and then moves back to the left using a stepsize of
one mil. This finds the left edge very accurately. It then moves the stage to the center
using stepright() with the Stage Center Offset Parameter.

MovehomeO uses the current position of the stage (stagepositionj) to either Ste
prightO or StepleftO in order to bring the stage to position zero (the center).

Dochara() outputs a single character command to the CY512 Stepper Motor
Controllers on the TECMAR board. It is passed a motor number (motorj) and a char
acter (databytejjc).

Checkready(), waitstepper(), and delaystepper() are used to control communication
timing with the TECMAR board.

Controlling The FTIR System

No software functions currently utilize the FTIR system. This, however, can easily
be implemented. All FTIR operations can be controlled by execution of DOS like com

mands with parameters4. These could be directly executed from the Characterization

System Software using one of the Microsoft C library routines: "exec", "spawn", or"sys
tem". The call needed will depend on the desired operation.

4. RFX-65 User's Guide, Analect Instruments, Irvine, CA, 1988

Page 43

Appendix A

Vendors
Analect Instruments, Inc
17819 Gillette Avenue
Irvine, CA 92714
(714)660-8801
RFX-65 Fourier Transform Infrared Spectrometer with 0.05 wavenumber resolution
High Power IR Source, and MCT detector.

Cybernetic Micro Systems, Inc.
P.O. Box 3000
San Gregorio, CA 94074
(415)726-3000
Stepper motor controller chips (these were actually supplied by TECMAR)
Daedel, Inc
P.O. Box G
Sandy Hill Road
Harrison City, PA 15636-4451
(800)245-6903 (412)744-4451
Linear Stage model 106041P-10E

Data Translation, Inc
100 Locke Dr.

Marlboro, MA 01752

£?« "A 'BM/PC/XT/AT A/D and I/O Board High Speed two channel
PCLAB subroutine library for Microsoft C version 5.0
DT707 Screw Terminal Panel for DT2801-A board

Ealing Electro-Optics
22 Pleasant Street
South Natick, MA 01760
(617)651-8100
22-8411 Electronic Shutter, 35mm Aperture
2-8445 Electronic Shutter Pin Mount, 35mm Shutter

Hamamatsu
2444 Moorpark Avenue
Suite 312

San Jose, CA 95128
(408) 292-8603

PIN Silicon Photodiodes S1722-02 with Fused Silica Windows and High UV sensitivity

Page 44

Melles Griot

1770 Kettering Street
Irvine, CA 92714
(714)261-5600
Optical components

Newport Corporation
P.O. Box 8020
18235 Mt. Baldy Circle
Fountain Valley, CA 92728-8020
(714)963-9811
Optical components

TecMar, Inc. also know as Scientific Solutions, Inc.
6225 Cochran Road
Solon, Ohio 44139
(216)349 4030
Stepper Motor Controller Board

Vermont Creative Software
21 Elm Avenue
Richford, VT 05476
(802) 848 3502
Windows for Data for Microsoft C version 5.0

Page 45

Variable

Appendix B

Global Variables
Description

double energyijDd[2000]

double energytjDd[2000]
double energyrj)d[2000]
long pulsecountj>l[2000]
expdesdj)c[82]
expdesc2j)c[82]
expdesc3j)c[82]
expdesc4jDc[82]
ecsdata_path_pc[82]
ecsparamj3athj3c[82]
configjj

incident energy array used to store sequence of
incidentenergys.

transmitted energy array
reflected energy array
numberof pulses array
Experiment Description line #1
Experiment Description line #2
Session Experiment Description line #1
Session Experiment Description line #2
path to store data with,
path to load and store parameter files with
Parameter configuration structure/union. See the

expconf.c section for a full description.

Page 46

Appendix C

Software Listings

Page 47

/* expconf.c

/» GLOBAL DEFINES for the expose programs
/

#define DT2801_A
#define DACJD " 0
#define MAX~DET 8

/

0x5 /* DATA I/O Board ID codes */

/* CONFIGURATION STRUCTURE DEFINITION

struct config_type_structure {
long fire_delay_c'ounth_l;
long fire_delay_countl_l;
int average_count_i;
double high_voltage_d;
double low_voltage_d;
int gain_i;
double noc_d;
int board_type_i;
int microcode_i;
double det_calib_pdCMAX_DET]
double det_apera_pdCMAXJ)ET]
double det_scale_pdCMAXJ)ET]
long toggledelay_l;
int detchannel_iCMAX_DET];
double startenergy_d;
double endenergy_d;
int sequence_i;
int steps_i;

double targetenergy_pdC21];
int stepperrate_i;
int stepperfactor_i;
int stepperslope_i;
int manualstepsize_i;
int autostepsize_i;
int readydelay_i;
long stepperdelay_l;
int centeroffset_i;
int drmstart_i;
int drmstepsize_i;
double elow_d;
double ehigh_d;
double maxdose_d;
double measdens_d;
>;

/* highest possible voltage */
/* lowest possible voltage */
/* gain of A/D converters */
/* Resolution for 12 bit A/D */

union config_type_union {
struct config_type_structure config_st;
char buffC512];
>;

♦ /

*/

*/

*/

/* expfunc.c #/
/•••••»*••»•••••*«••»*****♦»##»»»*♦»•»»»*♦♦»♦♦»♦♦****♦»*»»###»##############/

' •••• * /
/* SYSTEM INCLUDE FILES #/
/•»••••••»»•»••*•••••*»»,••*♦»#*»*»##»*#♦♦*♦»#»*♦»#»»*#»»#»#»»##############/

#include <math.h>

#include <atdio.h>

#include <string.h>

/* OTHER INCLUDE FILES

#include <general.h>
#define WN_DEBUG
#define F_FLOAT
#include <wfd.h>

#include "expconf. c"

/* GLOBAL VARIABLES

/» enable window debugging system »/
/• enable floating point in WFD */

♦ /

»/

♦ /

extern double energyi_pdC20003;
extern double energyt_pdC2000]?
extern double energyr_pdC2000];
extern long pulsecount.plC2000];

extern union config_type_union config_u;

static char filepost_bleach_PCC] =".ble";
static char filepost_drm_PC?]=". drm";
static char filepost_pulse_PCC]= ".puln;
static char drmexposure_PCTC]=" DRM Exposure •;
static char bleachingmeasurement_PCTC]=" Bleaching Measurement ";
static char continuousfiremode_PCTC]=" Continuous Fire Mode ";
static char averagefiremode_PCTC]=" Average Fire Mode ";
static char laserenergy_PCTC] =" Laser Energy ";
static char singleshotmode_PCTC] =" Single Shot Mode *;

'•• ••....••• ..*♦.♦ ♦ • /
'• •••• • •••••••••• ** /
'•• • •••••.•• ♦ *♦* *••♦/

'••• * • ♦ /

abcexposeC) {
char retu_c;
int count_i,pointcount_i=Oj
FILE *outfile;
char filename_pcC80],userl_pcC803, user2_pcC80], temp_pcC80];
double totalenergyi_dsO,totalenergyt_d=5, totalenergyr_d=0;
double energyi_d,energyt_d,energyr_d;
int datapolnt i;
WINDOW disp_pw;
defs_wn(&disp_pw,2,2,18,76,BDR_DLNP);
sw name(bleachinameasurement PCT.&diso dw):

s*_popup(ON, &disp_pw);
set_wn(&disp_pw) ;""
if <laserready(bleachingmeasurement_PCT)== TRUE
&& testfire(bleachingmeasurement_PCT)==TRUE &&
^5!eaShin«(w^?aK W?fer/' "Load »«*«" ^ bleaching measurement",^Bleaching will begin at press of a key.","Press 'A' to abort")!='A')
openshutter();

wh??«n?f(fdf8P-P!' "Incident En^rgy ^/.Transmitted xXSeflected \n")•{ while (pointcount.i<2000 && totalenergyi__d <config_u.configlst^measdensld)
pulsetoenergy(config_u.config_st.ehigh.d,&pulsecount piC pointcount i3,

&energyi_pdCpointcount_i3, " J'
&energyt_pdCpointcount_i3,&energyr pdtpointcount 13 >•l°lltl™/(l*y=t°^^ ntcount_i3 ,

v_printf<&disp_pw, "•/.*11.4fmJ/cm2 %6.2f y.6.2f \n"
_i], totalenergyi_d, lOCenergyt_pdCpointcount_i3/energyi_pdC pointcount

pointcount^o^
} "

while (pointcount i<2000 && totalenemvi h < ^««^4« .

&energyi_pdCpointcount 13, ~

totaleneravi&S-?o?n-PdCP°^n!COUnt:i]' &energyr_pdCpointcount 13);
v_printf(&disp_pw, "•/.*!!. 4fmJ/cm2 %6. 2f %£. 2f \n"

_13, tOtalenergyi-d'100#ener9yt-PdCpointcount_i3/energyl_pdCpointcount

pointcoun^po^^^
closeshutter();
graphbleachdata<pointcount_i,totalenergyi d):
WhJif <sayedata(&°«tfile,bleachingmeasurement PCT,

Bleaching measurement data for photo resist",
nt% T°tal *«"««" energy, percent transmission, percent reflection, pulsecou

filepost_bleach PC) == l)
{

totalenergyi_d=0;
for (count_i=0; count_i<pointcount i; count i~> {
totalenergyi_d=totalenergyi_d+ene'rgyi pdCcount 13:
fprintf(outfile,-/.+ll.4f x*ll. 4f Lll. 4f X5I\n",

llnlllener9y±-d'10°#ener9yt-pdCcount-i3/e^rgyi pdCcount 13
; 100*energyr_pdCcount_i3/energyi_pdCcount.i3, P^counTp^Ccount_i3 >

>

fclose(outfile);
>

}

unset_wn <&disp_pw);

testfire(title_pc)
char »title pc;
{

int key_i=0;
int retu i=0;
WINDOW disp_pw;
double detectors_pdCMAX DET3;
int count_i; ~
bool looping_b=TRUE;
closeshutterT) ;
defs_wn(&disp_pw,16,2,6,76,BDR DLNP);
sw.popup(ON, &disp .pw);

sw_name<laserenergy_PCT, &disp_pw) ;
set_wn(&disp_pw);
while (looping_b==TRUE) {

if (genmessage(title_pc,"Ready to test laser pulse energy",
"Laser will fire when you press a key",
"Press 'A' to abort")=='A')
{

looping_b=FALSE;
retu_i=0;
}

else <

key_i=0;

while (key_i==0> {
firelaser();
readdet(detectors_pd);
printdetdata(detectors_pd,&dlsp pw);
key_i=ki chk();
}

key_i=ki<);

retu_i=querybool(title_pc,"Energy of laser.", "",
"Are these energies acceptable (Y/N>:",1);

if <retu_i==l> {
looping b-FALSE;
}

}

}

unset_wn <&disp_pw);
return <retu_i);
}

fireone(pass_pc)
char »pass pc;
{

double detectors_pdCMAX_DET3;
int count_i;
WINDOW disp_pw;
char ch_c=' ';
if (laserready(singleshotmode_PCT)==TRUE) {
defs_wn(&disp_pw,10,2,10,767BDR_DLNP>;
sw_popup(0N,&disp_pw);
sw_name(singleshotmode_PCT,&disp_pw);
set_wn(&disp_pw);
while <ch_c«' ') {

firelaser();
readdet(detectors_pd);
prlntdetdata(detectors_pd,&disp_pw>;
ch_c=ki();
>

unset_wn(&disp pw);
}

return(O);
>

f ireaverageK) {
if (laserready<averagefiremode_PCT)==TRUE) {

fireaverage(config_u.config st.average count i);
>

}

flreaverage(pulsecount_i)
int pulsecount_i;
{

double detectors _pdC MAX _DET 3;

FILE *outflle;
double total_pdCMAX_DET3;
int count i,count2_i;
WINDOW disp_pw;
char ch_c=' ';

for <count2_ls0; count2_i<3; count2 if*) {
total_pdCcount2 i3=0;~
}

defs_wn(&disp_pw,2,2,18,76,BDR_DLNP);
sw_popup<ON,&disp_pw);
sw_name<averagefiremode_PCT, &disp_pw);
set_wn<&disp_pw);
for (count_i=0; count_i<pulsecount_i; count i++) {

firelaser();
readdet(detectors_pd);
for (count2_i=0; count2_i<3; count2 i++) {
total_pdCcount2_i3=total_pdCcount2_i3+detectors_pdCcount2_i 3;

energyi_pdCcount_i3=detectors_pdC03;
energyt_pdCcount_i 3=detectors~pdC13;
energyr_pdCcount i3=detectors~pdC23;
v_printf<&disp_pw, "7.4d: 7.6. 2f~7.6. 2f ", count H-l,

100*energyt_pdCcount_i3/energyi_pdCcount i3,
100*energyr_pdCcount_i3/energyi~pdCcount~i3);

printdetdata(detectors_pd,&disp_pw);

for <count2_i=*0; count2_i<3; count2_i++) {
total_pdCcount2_i3=total_pdCcount2_l3/count_i;

if <total_pdC03l=0) v_printf(&disp pw, "Avg: 7.6. 2f 7.6. 2f "
100»total_pdC13/total pdC03, '
100*total_pdC23/total"pdC03);

else v_printf(&disp_pw,"Avg:" »>.
printdetdata(total_pd, &disp_pw);
v_printf(&disp pw,"Press a key:");
ch_c=ki();

while (savedatat&outfile,averagefiremode PCT,
"Detector data",

ed", "PUlSe n°' incldent energy, transmitted, reflected, 7.7.transmitted, XXreflect
filepost_pulse PC) == l)
{

for <count_i=0; count_i<pulsecount_i; count !•►♦) {
fprintf(outflle, "7.5i 7.+U. 4f 7.+11. 4f 7.+11. 4f 7.6. 2f 7.6. 2f\n"

count_i+l,energyi_pdCcount_i3, energyt pdCcount 13.
energyr_pdCcount_i3,
100*energyt_pdCcount_i3/energyi pdCcount_i 3,
100*energyr_pdCcount_i3/energyi~pdCcount_i3);

fclose(outflle);
}

unset_wn<&disp_pw);
return(O);
>

firecont <pass_pc)
char *pase_pc;
{

double detectors_pdCMAX_DET3;
int count_i;
WINDOW disp_pw;
int key_i=oJ
if <laserready(continuouafiremode PCT)==TRUE) {
defs_wn(&disp__pw, 2, 2, 18, 76, BDR DLNP);
sw dooud<0N,&diso dw):

sw_name<continuousfiremode_PCT, &disp_pw);
set_wn(&disp_pw);
while (key_i==0) {

firelaser();
readdet(detectors_pd);
printdetdata(detectors pd,&disp_pw);
key_i=ki chk();
)

key_i=ki();
key_i=ki<);
unset_wn(&disp pw);
>

return(O);
)

drmexpose(pass_pc)
char *pass pc;
{

int count_i,pointcount_i;
FILE »outfile;

char filename_pcC80 3,userl pcC803,user2 pcC803,temp pcC803;
WINDOW disp_pw;
defs_wn(&disp_pw,2,2,18,76,BDR_DLNP);
sw_name(drmexposure_PCT,4disp_pw);
sw_popup(ON,&disp_pw);
set_wn <&disp_pw);
if (editdrmparams()!=-l && laserready(drmexposure_PCT)== TRUE

&& testfire<drmexposure_PCT)==TRUE &&
genmessage(drmexposure_PCT,"Load wafer for DRM exposure pattern",
"Exposure will begin at press of a key.", "Press 'A' to abort")1 ='A')
{

v_printf(&disp_pw, "Aligning stage please wait....\n">;
findhomed);

stepleft <1,config_u.conflg_st.drmstart_i);
for (pointcount_i=0; pointcount Kconfig u.config st.steps_i; pointcount ±++

) {

v_printf <&disp_pw, "Target energy=7.fmJ/cm2 ", config_u.config_st.targetener
gy_pdCpointcount_i3); ""

pulsetoenergy(config_u.config_st. targetenergy_pdCpointcount_i 3,
&pulsecount_plC pointcount_i 3,
&energyi_pd Cpointcount_i 3,
&energyt_pdCpointcount_i3, &energyr_pdCpointcount_i3);

v_printf<&disp_pw," Actual=XfmJ/cm2", energyi_pdCpointcount_i3);
v_printf(&disp_pw," Shots=Xi\n", pulsecount_plCpointcount_i3);
steprightd, config u.config_st. drmstepsize i);
>

while (savedata(&outfile,drmexposure_PCT,
"DRM exposure data",
"Rectangle No, Incident energy, Transmitted energy, Reflected energy, Puis

e count",

filepost_drm_PC) == 1)
{

for <count_i=0; count_i<pointcount_i; count_i+f) {
fprintf (outfile, "X4i %+U. 4f 7. +11. 4f X+ll. 4f 7.5i\n",

count_i*l,

energyi_pdCcount_i 3,energyt_pdCcount_i 3,
energyr_pdCcount 13,pulsecount piCcount 13);

}

fclose(outfile);
>

>

unset_wn(&disp pw);
}

calibrate() {

}

/

/* expmenu.c #/

'••••• ••• — .****...** . „„#/
/* SYSTEM INCLUDE FILES #/
' •••••••.••••..•••.•„ „.'
#include <math.h>

#include <stdlib. h>
#include <stdio.h>

#include <string. h>
#include <ctype. h>

/»♦••*♦.♦.♦...♦♦»»•♦♦***#*»*#*» ♦»###»*#»#,»,#»########»###1>###1^#

/* OTHER INCLUDE FILES
/»»..».•»•••••»»»»•«»«•••#*♦*»***»»•#*#»♦♦♦*♦♦»♦»♦♦,»»»»»»»»»»»».

#include <general. h>

#define WN_DEBUG /• enable window debugging system */
#define F_FLOAT /# enable floating point in WFD »/
#include <wfd.h>

#include "expconf. c"

/» GLOBAL FORMS FOR WINDOWS FOR DATA
/••♦♦•♦♦♦♦♦♦♦♦♦♦♦♦♦#########»i>############################^####^####^^^^^^

DFORMPTR main_pfm;

n!r2o2o™ 5ke>rs-Pf,n'* /• form for function key window ./
DFORMPTR fback_pfm;

/♦»*****♦♦♦♦♦♦*♦♦.»♦*.*»»♦•*♦♦*♦♦♦♦♦♦♦♦,♦*♦».#»#»###############

/* FUNCTION DEFINITIONS
/•••••••♦•»**••#•••*•••••••##•»•######,»##iMMMr###########

int firecontO, fireoneO, drmexpose(), exitmenu(), fireaveragel();
int toggleshutter(),steplef11<),steprightl<), openshutter(>,closeshutter();
int manualmenu(),edithardparams(),editdetparams(>;
int abcexpose(), editabcparams<),editdrmparams <), editmiscparams <);
int loadparams(), saveparams<),calibrate();
int gainO(),gainl(),firesignalO<), firesignall<);
int findhomeK);

/» GLOBAL STRING DEFINITIONS
/•♦♦*.♦***#**##»••»*.♦•...»..,

*/

*/

*/

*/

*/

./

*/

»/

*/

»/

*/

static char commandline_PCC3="F3=Undo F5=Clear F10=Done
"PGUP=Moveleft PGDN=Moveright ESC=Abort";

static char picture_float_PCC 3="######@#####E####";
static char picture_int_PCC3="999999";

xxxxxxxxxxxxxxxx"Te-BtrIng60-PCu=nxxxxxxx*xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
static char numbers_PCC213C43 ={"0: ","1: ","2: ","3: ","4: ","5: » "6: "

"7: ","8: ","9: ", "10: ", "11: ",' "12: *\ "13: \
"14:","15:","16:","17:","18:","19:","20:"};

extern union config_type_union config_u;
extern char expdescl pcC823:

extern char expdesc2_pcC823;
extern char expdesc3_pcC82 3;
extern char expdesc4~pcC823;

extern' char ecsparam_path_pcC823;
extern char ecsdata_path_pcC823;

/»*»•»«•»*•...♦♦*♦»»•♦♦*♦#♦##**##*#*♦♦♦♦*»*♦♦♦♦♦♦#######»#»###

/...•••••»*•••••••**♦♦♦*..»#♦»•#♦»**#♦*#♦♦*♦♦#*♦♦♦♦»♦♦♦*»»»»»»

/»*.•»•••»•*••••»•*»•*»••#*♦#♦♦*♦»»♦♦♦♦♦♦♦»,.»«.»„»»#»##########
/*»•»«»••*•»»••••*»»•••»•***«,»«*»»,•»#♦**•♦#*♦♦♦♦♦♦♦♦*♦**♦»»»

initwindows() {

int retu_i=0;
init_wfdT);
mod_wn(16, 0,7,80,&help_wn);
sw_name(" Help Window ",&help_wn);
mod_wn(23,0,1, 80, &msg_wn);
mod_wn(23,0,1,80, &mnu_msgw);
mod_wn<23,0,1, 80, &err_wn);
se_fldopt<F_INT, RTADJUST+CLEAR);
se_fldopt(F_FL0AT,RTADJUST+CLEAR);
se_fldopt(F_L0NG,RTADJUST*CLEAR);
maln_pfm = fm_def(0,0,23,80,LNORMAL, BDR_DLNP);
sw_name(" Exposure Characterization System ", main_pfm->wnp);
sw_namelocation(TOPCENTER,main_pfm->wnp);
fm_up(main_pfm);
fkeys_pfm = fm_def(24,0,1,80,LREVERSE, BDRJDP);
sfm_opt <F0RMCLEAR, OFF, fkeys_pfm);
ftxt_def(0,0,commandline_Pc7LREVERSE, fkeys_pfm);
se_mnmsg(MANUAL); "
pl_mnmsg(23, 0);
fback_pfm = fm_def(23,0,1,80,LNORMAL, BDR_0P);
fm_up(fback_pfm);
return <retu_i);
>

endwindows() {

fm_dn(main_pfm) ;
fm_free(main_pfm);
fm_free(fkeys_pfm);
fm_dn(fback_pfm);
fm_free<fback_pfm);
return(O);
>

menu() {

DFORMPTR menu_pfm;
menu_pfm=mnfm_def(5,15,15,50,LNORMAL, BDRJDP);
sfm_opt <MNTOPESCAPE, OFF, menu_pfm);
mnf_def(1,1,"A) Edit DRM exposure parameters",

"Edit the parameters associated with DRM exposure",
NULLP,editdrmparams,menu_pfm>;

mnf_def(2,1,"B) Generate DRM exposure matrix",
"Fire the laser and move the wafer while recording exposure dose",
NULLP,drmexpose,menu_pfm>;

mnf_def(3,1,"O Edit bleaching parameters",
"Edit the parameters associated with bleaching measurement",
NULLP,editabcparams,menu_pfm);

mnf_def(4,1,"D) Perform bleaching measurement",
"Measure the bleachinq of photo-resist".

NULLP,abcexpose,menu_pfm);
mnf_def(5,1,"E). Edit detector parameters",

"Edit the parameters associated with the detectors",
NULLP,editdetparams,menu_pfm);

mnf_def(6,1,"F) Edit hardware parameters",
"Edit the parameters associated with the hardware",
NULLP, edithardparams,menu_pfm);

mnf_def<7,1,"G) Edit misc parameters",
"Edit parameters",
NULLP,editmiscparams,menu_pfm);

mnf_def(8,1,"H) Load parameter set",
"Load a configuration file",
NULLP, loadparams,menu_pfm);

mnf_def(9,1,"I) Save parameters set",
"Save a configuration file",
NULLP,saveparams,menu_pfm);

mnf_def(10,1,"J) Manual~Operations",
"Manually operate the system",
NULLP, manualmenu,menu pfm);

mnf_def(12, 1, "X) Exit",""
"Exit the program",
NULLP,exitmenu,menu_pfm);

mn_proc(0,menu_pfm);
fm_free(menu_pfm);
return<0);
}

manualmenu() (

DFORMPTR menu_pfm;
menu_pfm=mnfm_def(5,15,17,50,LNORMAL, BDR OP);
sfm_opt(MNTOPESCAPE, OFF, menu_pfm);
mnf_def(1,1,"S) Single shot mode",
"Fire a single shot with each press of spacebar and record energy",
NULLP, fireone,menu_pfm);

mnf_def(2, 1, "O Continuous fire mode",
"Fire the laser and display the energy of each detector",
NULLP,firecont,menu_pfm);

mnf_def(3,1,"M) Multiple/average shot mode",
"Fire the laser a specified number of time and average the energy",
NULLP, fireaveragel, menu_pfm);

mnf_def(4,1,"0) Open shutter",
"Open shutter",
NULLP,openshutter, menu_pfm>;

mnf_def(5, 1, "O Close shutter",
"Close shutter",
NULLP,closeshutter, menu_pfm) ;

mnf_def(6,1,"L> Move left",
"Move wafer stage left",
NULLP,stepleftl, menu_pfm);

mnf_def(7,1, "R) Move right",
"Move wafer stage right",
NULLP,steprightl, menu_pfm);

mnf_def(8,1,"A) Align stage and move to home position",
"Move stage to its home position and calibrate",
NULLP,findhomel,menu_pfm);

mnf_def(9,1,"O Calibrate diodes to each other",
"Calibrate two diodes",
NULLP,calibrate,menu_pfm);

mnf_def(10,1,"0) Set fire signal = 0",
it n

t

NULLP,firesignalO,menu_pfm);
mnf_def(11,1,"1) Set fire signal = 1",

n i»
t

NULLP,firesignall,menu_pfm);
mnf def(12.1."2) Set caoacitor aain = 0".

NULLP,gainO, menu_pfm);
mnf_def(13,1,"3) Set capacitor gain = 1".

NULLP,gainl, menu_pfm);
mnf_def(14,1,»X) Exit to main menu",

"Exit the menu",
NULLP,exitmenu, menu_pfm);

mn_proc(0,menu_pfm);
fm_free(menu_pfm);
return(0);
)

editdetparams(pass_pc)
char .pass pc;
{

int count_i;

static char calibration_PCC3="Calibration (mJ/V)";
static char aperature_PCC3="Aperature (cm2)";
static char scaling_PCC3="Scaling Factor";
int retu_i=l;
DFORMPTR~form_pfm;
DFIELDPTR temp_pfd;
unset_wn(&mnu_msgw);
form_pfm * fm_def(2, 2, 20,76,LNORMAL, BDR DLNP);
sfm_opt(CURSORFREE,ON,form pfm);
sfm_opt(VERIFYEXIT,OFF,form_pfm);
sw_name(" Detector Data ",form_pfm->wnp);
ftxt_def(1, 15,calibration_PC,LNORMAL, form pfm);
ftxt_def(1, 37, aperature.PC,LNORMAL,form_pfm);
ftxt_def(1, 58,scaling_PC,LNORMAL,form_pfm);
for (count_i=0; count_i<MAX_DET; count_i**) {
ftxt_def(count_i*2,1,"Detector", LNORMAL, form_pfm);
temp_pfd=fld_def(count_i-»-2, 15, numbers PCCcount i+13,
FADJACENT,picture_float_PC, F_FL0At7
(char ♦) &config_u.config_st. det_calib_pdCcount 13, form pfm);

fld_tdef(temp_pfd,count_i*2,35, "", FADJACENT, picture_float_PC, F_FL0AT,
(char ♦) &config_u.config_st.det_apera_pdCcount_iT, form pfm)7

fld_tdef(temp_pfd,count_i+2,55, "", FADJACENT, picture_float_PC, F_FL0AT,
(char ♦) &config_u.config_st. det_scale_pdCcount_i7, form_pfm);

fld_tdef(temp_pfd,11,1,"A/D High Voltage: ", FADJACENT,
picture_float_PC, F_FL0AT,
(char ♦) &config_u.config_st.high_voltage_d, form_pfm);

fld_tdef(temp_pfd, 12, 1,"A/D Low Voltage: " ", FADJACENT,
plcture_float_PC, F_FL0AT,
(char ♦) &config_u.config_st.low_voltage_d, form_pfm);

fld_tdef(temp_pfd, 13, 1, "A/D Resolution: " ~", FADJACENT,
picture_float_PC, F_FL0AT,
(char *) &config_u.config_st. noc_d, form_pfm);

fld_tdef(temp_pfd, 14, 1, "Active Detector Channel 1: ", FADJACENT,
picture_int_PC, F_INT,
(char *) &config_u.config_st.detchannel_iC03, form_pfm);

fld_tdef(temp_pfd,15,1,"Active Detector Channel 2: "7FADJACENT,
picture_int_PC, F_INT,
(char ♦) &config_u.config_st.detchannel_iC13, form_pfm);

fld_tdef(temp_pfd,16,1,"Active Detector Channel 3: "7FADJACENT,
picture_int_PC, F_INT,
(char *) &config_u.config_st.detchannel_iC23, form_pfm);

fm_up(fkeys_pfm); ~
fm_proc(0, form_pfm);
fm_free(form_pfm);
fm_dn(fkeys_pfm);

return(retu i);

edithardparams(pass_pc)
char *pass_pc;
{

int retu_i«0;
DFORMPTR~form_pfm;
DFIELDPTR temp_pfd;
unset_wn(&mnu_msgw);
form_pfm = fm_def(2,2,20,76,LNORMAL, BDR DLNP):
sfm_opt(VERIFYEXIT,OFF,form pfm);
sw_name(" Hardware Data ",form_pfm->wnp);
temp_pfd = fld_def(1,1,"Fire Delay Count High:

picture_int_PC, F LONG,

*lrfC!Sr*ri &COn5ig-"-confi9-st-fi^_delay_counth_l, form
fld_tdef(temp_pfd, 2,1, "Fire Delay Count Low:

picture_int_PC, F_L0NG,

f '°J;r*| &c°nfig_u.config^st.fire,delay_countl 1, form
fld_tdef(temp_pfd,5,1,"A/D Board Type: "

picture_int_PC, F_INT,

fldC^L^ &con^9-"-con:fi9-St.board_type_i, form pfm);
fld_tdef(temp_pfd,6,1,"A/D Microcode Revision:

picture_int_PC, F INT,

flrf°?3Lri &<=onfig u. config.st. microcode,!, form pfm);
fld_tdef(temp_pfd, 8,1,"Stepper motor rate:

picture_int_PC, F INT,

fld°tdL^ icon5iV;confi9-St.stepperrate_i, form pfm);
fld_tdef(temp_pfd,9,l,"Stepper motor factor:

picture_int_PC, F INT,

fld^LJi &COn5i97^ confia-8t. stepperfactor.i, form pfm)fld_tdef(temp_pfd,10,1,"Stepper motor slope:
picture_int_PC, F INT,

fl^nl/tl &c°n5i9-^ config_st. stepperslope.i, form pfm);
fld_tdef(temp_pfd,11,1,"Manual step size:

picture_int_PC, F_INT,

fi^U'/i &confia-"« confief-st. manualstepsize i, form pfm
fld_tdef(temp_pfd,12,1,"Auto step size: "

picture_int_PC, F_INT,
fiiC^%ri &°onfig_u. config_st. autostepsize i, form pfm);
fld_tdef(temp_pfd,13,1,"Stepper ready delay?
picture_int_PC, F_INT,

riL**?***.! &COnf±9-"* confifl-st- readydelay i, form pfm)-
fid tdef(temp_pfd,14,1,"Stepper operate delay:

picture_int_PC, F LONG,

fldCtaL^ &C°nfi97^ C°nfi9-St* stepperdelay_l, form pfm);
fld_tdef(temp-Pfd,15,1,"Center offset (milsT:

plcture_int_PC, F INT,

1*IZ"C£*1£U-Z- °0n£l9-St- -ntero«Set.l(torm.pf.,,
fm_proc(0,form_pfm);
fm_free(form_pfm);
fm_dn(fkeys_pfm);
return(retu_i);

editdrmparams()
{

bool reply_b=0;
int retu_i=0;
int count i;
DFORMPTR form_pfm;
DFIELDPTR temp_pfd;
unset_wn(&mnu_msgw);
form ofm = fm def(2.2.20.76.LNORMAL. BDR DLNP):

",FADJACENT,

.pfm) ;

",FADJACENT,

pfm) ;

",FADJACENT,

",FADJACENT,

",FADJACENT,

",FADJACENT,

J

",FADJACENT,

",FADJACENT,

",FADJACENT,

",FADJACENT,

",FADJACENT,

",FADJACENT,

>?

sfm_opt(FORMCLEAR,OFF,form pfm);
sfm_opt(VERIFYEXIT,OFF,form pfm);
sfm_opt(CURSORFREE, ON, form_pfm) ;
sw_name(" DRM Exposure Data ",form_pfm->wnp);
temp_pfd = fld_def(l,1,"Start Energy (mJ/cm2)

picture_float_PC, F_FLOAT,
(char •) iconfig_u.config_st.startenergy_d, form pfm);

fld_tdef(temp_pfd,2,1,"End energy (mj/cm2):
picture_float_PC,F_FLOAT,
(char ») iconfig_u.config_st.endenergy_d, form_pfm);

fld_tdef(temp_pfd,3,1,"Number of exposure sites:
picture_int_PC,F_INT,
(char ») &config_u.config_st.steps_i, form pfm);

fld_tdef(temp_pfd,4,1,"Mode (0=Arith"l=Exponential 2=Manual)
picture_int_PC,F_INT,
(char ») &config_u.config_st.sequence_i, form_pfm);

fld_tdef(temp_pfd,5,1,"Starting distance from center (mils):
picture_int_PC, F_INT,
(char *) &config_u.config_st.drmstart_i, form pfm);

fld_tdef(temp_pfd,6,1,"Step size (mils):
picture_int_PC, F_INT,
(char .) &config_u.config_st.drmstepsize_i, form_pfm);

ftxt_def(7,1,"Exposure Energy Target Values:", LNORMAL,form pfm);
for (count_i=0; count_i<10; count_i+*) {
temp_pfd=fld_def(count_i«-8,15,numbers PCCcount_i«-13,
FADJACENT,picture_float_PC, F_FL0At7
(char *) &config_u.config_st. targetenergy_pdCcount_i 3, form_pfm);

temp_pfd=fld_def(count_i+8,45,numbers PCCcount i+1137
FADJACENT,picture_float_PC, F_FL0AT7
(char *) &config_u.config_st. targetenergy_pdCcount_i+10 3, form_pfm);

fm_up(form_pfm);
while (reply_b==0 && retu_i==0) {

fm_up(fkeys_pfm);
if (fm_rd(0, form_pfm)== EXIT_FORM) {

calcenergy();
fm_upd(form_pfm);
fm_dn(fkeys_pfm);
if (querybool2("Are these parameters acceptable? (Y/N):",1)==1) (

retu_i=l;
}

}

else {

fm_dn(fkeys_pfm);
retu_i=-l;
>

}

fm_dn(form_pfm);
fm_free(form_pfm);
return(retu_i);
>

editabcparams(pass_pc)
char .pass pc;
{

int retu_i=0;
DFORMPTR~form_pfm;
DFIELDPTR temp_pfd;
unset_wn(&mnu_msgw);
form_pfm = fm_def(2,2,20,76,LNORMAL, BDR DLNP);
sfm_opt(VERIFYEXIT,OFF, form_pfm) ;
sw_name(" Bleaching Data ",form_pfm->wnp);
temp_pfd = fld_def(1, 1, "Maximum~"dose:

picture_float_PC, F_FL0AT,
(char *) &confia u.confia st.maxdose d. form ofm):

FADJACENT,

",FADJACENT,

FADJACENT,

FADJACENT,

FADJACENT,

FADJACENT,

FADJACENT,

fld_tdef(temp__pfd, 2, 1, "Measurement density drop off point: n, FADJACENT,
picture_float_PC, F_FLOAT,
(char •) iconfig_u.config_st.measdens_d, form_pfm);

fld_tdef(temp_jpfd, 3, 1, "Energy per measurement (high dens):",FADJACENT,
picture_float_PC, F_FLOAT,
(char *) iconfig_u.config_st.ehigh_d, form_pfm);

fld_tdef(temp_pfd, 4, 1, "Energy per measurement (low dens): ", FADJACENT,
picture_float_PC, F_FLOAT,
(char ♦) &config_u.config_st.elow_d, form_pfm);

fm_up(fkeys_pfm); ~ ~
fm_proc(0, form_pfm);
fm_free(form_pfm);
fm_dn(fkeys_pfm>;
return(retu_i);
}

editmlscparams(paas_pc)
char .pass pc;
(

int retu_i=0;
DFORMPTR form_pfm;
DFIELDPTR temp_pfd;
unset_wn(&mnu_msgw);
form_pfm = fm_def(2,2,20,76,LNORMAL, BDR_DLNP);
sfm_opt(VERIFYEXIT,OFF,form_pfm);
sw_name(" Miscellaneous Data ",form-pfm->wnp);
temp_pfd = fld_def(l,1,"Average Mode Count: ",FADJACENT,

picture_int_PC, F_INT,
(char.*) 4config_u.config_st.average count 1, form pfm);

ftxt_def(3,1," Session Data: ",LNORMAL,form_pfm);
temp_pfd=fld_def(4, 1,"Line 1: ",FADJACENT, picture_string60_PC,F_STRING,

(char *) expdesc3_pc, form pfm);
sf_opt(INITIALBLANKS+RTADJUST,0FF7temp_pfd);
fld_tdef(temp_pfd,5,1,"Line 2: ",FADJACENT, picture_string60_PC,F_STRING,

(char ») expdesc4_pc, form_pfm);
ftxt_def(7,1, " Experiment Data: "7LN0RMAL, form pfm);
fld_tdef(temp.pfd,8,1,"Line 1: ",FADJACENT, picture_string60_PC, F_STRING,

(char •) expdescl_pc, form_pfm);
fld_tdef(temp_pfd,9,1,"Line 2: ",FADJACENT,picture_string60_PC,F STRING,

(char ») expdesc2_pc, form_pfm);
fld_tdef(temp_pfd,11,1, "Data path! " ,FADJACENT, picture_string60_PC,F STRING,

(char *) ecsdata_path_pc, form_pfm);
fld_tdef(temp_pfd, 12,1,"Param path:", FADJACENT,picture_string60_PC,F STRING,

(char *> ecsparam_path_pc, form_pfm);
fm_up(fkeys_pfm);
fm_proc<0,form_pfm);
fm_free(form_pfm);
fm_dn(fkeys_pfm);

i-2000°nf±9""U# COnfig-st-average_count_i >2000) config_u.config_st.average_count
directory(ecsparam_path_pc);
directory(ecsdata_path_pc);
return(retu_i);
>

exitmenu(pass_pc)
char .pass pc;
{

return(-2);
}

calcenergy() {
double addon d.base d:

int count_i;

if (config_u. config_st. steps_i < 1) return (-1);
if (config_u. config_st.sequence i==2) return(O);
for (count_i=0; count_i<20; count_l++) {
config_u.config_st.targetenergy~pdCcount_i3=0;

config_st.sequence_i==0) {
nfig_st. targetenergy_pdC03 =config_u.config_st.startenergy d;
nfig_st.targetenergy_pdCconfig_u.config_st.steps_i-l3 =config_u.co

if (config_u.config_st.steps i<3) return(O);
w^od??n"d ° (°onfi?-u:config-st.endenergy_d - config_u. config_st. startenergy d
)/(config_u.config_st. steps_i-l);

for (count_i=0; count.Kconfig_u. config st. steps i-1; count ±++) {
config u.config_st.targetenergy_pdCcount_i3=config_u.config st.startenergy

(count_i)»addon_d; 7

if (config_u.config_st.sequence_i==0)
config_u. co"*4 - ~*• * -*- ~
config_u. co _,_

nfig_st.endenergy_d;

_d

}

>

if (config_u.config_st.sequence_i==1)
i^rtn^^ <-r it **n*\<^-4 *« —••». 4-.. ___.•. , r

icomig_u. config_st. sequence_i==l) <

config_u.config_st.targetenergy_pdC03=config_u.config st.startenergy d;
config_u.config_st.targetenergy_pdCconfig_u. config st.steps i-13=confiq u.

nfig_st. endenergy_d; " "
if (config_u.config_st.steps_i<3) return(O);
addon_d= config_u.config_st.startenergy_d-l. 0;
base_d=pow(config_u.config_st.endenergy^d - addon_d, (double)

(1. 0/((double)config_u.config_st. steps_i-l. o7));
for (count_i=0; count_i<config_u. conflg_st. steps_i-l; count I**) {
config_u.config_st.targetenergy_pdCcount_i3=addon_d*pow(base d,count i);

>

return(O);
}

stepleftK) {

stepleft(1, config_u.config_st.manualstepsize i):
)

steprightK) <

stepright(1,config_u.config_st.manualstepsize_i);

findhomel() {

findhome(1);
}

co

/♦.••..••♦*•».•.♦••••••••♦•♦♦♦••♦♦♦♦##»»»»»###############*»»»»########«>.

/* expose.c

/• EXPOSURE CHARACTERIZATION SYSTEM CONTROL PROGRAM */
/• VERSION 1.0 »/
/* DEAN M. DRAKO #/
/* 9-17-88

/♦ U. C. Berkeley #/
/♦♦•.****♦#*##*#**•*♦»#**♦•**»*♦♦♦••••• • •*•••••*•*...-.«.« ^ __.

/

*/

/

/

/♦

♦ /

/

/

/* HARDWARE DESCRIPTION #/

This program is designed to operate with a specific hardware
configuration. The hardware is briefly summarized here.

A DATA I/O 2S01_A Digital to Analog and I/O card is needed.
This card is used to control firing of the laser (through the
laser trigger input), to open and close the shutter,
and also to read the power measurements from the
diode detectors. A device driver must be installed in the system for
these routines to properly function. The device driver is named
"pcldrv.sys". It must be in the root directory. The following line
must be in the config.sys file: "device=pcldrv.sys". This will
install the device driver when the system is powered on. The
connections to the DATA I/O card are as follows:

A/D port 0: diode detector #1
A/D port 1: diode detector #2
A/D port 2: diode detector #3

Digital I/O port 0: (configured as output)
Bit 0: Laser Fire trigger & diode detector trigger
Bit 1: Shutter operation
Bit 2-4: diode module gain
Bit 5-7: not used

Digital I/O port 1: (configured as input)
Bit 0-7: not used

TECMAR stepper motor controller with two Cyber Microsystems CY512
stepper motor controllers is used in the system to control the stepper
motors. The board is configured for 1/0 address hex 2C0. No additional
software is needed for this board. The board has three cables which
go to an interface board which actually powers the motors. The TECMAR
board also has several digital inputs which are connected to the
limit switches of the linear stages.

Stepper motor 1: linear stage 1 control
Stepper motor 2: linear stage 2 control

SOFTWARE DESCRIPTION

The software was written in Microsoft C 5. 0. A general window package
(Windows for Data) from Vermont Creative software was used for the
window generation. The following modules make up the entire software
suite: expconf.c -- global variable definitions
^ expfunc.c -- actual functions performed by system

expmenu.c -- menus

expose.c -- the main program
filer.c -- file operations sub-routines
graphics.c -- graphics routines
laser.c -- laser related routines
pclerrs.c -- error info for DT2801
auerv.c -- subroutines that auerv the imor

stepper.c -- stepper motor controller sub-routines
expose.mak -- make file used to automatically build program

wfdl.lib -- windows for c library
wfcl.lib -- another windows for c library
pcc411ib.lib -- library for DT2801 card

*'

' * 1/

/.•.••••••••••••••••♦.•„„##.„„##,„1I####„.##„##,# ..♦♦..*•,•.♦♦/

/. SYSTEM INCLUDE FILES #/
/••••••• **** * *• ../
#include <string.h>

/••••••*• ♦♦••• *. —/
/• OTHER INCLUDE FILES »/
/•••••♦• **** **»*»* » * ••...••♦.•./
#include <general.h>

^include "expconf.c" /* configuration structure »/
#define WN_DEBUG /* enable window debugging system ./
#define F_FLOAT /♦ enable floating point in WFD •/
#include <wfd.h>

#include <wfd_glob.h>

/

/* GLOBAL VARIABLES

/

double energyi_pdC2000 3;
double energyt_pdC2000 3;
double energyr_pd C2000 3;
long pulsecount_plC20003;

char expdescl_pcC823;
char expdesc2_pcC82 3;
char expdesc3_pcC82 3;
char expdesc4_pcC82 3;

static char blankSO PCC3="

char ecsdata_path_pcC82 3="C: WecsWecsdata" ;
char ecsparam_path_pcC82 3="C: WecsWecsparam" ;

union config type_union config_u =
1660,

1,
20,

10.0,

-10.0,

1,
4096.0,

0,

0,

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
(1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
(1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, l.(

1.0, l.(

1.0, l.(

100000,

(0,1,2,3,4,5,6,7),
10.

1.0,

1.0,

1.0,

0>,

0),

1.0),

••/

♦ /

*/

100,

o,
10,

{10, 20, 30,40,50,60,70,80,90, 100,110,120, 130, 140, 150,160,170, 180,190,200),
OxaO,

16,

1,
100,

100,
3000,
30000,

2040,

1500,

250,

0. 1,

O. 01,

2000, •

100,

};

/• MAIN .*****♦.....***♦*♦♦**♦./

' :
main() {

int retu_i=0;
strcpy(expdescl_pc,blankSO_PC)
strcpy(expdesc2_pc, blankSO_PC)
strcpy(expdesc3_pc,blankSO~PC)
strcpy(expdesc4_pc,blankSoIPC)
initwindows();
initgraphics();
retu_i=initpclab();
if (retu_i==0) (

endwindows();
exlt(-l);
}

closeshutter();
directory(ecsdata_path_pc);
initstepper();

getexpdata(" Experiment Session Data ",
"Enter the experiment session description data:",
expdesc3_pc,expdesc4_pc);

menu();

endwindows();
)

/* filer.c m/
/♦ file related functions for expose.c »/

' • * • * /

' * ♦ /
/• SYSTEM INCLUDE FILES ./

' I
#include <stdlib.h>

#lnclude <stdio.h>

#include <fcntl. h>

^include <sys\types. h>
#include <sys\stat.h>
#include <io.h>

^include <string.h>
#include <errno.h>

#include <direct.h>

/

/. OTHER INCLUDE FILES
/

#include <general.h>
#define WN_DEBUG
#define F_FLOAT
#include <wfd.h>

#include "expconf.c"

/

/♦ GLOBAL VARIABLES

/

/* enable window debugging system */
/* enable floating point in WFD ♦/

*/

*/

■♦/

»/

*/

*/

char config_filename_pcC80 3;
extern union config_type_union config_u;
static char filepost_ecf~PCC3=".ecf";~

extern char expdescl_pcC823;
extern char expdesc2_pcC82 3;
extern char expdesc3_pcC82 3;
extern char expdesc4_pcC82 3;

extern char ecsdata_path_pcC823;
extern char ecsparam_path_pcC82 3;

/*** ••• * ♦** */
/»♦•***♦**............„.*.»*♦„♦.♦»/

' ♦*..♦.....**♦......... ..♦..♦..............♦......./

/•••••••••••••••••••••••••••••„•„„ ..♦..........*»*•♦*♦.,.• ##/

loadparams() {
int retu_i;

if (directory(ecsparam_path_pc)t=0) return(O);
getfilename(" Parameter Filename ",

"Enter filename to load parameters from. ", config_filename_pc);
if (strlen(config_filename_pc)<3) {

return(0);
)

strcat(config_filename_pc,fllepost_eci_PC);
retu_i=readparamfile(config_filename pc);
if (retu_i==-2) {

genmessage(" File Error "^Attempted to load parameter file:",
config_filename pc,"file not found.");

)

return(1);
)

readparamfile(filename_pc)
char »filename_pc;
/* returns -2 if file does not exist ♦/

/* returns -1 if a file error occurs */
/* returns 0 if no errors */
{

int infile;
int retu_i=0;

infile = open(filename_pc, 0 RDONLY I 0 BINARY);
if (infile==-l) (

if (errno==ENOENT) { retu_i=-2; goto END;)
fileerror("Opening Configuration File",filename pc);
retu_i=-l;
goto END;
)

retu_i = read(infile,config_u.buff,sizeof(union config type union)):
if (retu_i==-l) (»_/»*_,
fileerror("Reading Configuration File",filename_pc);
close(infile);
retu_i=-l;
goto END;
}

retu_i = close(infile);
if (retu_i==-l) {

fileerror("Closing Configuration File",filename_pc);
retu_i=-l;
goto END;
)

END:

return(retu i);
}

saveparams() {

if (directory(ecsparam_path_pc)1=0) return(0);
getfilename(" Parameter Filename ",

"Enter filename to save parameters in.",config filename pc);
if (strlen(config_filename_pc)<3) {

return(O) ; "*
)

strcat(config_filename_pc,filepost_ecf_PC);
if (directory(ecsparam_path_pc) && checkfile(config_filename_pc,0)==1) {

writeparamfile(config_filename_pc);

return(1);
)

writeparamfile(filename_pc)
char .filename pc;
{

int retu_i=0;
•int outflle;
outfile=open(filename_pc, 0_CREAT I 0_WR0NLY I 0 BINARY, S IWRITE):
if (outfile ==-!){ ~

fileerror("Opening configuration file for writing",filename oc):
retu_i=-l; "H
goto END;
}

retu_i=write(outfile, config_u.buff, slzeof(union config type union)):
if <retu_i==-l) { " "

fileerror("Writing configuration file", filename_pc);
retu_i=close(outfile);
retu_i=-l;
goto END;
)

retu_i=close(outfile);
if (retu_i==-l) {

fileerror("Closing configuration file", filename_pc);
retu_i=-l; ~
return(-l) ;

goto END;
}

END:

return(0);
}

checkfile(title_pc,path_pc,concat_b)
char »path_pc, »title_pc;
bool concat b;
{

char reply_c='C ;
FILE *inputfile;
inputfile=fopen(path_pc, "r");
if (inputfile==NULL)"(

return(1);
}

fclosednputfile) ;
if (concat_b) (

querychar(title_pc,path_pc,"file already exists.",
"Overwrite, concatenate, or abort (0/C/A):",&reply_c);

if <reply_c=='0') return(l);
if (reply_c=='C) return(2);
>

else (

querychar(title_pc,path_pc,"file already exists.",
"Overwrite or abort (0/A):",&reply_c);

if (reply_c=='0') return(l);
}

return(O);
}

savedata(outfile,experimenttit_pc,experimentl_pc, experiment2_pc, filepost_pc)
FILE .(.outfile);

char »experimenttit_pc,*experimentl_pc, *experiment2_pc,»filepost_pc;
(

char filename_pcC80 3;
char temp_pcC80 3;
char retu_c;
int retu_i=0;
bool looping_b=TRUE;
int append_i=0;
retu_c='N';

while (looping_b) (
querychar(experimenttit_pc,"Press 'F' to save data to a file,",

"'P' to print data, or 'N' for neither.",
"File, Print or Neither (F/P/N):", &retu_c);

if (retu_c=='N') looping_b=FALSE;
if ((retu c = ='F* && directorv(ecsdata oath oc)==Q) ll rei-n r; = ='PM (

if (retu_c=='F') getfilename(experimenttit~pc,
"Enter a filename to save the data in. " filename oc):

if (retu_c=='P') {
strcpy(filename_pc, "pm");
}

if (strlen(filename_pc)1=0) {
strcat(filename_pc,fllepost_pc);
append_i=2;

if (retu_c=='F') append_i=checkfile(experimenttit pc,filename pc,1);
if (append_i!=0) { "H ' '

looping_b=FALSE;

getexpdata(experimenttit_pc, "Enter the experiment description:",
expdescl_pc,expdesc2_pc);

if (append_i==l) *outfile=fopen7filename pc, "w");
if (append_i==2) *outfile=fopen(filename~pc,"a");
fprintf(.outfile,"\n\n\n");
fprintf(.outfile,experimentl pc);
fprintf(.outfile,"\n\n");
_strdate(temp_pc);
fprintf(.outfile,temp pc);
fprintf(.outfile,"\n"7;
_strtime(temp_pc);
fprintf(.outfile,temp_pc);
fprintf(.outfile,"\n"7;
fprintf(.outfile,expdesc3 pc);
fprintf(.outfile,"\n");
fprintf(.outfile,expdesc4_pc);
fprintf(.outfile,"\n">;
fprintf(.outfile,expdescl pc);
fprintf(.outfile,"\n");
fprintf(.outfile,expdesc2_pc);
fprintf(.outfile, "\n\n");
fprintf(.outfile,experiment2 pc);
fprintf(.outfile, "\n\n");
retu_i=l;
>

}

)

}

return(retu i);
}

directory(path_pc)
char »path_pc;
{

int retu_i;
char temp_pcC80 3;
strncpy(temp_pc,path_pc,2);
temp_pcC23='\0';
retu_i =chdir(path_pc);
if (retu_i) {

genmessage(" Directory Error ","Attempted to change to directory:",
path_pc,"directory not found.");

)

return(retu_i);
}

/* graphics,c #/

'** ***• ••*••• •••• */

/............ •••...•••„„ # # #/
/* SYSTEM INCLUDE FILES w/
'*• * ••• * ** •••••/
^include <math.h>

^include <stdlib.h>

#include <stdio.h>

#include <io.h>

#include <string.h>
#include <graph.h>

/

/. OTHER INCLUDE FILES

/

^include <general.h>
#define WN_DEBUG
#define F_FLOAT
#include <wfd.h>

#include "expconf. c"

/♦ enable window debugging system */
/♦ enable floating point in WFD »/

/. GLOBAL VARIABLES

/

int graphics_b=FALSE;

int saved_video_mode_i;

struct videoconfig vc;

extern union config_type_union config_u;

extern double energyi_pdC2000 3;
extern double energyt_pdC2000 3;
extern double energyr_pdC2000 3;
extern long pulsecount_plC2000 3;

'• ** *»** ••/
/..*...♦..... ♦..♦.......*....„*/

/.**...♦..*........».♦..........♦.*♦*.♦* ..♦.....♦..♦...*..........*.♦./

/..........♦.........*............♦.♦♦..*. /

initgraphics() (
graphicson();
graphicsoff();
)

graphicson() (

saved_video_mode_i=v_mode;
sav_wi(&wnO);
vid_mode(6);
if(setvideomode(ERESCOLOR)) araphics b=TRUE: else

if(_setvideomode(_HRES16C0L0R)) graphics_b=TRUE; else
if(_setvideomode(__MRES16C0L0R)) graphics_b=TRUE; else
if(_setvideomode(_MRES4C0L0R)) graphics_b=TRUE; else return(O)
_getvideoconfig(&vc);
_setbkcolor((long)1);
_clearscreen(_GCLEARSCREEN>;
_setlogorg(0,vc.numypixels-1);
_setcolor(2);
)

graphicsoff(){

_setvideomode(_DEFAULTMODE);
vid_mode(saved_video_mode i)
unsav wi(&wnO);
)

graphbleachdata(pointcount_i,totalenergyi d)
int pointcount_i;
double totalenergyi_d;

static char ble_ver_label_PCC 3="•/. Transmission";
int x,y,count_i;
double totalenergyit_d=0;
char temp_pcC23;
graphicson();
temp_pcC13='\0';
_setcolor(2);
_moveto(25,-25);
_lineto(25,-(vc.numypixels-10));
_moveto(25,-25);

_lineto(vc.numxpixels-10,-25);
for (count_i=0; count_i<14; count I**) {

_settextposition(count_ii-l, 1) ;
temp_pcC03=ble_ver_label_PCCcount i3;
_outtext(temp_pc);
}

_settextposition(vc.numtextrows-1, 5);
_outtext("Total Energy");
_settextposition(vc.numtextrows, 5);
_outtext("Press return:");
_setcolor(3);

for (count_i=0; count_i<pointcount_i; count i +*> {
totalenergyit_d=totalenergyit_d.energyi_pdCcount 13;
X"^*^otaiener9yit-d*(vcnumxpixels-30)/totalenergyi d;
if (x>25* im1S1r:30i#enBPWt-PdC~«»t.i3/.n.PB?i jdtcount 13 ;if (x>25 && y<-25 && x<vc.numxpixels && y>-vc.numypixels) _setplxel(x,y);

getchar();
graphicsoff();
)

'***; * * /
/* laser.c .

'* ••••• # ;

/......................* ###w
/* SYSTEM INCLUDE FILES w

' ♦♦*•*" * • - /
#include <math.h>

#include <stdlib.h>

#include <stdio.h>

/••*••••* • ,
/* OTHER INCLUDE FILES #/
"••* * * •••••.•..••...••„ /
#include <general.h>

#define WN_DEBUG /* enable window debugging system •/
#define F_FLOAT /. enable floating point in WFD */
#include <wfd.h>

#include "pclerrs.c" /* Include PCLAB error codes for Microsoft C ♦/
^include "expconf.c"

/••

/. GLOBAL VARIABLES
/

int gain_iCMAX_DET3=(l,1,1,1,1,1,1,1);
int gainold_iCMAX_DET3=<l,1,1,1,1,1,1,1};
int capacitorgain_iCMAX_DET3=(0,0,0,0,0,0,0,0>;

extern union config_type_union config_u;

' *** * * ******/
/*** * • /
/* .• »„*_ ,
/***/

initpclab() (

int unit_id_i,retu_i;
bool valid_board_b;
valid_board_b = TRUE;
config_u.conflg_st.board_type_i=0;
SET_ERR0R_C0NTR0L_W0RD(0);
retu_i=INITIALIZE(); /♦ Initialize the PCLAB subroutines */
if (retu_i==0) {

retu_i=RESET_DT(&unit_id_i); /♦ perform a board reset »/
if (retu_i==0) (

config_u.config_st.board_type_i = (unit_id_i / 16); /* mask out Board
ID. code */ ""

config_u.config_st.microcode,! = (unit_id_i & Oxf); /* mask out Microc
ode Rev. */

}

>

switch (config_u.config_st.board_type_i) (
case DT2801_A:

ENABLE FOR 0UTPUT(0):

ENABLE_FOR_OUTPUT(1);
QUTPUT_DIGITAL_VALUE(1,Oxf, OxO) ;
break;

default:

valid_board_b = FALSE; /* set valid_board to false ♦/

retu_i=errorwno(" Hardware Error ",
"Unable to initialize DT2S01-A A/D board.",
"Verify installation of board and pcldrv.sys.",
"PCLAB error number (see appendix A-l) ",retu i);

if (retu_i =='C) valid board b=TRUE;
)

return(valid board_b);

readdet(det_pd)
double *det_pd;
(

int ad_data_iCMAX_DET3;
int channel_i;
double v_range_d;
double lsb_d, scaled_low_d, scaled_lsb_d;
v_range_d = (config_u.config_st.high_voltage_d - config u.config st.low volta

9©_d); /♦ total voltage range */ ~
lsb_d = (v_range_d/config_u.config_st.noc_d); /♦ voltaae of Lea

st significant bit ♦/ y

for (channel_i=0; channel_i<3; channel_i*-+) {
ad_data_iCchannel_i3 = 0x0000;

^ * ADC-VALUE<config-"-config_st.detchannel_iCchannel_i3,gain iCchannel 13,&ad
data_iCchannel 13); ~ -

)

for <channel_i=0; channel_i<3; channel !♦•►) {
^ scaled_lsb_d = (lsb_d / gain_iCchannel_13); /. calculate scaled LSB

scaled_low_d = (config_u.config_st.low_voltage_d / gain iCchannel 13); /. c
alculate scaled low voltage */

det_pdCchannel_13 = <ad_data_iCchannel_13 . scaled.lsb d) - scaled low d-
det_pdCchannel_i3 = - det_pdCchannel_13 " ~ '

♦ config_u.config_st. det_calib_pdCchannel_i3
* config_u. config_st. det_scale~pdCchannel~13
/ config_u.config_st.det_apera~pdCchannel~i3;

gainold_iCchannel^!3 =gain_i Cchannel_i 3;
if (ad_data_iCchannel_i3 <0x80 && gain_iCchannel_i3 >1) {

gain_iCchannel_i3=gain iCchannel 13/2;
) "

if (ad_data_iCchannel_i] >0x500 && gain iCchannel_i3<8) {
gain_iCchannel_i3= gain iCchannel iJ»2;
) ~

)

)

printdetdata(det_pd, disp_ppw)
double *det_pd;
WIND0WPTR disp ppw;
{

int count2__i;

for (count2_i=0; count2_i<3; count2_i+*) {
v_printf(disp_ppw, "7.-7.4fmJ/cm2C/.li) ", det_pdCcount2_i3, gainold_iCcount2_i3
)

v_printf(disp ppw, "\n">;
}

openshutter() {

OUTPUT_DIGITAL_VALUE(0,0x0002,0);
}

closeshutter() {

OUTPUT_DIGITAL VALUE(0,0x0002,2 >;
}

gainO() {

OUTPUT_DIGITAL_VALUE(1,Oxf,0x0);
}

gainK) <

OUTPUT_DIGITAL_VALUE(1,Oxf,Oxf);
>

firesignalO() <
OUTPUT_DIGITAL_VALUE(0,Oxl,0x0);
)

firesignall() {
OUTPUT_DIGITAL_VALUE(0,Oxl,Oxl);
}

laserready(title_pc)
char *title_pc;
{

bool retu_b;
retu_b=querybool(title_pc, "Laser must be 'ON', in triggered mode",

"and burst count set=l.",
"Are all of the above true? (Y/N):",TRUE);

return(retu_b);
}

firelaser() (

long count_l;
count_l=l;

while (count_l <config_u.config_st. fire_delay_countl_l) {
count_l=count_1*1;
)

0UTPUT_DIGITAL_VALUE(0,0x0001,1>;
count_l=l;
while (count_l <config_u.config_st. fire_delay_counth_l) (

count_l=count_l+l;
)

0UTPUT_DIGITAL_VALUE(0,0x0001,0);
}

pulsetoenergy(target_d,pulsecount_pl, totali_pd, totalt_pd,totalr_pd)
long »pulsecount_pl;
double target_d;

double *totali_pd,*totalt_pd,»totalr_pd;
{

double detectors_pdCMAX_DET3;
♦totali_pd=0;

*totalt_pd=0;
*totalr_pd=0;
♦pulsecount pl=0;

while (*totali_pd< target_d) {
firelaser();
readdet(detectors_pd);
*totali_j3d=*totali_pd ♦ detectors_pdC03;
*totalt_pd=.totalt_pd ♦ detectors pdC13;
*totalr_pd=*totalr_pd + detectors!pdC23;
*pulsecount_pl=.pulsecount pl+l:
>

return(O);
)

/••••»••**♦*.♦.••*•♦•♦»•»»•#♦##*...♦♦♦.♦,.,.#»##»###^.#^#^#

/♦ query.c

/» general routines to query the user or display information 1/

/* SYSTEM INCLUDE FILES ♦♦..♦♦♦..♦****♦....*.../

'•••• #„„„ ###;;
#include <math.h>

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>

^include <string.h>
#include <ctype.h>
#include <errno.h>

/»...*..»•»*•».....»•..<

/. OTHER INCLUDE FILES

#include <general.h>
tfdefine WN_DEBUG
#define F_FLOAT
#include <wfd.h>

/♦ enable window debugging system ♦/

/» enable floating point in WFD ♦/

/».......*»»......*...♦♦.♦...<

/♦ GLOBAL STRING DEFINITIONS
/»».»*.»•*»»»••*•••*.»».»»...<

• /

*/

./

♦ /

*/

*/

static char picture_string60_PCC 3="XXX
XXXXXXXXXXXXXXXX";

/........................./
'/
' #/
/•••••••/

querybool(title_pc,messl_pc,mess2_pc,prompt_pc, default_b)
char *title_pc,*messl_pc,*mess2_pc,»prompt_pc;
bool default_b;
{

DFORMPTR form_pfm;
DFIELDPTR temp_pfd;
int reply_b;
reply_b=default_b;
form_pfm=fm_defT8,10,8,60,LHIGHLITE, BDR_DLNP);
sfm_opt(VERIFYEXIT I CURSORFREE, OFF, form pfm);
sfm__opt(AUTOEXIT I AUTOMOVE, ON, form_pfm)7
sw name(title pc,form ofm->wnp);

ftxt_def(1,CENTER_TEXT,messl_pc, LNORMAL, form_pfm);
ftxt_def(2, CENTERJTEXT,mess2_pc, LNORMAL, form_pfm);
fld_def(4, 30-strlen(prompt_pc)/2, prompt_pc,FADJACENT,"A",F_BOOL,

(char ♦) &reply_b, form_pfm);
fm_proc(0,form_pfm);
fm_free(form_pfm);
return(reply_b);
)

querychar(title_pc,messl_pc,mess2_pc,prompt_pc,default_pc)
char *title_pc,»messl_pc,»mess2_pc,.prompt pc;
char .default pc; ~
£

DFORMPTR form_pfm;
DFIELDPTR temp_pfd;
form_pfm=fm_def(8,10,8,60,LHIGHLITE, BDR DLNP);
sfm_opt(VERIFYEXIT I CURSORFREE, OFF, form.pfm);
sfm_opt(AUTOEXIT I AUTOMOVE, ON, form_pfm);
sw_name(title_pc, form pfm->wnp);
ftxt_def(1, CENTER_TEXT, messl_pc, LNORMAL, form pfm);
ftxt_def(2, CENTER.TEXT, mess2_pc, LNORMAL, fornTpfm);
fld_def(4, 30-strlen(prompt.jpc)/2, prompt pc, FADJACENT, "!", F CHAR,

(char ♦) default_pc, form pfm);
fm_proc(0, form_pfm);
fm_free(form_pfm);
return(l);
>

querybool2(prompt_pc, default_b)
char .prompt_pc; ~
bool default~b;
(

DFORMPTR form pfm;
DFIELDPTR temp_pfd;
int reply_b;
reply_b=default_b;
form_pfm=fm_defT23,0,1,80,LHIGHLITE, BDR OP);
sfm_opt(VERIFYEXIT I CURSORFREE, OFF, form pfm);
sim_opt<AUTOEXIT I AUTOMOVE, ON, form pfm)7
fld_def(0,0, prompt_pc,FADJACENT, "A",F BOOL,

(char *) &reply_b, form_pfm);
fm_proc(0,form_pfm);
fm_free(form_pfm);
return(reply b);
)

fileerror(errormess_pc,filename_pc)
char .errormess_pc,.filename pc;
{

genmessage(" File Access Error ",strerror(errno),filename.pc,errormess.pc);

^char^errorme^t^11-^' errormessl-P<=' errormess2_pc, errormess3_pc, errorno i)
int errorno i °'*errormessl-Pc'*errormess2_pc, *errormess3_pc;
{

char concat_pcC1203,bufferC20 3;
strcpy(concat_pc,errormess3_pc);
strcat(concat_pc,itoa(errorno_i, buffer, 10)) ;
aenmessaae(errormesst^t oc.errormessi ..oc.errormeSS2 nR.cnnnat nn>,

genmessage(errormesstit_pc,errormessl_pc, errormess2_pc, errormess3_pc)
char *errormesstit_pc,»errormessl_pc, *errormess2_pc, *errormess3_pc;

DFORMPTR form_pfm;
char key_c = ' ';

form_pfm=fm_def(8,10,8,60,LHIGHLITE,BDR DLNP);
sfm_opt(VERIFYEXIT I CURSORFREE, OFF, form pfm);
sfm_opt(AUTOEXIT I AUTOMOVE, ON, form_pfm)7
sw_name(errormesstit_pc,form_pfm->wnp);
ftxt_def(1,CENTER_tExT,errormessl_pc, LNORMAL,

form_pfm); ~
ftxt_def(2,CENTERJTEXT,errormess2_pc, LNORMAL, form pfm);
ftxt_def(3,CENTERJTEXT,errormess3 pc, LNORMAL, fornTpfm);
fld_def(4, 22,

"Press a key: ",FADJACENT,"!",F_CHAR,
(char ») &key_c, form_pfm);

fm_proc(0, form_pfm);
fm_free(form_pfm);
return(key c);
)

getexpdata(qtit_pc,qdescription_pc,qvarl_pc,qvar2_pc)
char *qtit_pc, .qdescription pc, .qvarl pc, »qvar2 pc;
(

DFIELDPTR temp_pfd;
DFORMPTR form_pfm;
form_pfm=fm_def(8,8,8,65,LHIGHLITE,BDR_DLNP);
sfm_opt(AUTOMOVE I VERIFYEXIT, OFF, form_pfm);
sfm_opt(AUTOEXIT I CURSORFREE, ON, form_pfm);
sw_name(qtit_pc, form_pfm->wnp);
ftxt_def(1,CENTER_TEXT,qdescription_pc, LNORMAL, form_pfm);
temp_pfd=fld_def(3, 1, "", FADJACENT, picture_string60_PC, F_STRING,

(char *) qvarl_pc, form pfm);
sf_opt (INITIALBLANKSi-RTADJUST, OFF, temp_pfd) ;
fld_tdef(temp_pfd,4, 1, "",FADJACENT, picture_string60_PC,F_STRING,

(char ») qvar2_pc, form_pfm);
fm_proc(0, form_pfm);
fm_free(form_pfm);
return(0);
)

getfilename(qtit_pc,ql_pc,reply_pc)
char *qtit_pc,»ql_pc,*reply_pc;
{

DFORMPTR form_pfm;
strcpy(reply__pc, " ");
strcpy(reply_pc,"");

form_pfm=fm_def(8,10,8,60,LHIGHLITE, BDR_DLNP);
sfm_opt(AUTOMOVE I VERIFYEXIT I CURSORFREE, OFF, form_pfm);
sfm_opt(AUTOEXIT, ON, form_pfm);
sw_name(qtit_pc, form_pfm->wnp);
ftxt_def(2,CENTERJTEXT,ql_pc, LNORMAL, form_pfm);
fld_def(4, 21,

"Filename: ",FADJACENT,"XXXXXXXX",F_STRING,
(char ♦) reply_pc, form_pfm);

fm_proc(0,form_pfm);
fm_free(form_pfm);
return(O);
>

/••*•*•..♦•♦•*•*....♦••♦#♦•».».•♦♦♦♦♦.♦♦»♦..,.############

/* stepper.c
/

*/

./

♦ /
/* SYSTEM INCLUDE FILES

#include <math. h> ♦•***.♦*.♦♦♦*♦.♦/

#include <stdlib.h>
^include <stdio.h>
#include <fcntl.h>
#include <sys\types. h>
#include <sys\stat.h>
#include <io.h>

#include <string.h>
#include <ctype.h>
#include <errno.h>

/* OTHER INCLUDE FILES **************»*..♦*«♦*♦*..♦♦**.♦./

/*•*•••••••**•♦••♦••*••••♦♦»,♦»♦, #######<^##„# #/
#include <general.h> ****♦***♦♦*♦♦»*..♦♦*♦♦»/

#include "expconf.c"

/* GLOBAL VARIABLES **************•*..*♦♦.*********»**.*♦./

/*. **»♦*♦*.»♦..♦.*♦.**.*♦..*..♦♦....»»„ *'
unsigned stepperport=0x2c0; *♦♦♦♦»♦*».*♦♦♦♦./

unsigned Iimitport=0x2c7;
bool stepperok_b=TRUE;
bool stagehomed_b=FALSE;
int stageposition_i=0;
int stagedirection_i=0;

extern union config_type_union config_u;

/**♦***♦♦♦.♦.♦*♦**♦♦♦.♦..».

tttt»#»«ttttt»*t*tt**ttt«»#»t*M#

/...». ♦♦*... **♦**.♦*.♦*....♦..♦...♦ # y

♦ .♦♦»♦*».. .♦♦♦♦....».»##/

».*»».... ♦.♦♦.♦.»»####.##/

*»»»»♦»*****•*♦♦....♦..»/

;::::::::::::::**************** ****** ** ***** * •'

initstepper() {
char ch_c;

stepperok_b=TRUE;

outp(stepperport,0x8a);
outp(stepperport+l,0x8a);
outp(stepperport,0x9a);
outp(stepperport♦1,0x9a);

dochara(1,0x49); /. Initialize Cy512 */
docharad. 0) :

dochara(2,0x49);
dochara(2,0);

dochara(1,0x46);
dochara(1,1);

dochara(1, (unsigned char)config_u.config st. stepperfactor i 7. 256)-
dochara(2,0x46); " ~ '
dochara(2,1);

dochara(2, (unsigned char)config_u. config_st. stepperfactor_i 7. 256);

/* Set Factor Parameter */

dochara(1,0x41);
dochara(1,0);
dochara(2,0x41);
dochara(2,0);

/♦At Home command to guarantee we can move ♦/

dochara(1,0x52);
dochara(1,1);

dochara(1, (unsigned char) config_u. config st. stepperrate i 7. 256)-
dochara(2,0x52); ~ '
dochara(2,1);

dochara(2, (unsigned char)config_u. config_st. stepperrate_i 7. 256);

/* Set rate parameter »/

dochara(1,0x53);
dochara(1,1);

dochara (1, (unsigned char) config_u. config st. stepperslope i 7. 256);
dochara(2,0x53);
dochara(2,1);

dochara(2, (unsigned char)config_u. config_st. stepperslope_i 7. 256);

/* set slope parameter ♦/

dochara(1,0x2b);
dochara(1,0);
dochara(2, 0x2b);
dochara(2,0);
stepleftd, 1);
steprightd, 1) ;
return(1);
}

/* set clockwise direction »/

stepclockwise(motor_i)
int motor i;
{

dochara(motor_i, 0x2b);
dochara(motor_i, 0);
delaystepper();
stagedirection_i=l;
)

stepcclockwise(motor_i)
int motor_i;
(

dochara(motor_i, 0x2d);
dochara(motor_i, 0);
delaystepper();
stagedirection_i=2;
}

stepleft(motor_i, stepsize_i)
int motor_i;
int stepsize i;
(

unsigned char input_uc;
unsianed char hicrh uc;

/* set clockwise direction ♦/

/* set counter clockwise direction »/

if (stepperok_b==TRUE) {
if (stagedirection_ii=1) stepclockwise(motor i);
input_uc=inp(limitport);
if ((input__uc & 0x01) == 1) (

dochara(motor_i, 0x4e);
dochara(motor_i, 2);
dochara(motor^i, (unsigned char)stepsize_i 7. 256);
high_uc=stepsize_i/256;
dochara(motor_i,high_uc);
dochara(motor_i, 0x47);
dochara(motor_i, 0);
waitstepper(motor_i);

stageposition_i=stageposition_i-stepsize_i;

}

)

stepright(motor_i,stepsize_i)
int motor_i; ~*
int stepsize 1;
{

unsigned char input_uc;
unsigned char high_uc;
if (stepperok_b==TRUE) {

if (stagedirection_i!=2) stepcclockwise(motor i);
input_uc=inp(limitport);
if ((input_uc & 0x02) == 2) {
dochara(motor_i,0x4e);
dochara(motor_i, 2) ;
dochara(motor^i, (unsigned char)stepsize i 7. 256)*
high_uc= stepsize_i/256; " '
dochara(motor_i,high_uc);
dochara(motor_i,0x477;
dochara(motor_i,0);
waitstepper(motor_i);
stageposition_i=stageposition_i+stepsize_i;

}

}

findhome(motor_i)
int motor i;
{

int count_i;
unsigned char input_uc;
if (stepperok.b==TRUE && stagehomed b==FALSE) {
input_uc=inp(limitport);
while ((input.uc & 0x01) == l && stepperok b==TRUE) {
stepleft(motor_i,config_u.config_st. autostepsize i);
xnput_uc=inp(limitport);
)

for (count_i=0; count_i<2; count i*+) {
stepright(motor_i,config_u.config_st. autostepsize_i);

input_uc=inp(limitport);
while ((input_uc & 0x01) == 1 && stepperok b==TRUE) {

stepleft(motor_i,1);
input_uc=inp(limitport);

stepright(motor.i,config_u.config_st. centeroffset i);
stageposition_i=0; ~
stagehomed_b=TRUE;
)

movehome(motor i);

return(1);
>

movehome(motor_i)
int motor 1;
(

if (stageposition_i<0) {
stepright(motor_i,-stageposition i);
)

if (stageposition_i>0) {
stepleft(motor i,stageposition i);
}

}

dochara(motor_i,databyte_uc)
unsigned char databyte_uc;
int motor_i;
(

if (motor_i >0 && motor_i<3) (
checkready(motor_i);
outp(stepperport+2,databyte_uc);
outp(stepperport•«-motor_i-l, 0x9a)
outp(stepperport-»-motor_i-l,Oxla)
outp(stepperport♦motor_i-l,Oxla)

outp(stepperport♦motor_i-l,Oxla)
outp(stepperport+motor_i-l,Oxla)
outp(stepperport*motor_i-l,Oxla)
outp(stepperport+motor_i-l,Oxla)
outp(stepperport+motor_i-l,Oxla)
outp(stepperport+motor_i-l,Oxla)
outp(stepperport•»-motor_i-l, Oxla)
outp(stepperport♦motori-l,0x9a)
)

)

checkready(motor_i)
int motor_i;
{

int count_i;
long count_l;
unsigned char ready_uc;
ready_uc=0;

for (count_i=0; count i<config u. config st.readydelay_i; count_i ++) {
)

count_l=0;
while (ready_uc < OxaO && count_l*+ <40000) {

ready_uc=inp(stepperport*motor_i -1) ;
}

for (count_i=0; count i<config u.config st. readydelay_i; count i**) (
)

return(0);

)

waitstepper(motor_i)
int motor_i;
{

long count_l=0;
unsigned char ready_uc;
ready_uc=255;
while (ready_uc != 0 && count_l<1000000) {

readv uc= <ino(steooeroort+ motor i -1) & 0x40):

count_l=count 1+1;
>

if (count_l>999999) {
stepperok_b=FALSE;
genmessage(" Stage Error ","Stage not responding properly.",

"Program will continue, but linear stage will not",
"function. ") ;

>

return(0);
>

delaystepper() {
long count_l;

for (count_l=0; count_l<config_u.config_st.stepperdelay_l; count_l+*)

}

/* PCLERRS. C

Global error definitions, these error codes are returned from PCLAB
subroutines.

♦ /

#define E_OUTTMO 7

#define E_INPTMO 6

#define E_DMABSY 5

#define E_2FAST 4

#define E_NORMAL 0

#define E_NOPCL -1

#define E_MANYFIL -2

#define E_GATING -4

#define E_NOTFUNC -5

#define E_DMAFREE -6

#define E.DMAASN -7

#define E_ILLSBX -8

#define E_GAIN -10

#define E.DMABND -13

#define E_ILLFUN -15

#define E_NVALUE -16

#define E_NOFUNC -18

#define E_TIMING -19

#define E_HIFREQ -22

#define E_LOFREQ -23

#define E_SMALLP -24

#define E_LARGEP -25

#define E_CLKDIV -26

#define E_PORT -27

#define E_CLKTIM -28

#define E_CHANNL -29

#define E_DACSEL -30

#define E_BOARD -31

#define E_STARTC -32

#define E_NODIN -33

#define E_NODOUT -34

#define E_TYPE -35

#define E_OVTAB -36

#define E_OTTAB -37

#define E_CJC -38

#define E_INIDAC -42

#define E_INIADC -43

#define E_INPUT -44

#define E_OUTPUT -45

#define E_READY -46

#define E_ILIV -49

#define E_UNEXP

/* end PCLERRS.C ♦/

/♦ user timeout exceeded on output */
/* user timeout exceeded on input »/
/♦ DMA channel currently busy */
/» board clocked too fast •/
/* success! */

/* device driver PCL not found »/
/• too many files open */
/• illegal gating source for clock routines ♦/

/» board not capable of requested function */
/* DMA not currently in use »/
/* DMA channel not assigned to unit */
/♦ illegal iSBX slot, chip select, or channel

number »/

/• illegal gain specification */
/* DMA buffer crosses 64K boundary •/
/* illegal function call */
/* non-positive number of values argument */
/» unimplemented function call */
/• illegal timing source value */
/• requested frequency too high */
/* requested frequency too low */
/* requested period too small */
/• requested period too large ♦/

/* illegal clock divider */
/* illegal digital port */
/« illegal clock period or clock freq.

period or frequency too small or
too large */

/* illegal channel number ♦/

/* illegal DAC select */
/* illegal board number »/
/« illegal start channel */
/« DIO port enabled for output */
/» DIO port enabled for input »/
/* Illegal thermocouple type. Must be ASCII of

B, E, J, K, R, S, T upper or lower case •/
/* specified voltage in routines XVTD, or XMT

is not in the thermocouple type's range */
/* temperature specified in routines XDTV or

XMT is not in thermocouple type's range */
/• compensated voltage (DT707-T channel zero)

is out of linear range. Linear range
is 0 degrees C to +40 degrees C »/

/* DAC not initialized */

/* ADC not initialized »/

/* board timeout on input */
/* board timeout on output */
/♦ board timeout on ready */
/♦ Voltage value in routine XATV is not between

current board's negative full scale and
positive full scale •/

-100 /* unexpected error */

A/D

A/D Board Type
A/D Microcode Revision
A/D parameters
A/D Resolution

abcexposeO
ablation

Abstract

Active Detector Channels
ADC_VALUE()
Align Stage
ambient light
Analect

Aperture
Arithmetic Mode
Auto Step Size
Average Mode Count
Bleaching Parameters Menu
burst

C

catcenergy()
Calibration
Center Offset
checkfile()
checkready()
Close Shutter
close()
closeshutterO
concatenation

concat_b
config.sys
configLtype_union
config_u
Continuous Fire Mode
Cymer
DAEDEL
Data Path

Data Translation
delaystepper()
Detector Parameter Menu
Detector Unit
Digital I/O
Diode Module
directoryO
dochara()
DRM Exposure Parameters Menu
drmexpose()
DT2801

Ealing
ecs directory
ecsdata

ecsparam_path_pc
editabcparams()

Index

4,5,8,12

28

28

27

27

36,39
1

ii

27

40

30

10

4

26

22

28,43
29

26

7

32

35,36
26

29

38

43

30

38

40

38

38

21

34

34

30

7,8
17

29

6

43

26

12

7

9

38,39
42,43

22

37

4, 5, 7,13, 32
13

21

24,26
38

35

editdetparams()
editdrmparamsO
edithardparamsO
editmiscparamsO
End Energy
endwindows()
energy measurement
Energy per Measurement
errorwnoO
exitmenuO
expconf.c
Experiment Description Data
Experiment Session Data
expfuncc
expmenu.c

Exponential Mode
expose.c

expose.exe

Exposure EnergyTargetValues
fileerrorO
filepost_ecf_PC

filer.c

findhome()

findhome1()
Rre Delay Count
FIRE SIGNAL 7,
fireaverage()
firecontO
firelaserj)
fireone()
firesignalO()
firesignal1()
FTIR

FTIR Software
FTIR subsystem
gainO()
gainl()
Generate DRM Exposure Matrix
genmessageO
getexpdata()
getfilename()
graphbleachdata()
graphics.c
graphicsoff()
graphicson()
Hamamatsu
Hardware

Hardware Parameters Menu
IBM PC-AT

initgraphics()
inttpclab()
initstepper()

35

35,37
35

35

23

35

7

25

40,41
35

32,34

29,41
21,24

33,36
33,35

23

32,34
21

23,36
38,41

38

33,38

37,43

36

28,40
8,9,10,12,40

37

37

40

37

40

40

4,6

43

6

40

40

23

36, 37,39, 41
39,41

38, 39, 41

37,39
33,39

39

39

12

4

27

4

39

40

42

Index

Integrator Unit 4,9,10,11
interference 1
Introduction 1
Laser Energy Measurement 8
Laser Firing Control 7
laser.c 33,40
laserreadyO 36,37,40
limit switches 15,16,17
Load Parameter Set 29
loadparamsO 38
local area network 6
Main Menu 21
main() 34
Manual Operations 30
Manual Step Size 28,30
manualmenu() 35
Maximum Dose 25
Measurement Density Drop Off Point 25
menu() 34
Microsoft C 32
Miscellaneous Parameter Menu 29
Mode 22
Module and Library Names 32
Motion Control System 14
Motivation 1
Move Stage Left 30
Move Stage Right 30
movehomeO 43
Multiple Average Shot Mode 30
Open Shutter 30
open() 38
openshutter() 40
Param Path 29,30
pcc4llib.lib 32
PCLAB 32,40
PCLAB driver 21
pcldrv.sys 32
pclerrs.c 33
Perform Bleaching Measurement 25
Photodiode 12
potentiometers 12
Power Amplifier Board 6,14,15,16,17
pre-charge 7,10
printdetdataO 37,40
pulsetoenergy() 37,40
query.c 33,41
queryboolO 41
querybool2() 41
querychar() 39,41
RC time constant 9
read() 38
readdet() 37,40
readparamfile() 38
resolution 6

RFX-65

ribbon cable

sample and hold
savedata()
saveparams()
Scaling parameter
sensitivity
Session Data
Set Capacitor Gain
shutter power supply
Single Shot Mode
Software Internals
Software Users Guide
stage
Stage Center Offset Parameter
stagepositionj
Start Energy
Starting Distance From Center
Step Size
stepcclockwiseQ
stepclockwise()
StepleftO
stepieft1()
stepper motor
Stepper Motor Controller Board
Stepper Motor Controller Subsystem
Stepper Motor Factor
Stepper Motor Rate
Stepper MotorSlope
stepper motors
Stepper Operate Delay
Stepper Ready Delay
stepper.c
stepperok_b
SteprightO
stepright1()
subsystems
table

TECMAR 4,6,14,15,
Terminal Block Board
testfireO
typical set up
Variable Standardization
Vermont Creative Software
waitstepper()
wfd.h

Windows For Data (WFD)
write()
writeparamfile()

4,6

5, 6,15
9,12

39

38

27

12

29,41

30

14

30

32

21

14,17

43

42,43

23

23

23

42

42

37, 42, 43
36

15

4,6

6

28

28

28

6,16

29

29

33,42

42

38,42

36

4

2,6

16,28,42

5

36,37
2

33

32

43

33

32

38

38

	Copyright notice1988
	ERL-88-84 (1 of 2)
	ERL-88-84 (2 of 2)

