A VLSI Chip Set for a Multiprocessor Workstation:

PART I:
A RISC Microprocessor with Coprocessor Interface and
Support for Symbolic Processing

Daebum Lee, et al.

‘ PART II:
A Memory Management Unit and Cache Controller

Deog-Kyoon Jeong, et al.

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

A VLSI Chip Set for a Multiprocessor Workstation - Part I:
A RISC Microprocessor with Coprocessor Interface and
Support for Symbolic Processing

David D. Lee
Shing 1. Kong
Mark D. Hill
George S. Taylor
David A. Hodges
Randy H. Katz
David A. Patterson

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

This two-part paper describes two key components used in building a 40-70 MIPS multipro-
cessor workstation. In the first part, VLSI implementation of the central processing unit (CPU)
chip, based on reduced instruction set computer (RISC) architecture and with support for LISP is
described. The 1.3¢cm? CPU chip uses a direct-mapped 512-byte on-chip instruction cache, and
138 40-bit registers organized in 8 overlapping windows to achieve 10 MIPS per processor peak

performance with a 10 MHz, four-phase clock.

The second part of the paper [1] describes the memory management unit and cache con-
troller (MMU/CC) chip. System level design issues such as multiprocessor cache coherency and
synchronization among chip sets are also considered in the second part. Both chips are imple-
mented in a 1.6 um double-layer-metal CMOS technology, and are being used in a multiproces-
sor workstation (SPUR) successfully executing its own operating system called Sprite as well as

many applications including LISP programs.

A VLSI Chip Set - Part I 2

I. Introduction

SPUR (Symbolic Processing Using RISCs) is a multiprocessor workstation developed at the
University of California at Berkeley as a testbed for research on parallel processing, particularly
in LISP [2]. A SPUR workstation, shown in Figure 1, can have 6 to 12 identical processors, each
of which consists of a 128K-byte cache, a CPU, a floating point coprocessor, and a cache control
and memory management unit (MMU/CC) that assures the cache coherency among multiple pro-
cessors. The picture of a fully populated SPUR processor board is shown in Figure 2. This paper

describes the VLSI implementation of the CPU chip, a 32-bit RISC microprocessor.

The SPUR CPU supports a multilevel cache scheme that includes a prefetching on-chip
instruction cache, a coprocessor interface, and support for fast execution of LISP through a
tagged 40 bit architecture. The coprocessor interface supports concurrent CPU and FPU opera-
tions. It uses 27 pins to implement a low-overhead interface between the CPU and the FPU. The
chip, implemented in 1.6 pn, double metal CMOS technology, contains 115K transistors. The
chip statistics are summarized in Table 1, and a chip photomicrograph is shown in Figure 3. An
on-chip clock generator, based on a charge pump phase-locked loop with tapped delay line, pro-
vides accurate phase relationship with the board clock and also with clock phases of the other
chips [3]. Nominal operating frequency with a 4-phase non-overlapping clock (18 nsec nominal
per phase and 7 nsec non-overlap time between phases) is 10 MHz (12.5 MHz Max). A SPUR
uniprocessor running LISP programs (Gabriel benchmarks) at 10 MHz can provide 2X perfor-
mance improvement on the average over the Symbolics 3600 or VAX 8650, according to simula-
tion [4]. A SPUR workstation with 6 to 12 processors is predicted to yield a sustained throughput

of 40 to 70 MIPS, respectively.

The organization of the paper is as follows: Section II gives an overview of the CPU archi-

tecture and execution pipeline. Section III focuses on the hardware required to implement various

features of the SPUR CPU architecture. Section IV describes the design, verification, and testing

This work is sponsored by DARPA under contract order 482427-25840 California MICRO, Texas Instru-
ments, National Semiconductor, Cypress Semiconductor, Tektronix, and HP.

A VLSI Chip Set - Part I 3

methodologies of the full custom SPUR CPU chip. Finally, the summary and conclusion are

given in section V.

II. An Overview of the SPUR CPU Architecture

The SPUR CPU is a third-generation RISC microprocessor developed at the University of
California at Berkeley. It is specifically designed to be used in the SPUR multiprocessor worksta-
tion. The architecture of the SPUR CPU is akin to those of previous RISC projects at U.C. Berke-
ley [5],[6]. Some new features, however, have been added: a coprocessor interface to support
floating-point computation, an efficient interface to the cache-control and memory-management
unit, and run-time hardware tag checking for fast execution of LISP programs. The instruction set
of the SPUR CPU is carefully chosen such that an efficient implementation of the single-cycle

execution of all instructions is possible.

Like previous RISC processors, the SPUR CPU is a load-store machine. Memory is
accessed only through load and store instructions. All other instructions are register-to-register or
immediate-to-register oriented. There are four generic instruction types: register-to-register, store,
compare-and-branch, and call-jump. Load and return instructions are special cases of register-
to-register in which (R, + R,,) or (R, + Immediate)) is used as an effective address. The R, field
specifies the register to be loaded for the load instruction type and is not used for the return
instruction type. All instructions (40 integer and 20 floating point) are 32-bits wide and use fixed
formats. The seven instruction formats are shown in Figure 4. The opcode and the régister
specifiers are in the same positions in all formats. The three-register format (RRR) is used for
loads, register-to-register operations, special register operations and co-processor operations. The
two-register and one-immediate (RRI) is used for loads and register-to-register operations.
Compare-and-branch instructions have three slightly different formats depending on the field

specifying the condition.

The CPU registers are organized in eight overlapped windows (128 registers) and 10 global

registers accessible from any window (total 32 registers visible from one window). The

A VLSI Chip Set - Part] 4

overlapped window scheme considerably reduces the register save and restore overheads between
procedure calls. The registers are 40-bit registers with 32 bits for data and an 8-bit tag used for
runtime type checking and garbage collection. The 8-bit tag consists of a 6-bit object’s type tag
and a 2-bit generation numbers. LISP is supported with three types of hardware tag checking
with traps to a software trap handler: data type checking for general computations, pointer type
checking for list operations, and generation number checking for garbage collection based on the

generation scavenging algorithm [7].

The on-chip instruction cache provides the effect of an extra memory port, allowing simul-
taneous data memory reference and instruction fetch by the execution unit (EU). This leads to a
four-stage pipeline (Figure 5) that eliminates the need for pipeline stalling whenever a load
instruction is executed. Consequently, the CPU can issue and complete one instruction per cycle
(peak performance rate of 10 MIPS per processor) as long as there are no instruction or external
data cache misses. Branch conflict in the pipeline is resolved by a single cycle delayed branch
with one instruction in the delayed slot. Data conflicts are resolved by hardware internal forward-
ing logic.

In order to facilitate the high-precision floating point computations and other possible
coprocessing capabilities, the SPUR CPU incorporates a parallel interface to coprocessors. The
floating-point coprocessor interface implemented in the current version of the CPU chip supports
concurrent CPU and FPU operations. It uses 27 pins to implement a low-overhead interface
between the CPU and the FPU. The FPU tracks CPU instructions issued by the instruction cache
in the CPU via 22 pins carqing opcode and register specifiers. The CPU sends 2 control signals
to the FPU, and the 3-bit FPU status is sent to the CPU. The CPU treats all FPU instructions as
illegal instructions when the FPU is disabled. When the FPU is enabled, all FPU instructions
except FPU load and store are treated by the CPU as NO_OP. For FPU load and store, the CPU
computes the effective memory address and the FPU reads and writes the data directly from the

external cache.

A VLSI Chip Set - Part 1 5

In the SPUR instruction set, a number of special load (7) and store (3) instructions are dedi-
cated to cache control and virtual memory management. Although these instructions look almost
identical to the CPU, appropriate cache operations are provided to the external MMU/CC through
the MMU/CC interface. The interface consists of a 4-bit cache-opcode, two bits indicating the
mode of operations (user vs kemel and physical vs virtual), and 9 other status bits of both the

CPU and the MMU/CC.

The unusual conditions that the CPU may face at runtime can be divided into four groups.
Unusual conditions detected inside the CPU are called CPU exceptions: integer overflow, tag
checking, window overflow and underflow, and so on. Unusual conditions caused by the FPU are
called floating-point exceptions. All other unusual conditions occurring outside the CPU are
called faults and interrupts. Faults occur in response to the execution of an instruction, while
interrupts are asynchronous events that come from outside the processor (e.g. an i/o interrupt).
The CPU responds to exceptions, faults, and interrupts by taking a vectored trap. The trap vector
consists of a trap base address concatenated with the trap type field. There is a priority ordering
for cases when more than one unusual condition occurs at the same time. All traps are taken dur-
ing an instruction’s third pipéline stage, and hence only one instruction can cause a trap in any
cycle. Traps can be disabled or enabled selectively by controlling the 8 bits in both kernel and

user processor status words (KPSW and UPSW).

II1. Hardware Implementation of the SPUR CPU

The major functional blocks are shown in Figure 6 and outlined in the chip photomicro-
graph (Figure 3). The major blocks are the execution unit (EU) and the instruction unit (IU). The
EU is further divided into the upper data path, the lower data path, and the control. The 30-bit
upper data path contains pipelined program counters and special registers. It is used for instruc-
tion address calculations and special register references. The 40-bit lower data path is for general

computation on the tagged registers.

A VLSI Chip Set - Part I 6

A. The instruction unit

The SPUR IU consists of a 512-byte (128 instructions) direct-mapped (16 blocks with 8
subblocks or 8 instructions per block) instruction cache. A novel feature of the SPUR instruction
cache is a valid bit associated with each instruction word in the cache so that any subset of
instructions within a block may be valid. The SPUR IU uses this flexibility to reduce demand
miss time by loading only the fetched instruction rather than the entire block and to permit
instruction prefetching to load the rest of a block in parallel with subsequent instruction fetches
[81,[9]. If subsequent prefetches are successful, the miss penalty is just two cycles for the entire

block containing the missed instruction.

The IU can operate in three different modes: (1) disabled, (2) enabled-without-prefetching,
and (3) enabled-with-prefetching, controlled by two bits in the Kemel Processor Status Word
(KPSW). In disabled mode, the 1U fetches every instruction requested by the EU from the exter-
nal cache. Disabled mode is useful for initial chip testing and for allowing chips with stuck-at-
type errors in the cache or tag array to function correctly, albeit more slowly. In enabled-
without-prefetching mode, the IU will cache instructions upon demand misses but will not initiate

any prefetches.

The normal mode is the enabled-with-prefetching. After the missed instruction is cached,
prefetches are made to subsequent words within the block until another demand miss occurs or
prefetch is blocked by the EU’s external data access. These prefetches are "free”, as they never
interfere with external cache accesses, such as instruction fetch and external data reference, by the
EU, because prefetch has the lowest priority. If prefetch causes an external cache miss, the cache

controller simply ignores the request.

The instruction unit is controlled by two finite-state machines: one controls the fetching and
the other controls the prefetching of instructions. Two finite state machines and other random
control logic are partitioned into the total of 6 PLAs considering the timing constraints. Both IU
and register file use the same 6T SRAM memory cell [10]. The data portion of the cache is an

array of 128 33-bit words. The tags are stored in a separate array (16 24-bit words) whose access

A VLSI Chip Set - Part 1 7

time is significantly less than that of the data array. This allows the tag comparison to be done
while the instruction is being read out from the data array. Bitwise comparison using an XOR
gate is used for tag comparison and is followed by dynamic logic to determine a hit. The effec-
tive access time of the instruction cache including hit logic is under 12 nsec without using a sense

amplifier.

B. The register file

The SPUR CPU has a total of 138 general-purpose registers organized in 8 overlapped win-
dows and 10 global registers. Thirty-two registers are visible to the compiler at any one time: 10
globals, 10 locals, 6 overlapped with caller window, and 6 overlapped with callee window. Each
register is 40 bits wide having a 6-bit tag, 2 bits for generation number and 32 bits for data. The
same 6T SRAM cell used in the IU is used in the register file. The layout of SRAM cell is con-
strained by the pitches of the data path bit slice and the register decoders (two decoders per regis-

ter). The result is a large but fast SRAM cell that does not require a sense amplifier.

The SPUR CPU architecture is register oriented and requires two reads and one write per
cycle. The register access is time multiplexed for the separate reads and the write and is pipelined
to minimize the critical path. Bit lines are decoded and precharged in the same phase, and the
register array is accessed in the following phase by driving the wordline. The access time of the
register file read is the critical path of the chip. It is measured to be under 14 nsec. For registers
in the overlapped window, a special decoder shown in Figure 7a is used to map two different
register addresses (one from the caller’s window and the other from the callee’s window) to one
register [S].

In the pipelined execution of the instruction stream, data interdependencies among instruc-
tions in the pipeline may arise. In the SPUR CPU, these interdependencies are detected and
resolved by the hardware internal forwarding. That is, the results from preceding instructions are
forwarded to the following instructions by the hardware before being written back to the register

file, as indicated by the arrows in Figure 5. In the case of a 4-stage pipeline like the SPUR CPU,

A VLSI Chip Set - Part I 8

the data interdependencies may exist among 3 consecutive instructions since the write-back stage
of the pipeline is delayed by two cycles after the execution stage. The result available from each
instruction’s execution stage, therefore, needs to be stored in temporary registers for two cycles
and then forwarded to the following instructions. When both operands are registers, each register
address is compared to the destination register address of the two preceding instructions. This
may result in double intemal forwarding, in that both operands are results of two preceding

instructions and hence supplied from the temporary registers.

The hardware internal forwarding logic is in the critical path of the register file access, and
it must be implemented without slowing down the cycle time. Like decoding and accessing the
register array, it is also pipelined. Address comparisons are done in parallel with the decoding of
the register file, and internal forwardings are made if necessary while the register file is accessed.
Four address comparisons are necessary to detect all possible data dependencies. The address
comparator must be fast to keep the cycle time short, and it must be compact to fit in the area
between register decoders and temporary registers, as seen in Figure 3 (block IF). Bitwise com-
parison is done using a dynamic XOR, shown in Figure 7b, and then the outputs are fed into the
domino circuit for an address match. Since this XOR does not require complementary inputs,
routing and area required are significantly reduced. A special multiplexor, shown in Figure 7b, is
used to minimize the signal delay through the internal forwarding logic that lies between the
register file and the functional unit. If internal forwarding is necessary, the bus from the register
file is disconnected by the transmission gate, and the bus to the functional unit is driven by the
temporary register. The access time of register file reading (14 nsec) includes the delay through

the internal forwarding logic.

C. The data path

The data path is divided into two parts: the upper data path for program counter logic and
special registers, and the lower data path for general computations on tagged registers. Functional

units in the lower data path include a byte-extractor, a byte-inserter, a simple shifter that shifts up

A VLSI Chip Set - Part 1 9

to three bits, and an ALU. The ALU provides XOR, OR, AND, ADD, and SUBTRACT opera-
tions and comparison for two 32-bit operands. The upper data path consists of a number of pro-
gram counters to hold instruction addresses in the pipeline, an address incrementer and adder, and
special registers such as window pointers and processor status words. All registers and counters
are made of pseudo-static latches, such that each register is refreshed once per cycle. This is

necessary because an indefinite pipeline stall is possible due to a long external cache miss.

In the SPUR CPU, compare-and-branch instructions are executed in only one cycle. A
separate adder in the upper data path calculates the target addresses for all the compare-and-
branch instructions while the ALU is in use for the comparison. Two different adder designs are
employed. The 32-bit ALU uses four 8-bit carry lookahead adders implemented in domino logic,
and evaluates the carry within 11 nsec. The 30-bit address adder is more compact because it uses

a Manchester carry chain which has a carry propagation delay of 13.5 nsec.

The upper 8-bit slices of the lower data path are for tag-related operations. Operations on
the tag and the data are logically independent, that is, no information moves between the two
parts by carry propagation or any other implicit mechanism. For operations, the 6-bit tag type is
checked in parallel with the data operation. If there is a tag mismatch and the tag trap enable bit is
set in the user processor status word (UPSW), the CPU traps to the software. Generation tag
checking (2 MSB) is done when a special store instruction (ST_40 Ry, Rg,, Immediate) is exe-
cuted. Generation tag exception may occur if the object (Rs,) with a higher (younger) generation
number is stored into the object (Rg,) with a lower generation number [7]. The read_tag and
write_tag instructions move a tag to and from the data portion of a register using the byte-
extractor and the byte-inserter respectively, so that any arithmetic or logical operations may be

performed on it.

To reduce the chip area and improve the circuit speed, the dynamic circuit technique called
domino logic [11] is heavily used in the design. Potential charge sharing problems are prevented
either by the use of abundant clock phases or by careful layout of the critical nodes. The SPUR

CPU has 7 major busses to provide communications both externally and internally. Some of these

A VLSI Chip Set - Part 1 10

busses have high capacitive loadings, and hence precharging is used to improve the speed of data
flow through the highly capacitive busses. The high capacitance bus is precharged to high before
being used and discharged conditionally through a strong NMOS pull down network when used.
This not only reduces the signal delay through the bus but also minimizes the chip area required
for a strong, large driver. Some logic function may be included in the pull-down network as well,
further saving the chip area. Critical paths of the data path, register file, and instruction cache are

summarized in Table 2.

D. The control

Four-phase clocking and a uniform four-stage pipeline for all SPUR integer instructions
make the control section of the CPU relatively simple. The SPUR CPU uses internal instructions
to handle pipeline interrupts, rather than requiring complex sequences for those exceptions. These
internal instructions are miss, trap_call, and read_pc to handle instruction cache miss and all
kinds of traps. These instructions are executed in the same way other instructions are executed.

The use of these instructions further simplies the control design.

The control can be divided into three parts: master control, trap logic, and the interface to
the cache control/memory management unit (MMU/CC). The latter two are separated out from
the master control to simplify the control design. Trap logic detects all unusual conditions during
the pipelined execution of an instruction. All traps are taken during an instruction’s third pipeline
stage, and hence only one instruction can cause a trap in any cycle. The trap logic consists of
pipelined modules, each of which operates at the corresponding stage of the instruction in the
pipeline. The MMU/CC interface logic generates cache opcodes according to the current instruc-

tion and the status of the CPU. It also buffers signals to and from the MMU/CC.

The block diagram of the master control is shown in Figure 8. A centralized master control
unit controls the processor sequencing and decodes the opcode into high level control signals.
Local random logic blocks then decode the high level signals into low level signals using clocks.

They also provide buffering of the low level signal according to the loading requirement. All

A VLSI Chip Set - Part 1 11

signals controlling the data path are individually optimized so as to have equal delays relative to
the clock edges. The separation of master control and local decoding/buffering significantly
reduces the amount of routing between two sides, particularly in CMOS design where comple-

mentary signals are required in controlling the data path.

Most of the control logic in the SPUR CPU is implemented in static PLAs. The largest PLA
is the one that decodes the opcode, which has 69 product terms with 40 outputs. The propagation
delay through this PLA is about 15 nsec, well below the required timing of two phases or 50 nsec.
All PLA outputs are evaluated once per cycle and need to be held in registers until the next cycle.
The routing between the PLA and the registers may consume substantial chip area since the PLA
output pitch is so small compared to the pitch of the registers. Thus, the registers (pseudo-static
latches) are integrated into the output section of the PLA by widening the PLA output pitch (16
lambda to 20 lambda). This results in an unusually large PLA, but the chip area required is much

less than if the PLA and the registers were separated, and the timing requirement is still satisfied.

IV. Design, Verification, and Testing Methodology

Methodologies employed in the SPUR CPU design have been influenced by the following
two themes of the SPUR project: (1) an overall system-wide rather than local optimization, and
(2) designing a chip for a working system rather than an experimental prototype. Consequently,
methodologies became very important since the chip being designed must meet all the functional

requirements set for the system design as well as performance goals.

A. Design methodology

The design strategy incorporated both top-down and bottom-up approaches. The top-down
fliow was as follows: architecture definition, instruction set design, microarchitecture design, and
a detailed functional/behavioral description of the hardware. The bottom-up flow was circuit
design of basic components, layout of basic cells, assembly of major blocks using those cells, and

global placement and interconnections. Both approaches were taken in parallel from the

A VLSI Chip Set - Part 1 12

beginning, in order to achieve the highest performance at given technology and system design
goals. For instance, many microarchitecture decisions were made after the feasibility of a certain
hardware resource was carefully considered. Division of design tasks followed the same hierarch-
ical boundaries of design abstractions: architecture and instruction set design, microarchitecture
design, and VLSI implementation. One- or two-person groups were formed to take the responsi-
bilities of each design level. Close interaction among different groups was necessary to make

clean interfaces among themselves and design specifications.

Most of the CAD tools used in designing the SPUR CPU chip were developed at Berkeley,
except those for the behavioral level design. The detailed design started with describing the
behavior of the chip and its interactions with other components within the system. The functional
behavior was written in ISP”, a hardware description language, and simulated using the N.2 simu-
lator [12]. The implementation of the hardware can be divided into two parts. Most parts of the
control design were done using a set of CAD tools that automatically synthesizes the behavioral
description of the combinational logic into the PLA [13],[14]. Other parts of the control logic
(sequential) and data paths were designed manually but aided by another set of tools. These two
paths are diagrammed in Figure 9. For the automated synthesis path, only those parts of the
hardware description containing combinational logic can be synthesized. For the manual part,
logic and circuit design were done first for each block and followed by layout. Layout was done
using an interactive layout editor, Magic [15], with background design rule checking and
hierarchical extraction. The extracted layout, which is a switch-level description of the chip, was

simulated using bdsim, a switch-level logic simulator [13].

Timing analysis was done before the layout, to make early tradeoffs among many alterna-
tives and after the layout, to perform an exact timing analysis with all parasitics correctly anno-
tated. To estimate the critical paths of the chip more accurately, and thus to be able to determine
the cycle time, a test chip containing a register fil¢ with internal forwarding was fabricated and
tested [16]. The measured critical path (register file read) was below 18 nsec, and this encouraged

us to set the cycle time goal at 100 nsec.

A VLSI Chip Set - Part I 13

B. Verification methodology

The verification methodology was constructed following a bottom-up approach. As each
individual module was designed, switch-level simulation was performed on the extracted layout
to verify the design. A small set of hand-written test vectors was used for the simulation. Once
individual modules were verified, they were connected and then simulated together until the
integration reached the major blocks, the execution unit and the instruction unit. Test vectors up
to this point were small and easy to generate by hand, since the test sequences required to verify
operations on these units separately were relatively simple. After all major blocks were

integrated, the verification effort was directed at both functional and switch levels.

Functional simulations are performed not only on each major component, to verify its inter-
nal functions but also on the external system level, to verify interactions among major chip sets.
The diagnostics for the functional simulation were coded in SPUR instructions, and an instruction
level simulator called Barb was used to debug the diagnostics. The diagnostics were intended to
be stored in the start-up ROM on the processor board. The N.2 system provided simulated
memories that could be used to model ROM or other types of memory. Therefore the diagnostics
were assembled and loaded into the simulated memory. When the N.2 simulation was started, it
was forced to go through a series of start-up sequences, making the CPU begin fetching instruc-
tions from the ROM containing the diagnostics. The diagnostics were then executed to comple-
tion or until failure. The same ROM image was used to program the EPROMs on the processor

board, to be used for on-board testing of the chip.

Running extensive simulations on the hardware description verified many design ideas and
functionalities, but it was still necessary to extract and simulate the layout of the entire chip. The
extracted description is almost guaranteed to accurately model the real chip. However, develop-
ing the tests and examining the results for a complete switch-level simulation would be very
difficult. To minimize the required work, the functional simulation should drive the switch-level
simulation with automatically verifying that the two match at every clock cycle. Fortunately, the

N.2 simulator provides a "tracing” capability that logs all changes to a specified set of signals into

A VLSI Chip Set - Part I 14

a file. By tracing all inputs and outputs of an N.2 module, it is possible to obtain a set of switch-
level test vectors automatically. These vectors along with expected results on output nodes are
fed into the the switch-level simulation. The switch level simulator, bdsim, sets the input nodes
according to the timing and vectors specified and verifies the output nodes with the expected

results. Any unusual condition is recorded so as to be used in debugging.

A problem may arise because functional simulation and switch-level simulation may show
different results under unusual states, such as unknown and initial states. For example, the func-
tional simulator initializes all nodes to zero, while all nodes are set to unknowns initially in the
switch-level simulation. When the chip is tested neither of these initial conditions is correct. To
alleviate the problem, all internal states are initialized explicitly in the functional simulations. In
the switch-level simulation, on the other hand, the detailed verifications are made after the initial-

ization is done and all internal states are synchronized with those of functional simulation.

In order to have a working system rather than a prototype chip, all aspects of the design had
to be verified, especially the interfaces to external chips. Table 3 summarizes the diagnostics

vectors simulated in both functional and switch-level simulations.

C. Testing methodology

Several features were incorporated into the SPUR CPU chip to increase its testability. Pas-
sive scan registers are attached to all major busses to increase the observability. All signals put
on these busses can be scanned out for examination. All major blocks are connected and com-
municate through these busses, so that the diagnostics capability is greatly improved. Many sig-
nals, like state bits of finite state machines in IU and the LSBs of the instruction address bus
(busPC), are also routed out to pins to determine the exact status of the processor at any time.
The CPU sends out an instruction every cycle to the FPU (via busI), and it also provides the
observability of the instruction being executed, including intemal instructions. The IU and the
EU can be physically separated by setting certain diagnostic pins. Furthermore, some of the lower

order bits of instruction address bus were routed out to pins. Using these features, instructions can

A VLSI Chip Set - Part I 15

be delivered directly to the EU in case the instruction unit is not functional, by monitoring the

instruction address (busPC<10:2>) available on pins.

The initial testing was done on a special board made for the SPUR CPU chip. The Tek-
tronix DAS 9100 system is connected to the board and controlled from a SUN workstation. The
test set-up is shown in Figure 10. The same vectors used in the switch-level simulations are con-
verted into test vectors. For short-cycle testing, test vectors were downloaded to DAS and testing
was performed. A special set-up was necessary for long-cycle testing, since the DAS can only
hold up to 256 cycles of test vectors. Long vectors are divided into several parts to fit in the DAS
capacity. The division was made at the instruction accessing memory (external cache), such that
the CPU was deliberately made to stall on cache miss by controlling the MMU/CC interface pin
(cache busy), while the next portion of the vector is being down loaded. All signals acquired dur-
ing the testing are transferred back to the SUN workstation for a cycle-by-cycle verification with
the expected result. Most of the CPU functionalities are tested using the initial test set-up. After
the debugging is done, the CPU chip is put on a SPUR processor board to test interactions with

other components on the board, especially with the MMU/CC.

D. Results

The first-pass silicon had a few bugs, including circuit design, layout, and timing errors, but
it worked enough to be used for initial debugging of the processor board. The layout errors
discovered were misplaced well and substrate contacts onto signals rather than power supply
lines. These effectively shorted the signal to either the ground or the power line, resulting in a
stuck-at type fault. Some of these errors were corrected by isolating the misplaced contacts from
the power supply using the laser restructuring technique provided by the Information Science
Institute (ISI). Either the first level or the second level metal can be disconnected by using a laser
shot through the passivation layer. The second (topmost) level metal lines with width of 3 pm
were cut successfully without affecting other structures nearby. Other problems found were tim-

ing errors and glitches on signals controlling the dynamic circuits. The glitch was caused by the

A VLSI Chip Set - Part I 16

excessive ringing on clock lines. The long running clock lines (10 mm) can have parasitic induc-
tance and capacitance large enough to cause a substantial ringing, which may trigger any hazar-

dous glitch.

Several electrical-rule checks were performed to avoid repeating the same errors for the
second pass. However, there was still another layout error discovered after the fabrication. A
portion of metal wire was missing, leading to a disconnected signal. A focused ion beam (FIB)
IC development system, provided by the Seiko instrument company was used to fix the problem.
Two holes were drilled on separated wires through the passivation layer to reach metal lines,
using an ion beam, and connected using FIB-CVD (chemical vapor deposition) metal film deposi-
tion between the two points. The revised and repaired chip is fully functional and is used in a
working SPUR processor board successfully executing its own operating system (Sprite) as well
as many applications including LISP programs. The nominal operating frequency of the chip on
the processor board is 10 MHz, while the maximum operating frequency is 12.5 MHz (80 nsec

cycle time),

V. Summary

The SPUR CPU is a single-chip RISC microprocessor designed for a multiprocessor works-
tation. It supports a a multilevel cache scheme including a prefetching on-chip instruction cache,
a coprocessor interface, and support for the fast execution of LISP through a tagged 40-bit archi-
tecture. In order to build a working computer system based on the SPUR CPU chip, reliable and
efficient methodologies were necessary throughout the design. The chip, fabricated in a 1.6 um
double metal CMOS process, works well in the multiprocessor system prototype, and it met both
of the functional and performance goals set at the initial stage of the design. It runs at 10 MHz

consistently for all programs and dissipates less than 0.8 W of power.

ACKNOWLEDGEMENTS

A VLSI Chip Set - Part I 17

The authors wish to thank all members of the SPUR project who made it an exciting project

to work on, and acknowledge the technical contributions of R. Duncombe, W. Koh, K. Lutz, and

J. Mak. The chip has been fabricated at HP via MOSIS.

(2]

(31

(4]

(5]

(6]

REFERENCES
D.K.Jeong et al., "A VLSI Chip Set for a Multiprocessor Workstation - Part II: A Memory
Management Unit and Cache Controller”, this issue, companion paper.
M.D. Hill et al., "Design Decisions in SPUR", IEEE Computer, vol.19, no. 10, pp. 8-24,

Nov. 1986.

D.XK. Jeong et al., "Design of PLL-Based Clock Generation Circuits", /EEE J. Solid-State

Circuits, vol. SC-22, no. 2, pp. 255-261, April 1987.

G.S.Taylor et al.,"Evaluation of the SPUR Lisp Architecture”, Proc. 13th International

Symposium on Computer Architecture, Tokyo, Japan, June 1986.

M.G.H. Katevenis, "Reduced Instruction Set Computer Architectures for VLSI", PhD
Thesis, UC Berkeley, Oct. 1983.

J.M. Pendleton et al, "A 32-bit Microprocessor for Smalltalk", IEEE J. Solid-State Circuits,
vol. SC-21, no. 5, pp. 741-749, October, 1987

D. Ungar, "Generation Scavenging: A Non-disruptive High Performance Storage Reclama-
tion Algorithm", ACM Software Engineering Notes/SIGPLAN Notices Software Engineer-
ing Symposium on Practical Software Development Environments, Pittsburg, April, 1984.
J.R. Goodman, "Using Cache Memory to Reduce Processor Memory Traffic", Proc. Tenth
International Symposium on Computer Architecture, Stockholm, Sweden, June 1983.

M.D. Hill and A.J. Smith, "Experimental Evaluation of On-Chip Microprocessor Cache

Memories", Proc. Eleventh International Symposium on Computer Architecture, Ann

Arbor, M1, June 1984.

A VLSI Chip Set - Part I 18

(10]

(12]

(13]

[14]

(15]

R.W. Sherbume Jr, M.G.H. Katevenis, D.A. Patterson, and C.H. Sequin, "A 32b NMOS
Microprocessor with a Large Register File", IEEE J. Solid-State Circuits, vol. SC-19, pp.

682-689, October, 1984.

R.H. Krambeck, C.M. Lee and H.S. Law, "High-Speed Compact Circuits with CMOS",
IEEE J. Solid-State Circuits, vol. SC-17, pp. 614-619, June, 1982.

N.2 Simulator User’s Manual, ENDOT, Inc., Cleveland, OH, 1985.

R.B. Segal, "BDSYN: Logic Description Translator, BDSIM: Switch-level Simulator",

Electronics Research Laboratory Memorandom, No. M87/33, University of California,

Berkeley, May 1987.

OCT Tools Distribution 2.1, Electronics Research Laboratory, University of California,

Berkeley, March 1988.

J K. Ousterhout et al., "The Magic VLSI Layout System", IEEE Design & Test of Comput-

ers, vol. 2, pp. 19-30, Feb. 1985.

D. Lee "Data Path Design Considerations for a High Performance VLSI Multiprocessor”,
Technical Report No. UCB/CS Division 87/318, University of California, Berkeley, Nov.

1986.

A VLSI Chip Set - Part I

Number of Transistors
Number of PLA’s

Die Size

Package

Process

Operating Frequency

Power Dissipation

115,214

13

11.5mm x 11.5mm

208-pin PGA (40 pins for power supply)
Double-Metal 1.6um N-Well CMOS
10MHz

0.8W at 10MHz with 5V Supply

Table 1. Chip Statistics

phase | operation critical path (nsec)
phil Register file - read 14.0
phi2 Instruction Cache - fetch 12.0
phi3 ALU - 32b carry propagation 11.0
phi4 Address adder - 30b carry propagation 13.5

Table 2. Critical path timing

19

A VLSI Chip Set - Part I

diagnostics test vector length (cycles)
CPU functions 13,113 (24%)
MMU/CC interface 16,356 29%)
FPU interface 1,543 (3%)

Lisp tags and traps

8,675 (16%)

Boot-up diagnostics

15,829 (28%)

Table 3. Diagnostics

20

A VLSI Chip Set - Part 1

SHARED
MEMORY
< SPUR BUS >
CACHE L CACHE
PROCESSOR . 61012 ... PROCESSOR
I, T ~ -
! B =~ -
,’ 1 ToSPURBUS 1 ~~--._
38 Jf_ﬁ 32,J£
38 CACHE
CMU >
RAMs
38 b4t 38
DATA BUS
<
ADDRESS
BUS
Coprocessor
Interface

Figure 1. SPUR multiprocessor workstation

21

p Sct-Panl

\VLSI Chi

4
A

Interface

anostic

iag

b

cacscmsqen~

“areay
RESAR,
B

srvengene® .

I | waan

Wl v

¥
Houun

o eeaan

Sk

-

P L

R

cetmreagn-
Semesammums D

cesaceney

aemesveme
« eercae

TH T G PO e

-z

o
s
e

ety el ol e

WD mAenee

»
.-
D . oy A SN GED GND S G NG GEL SN SED ED -SED GE> 4D WS

Processor Board

Figure 2. A SPUR processor board

A VLSI Chip Set - Part]

tJ

(O3]

A W T Y

1) ™ A ;\
:5 :.' &
i T
:—. ¥ - — v 3
i v e L LR
E3=.CEIlf PROGRAM:: i3y, ER
BEg o (Sum BB Y COUNTER::,
W 5
Rilg = { _
e G :
|==__= A = = l;
WEE s é
13
S

i
it
AT T R PN NP ARV R

e[CLRGENS

PUUCR"BE =

ghigaanl

IR

o
l

»

CLLL] LR LL

Ry

-
L JRs :‘_.A:;t{
IS SRR]
e !4 e T
- -+: B
~ R4 : -

Figure 3. Chip microphotograph

A VLSI Chip Set - Part I

Register-Register: Rd, Rs1, Rs2
[| [[

opcode Rd r Rsl 10¢ Rs2 ! unused

Il Il 1 ! |

31 24 19 14 8

Register-Register: Rd, Rs1, Immediate

| [[

opcode ¢+ Rd - Rsl 11y Immediate

L L 1 I

31 24 19 14

Store: Rs2, Rs1, Immediate

[[}
opcode i High Imm 1 Rs1 111 Rs2 I Low Imm
L 1

31 24 19 14 8

Compare-Branch: Rs1, Rs2
[

opcode t Cond Rsl 10+ Rs2 I Branch Offset
!

1 ! Il 1

31 24 19 14 8

Compare-Branch: Rs1, Short Imm

[[
opcode t Cond Rsl1 111 Short Imm « Branch Offset
1 | 1

| 1

31 24 19 14 8

Compare-Branch: Rs1, Tag Imm

|
opcode + Cond + Rsl 1+ Taglmm 1 Branch Offset

i ! | 1

31 24 19 14 8

Call, Jump: Word Address

opcode ! Word address within currect segment
L

31 27

Figure 4. SPUR instruction formats

24

A VLSI Chip Set - Part I

I-Fetch | Execute | Mem Acc Write
I-Fetch [| Execute | Mem AccA Write
Delayed branch \ \
N I-Fetch Executrz:l \Mem Acc Write
\‘Double internal forwarding
I-Fetch | Execute | Mem Acc Write

Figure 5. SPUR CPU pipeline

25

A VLSI Chip Set -~ Part I

ADDRESS BUS
Memory Adrress Register] busS X
Bus Interface
Cache Trap
o Incrementer Controller . busD
x Interface

I Pipelined Program Counters

11

i
|
1
1
|
|
I
I
1
|
!
! {busPC e LT Shifter }-
* _4_/—x_x, Master
' c ! Byte Inserter
! e Call and Trap PCs ontro % ¥
: Unit Byte Extractor m
| Processor Status Words T T
: Bus Buffers
! Saved Widow Pointer ol
I
i Bus Muttiplexors
I Current Widow Pointer
'l busA T busB
-= 3 ————————————— bus]
—T : Memory Buffer Register
) T T
: Intemnal Destination Register 1 P—
Instruction i | Forwarding ¥
: Destination Register 2
; -
Unit I
: Clock) .
' | Generator Register File
'
I
|
1 :_ 'l busL, Execution Unit
DATA BUS

Figure 6. SPUR CPU block diagram

26

A VLSI Chip Set - Part 1 27

. ? Access Enable (phil)
phi4 —q ;@d
- » Word Line Driver
WP-—{ N —_)= e je— phxﬂ
Ko Na(NH[N4
Wed[N4 L
phi¢ _ﬁ Wp: Parent (caller) window pointer

We: Child (callee) window pointer
N<3:0>: Same for both registers in cailer's and callee’s windows
N4: MSB of caller's register is complement of that of callee’s

Figure 7a. Overlapped window register decoder

g Do phil «13

i AL AL A
p;i_4 Source Reg Addr

hi3 _qg
Destination Reg Addr 5‘ X !
>—_r

phi

o

phil -

Enable Internal Forwarding (phil)

Register File D O | q

- » busA

l ¥

F S

Temp Reg

Figure 7b. Internal forwarding logic

A VLSI Chip Set - Part I 28
. Low Level Control Signals n
o s (for Upper Datapath) « e .
CMU, FPU
Special Reg. Control PC Control T
Local decodeing logic
High Level Control Signals CMU
OPCODE Ly » 'y FPU
aster Control
Master Coniro] Interface
Opcode | .
E Mem Wr
— PLA 720 xec
Ctr Ctr Ctr 9
11
Fast 1% 1 B Buf Buf
Logic
L L
/ 3 Vq 50 17 8 — Trap
L v v v
High Level Control Signals Logic
Local decodeing logic
Register Control Func. Units Control
¢+ " Low Level Control Signals R
(for Lower Datapath)

Figure 8. Block diagram of master control

A VLSI Chip Set - Part I

(Behavioral Description
dsp’) >

Behavioral Simualtion:

N2
Structural Descnpuo) Test Vector
(bds)
(Circuit/Logic)
Diagram
C Logic Description) Y
magic
edifing espresso, mpla
Design Rule Checking
L————l’(Layout)———ﬁ and Editing:
magic
layout extration
ext2sim
Timing Verification: (Switch-level Layout Verification /
crystal, spice description) bdsim

Figure 9. Design methodology

29

A VLSI Chip Set - Part]

REF CLK

on-chip clock

phil

SPUR CPU output signals
K= input signals
Pattern
Generator
DAS
Acquisition
Probes
test vectors/patterns
SUN
Workstation

Figure 10. Chip test set-up

30

A VLSI Chip Set for a Multiprocessor Workstation - Part I1:
A Memory Management Unit and Cache Controlier

Deog-Kyoon Jeong
David A. Wood
Garth A. Gibson
Susan J. Eggers
David A. Hodges
Randy H. Katz
David A. Patterson

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

This two-part paper describes two key components used in building a 40-70 MIPS multipro-
cessor workstation. In the first part [1], VLSI implementation of the central processing unit
(CPU) chip, based on reduced instruction set computer (RISC) architecture and with support for

LISP is described.

The second part discusses required hardware support for a shared memory multiprocessor,
and describes a memory management and cache controller (MMU/CC). The MMU/CC imple-
ments an in-cache address translation mechanism that does not require the use of a translation
look-aside buffer. Also, a snooping bus protocol is implemented to assure coherency among mul-

tiple caches distributed across the system.

Both chips are implemented in a 1.6 um double-layer-metal CMOS technology, and are
being used in a multiprocessor workstation (SPUR) successfully executing its own operating sys-

tem called Sprite as well as many applications including LISP programs.

L. INTRODUCTION

Computer architecture evolves by responding to advances in the underlying implementation
technology. Current CMOS VLSI technology makes it possible to integrate a very powerful pro-
cessor on to a single chip. Computer architects respond with RISC (Reduced Instruction Set
Computer) concepts as a result of careful study of trade-offs between VLSI technology and com-
piler technology [2]. RISC-based microprocessors have demonstrated an ability to provide more
computing power at a given level of integration than conventional microprocessors [3-4]. Next
logical step is multiprocessors composed of RISC processing elements. We have designed and
built such a multiprocessor called SPUR [5]. SPUR (Symbolic Processing Using RISC’s) is a
bus-oriented shared memory multiprocessor developed at U.C. Berkeley to explore RISC applica-
bility to symbolic programming languages such as LISP, and parallel processing with shared
memory. The features of SPUR in a symbolic processing area are discussed in the companion

paper and this paper focuses on the hardware for multiprocessing.

Shared memory multiprocessors use private write-back caches to reduce the memory
bandwidth through a common bus as well as reducing the average memory access time. Since
each processor has its own cache blocks, multiple copies of the same address may reside in dif-
ferent caches. Thus, a mechanism for assuring cache consistency among multiple caches is
required so that a consistent view of memory is maintained. It is a challenging problem to suc-
cessfully design, verify and implement cache coherency protocols because of their very complex
operations involving many possible state transitions. This paper describes the MMU/CC that
implements such a protocol. The innovative functions of the MMU/CC are a virtual memory

management mechanism via in-cache address translation {6] and a write-invalidate cache

This work was sponsored by DARPA under contract order 482427-25840, California MICRO, Texas Instruments, Na-
tional Semiconductor, Cypress Semiconductor, Tektronix, and Hewlett Packard.

A VLSI Chip Set - Part I 33

coherency protocol [7]. The MMU/CC controls access to the cache and generates all control sig-
nals for the board and backplane. An interval timer, an interrupt controller and performance

counters are also integrated onto the MMU/CC.

The MMU/CC has been fabricated in a double metal 1.6um N-well CMOS process at
Hewlett Packard through MOSIS. The chip integrates 68,400 transistors on a die measuring 11.5
x 11.5 mm? and consumes 0.7 W. Figure 2 shows the chip microphotograph. The chip statistics

are summarized in Table 1.

In the next section, we present a functional description of the MMU/CC. In Section III,
implementation details and circuit techniques are described. Section IV contains a specific con-
siderations in the design and implementation of the MMU/CC based on the design methodology

described in the companion paper. Finally, status and conclusions are given in Section V.

II. FUNCTIONAL DESCRIPTION

The MMU/CC combines two control units - a processor cache controller (PCC) and a
"snooping" bus controller (SBC). The PCC handles memory references for the CPU, while the
SBC interacts with the backplane bus. The PCC and SBC run independently unless an event that

requires the other’s attention occurs.

A. The Processor Cache Controller

The PCC’s memory management scheme is based on an in-cache address translation
mechanism [6]. Virtual, rather than physical, addresses are used for the cache index and tag. The
advantage of the virtually addressed and virtually tagged caches is that address translation is
needed only on cache misses. Because the cache is quite large, misses occur infrequently, and a
high speed translation mechanism is not needed. The virtual to physical address translation map
is located in the virtual address space and the data cache serves as a translation look-aside buffer

(TLB), reducing the complexity of translation and eliminating the need for a separate unit for this

A VLSI Chip Set - Part 11 34

function.

On each CPU reference, the PCC first transforms the 32-bit virtual processor address into a
38-bit global virtual address. It maps the most significant two bits of the virtual address into an 8
bit segment number by selecting one of 4 global segment number registers in the datapath. The
mapping is done in parallel with the cache tag and data RAM access, since the high order bits are
part of the tag and this simple map is faster than the cache tag store access. If the address tag
matches the cache tag, the data is returned and the MMU/CC takes no further action. On a cache
miss, the PCC generates the virtual address of the page table entry (PTE) using a page table base
register and a special shifter. It uses the PTE virtual address to access the cache in the next cycle.
If this access finds the PTE, the physical address of the data is extracted and a main memory
reference is made to fetch the desired cache block. On a PTE miss, a third cache reference is
needed to access a root page table entry (RPTE) with the assistance of a root page table base
register and another shifter. The desired cache block is fetched in a recursive manner. This recur-
sive process ends if the third cache reference misses in the cache. Instead of going to a deeper
level, it uses a root page table entry map register that contains the base address of the root page
table entry in the physical address space. Because of the size of the cache and locality in
accesses, PTE misses and especially RPTE misses are extremely infrequent [6]. The translation

mechanism is shown in Figure 3 and Figure 4.

B. The Snooping Bus Controller

The controller provides special hardware support for maintaining coherency among private
caches. When a memory block is shared by more than two caches, a local write into one of the
shared cache blocks should be reflected in the other cache’s corresponding block, so that the sys-
tem maintains a consistent, single-level view of memory. The Snooping Bus Controller (SBC)
implements a distributed cache coherency mechanism, called Berkeley Ownership [7]. The SBC

not only initiates its own bus transactions on behalf of the processor, but also "snoops” on other

A VLSI Chip Set - Part 11 35

bus activities to detect when one of the local cache blocks is involved.

The protocol works as follows. A cache block is in one of four coherency states: Invalid,
UnOwned, OwnShared and OwnPrivate. Also, four kinds of bus transactions are possible:
ReadShared, ReadForOwnership, Write, and WriteForlnvalidation. Owning a cache block
means that the owning SBC has the responsibility to provide an up-io-date copy on a read request
from the bus and to write the cache block to memory if it needs to replace the block in the cache.
There is at most one SBC that owns a memory block. Main memory is the implicit owner of the
block if it is not cached by any processor. On a write to a valid, non-OwnPrivate cache block, the
PCC stalls the processor while the SBC initiates a WriteForInvalidation 1o invalidate correspond-
ing cache blocks in other caches. The state of the local cache block becomes OwnPrivate. Until
-another SBC takes ownership, subsequent writes can be made locally without informing others
because it is a unique copy. On receiving a ReadShared bus request, the state of the OwnPrivate
cache block is changed to OwnShared. In the OwnShared state, the next local write should
accompany WriteForinvalidation because there are other copies of the same block. A special
processor request, ReadPrivate, is included for improving performance under software direction.
Ownership can be obtained immediately when reading a non-shared block, instead of waiting
until a processor write operation. In this way, an unnecessary bus transaction, WriteForlnvalida-

tion can be avoided on "private" data. Figure 5 shows a state transition diagram of the protocol.

We have extended a standard microcomputer bus, Texas Instrument’s NuBus, to incorporate
the Berkeley Ownership protocol [8]. We wanted to use existing commercial memory and I/O
boards. Since the devices did not participate in the Berkeley Ownership protocol, we used a

separate set of backplane lines for inter-cache transactions.

C. Asynchronous Interface

While the SBC derives its clock from the SpurBus (10 MHz fixed frequency), the PCC

shares the processor clock which is asynchronous with the bus. The frequency of the processor

A VLSI Chip Set - Part II 36

clock can, therefore, be set according to its implementation technology, regardless of the bus
clock and other processors. We chose to do this to provide more flexibility during testing and
integration with memory and I/O devices. An asynchronous interface handles a

request/acknowledgement handshake for communication between the PCC and SBC.

Other system functions are integrated onto the MMU/CC such as performance counters,
interval timers, interrupt controller. Performance counters monitor various system activities to
measure performance metrics. The purpose of including these counters is to aid in the perfor-
mance analysis of the working multiprocessor without perturbing the system. They count 32
kinds of coherency-related and cache access events in user and/or kernel mode such as Read-
ForOwnership bus operations, cycles spent by the PCC waiting for a bus transfer to finish,

instruction fetches, and so on.

HI. Implementation

Figure 6 shows a detailed block diagram of the MMU/CC internals. The chip consists of
the PCC, the SBC, an asynchronous interface and other system functions. A complete

specification for the MMU/CC is in [9].

A sequencer implementing the PCC consists of a programmable logic array (PLA), a stack
and a decoder that sends low level control signals both on-chip and off-chip. It is configured as a
push-down automaton rather than as a finite state machine to efficiently implement a recursive
algorithm used in address translation. State information is stored in the 4 entry stack and can be
pushed, popped, replaced, or flushed under the control of the sequencer. Such a machine struc-
ture is also convenient to handle SBC request servicing. When the SBC requests the PCC’s

attention, the PCC is able to save its current state while executing the SBC’s request.

The PCC’s sequencer PLA has 41 inputs, 36 outputs and 207 product terms. A small sense

A VLSI Chip Set - Part II 37

amplifier that fits into the pitch of the array has been designed for fast signal detection in large
PLAs. It also limits the voltage swing in the highly capacitive nodes in the AND plane and the
OR plane. Figure 7 contains a circuit diagram and its transfer characteristics. The range of the
voltage swing is set to approximately 1 V, which is determined by a reference voltage generator.
The simple reference voltage generator is composed of a diode-connected transistor and a set of
the pull-up and pull-down transistor with the same size and orientation as the ones in the array. It
assures insensitivity to process and power line variations. Assuming only one array transistor is
selected in the data line, the voltage swing is limited to AVgs of M2, An array transistor at logic
threshold sinks the same amount of current as the pull-down in the reference generator if AVgg of
the cascode transistor, M1, is half as much as that of the diode-connected transistor, M2, in the
reference generator. Thus, the logic threshold voltage of the highly capacitive node is placed in
the middle of the voltage swing, regardless of the variations, by making the width of M1 2.5
times larger than the width of M2. The worst-case delay (fully loaded AND/OR plane) of a 50
input, 50 output, 200 product PLA was simulated to be 31ns with a 100pA pull-up current. An
equivalent PLA without the sense amplifiers would have had a 55ns delay. However, real PLAs
with a sparse AND/OR plane would have significantly less delay because of reduced capacitance

in the select and data lines. Actual delay of the sequencer PLA is estimated to be 18 ns.

A comparison with other PLAs is shown in Figure 8. PLAs with polysilicon select lines
have the longest delay because the RC delay increases quadratically with the size of the PLA.
Without low ohmic silicided polysilicon lines, first level metal could be used as the select line
and second level metal as the data line. Since the pitch of the metal lines and their contact sizes
are larger than that of the polysilicon lines, the area of a PLA that uses metal for both lines is
approximately 2 times larger than the PLAs with polysilicon or silicided polysilicon lines. Our
sense amplifiers are more efficient as the size of the PLA increases. Overhead delays due to

. . . . V.
inverter stages amortize, and the total delay time reduces asymptotically to [SWING

] times the
DD

A VLSI Chip Set - Part Il 38

delay of the PLA without sense amplifiers.

The address translation datapath includes special purpose registers and shifters. It also
shares its buses with other system utility functions: performance counters, interval timers, and
interrupt registers. All registers and buses are implemented with fully static or pseudo-static
logic. Although fully static circuits take more area, they are relatively immune to noise and tend

to generate less noise.

The SBC consists of 7 PLAs, 19 OR gates, and several logic blocks with random gates and
latches. Each PLA is a controller partitioned to specific functional operations, running in parallel
with other PLAs. A PLA named master generates almost all backplane control signals when it
acts as a bus master, while a slave PLA does the similar operation responding to the bus as a bus
slave. A smaller controller, nubus, receives interrupts and notifies the master about SpurBus avai-
lability. A virmach PLA manages data transmissions and receptions on the inter-cache backplane
lines. It may be triggered either by the master to override memory’s copy of the locally requested
block or by the slave to transmit the block requested by the inter-cache backplane. A physrec
PLA handles the transfers from the memory to the cache and it may be requested by the master to
release the cache RAMs in favor of the virmach. A reset PLA continuously monitors bus activi-
ties to check for reset conditions and potentially override all other PLAs. The total numbers of
inputs, outputs and product terms of the SBC PLAs are 100, 123, and 236, respectively, with the
largest PLA having 25 inputs, 39 outputs, and 76 product terms. Of the total SBC area, 65% is
consumed by routing. There are 209 nets among major blocks in total. Net length distribution is

shown in Figure 9, not including clock lines and scan path related routing.

Since the MMU/CC must generate board-level signals as well as internal datapath control
signals, stringent timing relationships are required. Clock skew must be minimized for high
speed synchronous communication among the PCC, CPU and FPU. Multi-phase clocks are

needed to provide many different timings for enables, chip selects, and address/data drivers. Two

A VLSI Chip Set - Part Il 39

charge pump Phase-Locked Loop’s (PLL’s) with tapped delay lines [10] provide the flexibility
needed to generate multiple clock phases, in addition to maintaining accurate phase relationships
with clock phases on other chips and the backplane. Figure 10 shows the 16 internal clock phases.
Since the internal frequency follows the external reference clock, all phases stretch or contract
proportionally. It is more forgiving to critical paths since any phase including non-overlap time
can be stretched by slowing down the extermnal clock. With a 10 MHz external clock, the
minimum timing quantization of any internal clock phase is 5 ns. Conventional clocking would
have required a 200 MHz external clock to obtain 5 ns timing resolution. Special techniques
would have been required to distribute the external clock in a printed circuit board and design an

on-chip clock generator operating at such a high frequency.

As with all asynchronous interfaces, metastable states can cause system failures. To reduce
the probability of these failures, we employ a two-prong design strategy: first, maximize the
bandwidth of internal core amplifiers in each synchronizer, and second, allow the synchronizer
half a cycle to settle. Because most interface transactions occur on infrequent cache misses, the
extra latency for synchronization does not significantly degrade system performance. The core of
the synchronizer is an RS flip-flop composed of two NAND gates that has been carefully laid out
to reduce parasitic capacitance. Simulation shows that the characteristic time constant of the syn-
chronizer is 0.24ns. Initial condition of the input voltage difference in the synchronizer core that
cause metastability to persist longer than 20 ns is 3.2 x 10736 V [11]. Assuming the initial input
voltage difference caused by asynchronous inputs is uniformly distributed (conservative assump-
tion), the probability of metastability persisting longer than 20 ns is 6.4 x 107, When synchroni-
zations happen at a 10 MHz rate, the system’s Mean Time Between Failure (MTBF) due to syn-

chronization error is more than 10%! years.

Two channels are needed for bidirectional communication between the PCC and SBC. One

channel is responsible for delivering to the SBC the PCC’s requests to fetch or write data to/from

A VLSI Chip Set - Part I 40

the backplane on cache misses. Acknowledgements must also be returned from the SBC to
inform the status of the current transactions - whether they have been finished successfully or
resulted in errors. The other channel running in the opposite direction is mostly involved in
snooping operations. The requests from the SBC are initiated when the SBC detects backplane
transactions that require the PCC to relinquish the cache RAMs so that the SBC can invalidate,
update or transmit a cache block. A logic diagram of one of the two asynchronous interface
channels is shown Figure 11. Instead of using a conventional 4 cycle handshake mechanism, a
variant of 2 cycle handshake mechanism is used. Interface logic allows a request line to be
asserted for only one cycle to log the request to the receiver, without requiring the sender to hold
the request line all the way until an acknowledgement arrives. Similarly, a one-cycle ack-
nowledgement informs the sender of the completion of the transaction. This mechanism in the
interface reduces the complexity of implementing a handshake protocol in the PCC and SBC, as
well as retaining the speed advantage of a 2 cycle handshake. Speed independent operation is
achieved as long as the cycle time of each side does not exceed the pulse width of the edge detec-
tor output which is approximately 10 ns. Since all data (ReqCode and AckCode) arrives at the
destination at the same time or before a request/acknowledgement is asserted, there is no need for
synchronization for data. About a half cycle is allowed for synchronizing

request/acknowledgement signals.

IV. Design Methodologies and CAD Tools

For the design of a VLSI chip with as much functionality as the MMU/CC, good
computer-aided design tools and adequate design methodologies are essential. Our design
methodologies include design verification at the behavioral level, layout generation, layout
verification, and a test suite. General description of the SPUR VLSI design methodology that is
common to all SPUR chips is included in Section IV of the companion paper [1]. In this section,

only the MMU/CC-specific extensions to the general picture is described.

A VLSI Chip Set - Part 11 41

The entire SPUR system has been described in ISP’, and system level design verification
has been done using a set of diagnostics in behavioral level. Although the MMU/CC can be
simulated as part of the whole system, it is very difficult and time-consuming to write diagnostics
to test all the cases for the MMU/CC. MMU/CC events are not single cycle and much state infor-
mation is concealed in protocol - so the number of possible state configurations is astronomical.
A random tester was developed to verify the memory system including the MMU/CC in a mul-
tiprocessor configuration [12]. A swub module that simulates the CPU’s memory reference
behavior with an accurate interface between the CPU and the MMU/CC replaces the CPU to
speed up verification time. The stub CPU generates memory references by randomly selecting
from a set of predefined scripts. The scripts are composed of two parts, an action part that gen-
erates references to cause state changes, and a check part that checks if the correct state change is
made. The actions and checks are executed at different times with other actions or checks inter-
vening, causing complex cases to be generated. For example, one of the scripts includes an action
part that writes a word to a memory address, and a check part that reads a word from the same
address. If they do not match, an error will be signaled. Although random testing takes
significant amount of computer time and memory space, a significant amount of human effort
devising test vectors can be saved. The total number of simulation cycles was between 50-100
million cycles, and the simulator ran 1000 cycles per hour in a SUN-3 workstation. The random
tester uncovered more than half of the functional bugs found during the simulation. The random
tester alone is not powerful enough - it does not stop simulation exactly where the fault occurs.
Rather, it stops later when the fault is detected. The monitor module is a passive "watcher” that
stops simulation whenever the SpurBus or cache coherency protocol is broken. There is also a
daemon module that generates NuBus 1/O transactions that Spur Boards must cope with, but do

not generate. These three together form the "random tester system.”

The major part of the MMU/CC is composed of controllers with widely varying sizes.

A VLSI Chip Set - Part II 42

Instead of merging all the controllers together and implement them with a standard cell approach,
we decided to implement them with separate PLAs and connect them with global routing. By
doing so, a behavioral description and the corresponding layout match closely and as a result a
minor change in the controller description does not result in major layout revision. Only
automatic regeneration of the PLA layout is involved without any change in the routing. Also,

since the terminal names are preserved, it is easier to verify the layout.

For testability, "passive” scan paths were included that snapshot internal states and shift the
result out under external control. Although they do not provide the ability to introduce arbitrary

states, they are useful for debugging errors.

V.STATUS AND CONCLUSIONS

The first version of the MMU/CC was sent out for fabrication in November 1987, and first
silicon was received in February 1988. Omitting wafer probing, all chips were packaged and
tested on a printed circuit board specially designed to connect to the Tektronix Digital Acquisi-
tion System (DAS). After downloading test vectors from a SUN workstation, the DAS exercised
a chip and acquired result vectors. Result vectors were compared against the expected results
using the SPUR specific tool, ccdas. Simple, short test vectors were used at this stage of testing.
Although some chips passed all functional testing, we have experienced occasional errors. The
errors were traced using scan paths and we discovered that some stack entries occasionally
changed from O to 1 due to floating wells. In our methodology, instead of drawing wells expli-
citly, we relied on the magic layout editor for gencrating wells automatically. A few PMOS
transistors were more than 12 A’s away from well contacts, so their wells were not properly
biased. An ad hoc electrical rule checker was developed by changing the technology file of
magic, and used for the next version of the chip. A second version arrived in September, 1988

and is fully functional. The SPUR CPU, MMU/CC and processor board now run the Sprite

A VLSI Chip Set - Part I 43

operating system at the intended clock frequency, 10 MHz. A three processor system is reliably
running parallel processes. The working prototype of SPUR MMU/CC demonstrates the
manageability of complexity in implementing both address translation mechanism and cache

coherency in a full custom VLSI chip.

ACKNOWLEDGEMENT

The authors would like to thank all the SPUR members for technical discussions and sup-
port, especially, Ken Lutz for providing an excellent test environment, Walter Beach for datapath
design and layout, Dr. G. Luicki and S. Lu at MOSIS and R. Duncombe at HP for useful discus-

sions and fabrication support.

REFERENCES

[1] Lee, D., et al., "A VLSI Chip Set for a Multiprocessor Workstation - Part L. A RISC
Microprocessor with Coprocessor Interface and Support for Symbolic Processing,” this
issue, companion paper.

[2] Katevenis, M., et al., "Reduced Instruction Set Computer Architectures for VLSIL,” Ph.D.

Thesis, U.C. Berkeley, Oct. 1983.

[3] Moussours, J., et al., "A CMOS RISC processor with integrated system functions,” 24th
Annual IEEE Computer Conference (COMPCON ’86), March 1986.

[4] Gamer, R, et al., "The Scalable Architecture (SPARC)," 26th Annual IEEE Computer
Conference (COMPCON ’88), March 1988.

[5] Hill, M. D. et al., "Design Decisions in SPUR," IEEE Computer, vol. 19, no. 10, pp. 8-24,

Nov. 1986.

[6] Wood, D. A. et al., "An In-cache Address Translation Mechanism," Proceedings 13th

Annual Symposium on Computer Architecture, Tokyo, Japan, pp. 358-365, June 1986.

A VLSI Chip Set - Part 11 44

(7]

(8]

[9]

(10]

[11]

(12]

Katz, R. H. et al,, "Implementing a Cache Coherency Protocol,” Proceedings 12th Annual

Symposium on Computer Architecture, Boston, MA, pp. 276-283, June 1985.

Gibson, G., "SpurBus Specification," Proc. of CS292i: Implementation of VLSI Systems,
R.H. Katz (Editor), University of California, Berkeley, Sept. 1985.

Wood, D., et al., "SPUR Memory System Architecture,” Computer Science Division Report
No. UCB/CSD 87/394, University of California, Berkeley, Dec. 1987.

Jeong, D.-K. et al., "Design of PLL-Based Clock Generation Circuits,” IEEE J. Solid-State
Circuits, vol. SC-22, no. 2, pp. 255-261, April 1987.

Pechoucek, M., "Anomalous Response Times of Input Synchronizers," IEEE Trans. Com-

put., vol. C-25, no. 2, Feb. 1976.

Wood, D. A., et al., "Verifying a Multiprocessor Cache Controller Using Random Case
Generation," Computer Science Division Report No. UCB/CSD 89/490, University of Cali-

fornia, Berkeley, Jan. 1989.

A VLSI Chip Set - Part II

TABLE 1 - Chip Summary.

Number of Transistors

Number of circuit nodes

Total gate capacitance

Total wire/junction capacitance
Number of PLAs

Total number of PLA inputs
Total number of PLA outputs
Total number of PLA product terms
Die Size

Package

Power Dissipation

Process

68,395

30,285

1280 pF

2630 pF

19

262

277

707

11.5mm x 11.5mm
208-pin PGA

0.7W @ 5V, 10MHz
Double-metal 1.6um CMOS

45

A VLSI Chip Set - Part 11

SHARED
MEMORY

< SPIIJR BUS >

l ‘ |

PROCESSOR | - 6101.. | PROCESSOR

- e 327
Processor MMU/ CACHE
Cache D ; CcC RAMs
Controller ? 38 64 +
4 DATA BUS
Asynchronous a <= :g
nterface p ADDRESS 64 1 64
- a BUS
Snooping t
Bus h CPU
Controller A Coprocesso
T Interface

Figure 1 SPUR block diagrams: system, processor board and MMU/CC block
diagram.

A VLSI Chip Set - Part II 4

TS T T 35 T T T

— e e o BRae - o . . jandipaiuiligl -

I A P 4

(c)1988

SEQUENCER

!
i

- -

gmmmm
- S

b -

i N

RETLLEK
Y

s ama s s oo
-*
m
X
17, S

-~ =~

4 :! & » £
~ - iom-s. M!—M - :
. "......."""”:t‘ i A T il B I ¥ ! [Igs "I~Hj Hd

Figure 2 Chip microphotograph.

A VLSI Chip Set - Part I1

Virtual Address

l

CacheRef. | Virual Address of g:cg‘}kglfe‘ Vinual Addressof] CacheRef. | physical Address of
Data miss PTE gEmr; miss Root PTE Root PTE | miss Root PTE
hit hit hit
Memory Ref. | physical Address of | Memory Ref. sical A Memory Ref.
Page Table
Data Data Enury Page Table Entry Root PTE
v

Data

Figure 3 In-cache address translation mechanism - cache/memory access flow.

A VLSI Chip Set - Part II

49

31 0
[2 l virtual page # l offset VA
37 0 Global
L s | 18 [12] ya
m 0 first cache ref
37 b
[10 | g 10 |2 VA (PTE)
| RPT Base (virtual) | ‘(i) second cache ref
37
l* 20 I | 1 n J VA (RPTE)
| RPTBase (physical) | third cache ref
31
I 20 I l I PA (RPTE)
31 memory reference 0
[| page containing PT | | RPTE
31 0
l 20 l | PA (PTE)
31 memory reference 0
[I page frame # [] PTE
31 0 PA
r 20] offset] (Data)
memory reference
31 0
[| Data

Figure 4 In-cache address translation mechanism - address mapping.

A VLSI Chip Set - Part 11 50

ReadRS ReadPrivate/RFO
Write/RFO

‘Wit
ReadPrivate/WFI RS/Respond

ReadPrivate/- WEFI : WriteForInvalidation
Read/- RFO : ReadForOwnership
Write/- RS : ReadShared

@ , ®)

Figure 5 Cache block state transition diagram: (a) state transition due to CPU
operations, and (b) state transition due to snoop operations. A label in an arc

represents (Request Received)/(Bus Action). Processor FLUSH operations are
omitted for simplicity.

A VLSI Chip Set - Part II

L pCC On-Board OnChip T
; Cache Control Datapath Control i
Signals T T Signals :
Data Bus 4 4 Addr Bus
Datapath ;
Sequencer Decoder)
Addr/Data Transceiver
T StackOp T iy 1
1 Address
Stack Control Translation
Registers
L T
Cp ;J S Shif;
| CPY R Op Hers
: PCC Reg/A T r
Snoop Op | SBC Reg/Ack
Counter Performance
Controller Monitors
Asynchronous
Interface i {
SBCReqg/Ack | | PCC Reg/Ack Timers
SBC T %
SPURBus Interface Interrupt Interrupt
Controller
Controller Registers
Board Control | i ‘Backplane Conrol T
Signals Signals

Figure 6 SPUR MMU/CC block diagram.

51

A VLSI Chip Set - Part I

;7 Vs Vout

25xw M f
v

Data line 1 _—

—H;, c i m Vref

M2 +
—\- w AVgs+ Vr
Vin "L,

(a)

Select line

5V

out
\P)

Figure 7 A PLA sense amplifier: (a) schematic, and (b) transfer curve.

A VLSI Chip Set - Part 11 53
delay
¢ Poly Word Line without Sense Amp A U
A Metal Word Line without Sense Am RC
100n P Diffusion
O Silicide Word Line without Sense Amp Delay
Metal Word Line with Sense Amp i
Area
Effect
D
Sense
50n Amp
Effect
Y
On L L | !
#inputs 10 20 30 40 50 60
#outputs 10 20 30 40 50 60
#products 20 40 80 100 200 300

Figure 8 Comparison of worst-case delay among different PLAs.

A VLSI Chip Set - Part 11

54

20
10—
0 IAA['\AAA] A MM A l A

0 500 1000 1500 2000 pm

Figure 9 Net length distribution of the SBC.

A VLSI Chip Set - Part 11

55

Extemnal PCC Clock

03
04

912
Datapath ¢

Datapath ¢,
Addr Latch Clock
Driver Clock
Write Clock
Latch Clock

External NuBus Clock
Sample Clock ¢g
Assert Clock ¢
Latch Clock ¢

Word Count Clock
Cache Write Clock
Snoop Write Clock
Arbiter Clock

S W AN S B
A
— ‘ / __
N\ / AN
(@)
g —
5 /TN
/ DN
e —
N\ I .
i/ \
(b)

Figure 10 Internal clock phases in the MMU/CC: (a) PCC clock phases, and
(b) SBC clock phases.

A VLSI Chip Set - Part II

56

Sequencer Asynchronous Interface SBC PLA
PLA
4 9s
AckCode E = D >
KX
PCCAck L s
>
63
< SBCReq j(-’l,_.'}
1 qlr_% l 3] = ReqCode <}_4,’='?_

Figure 11 Interface between the PCC and SBC. ¢, ¢; and ¢, are PCC clock
phases, and ¢, ¢p and ¢; are SBC clock phases. ED is an edge detector that
generates a short, negative pulse on the rising edge of the input, and S is a syn-
chronizer with or without reset terminal. AckCode and PCCAck are valid dur-
ing ¢,,. Synchronizer A is allowed a half cycle of the SBC clock for settling
time while synchronizer B is allowed two fifths of the PCC cycle time.

A VLSI Chip Set - Part I

57

Behavioral Description \
asp’) J

Random Tester

Behavioral Simualtion:

extration
exi2sim

N2
ndot
(Structural Description >
(bds)
(CircuiyLogic) bdsyn
Diagram
< Logic Description) ¥ Test Vector
magic
editing mis,espresso,mpla
\ Design Rule Checking
k———{ Layout J and Editing:
magic

\ Layout Verification

Timing Verification: f . e
. Switch Level Description
crystal, spice \ j
Wafer Fabrication

< The Chip

\ cedas

bdsim

\ Chip Verification

)

DAS

Figure 12 Design flowchart and CAD tools.

