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ABSTRACT

There is a broad spectrum of design styles that have proven successful for the construction
of VLSI circuits and systems. Semi-custom to full-custom design styles offer a wide ranges of
resulting performance, expected turn-around time, and required design effort. Implementation
alternatives, such as replacing dynamic memory for static memory to implement a denser on-chip
memory, also exist at all levels of design hierarchy. To make the best use of scarce resources on
a single chip microprocessor and to make the emerging CAD tools truly useful, alternatives in the
implementation of a microprocessor must be carefully evaluated. The rescarch reported in this
thesis focuses on issues concemning these alternatives, especially in the arcas of on-chip memory

design and automated control logic design.

The methodologies and techniques used to maximize the performance of a full-custom
VLSI microprocessor, called the SPUR CPU, is initially presented to provide an overview of
microprocessor design strategies. The rest of the research presented is transpired from new ideas
and better alternatives which have become available since the SPUR CPU. These are based on
lessons leamed in the SPUR design and advanced computer-aided design tools such as multi-
level logic synthesis system. A rigorous evaluation of these alternatives is attempted and results

from the cvaluation cstabtish the effectiveness of the alternatives considered.

To increase the arca efficiency of the on-chip memory, two aemory design techniques are
proposed and cvaluated. Sclective invalidation instcad of refrcshing, implemented using low

overhead dynamic CMOS circuits, can cffectively climinate the refreshing requirement of



dynamic memory. With this scheme, the size of an on-chip local memory can be substantially
increased without increasing the scarce silicon area. Trace-driven simulations show the effective-
ness of this scheme over a simple invalidation scheme. The demand for high bandwidth local
memory expedited by parallel execution of programs through multiple functional units requires a
fast, stable, yet compact multi-port memory cell. A single-ended access, static memory cell

operated at reduced voltage levels is proven to be useful for such applications.

A part of this research is devoted to investigating various layout styles for microprocessor’s
control. Recently, various VLSI CAD tools have emerged to facilitate the hard-wired control
design. Behavioral synthesis and multi-level logic optimization systems provide particularly
efficient and high-performance hard-wired logic implementation, even with semi-custom layout
styles, such as standard cell-based design. All new design methods aim for simplicity and regular-
ity. The standard cell based design style, when combined with multi-level logic optimization,

can provide a resulting design as good as full-custom version but in much shorter design time.
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1 | Introduction

This thesis consists of three self-contained chapters that examine design and implemen-
tation of a VLSI microprocessor chip (the SPUR CPU), on-chip memory design techniques,
and altemnative implementations of microprocessor’s control logic. Chapters 2, 3 and 4 are
stand-alone presentations. In this introductory chapter, I provide an overview of the research

and thesis organization.

1.1. Motivation

There is a broad spectrum of design styles (e.g. semi-custom or full-custom design
styles, and static or dynamic memory for on-chip local memory design) that have proven suc-
cessful for the construction of VLSI circuits and systems. For all these styles and for all the
abstraction levels (behavior, logic, circuits, and layout) in the design hierarchy, good com-
puter aided design (CAD) tools are indispensable. To make the emerging CAD tools truly

uscful and to take advantage of advanced VLSI technology, all of the many diffcrent design



styles must be carefully examined with choices made judiciously for a particular application.

The research reported in this thesis is originally motivated from the design and imple-
mentation of the SPUR CPU chip. After presenting the details of its design and implementa-
tions, I will examine several alternatives for a full-custom VLSI microprocessor design. Con-
sequently, a detailed evaluation of alternatives will be available for future microprocessor

development.
The objectives of the research are as follows:

(1) Develop a better understanding of implementation alternatives in VLSI microprocessor
design.

(2) Examine alternatives rigorously, in order to be able to compare and evaluate them
quantitatively.

(3) Provide ideas or guidelines for future microprocessor design and for the development of

computer-aided design tools.

1.2. VLSI Microprocessor Design and Implementation

Over the last decade, many commercial and research microprocessors have been suc-
cessfully built on a single chip. A general overview of design steps in the development of the
microprocessor is summarized in the following. Among various steps, this research focuses
on the VLSI design issues, particularly on altcrnatives for a full-custom implementation of

the VLSI microprocessor.
Architecture definition

High level architecture and instruction set is defined in this step. Global design issues
such as language support, operating systcm support, memory management support and

coprocessor support are considered and defined.

Technology selection



The performance of the microprocessor strongly depends on the technology in which
the microprocessor is implemented. Emitter-coupled logic (ECL), CMOS, and NMOS
technologies are among the most popular choices. The selection also strongly relies on
the design environment supported by CAD tools, since some CAD tools may only work
with a particular technology. The design style associated with each technology is also
considered here. The selection of design style greatly influences design cost and tur-
naround time. Semicustom design, like the gate array design style, may require a few
weeks to get the first working silicon, while highly optimized full custom design may
take several years. Other semicustom design styles include sea of gates (channel-less

gate array), standard cell, and macro cell design styles.
Microarchitecture design

An important task in this step is to specify a detailed behavioral description of the
architecture. Since it represents a complete design of the microprocessor for a selected
technology, it is used to verify architecture defined at a higher level as well as to pro-

vide diagnostic vectors for later stages of design verification and debugging.
VLSI design and implementation

The chip implementing the microarchitecture is designed in this step. First, the
behavioral description is synthesized into several different modules, such as control
logic, data path, and memory. Since implementation styles for each of these modules
are very different, different implementation strategies are used. Design methodology for

each of these modules is chosen so that the best overall performance can be achieved.
Design verification

Once schematics or a layout representation of the micro-architecture is made, this
representation is verified against the behavioral description, to make sure that the two
representations arc totally cquivalent. Usually a net list is generated from the schematic

diagram or mask layout, and then logic simulations are performed on this extracted net



list and results are verified against the behavioral simulation. Design and electrical rules

are also checked in this step.
Integrated circuits fabrication

Masks are made from the layout and the design is transformed into the silicon.
Testing

Testing verifies functional behavior, electrical performance and fabrication processes.
Test vectors are generated so that they can cover as much area of the chip, and as many

functionalities, as possible.

1.3. A VLSI Design Methodology for a Microprocessor

Optimizing performance in VLSI digital systems involves several design choices,
including the choice of the best implementation methodology. Alternatives exist at all levels
of design and each must be carefully examined to obtain an optimal implementation for a
given architecture and technology. Because some of these processes are very time-

consuming, designers rely on structured methods aided by a computer.

Many design stratcgics are used to deal with complexities in VLSI design
[MeC80][WeA85]. One of the more frequently used strategics is to divide the design into
several parts so that each can be implemented using the most efficient method. This would
result in an optimal implementation in part by part. A balanced optimization is also important
in such strategy, since overall performance is usually dctermined by the most critical part.
Various tradeoffs among diffcrent parts, such as area versus timing, can be made to achieve

the best overall performance.

In general, microprocessor implementation can be divided into three different activities:
data path dcsign, control logic design, and on-chip local memory design. All these parts are
different and require different methodologics as well as differcnt design styles. Alternatives

and optimization techniques for the data path part of the microprocessor have been studied



extensively in many past research projects. On-chip memory design has become an important
issue since i/o communication bottleneck of a single-chip processor can be significantly
improved by having an on-chip local memory. As more chip area is devoted to the local
memory (some microprocessors have more memory than other logic, e.g. TI Lisp chip
[Bos87]) and many different memory organizations emerges, a separate (from data path
design) consideration is required for on-chip memory designs. The research presented in this
thesis addresses two separate issues regarding on-chip memory design and control logic

design parts of the full-custom VLSI microprocessor.

. 1.4. Related Work

The research presented in Chapter 2 on the SPUR CPU chip is not a one-person project.
Several graduate students have worked on various aspects of the research. The instruction set
architecture of the SPUR CPU was defined by George S. Taylor [THL86}, and the microar-
chitecture design was refined by Shing I. Kong [Kon89]. Mark D. Hill contributed in the
design of on-chip instruction cache [Hil87]. Most of the work presented in Chapter 2 of this

thesis is in the area I have participated in most, VLSI chip design and implementation.

Many papers have discussed on-chip memory design at both architecture and imple-
mentation aspects; these include [Goo83], [HiS84], [ACHS87], [EiP88], [GoH86], and
[Kad82]. Most concentrate on architectural design issues such as register versus cache and
organization of on-chip caches. Agarwal et al. present the importance of the tradeoffs
between on-chip cache architecture and implementation [ACH87]. They show that for on-
chip caches other considcrations besides hit rate are important. These include the total usable
arca, the timing of cache accesses, the physical organization of the cache, and the aspect ratio

of the resulting design.

Two rccent papers discuss using dynamic memory for on-chip local memories
[Tra85])[Bos87]. Tran presents a successful intcgration of high density 1T DRAM in digital

signal proccssor chip [Tra85]. Bosshart et al. also present a memory intensive



microprocessor chip built for LISP processing [Bos87]. Over cighty percent of this chip is
used to implement memories, including RAM's made of 4T dynamic cells. The DRAM’s
refresh when they are not required for other operations. A master refresh timer is also pro-
vided to enforce extra refresh cycles in case that there is any entry not refreshed. Several
multi-port memory cells for on-chip memories have been proposed in [She84], [Kad82],
[0’C87], [DiS79], and [Nak88]. The analysis of these cells is further carried out in [SLL87],
[0’C87], and [Nak88].

The efficiency of two general approaches (microprogrammed and hard-wired) for
designing the control unit of a VLSI microprocessor is examined in [Anc83]. By re-
implementing the control unit of MC6800, this research shows that the hard-wired approach
always gives minimum area but its design cost increases 100 rapidly with increasing com-
plexity. The aim of reducing the design cost may lead designers to choosc design styles less

optimal in terms of silicon area but which use more regular structure.

For alternative control design using hard-wired logic, Hoffman compares the multi-
level logic implemented in array structured logic (a CMOS extension of Weinberger array
using domino logic), and a two-level PLA implementation [Hof85]. The control logic of the
CMOS SOAR (SmallTalk on A RISC [Pcn87]) microprocessor chip is used as the basis of
comparison. He shows that a multi-level logic implemented in array form is faster and
smaller than a PLA version of the same logic. The impact of library size on the quality of
automated logic synthesis is investigated in [Keu87]. It concludes that an incrementally
larger library size can considerably reduce arca while meeting comparable timing rcquire-

ments.

1.5. Thesis Organization

The main body of the thesis consists of three main chapters (Chapters 2, 3 and 4) which
are written as stand-alone discussions rather than as tightly integrated parts of a whole. For

this rcason, the chapters can be read separately, in any order.



Chapter 2, VLSI Implementation of the SPUR CPU Chip, presents the design of a VLSI
microprocessor chip for a multiprocessor workstation, called SPUR. The central processing
unit (CPU) of the SPUR processor supports a multilevel cache scheme that includes a pre-
fetching on-chip instruction cache, a coprocessor interface, and a support for a fast execution
of LISP through a tagged 40-bit architecture [Hil86]. In addition to describing the implemen-
tation details of each part, an overall methodology is also presented. In order to build a work-
ing computer system based on the SPUR CPU chip, a reliable and efficient methodology was

indispensable.

The research presented in the next two chapters (Chapter 3 and 4) is developed from the
implementation of the SPUR CPU. New ideas and better altemnatives have become available
since the SPUR CPU, from the lessons leamed in the SPUR design and the newly developed
CAD tools. These must be examined rigorously to be useful for improving the performance
of the next gencration microprocessors. New and better alternatives in VLSI microprocessor
design are presented using examples from the SPUR CPU chip, and comparisons are made to

determine the effectiveness of the alternative.

Chapter 3, On-chip Memory Design, presents new techniques for on-chip local memory
designs. Simple circuit design techniques, when properly adapted to the architectural design,
can provide a cost-effective performance improvement. Using the selective invalidation
scheme implemented with low overhead circuits can eliminate the refreshing requirement of
dynamic memory, if used as a read-only or writc-through cache. Using this scheme, a static
memory can be replaced with a high density dynamic memory without performance or relia-
bility degradations. Parallel execution of programs using more than one functional unit is an
effective approach to increasing the processor performance [P1S88]. The bandwidth required
by multiple functional units demands a high bandwidth fast memory with multiple ports. A
single-cnded static memory cell operated at reduced voltage Ievels can be as safe and fast as
other multiport memory while consuming much Iess area. Using circuit simulations and static

noise margin analysis [SLL87], it is detcrmined to be feasible to implement multi-port



memory based on this cell.

Chapter 4, Control Design Alternatives, discusses the alternatives available for design-
ing the control portion of the microprocessor. A common approach to regularizing the design
of random control logic employs a structured logic element, such as PLAs and microcode
ROMs, to implement the microprocessor’s control. Emerging CAD tools, especially in
multi-level logic synthesis and optimization [NeS86][Bra87], now allow a combinatorial por-
tion of control logic to be mapped into different design styles such as standard cell-based
design, which have not been well utilized in full-custom VLSI designs. In this chapter, I
examine these alternative design styles by re-implementing the control units from the SPUR
chips, and contrasting them with the full-custom version (with only PLA synthesis tools)

available also from the SPUR designs.

Finally, Chapter S concludes the thesis and provides a summary of the research and

future work.
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7 | VLSI Implementation of the SPUR CPU Chip

2.1. Introduction

SPUR! (Symbolic Processing Using RISCs) is a multiprocessor workstation developed
at the University of California at Berkeley as a testbed for research on parallel processing,
particularly in LISP [Hil86]. A SPUR workstation, shown in Figure 2-1, can have 6 to 12
identical processors, each of which consists of a 128K-byte cache, a CPU, a floating point
coprocessor, and a cache control and memory management unit (CMU) that assurcs the cache
cohcrency among multiple processors. The picture of a fully populated SPUR processor
board is shown in Figure 2-2. This chapter describes the VLSI implementation of the CPU

chip, a 32-bit RISC microprocessor.

The SPUR CPU supports a multilevel cache scheme that includes a prefetching on-chip

instruction cache, a coprocessor intcrface, and support for fast execution of LISP through a

'SPUR is sponsored by DARPA under contract order 482427-25840, Califomia MICRO, Texas Instruments, National
Semiconductor, Cypress Scmiconductor, Tektronix, and HP.

12
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tagged 40 bit architecture. The coprocessor interface supports concurrent CPU and FPU
operations. It uses 27 pins to implement a low-overhead interface between the CPU and the

FPU.

The chip, implemented in 1.6 pm, double metal CMOS technology, contains 115K
transistors. The chip statistics are summarized in Table 2-1, and a chip photomicrograph is
shown in Figure 2-3. An on-chip clock generator, based on a charge pump phase-locked loop
with tapped delay- line, provides accurate phase relationship with the board clock and also
with clock phases of the other chips [Jeo87). Nominal operating frequency with a 4-phase
non-overlapping clock (18 nsec nominal per phase and 7 nsec non-overlap time between
phases) is 10 MHz (12.5 MHz Max). A SPUR uniprocessor running LISP programs (Gabriel
benchmarks) at 10 MHz can provide 2X performance improvement on the average over the
Symbolics 3600 or VAX 8650, according to simulation [THL86]. A SPUR workstation with

6 to 12 processors is predicted to yield a sustained throughput of 40 to 70 MIPS, respectively.

Number of Transistors 115,214

Number of PLA’s 13

Dic Size 11.5mm x 11.5mm

Package 208-pin PGA (40 pins for power supply)
Process Double-Metal 1.6um N-Well CMOS
Operating Frequency 10MHz

Power Dissipation 0.8W at 10MHz with 5V Supply

Table 2-1. Chip Statistics
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The organization of the chapter is as follows: Section II gives an overview of the CPU
architecture and execution pipeline. Section III focuses on the hardware required to imple-
ment various features of the SPUR CPU architecture. Section IV describes the design,
verification, and testing methodologies of the full custom SPUR CPU chip. Finally, the sum-

mary and conclusion are given in section V.

2.2. An Overview of the SPUR CPU Architecture

The SPUR CPU is a third-generation RISC microprocessor developed at the University
of California at Berkeley. It is specifically designed to be used in the SPUR multiprocessor
workstation. The architecture of the SPUR CPU is akin to those of previous RISC projects at
U.C. Berkeley [Kat83], [Pen87). Some new features, however, have been added: a coproces-
sor interface to support floating-point computation, an efficient interface to the cache-control
and memory-management unit, and run-time hardware tag checking for fast execution of
LISP programs. The instruction set of the SPUR CPU is carefully chosen such that an

efficient implementation of the single-cycle execution of all instructions is possible.

Like previous RISC processors, the SPUR CPU is a load-store machine. Memory is
accessed only through load and store instructions. All other instructions are register-to-
register or immediate-to-register oriented. There are four generic instruction types: register-
to-register, store, compare-and-branch, and call-jump. Load and retumn instmctioné are spe-
cial cases of register-to-register in which (R, + R;2) Or (R, + Immediate ) is used as an effec-
tive address. The R, ficld specifies the register to be loaded for the load instruction type and
is not used forrthe return instruction type. All instructions (40 integer and 20 floating point)
are 32-bits wide and usc fixed formats. The seven instruction formats are shown in Figure 2-
4. The opcode and the register specifiers are in the same positions in all formats. The three-
register format (RRR) is used for loads, register-to-register operations, special register opera-
tions and coprocessor operations. The two-register and onc-immediate (RRI) is used for loads

and register-to-register operations. Compare-and-branch instructions have three slightly dif-

17



ferent formats depending on the field specifying the condition.

Register-Register: Rd, Rs1, Rs2
1 ]

[
opcode 1 Rd 1 Rsl JIO: Rs2 ! unused

1 il

31 24 19 14 8

Register-Register: Rd, Rs1, Immediate
| 1 [

opcode ! Rd t+ Rsl 1 Immediate

1 11

31 24 19 14

Store: Rs2, Rs1, Immediate

| [
opcode iHighImml Rsl1 11+ Rs2 l Low Imm

31 24 19 14 8

Compare-Branch: Rs1, Rs2

] [ ]
opcode '+ Cond ' Rsl 01 Rs2 1 Branch Offset
1 A

1 1 1

31 24 19 14 8

Compare-Branch: Rs1, Short Imm

1 ] (I ]
opcode 1 Cond + Rsl 11iShortImm: Branch Offset
1

1 1 1l 1

31 24 19 14 8

Compare-Branch: Rs1, Tag Imm

[
opcode 1+ Cond ' Rst 1+ TagImm ' Branch Offset
1 1

1 1

31 24 19 14 8

Call, Jump: Word Address
1

opcode Word address within current segment
1

31 27

Figure 2-4. SPUR instruction formats
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The CPU registers are organized in eight overlapped windows (128 registers) and 10
global registers accessible from any window (total 32 registers visible from one window).
The overlapped window scheme considerably reduces the register save and restore overheads
between procedure calls. The registers are 40-bit registers with 32 bits for data and an 8-bit
tag used for runtime type checking and garbage collection. The 8-bit tag consists of a 6-bit
object’s type tag and a 2-bit generation numbers. LISP is supported with three types of
hardware tag checking with traps to a software trap handler: data type checking for general
computations, pointer type checking for list operations, and generation number checking for

garbage collection based on the generation scavenging algorithm [Ung84].

The on-chip instruction cache provides the effect of an extra memory port, allowing
simultaneous data memory reference and instruction fetch by the execution unit (EU). This
leads to a four-stage pipeline (Figure 2-5) that eliminates the need for pipeline stalling when-
ever a load instruction is executed. Consequently, the CPU can issue and complete one
instruction per cycle (peak performance rate of 10 MIPS per processor) as long as there are
no instruction or external data cache misses. Branch conflict in the pipeline is resolved by a
single cycle delayed branch with one instruction in the delayed slot. Data conflicts are

resolved by hardware internal forwarding logic.

In order to facilitate the high-precision floating point computations and other possible
coprocessing capabilities, the SPUR CPU incorporates a parallel interface to coprocessors.
The floating-point coprocessor interface implemented in the current version of the CPU chip
supports concurrent CPU and FPU operations. It uses 27 pins to implement a low-overhead
interface between the CPU and the FPU. The FPU tracks CPU instructions issued by the
instruction cache in the CPU via 22 pins carrying opcode and register specifiers. The CPU
sends 2 control signals to the FPU, and the 3-bit FPU status is sent to the CPU. The CPU
treats all FPU instructions as illegal instructions when the FPU is disabled. When the FPU is
enabled, all FPU instructions except FPU load and store arc treated by the CPU as NO_OP.

For FPU load and store, the CPU computes the effective memory address and the FPU reads
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I-Fetch Execute | Mem Acc Write

Figure 2-5. SPUR CPU pipeline

and writes the data directly from the external cache.

In the SPUR instruction set, a number of special load (7) and store (3) instructions are
dedicated to cache control and virtual memory management. Although these instructions look
almost identical to the CPU, appropriate cache operations are provided to the external CMU
through the CMU interface. The interface consists of a 4-bit cache-opcode, two bits indicat-
ing the mode of operations (user vs. kernel and physical vs. virtual), and 9 other status bits of

both the CPU and the CMU.

The unusual conditions that the CPU may face at runtime can be divided into four
groups. Unusual conditions detected inside the CPU are called CPU exceptions: integer
overflow, tag checking, window overflow and underflow, and so on. Unusual conditions
causcd by the FPU are called floating-point exceptions. All other unusual conditions occur-
ring outside the CPU are called faults and interrupts. Faults occur in response to the execu-
tion of an instruction, while interrupts are asynchronous events that come from outside the
processor (e.g. an i/o interrupt). The CPU responds to exceptions, faults, and interrupts by

taking a vectored trap. The trap vector consists of a trap base address concatenated with the



trap type field. There is a priority ordering for cases when more than one unusual condition
occurs at the same time. All traps are taken during an instruction’s third pipeline stage, and
hence only one instruction can cause a trap in any cycle. Traps can be disabled or enabled
selectively by controlling the 8 bits in both kemel and user processor status words (KPSW

and UPSW).

2.3. Hardware Implementation of the SPUR CPU

The major functional blocks are shown in Figure 2-6 and outlined in the chip photomi-
crograph (Figure 2-3). The major blocks are the execution unit (EU) and the instruction unit
(IU). The EU is further divided into the upper data path, the lower data path, and the control.
The 30-bit upper data path contains pipelined program counters and special registers. It is
used for instruction address calculations and special register references. The 40-bit lower data

path is for general computation on the tagged registers.

2.3.1. The instruction unit

The SPUR IU consists of a 512-byte (128 instructions) direct-mapped (16 blocks with 8
subblocks or 8 instructions per block) instruction cache. A novel feature of the SPUR instruc-
tion cache is a valid bit associated with each instruction word in the cache so that any subset
of instructions within a block may be valid. The SPUR IU uses this flexibility to reduce
demand miss time by loading only the fetched instruction rather than the entire block and to
permit instruction prefetching to load the rest of a block in parallel with subsequent instruc-
tion fetches [Goo83], [HiS84]. If subsequent prefetches are successful, the miss penalty is

just two cycles for the entire block containing the missed instruction.

The IU can operate in three different modes: (1) disabled, (2) enabled-without-
prefetching, and (3) enabled-with-prefetching, controlled by two bits in the kernel processor
status word (KPSW). In disabled mode, the IU fetches every instruction requested by the EU

from the external cache. Disabled mode is uscful for initial chip testing and for allowing
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Figure 2-6. SPUR CPU block diagram

chips with stuck-at-type errors in the cache or tag array to function correctly, albeit more
slowly. In cnabled-without-prefetching mode, the IU will cache instructions upon demand

misscs but will not initiate any prefetches.
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The normal mode is the enabled-with-prefetching. After the missed instruction is
cached, prefetches are made to subsequent words within the block until another demand miss
occurs or prefetch is blocked by the EU’s external data access. These prefetches are "free”,
as they never interfere with external cache accesses, such as instruction fetch and external
data reference, by the EU, because prefetch has the lowest priority. If prefetch causes an

external cache miss, the cache controller simply ignores the request.

The instruction unit is controlled by two finite-state machines: one controls the fetching
and the other controls the prefetching of instructions. Two finite state machines and other
random control logic are partitioned into 6 PLAs, considering the timing constraints. Both IU
and register file use the same 6T SRAM memory cell [She84]. The data portion of the cache
is an array of 128 33-bit words. The tags are stored in a separate array (16 24-bit words)
whose access time is significantly less than that of the data array. This allows the tag com-
parison to be done while the instruction is being read out from the data array. Bitwise com-
parison using an XOR gate is used for tag comparison and is followed by dynamic logic to
determine a hit. The effective access time of the instruction cache including hit logic is under

12 nsec without using a sense amplifier.

2.3.2. The execution unit

Key features in the execution unit are a register file with eight overlapped windows,
double internal forwarding for resolving register access conflicts, and run-time tag checking
with traps to softwarc on mismatch. The SPUR CPU has a 30-bit branch address adder in the
upper data path, which together with the 32-bit ALU in the lower data path support one-cycle
compare-and-branch type instructions. Rather than a complex barrel shifter, a combination

of a byte extractor/inserter and a simple shifter is implcmented.

A. The register file
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The SPUR CPU has a total of 138 general-purpose registers organized in 8 overlapped
windows and 10 global registers. Thirty-two registers are visible to the compiler at any one
time: 10 globals, 10 locals, 6 overlapped with caller window, and 6 overlapped with callee
window. Each register is 40 bits wide having a 6-bit tag, 2 bits for generation number and 32
bits for data. The same 6T SRAM cell used in the IU is used in the register file. The layout of
SRAM cell is constrained by the pitches of the data path bit slice and the register decoders
(two decoders per register). The result is a large but fast SRAM cell that does not require a

sense amplifier.

The SPUR CPU architecture is register oriented and requires two reads and one write
per cycle. The register access is time multiplexed for the separate reads and the write and is
pipelined to minimize the critical path. Bit lines are decoded and precharged in the same
phase, and the register array is accessed in the following phase by driving the wordline. The
access time of the register file read is the critical path of the chip. It is measured to be under
14 nsec. For registers in the overlapped window, a special decoder shown in Figure 2-7 is
used to map two different register addresscs (onc from the caller’s window and the other from

the callee’s window) to one register [Kat83].

In the pipelined execution of the instruction stream, data interdependencies among
instructions in the pipcline may arise. In the SPUR CPU, these interdependencies are detected
and resolved by the hardware internal forwarding. That is, the results from preceding instruc-
tions are forwarded to the following instructions by the hardware before being written back to
the register file, as indicated by the arrows in Figure 2-5. In the case of a 4-stage pipeline like
the SPUR CPU, the data interdependencies may exist among 3 consecutive instructions since
the write-back stage of the pipcline is delayed by two cycles aficr the exccution stage. The
result available from each instruction’s execution stage, therefore, needs to be stored in tem-
porary registers for two cycles and then forwarded to the following instructions. When both
operands are registers, each register address is compared to the destination register address of

the two preceding instructions. This may result in double internal forwarding, in that both
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Figure 2-7. Overlapped window register decoder

operands are results of two preceding instructions and hence supplied from the temporary

registers.

The hardware internal forwarding logic is in the critical path of the register file access,
and it must be implemented without slowing down the cycle time. Like decoding and access-
ing the register array, it also is pipelined. Address comparisons are done in parallel with the
decoding of the register file, and internal forwardings are made if neccssary while the register
file is accessed. Four address comparisons are necessary to detect all possible data dependen-
cies. The address comparator must be fast to keep the cycle time short, and it must be com-
pact to fit in the arca between register decoders and temporary registers, as scen in Figure 2-3
(block IF). Bitwise comparison is done using a dynamic XOR, shown in Figure 2-8, and then
the outputs are fed into the domino circuit for an address match. Since this XOR docs not
require complecmentary inputs, routing and area required are significantly reduced. A special
multiplexor, shown in Figure 2-8, is used to minimize the signal delay through the intemal

forwarding logic that lics between the register file and the functional unit. If internal forward-
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ing is necessary, the bus from the register file is disconnected by the transmission gate, and
the bus to the functional unit is driven by the temporary register. The access time of register

file reading (14 nsec) includes the delay through the internal forwarding logic.

B. The data path

The data path is divided into two parts: the upper data path for program counter logic
and special registers, and the lower data path for general computations on tagged registers.

Functional units in the lower data path include a byte-extractor, a byte-inserter, a simple
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Figure 2-8. Internal forwarding logic




shifter that shifts up to three bits, and an ALU. The ALU provides XOR, OR, AND, ADD,
and SUBTRACT operations and comparison for two 32-bit operands. The upper data path
consists of a number of program counters to hold instruction addresses in the pipeline, an
address incrementer and adder, and special registers such as window pointers and processor
status words. All registers and counters are made of pseudo-static latches, such that each
register is refreshed once per cycle. This is necessary because an indefinite pipeline stall is

possible due to a long external cache miss.

In the SPUR CPU, compare-and-branch instructions are executed in only one cycle. A
separate adder in the upper data path calculates the target addresses for all the compare-and-
branch instructions while the ALU is in use for the comparison. Two different adder designs
are employed. The 32-bit ALU uses four 8-bit carry lookahead adders implemented in dom-
ino logic, and evaluates the carry within 11 nsec. The 30-bit address adder is more compact

because it uses a Manchester carry chain which has a carry propagation delay of 13.5 nsec.

The upper 8-bit slices of the lower data path are for tag-related operations. Operations
on the tag and the data are logically independent, that is, no information moves between the
two parts by carry propagation or any other implicit mechanism. For operations, the 6-bit tag
type is checked in parallel with the data operation. If there is a tag mismatch and the tag trap
enable bit is set in the user processor status word (UPSW), the CPU traps to the software.
Generation tag checking (2 MSB) is done when a special store instruction (ST_40 Rsy, Rs2,
Immediate) is exccuted. Generation tag exception may occur if the object (Rs2) with a higher
(younger) generation number is stored into the object (Rs;) with a lower generation number
[Ung84). The read_tag and write_tag instructions move a tag to and from the data portion of
a register using the byte-extractor and the byte-inserter respectively, so that any arithmetic or

logical operations may be performed on it.

To reduce the chip area and improve the circuit speed, the dynamic circuit technique
called domino logic [KLL82] is heavily used in the design. Potcntial charge sharing problems

are prevented either by the use of abundant clock phases or by careful layout of the critical
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nodes. The SPUR CPU has 7 major busses to provide communications both externally and
internally. Some of these busses have high capacitive loadings, and hence precharging is used
to imprdve the speed of data flow through the highly capacitive busses. The high capacitance
bus is precharged to high before being used and discharged conditionally through a strong
NMOS pull down network when used. This not only reduces the signal delay through the bus
but also minimizes the chip area required for a strong, large driver. Some logic function may
be included in the pull-down network as well, further saving the chip area. Critical paths of

the data path, register file, and instruction cache are summarized in Table 2-2.

C. The control

Four-phase clocking and a uniform four-stage pipeline for all SPUR integer instructions
make the control section of the CPU relatively simple. The SPUR CPU uses intemnal instruc-
tions to handle pipeline interrupts, rather than requiring complex sequences for those excep-
tions. These internal instructions are miss, trap_call, and read_pc to handle instruction cache

miss and all kinds of traps. These instructions are cxecuted in the same way other instructions

phase | operation critical path (nsec)
phil Register file - read 14.0
phi2 Instruction Cache - fetch 12.0
phi3 ALU - 32b carry propagation 11.0
phi4 Address adder - 30b carry propagation 13.5

Table 2-2. Critical path timing




are executed. The use of these instructions further simplies the control design.

The control can be divided into three parts: master control, trap logic, and the interface
to the cache control/memory management unit (CMU). The latter two are separated out from
the master control to simplify the control design. Trap logic detects all unusual conditions
during the pipelined execution of an instruction. All traps are taken during an instruction’s
third pipeline stage, and hence only one instruction can cause a trap in any cycle. The trap
logic consists of pipelined modules, each of which operates at the corresponding stage of the
instruction in the pipeline. The CMU interface logic generates cache opcodes according to

the current instruction and the status of the CPU. It also buffers signals to and from the CMU.

The block diagram of the master control is shown in Figure 2-9. A centralized master
control unit controls the processor sequencing and decodes the opcode into high level control
signals. Local random logic blocks then decode the high level signals into low level signals
using clocks. They also provide buffering of the low level signal according to the loading
requirement. All signals controlling the data path are individually optimized so as to have
equal delays relative to the clock edges. The scparation of master control and local
decoding/buffering significantly reduces the amount of routing between two sides, particu-

larly in CMOS design where complementary signals are required in controlling the data path.

Most of the control logic in the SPUR CPU is implemented in static PLAs. The largest
PLA is the one that decodes the opcode, which has 69 product terms with 40 outputs. The
propagation delay through this PLA is about 15 nsec, well below the required timing of two
phases or 50 nsec. All PLA outputs are evaluated once per cycle and need to be held in regis-
ters until the next cycle. The routing between the PLA and the registers may consume sub-
stantial chip arca since the PLA output pitch is so small compared to the pitch of the regis-
ters. Thus, the registers (pscudo-static latches) are integrated into the output section of the
PLA by widening the PLA output pitch (16 lambda to 20 lambda). This results in an unusu-
ally large PLA, but the chip area required is much less than if the PLA and the registers were

separated, and the timing requirement is still satisficd.
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Figure 2-9. Block diagram of master control

2.4. Design, Verification, and Testing Methodology

Methodologics employed in the SPUR CPU design have been influenced by the follow-
ing two themes of the SPUR project: (1) an overall system-wide rather than local optimiza-
tion, and (2) designing a chip for a working system rather than an cxperimental prototype.
Conscqucntly', ‘methodologies became very important since the chip being designed must

meet all the functional requirements set for the system design as well as performance goals.
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2.4.1. Design methodology

The design strategy incorporated both top-down and bottom-up approaches. The top-
down flow was as follows: architecture definition, instruction set design, microarchitecture
design, and a detailed functional/behavioral description of the hardware. The bottom-up flow
was circuit design of basic components, layout of basic cells, assembly of major blocks using
those cells, and global placement and interconnections. Both approaches were taken in paral-
lel from the beginning, to achieve the highest performance at given technology and system
design goals. For instance, many microarchitecture decisions were made after the feasibility
of a certain hardware resource was carefully considered. Division of design tasks followed
the same hierarchical boundaries of design abstractions: architecture and instruction set
design, microarchitecture design, and VLSI implementation. One- Or two-person groups were
formed to take the responsibilities of each design level. Close interaction among different

groups was nccessary to make clean interfaces among themselves and design specifications.

Most of the CAD tools used in designing the SPUR CPU chip were developed at Berke-
ley, except those for the behavioral level design. The detailed design started with describing
the behavior of the chip and its interactions with other components within the system. The
functional behavior was written in ISP, a hardware description language, and simulated
using the N.2 simulator [N.2 Simulator.]. The implementation of the hardware can be divided
into two parts. Most parts of the control design were done using a set of CAD tools that
automatically synthesizes the behavioral description of the combinational logic into the PLA
[Scg87], [EEE88]. Other parts of the control logic (sequential) and data paths were designed
manually but aided by another set of tools. These two paths are diagramed in Figure 2-10.
For the automated synthesis path, only those parts of the hardware description containing
combinational logic can be synthesized. For the manual part, logic and circuit design were
done first for each block and followed by layout. Layout was done using an intcractive lay-
out editor, Magic {Ous85], with background dcsign rule checking and hicrarchical extraction.

The extracted layout, which is a switch-level description of the chip, was simulated using
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bdsim, a switch-level simulator [Seg87].

Timing analysis was done before the layout, to make early tradeoffs among many alter-
natives and after the layout, to perform an exact timing analysis with all parasitics correctly
annotated. To estimate the critical paths of the chip more accurately, and thus to be able to
determine the cycle time, a test chip containing a register file with internal forwarding was
| fabricated and tested [Lee86]. The measured critical path (register file read) was below 18

nsec, and this encouraged us to set the cycle time goal at 100 nsec.

Behavioral Description Behavioral Simulation
asP’) N2
ndot
Structural Description
Test Vector
(bds)
CircuivLogic bdsyn
Diagram
C Logic Description ) A\ 4

espresso, mpla

Design Rule Checking
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Timing Verification: Layout Verification /
Switch Level Description
crystal, spice ddsim

Figure 2-10. Design methodology
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2.4.2. Verification methodology

The verification methodology was constructed following a bottom-up approach. As
each individual module was designed, switch-level simulation was performed on the
extracted layout to verify the design. A small set of hand-written test vectors was used for the
simulation. Once individual modules were verified, they were connected and then simulated
together until the integration reached the major blocks, the execution unit and the instruction
unit. Test vectors up to this point were small and easy to generate by hand, since the test
sequences required to verify operations on these units separately were relatively simple.
After all major blocks were integrated, the verification effort was directed at both functional

and switch levels.

Functional simulations are performed not only on each major component, 1o verify its
internal functions but also on the external system level, to verify interactions among major
chip sets. The diagnostics for the functional simulation were coded in SPUR instructions, and
an instruction level simulator called Barb was used to debug the diagnostics. The diagnostics
were intended to be stored in the start-up ROM on the processor board. The N.2 system pro-
vided simulated memories that could be used to model ROM or other types of memory.
Therefore the diagnostics were assembled and loaded into the simulated memory. When the
N.2 simulation was started, it was forced to go through a series of start-up sequences, making
the CPU begin fetching instructions from the ROM containing the diagnostics. The diagnos-
tics were then executed to completion or until failure. The same ROM image was used to pro-

gram the EPROM s on the processor board, to be used for on-board testing of the chip.

Running extensive simulations on the hardware description verified many design ideas
and functionalities, but it was still nccessary to extract and simulate the layout of the entire
chip. The extracted description is almost guarantced to accurately model the real chip. How-
ever, devcloping the tests and examining the results for a complete switch-level simulation
would be very difficult. To minimize the required work, the functional simulation should

drive the switch-level simulation with automatically verifying that the two match at every
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clock cycle. Fortunately, the N.2 simulator provides a "tracing" capability that logs all
changes 1o a specified set of signals into a file. By tracing all inputs and outputs of an N.2
module, it is possible to obtain a set of switch-level test vectors automatically. These vectors
along with expected results on output nodes are fed into the the switch-level simulation. The
switch level simulator, bdsim, sets the input nodes according 1o the timing and vectors
specified and verifies the output nodes with the expected results. Any unusual condition is

recorded so as to be used in debugging.

A problem may arise because functional simulation and switch-level simulation may
show different results under unusual states, such as unknown and initial states. For example,
the functional simulator initializes all nodes to zero, while all nodes are set to unknowns ini-
tially in the switch-level simulation. When the chip is tested neither of these initial conditions
is correct. To alleviate the probiem, all internal states are initialized explicitly in the func-
tional simulations. In the switch-level simulation, on the other hand, the detailed verifications
are made after the initialization is done and all internal states are synchronized with those of

functional simulation.

To have a working system rather than a prototype chip, all aspects of the design had to
be verified, especially the interfaces to external chips. Table 2-3 summarizes the diagnostic

vectors simulated in both functional and switch-level simulations.

2.4.3. Testing methodology

Several features were incorporated into the SPUR CPU chip to increase its testability.
Passive scan registers are attached to all major busses to increase the observability. All sig-
nals put on these busses can be scanned out for examination. All major blocks are connected
and communicate through these busses, so that the diagnostic capability is greatly improved.
Many signals, like state bits of finite state machines in 1U and the LSBs of the instruction

address bus (busPC), are also routed out to pins to determine the exact status of the processor



diagnostics test vector length (cycles)
CPU functions 13,113 (24%)
CMU interface 16,356 (29%)
FPU interface 1,543 (3%)
Lisp tags and traps 8,675 (16%)
Boot-up diagnostics 15,829 (28%)

Table 2-3. Diagnostics

at any time. The CPU sends out an instruction every cycle to the FPU (via busl), and it also
provides the observability of the instruction being executed, including internal instructions.
The 1U and the EU can be physically separated by setting certain diagnostic pins. Further-
more, some of the lower order bits of instruction address bus were routed out to pins. Using
these features, instructions can be delivered directly to the EU in case the instruction unit is

not functional, by monitoring the instruction address (busPC<10:2>) available on pins.

The initial testing was done on a special board made for the SPUR CPU chip. The Tek-
tronix DAS 9100 system is connected to the board and controlled from a SUN workstation.
The test set-up is shown in Figure 2-11. The same vectors used in the switch-level simula-
tions are converted into test vectors. For short-cycle testing, test vectors were downloaded to
DAS and testing was performed. A special set-up was necessary for long-cycle testing, since
the DAS can only hold up to 256 cycles of test vectors. Long vectors are divided into several
parts to fit in the DAS capacity. The division was made at the instruction accessing memory

(external cache), such that the CPU was deliberatcly made to stall on cache miss by control-
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ling the CMU interface pin (cache busy), while the next portion of the vector is being down
loaded. All signals acquired during the testing are transferred back to the SUN workstation
for a cycle-by-cycle verification with the expected result. Most of the CPU functionalities are
tested using the initial test set-up. After the debugging is done, the CPU chip is put on a

SPUR processor board to test interactions with other components on the board, especially

with the CMU.
REF CLK
(____. SPUR CPU output signals
input signals
Pattern
Generator
on-chip clock DAS
phil
Acquisition
Probes
test vectors/patterns

SUN

Workstation

Figure 2-11. Chip test set-up




2.4.4. Design metrics

The design metrics for the SPUR CPU are presented in Table 2-4. It provides an
approximate design time spent on both the circuit design and the layout, in terms of man-
months. The total design time of the SPUR CPU is estimated at about 5 man years. This
includes behavioral modeling, VLSI design, verification, and testing. Some of these activities
were performed in parallel, and the times shown in Table 2-4 are for the VLSI design only.
Approximately % of the total development time (or 1%2 man years) was spent on verification
and testing of the chip. There are total of 13 PLAs used in both the TU control and the master

control. These PLAs are summarized in Table 2-5.

The transistor count of the chip reaches over 115,000. More than 50% of transistors or
about 60,000 transistors are SRAMs used to implement the register file and the instruction
cache, which occupy about 2 of the total active chip area. Area estimates (percentages)
shown do not include any routing region, so numbers may not add up to the totals. Regular-
ity of each unit is computed by taking the ratio of total transistor to total drawn transistors of

each unit. Comparison of design metrics to other microprocessors is presented in Table 2-6.

2.4.5. Results

The first-pass silicon had a few bugs, including circuit design, layout, and timing errors,
but it worked enough to be used for initial debugging of the processor board. The layout
errors discovered were misplaced well and substrate contacts onto signals rather than power
supply lines. These effectively shorted the signal to either the ground or the power line,
resulting in a stuck-at type fault. Somc of these errors were corrected by isolating the mis-
placed contacts from the power supply using the laser restructuring technique provided by the
Information Science Institute (ISI). Either the first level or the second level metal can be
disconnected by using a laser shot through the passivation layer. The sccond (topmost) level

metal lincs with width of 3 pm were cut successfully without affecting other structures
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Layout Area Design Time
Block Height Width % Area | # transistors | Regularity Circuits Layout
(lambda) { (Jambda) (Man month) | (Man month)
Instruction Unit 4456 6540 243% 37622 17.8 1.0 2.0
IU_CTR 1508 1503 1.9% 1501 20 0.6 1.0
IB_Cache 4267 4899 17.4% 31583 500.0 03 0.7
IB_TAG 2423 1214 2.5% 4538 300.0 0.1 03
Register File 4412 5478 20.2% 42924 27.5 18 3.5
Registers 3006 4533 11.4% 33120 5520.0 05 15
Decoders 1089 4656 4.2% 6300 9.0 0.5 0.5
IF Logic 221 779 0.1% 210 21 05 0.5
DST1 & DST2 3100 930 2.4% 3294 11.0 03 0.5
Master Control 3522 3422 10.1% 3849 1.7 13 24
SEQUENCER 2424 3388 6.9% 2190 5.0 05 1.0
TRAP_LOGIC 645 586 0.3% 1070 1.2 05 1.0
CC_INT 877 534 0.4% 506 PLA 0.2 0.3
SPD_LOGIC 223 490 0.1% 83 PLA 0.1 0.1
Local Control 1.0% 721 1.0 04 0.5
RegFile_CTR 835 212 0.2% 137 1.0 0.1 0.2
Func_CTR 136 500 0.1% 46 1.0 0.1 0.1
PCLOGIC_CTR 290 2110 0.5% 372 1.0 0.1 0.1
SpecReg_CTR 279 811 0.2% 166 1.0 0.1 0.1
Special Registers 2530 1700 3.6% 3502 73 03 0.6
UPSW 2525 353 0.5% 905 10.0 0.1 0.2
KPSW 2536 504 1.1% 1020 10.0 0.1 02
CWP & SWP 2755 846 1.9% 1577 3.0 0.1 0.2
Functional Units 3175 1897 5.0% 5619 5.0 08 1.7
Byte-Extractor 3156 248 0.6% 209 7.0 0.1 0.2
Byte-Inserter 3156 262 0.7% 395 7.0 0.1 0.2
Shifter 3160 336 0.9% 768 6.0 0.1 03
ALU 3166 1078 2.8% 4247 4.0 0.5 1.0
PC Logic 2756 2098 4.8% 6370 43 2.0 4.0
Miscellaneous
MBR 3093 482 1.2% 1619 11.0 0.1 02
MAL 1125 711 0.7% 748 30.0 0.1 0.2
Scan_Registers 3200 1600 43% 6028 36.0 0.1 0.3
bus_Interface . 3154 584 1.5% 1581 17.8 0.2 0.5
CLK_GEN 455 2127 0.8% 392 1.0 1.0 1.0
PADS & Others 4239 05 0.5
Total 10140 11820 100.0% 115214 12.6 9.6 174

Table 2-4. Design metrics of the SPUR CPU
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PLA # product terms | # outputs | # inputs Power (mW)
OPCODE 68 40 8 54.0
FAST_LOGIC 16 14 18 15.0
SPD_LOGIC 7 2 6 45
TRAP_ENABLE 15 13 24 14.0
TRAP_TYPE 11 9 11 100
CC_OPGEN 25 6 13 15.5
CC_INT 17 5 12 11.0
1IU_CTR_P1 6 4 5.0
IU_CTR_P2 10 5 7.5
IU_CTR_P3 30 8 10 19.0
IU_CTR_P4 21 6 16 135
IU_FET_FSM 14 3 10 8.5
IU_PF_FSM 14 3 10 85
Total 254 118 157 186.0

Table 2-5. SPUR CPU PLAs
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CPU # transistors | Regularity | Design time
(1000s) (man years)
SPUR CPU 115K 12.6 50
SOAR 36K 8.3 32
RISCII 41K 20.0 25
M68000 68K 12.0 14.2
80386 181K NA 50.0

Table 2-6. Comparison of design metrics

nearby. Other problems found were timing errors and glitches on signals controlling the
dynamic circuits. The glitch was caused by the excessive ringing on clock lines. The long
running clock lines (10 mm) can have parasitic inductance and capacitance large enough to

cause a substantial ringing, which may trigger any hazardous glitch.

Several electrical-rule checks were performed to avoid repeating the same errors for the
second pass. However, there was still another layout error discovered after the fabrication. A
portion of metal wire was missing, leading to a disconnected signal. A focused ion beam
(FIB) IC development system, provided by the Sciko instrument company was used to fix the
problem. Two holes were drilled on separated wires through the passivation layer to reach
metal lincs, using an ion beam, and connected using FIB-CVD (chemical vapor deposition)
metal film deposition between the two points. The revised and repaired chip is fully func-
tional and is used in a working SPUR processor board successfully executing its own operat-
ing system (Sprite) as well as many applications including LISP programs. The nominal
operating frequency of the chip on the processor board is 10 MHz, while the maximum

op'erating frequency is 12.5 MHz (80 nsec cycle time),



2.5. Summary

The SPUR CPU is a single-chip RISC microprocessor designed for a multiprocessor
" workstation. It supports a multilevel cache scheme including a prefetching on-chip instruc-
tion cache, a coprocessor interface, and support for the fast execution of LISP through a
tagged 40-bit architecture. In order to build a working computer system based on the SPUR
CPU chip, reliable and efficient methodologies were necessary throughout the design. The
chip, fabricated in a 1.6 m double metal CMOS process, works well in the multiprocessor
system prototype, and it met both of the functional and performance goals set at the initial
stage of the design. It runs at 10 MHz consistcﬁtly for all programs and dissipates less than

0.8 W of power.
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3 On-chip Memory Design

3.1. Introduction

A fundamental limitation in microprocessor performance is set by the ratio of the
amount of memory traffic to the available i/o pin bandwidth of the microprocessor chip. The
microprocessor’s memory traffic consists of instruction and data transfers in and out of the
chip. As the cycle time of the microprocessor shortens with advances in the integrated circuit
technology, the memory traffic required to balance the overall system throughput goes up
rapidly [Kun86]. However, due to various limitations the i/o pin bandwidth remains relatively
constant. The minimum pad size required for wire bonding has been unchanged for years.
Moreover, the number of required power supply pins has risen to accommodate fast switch-

ing i/o pins, which in tum reduced the number of pins available for off-chip communication.

To obtain the highest possible performance in a single chip microprocessor architecture,

off-chip communication must be minimized while intcgration of functionality is maximized.
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One way of minimizing off-chip communication is to include local memory on a chip as a
cache or a set of registers to hold frequently used instructions or data. Cache memories not
only provide fast accesses to instructions and data but also reduce off-chip memory accesses
by using the cached instruction and data repeatedly. Therefore, the on-chip memory design

has a great impact on a microprocessor’s performance and becomes increasingly important.

In this chapter, I will examine on-chip memory design issues and present new and
efficient on-chip memory designs for microprocessors. The focus is on tradeoffs between the
architectural design and the circuit design. Circuit design techniques, when properly adapted
to the architectural design, can provide cost-effective performance improvement easily. Two
key areas of interest in this research are using DRAMs as a cache on a microprocessor chip
and multi-port memory design to facilitate the parallelism using multiple functional units.
With high density dynamic memories, cache performance can be improved greatly since the
storage capacity (size) of memory is one of the most critical parameters in the on-chip cache
design. Multi-port memory can have a great impact on processor performance since it pro-
vides high bandwidth and also facilitates the concurrent operations. The results of the
research can be useful as a design guide for altemnatives in future microprocessor memory
designs.

This chapter is organized as follows: Section 2 reviews the use of on-chip memories in
existing microprocessors, as an instruction store and a data store separately. Section 3
presents a reliable and efficient way of using dynamic memory elements in a microprocessor
chip. Section 4 presents the local on-chip memory design for multiple functional units. To
satisfy the bandwidth requirement of multiple functional units, multiple memories or multi-
port memory design are necessary. The implementation issues of these memories are con-

sidered in that scction. Section 5 summarizes the on-chip memory designs.



3.2. On-chip Memories in Microprocessors

Microprocessor architecture is evolving as silicon integrated circuits increase in density.
On-chip memories are becoming an established feature in single-chip microprocessor designs
because they significantly improve performance. It is particularly important for single chip
RISC microprocessors to include large, high-speed memories, because RISC chips must
reduce off-chip memory delays to achieve the shortest possible cycle time. The organization
of the on-chip memory is therefore very important in the design of high performance VLSI

single-chip processors.

Memories are used in various forms on microprocessor chips. Fast storage for instruc-
tions and for data are two distinct needs for on-chip local memories. The separation of local
memories for instructions and data is common, in part to increase effective memory
bandwidth. A mixed instruction and data cache is not as effective as separate caches, unless
dual-ported memory is used to resolve the memory contention between instruction and data
memory references. When an on-chip memory is limited in its capacity, using it as an
instruction cache or a data cache can be an interesting architectural tradeoff. This section
begins with an examination of the use of local memories in existing microprocessors, then

research focus and limitations are identified.

3.2.1. Local memory for instruction store

Microprocessor performance can be hampered by off-chip memory access delays.
These delays are caused either by fundamental limitations in off-chip communication, or by
i/o contention between instruction and data memory traffic through scarce ifo pins. On-chip
instruction caches resolve these problems by caching instructions on the chip and supplying
them dircctly to the cxccution unit. This allows i/o pins to be used primarily by the data

memory accesses, and thus effectively provides a dual-ported access to the external memory.

Tnstruction caches are simpler to design than mixed caches because the cache is read-

only (cache is written only to replacc the missed block). Furthermore, since instructions show
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a much higher degree of locality than data, even a small cache can improve processor perfor-
mance significantly. Many existing microprocessors incorporate on-chip instruction caches
in one form or another. Different instruction memory organizations are summarized in the

following.

Prefetch buffer (PB) holds instructions sequentially forward from the current program
counter in the instruction stream. PB’s are usually organized in a FIFO of instruction words.
Many computers such as IBM System/370 Model 158, and DEC VAX 11/780, have had PBs.

Today’s microprocessors have PBs implemented as a part of other types of instruction cache.

Instruction buffer (IB) uses caching and prefetching to reduce effective access delay as
well as memory traffic. As a conventional cache, IB can be organized as a direct-mapped or a
set-associative cache. For small IB’s, however, it has been proved that a direct-mapped cache
performs comparably to a fully associative cache with LRU replacement [SmG83]. Loading
partial blocks upon IB misses (sub-block placement) is also effective in minimizing the
memory traffic [Goo83], [Hil87b]. Important design parameters in designing an on-chip IB
include cache hit and miss time, cache size, and aspect ratio of cache memory when it is actu-
ally laid out inside the chip [ACH87]. Microprocessors with on-chip IB are the Motorola
68020 [MMM84] and 68030 [MMMS86], the National NS32532, the MIPS-x [Hor87] at Stan-
ford, and the SPUR CPU [Hil86] at U.C. Berkeley.

Target instruction buffer (TIB) reduces effective instruction access time by caching
instructions at branch targets or at the beginning of the instruction run. TIB’s are usually
implemented with PB’s. Upon a non-scquential instruction fetch (i.e. branch), The TIB is
accessed to provide (if hit in the TIB) the next instruction, which is the first instruction of the
next instruction run. Subsequent sequential instruction fetches arc handled by the PB. The

AMD Am29000 [AAA87] RISC microprocessor uses a TIB with PB.

Branch Target Bujfer (BTB) buffers the addresses of previous branches and their target
addresses [LeS84]. BTB is used to reduce pipclinc bubbles, resulting from waiting for the

next instruction address to be determined. The instruction fetch address is compared with the
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content of the BTB and if they match, the next instruction address is determined from the
BTB. The performance of the BTB depends on the selection of a branch prediction algorithm,

the size, and the organization (e.g. set-associativity).

Decoded instruction buffer holds the fully decoded instructions, so that instruction
issued from instruction cache can be executed without any further decoding delay. The
CRISP microprocessor [DMB87] uses this form of instruction cache with branch-folding.
When a non-branching instruction is immediately followed by a branch, the two are folded

together to form a single new decoded instruction.

Performance of on-chip instruction memory is characterized by the effective access
delay of instructions over time. Cache access time and miss handling time are as important
cache parameters as cache hit/miss rate, since together they determine the effective instruc-
tion access delay [Hil87b]. The physical size or aspect ratio of the on-chip instruction
memory is also important because it must be fit within the area desired [ACH87]. For a given
silicon area the fastest effective access delay can be achieved if the density of memory is

maximized while the access time is at its minimum.

3.2.2. Local memory for data store

In general, there are two ways to organize the local memory for data, conventional
cache and registers. Referencing behavior of the data memory is somewhat different from the
instruction memory, and the memory for data can be controlled to some extent by the pro-
grammer (McD88]. Goodman [Gol186] showed that with a small size of on-chip memory,
registers can be more cffective than a cache in reducing access delays, if an optimal register
allocation algorithm is used when compiling the program. Registers and data caches in
microprocessors are organized in various ways to take advantage of different data access

behaviors of programs.

Conventional cache, although it is usually invisible to the programmer, consistently

works well and takes account of dynamic program bchavior. An important parameter in
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designing the small size on-chip data cache is a transfer size of data from memory to the
cache, or line size (the line is also referred to as sub-block when transfer size is smaller than a
cache block). Given cache size, a smaller line (sub-block) is proven more effective than a
larger line for the data cache, due to the temporal locality [GoH86][Smi82]. A smaller line

size also minimizes the off-chip memory bandwidth requirement.

Register file organizes registers in either single or multiple sets. Single set, general pur-
pose registers have been widely used in microprocessors. Efficient use of on-chip registers
depends on adapted register allocation schcme [Rad82][Hen81]. A multiple register set
improves the processor’s performance by reducing the off-chip memory traffic required to
save and restore registers upon a call or context switch. A large register file of RISC II
[Kat83] at U.C. Berkeley, organized in a stack of register sets, allocates new register sets

dynamically on a per procedure basis.

Stack cache caches only memory references to the stack. It operates just like a conven-
tional cache except that the stack pointer is used in managing the cache. When a miss occurs
and the word to be replaced is dirty, it is written back to memory only if its location is below

the top of the stack.

Top of stack cache is a sct of high-speed registers which holds the top portion of the fre-
quently used stack entries. It takes advantage of the fact that stack references will generally
occur near the top of the stack, not scattered as in a data cache. The management of TOS
registers is as important as register allocation in microprocessors with a gencral purpose
register set. This type of cache has been used in the C machine [DiM82] at Bell Labs, and
the Dragon [McC84] at XEROX PARC.

The silicon area used to hold a byte of data in cache differs from that used to hold a
byte in a register. Cache requires tags, valid and dirty bits, and replacement information so
that it can be managed dynamically by the hardware. Registers, on the other hand, must be
managed efficiently by the software, and oftcn require multiple access capability to provide

high bandwidth bctween the execution unit and the register file. To use local memory most
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efficiently, implementation tradeoffs, such as speed versus power or multi-port versus multi-

ple sets of memories, must be carefully examined.

3.2.3. The focus and limitations of the research

In the previous two sections, we have briefly examined the use of on-chip local
memories in many existing processors. Two key observations made from the above are sum-
marized as the following. The research presented in this chapter is based on these two obser-

vations.

(1) Since the on-chip memory is limited in its size, many different, complex, cache and
register organizations are used for various optimizations. It is certain that the increase in
memory size will not only improve the overall performance but also simplify the on-
chip memory design.

(2) The clock rate of a microprocessor’s execution unit is increasing rapidly as IC technol-
ogy advances, hence the bandwidth of the local memory must be sufficient enough to
provide data at the rate of the execution unit’s demand. Furthermore, to increase the
system throughput by exploiting the parallelism in hardware, the use of multiple func-
tional units becomes common. This, in turn, adds up the bandwidth requirement of the
local memory. Consequently, a fast multi-port memory for multiple simultancous read

and write accesscs may be necessary.

Silicon real estate is one of the scarce resources on a single chip microprocessor. There-
fore, local memory must be used efficiently, and memory density must be maximized at a
given silicon area. Traditionally, mainly duc to reliability concems, only static random access
memories (SRAMs) have been used on most microprocessor chips. Dynamic random access
memorics (DRAMEs) offer higher bit density at a given silicon area than SRAMs. However,
due to fundamental limitations associated with DRAMS, such as refreshing requirement and
complex self-timed controls, DRAMs rarcly have been untilized as on-chip memories. In the

following scction, I proposc techniques for a rcliable and cfficient use of DRAMs as on-chip
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cache memories. The focus will be on the instruction cache. Trace driven cache simulations
are used to analyze newly proposed schemes. The same techniques can be applied to the data

cache under certain restrictions, which will be discussed also.

Increasing processor’s performance by using multiple functional elements requires mul-
tiple local memories or multi-port memories, to match the bandwidth required by the multi-
ple functional units. Multi-port memorics are, however, much more expensive than single-
ported memories in terms of silicon area required and operating specd. A micro-architect
must examine all possible memory designs in order to build a high performance microproces-
sor. Within this research I will examine a few alternatives for multi-port memory designs,
such as a dual-ported memory design based on 6T SRAM cells and extending the design into
the multi-port memory with more than two read/write ports. The goal is to provide a guide-

line for making right tradeoffs for the multi-port memory design.

3.3. On-chip DRAM caches

3.3.1. Why DRAMs?

Static memories have been popular for on-chip memories because they do not require
periodic refreshing or complex control circuitry. Dynamic memories need a periodic refresh-
ing before the dynamic charge storage node loses its voltage level due to leakage current
incvitable in silicon technology. The refreshing requirement of dynamic memories may inter-
fere with the processor’s normal operations, and thus they have been used rarely in a single
chip microprocessor. However, the density that single-transistor (1T) or 3-transistor (3T)
dynamic memory offers now stimulates designers to consider using dynamic memory as an

on-chip memory.

The size of a SRAM cell used in microprocessors, typically 6T SRAM ccll or its vari-
ants, is about four to cight times larger in area than that of some (3T or 1T) dynamic cells.

For example, the 6T SRAM cell uscd in the SPUR CPU to implement the instruction cache
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and a 3T dynamic memory cell are compared in Figure 3-1 (each layout contains four bits
sharing power lines and bit line contacts). As discussed in the previous section, the size of
the local memory is one of the most important design parameters. Therefore, it is quite
appealing to use dynamic memories in place of static memory where increase in local
memory size is crucial. With dynamic memories, such as 3T DRAMs, the size of the local
memory at a given chip area can easily be quadrupled or increased even more. The 1T or 4T
DRAM cells are not as useful as 3T cell for a single chip microprocessor since they may
require special fabrication process (1T) or ratioed design (4T). Ratioing transistors may result

in large cell area.

As we replace static memory with dynamic memory, more memory cells are integrated
into the same area. In order to increase the overall performance, however, the speed or access
time of the memory array must remain relatively constant over this change. It is the density
(and hence the logical size of memory) that increases with dynamic memory, but not the phy-
sical size or the arca of memory (parasitics are dominant factors in memory access delays).
Therefore, with careful layout of the cell and good circuit design techniques, dynamic
memory integrated in a given area can be as fast (especially for 3T dynamic cell) as static

memory integrated in the same area, but with higher density.

3.3.2. Limitations of DRAMs for an on-chip memory

On-chip usc of DRAM has serious drawbacks due to the difficulty of implementation
using standard process technology, and reliability issues, such as refreshing requirement, and
hard and soft errors of the DRAM (sce below for a further explanation). The three most com-
mon types of DRAM cells are 1-transistor, 3-transistor, and 4-transistor DRAM cells, as
shown in Figure 3-2. The high density, state of the art DRAMs use 1T DRAM cells. The pro-
cess technology for such a high density DRAM is quite different from the process technology
in which microprocessors are fabricated. Furthcrmore, the access time of 1T DRAM is usu-

ally much slower than 3T or 4T DRAMs due to slow sensing delay. The 3T or 4T dynamic
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Figure 3-1. Comparison of CMOS 6T SRAM cell (of SPUR CPU) and 3T DRAM cell

cells do not require special process technology and can be easily integrated into the single
chip microprocessor. Moreover, they are more tolerant of process variations than 1T cells.
The high dcn‘sity SRAM (4T and 2R loads) often uses special fabrication process to reduce

the cell area by using load devices made of high resistance poly resistors).

Dynamic memory stores information as a cha:ge on an isolated capacitive node. The
charge on this node leaks away if left isolated for long time due to the leakage current associ-
ated with necessary silicon pn junctions. The information stored on a storage node may be

Jost if the charge leaks away too much. A refreshing opcration reads the information before it
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is degraded, and restores the charge to its original level. The refresh interval of dynamic

memory can be dctermined by:

T = f X QQMC node
. Leakage
where fis a fraction allowed 10 be lost due to the leakage current.

With current technology, a dynamic storage node must be refreshed in as little as a one
to two millisecond period. As capacitance on the storage node decreases, the refresh interval
must be shortened. In the following section, I will present a method to overcome the refresh-

ing overhead of dynamic memory.

Hard errors are usually originated from fabrication defects. It is therefore more prob-
able to have hard errors when a larger chip area is devoted to the on-chip memory. Soft
errors are induced by alpha particles or cosmic rays and are a well-known phenomena in the
use of the DRAM. To make dynamic memory on a microprocessor chip safe and efficient,
these problems must be overcome. Error detection and correction codes are extensively used
to improve the reliability of dynamic memory systems, to handle hard and soft errors.
Recently, some single chip DRAMs integrated these error detection and correction schemes
on the chip [Yam84)[Man87]. It may be desirable to have a simple form of these schemes in

microprocessors with dynamic memory.

3.3.3. Non-refreshing DRAMs for on-chip caches

The integrity of the data stored in dynamic memory can only be assured by periodic
refreshing. Ideally, refreshing should be done without affecting the processor’s exccution
stream. Some microprocessors use software refreshes which are sometimes called refresh
hiccups. When a timer interrupt occurs indicating a refresh interval, the microprocessor’s
control stops the on-going operation to refresh the dynamic memory. This scheme, however,
is unacceptable because of the effort required to make sure all systems using this processor

have the proper interrupt handler. It also degrades the processor’s performance by interfering



with the processor’s normal execution stream and by taking as many cycles as needed for
refreshing the dynamic memory. Using simple circuit techniques and a few modifications in
cache design can effectively alleviate these problems. Two schemes that eliminate the
refreshing overhead of dynamic memory have been devised for implementation in hardware.
These are: (1) invalidate on every refresh interval; and (2) selective invalidation on every
refresh interval. These schemes are based on the following assumptions and restrictions

[Hil87a]:

(1) The cache contains copies of instructions or data, which also reside elsewhere such as

external cache or main memory (e.g. instruction cache or write-through data cache).

(2) The cache contains a number of blocks consisting of an address tag and one or more
sub-blocks; associated with each sub-block is a VALID bit, so that any subset of

block’s sub-blocks may be valid.
(3) The sub-block is the unit of transfer from off-chip into the on-chip cache.

(4) All VALID bits associated with address tags or sub-blocks can be reset in parallel to

invalidate the cache.

(5) Any access to dynamic memory is considered as a refresh (read is always followed by
write-back in DRAM’s). In other words, the cache entry accessed during the last refresh

interval need not be refreshed until the end of the next interval.

DRAM s, if used as a cache on a microprocessor chip under the above assumptions,
need not be refreshed periodically. Instead, the cache may get invalidated once at each refresh
interval. Most microprocessors with on-chip caches have a privileged instruction or other
ways to invalidate their caches (sec assumption 4 above). Thus, in the expense of a timer
(frequency/clock counter) onc can easily implement this scheme. This scheme, however,
degrades the processor’s performance by invalidating the active cache entirely every few mil-
liseconds. This invalidation of the cache at the end of cvery refresh interval is referred to as

the first scheme, invalidate on every refresh interval. The refresh or invalidation interval for
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this scheme can be as long as that of the refresh period of dynamic memory.

The next scheme, the selective invalidation, is more elaborate than the first. An extra bit
per each sub-block, in addition to the VALID bit, is used to hold a refreshing status. This bit
is set at the beginning of each refresh interval, and reset sclectively whenever the correspond-

ing sub-block is accessed regardless of read or write access. At the end of the refresh period,

Refresh tjrpiyrpr gt

Valid ojlr1jofojotr1fojloj1j11io

(a) Cache state at the beginning of the refresh interval

Refresh ofoftrtjo|l1jofi1jojototo
Valid 1{1{tjoj1r1{ol1rj1f1tio
1 cache entry
(1 word or subblock) l
Refresh olol1|Jo]ijol1jojo]oO}oO
Valid 1{1{olojJo|t1jojt]trjtrjo
DRAM Cache

(b) Cache state at the end of the refresh interval with selective invalidation

Figure 3-3. Dynamic RAM cache - sclective invalidation
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all of these bits and VALID bits are examined and only those sub-blocks not accessed during
the last interval and still valid are invalidated selectively (see Figure 3-3). Invalidating the
cache to preserve data integrity is no longer neccssary. The fact that cache entries not
accessed for a long time may not be needed in the future (cf. temporal locality) makes the
DRAM cache performance very close to that of the SRAM cache. The performance of the
DRAM cache with the selective invalidation is evaluated in the following section using trace
driven cache simulations. This selective invalidation can be implemented with a small (six
transistors per sub-block) circuit as shown in Figure 3-4. It can be easily extended to incor-
porate separate or multiple word lines if required, by adding one transistor per word line (see

dotted transistor in the figure).

Instruction caches are usually read-only (written only when there is a miss to replace
the missed block or sub-block), and one of the above methods can easily be employed if
DRAM’s are used to implement the cache. To expand the usage of these methods to the data
cache, the cache must adapt the write-through policy for storing new value into its entry.
Since all or any subset of cache entries may be invalidated at any time with one of these
schemes, any newly-written cache entry must be stored in a safe place (main memory or
external cache). With the write-through policy, subsequent accesses to the invalidated cache
entries will miss and eventually retrieve the the correct data from the saved place. For a
multi-level cache design, a write-through policy for an on-chip data cache (highest level in
the hierarchy) is a reasonable choice since it is the simplest mecthod to assure data consistency

among caches in the hierarchy. A better write policy can still be applied to the extemal cache.

3.3.4. Evaluations

Two mcthods of using DRAM'’s without actual refreshing of memory cells are
evaluated in this scction. T use the instruction cache of the SPUR CPU (the SPUR IB) as an
example for the evaluation. Although it is optimized for the given constraints of the SPUR

CPU architecture, the SPUR IB is a good representative model among different instruction
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Figure 3-4. Circuits implementing the sclective invalidation

cache organizations for single-chip microprocessors and hence is chosen for this evaluation.
The SPUR IB was implemented using 6T CMOS SRAM cells. I will compare the perfor-
mance of the SPUR IB to that of the SPUR IB implemented using DRAM cache with cach of

the above two methods, eliminating the refreshing overhead.

I usc the miss ratio as a performance measure for different caches. Trace driven cache
simulations that dircctly compute miss ratios of caches with different parameters are
cmployed here. Other performance measurcs such as effective access time [Hil87b] may be

easily computed [rom the miss ratio determined in this evaluation. The samec traces used in
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the SPUR 1B design [Hil87b] are used here also. Those traces are:
(1) Weaver, a production system written on top of OPS5 for VLSI chip routing [Joo85];
(2) Rsim, a switch-level simulator simulating a counter {Ter83];

(3) Slc, the SPUR Lisp compiler [ZHH87], based on the SPICE Lisp [THL86], compiling

part of itself.

For each of these programs, two SOOK-instruction dynamic trace sets showing different
behaviors (medium and pessimistic) were collected (a total of six traces or three million
instructions) [Hil87b]. Since miss ratio variation across the trace samples is small, subse-
quent results are based on miss ratios for a composite trace, formed by concatenating the six
traces. The lengths of traces arc the same, and so the miss ratio for the composite trace is

equal to the arithmetic average of miss ratios from the individual traces.

The SPUR IB is an on-chip instruction cache organized in 16 blocks with cight sub-
blocks in cach block as shown in Figure 3-5. The size of a sub-block is 4-byte, or one 32-bit

instruction, which is the off-chip data transfer size of the CPU chip. Associaled with each
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sub-block, or an instruction word, is a valid bit so that any subset of instructions within a
block may be valid. The SPUR IB uses this flexible feature to reduce demand miss time by
loading only the fetched instruction rather than the entire block, and to permit instruction pre-

fetching to load the rest of a block in parallel with subsequent instruction fetches.

The architectural parameter that has the greatest impact on SPUR IB miss ratio is cache
size. In the evaluation of DRAM caches, I keep all cache parameters of the SPUR IB
unchanged except the cache size because it can vary with the DRAM implementation. Other
parameters such as block (or sub-block) size, off-chip bandwidth (line size), and prefetch
algorithm, will affect the cache performance, but their effects are the same for both SRAM
and DRAM implementations. Table 3-1 shows the demand miss ratios of SPUR IB for six

traces and Figure 3-6 plots the average miss ratio for different sizes of cache implemented

weaver rsim slc
Cache Size | medium | pessim | medium | notrap | medium pessim | Average

512 23.49 21.26 22.98 24.04 21.20 23.68 22.78
2048 8.58 10.19 13.44 16.40 13.77 16.51 13.15
4096 7.18 8.31 8.06 11.39 1093 12.61 9.75
8192 1.50 3.46 3.73 3.75 7.74 9.15 4.89
16384 0.96 2.03 242 1.46 4.81 6.37 3.01
32768 - 0.36 0.81 1.98 0.53 3.18 - 452 1.90

Table 3-1. Demand miss ratios (%) of SPUR IB for 6 traces




using SRAMs.

The evaluation of the first scheme, invalidating the cache at the end of every refresh
interval, focuses on the effect of invalidation. The cache simulator, Dinero [Hil85], was
slightly modified to simulate DRAM cache. A real cycle counter that counts not only refer-
ences but also miss time and cycles lost to others, was used to invalidate the cache at accurate
intervals. The maximum degradation in performance (increase in miss rate) due to the invali-

dation of DRAM cache can be determined by:

DMR = Nsub—b}ocb

miss ratio
3

1%

10% ¢

5%

[l /] I
1 L] L]

10K 20K 30K

v

Cache size

Figure 3-6. Demand miss ratio of SPUR IB with different sizes of cache
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where DMR is a maximum miss ratio increase (degradation due to invalidations), Nas—ioct iS
a total number of sub-blocks in the cache, and N,,, is the average reference counts per refresh

interval. The average reference counts can be estimated by:

Nres = aT+M x migs_ratio +C)
where Q is the refresh interval in number of cycles (e.g. 20,000 cycles), M is a miss time, and
C is the cycles per instruction lost for other reasons (e.g., extemal cache misses). With a
cycle of 100 nsec (the SPUR CPU’s), the refresh interval is set to 20,000 cycles or 2 mil-
liseconds for all simulations. Figure 3-7 plots the maximum possible increase of miss ratio
for different sizes of caches. Although maximum bound set by the above equations is enor-
mous for large caches, the actual difference in miss ratio between DRAM and SRAM caches
is much less than the maximum. In fact many cache entrics may not be used again later and
will eventually be invalidated. Invalidating those cache entries may not degrade the cache
performance, and hence the real difference in miss ratio is far less than the maximum
predicted in Figure 3-7. The simulation run on the six traces mentioned above reveals this

fact.

Figure 3-8 compares the miss ratio of a DRAM cache with the invalidation scheme to
that of conventional SRAM cache as a function of cache sizes. Diffcrence in miss ratios is
negligible for small caches, but becomes substantial as cache size increases. More impor-
tantly, above a certain cache size the performance improvement by increasing the cache size

diminishes (as indicated by an arrow in Figure 3-8), duc to the frequent invalidations.

The selcctive invalidation scheme improves the cache performance by not invalidating
the entire cache, instead invalidating only those entrics not fresh and still valid. The cache
simulator is also modified to correctly incorporate the sclective invalidation. First, the refresh
bit is added to each sub-block (or cach access unit) structure, and new operation (sclective
invalidation) is added. With a timer (cycle counter) interrupt indicating refresh time, refresh

and valid bits of each entry (or sub-block) arc examined and invalidated, if necessary. The
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Figure 3-8. Effect of periodic invalidations on miss ratio

refresh interval must be a half of the required interval since some cclls may hold valid data

from the beginning of one interval through the end of the next.

The results of cache simulation run on the composite trace are shown in Table 3-2. The
miss ratio versus size is plotted in Figure 3-9, and compared 1o the SRAM cache perfor-
mance. The -diffcrence in performance is greatly reduced for even large caches by using
selective invalidation. The miss ratio differcnce in large caches indicates that there are some
cache entries with a very long lifetime but not accessed often, or there are some entrics active
at intervals greater than the refresh period. This may depend on the referencing behavior of

program or data.



Cache Size Without With Selective

(bytes) Invalidation | Invalidation | Invalidation
512 22.78 22.88 22.78
2048 13.15 13.69 13.15
4096 9.75 10.82 9.77
8192 4.89 6.95 4.97
16384 3.01 6.02 3.25
32768 1.90 5.53 2.26

Table 3-2. Miss ratio (%) of DRAM cache (SPUR IB, sub-block = 4 bytes)
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Figure 3-9. Effect of selective invalidations on miss ratio

The second most influential cache parameter on miss ratio of IB after size, is the size of
the sub-block.. Figure 3-10 shows a plot similar to Figure 3-9 for SPUR IB with twice the

sub-block size. Such an improvement done on the SRAM cache will work equally on the

DRAM cache.
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Figure 3-10. Effect of selective invalidations for different size of sub-block

3.4. Multi-port Memory Design

3.4.1. Multiple functional units

To improve the performance of a microprocessor, designers often look to approaches
that pennit parallelism, or overlap, in the instruction execution stream. Traditionally, pipelin-

ing has been one of the most popular of thesc approaches. Another technique that can be used
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independently or to complement pipelining, is the use of multiple functional units. In either
case, the application of such approaches can lead to a substantial improvement in a
processor’s maximum performance because the total computational resources that are simul-
taneously available to a running program is increased. However, a common resource such as
memory (or on-chip local memory in the case of single chip processor), can become a perfor-
mance bottleneck unless enough bandwidth between the memory clements and several func-

tional units is provided.

It is well known that the size of the local memory must be large if the computational
bandwidth of the processing elements is large, as represented by the "Amdahl’s rule”
[SBN82]. Furthermore, a -well-designed microprocessor must provide "balanced” or
"matched” bandwidth required by both local memory and functional units. This matching of
the bandwidth is dependent upon an instruction set architecture (especially instruction for-
mat) as well as speed of circuits [Kuc78]. Together these two factors determine the required
bandwidth from the memory hierarchy. Given that the single-chip microprocessor with one
functional unit has a balanced bandwidth, if the number of functional units is increased by a
factor of o, the local memory bandwidth also must be increased by the same factor, o
(without any other optimization), to rcbalance the processing capacity of multiple functional

units.

3.4.2. Multiple sets of register files and multi-port cache memory

There are several ways to increase the bandwidth between the local memory and multi-
ple functional units. Two prominent approaches are: (1) use multiple memories such that
multiple functional units can access at least one of them simultancously; and (2) use a multi-
port memory such that multiple functional units can simultancously access the common local
memory. As previously mentioned in Section 2, many different on-chip memory organiza-
tions arc possible with any of these two approaches. However, some memory organizations

arc particularly well suited to one of these approaches, whilc others are not. For instance,
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having multiple caches can create cache consistency problems, even among local on-chip

cache memories.

Multiple sets (or banks) of register files (Figure 3-11a) would be a better choice for the
first approach. This is because the use of registers can be controlled to some extent by the
programmer (Or compiler), hence data consistency among register sets (banks) is not required
or at least can be maintained by the software, With the multi-port memory approach (Figure
3-11b), using local memory either as a cache memory or registers would be acceptable,
although a cache memory in one form or another would be a better choice since it does not
require optimizations from a programmer oOr a compiler (also there is no need for cache con-
sistency). The selection of cache memory type or register organization strongly depends on

architectural constraints as well as area and speed requirements.

To make the best use of the local memory following the above two approaches, careful
performance tradeoffs among different memory organizations should be made. The perfor-
mance tradeoffs can span from the compiler design (optimal register allocation) to the actual
implementation of the memory for multiple functional units. Within this rcsearch, however,
only implementation tradeoffs, such as area required and access times difference among dif-

ferent memory designs, are considered.

Secveral different memory cells and analysis techniques to evaluate them have been pro-
poscd for a multi-port memory. The next section reviews some of those multi-port memory
cells first, then yet another possible circuit design technique for a multi-port memory cell is
proposed. Two local memory organizations, multiple scts of register files and multi-port
cache implemented using the proposed memory cell, are chosen for each of the above two
approaches, so that a direct comparison (multiple set versus multi-port) between two
approaches can be made. The objective of this comparison is to determine a feasibility of N-
port memory based on the cell proposed (where N can be greater than two), relative to the

multiple set approach.
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Figure 3-11. On-chip local memory organizations for multiple functional units
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3.4.3. Multi-port memory cells

Cross-coupled inverters have long been used as a static storage elements because these
regenerative circuits are stable, compact, and more reliable than any other static cell. A con-
ventional 6-transistor SRAM cell uses the cross-coupled inverters and two access transistors.
The access transistor connecting the bit line and storage node is controlled by the word
(sclect) line. A single-ported memory cell is accessed differentially from both bit lines for a
read or a write per cycle. Several kinds of CMOS dual-ported memory cells (read-read, read-
write, or write-write per cycle) based on this cross-coupled inverter cell have been used in

microprocessor chips or other applications for many years. These are shown in Figure 3-12.

word sclect A word select A
word select B word select B
Vdd Vdd
bit A bit A
]__,L _,L_i
. L |
) bt B bit A
wWB bitB
(a) Diffcrentially accessed dual-port memory cell (b) Single-ended access dual-port memory cell
writeA readA word select A
‘ word select B
busA

T ] am — L1 Az

| CIK bitB

writeB  refresh readB

(c) 9T pscudo-static dual-port memory cell (d) Pseudo-static dual-port memory cell with clocking

Figure 3-12. Multi-port memory cells
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A single-ended access cell such as in Figure 3-12 (b) is more compact than the differen-
tially accessed cell of Figure 3-12 (a), but requires a boosted word line to reliably write the
storage node to a high state. Using precharged bit lines, each port of the single-cnded access
cell can perform independent read operations even with small transistors. A modified version
of this single ended cell (single ended read accesses and differential write access per cycle) is
used for the register files of both the SPUR CPU and the RISCII designs [She84]. The
pseudo static cell design approach requires extra transistors to break the regenerative feed-

back action, which in turn makes the single-ended write operation performed simple and safe.

To extend a dual-ported memory cell to an n-port cell where n is greater than two, n or
2n (depending on the configuration) extra access devices and associated bit lines and word
lines can simply be added in the same way the original access devices are connected. How-
ever, area increase due to this addition and a resulting slow access time as well as reduced
safety of operation (noise margin) complicate the design of a multi-port memory cell. A
number of methods have been proposed to characterize the cross-coupled memory cell in
various aspects, such as simulation based analysis [0’C87] and static noise margin analysis
of read/write operation with both single-ended and differential accesses [SLL87][Nak88].
Static noise margin (SNM) of a static memory cell is defined as the maximum value of static
noise (dc disturbance such as offsets and mismatches due to processing and operating condi-
tions) that can be tolerated by the memory cell (cross-coupled inverter flip-flop) itself before

changing its states accidentally.

Next, I propose yet another circuit for a compact and efficient multi-port memory cell
based on the 6T CMOS single-ended access cell approach mentioned above. One major
drawback of the single-ended access cell is requiring a boosted word line (above Vdd) to per-
form a write operation safely. In CMOS design, bootstrap circuits of NMOS can be built, but
may have some disadvantages which make them difficult to implement. First, junction break-
down is more probable because of a higher operating voltage when boosted. This becomes a

more serious problem as minimum dimensions shrink with technological advances. Secondly,



the bootstrap capacitor may require a substantial amount of area because the bootstrap capa-

citance must be comparable to the capacitive loading of the word line.

To reduce the complexity in circuit design associated with the bootstrap driver, the vol-
tage level on power supply line (Vdd) can be reduced to a lower level instead, such as 3 V.
The word line operating voltage for a read can be at around 3 V while that for a write can be
at 5 V, hence there is no nced for a bootstrap driver. Reducing the voltage level on the sup-
ply line may affect the static noise margin or the stability of a cell. With a careful layout and

proper ratioing of intemnal transistor sizes, the static noise margin can be improved.

The proposed multi-port cell using this technique is shown in Figure 3-13. This cell can
provide 2n reads and writes (single-ended accesses for both reads and writes). For each

access, separate word (row) select and bit lines are provided. Any combination of reads and

word nB word nA
word 2B word 2A
word 1B V"Efiv) word 1A
bitnB W ‘ ‘ | bitnA
. . Bplb— L l |-
bit 2B Mol | bit 2A
bit 1B ____J"L‘L_ \_ﬁL — bit1A
Ba J— —iL Ba

read access: 3.0V

word line o / \

5.0V

wrile access:
word line 0 j | U

Figure 3-13. The single-ended access multi-port cell
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writes (total of 2n operations) accesses to the array can be performed in each cycle, provided
that writes at one or other ports are unambiguously resolved without corrupting the cell data.
The intemnal forwarding scheme used in the SPUR CPU (see Chapter 2, Section 3), can be
used to resolve read and write conflicts on a cell. As more ports are added, each register must
sink more current to keep the access time constant with increasing capacitance on added bit
lines. This, in turn, increases the cell area because all transistors must be scaled up accord-
ingly. The maximum number of ports that can be attached to this cell with an acceptable

access time and a reasonable cell area is about ten (n = 5).

3.4.4. Analysis and comparison

Three aspects are important for multi-port memory design: the cell area, the access
time, and the stability of the cell. The cell area determines the size (density) of the local
memory and often directly relates the access time of memory array. The stability of the
memory cell determines the sensitivity of the memory to process tolerances and operating
conditions. Considerable research has been performed in the past to analyze the stability of
cross-coupled inverter cells [SLL87] [Lis86][JcF85]{Nak88]. Recently, an analytical
approach to modcling the stability of the flip-flop cell has been reported [SLL87]. The static
noise margin, as defined in the previous section, is used as a stability measure in that
approach. The analytical expression of the SNM has been further developed for various
multi-port memory cells in [Nak88]. The SNM calculated in this analysis uses the expression

from [Nak88] for the single-ended access memory cell.

Analysis of the proposed multi-port memory cell is donc mainly by using circuit simu-
lations (SPICE). The advantages of using simulation over just relying on static noise margin
analysis are: (1) timing information is available; (2) parasitics can be taken into account; and
(3) actual device design parameters are available to accuratcly estimate the area required.
Including parasitics, such as bit line capacitance, in memory design is Very important since

parasitics have a dominant effect on the access time of memory. In the simulations performed
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here, all parasitics are adjusted according to the configuration.

The feasibility of multi-port cache memory on a chip as compared to multiple sets of
register files, depends on the memory cell used. If a multi-port memory cell is too large or too
slow in comparison to the cell used for a common register file (for example, dual-ported read
and single ported write), it may not be advantageous to have multi-port cache memory. When
the total area of a multi-port cache memory array is less than the total area occupied by multi-
ple register files having the same number of ports accessible from functional units, use of
multi-port cache memory is justified. However, most multi-port memory cells result in much
larger area than a simple, compact memory cell with a single or dual port. Using the single-
ended access cell with reduced supply voltage as proposed for a multi-port memory cell can
be more area-efficient than other multi-port cells, while maintaining reasonable access time

and noise margin characteristics.

Table 3-3 shows several design parameters for a single-ended memory cell, when used
for two or more ports to memory. Device parameters of the cell in each configuration are
designed to have minimal area, fast access time, and ample noise margin. Access times are
drawn from the circuit simulation (worst cases) with bit lines precharged at 3.0 V prior to a
read and with bit line and word line capacitive loadings adjusted for the additional number of
ports (1.0 pF initially with 2-ports). All operations arc done without using a sense amplifier.
Therefore, access time is directly related to the size of the pull-down transistor in the cell.
Arca estimates are derived from total gate arca of transistors in the cell. As the number of
ports increase, the cell arca is dominated by pull-down transistors and access transistors.
Static noise margin is calculated using transistor parameters obtained in the simulation, and
plug them into the analytical expression mentioned above [Nak88]. Static noise margin is a

function of operating voltages and ratios of transistors within the cell.

As the number of ports increase, the write delay also increases. This indicates that the

write operation is getting more difficult as more ports are attached. Conversely, the read
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area read write static
Memory cell #ports | B, | Ba | Ba | estimates | delay | delay | noise margin
(A?) | (nsec) | (nsec) (mV)

A. Register cell
single-ended read
differential write |2-port read
Vpp=5.0 or 3/6 | 82 | 42 84 (1.0) 11.5 20 355

Vread_.ul«ct =50 |l-port write
an'u_ulacl =5.0

2-port | 3/6 | 82 | 42 84 (1.0) 11.5 6.0 355
B. Multi-port cell
single-ended read | 4-port | 3/3 [16/2 | 6/2 | 136(1.6) 9.0 85 524
single-ended write
Vpp=3.0 6-port | 4/2 |22/2 | 8/2 | 200(2.4) 1.5 13.0 474
Vread setact =30
B 8-port | 8/2 |302 {1172 | 328 (3.9) 72 18.0 491
an'tc_ultct =5.0
10-port |10/2 [45/2 [16/2 | 410(4.9) 7.0 26.5 370

Table 3-3. Design parameters for multi-port memory cells

delay decrcases as more ports are added. This is because the the size of the pull-down
transistor needs to be increased with the number of ports, to improve the stability (static noise
margin) of the cell. Reduction in the supply voltage and the word sclect line (when read) has
little effect on the noise margin. It can be easily controlled by transconductance ratios (W/L)
of transistors. Therefore, with careful transistor sizing a multi-port memory with a perfor-
mance comparable to the single or dual port memory can be built using the single-ended

access cell for buth reads and writes with different operating voltage levels.

As mentioned in Section 2, the area used to hold a bytc of data in cache differs from

that used to hold a byte in a register. Cache requires tags and state bits so that it can be
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managed dynamically by the hardware. To compare the multi-port memory and multiple set
of register files fairly, this fact must be taken into account. However, since the purpose of
{his section is to examine the effectiveness of the proposed memory cell, I have only com-
pared the the areas of cells with a different number of ports. The arca (memory array only)
required by multiple sets of register files can be estimated by simply multiplying the total
number of ports required divided by the number of ports in the single set. As can be seen
from the table, using the proposed single-ended cell we can integrate the multi-port memory
in smaller area than required by the multiple set approach. To calculate the total area
required for both approaches exactly, areas of other peripheral units such as decoders
(approximately the same for both approaches) and multiplexors (for multiple sets of register
files to route the register contents to proper functional units) or tags (also multi-port tag

memory) also must be determined.

3.5. Summary

An important factor in VLSI system design is the large difference in available
bandwidth between on-chip and off-chip communications. The communication bottleneck
caused by the limited i/o pin bandwidth makes it desirable to pack as much functionality as
possible into the restricted area of a single chip. Small local memories can improve the per-
formance by significantly reducing the off-chip bandwidth requirement. In a single-chip
microprocessor, silicon area is one of the scarcest resources, and designers must use it
efficiently for given constraints to maximize the performance. Therefore, the organization of
local memory must be effective and memory density must be maximized at a given silicon

area.

In this chapter, two memory design techniques that can improve the performance
without necessarily increasing the use of scarce silicon area, arc presented. Traditionally, due
to reliability concerns, only static memories have been used on a microprocessor chip.

Dynamic memorics offer more bits per unit area than static mcmories, but fundamental limi-



1ations such as refreshing overhead, have prevented their use on a microprocessor chip. Using
the selective invalidation technique proposed here can eliminate the refreshing overheads of
dynamic memories, if used as a cache memory (read-only or write-through cache). This
makes the replacement of static memory with high density dynamic memory possible, and
results in better use of scarce silicon area. Trace-driven simulations show an effectiveness of

this scheme over a simple invalidation scheme.

When multiple functional units are used to increase the performance by parallel execu-
tion, the demand for a higher bandwidth between functional units and local memory rises
rapidly. Since a multi-port memory is prohibitively expensive, time-shared accesses to a
single-port memory have been used when multiple accesses are necessary. A single-ended
access memory cell operated at reduced voltage levels can be as safe and fast as differentially
accessed cells. When this cell is used to implement n-port memory (n > 2) it can result in a
total memory array arca smaller than that of multiple register files with the same number of

ports available to the functional units.
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4 Control Design Alternatives

4.1. Introduction

In a microprocessor design, many of the modules can be designed using regular and
straightforward design styles (ROM, RAM, and bit-sliced data path). However, the control
unit is often the 10% of the chip area that takes 90% of the time to design. Alternatively, if a
fast but simplistic approach is used for design, a very efficient implementation will result.
This chapter considers the automated synthesis of digital logic and cspecially the synthesis of

the types of random logic seen in the control unit for full-custom VLSI microprocessors.

A common approach to regularizing the design of random control logic employs a
structured logic element, such as PLAs, to implement the microprocessor’s control.
Automatic PLA synthesis tools have been widely used for many years. Recent developments

in integrated circuits (IC) CAD offer VLSI designers a varicty of implementation choices
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which have not been available in full-custom VLSI design. In particular, multi-level logic
synthesis and optimization techniques [Scg87](Bra87] allow combinational logic to be
mapped into different design styles (in multi-level form) such as standard cell, gate-matrix
[LoL80], and gate-array designs, in addition to the conventional implementation style based
on PLAs. However, the relative merits of these altematives for full-custom VLSI micropro-
cessor design have not been well established. This chapter focuses on the evaluation of these
alternatives for microprocessor control designs. The results should be useful as a guide for

future microprocessor development.

This chapter will begin with a review of control design strategies. Section 2 presents
two general approaches to implement control units in microprocessor, microprogrammed
control and hard-wired logic implementation. Microprogrammed control design has been
popular since there are many computer-aided design tools help implementing it automati-
cally. Advances in CAD systems and recent developments in computer architecture, such as
reduced instruction set computers (RISC), suggest that a fast, hard-wired implementation of
control logic is now affordable and highly desirable for a high performance microprocessor.
Section 3 discusses the automated synthesis of control functions and presents alternative
implementations of the hard-wired control logic. Section 4 evaluates several prototypes
implemented using the alternative methodologics presented in Section 3. Several examples
from the SPUR design are used in this investigation. Section 5 summarizes the results

obtained from the study.

4.2. Microprocessor control

Microprocessors generally consist of two parts: an execution unit and a control unit.
The execution unit contains the resources needed to execute the microprocessor’s instructions
which include the general purpose registers; the arithmetic and logical unit (ALU); shifter;
and instruction counters. The control unit "runs” the exccution unit telling it what to do

when.
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Two general approaches to the control unit design are reviewed and compared in this
section. The objective is to compare synthesis systems of two general approaches for the
automatic generation of control logic. Microprogrammed control provides a flexible imple-
mentation using fast on-chip memory to store control instructions (microcode), but often
requires several cycles to execute one instruction. Each instruction is implemented in several
microinstructions that must be fetched from the storage (ROM) and decoded in each cycle. A
hard-wired implementation can perform better than a microprogrammed control because each
instruction is directly interpreted in hardware and can be executed in a single CPU cycle.
However, the hard-wired design approach has been prohibitively expensive and inefficient,
especially for a large and complex instruction set [Anc83]. The problems are largely due to
increased complexity as an instruction set becomes richer and more features are required to
implement it. This trend, however, is changing because of newly developed CAD tools for

hard-wired logic synthesis.

Advanced CAD systems, such as those for multi-level logic synthesis and optimization,
along with automatic layout generation systems, have made it possible for VLSI designers to'
re-consider the hard-wired implementation. In microprogrammed implementation, the con-
trol functions are described in special high-level programming language, then compiled down
to microcode via various computer aids and computer-aided optimizations. More recently, a
similar approach has become available for the hard-wired implementations (sec Figure 4-1).
A designer states the required behavior of the control functions in a hardware description
language, such as ISP". This description is then automatically synthesized into lower levels
in design abstraction hicrarchies (e.g. logic gates or layout). This automated design process
for hard-wired'implcmcntation is analogous (Figure 4-1) to the design process used in the
microprogrammed implementation and makes the hard-wired implementation as cfficient and

flexible as microprogrammed control.



4.2.1. Microprogrammed control

The function of the control unit in a microprocessor is to execute sequences of micro-
| operations for the successful completion of the processor’s instructions. The control function
that specifies a micro-operation is a binary variable. During any given time interval, certain
micro-operations are to be active while all others remain idle. Thus the micro-operation steps
within each time interval can be represented by a string of 1’s and 0’s called a "control word"
or "microinstruction." For a control unit in which micro-operation sequences are stored in a
memory such as this form is called microprogrammed control. Each microinstruction may
contain as many bits as there are control points in the processor to control a variety of com-
ponents operating in parallel (horizontal microinstructions). The number of control bits in a
microinstruction word can be reduced by grouping mutually exclusive variables into fields
and encoding the & bits in each field to provide 2* micro-operations (vertical microinstruc-
tions). Each field then requires a hardware decoder to produce the corresponding control sig-

nals.

The complexity of the microprocessor control is due to the many different micro-
operations performed in a given time sequence. Microprogrammed control is an elegant and
systematic method for generating the micro-operation sequences, especially for a large and
complex instruction set. In practice, the use of microprogrammed control has been tied to the
architecture or instruction set to be implemented [Hop83]. It is gencrally easier to implement
high level complex instruction sets in microcode, although it may result in slower implemen-
tation than hard-wircd approach. Simple or reduccd instruction sets do not normally require a
microprogrammcd control. Instead, a fast and simple hard-wired control is used to implement

a single cycle execution of all instructions.

Microprogramming provides scveral advantages such as permitting structured approach
to control unit design, which greatly improves dcbugging and tailorability. Moreover, it can
be extended easily to include additional instructions beyond the original instruction set, or

can emulate other instruction sets. It docs so without modifying the existing hardware, other
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than the control unit. With the continuing growth of semiconductor processing technology
(especially ROM and RAM designs on a microprocessor chip), the microprogrammed control
can be a cost-effective implementation for richer and more complicated instruction set
microprocessors [Ber81]. Many microprocessors exemplify the microprogrammed control
such as the Motorola MC680x0 [MMMB84], the Intel 80386 [Gel87], and the National
NS32532.

Although it is an elegant and flexible approach to designing a complicated control unit,
writing the microprogram has remained a very difficult task. The problem is harder when
there are many more potential microinstructions than there are regular processor instructions.
Many computer aids have been developed, such as the compiler and debugger for writing the
microprogram. These help the microprogrammed control design efficient and error-free.
Microprogramming is still one of the efficient ways to design microprocessor control, but
new alternatives available from the automated hard-wired control synthesis must be carefully

evaluated and compared to the microprogramming.

4.2.2. Hard-wired control

The term "hard-wired control” refers to an implementation technique for a microproces-
sor control unit, in which conventional logic gates, such as NAND or NOR, stcer the master
clock phases to the control point. Each control point is driven by a gate with inputs that deter-
mine the conditions under which that control point is to be activated. Thus the process of
control unit design consists of listing the control points to be activated as a function of the
master clock phases and decoding the instruction’s opcode. The logic optimization technique

can be uscd to reduce the number of gates involved.

The control unit of a simple instruction set microprocessor can best be implemented in
hard-wired logic. The hard-wired design will be faster than the microprogrammed design
built from the same technology, since the former docs not require the overhead of fetching

and decoding microinstructions (micro-scquencing also complicates the design). Recent
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Figure 4-1. Design processes of microprocessor control for
(a) microprogrammed control and (b) hard-wired control.

VLSI RISC microprocessors, such as SPARC [NaAg8] and MIPS R3000 [Mou], employ

hard-wired control design to achieve the fastest possible cycle time.

A version of hard-wired control well-suited to VLSI design has been the programmed
logic array (PLA). A two-level representation of logic functions can be efficiently and
automatically implemented with a PLA. Scveral optimization techniques, such as logic
minimization [Bra87] and topological optimization [DeS83], further improve the quality of
the design. However, certain multi-level logic functions do not map well into PLAs. In this
case a multi-level rcpresentation may lead to a better implementation with a reduced gate
count and a smaller area than the two-level PLA implementation. A comparable or shorter
delay path is also possible via an optimum allocation of gates (technology mapping). In fact,
a two-level logic representation can be scen as a special case of multi-level representations.
Therefore, a general synthesis system for control logic design should offer multi-level syn-
thesis tools which are able to sclect a two-level implementation whenever it is more effective

in terms of arca and/or spced. The multi-level logic can be mapped into many different
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design styles such as the following: standard cells; gate matrix; Weinberger array [Wei67];
and gate arrays. Several CAD systems are being built for the design of random control logic
especially in multi-level representation. In the next section new controller design strategies

using these systems are presented and closely examined.

4.3. Alternative implementations

A large spectrum of design styles for the VLSI microprocessor has evolved, offering
wide ranges of expected turn-around time, improved performance and reduced design effort.
Most microprocessors use PLAs to implement the combinational part of the control unit in
two-level logic representation. Gate-matrix and Weinberger arrays (usually for NMOS
design) are array structured logic for standardized layout of multi-stage combinational logic
networks. Semi-custom design styles such as gate arrays and standard cell based designs,
aim at minimal design effort and faster tum-around time. The performance of semi-custom
designs has not matched its forerunners, but has the potential to be greatly improved through
recently-developed multi-level logic o;ﬁtimization techniques and automated layout genera-

tion systems associated with semi-custom designs.

In this section, I first discuss a generalized CAD methodology for a hard-wired imple-
mentation of a microprocessor control unit, then present strategies for three different imple-
mentation styles which can actually be used in implementing real world examples. Three
styles, the PLA-based, the standard cell-based, and the gate-matrix based, are chosen for the
following reasons: (1) These can be easily adapted and mixed with full-custom design styles;
(2) designs generated using these styles are more silicon efficient and perform better than oth-
ers; and (3) reliable CAD tools are readily available for these styles. The following scction
evaluates, in various aspects, different implementations of these styles as applicd to examples

from the SPUR design.



4.3.1. Automatic synthesis of control logic

A number of strategies are employed to deal with complexities in VLSI design. One
most frequently used is to divide the design into parts such that each can be implemented
using the most appropriate strategy (Figure 4-2). In general, designing the control part of the
microprocessor is quite different from other parts such as data path or local memory. Due to
jts complexity, control unit design requires many iterations, thus portions of its design pro-
cess need to be automated. Furthermore building a complex control logic, especially in hard-
wired implementation, requires optimizations at each step of the design process, €.g. minim-
izing the area required while reducing the delay. A generalized design process for the control
logic involves three steps [NeS86]: behavioral synthesis, logic synthesis and optimization,

and layout generation (Figure 4-3).

Behavioral synthesis is a translation from a behavioral description of the control
hardware to a detailed functional description such as register transfer level. The difficulty in
this step stems from the many constraints, design objectives, and design configurations to
considér. Logic synthesis generates a logic network from a functional description of combi-
national logic. One of the primary difficulties in this step is in discemning which sections of
the description imply pure combinational logic, and which parts arc intended to be sequential

logic.

The logic synthesis step takes a functional description as an input and creates appropri-
ate logic equations to implement the described logic. The output of the logic synthesis is
minimized and mapped into logic structurcs or gates in the logic optimization process. The
process of optimizing combinational logic is divided into two sections - a technology
indcpendent part in which logic optimization is performed, and a tecchnology mapping phase
in which the selection of the gates to implement the function is made. The only implementa-
tion style automatically synthesized from a high level description has been the PLA imple-

mentation with a traditional two-level logic optimization.
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Implementing logic in multiple level form has several advantages. By manipulating
multiple level logic, one can optimize the logic for minimum delay or minimum area
[Bra87]. As the complexity of logic increases, PLA implementation suffers from declining
performance and an increasing arca requirement. This is not necessarily the case for multiple
level implementation where tradeoffs between speed and area can easily be made. Multiple
level logic can be implemented using a broad spectrum of design style such as standard cell,
gate array, or other array structured logic elements, gate matrix and Weinberger array.

Automatic layout generation tools for such technology are mature enough to generate a high
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quality layout when optimization of logic is properly done.

4.3.2. PLA based control design - A traditional approach

PLAs are two dimensional array logic implementing a canonical sum of products two-
level combinational logic function. The PLA consists of two planes, the AND plane and the
OR plane. The AND plane maps the primary inputs to the product terms while the OR plane
maps the product terms into the outputs. In practice both these planes are implemented as

NOR structures with an arbitrary number of inputs.

PLAs are among the most popular structures for the implementation of two-level logic
functions. Most of the recent microprocessors include PLAs in the control part. Because c'>f
their regular structures, PLAs can be laid out automatically. Many PLA layout generators
have been built based on simple mapping of the Boolean equations into the layout of the
PLA. To obtain an effective design, several optimization techniques are necessary. They
include the following: logic minimization; topological optimization; and layout and circuit
optimizations.

Logic minimization both reduces the area occupied by the PLA and improves its electr-
ical performance by minimizing the number of product terms required. Once the logic
minimization is completed, topological optimization can be performed to minimize the core
array of the PLA. The topological optimization itself does not contribute dircctly to the
implementation of the logic functions. The objective of the topological optimization is to
“fold" rows and/or columns of the PLA planes such that multiple logical rows or columns can
share a physical row or column [DeS83]. This reduces the total number of rows and columns
required, hence minimizing the area of the PLA. Layout and clectrical optimizations [Hed85]
concentrate on the performance of the large PLA. The signal delay through a large PLA can
be minimized by transistor sizing, laying out interconnccts in metal layers, or using a sense

amplificr between the planes and at the output.
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A microprocessor control unit not only includes random combinational logic, but also
requires sequential logic elements, such as latches, in order to implement a control block with
the finite state machines. PLA-based finite state machines have been used in the design of
several microprocessors. The finite state machine uses a PLA to implement the combinational
part of the logic, and the outputs (state bits) of the PLA are fed back to the inputs of the PLA
via clocked registers. Other logic blocks with both combinational and sequential parts can be
implemented in a similar manner. However, the separation of combinational parts and
sequential parts of the control logic is yet to be automated. As described in Chapter 2, the

control unit of the SPUR CPU followed this methodology.

4.3.3. Standard cell-based control design

The standard cell approaéh to VLSI chip design provides the designer a quick, flexible
design. It may be less dense than a full-custom designed chip, but it performs far better than
gate array designs. A standard cell library includes simple cells such as INVERTER, NAND,
and NOR gates as well as complex gates such as the AND-OR-INVERT gate and various
flip-flops. The cell library greatly simplifics the automated synthesis path by isolating tech-
nology dependencies from the synthesis system. All cells in the standard cell library have
identical height and variable width, depending upon the complexity and size of each cell.
Each cell contains a completely interconnected function and can be abutted to other cells
without any adjustment. The automated synthesis system treats the standard cell as an
abstract object like a bounding box with terminals, and thus placement and routing of cells

becomes technology independent.

The layout synthesis for standard cell-based design consists of three parts: (1) design of
the standard cell library, (2) logic minimization and technology mapping (selection of cells),
and (3) placement and routing of cells. The cell library is usually provided by the silicon
foundries, but can be custom designed for specific needs. The size of the library is important

to achicve an optimal implementation [Keu87]. Both logic minimization and optimal tech-
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nology mapping [Det87] rely heavily on different types of standard cells available in the
library. The impact of the cell library on the final design will be investigated in the following

section.

4.3.4. Gate matrix based control design

The gate matrix layout style [LoL80] utilizes the configuration of a matrix composed of
intersecting rows and columns to provide transistor placement and interconnections (Figure
4-4). The matrix format structure, which is orderly and regular, gives high device packing
density and allows ease of checking for layout errors. The columns of this matrix, imple-
mented in polysilicon, serve as a transistor gate and interconnection. The rows are imple-
mented in diffusion and form transistors with a column at the intersection. The pitch of the
columns and rows are determined by the minimum separation allowed between polysilicon

lines with contacts and transistors (diffusion) or interconnections (metal), respectively.

The automatic synthesis path for the gate matrix layout style from a logical description
is very similar to that for PLAs. Logic minimization is done first, and the optimized logic
equation is mapped to the gate matrix. Like the folded PLA, topological optimization
[DeN87] can be performed to reduce the total number of rows and columns required. How-
ever, unlike PLAS, gate matrix can be used to map multi-level logic representation and imple-
ment the mixed combinational and sequential circuits. Latches or registers can be laid out and

mixed with combinational parts inside the gate matrix.

With both multi-level logic minimization and topological optimization, gate matrix pro-
vides very high packing density for multi-level logic functions, but resulting performance
may not be as good as with other implementations. This is because the size of the transistor is
fixed and several transistors in a series connection can be laid out inefficiently with very high
interconnect parasitics. To obtain an optimal implementation with gate matrix layout, both
an optimal partitioning of logic functions and electrical optimization (or transistor sizing) are

necessary.
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Figure 4-4. Gate matrix layout (from [LoL80])

4.4. Evaluation and comparison

4.4.1. Method of evaluation

To evalugte altemnative implementations rigorously, correct performance measures must
be used. The primary and more quantitative parameters are critical path timing, area, power
consumption, and design time. The secondary and more qualitative parameters may be the
flexibility and the testability. Flexibility measures the easc of changing design, depending on
overhead associated with regencrating the layout from the altered description. Testability is

hard to measure unless built-in test structures are incorporated. For purpose of evaluation, I
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use the following parameters: critical path timing; area required; estimated power consump-
tion; design time; and flexibility. Some parameters can be gathered directly from the resulting

implementation, while others are based on qualitative judgement.
The examples used in this experiment are from the SPUR design:

(1) SPUR Instruction Unit Controller (iu_ctr) controls the fetching and prefetching of the

instruction cache as well as handles a miss.

(2) SPUR CPU Master Control (master_ctr) controls the pipeline execution of CPU
instructions, provides both cache controller and floating point unit interfaces, and han-

dles traps and interrupts.

(3) Cache Controller Sequencer (cc_seq) implements the processor cache control functions
including access requests from the CPU, read and writes on cache memories, and

translates a virtual address to a physical address.

The SPUR designs were full-custom with the PLA-based control implementations, thus
only other styles needed to be re-implemented. The design processes for different styles is
depicted in Figure 4-5. All designs begin at the same abstraction level, the functional descrip-
tion written in BDS. A set of synthesis tools built around the OCT design database [Har86)
at UCB are used to create the layout. Logic synthesis and optimization steps are identical for
all implementations. The hardware description of the control function is translated into logic
equations and optimized using CAD tools called bdsyn and mis, respectively. The optimized
logic is then mapped to different layout styles within mis, and the final layout is generated
using appropﬁate layout generation tools. For array-structured logic, topological optimization

is performed to further improve the design.

The layout generation tools used include Wolfe, a standard cell place and route system
which uses Timberwolfe-SC for placcment and YACR for routing, GEM (gate-matrix layout),
and MPLA. The final layout is transformed into another database called magic [Ous85], to be

extracted and cvaluated. Converting the database assures fair comparisons with already exist-
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Figure 4-5. VLSI design environment with OCT

ing full-custom PLA-based implementations in magic format. Electrical performance is
measured by running timing analysis tools, crystal and spice, on the extracted layout. Power

consumption is estimated using extracted capacitances of all switching nodes.
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4.4.2. Results of evaluation and comparison

Results from the evaluations are summarized in Tables 4-1, 4-2, and 4-3. Both the
SPUR IU control (iu_ctr) and the master control (master_ctr) of the SPUR CPU have four
different versions: One full-custom implementation with PLAs, two versions of standard
cell-based design with different cell libraries, and one gate-matrix implementation. The
SPUR CC sequencer (cc_seq) has five different versions. One extra version is implemented
using electrically optimized PLA. Sense amplifiers are used in the middle of the PLA planes
and also at the outputs of the PLA. The sense amplifier reduces the voltage swing on the pro-
duct term and output lines where parasitic loadings may slow down the propagation delay.
Two standard cell libraries were built for this experiment and cells in the libraries are listed in
Table 44. LIB1 consists of only seven simple gates, while LIB2 includes more complex

gates like XOR and AND-OR-INVERT gates.

A. Critical path timing

The most important performance parameter of the control design is the critical path tim-
ing, as it often determine the cycle time of the microprocessor. To obtain an accurate timing
performance, all circuits are analyzed by extracting the layout with all parasitics taken into
account. For the iu_ctr, standard cell-based designs perform very close to the full-custom
design, while the gate-matrix version would still satisfy the required timing. Consistent
results are also observed in different master_ctr implementations. The cc_seq consisting of
combinalionél logic only, on the other hand, shows different results. PLA implcmentation of
cc_seq without electrical optimization (using sense amps) performs much worse than stan-
dard cell-based implementations. This indicates that for a large combinational logic network,
the multi-level implementation is better than the two level PLA implementation, where
parasitics will have a dominant effect on the critical path. The gate-matrix version of cc_seq
far excecds the timing requircment. For rcasonable performance with gate-matrix design, a

proper partioning of the logic or electrical optimization is crucial. This can be seen in the
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gate-matrix versions of the iu_ctr and master_ctr, where proper partitionings were already

made.

IU_CTR1 IU_CTR2 | TU_CTR3 | IU_CTR4

Design | Full custom Stancilard Stanclxlard Gz:;ie
Style | withPLAtools | ©© ce matrix
No. of cells
designed 9 17 7 none
Total | 6 PLAs (95/30) 824

No. of gates| 3 random logic 169 (13) 193 transistors

1300x1400 1260x870 | 1220x880 | 1250x1470

A
rea (1.00) (.602) (.590) (99)
Total
Capacitance 17.2 pF 31.7pF 32.8pF 13.3pF
(switching)
Power Lessthan | Lessthan | Lessthan
Estimation 30mW 10 mW 10 mwW 5 mWw
Timing (nsec) (nsec) (nsec) (nsec)
phil 10.10 12.10 13.35 19.25
phi2 11.90 9.85 11.35 10.35
phi3 9.30 7.90 9.55 11.65
phi4 12.15 11.50 12.40 16.50
Design
time 4 wks 2wks 2wks 2wks

Table 4-1. SPUR 1U control




MC1 MC2 MC3 MC4
Design Full custom Standard Standard Gate
Style with PLA tools cell cell matrix
No. of cells
designed 14 17 7 none
Total |5 PLAs (133/67) 2310
No. of gates | 9 random logic 384 (38) 417 transistors
Area 1920x3070 2570x1530 | 2380x1540 | 2680x2410
(1.00) (.667) (.622) 1.10)
Total
capacitance | 44 45pF 82.90 83.97pF | 45.32pF
(switching)
Power Lessthan | Lessthan | Less than
Estimation | 0™V 30mW | 30mw | 15mW
Critical
path
timing 20.50 19.00 20.85 26.70
(nsec)
Design
) 10 wks 4wks 4wks 4wks
time

Table 4-2. SPUR master control

The effect of library size on the timing performance of the standard cell implementation

100

is very small compared to the difference in total gate counts. This is because using complex
gates with the large library may reduce the total gate counts but not necessarily reduce the
delay times (since complex gates are slower than simple gates). In fact, the conversion ratio
of simple gates to a complex gate is about two to three for all implementations, and complex

gates are about two to three times slower than simple gates. This proves that a large set of



library cells does not necessarily optimize the performance. Therefore, without spending a
great deal of time to design and optimize a comprehensive cell library, one can obtain a high
performance implementation with a small number of library cells. It is also possible to
further improve the performance of the standard cell version by optimizing the cells for a par-
ticular design. If the library is small, optimizing and maintaining the cell library can be
greatly simplified. In tum, this reduces overall design time. Logic minimization criteria may
also affect the timing performance. In this experiment, the same logic minimization steps

were used in all different implementations.

SEQIA SEQIB SEQ2 SEQ3 SEQ4
. PLA Standard Standard Gate
Design .
No. of cells
designed 1 1 17 7 none
Total 207 p-terms | 207 p-terms 2526
No. of gates | 36 outputs | 36 outputs 491 (38) - 326 transistors
Area 2060x3610 | 1240x2130 | 1730x3160 | 1750x3180 | 1940x5360
(1.00) (.355) (.735) (.748) (1.40)
Total
capacitance | 254.37pF 11991pF 98.82pF 101.98pF 26.64pF
(switching)
Power 6 6 Less than Less than Less than
Estimation mW mW 1 oomw | 20mw 5mW
Critical
ath
u’Ir)n ing 18.00 46.00 24.50 26.70 90.10
(nsec)

Table 4-3. SPUR CC Sequencer
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B. Area

In a single-chip microprocessor, chip area is one of the scarce resources. Array-
structured logic elements offer a very high integration of transistors at a given silicon area.
However, if multiple units of such a structure are interconnected, the layout might not have
optimum area efficiency. This can be seen in the area difference in the PLA-based design and
the standard cell-based design. Optimizing placement and routing CAD tools produce better
results with many smaller standard cells rather than a few large PLAs or gate matrix arrays.
Even with topological optimization, the gate-matrix and PLA-based design still require larger

areas.

A folded PLA can have a smaller core array area, while not necessarily minimizing the
arca occupied by the entire PLA layout. This is because the 1/0 buffers now must be attached
to both sides of each array. As previously mentioned, to obtain a reasonable performance out
of gate-matrix design, the logic being designed needs to be partitioned into multiple gate-
matrices. Without partitioning, the area required by large logic network may increase unrea-
sonably, as evidenced by the cc_seq. However, partitioning also imposes a similar problem to
that encountered with multiple PLAs. Gate-matrix design with folded columns and rows
minimizes the matrix area itself, but overhead associated with interconnects of multiple

gate-matrices reduces the area efficiency.

As for the timing performance of the design, the effect of the library size on the area is
negligible. The total areas required for iu_ctr and master_ctr are actually less with the small
library than the large one. The same reason for the timing performance also applies here.
Complex gates can replace two or three simple gates, but their sizes are again about two to

three times larger than simple ones.

C. Power consumption

There are two components that establish the amount of power dissipated in CMOS

VLSI circuits. These are:
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LIB1 LIB2 %
INV (3)* INV
2,3,4-input NOR 2,3,4-input NOR
2,3,4-input NAND | 2,3,4-input NAND
2-input AND
2-input OR
2-input XOR
2-input XNOR
21-A0I
22-A0I
21-0Al
22-0OAl

17 Gates 7 Gates

* 3 different strength inverters

Table 4-4. Standard cell library

(1) Static power dissipation due to leakage current or pseudo-NMOS circuits such as static

PLA with pull-up transistor (PMOS) always on.

(2) Dynamic power dissipation due to switching transient current or charging and discharg-

ing of load capacitances.

In PLA-based design, static PLAs are the main source for power dissipation. Static
PLA, although it consumes more power than other configurations, is usually fast and easy to
design. With static PLAs, the designer can make straightforward tradeoffs bctween power
and circuit speed. Dynamic PLAs are also fast and only dissipate dynamic switching power,

but require multiple phases and careful design to avoid timing hazards. All implcmentations
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in this experiment used the static PLA, hence the power consumption of the PLA-based

design is much greater than other designs.

Both standard cell-based design and gate-matrix design use CMOS gates. The power
dissipation of these circuits consists mostly of dynamic components. Any static dissipation is
due to the reverse biased leakage current that flows across the junction between diffusion
region and the substrate. Static power dissipation due to leakage current for a small circuits

operating at five volts is usually a few nano-watts.

Dynamic power consumption for fully complementary MOS circuits can be estimated

by the equation:
Power syramic = Croat V2 f

where Cyw is the sum of all capacitances on switching nodes, V an operating voltage and f a
switching frequency of the circuit. Capacitances shown in Tables with power estimates are
the sum of capacitances on all switching nodes. Switching nodes can be identified easily from
the extracted layout. The total of switching capacitance consists of gate capacitances of
transistors (input to a gate), interconnect wire capacitance, and junction capacitance on the
output node of the gate. Gate-matrix designs show less power dissipation than others, but
this results from the transistor sizes in the gate-matrix design being somewhat fixed, and lack

of electrical optimization in the process of generating the layout.

D. Design time and flexibility

Given that the process of designing a microprocessor on silicon is complicated, the role
of good VLSI design aids is to reduce the complexity and assure the designer of a working
chip in a reasonably short period of time. The time spent to design the control unit of a
microprocessor and the flexibility of the design are closely related. The complexity of the
control unit often requires several iterations of the same design steps. It is, therefore, desir-
able to have most of the design steps automated. The automation of the design, in turn,

reduces the overall design time, and increascs the flexibility of the design to easily
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incorporate frequent changes.

The three styles of implementation currently being evaluated have most of their design

" steps automated. Improvement on the design time using these styles is tremendous compared
to the full-custom approach, and allows VLSI designers to use hard-wired control in
microprocessor design. A full design cycle of control implementation using these styles from
a behavioral specification can take as little as a few hours. This permits designers to revise
the entire design as many times as necessary. Once the logic is partitioned into combinational
and sequential parts and is optimized, the rest of the implementation is straightforward, rely-
ing on automatic layout synthesis tools. Both standard cell-based and gate-matrix-based
designs have been produced by fully automated module generation tools, as well as global
placement and routing tools. They are therefore much more flexible and take much less time
than the full-custom approach with only automated PLA generation tools. The design times
shown in the tables are based on actual estimates from the SPUR design and time spent on

the re-implementations.

A separate and additional effort is required to build the cell library for the standard
cell-based design. Building a comprehensive, fully characterized cell library can be a time-
consuming process. However, it has been noted that with small library, multi-level logic
optimization tools can produce hardware as good as that produced with a large library. This
fact, along with other performance measures, makes the standard cell-based design more
attractive than other designs. It is also casier to incorporate the sequential part of the design
than others. With forthcoming sequential logic synthesis and optimization systems (or mixed
combinational and sequential logic synthesis and optimization), the standard cell-based

design will become a prime choice.

4.5. Summary

The key complexity of microprocessor design stems from designing the processor’s

control unit, which may take up a small portion of the chip area but can consume most of the
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design time. For the past decade or so, microprogrammed control design has been a popular
approach to designing this complex portion of the processor, due to its flexibility and
computer-automated design processes. Recently, various VLSI CAD tools have emerged to
facilitate hard-wired control design. Automatic synthesis and optimization techniques at dif-
ferent abstraction levels have made several alternatives available to full-custom VLSI design.
Behavioral synthesis and multi-level logic optimization systems provide particularly efficient
and high performance hard-wired logic implementation even with semi-custom layout styles,

such as standard cell-based design.

In this chapter, I have examined alternatives in the hard-wired control design by re-
implementing the control units from the SPUR chips using different design styles, and con-

trasting them with the full-custom version with only PLA synthesis tools. I found:

(1) The hard-wired approach to the microprocessor control design has been greatly
improved by advanced VLSI CAD tools, especially in design time and the quality of the
design. With these design aids, the process of designing the hard-wired control has

shared the efficiency and flexibility of the microprogrammed control.

(2) With recent development in multi-level logic synthesis and optimization techniques,
hard-wired logic can be mapped not only into a two-level PLA implementation, but also
into various multi-level logic implementation styles which can provide performance

comparable to or better than the traditional two-level PLA implementation.

(3) Among many different implementation styles, standard cell-based design has a prime
potential for use as microprocessor control. CAD tools built around the standard cell-
based design are also sound and optimizations occur at all levels of abstraction, such as
logic design, and placement and routing. Multi-level logic optimization for standard
cell-based design is effective, and even with a small library it can generate the optim-
ized logic that can perform as well as that generated with a large library. A small library

further reduces the overall design time.
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By no means is the evaluation in this experiment complete. A different result is possi-

ble for other designs. The benefit of using examples from the SPUR design is that there exists

working hardware, which is full-custom designed and hence comparisons can be drawn.
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5§ | Conclusion

5.1. Summary

In Chapter 2, details of designing the SPUR CPU chip were described. The methodolo-
gies and techniques used to maximize the performance of a full-custom VLSI microprocessor
provides an overview of microprocessor design strategies. The rest of the rescarch presented
in this thesis is developed from new ideas and better altermatives which have become

apparent since the development of the SPUR CPU chip.

In Chap_ter 3, two altcrmative memory design techniques were presented: dynamic
memory for an on-chip cache memory, and a compact high bandwidth memory with multiple
ports. Sclective invalidation instead of refreshing, implemented using low overhead dynamic
CMOS circuits, can effectively eliminate the need for a periodic refreshing of dynamic
memory. With this scheme, the size of an on-chip local memory can be substantially

incrcased within a given allocation of scarce silicon arca. Trace-driven simulations show the

109



effectiveness of this scheme over a simple invalidation scheme.

When multiple functional units are used to increase the performance by parallel execu-
tion, the demand for a higher bandwidth between functional units and local memory increases
rapidly. Using multi-port memory to balance the bandwidth required by multiple functional
units previously has been very expensive due to the large cell area requirement. When a
single-ended access memory cell is operated at reduced voltage levels, it can result in a fast,
stable memory while the area required is relatively small. Several multi-port configurations

are designed and analyzed to demonstrate the feasibility of multi-port memories based on this

cell.

In Chapter 4, altemative implementation styles for microprocessor’s control logic were
investigated. Recently, various VLSI CAD tools have emerged to facilitate hard-wired con-
irol design. Automatic synthesis and optimization techniques at different abstraction levels
have made several alternatives available to full-custom VLSI design. Behavioral synthesis
and multi-level logic optimization systems provide particularly efficient and high perfor-
mance hard-wired logic implementation, even with semi-custom layout styles, such as stan-
dard cell-based design. I have examined altematives in the hard-wired control design by re-
implementing the control units from the SPUR chips using different design styles, and con-
trasting them with the full-custom version also available from SPUR designs. I found that
the standard cell-based design can result in the best implementation style among others for

various aspects of resulting design.

5.2. Future Research

As more chip arca is devoted to on-chip memories, several different types of local
memories are being integrated in a single-chip microprocessor. Tt is interesting to see how
much menmory needs 1o be allocated for instruction versus data, register versus cache, or for

some other purposes such as for memory management functions (e.g. TLBs).
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As to multi-port memory design, I have examined implementation issues only. How-
ever, 10 investigate the overall performance tradeoffs other issues must be carefully con-
sidered. These include instruction format for multiple operations, and using hardware or
software to balance the bandwidth required by multi-port memory and functional unit, and/or
designing an optimizing compiler that extend the register allocation scheme to multiple regis-

ter files.

For automated synthesis of control logic, the impact of library size for standard cell
based design nceds to be explored further to determine an ideal library size, in conjunction
with optimal gate (technology) mapping. It requires making generalizations about the cost of
creating and maintaining a library as well as assumptions about application domain. Since
routing area is an important component of standard cell layout, impact of library size on rout-

ing region also need to be investigated.

Array structured logic such as gate matrix offers a dense layout but is ofien marred by
poor electrical performance. For further improvement, an optimal partitioning of logic and

electrical optimization such as transistor sizing are necessary.

5.3. Conclusion

Optimizing performance in full-custom VLSI microprocessor involves several choices,
including the choice of the best design methodology and the best implementation styles.
There is a broad spectrum of implementation styles that have proven successful for the con-
struction of various modules in microprocessor chip. In general, the implementation of
microproccssc;r can be divided into three activities: data path design, control logic design,
and on-chip memory design. The latter has become important as more and more chip area is
devoted to local memories, to minimize off-chip communication traffic that uses the scarcest
resources of the microprocessor chip, the ifo pins. The research presented in this thesis
focuses on implementation issucs of on-chip memory and control logic of a full-custom VLSI

microprocessor.
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Since the on-chip memory is limited in its size, an optimal implementation of local
memory becomes increasingly complex. Many different cache and register organizations are
proposed for various optimizations. When dynamic memory is substituted for static memory,
the size of on-chip memory can be increased without increasing the chip area. A provision
must be made so that the operation of DRAM may not affect the processor’s normal execu-
tion hence hampering the performance. Using simple circuit design techniques and a small
modification of the cache, periodic refreshing requirement of DRAM can be effectively elim-
inated. A multi-port memory facilitates the parallel processing using multiple functional
units. Similarly with DRAM cache above, a simple circuit design technique can lead to a

compact yet fast and stable multi-port memory cell.

A portion of research is devoted to investigating various layout styles. All new design
methods aim for simplicity and regularity. Full-custom design aiming for high performance
but taking long design time can be adopted when area or timing considerations are critical,
such as in high frequency data path design. Using automated synthesis of control logic with
semi-custom design styles, particularly in multi-level representation, makes the design pro-
cess efficient and easy, and the resulting design is comparable to that produced by full-
custom design. The standard cell based design style, when combined with multi-level logic
optimization, can provide a resulting design as good as full-custom version but in much
shorter design time. It is also shown that even with a small size library, the resulting layout is

better in both delay timing and area than other semi-custom styles.
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