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Implicit Storage Schemes for Quick Retrieval

Moni Naor

Abstract

We address problems of the form: given a collection of n records, each composed
of k keys, arrange them in a table of size n so that locating a record with a given
key value can be performed while accessing the table as few times as possible. We
analyze the amount of additional memory required to achieve optimal search time in

a few settings. Schemes that do not use any additional memory are called implicit.

When comparisons are the only basic operation performed on the records, the ta-
ble can be arranged with no additional memory, so that searching can be performed

in optimal logarithmic time. The preprocessing time is also optimal, O(nlogn).

When the operations are not restricted to comparisons, e.g. hashing, the prob-
lem is analyzed with respect to the size of the domain from which the keys are
drawn. It is shown that if the domain is of size at most exponential in the number
of records, then there exists an implicit scheme which achieves searching in worst
case O(1) probes to the table. Conversely, lower bounds on the domain size for
which no implicit O(1) probe search schemes exist are given. These lower bounds
improve the previously known bounds. The problem is considered both for the
single-key case and the multi-key case. The general conclusion is that the two cases

behave in a similar fashion.

The upper bounds for both the comparison and the unrestricted cases are in con-
trast to lower bounds that appeared in the literature for these models. The seeming
contradiction is resolved by observing that our models allow the search algorithm
to use information which is not directly related to the value being searched. This

points out the delicacy in choosing an appropriate model.



The solutions are achieved by techniques that enable representation of up to
O(nlogn) arbitrary bits implicitly, by exploiting the order of the records, so that
a word of length O(logn) bits can be retrieved by accessing the table a constant
number of times. Thus, the general methodology in designing the schemes is as
follows: first, give a space efficient algorithm that uses some additional memory,

then show how to encode the additional memory implicitly.
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Chapter 1

Introduction

The search for a record with a given key value in a large collection of records is
one of the most basic problems computer science addresses. In this thesis we try to

determine what are the minimal resources that allow quick search.

The problems we consider are of the general form: a set of n records, each
composed of k keys, is to be arranged in a table of size n, with one record per
entry. Given a key value, a record with that value should be located in the table by
accessing it as few times as possible. A typical solution to this problem consists of
two parts: an arrangement scheme of the table, and a search algorithm for a record
in the table that is arranged as suggested. The implementation of such a solution
therefore consists of two stages: the preprocessing stage that arranges the table and

the search stage.

A solution is characterized by the (worst case) run time of a search. If memory
is for free, then usually the task is trivial. For instance, if each record consists of a
single-key and the keys of the n records are actually a subset S C {1...m} of size
n, then an array A of size m such that A[¢] = 1 if and only if ¢ € S would yield

an O(1) search. Therefore, we analyze the minimal space requirements needed to



achieve quick search time.

We shall aim at achieving the best search time possible within the model, without
using any additional memory apart from the table, or if that is not possible, we try
to minimize the size of the additional memory. Schemes that do not use additional

memory are called implicit.

Two reasons motivat-e us to investigate problems of this type. One is from a
space-efliciency or data-compression point of view: ‘fast access memory is a critical
resource in many systems, there never seems to be enough of it. Also often its size
is predetermined, and cannot be controlled by the designer. Hence, it is important
to know what can be done with whatever resources we have. Thus, problems of this
type have practical significance, and determining the space requirements is highly

desirable.

The second and perhaps more important reason from our point of view is that
in order to understand the inherent limitation of computation, we must realize
how the different components of a system can pass information they have gained
to other components. We can think of the preprocessing stage as trying to signal
the search stage how to conduct quick search in the specific collection of records
we have. The part of the memory that does not store the records, what we call
the additional memory, is the obvious mean of passing this information. Indeed,
most previous researchers had concentrated their efforts on this way of passing
information. However, from our results it follows that most or all of the search
information can be coded in the section of the memory that stores the records,
by the relative order of the records. We therefore point out a neglected source of

information flow in a system.

The general methodology we apply for designing.implicit schemes is as follows:

first, we suggest a scheme that uses a considerable amount of additional storage,



but less than the naive one; then we show how this additional memory can be
represented implicitly. As this memory emulation provides us with the ability to
store desired information without the need for physical memory, we call it a virtual

memory.

The objective of the problem, as stated above, is to minimize the number of
probes to the table. Thus, the complexity of coordinating the search, i.e. deciding
which locations to probe, is not taken into account. We shall try not to take advan-
tage of this hospitality and be as efficient as we can in that respect as well. Unless
stated otherwise, all the results we describe are constructive, i.e. true algorithms

that achieve the time bounds not only with respect to the number of probes.

In this thesis we consider a few variations of the general problem. To characterize
a problem of the general format defined abov.e, we have to specify the type of
operation allowed in the search, and whether a record has a single-key or multiple
keys. The operations on the records could be restricted to comparisons, i.e. in each
step either two records are compared or a record is compared against the value
being searched for, or they could be unrestricted, in which case the search for z
can be tailored according to the specific value of z and the entries being probed.

Hashing is the best known example of unrestricted search.

Another type of specification is the number of keys: records can either possess
a single-key or be composed of many keys. Throughout the thesis we consider both
versions. A somewhat surprising consequence of our results is that the multi-key
case behaves essentially the same as the single-key case. The conditions that allow

one-key search are similar to those that allow multi-key search.

The solution presented for the comparison-based multi-key table problem was de-
veloped with Amos Fiat and Alex Schiffer, and appeared in [FNSSS] and [FMNSSS].

The solution for the unrestricted search case was obtained in two stages: we first



gave an upper bound on the size of the additional memory enabling search in O(1)
time; this was done with Amos Fiat, Jeanette Schmidt and Alan Siegel, and ap-
peared in [FNSS]. Rainbows and their connections to implicit O(1) probe search

were introduced later, and are a joint work with Amos Fiat [FN].

We start by giving a precise definition of the problems, background and a review
of the literature related to the problems studied in the thesis along with a brief
statement of the results. Then we give an overview of the techniques which are
common to all the solutions, and finally a description of the content of the following

chapters.

1.1 Problem Definition, Background and Results

1.1.1 Comparisons

In the comparison-based case, a collection of size n of k-key records is given. The
records are to be arranged in a table of size n so that searching under any key
can be executed quickly; no additional memory is allowed. The only operation
allowed on a record is comparing two records according to the ith key, 1 <7 < k,
or comparing the value being searched for against a record. A simple information
theoretic argument implies that the best one can hope for is logn comparisons.
If K =1, i.e. there is single-key, life is easy: the table is arranged by sorting it
according to the key and in order to locate a record, a binary search is conducted.

Hence the more interesting case is when k& > 2.

The problem was first considered formally by Munro in [Mun79]. The search
time bounds achieved there are O(n!~1/*). This time bound was conjectured to be

the best possible. The conjecture was supported by a lower bound of Q(n!-1/*) of



Alt Mehlorn and Munro [AMM], in case it is required that during the search all the
comparisons are between the value being searched for and one of the records, i.e.
no comparison between two records in the table is allowed. While this assumption
might not seem restrictive, Munro in [Mun87] showed that O(log* nloglog*~! n)
search time is possible. His search algorithm does compare two records in the table.

Our solution uses many techniques that were introduced in this paper.

We have completely resolved the comparison-based case. The records can be
arranged so that searching under any key requires O(log n) comparisons. The pre-
processing requires O(nlogn) time, which is the best possible. The search itself
does not involve any computation which cannot be performed within the claimed
time bounds, i.e. deciding which keys to compare can be executed efficiently. The
key values need not be distinct and all we have to assume is that no two records
are identical. The keys can in fact intersect, i.e. be composed of overlapping fields

in the record.

One appealing property of our solution is for k¥ = 1, i.e. the single-key case, the
solution defines the organization as a sorted array and the search as binary search.
Thus, the claim that this is the k-dimensional generalization of binary search is

justified.

1.1.2 TUnrestricted Case

In the unrestricted case, where every possible operation can be performed on a key
value, even the optimal solution for the single-key problem is not clear. We rephrase
the one-key problem in this context. A set S C {1...m} of size n is to be stored
in a table T of size n where every table entry holds a single element of S. Given

z € {1...m}, the goal is to locate z in the table as quickly as possible.



Yao [Yao] has shown that if no storage is available in addition to the table T,
then there is no table organization that enables an element to be located in less than
log n probes. We refer to a table organization that requires no additional storage
as an implicit scheme. Yao’s proof assumes that the domain size m is much larger

than the number of elements n. This immediately raises the following questions:

- 1. For what values of m (as a function of n) does an implicit O(1) probe search

scheme exist?

2. Given that an implicit scheme does not exist, how much additional storage is

required to ensure O(1) search?

3. If the set S is chosen uniformly at random, or if access to a random hash
function is available, does an implicit O(1) probe scheme exist with high

probability?

As for the first question, what was known is that an implicit O(1) probe search
scheme exists when the domain size m is less than 2n — 2 where n is the set size

(Yao.

We can answer for most functions f , when m = f(n), whether there is an
implicit O(1) probe search scheme for m and n. If m is bounded by 22 for some
polynomial p, then an implicit O(1) probe search scheme exists. However, for that
range we know of only a non-constructive scheme that is a based on a probabilistic
construction, yet we have a concrete scheme when m is bounded by a polynomial
in n. We also give a new proof of Yao’s theorem that yields better lower bounds
than Yao’s: If m as a function of n grows quicker than a tower of powers of 2 of

constant height, i.e.

‘2"'
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then no implicit O(1) probe scheme exists.

Many researchers, among them Tarjan and Yao [TY], Yao [Yao], and Fredman,
Komlés, and Szemerédi [FKS] used additional memory to achieve an O(1) probe
search. In particular, [FKS] describe how to generate a perfect hash function, which
maps every key in S to a unique location in the table; the function’s description
requires a substantial amount of additional memory. The number of bits in the
additional memory required to implement the method of [FKS] is O(n+/Iogn +

log log m).

An Q(n-+loglog m) lower bound on the number of extra bits required for perfect
hashing functions ([Meh84] Chapter 3, Theorem. 6, [Mai83], [FKS], [FK], [BBDOP))

is known.

Our solution uses considerably less storage than these bounds. In the cases
where there is no implicit O(i) probe search (or we do not know of one) an addi-
tiolnal memory of size O(log n + loglog m) bits suffices to achieve O(1) probe search.
This does not contradict the lower bound mentioned above, since that lower bound

applies only to the special case of a perfect hash scheme.

Whenever an access to a random hash function is available ”for free”, no addi-
tional memory is required to achieve O(1) probe search in the worst case, with high

probability.

The multi-key case: In the case where we have several keys the same questions
can be asked. Our results are similar. Whenever a solution is available in the single-
key case, it is available in the multi-key case as well. No nontrivial upper bounds

appeared in the literature before.

We also consider the question of finding, in case the value being searched for is

not in the set, the closest element to the value. Ajtai [Ajt] showed that it is impossi-



ble to achieve O(1) probes without a substantial amount of additional memory. We
give logarithmic time bounds without additional memory. Since in a sorted table

this kind of problem is easily solved, we call it sorted array emulation.

Mairson [Mai84] introduced a quantity which he calls the program complezity.
The preprocessing can be regarded as producing a program for searching the specific
collection of records. Intuitively, this program is assumed to reside in the additional
memory. Thus, the size of the additional storage required to achieve an O(1) probe
search in the single-key case is treated as the bound on the program complexity.
From our results it follows that this intuition is wrong. Most or all of the program
complexity is absorbed in the order of the records and does not necessarily have to

reside in the additional memory.

1.2 Techniques

In this section we shall try to gain some insight into the techniques that achieve our

results.

A major source of power common to all of our search algorithms is the fact that
they make use of information found in the table other than the information directly
related to the value being searched for. How can we gain anything from ”unre-
lated information”? Below, three possiblg techniques that make use of "unrelated

information” are described

Virtual Memory: In order to emulate additional memory, we will let the records
play an active role even when not searched for, instead of just lying around waiting
for the day they will be searched for. With any sequence of ¢ records we associate a
color, which encodes some memory word we wish to preserve. To assure that all bit

patterns of the word are possible we define and construct rainbows. A rainbow is a



coloring of sequences (without repetitions) of length ¢ over a certain domain, so that
for every large enough subset of that domain and every color there is a sequence of
elements from the subset that is colored with that color. Prior techniques allowed
representation of O(n) bits. They were based on Munro’s even-odd encoding - the
order of two adjacent records determines a bit. Our rainbows allow representation

of up to O(nlogn) bits.

Flexibility of order: A fundamental observation due to Paul Feldman (appeared
in [BFMUV]), without which none of results of this thesis would have been possible,
is that there are many orders under which quick search is possible. In his scenario,
the single-key comparison-based case, the order of the completely sorted array is
not the only permutation that allows quick search. A table could be in one of a set
of permutations of size (5! and yet be searched in logarithmic time. This flexibility
has been used by [Mun87] for the comparison case. We use it in conjunction with
the rainbows, so as not to have a degradation in the search performénce time, yet

save memory by applying the rainbow technique for virtual memory.

Cycle Chasing: Another useful tool is the cycle chasing technique. For clarity,
we will introduce the problem (which the cycle chasing technique is meant to solve)
by describing an application of it in a context that slightly differs from the other
problems in this thesis. Suppose there is an imaginary city where one night all the
wives mo§e to live with different husbands (not their own). By the pigeon hole
principle, each husband receives a new wife. Suppose furthermore that one of the
husbands wants to locate his original wife. He can do so by going to his new wife’s
previous house, query the new wife there about her former residence, and continue
in such a manner until he finds his former wife. This might take very long. To help
such husbands, we would like to put hints on their way to shorten the tour. Given

that we can put less than n hints, is there anything useful we can do? In fact we



can do a lot. Given c¢-n hints, for any fixed ¢ < 1, we can cut down the chase time

of each husband to a constant (depending on c).

Chapters 2 and 3 describe these techniques, and chapters 4 and 5 show how to

applsr them for the problems at hand.

1.3 organization

The rest of the thesis is organized as follows:

Chapter 2 defines, motivates, constructs and bounds rainbows

Chapter 3 discusses the flexibility in ordering and the cycle chasing technique

Chapter 4 solves the comparison-based case

e Chapter 5 deals with the unrestricted case

Chapter 6 suggests further research.

10



Chapter 2

Rainbows

This chapter introduces a combinatorial structure that will turn out to have impor-

tant applications for emulating a storage device - the rainbow.

Definition:

A (¢,m,n,t)-rainbow is a coloring of all ¢-sequences (without repetitions) over
{1...m} with ¢ colors so that for any set S C {1...m}, |S]| = n, all ¢ colors appear

in the ¢-sequences over S.
Two simple examples of rainbows are:

Example 1: For any m, n and ¢ < n we can construct a (¢ = ¢!, m,n,t)-rainbow by
associating a color with each of the ¢! permutations. A t-sequence is colored with

the color associated with the permutation on the natural order it defines.

Example 2: For any n, a (¢ = n,m = n,n,t = 1)-rainbow can be constructed.

The color a sequence receives is just the value of its single member.

For the applications we have in mind, we are interested mainly in the case where

¢ =n and ¢ is a constant. As we shall see, when the number of colors required is

11



larger than ¢!, than the existence of a (¢, m,n,t)-rainbow depends on the relationship

between m and n.

From their definition it is apparent that rainbows are related to Ramsey theory.
Indeed, the impossibility results we have are derived from Ramsey theory, and are
expressed in terms of Ramsey numbers. We also use constructions from Ramsey
theory to reduce the problem of constructing rainbows to similar structures where

the order does not matter.

Rainbows are used to emulate additional storage both in the comparison-based
search and in the unrestricted search. However, in the latter case they are connected
in the other direction as well. We will show in chapter 5 that given an implicit O(1)
probe search scheme, we can construct from it a rainbow with certain parameters.
Thus we will be able to apply the impossibility results of rainbows to implicit

schemes.

We first motivate rainbows, by showing how they can be used to provide virtual
memory. The goal of Section 2.2 is to construct rainbows. An explicit construction
of a (¢,m,n,t)-rainbow when m is polynomial in n, ¢ = n and ¢ is a constant is given
and a probabilistic construction is shown to be good even when m is exponential in
n. Section 2.3 deals with impossibility of certain rainbows; if m is much larger than
n then such a construction is not possible. Finally, Section 2.4 briefly mentions

relationship between rainbows and other combinatorial structure.

2.1 Rainbows Provide Virtual Memory

We now show how rainbows can be used to simulate additional memory. Consider

the following:

12



Virtual Memory Problem

Given:
o Aset R={ri,72,...,7}, where 1 <r, <mforl1 <j<n'
e A series of values vy, vs,...,vy where 0 <v; <n-—-1forl1 <i<L.

Arrange the elements of R in an array A of size n’ (put each element of R in
a different location) so that given 1 < j < [, v; can be reconstructed (decoded)

quickly, via ¢ accesses to A, where £ is such that n' — ¢({ — 1) > n.

Note that we do not require anything about locating elements of R, only that

they will reside somewhere in A.

The next lemma shows the relationship between this problem and the existence

of rainbows.

Lemma 2.1 Given a (¢ = n,m,n,t)-rainbow C, the virtual memory problem de-

scribed above can be solved.

Proof: Divide the first £-/ locations of the array A into blocks of size ¢. The elements
of R should be arranged in A so that the color assigned by C to the jth block, i.e.
to the sequence (A[jt+1],... A[(j +1)¢]), is v;. To achieve that, a greedy algorithm

can be applied:

Greedy Encoding

e Set U =R
e Forj=1to!l

— Find a sequence s colored v; in U

13
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— Put sequence s in order in the jth block of A

- U~U\s
o Arrange U in the rest of A arbitrarily

Throughout the execution of the loop the number of elements in U is n’' — jt > n.
Hence there is a sequence in U colored by C, and the find step in the algorithm always

succeeds.

This arrangement means that in order to reconstruct v;, one has to determine
the color of the jth block under C and this can be done via ¢ accesses to A. This
method is constructive if given a sequence its color under C can be determined

effectively. 1§

A concrete example of the application of the greedy encoding using the rainbow

of Lemma 2.2 is given following that lemma.

Throughout the thesis we say that vy,vs,..., v are in the virtual memory.

2.2 Rainbow Construction

This section provides an explicit construction of rainbows when the number of
colors ¢ = n and the length of the sequence ¢ is a constant. We start with a simple
construction for the case m < 2n—1 (Lemma 2.2) which exemplifies the construction
for a domain m which is quadratic in the number of elements n (Lemma 2.3). The
ideas behind this construction are later used in showing how to reduce a problem
with domain m to another problem with domain y/m (Lemma 2.4) . This yields an
explicit recursive construction for all m which are polynomial in n (Theorem 2.1).
We conclude the section by showing that a probabilistic construction is good even

when m is exponential in n (Theorem 2.2).

14



Lemma 2.2 For any n and m < 2n — 1 there ezists a (¢ = m,m,n,2)-rainbow.

Proof: color an ordered pair (z;,z,) with the color z; — £ mod m. We have colored
all the edges of the complete directed graph on m nodes. Let D; be the directed
subgraph (of the complete graph) induced by the edges colored i. For any color
t, D; is a collection of disjoint cycles, since addition modm is a group. For any
set § C {1...m} such that |S| = n consider the subgraph of D; induced by the
elements of S. Any element missing from S can eliminate at most two edges from
D;. Since at most n—1 elements are missing from S, at least one edge in D; survives.

Therefore, for each color 7 there is a pair colored ¢ in S. 1§

Example 3: We show how this (m,2n — 1,n,2)-rainbow can be used for the pur-
poses of virtual memory encoding explained in the previous section. The domain
size m = 24, the set R contains n’ = 20 elements; we wish to encode [ = 4 values

Vly. oy Vst
R={1,2,3,4,5,6,8,10,11,12,13,14, 15,17, 18,19, 21, 22, 23, 24},
v1 =16, v =958, v3=19, v4=17T7.
The set R is ordered in the array A so that A[2 — 1] — A[2]] = v;, 1 <7 < 4:

A[1,...,20] = [17,1,19,14,21,2,18,11,.. .].

Lemma 2.2 is sufficient to provide the encoding required in the comparison
model, but not that for the unrestricted search case. For that we need better

constructions.

Lemma 2.3 For any prime p, there is an ezplicit construction of a (¢ = n,m =

pPPon=p+1,t= 2)-rainbow.

15



Proof: Consider a 1-1 mapping from all elements e € {1...m} to pairs (z,y) such
that 1 < z,y < p. (For instance,z =e (mod p)+ 1,y =(e—=2z)/p+1.) Given an

element in {1...m}, we will consider its value the value of the mapping.

Color the sequence (u,v), u = (z1,%1), v = (22,¥2), with the color (y2—1)/(z2—
z1) (mod p). If zo = z; then color the sequence (u,v) with the color p. We have
colored all edges of the full directed graph on m vertices. Note that the sequence
(u,v) is colored as the sequence (v,u), hence we can consider the coloring as that
of a complete undirected graph. To prove that this is a good coloring we need the

following:

Claim 2.1 Consider the edge induced subgraph G; obtained by choosing all edges

of color i. G, consists of p disjoint cliques of size p.

Proof: First, note that every vertex u = (z,y) has exéctly p — 1 directed edges
(u,v; = (z4,y;)) colored i, for all 0 < 7 < p. For i = p these are simply pairs
(z,9i), y; # y; for i < p the z; and y; values are the p — 1 solutions to the equation
(v —y)/(2; —z) = i mod p.

To show that the undirected induced subgraph consists of cliques, assume that
the (u,v) and (v, w) sequences are colored ¢: then the (u,w) sequence must also be
colored i. If u = (z1,11), v = (22,y2) and w = (z3,y3) either ¢ = p in which case
Y1 = Y2 = ys3 and (u,w) is also colored p or ¢ < p in which case (y, —y1)/(z2 —21) =
(y3 — y2)/(z3 — z2) = ¢ (mod p). It now follows that (y3 — y1)/(z3 — 1) = 1

(mod p). |

Remark: Note that all vertices u;, u; = (zj,y;), belonging to the same clique in
G, have the same value y; —iz; (mod p). This means that we can identify the G;

clique containing a vertex u.
We can now resume the proof of the lemma:
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Givenaset S C {1...m} of size n = p+1, at least two elements u,v € S belong
to the same monochromatic clique colored i, for all 0 < ¢ < p. This means that

both sequences (u,v) and (v,u) are colored i. 1§

To construct a rainbow for m polynomial in n we use a recursive construction.
We explain how to use the construction above to transform the problem from a
domain of size m to a domain of size \/m, by concatenating two elements to each

sequence in the /m domain.

Lemma 2.4 Given a construction of a (¢ = n,m = p,n — 2,t)-rainbow where p is

a prime, a (¢ = n,p?,n,t + 2)-rainbow can be constructed.

Proof: Let C be a (p + 1,p%,p + 1,2)-rainbow as described in Lemma 2.3. Our
inductive assumption is that we have an (n,p,n — 2,t)-rainbow. Our goal is to
construct an (n,p?,n,t + 2)-rainbow. Given a set S C {1...m}, |S| = n, if all
p + 1 colors appear in the 2-sequences over S under C then we are essentially done:
(in fact, the rainbow contains more colors than required) the first two elements
in the sequence will function as an indicator; if they are in decreasing order, the
interpretation is that they are colored by C and the rest of the sequence should be

ignored.

Otherwise, at least one color is missing, but there is at least one color that
appears (we assume n > 2). Therefore, there is a color ¢ such that no pair in S is
colored by C with 7, but there exist u,v € S such that (u,v) is colored ¢ — 1 under

C.

Consider G;, the edge induced graph induced by edges colored ¢ and introduced
above. Every element in S is in a different clique of G, else there would have been a
pair colored ¢. The cliques of G; can easily be indexed as described by the remark at

the end of Lemma 2.3. To obtain a domain of size \/m every element v € {1...m}
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is mapped to the index of its clique in G;. If the first two elements u,v of the
(t + 2)-sequence are in increasing order it indicates that such a mapping should be
applied. Let ¢ — 1 denote the color associated with (u,v) under C, the mapping
applied to the remainder of the sequence replaces every value w € {1...m} by its

clique index in G;. By our inductive assumption we have an (n,p?,n,¢+2) rainbow.

Since for any integer « there is a prime in (z,2z) we can apply Lemma 2.4
recursively, each time reducing the domain from m to 2,/m. Using Lemma 2.3
as the base case provides us for any d > 1 with an explicit construction of an

(¢ =n,m = n? n,2[log d] + [loglog d])-rainbow. Thus we have

Theorem 2.1 For any domain m polynomial in the set size n there ezists an
(n,m,n,0(1))-rainbow. Given a sequence, its color can be determined in O(1) time

assuming modular arithmetic on O(log m) bits in unit-time. |

Remark: Note that the proof implies that the existence of rainbows is a robust
property, meaning that if pi,ps,ps are polynomials, and m is as a function of n
such that a (¢,m,n,O0(1))-rainbow exists, then a (p1(¢c), p2(m), ps(n), O(1))-rainbow

exists as well.

Probabilistic Construction We now turn to the probabilistic construction for m
ezponential in n. Suppose m = 2™ and consider a random coloring with n colors of
all £ + 2 sequences over {1...m}. For a set S C {1...m}, |S| = n, the probability

that a specific color is missing in the ¢ + 2 sequences over S is less than

(1 _ 1/n)n(n—1)‘..(n—l-—l).
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There are n colors and (’:) sets, hence the probability that there exists a set and a

color such that the color is missing over the set is less than
m n(n-1)...(n—¢~1) nttl —nt+l 2
o n-(1-1/n) <2 .n-e et < 1.

Therefore we have:

Theorem 2.2 For any domain m ezponential in the set size n there erists an

(n,m,n,0(1))-rainbow. 1

2.3 Bounds on Rainbows

In this section we give bounds on the maximum m, as a function of n and %,
for which a (¢ = n,m,n,t)-rainbow. We will do that by showing the connection
between rainbows and colorings of the {-uniform hypergraph. Consider coloring of
all ¢-subsets (subsets of size t) of {1...m} with ¢ colors. Ramsey theory tells us that
there exists a function R(n,t,c) such that if m > R(n,t,c) then for any coloring
of the ¢-subsets of {1...m} with ¢ colors there exists a set S C {1...m} of size n
such that all the ¢-subsets over S are colored with the same color. (See the book

by Graham, Rothschild and Spencer [GRS] for details on Ramsey theory.)

Theorem 2.3 If there ezists a (c,m,n,t)-rainbow and ¢ > t! then

m < R(n,t,t! + 1)

Proof: Given a (¢, m,n,t)-rainbow, we define a coloring of the {-subsets of {1...m}
: for each subset H C {1...m} of size ¢ consider all possible orderings of H. Each

of the ¢! possible orderings receives a color in the rainbow. Since there are more
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than ¢! colors in the rainbow we know that there is a color 7, 1 < i < ¢! + 1 which
none of the orderings receives. Color H with such an . From Ramsey theory it
follows that if m > R(n,t,t! + 1) then there will be a set S C {1...m} of size n
such that all of S subsets of size ¢ are colored with the same color i. Hence in the

rainbow all the ¢-sequences of S were not colored 7, and thus it is not a rainbow.

How fast does R(n,¢,¢! + 1) grow? Let the tower functions h.(z) be defined as

hi(z) = z and h;11(z) = 2% for ¢ > 1. That is
422
he) =27 I

The stepping up lemma in [GRS] page 91 yields the following: h;_1(c; - n?) <
R(n,j,2) < hj(cs - n) for some fixed ¢; and ¢;. By the method of the proof of
Ramsey theorem, increasing the number of colors from 2 to ! + 1 does not add
more than log ! + 1 to the height, i.e. R(n,t,t! 4+ 1) < hyiioger+1y)(c2n). Hence we

can conclude that for a (¢ > ¢! + 1,m,n,t = O(1))-rainbow to exist we must have

-2n
m < 22 }0(1)._

Undirected Rainbows: We now show that the existence of rainbows is closely
related to that of undirected rainbows defined as follows: A (¢, m,n,t)-undirected
rainbow is a coloring of all {-subsets over {1...m} with ¢ colors so that for any set

S cC {1...m}, |S| = n, all ¢ colors appear in the {-subsets over S.

Since the order itself in directed rainbows can detefmine t! different colors, as in
example 1 in the introduction to the chapter, we know that (¢ = t!,m,n,t)-rainbows
exist for any m and n. However, by Ramsey theory, this is not true for undirected
rainbows. On the other hand, the next theorem shows that in order to give bounds
on the maximum m for which (¢ = n,m,n,0(1))-rainbows exist, it is enough to

consider undirected rainbows.
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Theorem 2.4 For every t there ezists a constant b, dependent upon t, such that a
construction for a (¢ = n,m,n,t)-rainbow yields a construction for a (¢ = n,m, [log(!)]-

n, b)-undirected rainbow.

Proof: The idea is to provide enough information in the subset so as to simulate a
directed set. If in addition to a t-subset, [log(¢!)] bits are provided to determine
the order in the ¢-subset, then the color of the subset will be the color of the

corresponding ¢-sequence in the (¢ = n,m,n,t)-rainbow.

The additional bits are obtained as follows: Sort the b;-subset and divide it into
[log(¢!)] 4+ 1 consecutive subsets. The subset of the largest elements should be of
size ¢, all the rest are equal in size. Let ¢ denote (b, — t)/[log(t!)]. b is selected
so that there exists a (2,n,m,¢') undirected rainbow. Such a b, exists because the
bounds on from theorem 3 we know that m < R(n,t,t! + 1) and thus mhw(can)
for some t” depending only on ¢. Hence, from the lower bound on R(n,j,2) of the

stepping up Lemma there exists a (2,n,m, ¢’)-rainbow for ¢’ = ¢".

Each of the [log(¢!)] subsets will supply one bit under its 2-coloring. 1

2.4 Relation to Other Constructions

In this section we briefly mention some relationships between rainbows and other

constructions.

In [Sip] Sipser defined a certain kind of expander, and gave a probabilistic con-
struction for it. We will show how to use such expanders to obtain an implicit O(1)
probe scheme for values of m and n for which such an expander exists, namely when
m is n'*8". To achieve this, we first show how to construct a rainbow with logn

colors for such m and n, and then show how to apply it with a Sipser expander to
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get an (¢ = n,m,n,0(1))-rainbow for those m and n.

Lemma 2.5 There ezists an ezxplicit construction for a (¢ = logn,m,n,0(1))-

rainbow, if m is nPOWl0g()

Proof: For 1 < z < m let z; denote the ith bit of z. Consider the coloring of pairs
that assigns the pair (z,y) minjci<iogm £i # ¥i, i.e. the first bit in which z and y

differ.

Claim 2.2 In any set S C {1...m} of size n, the pairs must be colored with at

least logn different colors.

To see that the claim is true consider organizing the elements of S in a trie, i.e.
in a binary tree where each element appears as a leaf and its value is determined by
the path from the root. If a node in the ith level of the trie has two children, then
there is a pair (z,y), where z is a decedent of the left child and y a decedent of the
right child, that is colored i. There must be at least log n levels in the trie in which
there is a node with 2 children, since each level can at most double the number of

nodes from the previous one and there are n leaves.

The claim shows that rather than having a set of size n out of a domain of
size m, the problem can be reduced to that of a set of size logn from a domain
of size logm. If m is nPOWYI08() then logm is polynomial in log n, and hence the

constructions of Theorem 2.1 can be applied to obtain the required rainbow. |

An (I,7,d,a,b)-expander is a bipartite graph with [ nodes on the left side, each
with degree d, r nodes on the right side with the property that every subset of a

nodes in the left side is connected to at least b of the nodes of the right side.

[Sip] gives a probabilistic construction for an (n'°¢", n, 2log® n,n,n/2) -expander.

Such expanders can be used to amplify rainbows, and construct (¢ = n,m =
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n'*8”,n, O(1))-rainbows. An element in {1...m} is considered as a node on the
left side of such an expander. Colors will correspond to nodes on the right side.
The construction of a (¢ = 2logn,m,n,O(1))-rainbow, described above, can be
used to specify neighbors of a given node. Since a set of n nodes on the left side is
adjacent to at least half the nodes on the right side, it follows that one can specify
at least half of the nodes on the right side. Using the construction of Lemma 2.2 it
can be amplified to all the colors. Therefore, an explicit construction for a Sipser

expander would yield an implicit O(1) probe search scheme for m = nlog=,

No explicit construction with parameters close to the ones given in [Sip] is known.
The best explicit construction for such expanders is given in Ajtai, Komlés Sze-

merédi [AKS].

Extracting Random Bits and Rainbows We finish this section by noting the
relationship with extracting random bits from slightly random sources, as defined
by Chor and Goldreich [CG]. Consider a source whose output € {1...m} but is
actually chosen at random from an unknown set S C {1...m} of size n. (This is
a special case of the sources Chor and Goldreich considered.) Given a few such
sources we wish to convert them to a quasi-random source, i.e. a source whose
output distribution is close to uniform. (Quasi-random and semi-random sources
are defined in Umesh Vazirani’s thesis [Vaz]). Such a source is a slightly random
source of entropy logn. No constructive way is known to extract random bits at a

constant rate when the domain size m is super-polynomial in n.

We claim that a constructive way to extract logn random bits from a fixed
number of such sources would also define a (¢ = n,m,n,0(1))-rainbow. Suppose
that the extractor can produce O(log n) random bits from ¢ such source. Consider
a coloring of t-sequences over {1,...,m} where the color assigned to a ¢-sequence is

the output of the extractor in case the ¢ sources output the values of the sequence.

23



Let the ¢ sources be such that all output from the same set S. For any set S of size
n and for most numbers z € {1,...,n}, there must be a combination of the output
of the sources that is interpreted by the coloring as z, since otherwise there is a
zero probability that the extractor outputs z for sources defined by the set S (and
the output is therefore not quasi-random). This is not a good rainbow yet, but it

can be converted to one by applying the construction of Lemma 2.2.
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Chapter 3

Many Good Orders and Cycle

Chasing

This chapter shows why the ”"natural order” is not the only one that is suitable for
quick search (Section 3.1), and how husbands can locate their estranged wives with
few hints (Section 3.2). The mathematical analogy of the last problem ié, given a
permutation m on {1,...,n} with the property that computing () is easy, find a
way to compute 7! without using much memory. We develop a technique called
cycle chasing for computing 7~1(7) efficiently that for any fixed ¢ > 0 uses only
cnlogn bits. Those techniques will play an important role for both the comparison

case and the hashing case.

3.1 Permutations Supporting O(1) Search

Suppose that a set S such that |S| = n is given, along with an oracle to a function
fy f: 85— {1,...,n} which is 1-1. (By an oracle we simply mean that given z € §

there is some unspecified way to compute f(z)) There is a natural way to arrange
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S in a table T of size n so that searching T' can be done quickly: assign every z € S

to T[f(z)].

However, there are many ways in which the table can be perturbed and still
support search in O(1) time. We now show a set of (%)! permutations such that if
the table is in one of them, searching the table (without knowing in which specific

permutation it is) can still be conducted in O(1) time.
Let $; ={z | f(z) <n/2} and S, = S\ Si.

Now suppose that S, is arranged in the first n/2 entries of 7' according to some
arbitrary permutation r of its natural order under f. If we arrange S, in the second
half of T' by applying 7= to its order under f, then searching for an element z € §

can still be done in O(1) time:

First note that both 7 and 7~! can be computed efficiently: for 1 < ; < n/2

7(3) = f(T[i + n/2]) — n/2; and 7-1(3) = F(T[i)).

To search for 1 < 2 < m, compute f(z) and probe for the record in its comple-
mentary location:

o If f(z) < n/2 then probe T[r(f(z))).

o If f(z) > n/2 then probe T[r~(f(z) — n/2) + n/2].

Since every permutation on the first half of the table is acceptable, there are

($)! permutations of T on which we can search.

Note that since 7 and 7! can be computed efficiently, reconstructing the original

order of T, i.e. computing f~!(i) N S can be accomplished by O(1) accesses to T

Example : Given a set § = {6,9,11,15,17,19,28,32} and a function f such that

fAn =1, f(6)=2, f(11)=3, f(28)=4,
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f(lg) =3, f(32) = 6, f(15) =T, f(g) = 8.

the natural order of S in the table T under f is

T[,...,8] = [17,6,11,28,19,32,15,9].

We apply the permutation + = (2,3,4,1) as described above, (i.e., (1) =

2,...,7(4) =1), 771 = (4,1,2,3). The table T now contains the values:

T(,...,8] = [28,17,6,11,32,15,9, 19].

To search for the value 28 we compute f(28) = 4, as 4 < n/2 we compute 7(4)
by computing f(T{n/2 + f(28)]) — n/2 = f(T[8]) — 4 = f(19) — 4 = 1, in fact
T[1]=28. 1

This technique is based on Feldman’s construction in [BFMUW]. He showed that
a single-key table in the comparisons-based case could be organized in one of ()
permutations and yet can still be searchéd with O(logn) comparisons. The permu-
tations are obtained by keeping the even ranked elements in the correct (original)
position and pairing and swapping the odd ranked elements. We shall use a similar

~ construction in Section 4.3.
We now mention briefly the context in which this technique will be used.

How can we exploit the freedom of ordering the first part of T? S; and the first
half of T' play the role of R and the array A in Lemma 2.1. S; would be permuted
by some permutation 7 of its natural order to provide ”virtual memory” . By the
technique presented above this does not preclude efficient search if a function f is

available.

What will f be? In Chapter 4 f(z) would be the (approximate) rank of z in S.

In Chapter 5 f(z) would be a perfect hash function.
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3.2 Cycle Chasing

Suppose that a permutation 7 on {1...n} is given by an oracle and we wish to be

able to compute 7~1.

If preprocessing is allowed and additional memory of nlogn bits divided into
words of size logn is provided, then the task is easy. Write down n~1(2) in the ith

memory word.

Suppose that instead of n words of additional memory only ¢ - n are provided,
for some ¢ < 1. This section shows how to use this additional memory without

causing a serious degradation in the time it takes to compute 7=1(3).

If the cycles of = were of length < h, then 7~1(4) can be evaluated by at most
h — 1 forward mappings. This would be acceptable if » were guaranteed to be
bounded by a constant. Unfortunately we can make no such claim. The cycle

length h can be O(n).

When the cycles of 7 are long, we store strategic "shortcuts” that enable us
to skip forward most of the way around the cycle in one step (see Figure 1). We
declare that a cycle is long if it is longer than some constant, £, which depends only
on c. These shortcuts will require ©(n) pointers, but the constant factor hidden in
the © can be made as small as we wish by increasing ¢, which is essential since the

virtual memory the rainbows provide contains ¢'nlog n, for some ¢’ < 1.

An arbitrary starting point p is chosen for each cycle, and starting from p, every
£ element along the cycle is given a shortcut pointer to ¢ places back along the
cycle. Thus, 7¢(p) "remembers” the index p, 7%(p) remembers the value 7(p), and
so on. Location p remembers the value of 7*(p) where h is the largest multiple of ¢

strictly less than the cycle length h.
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Figure 1. One can chase around a cycle of 7 going forward using a

solid arrow or via a gateway using a dashed arrow.

These special locations, which are ¢ apart along the cycle, are called gateways.
If z € {1...n} is a gateway, we use P(z) to denote the location that z remembers.
These gateways provide convenient paths to speed up the search at an aggregate

cost of only “en” pointers.

Let g be the number of gateways. Evidently, g < [2n/{|. We are not done yet,
since we must describe a way to know, when performing the cycle chasing, whether

a gateway exists, and how to retrieve its value.

Number the gateways, z, associated with the permutation 7 (and our arbitrary
choice of the p’s above) with the values 1 through g, starting with the smallest

gateway and in increasing order of z (regardless of which cycle they belong to).

A convenient way to store the values P(z) is to use an array Q[1..n] where
Qlz] = P(z) if z is a gateway and Q[z] = 0 otherwise. However, this violates our

requirement that less than nlogn bits would be used.
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We now show how the array @ can be represented in a compact way. To obtain
a space-efficient method use a bitmap B[l..n] where B[z] = 1 if and only if z is
a gateway, and an array G[l..g] compressed to contain only the nonzero values of
Q[z] (in the order they would appear Q). To find the location of Q(z) in G we use
an array of counters, C[0..|n/[log n]|]; each entry of C is a number between 0 and

g inclusive. The entry C[j] is the partial sum

> Blm].

1<m<j{log n]
It counts the number of gateways in the first j[log ‘n] locations, If B[z] = 1 then
Q(z) = G|c] for some ¢. The index ¢ can be computed as the sum of one C entry

and at most logn consecutive B entries.

In order fo compute this sum quickly we add another array D, such that for
1 <i<nifd=[i/[logn]| then D(i) = Tanogn]<m<:i Blm]. D(i) < logn and
hence representing D requires nloglog n bits. This is the dominating factor of the
space requirements of all the additional arrays we used for solving the sparse array

representation.

This method for representing sparse tables is actually a special case of the solu-

tion presented in Tarjan and Yao [TY]. We summarize by

Lemma 3.1 Let T be a table of n entries, with g nonempty entries. T can be
represented by a table of g entries together with an array of O(nlog logn) bits so

that given i, T[i] can be determined in O(1) time.

To conclude the description of the search algorithm, we introduce PI-INVERSE,

a function that computes =~1(7).

PI-INVERSE(j)
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Set nextindex := j;

Repeat

1. index := nextindex;

2. if Bindex] = 1 (index is a gateway) then
set d := [index/[logn]| set ¢ := C[d] + D[indez];
index := Glc].

3. Set nextindex := w(indez);

Until nextindex = j;

Return(index);

Since the effective cycle length is bounded by ¢, the loop in PI-INVERSE is
repeated ¢ times at most. For any constant ¢, £ can be chosen so that the total
memory requirements do not exceed ¢ - nlogn. Each iteration requires one call for

x and constant amount of work otherwise.

We therefore conclude :

Theorem 3.1 Suppose we are given an oracle for a permutation © and memory of
c-n words, logn bits each. The memory can be arranged so that, given i, computing

7=1(¢) can be done by O(1) calls to # and O(1) time for other computations.
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Chapter 4

Comparisons

This chapter addresses the comparison-based version of the problem. A collection
of n records, each composed of & keys, is to be arranged in a table T of size n, one
record per entry. Given a value v and a key number i, a record having v in its ith
key should be located, or an indication should be provided that there is no such

record in the table.

As promised earlier, we can perform the search by O(log 7)) comparisons. The

constant hidden in the big O is proportional to klog k.

The general strategy is to partition the records into k subsets so that the ith
subset is a good ”sample” of the records when sorted under the order of the ith
key. How can this be achieved is discussed in Section 4.1. Call the ith subset the

i-guides and call the order of the records under the ith key <;.

The members of the ith subset should be kept in their order under <;, at least
conceptually. Thus, they can function as an approximate oracle for the rank of
a record under <;. Under such an ordering, for each key i, the records are in

some permutation m; of the order <;. The claim made in Section 4.2 is that this
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permutation can be computed efficiently in one direction, but in order to retrieve a
record, one needs to compute the permutation in the other direction. In other words, -
the location of a record in the permutation m; can be computed efficiently, whereas
what is really needed is to retrieve a record with a given location in permutation ;.
The cycle chasing technique of Section 3.2 is designed to handle exactly this type

of situation.

Recall that the the cycle chasing technique requires cnlogn bits for some fixed
¢ < 1. Where would those bits come from? The rainbows, defined in chapter 2,
will provide the encoding power, and the technique of Section 3.1 will be used so
that the execution of the other task of the i-guides - being an approximate oracle -
would not be disrupted. This is done in Section 4.3 and concludes the description
of the algorithm. In Section 4.4 it is shown that the techniques developed in this
section, in particular the good éampling, have applications outside the framework
considered here. In a scenario which is not memory-tight the number of memory

references can be halved in comparison with a more naive algorithm.

4.1 Finding a Good Sample

As suggested above, our first problem is to partition the records into k& subsets so
that the ** subset consists of records that are “fairly evenly spaced” among the
values under the it* key. These subsets will, in fact, be of size n/k (we will assume
that 8k divides n to simplify the presentation). Because of their role in the search

procedure, we call the elements of the ¢** subset the i-guides.

Let T[1..n] be the table in which we store the records. The relation <; is the
ordering of the records under the i** key. We require that any two entire records

be distinct, but the values along individual keys may be equal. We avoid having
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to insist that key values be distinct by formally defining <; as the lexicographic
(sorted) order on the records induced by concatenating the key values in cyclic
order beginning with key i. L; is used to denote the sequence of records sorted

under relation <;, i.e.

L,‘[l] =i L,’[2] <iyeeey =y Li[n].

We take evaluation under <; to be a unit-time operation, even when fully lexico-

graphic comparisons are necessary.

A fairly evenly spaced partition of the records is one where between any two
successive (under <;) elements in the i-guides there would be only a constant (de-
pending only on k) number of elements in L;. It is not clear a priori that such a

partition even exists.

The scheme below shows how to associate each key with its n/k ¢-guides so that

at most 2k — 2 keys fall between two consecutive i-guides under <;. (See Figures 2

and 3)

1. Write the lists Ly, Ly,..., L as columns of an n x k matrix of records so that

each record appears in each column.

2. Divide each column into n/k sets of k consecutive items. The matrix now
contains n blocks, each of size k, and the blocks within each column are

pairwise disjoint.
3. Choose one element from each set in such a way that each of the n records is
selected exactly once.
Why can step 3 always be completed successfully? Consider the following bi-
partite graph: on one side it has n nodes, each representing a record, on the other

34



side k- n/k = n nodes each representing a block. Each record is connected to all

the blocks that contain it. The graph is k-regular, and hence by P. Hall’s theorem

on ”complete sets of distinct representatives” [Hal|, it contains a perfect matching.
Given such a perfect matching a record is considered to be chosen to the i-guides
if it matched to a block in L;. The matching problem can be solved rather quickly:
in linear time if k is of the form 27 by an algorithm in [Gab] and O(knlog n) time

in general [CH].

The records are stored in T such that it is easy to search among the guides for

any key. Our (arbitrary) choice is to place the i-guides in consecutive locations:

T[(i—1)(n/k)+1],...,T[i(n/k)],

sorted by the <; order. We call these n/k locations the i-cluster.

Our goal of having the i-guides “fairly evenly spaced” has been achieved.

Remark The j** guide for key i occurs in L; somewhere between positions k(j —
1)+1and kj 1. In any list L;, there are at most 2k —2 records between consecutive

i-guides.

Example: We now give an example of a collection of records and how they are

partitioned. Let the collection be:
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RECORD | NAME(1) | BIRTHPLACE(2) | YEAR OF BIRTH(3)
i Carol Honolulu 1960
ii Frank Denver 1955
iii Alice Boston 1948
iv Gus Atlanta 1958
v David Chicago 1960
vi Iris Denver 1949
vii Bob Philadelphia 1968
viii Henry Detroit 1963
ix Eve Miami 1958

Figure 2. Sample data for a subsequent figure; k = 3 and n = 9.

The figure on the next page shows the blocks and the partition.

4.2 The Search

The next stage in describing the data structure is to show how to search the table

T with the records arranged as specified at the end of Section 4.1.

The reader ought to think of the i-cluster elements as being permanently sorted
according to <;. The final scheme, however, perturbs that order within each cluster
for encoding purposes (see Section 4.3), but the guides for any particular key remain

within their cluster in an order that supports a logarithmic search.

The remark above suggests the following partial search strategy for an item with

i key value v:
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Figure 3. The use of Hall’s Theorem; the records chosen as guides are circled.
The initial placement of records is shown: Roman numerals are just record names and are
not stored. The permutation , is defined and its values at 4 and 6 are illustrated with arrows.
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SEARCH-SKETCH(v)

1. Perform a binary search for v among the i-guides (in the i** cluster). If v is
not found, then we have determined that the value v may be found in one of

2k — 2 known positions in the (imaginary) list L;.

2. We can thusrestrict our attention to a constant number of positions in L;. Our
goal is to find the locations in T that contain the items from these positions

in L,’.

We present the method that finds these items in two stages. In the first stage
. we use some extra pointers and counters that require cnlogn bits for some fixed
¢ > 0 in addition to the table T. In the second stage, deferred to Section 4.3, we
show how to encode the cnlogn) additional bits of information into the table T,

and modify the search algorithm accordingly.

Let m; : {1,...n} — {1...n} be the permutation that maps a record’s index in

T into the record’s index when the records are sorted under the order <;, i.e.,

T[ﬂ",(l)] =i T[TI‘,(2)] < eee =<5 T[7r,(n)]

See Figure 3 for an example.

Step 1 of SEARCH-SKETCH restricts v to at most 2k — 2 known locations in
L;, say locations q; < j < g,. Since T[n7!(j)] = Li[j], v can, in principle, be found

through a binary search among the 2k — 2 records:

Tl (gL Tl + D) Tl (gs)]

provided we can compute 7;'. In fact, it turns out that the relative ease of com-

puting ; is the crucial starting point for computing its inverse. Computing m;(j)
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is tantamount to finding the rank of T'[j] in the order <;. To compute m;(j) ap-
proximately, we search for the record T'[j] in the i-cluster (under the order <;). As
in step 1 of SEARCH-SKETCH, this gives a range of 2k — 2 possible candidates
for m;(7). To compute m;(j) exactly, we associate a vector Fi[1..n] with every key
1 <@ < k, where Fi[j] € {1,...,2k — 2} gives m;(j)’s index within the range of

2k — 2 candidates. Note that each array F; only requires nlog 2k bits.

From the description above we can conclude that the conditions are similar to
the ones Section 3.2 deals with. We have an oracle for m;. Calling it costs O(logn)
comparisons, but since the cycle chasing solution requires only O(1) calls, it does
not exceed our time bounds. The solution requires for each key i to have arrays
B;,C;, D;, F;, G;, of which the size of G; is dominant. The next section shows how
to use the virtual memory supplied by rainbows to satisfy the additional memory

requirements of the cycle chasing.

4.3 Encoding

In this section, we show how to perturb T so that the structures B;, C;, D;F., and
G;, associated with each key 1 < ¢ < k, can be implicitly encpded in T. Recall
from Section 3.2 that B; and C; require O(n) bits, D; requires nloglogn bits,
and F; requires O(nlog k) bits. Since ¢ , the effective cycle length, can be chosen
independently of n, the storage requirements will be dominated by the G;’s, which

might contain ©(n/{) [log n| bit words each.

The arrays associated with each key are encoded in the appropriate cluster
independently of the others. We can, therefore, view any cluster as an array M
that contains m elements in a sorted order; the elements are the i-guides. We

phrase the problem we are faced with as follows:
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Encoding Problem:

Find a constant 0 < ¢ < 1 and an algorithm that encodes ¢ - mlog m bits into '

a previously sorted table, M, of m distinct elements while attaining the following:

1. Searching for a value in the perturbed table takes time O(log m).

2. Finding the record that would be in the At* location if the table were sorted

takes time O(log m).

3. The ¢ - mlogm bits are divided into logical words of logm — 2 bits each in
such a way that random access to the j** logical word requires O(log m)

comparisons.

We give a solution to the encoding problem: The even positions will remain
unchanged. Thus, when given an element z, by logm comparisons its ranking in
the sorted table can be found. We will denote this by rank(z). This will be used for
three purposes: the ranking can be used as the function f needed for the technique
presented in Section 3.1; it can also provide the values to be manipulated in the

rainbows and finally it fulfills requirement 2 of the problem.

Let S = {z|z is in odd location } and let M’ be the table you get by considering
only the odd locations in M. Together with the ranking this is the scenario of
Section 3.1. the only difference is that calling the oracle requires log m time, but
this is within our means. Following section 3.1, S; = {z € S|z is in location < m/2}
and it is to be organized in the first half of M’ in some permutation of it natural

order. S = §\ S; will be organized in the inverse permutation.

Let n' = m/8. We now implement the greedy encoding algorithm of Section 2.1
via the (¢ = 2n’ — 1,2n' — 1,n/,t = 2)-rainbow described in Lemma 2.2. For any

z € S its value for rainbow purposes is (rank(z) + 1)/2. Thus, the set U in the
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algorithm Greedy Encoding is initially {1...m/4} and we can proceed for m/16
stages, as long as |U| > m/8. The number of memory words encoded is m/8, so

c=1/16.

To summarize
Lemma 4.1 The encoding problem can be solved with ¢ =1/16. 1

When using this for solving our problem we have m = n/k. Thus, the amount
of virtual memory that can be supplied for each key is 1/16k - nlog(n/4k). G,
the biggest consumer of memory, must be bounded accordingly, by taking the ¢ ,

1

the effective cycle length, to be 16k. Thus computing ;" can be done by O(log n)

comparisons, where the constant is proportional to k. Since we are performing a

binary search over

Tr; (q)), Tlr; (@ + 1)), .., Tl (g2)]

77! needs to be computed log(2k) times.

We have

Theorem 4.1 A search in an Implicit k—-key table search can be done in O(log n)
time. The constant is proportional to klogk and the preprocessing can be preformed

in O(nlogn) time.

4.4 Application to Memory Efficient Data Struc-

tures

In this section, we sketch a potentially practical scheme to organize a memory-

efficient data structure for solving the k-key table search. We use the theoretical
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tools developed in Section 4.1 to suggest a scheme that uses (k — 1)n pointers, but
can be searched with about half of the number of memory references that would be

needed by the obvious kn-pointer solutions.

One obvious solution is to keep k copies of the table, each sorted under a dif-
ferent key. This is clearly wasteful in storage and has other problems as well. A
second solution is to keep sorted tables of the form (key-value, pointer). This at
least doubles the basic storage requirement (if keys are composed of overlapping
fields then it can waste more space) and requires an additional knlog n bits for
pointers. To avoid duplicating the record values, one can store an array of pointers,
sorted under the record value they address. This memory-efficient scheme requires
2 memory accesses per comparison, one for the pointer and one for the record’s key,

and altogether 2log n memory accesses per search.

To cut down the search time by 1/2, we partition the the records into i-guides.
The basic organization is exactly as above (Section 4.1), i.e. sorted clusters of i-
guides in one table. For each key, we keep an array of n — n/k pointers, giving
the sorted order of the non-guide records under that key. To search under the 3t
key, we perform a binary search among the i-guides. If no match is found, the
search can nevertheless be limited to 2k — 2 pointers. This method requires at most
log (n/k) + 2log (2k — 2) < log n + log k + 2 memory references per search and no

additional computation.
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Chapter 5

Unrestricted Search

In this chapter we consider the version of the problem where there are no restrictions
on the the operations performed on the records. From Yao’s result mentioned in
Chapter 1, we cannot analyze the complexity of this problem independent of the

size of the domain from which the keys are drawn.

We first concentrate our efforts on implicit O(1) probe search schemes for the
single-key case: A set § C {1,...,m} of size n is to be stored in a table T of size n,
where every table entry stores a single element of S. Given z € {1,...,m}, the goal
is to locate z in the table while probing T' only O(1) times. No additional memory

is available.

When does an implicit O(1) probe search scheme exist? It turns out that rain-
bows play a significant role in answering this question. The relationship between
rainbows and implicit O(1) probe search schemes is specified by the following the-

orems:

Theorem 5.1 For m and n, let ¢ = max(n,logm). The ezistence of a (c,m,n,t =

O(1))-rainbow yields an implicit O(1) probe search scheme for n elements from the
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domain {1,...,m}.

Theorem 5.2 Given an implicit O(1) probe search scheme for n elements chosen

from the domain {1,...,m}, we can construct an (n,m,n,t = O(1))-rainbow.

We can use Theorem 5.1 in combination with theorems 2.1 and 2.2 (that deal

with the existence of rainbows) to derive the following:

Corollary 5.1 For any domain size m, polynomial in the set size n, there is an
implicit O(1) probe search scheme for which search requires O(1) time assuming
modular arithmetic on O(log m) in unit-time. For any domain size m, ezponential

in the set size n there is an implicit O(1) probe search scheme.

From Theorem 5.2 in combination with theorem 2.3 (which deals with the impossi-

bility of certain rainbows) we can conclude:

Corollary 5.2 If there is an implicit t-probe search scheme for m and n, then

m < R(n,t,t! +1).

Theorem 5.1 and 5.2 are proved in Section 5.2

The intellectual efforts we have invested in the implicit case pay off for the other
questions presented in the introduction. Showing that an additional memory of
O(logn + loglogm) bits suffices to assure O(1) probe search for every m and n
follows pretty directly from the implicit (zero additional memory) case. Similarly,
so does showing that if a probabilistic assumption is made on the input, then no
additional memory is required to assure success with high probability. These results

are shown in Section 5.3.

The multi-key case is solved by combining the solution to the single-key case with

the solution to the multi-key comparison-based case. This is described in Section
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5.4. In that section we give another application of our techniques, emulation of an

array in sorted order, but with O(1) search time.

Before describing how to get these bounds we must discuss perfect hash functions.
Perfect hash functions are the basic component for all of our solutions. Instead
of storing their description explicitly, which is the previous approach, they will
be stored in the virtual memory provided by the rainbows. Thus, we start with

describing perfect hash functions in the next section.

5.1 Perfect Hash Functions

Definition:

A function f : {1,...,m} — {1,...,n} is a perfect hash function for S C

{1,...,m}, |S| = n, if it is one to one on S.

Definition:

A family of functions F is (m,n) perfect if for all S C {1,...,m}, |S| = n, there

is a function f € F which is perfect on S.

Perfect hash functions are applied to the search problem: given a set § C
{1,...,m}, a perfect hash function f € F is found. S is arranged in T by assigning
each z € § to T[f(z)]. The description of f is written in the additional memory.

To search for z, f(z) is computed and T[f(z)] is accessed.
It is clear that the length of the description of f is at least log | F|.

The minimum size of F has been thoroughly investigated . The conclusion is
that log |F| must be at least Q(n + loglogm) ([BBDOP], [FKS], [FK], [Mai83],
[Meh83]).
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For a perfect hash function to be useful it should be efficiently computable and
in addition, given z, f(z) should be computable by accessing only a small part of

the description of f.

The scheme suggested by Fredman Koml6s and Szemerédi has all these proper-

ties.

To emulate the perfect hash function f we require the following properties:

e f can be described in o(nlogn) +O(loglog m) bits.

o The description consists of o(n) words: v1,vs,...,vs, where each word v; is

max(log n,loglog m) bits in length.

e To compute f only O(1) of the v;’s need be accessed.

Lemma 5.1 The scheme described in [FKS] can be implemented with these prop-
erties. (In fact, the total memory requirements are O(n/logn + loglogm) bits.)
|

Given a set S, finding the perfect hash function of [FKS] can be done efficiently.

The expected number of arithmetic operations is linear. See [DKMMRT].

5.2 Implicit O(1) Probe Search

The close relationship between rainbows an implicit O(1) probe schemes is discussed
in this section. We show how to emulate a perfect hash scheme with the properties
mentioned above. The memory needed for the perfect hash function will not be
stored explicitly, but encoded in virtual memory provided by the rainbows. Section
5.2.1 shows how to use the rainbows so as to eliminate the additional memory re-

quirements (Theorem 5.1 in the introduction of this chapter). Section 5.2.2 shows
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how to construct a rainbow given an implicit O(1) probe scheme, and thus pro-
vides lower bounds for the existence of implicit O(1) probes (Theorem 5.2 in the

introduction of this chapter).

5.2.1 The Scheme

The basis of the scheme is a perfect hash function with the properties mentioned
in Lemma 5.1. Rather than storing the block B explicitly, B will be in a virtual
memory provided by the rainbows. We use the Greedy Encoding method of section

2.1.
Assume that C is a (¢ = maz(n,log m),m,n/4,t)-rainbow.

Given theset S = {z;,z2...2z,} C {1,...,m} our goal is to arrange the elements
in a table T of size n, without any additional memory, but to enable O(1) worst

case search.

The first step is to find a suitable f : {1,...,m} — {1,...,n}, which is a perfect
hash function for S. Order the elements of S in T using the natural order defined
by f, i.e., T[f(z)] := z for all z € S. Let v1,v2,...vn be the words of the block
B associated with the description of f. Since ¢ is supposed to be O(1), we assume
that h < n/4t. Let S; = {T[1],T[2],...,T[n/2]} and S; = S - 5:.

Second, using the elements of Sy in the first half of the table, encode v1,vs,...,v,
via C by the greedy encoding algorithm of Section 2.1. Since A < n/4t this is

possible. Decoding v; can be done by accessing the array ¢ times.

The first half of T is now in some permutation 7 with respect to the original

order. We reorder the second half of T (that contains S;) by 1.

Given a value w to be searched, we run a search algorithm similar to the one
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described in Section 3.2, which requires computing f twice, once for the value being
searched for and once for a value we find in the table. In Section 3.3 we ignored the
question of where f’s description is stored. To compute f(z), we have to decode
some constant number of v;’s, but that is done by computing the color C associated
with a constant number of sequences of entries in 7. Overall, this gives us O(1)

search time.

We have thus proved theorem 5.1. |

5.2.2 Implicit O(1) Probe Search Yields Rainbows

In this section we show that rainbows and O(1) probe search schemes relate in the
other direction as well; that is given a search scheme we show how to construct a

rainbow. More specifically, we prove a refined version of theorem 2:

Theorem 5.3 Given an implicit t-probe search scheme for n elements from the

domain {1,...,m}, an (n,m,n,t + 2[log t])-rainbow can be constructed.

Proof: The sequences are assigned colors based on simulating a search scheme. The
idea is that in a t-sequence there is enough information to simulate a ¢ probe search,
i.e. given a sequence vy, vs,...v; we simulate a search for v; where v;4;,1 < ¢ <t-1,
is the element probed at step 7. Since the location probed at step ¢ is determined by
the the search value and the elements probed in steps 1 through i — 1, we know the
location in the imaginary array at each step of the simulation. The color assigned

to the sequence is the last location we are to probe.

The only problem with this description is that v; might be probed at any one
of the ¢ steps, not necessarily the last, but our sequences do not have repetitions.

Hence we need 2{logt] bits to indicate the step number at which v, is probed.
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This can be done by even odd encoding, in which to encode 1 < j < ¢ a pair of
elements is allocated for each bit of j. If the elements are in order they encode 0,
otherwise 1. We assume that these elements are at the end of the sequence, that is

Ut+1y Vt42y+ ¢+ 5 Vet 2{logt] -

To summarize, the color assigned to the sequence v1,va, ..., 0, Vg1, - -« » Ves2Mloge]
is the location of v; in the array for which the search is being simulated, where v,

is encountered in the step encoded by veiy, ..., Viy2[10ge]-

Claim 5.1 Given a set S C {1,...,m} of size n, and any color 1 < i < n, there is

a t + 2[log t]-sequence over S which is colored i.

Proof: Assume that the set S is arranged in the table T so that an implicit ¢-probe
search is possible. For any color ¢, consider the sequence consisting of the elements
probed in T when searching for T[¢]. concatenate it with 2[log ¢] elements in S that
do not appear in the probe sequenée whose order encodes the step number at which

cell 7 is probed. This sequence is colored i, and consists only of elementsin S. |

Applying theorem 2.3, on the impossibility of the existence of rainbows for
certain m and n we get that an implicit k-probe scheme can exist only if m <
R(n,t',t'"! + 1) where t' = ¢ + 2logt and R(n,#,#"! + 1) is the Ramsey number

defined in Chapter 2. Thus, for an implicit O(1) probe search to exist we must have

.2"'
m < 222" }0(1)._

This constitutes a new proof of Yao’s theorem [Yao] with better bounds. His
bounds imply that m < R(2n — 1,n,n!), which grows at least as fast as a tower
of powers of 2 of height n. Yao’s proof has the advantage that it implies that

whenever m > R(2n — 1,n,n!), the lower bound on the search time is [log n]. Our

49



proof cannot give better bounds than Q(log n/loglogn)), since ¢! + 1 must be less

than n.

Any improvement on the lower bounds for rainbows would yield a better lower
bound for implicit O(1) probe search. Conversely, constructive implicit O(1) probe
search schemes for higher bounds imply better rainbow constructions. The reader
can interpret this as either an optimistic or a pessimistic statement, at his or her

choice.

5.3 Coping with nonexistence of implicit schemes

What to do when m and n are such that no implicit O(1) probe search scheme

exists?

We will consider two approaches. One assumes some additional memory, and
the goal is to minimize its size while still attaining O(1) search time. The other is
to make some probabilistic assumption on the input or about the availability of a

truly random hash function.

Our solutions in both of these approaches are based on the solution to the im-
plicit case. We reduce the problem to a scenario where an implicit scheme does exist.
The extra power granted by the assumption (i.e additional memory or probabilistic

assumption) will be used for the reduction.

We start by analyzing the amount of additional memory required to achieve

O(1) probe search.

We want to map S C {1,...,m} to a smaller range, and construct an implicit
scheme on the smaller range. Such a function can be taken from [FKS]. Corollary 2

in their paper shows that for any set S C {1,...,m} of size n, there exists a prime
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p <n’logm and a k < p such that the function g(z) = (k - z mod p) mod n? is 1-1
when restricted to S. (Alternatively, we could have used universal hash functions -

of Carter and Wegman [CW]).

Given a set S, the function g(z) which is 1-1 on S is found. The values p and &
will be stored explicitly in the additional memory. We then apply the implicit O(1)
probe scheme of Section 5.2 but regard each z € S as g(z). Since g(z) < n? such
a scheme is possible. To search for z compute g(z) and search for it. If there is an

entry y such that g(z) = g(y) it will be found and then z can be compared to y.

The size of the additional memory required is log p + logk which is O(logn) +

O(loglog m). So we get:

Theorem 5.4 Given a set S of n distinct elements in the range {1,...,m}, it
can be stored in a table T of size n plus an additional memory of size O(logn) +
O(loglogm), so that searching an element can be done in O(1) time in the worst

case.

The Probabilistic Approach: The approach assumes an idealized random hash
function f(z,i), where x is the key value and i is the probe sequence number.
Constructions have been given, among others, by Rivest [Riv78], Gonnet and Munro
[GM], Schmidt and Shamir [SS], and Celis, Larson and Munro [CLM]. In all these
works the elements of S are ordered in T, so that given z the search is performed
by accessing T(f(z,1)], T[f(z,2)],... until z is found or until the number of probes
exceeds some bound and it can be concluded that z is not in the table. All of these
methods have O(1) expected average behavior and Q(log n) expected worst case.
Consequently, unsuccessful search requires Q(logn) probes. In fact, Gonnet [Gon]
has shown that under these assumptions, the longest probe sequence in any such

non adaptive scheme must be Q(log n) with high probability.
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Our results are in sharp contrast to that. By assuming either a random hash

function f : {1,...,m} — {1,...n3}, or that S is chosen uniformly at random from
{1,...,m}, we can construct a scheme that has a worst case search O(1) with high
probability.

The idea is simply to use the randomness to get to a situation where the rainbows
can work. First note that f is 1-1 on S with probability > 1 — 1/n, and similarly
if S is chosen uniformly at random, then with high probability the function f(z) =
z mod n® is 1-1. Hence, as before, we can apply the implicit O(1) probe scheme.
Each z € § will be regarded as f(z). To search for z, f(z) is computed and searched
for under the implicit scheme. If there exists an entry y such f(y) = f(z), then z

is compared to y. This scheme does not use any additional memory.

A different method of obtaining these bounds was presented in [FNSS], where
the scheme of Schmidt and Shamir [SS] is used directly. This was needed since no

good rainbow constructions were known at that time.

We conclude

Theorem 5.5 A random hash function can be used to store any set S of n distinct
elements from the range {1,...,m} in a table T of size n, giving worst case search

time O(1) with probability at least 1 — 1/n.

5.4 Multi-key Tables and Successor Computation

We show in this section two more applications of the techniques introduced in
Chapters 2 and 3. The application will be similar in nature to those in chapter 4.
Section 5.4.1 gives the multi-key application and Section 5.4.2 gives the application

to successor computation.
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5.4.1 Multi-key Tables

A collection of n multi-key records are to be organized in a table T of size n, so that
search can be performed on any one of the k keys, in O(1) worst case time. For
simplicity, assume that all k keys in a record are numbers in the range {1,...,m}
and that for each key 7, 1 < i < k, there do not exist two records with the same

value in key i.

We first assume that m and n are such that an implicit O(1) probe search scheme
of Section 5.2.1 works. If this assumption is not true, then we can revert to the

methods of the previous section.

Let S; be the set of key values under the :th key. Let ¢ be such that an (¢ =

n,m,n/4,t)-rainbow exists.

The multi-key scheme: For each key ¢ construct a perfect hash function for the
set S5;. Let T; be an imaginary table that is arranged according to the natural
order f; induces. We initially take T tb be Ty. For each table T}, 1 < i < k,
there is some permutation 7; that maps T; to 7. Given access to f;, 7:(j) can be
computed efficiently by evaluating f;(T[j]). However, to locate keys according to
the ith key we need to be able coﬁxpute 7!, since T[r}(fi(z))] is where the record

that contains z in its ith key is located, if such a record exists.

Sounds familiar? Yes, because these are exactly the conditions of the hypothesis
of Theorem 3.1. Similarly to Section 4.2, if we allocate for each key 1/16tk-nlogn

bits, then the problem of computing 7! can be solved in O(1) time.

What are the memory requirements so far? for each key we need to store the
description of f;, which is O(n+/log n-+loglog m), and the 1/16k-n log n bits required
in the solution of theorem 3.1. Altogether this is less than 1/4¢nlogn bits, at least

for large enough n, which is the bound on our virtual memory. We store this in
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the virtual memory that can be obtained from f; exactly as in Section 5.2.1: a
permutation of 7} will encode the memory words via the rainbow, yet the original -

order can be reconstructed in O(1) time.

As in Section 5.3, in case there is no rainbow we can use either additional storage

or a probabilistic assumption to reduce the scenario to a one where rainbows exist.

To summarize:

Theorem 5.6 Any set S of n records, each record consisting of k different keys,
where m is a bound on the mazimal key size, can be stored in a table T of size n

where:

1. If a (¢ = n,m,n,t)-rainbow with t a constant ezists, then without any addi-

tional memory we can assure search under any key with worst case time O(1)

2. An additional O(log n + loglogm) bits guarantee that records can be searched

under any key in worst case time of O(1).

3. A random hash function gives worst case O(1) search time, under any key,

with high probability.

5.4.2 Successor Computation and Sorted Array Emulation

Hashing in general is a method that allows O(1) access when the value being
searched for is known exactly. Hashing is problematic when it comes to searching
for the next entry greater than the search value. This problem has been addressed
by Ajtai, Fredman and Komlés [AFK] who give a solution requiring an additional
nloglog m bits of storage. This storage is used to hold a trie and search can be per-

formed by accessing O(log m) nodes. If m is sufficiently large then the trie can be
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stored in one extra word of log m bits. Therefore, if we assume that the additional
memory has words of size O(logm), then implementing it requires O(1) probes
when m is exponential in n, though it is not clear how to conduct the computation

in O(1) time.

On the other hand, Ajtai [Ajt] has shown that for certain values of m and n
this problem cannot be solved in a constant number of probes even if the number

of cells available is as large as any polynomial in n.

We would like to solve the successor problem, while attaining the quick search
retrieval property and without using additional memory. We can also solve the
related problems of determining the rank of a value and finding the *h largest
element. Because these are the properties of a sorted array we call it sorted array

emulation.

We will give the solutions in the cases for which we know an implicit O(1)
probe search scheme. To solve these problems we use the enlogn virtual bits at
our disposal from the encoding, for some fixed ¢ > 0. For some constant d such
that ¢ < 1/e, construct an array of n/d virtual pointers, so pointer ¢ points to the
(d-7)*h element in rank. We can decode such a pointer in time O(1) and can thus
perform a binary search on these elements. This lets us compute the rank of a
value approximately, within a region of uncertainty of size d. This uncertainty can
be removed for elements in the hash table by holding a virtual vector of size n with
log d bits per entry, giving the appropriate offset for every element by index in the
unpermuted hash table (before the current encoding). This lets us compute the

rank for an element in the table in O(logn) probes.

Consider the rank permutation which transforms the unpermuted table ordered
under the natural perfect hash order to a sorted table ordered by rank. This permu-

tation can be computed using the rank function in time O(log n). These are exactly
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the conditions under which we can apply the cycle chasing technique of Section 3.2.
Thus, the rank permutation can be computed in time O(log ). If the effective cycle
length in the cycle chasing is taken to be sufficiently large, then all the additional
memory required for implementing the cycle chasing can be encoded in the virtual

memory available. This lets the ¢*" largest element be found in time O(log n).

Finally, the successor to a value (that need not be present in the table) can be
found by performing an initial binary search on the n/d elements whose pointers
are encoded directly (in time O(logn)). This gives us an interval of d ranks, with

inverses that can be binary searched in an aggregate O(log dlogn) = O(log n) time.

To summarize:

Theorem 5.7 Computing the successor and rank functions and finding the ith

largest element, can be performed on a full table in time O(logn).
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Chapter 6

Further Research

Defining an abstract model for a computational problem is a delicate art; as we have
seen, seemingly minor changes within reasonable models of computation result in
significant change in thé performance. Thus, when defining a model, one should
differentiate between restrictions that are inherent within the problem and those

that are imposed for the sake of the analysis.

Researchers in concrete complexity have the advantage that, unlike their peers
in abstract complexity, they can show non-trivial lower bounds. On the other hand,
the models in which the lower bounds are shown are not robust. Among problems
of the type considered in this thesis, we are aware of only one result that can be
regarded as robust, at least in one respect. This is Ajtai’s lower bound for the
successor function mention in section 5.4. However it is unsatisfactory in the time

bounds.

We suggest the following problem, known as the partial-match retrieval problem

[Riv76], as a candidate for which robust bounds might be shown.

Partial-Match Retrieval Problem:
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Input to the preprocessor: a set S of n elements in {1,...,2'}
Query: a string s € {0,1,x}'.
Find an element in S that corresponds to s in the bit positions with 0 and 1 and

has arbitrary value for those with a +, or indicate that none exists.

The goal is to organize S in memory of size polynomial in n and l, so that
answering a query can be done in time polylogarithmic in n and . We conjecture

that this is impossible, at least for n and [ of a certain relationship.

The results in this thesis suggest several open problems. First, we know that
implicit O(1) probe search for the single-key unrestricted search is possible when
the domain size m is exponential in the set size n. However, it is based on the

probabilistic construction of the rainbows. Can this construction be made explicit?

There is a gap between the existence and impossibility results on implicit O(1)

probe search. Can it be tightened?

Research in data compression has primarily focused on global compression, i.e.
an object is compressed as a whole and then the only way to access a specific
part of it is by uncompressing the entire object. Some of ideas developed in this
thesis where used in [Nao] to show how to represent a general unlabeled graph
with an optimal number of bits. However, this is a global compression. Can the
techniques presented in this thesis, namely the rainbows be useful for providing a
representation which allows to uncompress specific parts of the graph, or in general

to provide random access compression?

This thesis did not consider at all the dynamic case, where the collection of
records is modified by insertions and deletions. Progress in that area has been made
( [Mun86], [FG], [DKMMRT] ), however the analysis is far from being complete.

Even for the single-key comparison-based case no tight bounds are known.
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