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Abstract

We present and analyze a global edge detection algorithm based on variational reg-
ularization. The algorithm can also be viewed as an anisotropic diffusion method. We
thereby unify these two, from the original outlook, quite different methods. This puts
anisotropic diffusion, as a method in early vision, on more solid grounds; it is just as
well-founded as the well-accepted standard regularization techniques. The unification
also brings the anisotropic diffusion method an appealing sense of optimality, thereby
intuitively explaining its extraordinary performance.

The algorithm to be presented moreover has the following attractive properties.

1. It only requires the solution of a single boundary value problem over the entire
image domain — almost always a very simple (rectangular) region.

2. It converges to the solution of interest.

The first of these properties implies very significant advantages over other existing reg-
ularization methods; the computation cost is typically cut by an order of magnitude
or more. The second property represents considerable advantages over the existing dif-
fusion methods; it removes the problem of deciding when to stop, as well as that of
actually stopping the diffusion process.

1 Introduction

The purpose of computer vision is to generate useful descriptions of the environment from
an original image function { defined on some open bounded connected image domain B.
This image function can represent various kinds of data, collected from the visible surfaces
in the scene. Common examples are brightness data, color data, depth data, etc. We will
be concerned with image functions representing brightness data. Thus ( : B C R? — R.
For the purpose of describing the environment the most useful information in the scene
is often contained in the discontinuities of the (functions representing) depth, surface ori-
entation, reflectance properties and illumination of the visible surfaces, all of which bring
about discontinuities in the true image function, one would obtain by pure projection of
the brightness in the scene onto the image domain. If the true image function was known,
this problem would be easy. However because of imperfections, such as blurring, noise, dis-
cretization, sensor non-linearities, etc., which1 are present in any physical image formation
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process, the original image function, one is given, is distorted, so that the discontinuities in
the true image function are disguised into large gradients. Global edge detection therefore
essentially boils down to numerical differentiation — a problem well-known to be ill-posed
(in the sense of Hadamard) due to its instability with respect to the initial data [1,2,3].
Since measurement noise and other undesirable disturbances, (for example dirt, dust, bugs
and other textures, which are too fine to be relevant for a useful description of the environ-
ment,) cannot be avoided, the global edge detection problem thus has to be stabilized, in
order to have a meaningful solution. In more practical terms, this means, that the undesir-
able disturbances must be suppressed, without the disappearance or dislocation of any of
the edges. Over the last six years or so many attempts along these directions have appeared
in the literature. One can distinguish between two seemingly quite different approaches,
viz. regularization and anisotropic diffusion.

The regularization approaches seek formal stabilization of the global edge detection
problem (with respect to some topologies on the initial data and solution spaces). This can
be done in different ways. In probabilistic regularization [4,5] the problem is reformulated
as Bayesian estimation. In variational regularization [6,7,8,9,10,11,12,13,14,15] it is posed
as a cost (or energy) functional minimization problem, leading to a variational principle.
In spite of the different outlooks of these approaches they essentially end up with the same
mathematical and computational problem; given the original image function {, minimize a
cost functional of the form

Ce(w, 2) = E(w) +D(z,() + S(w, 2)

where w is some function representing the edges, and z : B — R is the so called estimated (or
reconstructed) tmage function. The function w might be defined in a variety of ways. In this
paper we will only be concerned with edge functions of the form w: B — R. The purpose of
the edge cost € is to impose an explicit penalty for the presence of edges, thereby preventing
pathological solutions, whose edges fill up large parts of or even the entire image domain.
The deviation cost D ensures, that the estimated image function z is a faithful approximation
of the original image function (. The stabilizing cost S stabilizes the problem with respect
to the initial data. Given the edge function w it is typically the case, that there exists a
unique optimal estimated image function Z,,, which can be found by solving a linear partial
differential equation — a condition generally taken advantage of. For the minimization
with respect to w however, all of the regularization approaches, referred to above, resort to
some kind of stochastic or deterministic search method, such as the Metropolis algorithm
or steepest descent. Because of the tremendous size of the solution space any such search
method is by itself quite expensive. In addition the general non-convexity of the cost function
causes any converging search algorithm to get stuck at local minima. The common response
to this unfortunate situation has been to solve whole sequences of minimization problems, as
a mechanism for “gravitating” towards a good local possibly a global minimum. The GNC-
algorithm introduced in [12,13] and simulated annealing {4] are both examples thereof. As a
consequence every global edge detection method up to date involves some form of repeated
iterative minimization process, and because of the tremendous computational cost resulting
therefrom, the optimality of the solution is often compromised. In summary each of these
methods is extensively expensive and/or yields suboptimal solutions.

Anisotropic diffusion has been introduced in early vision [16,17,18] as a method of de-
tecting edges at a continuum of scales of resolution, without weakening or dislocating any of
the edges at the scales of interest — a well-known problem with isotropic diffusion and other
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linear filtering operations. The anisotropic diffusion method does not seek an optimal solu-
tion of any kind. Like other common scale-space methods it instead operates by repeatedly
filtering the image function with a smoothing kernel of small support, thereby producing
a sequence of diffused image functions of successively lower resolution. In order to retain
the strength and correct location of the edges at the resolution of interest the “smoothing
power” of the filter kernel is made to depend (inversely) on the magnitude of the image
function gradient in a somewhat heuristic fashion. Finally all edges disappear, and the dif-
fused image function converges to a constant. At some stage in the iterated filtering process
remarkably impressive edges can be obtained by postprocessing the diffused image function
with the most rudimentary local edge detector; it basically suffices to threshold the absolute
difference between nearest neighbor pixel values. The task of finding this stage however,
has so far been a matter of manual inspection.

In this paper we present a global edge detection algorithm based, on variational reg-
ularization. As it turns out however, it can also be viewed as a (new) biased anisotropic
diffusion method. We thereby unify the from the original outlook quite different methods
of regularization and anisotropic diffusion. This puts anisotropic diffusion, as a method in
early vision, on more solid grounds; it is just as well-founded as the well-accepted standard
regularization techniques. The unification also brings the anisotropic diffusion method an
appealing sense of optimality, thereby intuitively explaining its extraordinary performance.
The algorithm to be presented moreover has the following attractive properties:

1. It only requires the solution of a single bou_ndziry value problem on the entire image
domain — almost always a very simple region.

2. It converges to the solution of interest.

The first of these properties implies a number of advantages over other existing regularization
methods. In particular:

(i) No search methods are necessary.
(ii) No sequences of minimization problems have to be solved.
(iii) The computational cost is relatively very low.
The second property represents a couple of advantages over the existing diffusion methods:

(i) It removes the problem of manual selection of, which one in the sequence of diffused
image functions, to be postprocessed with the local edge detector.

(i) It is superior for hardware implementations.

The rest of this paper is organized as follows: In the next section we review Terzopoulos’
controlled-continuity stabilizers for early vision problems. In section 3 we propose our
modification of his paradigm, and derive the resulting conditions for optimality. In section
4 we compare our variational edge detection method with the anisotropic diffusion algorithm
introduced by Perona and Malik. In section 5 and 6 we study some properties of the biased
anisotropic diffusion. In section 7 we discuss discretizations of the variational edge detection
problem, and propose a numerical solution. Section 8 is devoted to convergence, uniqueness
and stability analysis of the discretized problem and the proposed algorithm. Finally section
9 covers our experimental results.
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Part of our notation, although here consistent, carries common multiple meanings in the
literature, and needs therefore to be settled: The spaces {0,1,2,...}, ] — 00,0[ and ]0, oo
will be denoted by Ng, R_ and R, respectively. The Euclidean norm in R™ will be written
il - |l, while Lo-norms will be written || - ||. Difference operators will be denoted by A,
to distinguish them from the Laplacian A. Finally the binary maximum, minimum and
function composition operators will be denoted by Vv, A and o respectively.

2 Controlled-Continuity Stabilization

The purpose of the stabilizing cost S is to restrict the space of possible estimated image
functions, and thereby regularize the (edge detection) problem, so that, as the name suggests,
stability with respect to the initial data is achieved. Several classes of such stabilizing
functionals have been studied in the mathematical theory of ill-posed problems. This theory
was pioneered by Tikhonov [19,20]. He proposed a general class of stabilizers for univariate

regularization of the form \
I .
d'z
S(z) = / il =—

where wy,... w7 :R — m are prespecified continuous weighting functions. For multivariate
regularization generalized spline functionals of the form

o) = /Z ;(axh azk,>2d”

k]"l

have been considered with varying generality of the domain © C R¥, its dimension X and
the “order of regularization” I [21,22,23,24].

Examples of the stabilizers above have been used for regula.nza,tlon of a wide range of
early vision problems with varying degree of success [3]. A common flaw of these stabilizers
in this context is, that they do not allow the estimated image function z to be discontinuous.
This problem was addressed by Terzopoulos {7,8], who proposed further generalizations of
the multivariate generalized spline functionals. His stabilizing functionals, referred to as
controlled-continuity stabilizers are given by

S(w, z) = /sz Z(a% ki>2dx

i=1 k=1

where w = [wq---w;]T, and the weighting functions wy,...,wy : RE — [0,1], referred to
as continuity control functions are in general discontinuous. In particular they are able to
make jumps to zero, and edges, where the partial derivatives of z of order > j are allowed
to be discontinuous, are represented by the sets

I

N w'{o}) j=0,...I-1 (1)

i=7+1

For the edge cost Terzopoulos proposes the functional

1
£(w) = /RK 31 - w)de
i=1
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where the constants A,...,A; € R, satisfy Z.’I=1 A; > 0. An apparent problem with this
paradigm is, that it fails to support a genuine variational technique for minimizing the total
cost with respect to the continuity control function vector w. In fact it does so for a couple

of reasons.
First of all, calculus of variations with respect to w requires, that the space W of ad-

missible continuity control functions is embedded in some topological vector space. Any
continuity control function, which can be separated from the set of all strictly positive con-
tinuity control functions by this topology, that is any continuity control function, which
represents an essential set of edges according to (1), will necessarily belong to the boundary
of W. Hence the continuity control function vectors of particular interest, that is those
representing edges, can be optimal, without being critical, that is, without resulting in a
zero variation of the total cost with respect to w.

Secondly, if the variation of the total cost with respect to w is set to zero, one obtains
the ridiculous condition

2
Z Z(azkl ki) = A; i=1,..,1

k=1

under which the total cost is completely independent of w. Thus the optimal continuity
control function vector can not be found by means of calculus of variations, even if it does
not represent an essential set of edges. Terzopoulos resolves this problem by first discretizing
the entire space of continuity control functions; w is defined on a finite subset D — a dual
pixel grid — and only allowed to take the values 0 or 1. The edge cost is modified accordingly

to !
E(w) = Z Z/\,-[l — w;i(z))

€D i=1
For a solution he then applies a descent method in the continuity control function vector
space WI. Prior to each update of w, the optimal estimated image function 2, for the
present w is computed, by solving the Euler equation — a partial differential equation in 2,,
— associated with the variational principle § ,C(w, 2) = 0. This method is expensive, and
since the update Aw is based on the cost difference C(w+ Aw, 2,,) —C(w, %), as opposed to
Clw + Aw, 3y4aw) — C(w, 2,) — computation of Z,4 4. for all possible updates Aw would
be far too expensive — convergence to a global minimum cannot be guaranteed.

3 Genuinely Variational Edge Detection

For our problem of detecting discontinuities of a bivariate image function, the appropriate
deviation and stabilizing costs in the paradigm above are given by

D(z,c>='/B(z—<>2dz

S(w,z)i/ w||V2T]|? dz
B

and

In order to remedy the difficulties with Terzopoulos’ method, we propose the use of a smooth
continuity control function w : B — ﬁ: If w was prespecified, this would amount to the
simplest straight forward generalization of Tikhonov stabilization to bivariate regulariza-
tion. However, as Terzopoulos we will consider w to be a variable, and optimaize the total



3 GENUINELY VARIATIONAL EDGE DETECTION 6

cost with respect to both w and z. To avoid the problem with optimal continuity control
functions, which are non-critical, and thus impossible to find by means of variational calcu-
lus, we will arrange the edge cost, so that for each estimated image function z, the total cost
C(w, z) attains its minimum for exactly one optimal continuity control function % ,, whose
range is confined to lie in 0, 1}. This idea is similar to the use of barrier functions in finite
dimensional optimaization [25]. The uniqueness of W, for a given z, also allows us to solve
for , in terms of 2 in a way similar to Blake and Zisserman’s elimination of their “line
process” [12,13]. The edge costs, we propose for this purpose, are of the form

E(w) ='/};,\fowda:

where the edge cost coefficient A > 0 is constant, and the edge cost density function f :
R4 — R is twice differentiable. Our total cost functional is thus given by

C(w,z) = /B[/\fo w+ (2 = O)F + w||V2T|?] de (2)

It would be appropriate to multiply the stabilizing cost S(w,z) by the square of a
(constant) scale-space parameter g > 0. However a true magnification of the scale of
resolution of the edge detector should be equivalent to a shrinkage of the width and height
of the image domain (along with the induced space scaling of the functions defined thereon)
by the same factor. For any consistent discretization of the problem the effective scale-space
parameter will therefore be inversely proportional to, and might as well be absorbed in, the
pixel width A.

~ Setting the first variation of C(w, z) to zero yields the Euler equations

2(z)-((z) -V - (wVz)(z)=0 Vz€B (3a)
Af(w(@) + [V2(@)T|2 =0 Vo€ B (3b)
w(:z:)a—a::(a:) =0 Vze€dB (3¢c)

where V. denotes the divergence operator, and 8/8e, denotes the directional derivative in
the direction of the outward normal. The second variation of C with respect to w is also
easily found to be

Bullw,2)= [ S(" 0 w)bw) dz (4)

Together with the desired existence of a unique optimal continuity control function ¥,
for each possible estimated image function z these equations put some restrictions on the
edge cost density f. In fact from (3b) it follows, that f/|]0,1] — R_ must be bijective, and
that f/(]1,00[) C Ry. Likewise from (4) we see, that f” must be strictly positive on ]0, 1[,
and that f”(1) > 0. the simplest functions, which satisfy these requirements are given by

flw)=w—-Ihw = flw)y=1- :1)- (5)
and
flw)zwhw-w = fw)=lhw (6)
but there are of course many other possibilities, for example:
N 1 , _ 1
f(w)_w+m =  flw=1-— peRi {1} (7)



4 BIASED ANISOTROPIC DIFFUSION 7

However, some choices of p might be better than others. In section 6 we will present an
argument supporting the further restriction, that p < 2.

Given that f satisfies these conditions, f'|]0,1] is invertible, and since w is strictly
positive, we end up with the equations '

2(z)=((z)+ V- (wVz)(z) Vz€EB (8a)
w(z) = g(||V2(2)T]l) VY€ B (8b)
%z—(a:) =0 VzedB (8¢c)

where the function g : Ry —]0,1], (for reasons soon to make sense,) referred to as the
diffusivity anomaly, is defined by
2

9(7) = (FN)o,1))~* (—-;—) 720 (9)

The properties of the edge cost density f clearly imply, that g is a strictly positive strictly
decreasing differentiable bijection. In particular ¢(0) = 1, and lim, .o g(7) = 0. For the
edge cost density in (5) the diffusivity anomaly takes the form

1
g =——= 720 (10)
1+ %
. while the edge cost density in (6) yields
2
g)=e ™ 420 (11)

Since our method necessarily yields continuity control functions, for which
wl({0}) = @

Terzopoulos’ edge representation is inadequate. The simplest and most reasonable modifi-
cation is to consider the edges to consist of the set w~1(]0, 8]), where @ is a fixed threshold.
Since the diffusivity anomaly g is strictly decreasing, we have

w™(10,6)) = [|V2T |7} ([g7"(6), o0[)

whence the edges are obtained by thresholding the magnitude of the gradient of the esti-
mated image function.

Other possibilities are of course possible. One could for example attempt to detect
various desired edge patterns by filtering w. One could also try to make the threshold
adaptive, and/or let it depend on the position z in some clever way. With attempts along
these lines however, one will most likely tend to stray away from the original optimality
principle, and end up in the kind of hacker’s nest, the introduction of such a principle was
initially meant to avoid.

4 Biased Anisotropic Diffusion

Perona and Malik [16,18] have introduced anisotropic diffusion as a method of suppressing
finer details, without weakening or dislocating the larger scale edges. The initial value
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problem governing their method is given by

%(z,t) =V (wVz)(z,t) Vze€B Vt>0 (12a)
w(z,t) = g(||[Vz(z,)T|) Vz€B Vt>0 (12b)
:—;(a:,t) =0 Vz€dB Vt>0 (12¢)
2(z,0)=((z) Vz€B (12d)

where the diffused image function z and the diffusivity w are functions of both position
z € B and time ¢t > 0, V. and V denote the divergence and the gradient respectively with
respect to z, and the diffusivity anomaly g : R, — Ry is a decreasing function.

As the name “anisotropic diffusion” suggests, these equations have appealing physical
interpretations. The function z can for example be thought of as representing the tem-
perature 7 in a thin slab S of a material, whose initial temperature is given by (, and
whose space- and time-varying thermal diffusivity (or thermal conductivity, if time is scaled
appropriately,) is given by w. This analogy is depicted in figure 1.

The Euler equations we derived in the previous section are very similar to the initial
value problem (12). In fact a solution of (8) is given by the steady state of the initial value
problem

g-j-(z,t) = ((z,t) — 2(z,8) + V- (wVz)(z,t) Yz €B Vt>0 (13a)
w(z,t) = g(|[V(z,)T|]) VYzeB  Vt>0 (13b)

;Ti(x,t) =0 VYze€dB Vt>0 (13c)

2(z,0)=x(z) VzeB (13d)

which is obtained from (12) by replacing the anisotropic diffusion equation (12a) by the
closely related “biased” anisotropic diffusion equation (13a). Since our interest is in the
steady state solution, the initial condition (12d) can also be replaced by an arbitrary initial
condition (13d). The continuity control function w thus plays the role of the diffusivity, and
will be referred to as such, whenever the context so suggests.

The bias term ¢ — z intuitively has the effect of locally moderating the diffusion as
the diffused image function z diffuses further away from the original image function (. It
is therefore reasonable to believe, that a steady state solution does exist. The following
physical interpretation of this initial value problem further substantiates this belief: Let S
be a thin slab of some material resting on top of another slab 5o of some (other) material as in
figure 2. Suppose that the space- and time-varying thermal conductivity of S is given by aw,
where the constant o > 0 is the coefficient of heat transfer between S and So. If the initial
temperature at each point z € B of S is given by x(z), and the temperature distribution of
So is held fixed at (, then z represents the space- and time-varying temperature of S.

The possibility of suppressing finer details, while the more significant edges remain intact,
or are even strengthened, is a consequence of the anisotropy, which in both the diffusions
described above in turn is caused by the non-constancy of the diffusivity anomaly ¢. If
g is constant, the unbiased diffusion (12a) reduces to Gaussian blurring, while the steady
state of the biased diffusion (13a) in a sense corresponds to filtering with a doubly cascaded
first order Butterworth filter. For our variational method governed, by the boundary value
problem (8), the choice of ¢ was based on optimality considerations. Perona and Malik select
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T2

B
S
T
T(z,t) = 2(z,t)
Figure 1: Physical model of unbiased anisotropic diffusion.
T2
B
S
1
T(z,t) = 2(x,t)
So

T(z,t) = ((z)

Figure 2: Physical model of biased anisotropic diffusion.



5 THE EXTREMUM PRINCIPLE 10

their function g, by demanding, that the resulting unbiased anisotropic diffusion enhances
the already pronounced edges, while the less significant edges are weakened. Based on an
analysis including only blurred linear step edges — an unnecessary restriction, as we shortly
shall see — they vouch for diffusivity anomalies of the form

—
He)

where ¢,\ > 0 and a > 1/2 are constants. It is easy to check, that, if these functions
were substituted in the Euler equation (8b), the corresponding edge cost densities would
satisfy the requirements of our variational method. (To be precise, the constant ¢ would
actually have to be equal to unity. This is however an artifact, which would not have
surfaced, had we incorporated the scale-space parameter u, and vanishes regardless in the
discretization process.) Incidentally, for their experimental results, Perona and Malik use
exactly the functions, we proposed in (10) and (11), of which only the former belongs to the
class specified by (14).

Finally we note, that the heuristically motivated method, that Perona and Malik used
for extracting a set of edges from the diffused image function, is practically identical to
the method, implied by our edge representation in terms of the continuity control function.
While they threshold the absolute difference between four-connected neighbor pixel values,
our edge representation leads, as we saw in the previous section, to thresholding of the
magnitude of the gradient.

g(v) = (14)

5 The Extremum Principle

The extremum principle is a common tool for proving uniqueness and stability with respect
to boundary data for linear elliptic and linear parabolic problems [26]. For quasi-linear
equations, such as the Euler equation (8a) and the biased anisotropic diffusion equation
(13a), it is not quite as conclusive. Nevertheless it provides bounds on the solution and
useful insight for convergence analysis of the numerical methods employed to find such a
solution. We will present an extremum principle for the biased anisotropic diffusion problem
(13) as well as for the boundary value problem (8). In both cases we will assume, that the
diffusivity anomaly ¢ : R; — R, is continuously differentiable.

Theorem 5.1 Let z : B xR, — R be a solution of the biased anisotropic diffusion problem
(13), where it is assumed, that {( : B — R is uniformly continuous. Assume further, that
z and its first and second order partial derivatives with respect to z are continuous (on
B xR, ). Then the following claims are true:

(i) If +y, : B - R:z — +2(z,7) has a local maximum at £ € B for some fixed 7 > 0,
then

3]
£(6,7) < £C(E) F 2(67)
(ii) If £z has a local maximum at (§,7) € B x Ry, then
+2(&,7) < ()

(iii) ggg[C(f) AX(E)] < 2(z,t) <sup[C(6)V x(§)] YeeB  Vt20
¢eB
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Proof: From (13a) and the continuity assumptions regarding g, ¢ and z one can show, that
0z /8t is uniformly continuous on B x T for every bounded interval T C R, and therefore
has a unique continuous extension to B X Ry. By the bounded convergence theorem of
integration it also follows, that this extension equals 0z/dt on the boundary 9B x R.
Hence (13a) is satisfied on all of B x Ry (with the appropriate one-sided derivatives on
8B x Ry). Suppose that +y, has a local maximum at £ € B for some 7 > 0. Then by
Taylor’s formula (and the Neumann condition (13c), if £ € 9B) we have, that Vy.(£) = 0,
and +Ay,(€) < 0. Thus

£V - (wVz2)(§, ) = £Vw(E, 7)Vy.(6)7 £ w(§, )Ay.(6) < 0

whence (i) follows. Suppose next, that £z has a local maximum at (§,7) € B X Ry. Then
+y, has a local maximum at £, and 92/9t(§,7) = 0. Hence (ii) follows from (i). Finally
consider the compact set B x [0,73], on which the continuous functions 2z attain their
maximal values, say at (£4,74). If 7o = T}, then +£02/9t(€x,7+) > 0, and +y,, has a local
maximum at £+. Hence (i) implies, that £z(€+,7+) < £((€x). If 74 €]0,T1], the same
conclusion follows immediately from (ii). Since Ty > 0 was arbitrarily chosen, this shows,
that
sup  xz(z,t) < sup ((z)
(z,t)€BxR; z€B

from which (iii) follows. W

For the boundary value problem (8), governing our variational edge detection method, a
proof similar to that above yields the following extremum principle:

Theorem 5.2 Let z : B — R be a solution of the boundary value problem (8). Assume
further, that z and its first and second order partial derivatives are continuous (on B). Then

inf () <2(e) < sup ((¢) VzeB

We remark, that in both the theorems above, the assumption, that the derivatives of
z are continuous up to and including the boundary 8B (xR, ), (or equivalently uniformly
continuous on every bounded subset of the interior of the domain of z,) could have been
traded for a weaker bound on 2, which in addition to the values of z on B (x{0}) also includes
those on B (xR, ). However, for the discretized problem, that we eventually will have to
solve, the subtle difference between plain vs. uniform continuity of z and its derivatives is of
no consequence. The “stronger-assumption-conclusion” versions of the extremum principles
presented above are therefore more useful in this context.

According to the two theorems above the solutions of the biased anisotropic diffusion
problem are well-behaved, in that they do not stray too far away from the original image
function {, unless forced to by the initial condition, and even if so, they eventually approach
the range of { as t — co. In plain language condition (i) of the first theorem says, that the
diffused image process, at each of its momentary critical points (with respect to z) is headed
towards the original image function. Condition (ii) of the same theorem says, that all the
non-initial local extrema of the diffused image process are within the range of the original
image function, and condition (iii) gives explicit bounds on the entire collection of diffused
image functions in terms of the initial and original image functions. The second theorem
bounds the steady state diffused image function in terms of the original data alone. In other
words, our variational edge detection method produces an estimated image function, whose
range is contained inside that of the original image function.
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6 Edge Enhancement

It was mentioned earlier, that the biased anisotropic diffusion (13), in similarity with its
unbiased counterpart (12), has the important property of suppressing finer details, while
strengthening the more significant edges. Indeed, the edges are roughly either sharpened
or blurred depending on their present strength, viz. the magnitude of the gradient of the
diffused image function z.

In order to see this, we define the edges to consist of the points in the image domain
B, at which the magnitude of the gradient of the diffused image function has a strict local
maximum along the direction perpendicular to the edge, that is the direction of the gradient.
For simpler notation we let ¢ = ||[VzT|. We also define €, and e, to be the unit vectors
in the directions of [02/0zy 82/0x;] and [0z/0z3 — Oz/0z,] respectively, that is e, is
normal, and e, is tangential to the edge. Since o > 0 on the edges, e, and e, are well-defined
on the points of interest. The edge points can now be characterized by:

;970 = 0 (15a)
92 |
ae‘; < 0 (15b)

For a typical edge of interest it is reasonable to assume, that its strength o exhibits a fairly
pronounced peak along its perpendicular direction, resulting in a large value of |8%0/d¢€2.
On the other hand o can be expected to vary quite moderately — at most with a fairly
constant derivative (shading component) — along the edge, with a small value of |020/de2|
as a consequence. We will therefore at little loss allow ourselves to restrict attention to edge
points, at which

d%a

Oe2

Our discussion includes in particular all symmetrically blurred (smooth) step edges. For
points on such edges the approximation (16) is indeed exact, even if the size of the step
varies linearly with arc length along the edge.

We begin by noting, that

~ Ao <0 (16)

VoVl = i o
€y
and 5
z

Assuming that all functions involved are sufficiently smooth, and that the diffusivity is of
the usual form w = g o o, from (15a) and (16) we then have.

(%UV (wVz)

9 T
= —(VwVz" + wAz)

ey

a 7]
= Do (' 00)VaV2T] + %Az + w(';z,, Az

0 , do , do 0z
= B — __A —_—

Be. [(g o a)aeua] + (g’ o a)aeu z+ wA de.
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o
de?

~{(¢g'oo)o +goo]Ao

=(¢'o0)==0c+ (goo)Ac

From (17) it also follows that
do 0 0z
dt ~ de, Ot
Hence on the edges, the biased anisotropic diffusion (13) causes the edge strength to vary

with time according to

Z—Z"‘ -8374;— Baei + (¢’ 00)Ac
where
e(v) =gy 120 (18)
Rewriting this equation as
a /
Z (o -0¢) m ~(0 - 0¢) + (¢ 0 0)Ag (19)

ot

where o, = 8(/de,, it is clear, that the bias term —(o — o¢) merely has a moderating
effect on the enhancement/blurring of the edge, while the decision between enhancement vs.
blurring depends on the sign of the “driving” term (¢’ 0 0)Ao associated with the unbiased
anisotropic diffusion.

For the desired performance of weakening the weak edges, while strengthening the strong
ones in a consistent manner, since Ao < 0, it is therefore necessary, that there exists an
edge enhancement threshold vo € R4, such that

¢ YR-) = lvo,00] (20a)
¢1{0}) = {7} (20b)
¢ ' Ry) = (0,7 (20c)

Furthermore, if so, the threshold g clearly controls the sensitivity of the edge detector, and
one would hence expect it to be closely related to the intuitively similarly acting edge cost
coefficient A. Indeed from (9) and (18) it immediately follows, that ¢ ’(-y) is a function of
v2/X. Since Ry — R : v — 7%/ is strictly monotone, 7o must therefore be proportional
to v/A. It is easy to verify, that the diffusivity anomalies given in (10) and (11) satisfy (20)
with v0 = VA and v = \/m respectively. For the diffusivity anomalies corresponding
to the edge cost densities in (7) on the other hand, an edge enhancement threshold v¢ =
VPA/(2 - p) satisfying (20) will exist if and only if p €]0, 1[U]1, 2.

Although the discussion above generates some useful insight, and offers guidelines for
sensible choices of the diffusivity anomaly g, it is not completely satisfactory, in that it does
not account for the change in location and orientation of the edges in the image domain
during the diffusion process. In fact, by evaluating the second partial derivative 820 /9tde,,
one can show, that only edges with certain symmetry properties, for example symmetrically
blurred linear step edges, will remain fixed in position, during the diffusion. If one neglect
this weakness — a forgotten subject in previous papers — one could be misled to believe,
that the enhancement/blurring decisions about the edges are completely determined by the
local properties of the original image function ( at the edge points. If this was true, one
could just as well detect the edges, by checking these properties, amounting to nothing more,
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than thresholding the directional derivative of ¢ in the direction of its gradient at points,
where this derivative has local maxima, — a previously explored paradigm in local edge
detection [27].

If the diffused image function converges to a steady state solution, that is a solution of
the boundary value problem (8), the edge enhancement/blurring is of course in the limit
independent of the initial condition (13d). Indeed from (19) we immediately obtain the
steady state edge enhancement

o—oc= (¢ 00)Ao (21)

This equation is clearly valid independently of how the edges move during the diffusion
process. On the other hand o is not representative of the original edge strength IV¢T|, if
Vz and V( differ too much in orientation.

Since the range of the steady state solution, by the extremum principle, is confined to
lie within the range of the original image function, an amply enhanced edge strength o can
only be maintained along a very short distance across the edge. Such edges are therefore
sharpened.

For the numerical solution of the boundary value problem (8) on a regular computer
there are, as we shall shortly discuss, good reasons for updating the estimated image function
according to a rule, different from a straight forward discretization of the biased anisotropic
diffusion equation. However, the final edge enhancement (21) is independent of the path to
the solution, so the discussion above is still valid.

Besides being of vital importance for the edge enhancement mechanism, the existence
of the edge enhancement threshold <4 also provides a natural choice for the threshold to
be used in the postprocessing, whereby the edges are finally extracted from the estimated
image function. It is intuitively clear, that, for our edge representation to be consistent with
the edge enhancement mechanism, the edge representation threshold in section 3 should be
given by 6 = g(70). The edge set w=!(]0,8]) will then consist of the points in the image
domain, where the magnitude of the gradient of the estimated image function exceeds 7o,
that is exactly those points, where the edge strength has been enhanced. On the other
hand, and this is in a sense the essential benefit with our regularization approach, the
bistability of the edge enhancement mechanism will deplete the set of points, at which the
gradient magnitude of the estimated image function takes values close to 7v¢. The edge set
w~1(]0, 8]) will therefore be almost indifferent to changes in 6, as long as § belongs to some
substantial neighborhood of g(-y¢). These circumstances are clearly ideal for thresholding,
and consequently our edge representation is practically consistent with the edge enhance-
ment mechanism for a whole interval of edge representation thresholds, corresponding to a
relatively wide range of gradient magnitudes.

7 Discretization

For a numerical solution of the variational edge detection problem in section 3 the boundary
value problem (8) has to be discretized. The original image function ¢ is most likely already
given only on a squared pixel grid. Assuming that this is the case, the simplest way of
discretizing the image functions z and { for the numerical problem, is obviously to use the
same grid. For the evaluation of the expression V-(wVz) there are on the contrary a number
of more or less equally sensible choices. One can for example expand V - (wVz) in terms of
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z and its derivatives according to
V. (wVz)=(g'o a)le HzV:T 4+ (goo)Az
a

where o = ||V27||, and H denotes the Hessian operator. With the numerous discrete approx-
imations of Vz and Hz at hand, this leaves a multitude of open possibilities. Alternatively
one can treat wVz as a single function, readily evaluated at appropriate points in terms of
some discrete approximation of Vz, and then take some discrete approximation of its diver-
gence. We have settled for the latter approach, which has the special quality of highlighting
the diffusion mechanism. This in turn naturally leads to expressions, which are particularly
convenient for the analysis of the resulting algorithms.

To be more specific, let us consider an original image function (, given on a grid {jh :
j € J}, where h > 0 is the pixel width, and J = {1,. Jl}x{l ., J2} for some Jy, Jo € N.
The corresponding image domain is thus given by B _] 5 J1+3 [x] 1,J243[. We then define
the discretized shifted functions

G() = <C(h) jeJ
z(j) = z(argmines|l-j—qll-h) Jj€J q€S
we(7) = g(og(4)) jeJ qe€S

where S = {-1,0,1}2, and 0,(j) is some discrete approximation of ||Vz((j + $)h)T]|. It
is reasonable to demand, that o4(j) be specified in terms of z at the smallest possible
symmetric set of neighboring grid points of (j + £)h. This requirement leads to the discrete
approximations:

Zg 0 — Z Zaw -1 — 200)° + (24,0 = Zo—1 + 2g,.1 — 200)?
0_3 - ( q1,0 0,1 + q1,—1 0,0) 8_:;2( q1,0 0,-11 q1,1 0,0) @ = +1 (22&)
. (209, — 210+ Z-1.4, — 200)% + (20,4, = 2-1,0 + 21,6, — 20,0 2 :
gy = (og = ) 8h2( a = ) g2 = %1 (22b)
2 2
. (%q1,90 — 20,0)° + (24,0 — 20,
gp = (Zavan '+ (za a2) a,92 € {-1,1} (22¢)

2h2

where we have dropped the dependence of j € J for shorter notation, and written z 4,
for z,. The two discrete approximations of (8), which immediately come to mind, can after
some manipulation (from a variety of starting points) be written as

o—20+ —= 2h2 Z we(zg — 20) = 0 p?=1,2 (23)
q9€Sp

where S, = {q¢ € S : |lg]| = p}, p? = 1,2. Note, that the Neumann condition (8c)
is conveniently taken care of by the “arg min”-adjustment in (22b), which systematically
replaces any otherwise required value of z at a grid point outside B, by the value of 2 at
the closest grid point inside B, thereby ensuring that

z-lyth(l"j?) ZO,Qz(l J2) =
21,4,(J1, 32) — Z0,g,(J15 J2)
)=
)=

} jg:l,...,.]g 42'—‘—1,071

qu,—l(jl,l) Zq1, 0(]1a

0
0
zq,1{J1, J2) — 2g,,0(J1, T2 0

} jlzla"-a‘jl ‘Zl=—1,0»1
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Figure 3: Discrete approximation molecule structures. (a) “Cartesian”; p2 = 1. (b) “Diag-
onal”; p? =

The computational molecules associated with the two approximations, p? = 1,2, in (23)
have the structures depicted in figure 3, where the filled circles (atoms) mark the sites
associated with the evaluation of { and 2, and the empty circles (bond centers) mark the
sites associated with the evaluation of w. In each case the sum involved contains four terms.

The “Cartesian” approximation has a couple of apparent advantages. First of all it
provides tight coupling between all pairs of eight-connected pixel neighbors. In contrast, as
one can see from figure 3, the “diagonal” approximation results in two interleaved but sep-
arated computational lattices. An algorithm based on this approximation therefore models
two more or less separate diffusion processes, which are coupled only through the shared
diffusivity function, that is the coefficient function(s) of the quasi-linear equation (23). For
original image functions with mildly well-behaved statistics however, the smoothing effect of
the diffusion will, as one would guess, and as our experimental results also indicate, cure this
problem. A second minor advantage of the Cartesian approximation is, that its associated
truncation error is only v/2/4 times that of the diagonal approximation.

The diagonal approximation also has a couple of advantages: As figure 3 reveals, it re-
quires only half as many evaluations of the control continuity function, as does the Cartesian
approximation. In addition these evaluations are simpler, as they are governed by (22c) as
opposed to (22a) and (22b) in the Cartesian case. The diagonal approximation thus leads to
faster and simpler software implementations. Our experiments further show, that it, despite
its drawbacks, yields excellent results.

There are several possible ways of solving the discretized equation (23) numerically.
One method, which is obvious in the light of the discussion in the previous sections, is to
propagate the corresponding discretized biased anisotropic diffusion equation
0 -

2y Xo

i

i R i 1 YT i
z(()+1) z(())+k CO—Z(())'*'"TLEZwt(J)(Z(S)“z((J)) p?=1,2

where the initial tmage function xg : J — R is arbitrary, most naturally chosen equal to (q,
k > 0 is the time step size, and ¢ € Ny is an iteration index, representing the time variable
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t according to: t = ik. However this algorithm is numerically stable only for sufficiently
small values of the step size k, and safe play will necessarily bring down the convergence
rate. Since we are not interested in the diffusion per se, but merely its steady state solution,
this problem can be avoided, by choosing some robuster iteration method. Such methods
are easily generated by treating the quasi-linear equation (23) as a linear elliptic equation,
and applying any of the commonly used Jacobi, Gauss-Seidel or successive over-relaxation
methods. The Jacobi method for example yields the iteration scheme:

z(()o) = Xo (24a)
(i+1) - 1 2,2 (i), (5)
g = ———-—‘.phC0+Ew z (24b)
p2h? + Eﬁ,) [ =, q “q
oY) = D w) (24c)
q€S,

8 Convergence

In this section we will study some rudimentary convergence properties of the Jacobi-like
iteration method (24). For certain parameter values we manage to show, that this iteration
converges to a limit point, which satisfies (23), depends continuously on the original image
function (o, and is independent of the initial image function xo. Besides convergence of
the iteration we thus obtain both uniqueness and a sense of stability with respect to the
initial data. This sounds to good to be true, and as a matter of fact the assertions are valid
only for parameter values, far from those of major interest for edge detection purposes.
Albeit this serious weakness our analytical results give some indication, that solutions exist,
and that these solutions are reasonably well-behaved, — a hypothesis further supported
quite strongly by our experiments. They might also serve as a starting point for future
theoretical development. One could possibly obtain better results, if one applied some more
sophisticated iteration method. However this would most likely drastically compromise
the simplicity of the algorithm. We have therefore confined our analysis to the Jacobi-like
method, which after all yields remarkably satisfactory experimental results.

We begin our discussion with a couple of observations closely related to the extremum
principles from section 5.

Proposition 8.1 Let zy be a solution of the discretized boundary value problem (23). Then

NG <2l < Vo) Vied

leJ leJ

Proof: Let ji = argmaxjes £20(!). Then £[z4(j+) — 20(jx)] £ 0, Vg € S. Hence by (23)

V t20() = £20(42) £ £6(i) <V £6o()
leJ teJ
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Proposition 8.2 Let z((,i), t € No be defined by the iteration scheme (24). Then

Ao A xo) € 28() € VI VX))  Yied  VieNo
leJ leJ

Proof: Let ¢ € Ng, and j € J. From (24a) and (24b) we see that z((,i)(j) is a convex
combination of {o(j) and zé'_l)(j), q € S,, and thus in the convex hull of {(o(/), z(()'_l)(l) :
I € J}. Since this is true Vj € J, we have

Al A=D1 < A 2 < V20 < Ve TG v 28]

leJ leJ leJ

The proposition then follows by induction. M

Using the bounds provided by the proposition above we can show the following two
convergence results, of which proofs are given in appendix A.

Lemma 8.3 Let z((,i), i € No, be defined by the iteration scheme (24) in terms of an

initial image function xo¢ and an original image function (o. Let y(()'), t € N, be defined
in a completely analogous manner, but with xo and (o replaced by vy and ngo respectively.
Assume that the dependency on the edge cost coefficient A is reflected by the diffusivity
anomaly g given by (10). If ) is sufficiently large, then

lim sup ||y(()i) - z((,'.)ll,;.o < ¢|lno = olloo exponentially

31— 00

for some known finite constant c.

Theorem 8.4 For sufficiently large values of the edge cost coefficient A the discretized
variational edge detection problem (23) has a unique solution, which is L o -norm-stable with
respect to the initial data, and to which the iteration method (24) converges independently
of its initial state xq.

Unfortunately the theorem above gives a too pessimistic view of, what our experiments
undoubtedly confirm, is really going on; it is only conclusive for values of the edge cost co-
efficient ), far greater, than those, for which the algorithm is most useful for edge detection.
There are two reasons for this shortcoming.

First of all at most locations j € J the constant R in the proof of lemma 8.3 (see
appendix A) is an overly conservative bound for the local differences of z(()'), it is meant
to estimate. If the iteration scheme was linear, this problem could easily be remedied, by
replacing the Lo,-norm in the convergence analysis by a Sobolev norm, which incorporates
the evolution of these local differences as well as that of z((;) itself. However, as we discussed in
section 6, the non-linearity, inherited from the boundary value problem (8), is by our choice
such, that the local differences are strengthened, wherever initially sufficiently pronounced.
Local differences of magnitude of the order R are therefore eventually to be expected. The
intuitive reason for the success of the scheme lies in the earlier demonstrated fact, that
the strengthened edges are simultaneously sharpened, so that the set of slow convergence

shrinks during the iteration, — a mechanism, which is not captured by the L-style of the
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proof above. Since the non-linearity prohibits Fourier techniques, this problem might be
hard to fix.

Secondly the theorem suggests, that A be chosen proportional to A%. In contrast, (as one
would also guess from, the way A enters the defining expressions of the diffusivity anomaly,)
our experiments indicate, that A be chosen proportional to k2, as if the unity term inside the
parenthesis in (25) (see appendix A) was missing. The intuitive reason for this discrepancy
has to do with another case of competing processes. A closer examination of the proof above
shows, that the source of this term is the unit bound on the continuity control function w,(,i),

inherited from the properties of the diffusivity anomaly g. Since wgi) actually takes values
close to unity at the abundant locations of almost vanishing image function gradient, this
bound is tight. However rewriting (24b) as

(+1) _ G) _ 1 20 _ ) (@) _ ;0
Zy %0 1+ 330 2h*(Co - 2o )+q§2 we” (23" = 2")

we see, that at such locations

i iy 2k i
2§ - 2 —5—(40—23))

Thus it seems, like the large values of wqi) destroy the exponential convergence rate locally,
and only at those locations j € J, where z(()')( J) has already practically converged.

9 Experimental Results

In this section we present some experimental results regarding our variational edge detection
method, governed by the cost functional (2). In all the experiments the edge cost density was
given by f(w) = w—Inw, corresponding to the diffusivity anomaly g(y) = 1/(1+7?%/A). The
images involved were obtained by solving the diagonal (p? = 2) discrete approximation (23)
of the boundary value problem (8). For computational simplicity we used a Gauss-Seidel-like
iteration method, rather than the Jacobi-like scheme (24).

As mentioned earlier, the iteration method converges to the solution of interest. In
general, as one should expect, the convergence is faster, if the initial image function yg is
set equal to the original image function (o. The sequence of images in figure 4 illustrates this
condition. It shows, that reasonably good results are obtained well before 50 iterations, and
that convergence in the “sense of insignificant perceptible changes” is reached after about
100 iterations. These observations, are as far as we can tell from our experiments, valid,
whenever xo = (p. In particular, they seem to hold independently of the choice of the edge
cost coefficient A and the pixel width A, at least in the range of interest for edge detection.

The variational edge detection method itself as well as the iteration method, we employed
to solve it, appear to be remarkably robust with respect to changes in the initial image
function. Indeed if xo # (o, the iteration method still converges, if yet at a slower rate. To
demonstrate this behavior, we tried the algorithm on the same original image function, as in
figure 4, but with the particularly unfavorable initial image function xo = 0. Some samples
from the resulting sequence of images are shown in figure 5. The fact that the limit image
functions in the figures 4 and 5 are perceptually so close, also indicates, that the solutions,
even though multiple, in large exhibit the desirable type of behavior, that mathematically
stringent uniqueness would warrant. As one should expect, the significant differences seem
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Fig. 4:

(b)
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Fi. 4: (

Figure 4: Estimated image after ¢ iterations, when xo = {o. (a) ¢ = 0 (original image). (b)
i=25. (c)i=>50.(d)i=100. (e) i = 200. (f) ¢ = 800.
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Fig. 5: (b)
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Fig. 5: (d)

24



9 EXPERIMENTAL RESULTS

25

Fig. 5: (f)

Figure 5: Estimated image after i iterations, when xo = 0. (a)
1 = 100. (d) t = 200. (e) ¢ = 400. (f) 1 = 800.

1

25. (b)
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to be limited to affect small blobs of high contrast relative to the local background. It is
interesting to note, that the little dark blobs in the center of figure 4 (f), which are missing
in figure 5 (f), represent pixel values, which are closer to the zero initial image, used to
generate the sequence in figure 5, than are the corresponding pixel values (of the non-blobs)
in figure 5 (f). This indicates, that the solution, which is implicitly selected by choosing a
particular initial image function, tends to reflect the smoothness properties, rather than the
actual values of the initial image function.

The non-uniqueness of the solutions of (23), stemming from the existence of multiple
local minima of the total cost functional (2), should not be very surprising. In fact for most
of the other existing regularization based edge detection methods it is relatively easy to
construct examples of original image functions, for which the total cost functional exhibits
this behavior. It is clear from the experimental results shown in figure 5, if not by intuition,
that all the local minima of the total cost are potentially satisfactory solutions to the edge
detection problem. Moreover by choosing the initial image function x¢o to equal either the
original image function or a constant, it seems like we have found a method of selecting
those local minima, which correspond to the cases of the most and least detailed estimated
images respectively. These extreme cases might actually be of more interest, than the
solution corresponding to the global minimum.

For our observations regarding the parameter dependence of the solution, that is the
influence of the edge cost coefficient A and the pixel width & on the estimated image function
z, we recall, that r = 1/h is a true scale-space parameter governing the spatial resolution
of the edge detector, and that VA, proportional to the edge enhancement threshold 7o,
controls its sensitivity in a linear fashion. Since the local differences of the (original) image
function, unlike the discrete approximations of its derivatives, remain invariant under scale-
space variations in terms of A, a more meaningful sensitivity parameter is in this context
given by s = v/Ah, which is proportional to the corresponding local difference enhancement
threshold vph. (The same conclusion would have been obtained, had we kept h constant
and instead incorporated the explicit scale-space parameter p in the total cost functional,
as discussed in section 3.) Figure 6 shows an example of how the estimated image function
(after 100 iterations) depends on the scale-space parameter 7 for a fixed sensitivity parameter
(s = v/20). Its dependence on the sensitivity parameter s for a fixed scale-space parameter
(r = v/50,) is illustrated in figure 7.

In order to extract a set of edges from the estimated image function z, we followed the
strategy outlined in section 3, and simply thresholded the gradient magnitude. Figure 8
shows the edges extracted from the estimated image function in figure 6 (b) using two
different thresholds, one lower than, and the other one equally much higher than the edge
enhancement threshold 79. As predicted by the discussion in section 6, the experiments
confirm, that the edge extraction is very robust with respect to changes in the threshold ¥
for a wide range of thresholds around +¢. In fact, if one allows a couple of edge segments to
change, the range in question in this case extends well beyond, that spanned by the three
examples in the figure.
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(b)

Figure 6: Estimated images for different values of the scale-space parameter r. (a) 7% =1
(b) r? = 100.
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(b)

Figure 7: Estimated images for different values of the sensitivity parameter s. (a) s? = 10.
(b) s? = 40.
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10 Conclusion

We have proposed a global edge detection method based on variational regularization. We
have also observed, that this method can be viewed as a biased anisotropic diffusion method.
This circumstance exemplifies the close connection between the regularization and diffusion
approaches in early vision, and we hope, that our analysis has shed some fruitful light on this
interesting subject. Besides being of general interest, the coincidence of the two paradigms
has also allowed us to analyze our variational edge detection method in the diffusion context.
We have for example showed, that it shares the attractive edge enhancement property,
characteristic of the unbiased anisotropic diffusion method.

Unlike other existing regularization approaches to edge detection, our method is tailored
to support calculus of variations, not only with respect to the estimated/reconstructed image
function, but also with respect to the continuity control function representing the edges.
This modification of the paradigm leads to substantial computational savings in comparison
with the other regularization methods, as far as we understand, without impairing the
performance. The sharpness of the edges, which is seemingly given up from the outset, is
regained during the iteration by the edge enhancement mechanism. This was demonstrated
by our theoretical analysis as well as by our experimental results.

The most notable difference between our method and other existing anisotropic diffusion
methods is, that our method converges to the solution of interest. This fact removes the
problem of deciding when to stop the diffusion process as well as that of actually stopping it
— an obvious and important advantage, if hardware implementations are to be considered.
The price, that one pays for this improvement, is that the estimated image functions for
different values of the scale-space parameter no longer can be generated recursively.

For the solution of the variational edge detection problem we have proposed an iterative
algorithm. For a practically limited range of parameter values this algorithm has been found
to be extremely well-behaved; it converges to a unique solution of the discretized problem,
independently of the initial image function, that is the initial state of the iteration process.

In contrast to the limitations of our theoretical convergence analysis, our experimental
results have clearly demonstrated, that our method works very well for typical parameter
values of interest for edge detection. The algorithm does indeed converge to a solution of
interest, that is an estimated image function, which is remarkably robust with respect to
the initial image function. Furthermore the edges, which are obtained by postprocessing
the estimated image function with a rudimentary local edge detector — thresholding of the
gradient — are insensitive to changes in the threshold — the goal of the regularization. In
addition to the convergence and robustness issues our experiments have exhibited the depen-
dence of the solution on the values of the scale-space and sensitivity parameters embedded
in our paradigm.

Although a number of theoretically relevant problems have been left open, we are con-
vinced, that the method presented in this paper, represents a most significant contribution
to the general theory and methods of edge detection.
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A Appendix

Proof of Lemma 8.3: To be specific we will only prove the lemma for the diagonal ap-
proximation (p? = 2). The proof can however easily be reconstructed to cover the Cartesian
case as well. For ¢ € Ng, let y,(,i), 'r,g"), véi), g € S, and 7)) denote the functions associated
with y(()‘) corresponding to let z((,i), a(gi), w((,i), g € Sy and ) = Egi) respectively. For simpler
notation also define the following bounds:

DO = gl - 2l i€No

E = ”TIO_CONOO

R. = \/ )V xo(d)]= ACo(s) A xo(5)]
Jj€J jedJ

Ry, = \/[m()V ()= Amd) A %o(5)]
JjEJ Jj€J

R = R.+(E+ D)

M = |i¢olleo V IIxolloo

From the definitions of the shifted functions z4, ¥4, ¢ € S, and proposition 8.2 we further
note that

DO > |y - 2| VgeS  VieNg
Re 2 Vies 0 - Nes#2(G)  YgeS  VieNg
Ry 2 Vies () - Nes WG VYgesS  VieNg

R Z R!“I‘Rz
M 2 |I2§)”00 Vge S VieNg

Dropping the dependence on j € J and ¢ € Ny for shorter notation, from (22¢) we then have

72 = o2

1
= 'éﬁl(ym g2 y0y0)2 + (yth 00— y07q2)2 - (qu a2 = ZO,O)2 — (qu 0 — 20,gs )2|

1
= ml(qun — 90,0 + %142 — 200)(Yg1,02 — Y00 — Zqr .02 T Z0,0)

+ (Ya1,0 — Yog2 + 2q1,0 = 20.02)(Yar.,0 — Y002 — Zaq1,0 + 20,02
2(R, + R;)2D
2h2

4RD
< % Vield Vi € No

Thus from (10) we see that

IN

vewqlo2 — 72| 4v,w,RD
A T Ah?

|vg —wq| = |goTqg—goay = VieldJ Vg€ S, Vi € No

which in turn implies that

4y, w,RD 47RD
7 - < - < it < YiedJ Yie N
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Hence
lyo — 20|
= ! 2h%ny + Z VeYq | — _r 2h%¢ + Z WqZq
2R + 7T €55 2h% + W prr
< ‘ 1 - 1 2h2C + Z W, 2,
=|2r2+7 282 +w 0 7%
q€S:
+ M T3 2h%(no — Co) + Z (vqyq — wqZq)
q€S,
< M 2h E —w|M D
o Tyt BB -wM A D)
T 8RM
D+ FE vieJ VieN
‘2h2+v(Ah2 +1) + 7€ 1 € Np
Since 7*)(j) < 4, Vj € J, Vi € Ng, we therefore conclude that
1 SRM -
:+1) (3) .
D! 1+h’(,\h2 +1)D + FE Vi e Ng (25)

If A > 16 RM/h%, the assertion of the lemma then follows. W

Proof of Theorem 8.4: Assume that A is large enough for lemma 8.3 to be conclusive.

Let z((Ji), y((,i), i € Np, be given as in lemma 8.3 with 9y = z(()l) and 79 = (5. Then

y(()i) = z((,i+1), Vi € Np, and E = 0. By lemma 8.3, a simple Cauchy sequence argument (in
L (J)) and the observation, that the left hand side of (23) is a continuous function of zg

with respect to the Lo-topology, (z, is a continuous function of z9, Vg € S,) it then follows,
that z(()') converges to a solution of (23) (as ¢ — oo) independently of its initial value xo.
Next let xo and 9o be two possibly different solutions of (23), and let z(()'), y((, ), 1 € Ng, be

given as in lemma 8.3 with 7 = (o. Then z(()i) = Xao, y((,i) = g, Vi € Ng, and £ = 0. Thus

by lemma 8.3 . '

190 = xolleo = Jim ||g” = 257 oo = 0
which shows, that the solution of (23) is unique. Finally let xo and % be the solutions
of (23) given, that the corresponding original image functions a.re Co and 79 respectively,

and let z((,), y(() ), t € Np, be given as before. Again z(()) = Xo, yo = g, Vi € Ng. From

proposition 8.1 and lemma 8.3 it thus follows that
o = Xolloo = lim [136” = 25”llee < lln0 = Colleo

which proves the stability of the solution. W
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