
On Integrated Bibliography Processing�

Michael A. Harrison Ethan V. Munson

April 5, 1993

Abstract

Bibliography processing systems are important to the production of scholarly and

technical documents. While the existing systems are a signi�cant aid to authors, their

designs are not su�cient to handle the demands that have arisen with their continued

use. These demands include larger bibliographic databases, sharing of databases among

multiple authors, integration with document editors, and the desire for new features.

This paper examines these issues as they are re
ected in three enhancements to

the bibliography processing facilities of the GNU Emacs BibTEX-Mode and TEX-Mode

integrated editing environment. The added features were a reference annotation facility,

forms-based queries for automatic citation, and an enhanced reference inspection facility

supporting WYSIWIG display of references. The design and implementation of the

three features are discussed in detail. Their relationship to other bibliography processing

tools is discussed.

1 Introduction

Document preparation systems are now in widespread use for many purposes on a variety of
computers. Our concern is in systems which can be used for the preparation of scholarly and
technical documents. The issues in the design and implementation of these systems have
been discussed extensively in the research literature. Discussion of these issues and further
references can be found in the paper by Chen and Harrison [6] and in Chen's thesis [4].

An essential part of the scholarly process is to provide references to the work of oth-
ers through a bibliography. E�cient and convenient methods for searching bibliographic
databases and then constructing bibliographies can lead to a signi�cant improvement in the
scholarly process. In this paper, we present some enhancements to an integrated bibliogra-
phy processing system.

�Sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by Space and Naval
Warfare Systems Command under Contract N00039-88-C-0292.

1



The �rst bibliography processing system, refer [11], is now slightly more than a decade
old. The user of refer speci�es the logical components of his references with a simple
language and places symbolic citations to these references in his nroff or troff document.
Refer replaces the symbolic citations with the actual citations that appear in the formatted
document and inserts formatting commands for a sorted bibliography at a user-speci�ed
point in the document. Refer is limited by an implementation that sacri�ces speed for
storage e�ciency and by a lack of formatting options.

In the period since the introduction of refer, several other bibliography processing
systems have emerged and their use has become widespread, at least within the computer
science research community. Scribe [18] is a document processing system which includes
a bibliographic component. Both its language for de�ning references and its method for
specifying citations are quite di�erent from refer. It also provides much greater control
over bibliography and citation formatting. BibTEX [14] is designed to work with the LaTEX
document processing system [10]. Its design is heavily in
uenced by Scribe. It is described in
more detail in Section 2. Bib gives users of nroff and troff a more e�cient implementation
and greater control over bibliography and citation formatting than provided by refer, with
which it is largely compatible. Tib [1] allows the use of refer and bib database �les with
the TEX family of document formatters [9, 10, 21]. GNU Emacs TEX-Mode [2] and BibTEX-
Mode [3] provide an integrated environment for editing TEX and LaTEX documents and
BibTEX databases.

With most software, the passage of time gives rise to demands which were not originally
anticipated. For bibliography processing systems, the most common pressures are:

Database Size The bibliographic databases of long-term users are becoming fairly large,
containing a few thousand entries. At this size, the lack of database management tools
begins to tell. Another common problem is that the symbolic citation schemes used
by these systems no longer work well. The problem is becoming more severe as these
systems have spread outside the computer science community to �elds which have
a higher volume of publication and which make widespread use of on-line reference
services.1

Sharing Entries in a bibliographic database generally do not change. So, it makes good
sense to amortize data entry e�ort over several people by sharing the database. Also,
a shared database is more likely to be useful as a general reference tool, since it can
be used by an individual to locate sources he has not yet read. Existing bibliography
processing systems provide little support for sharing.

Integration Bibliography processing tools are not used in isolation. Rather they are just

1We know of a bib database used by medical researchers which contains more than 50,000 entries [19].

2



one component of a set of editing, formatting, and information management tools.
Users naturally want these tools to be integrated, which they generally are not.

New Features A bibliographic database can be used for more than just producing a doc-
ument with citations and a bibliography. The sources identi�ed by bibliographic
references are a central component of the scholarly enterprise and, as such, can be
put to many uses. Thus, a bibliographic database can be used to produce reading
lists and annotated bibliographies or to maintain notes on the documents it refers to.
Bibliography processing systems provide only limited support for these activities.

These pressures, combined with the inherent importance of bibliographic data, have
made bibliography processing an area of continued research. Several interesting systems
have resulted from this research. BiblioText [26] is a browser for bib databases. Bib-
Tool [7] is a bibliographic front-end to a relational database system compatible with bib.
BibIX [20] is a collection of updates and additions to bib that corrects bugs and makes bib
more suitable for use in a biomedical research environment.

This paper describes three recent extensions to the bibliographic features of GNU Emacs
TEX-Mode and BibTEX-Mode. The three extensions are:

� Modi�cation of BibTEX-Mode to support the attachment of annotations to an entry
in the reference database.

� An improved query method for use with the automatic citation mechanism of TEX-
Mode, which is better suited to large databases.

� A WYSIWIG display mechanism for the reference inspection feature of TEX-Mode.

This section is an introduction to the issues discussed in this paper. Section 2 gives
some background on our document processing environment. The motivation and design
goals of the newly added features are presented in Section 3, while Section 4 details their
implementation and Section 5 discusses their relationship to other work on bibliography
processing. The �nal section presents some conclusions and suggestions for further research.

2 Background

While the concepts investigated for this research apply to any bibliography processing en-
vironment, the tools which were developed to examine the concepts do not. These tools
help users who prepare documents which will be formatted using the LaTEX document
preparation system [10] and its companion bibliography processing system, BibTEX [14].

3



2 They are implemented as part of GNU Emacs TEX-Mode and BibTEX-Mode, which run
as part of the GNU Emacs programmable editor [22]. The remainder of this section gives
brief descriptions of each of these �ve systems, with special emphasis on their bibliographic
features.

2.1 LaTEX and BibTEX

LaTEX is one of the family of TEX document formatters. Like Scribe [18], on which it
is based, LaTEX's formatting language is declarative, rather than procedural. BibTEX is
its accompanying bibliography processing program and closely resembles the bibliographic
component of Scribe.

The user provides LaTEX with a text �le containing formatting commands and the text of
his document. All formatting commands begin with the backslash (`\') character. If LaTEX
is run on a �le called foo.tex, it will produce a log �le (foo.log), a device-independent
output �le (foo.dvi), and an auxiliary �le (foo.aux). When the user wants to cite a source,
he places a symbolic citation command in his �le. For example, the LaTEX command:

\cite{kay:fairshare}

cites a reference whose key is kay:fairshare. LaTEX records each symbolic citation in
the auxiliary �le along with the bibliography style requested and the set of bibliography
database �les speci�ed by the user.

BibTEX reads the auxiliary �le and searches the database �les speci�ed there for entries
whose keys match the symbolic citations. BibTEX then sorts the references according to
some criteria and computes the actual citations that will appear in the �nal document. The
formatted references and the actual citations are recorded in a bibliography �le (which, for
a main document named foo.tex, will be called foo.bbl).

A BibTEX database is a collection of text �les containing entries speci�ed in a simple
language. This language is based on the one used by Scribe and BibTEX will run correctly
with a Scribe reference database. A sample entry in shown in Figure 1. Each entry is
composed of a type name, a left brace or parenthesis, a key, a list of �elds separated by
commas, and a right brace or parenthesis. The type name explicitly speci�es the reference
type (e.g. @BOOK or @PHDTHESIS). The key acts as a unique identi�er for the reference (it is
the user's responsibility to insure uniqueness). Each �eld is composed of a name, an equals
sign (possibly surrounded by white space), and some text delimited either by matching
braces or double quotes.

2Actually, the features of GNU Emacs TEX-Mode allow the use of BibTEX with all members of the TEX
family of document formatting systems. However, for the sake of simplicity, we will only consider LaTEX
documents.

4



@ARTICLE f kay:fairshare ,

AUTHOR = fJ. Kay and P. Lauderg,
TITLE = f A Fair Share Scheduler g,
JOURNAL = cacm ,

YEAR = f1988g,
VOLUME = f31g,
NUMBER = f1g,
PAGES = f44-55g,
MONTH = jan

g

HHHj

Entry
Type

�����

Entry
Key

@
@I

Text of
the Field

��
��
�*

Field
Name

�
A
A
A
A
AK

Abbreviations

The Fields
of the Entry

Figure 1: A sample entry from a BibTEX database �le.

Each of the fourteen entry types has a (possibly empty) set of required �elds and a
set of optional �elds. If the user fails to include a required �eld, BibTEX emits a warning
but continues to format the reference as best it can. In general, all required and optional
�elds will appear in the bibliography (some styles may not output certain �elds). BibTEX
ignores �elds for which it does not have formatting instructions, e�ectively giving the user
the ability to add useful non-printing �elds.

2.2 GNU Emacs TEX-Mode and BibTEX-Mode

GNU Emacs is a screen-oriented text editor, which runs on both glass-tty devices and bit-
mapped displays (using a tty-style interface). Emacs allows the user to have multiple �les
open and to view several �les simultaneously by dividing the tty screen into a number of
windows. User input and prompting is performed through a one-line window at the bottom
of the screen called the minibu�er.

For our purposes, the most important feature of Emacs is that it contains an embedded
Lisp interpreter. By writing programs for this interpreter, it is possible to change key
bindings, create keyboard macros, and to add complex features to the editor. Routines
that are useful when editing a particular type of �le are often collected into a mode. These
routines can communicate with the user through the minibu�er and can perform any editing
operation available to the user.

GNU Emacs TEX-Mode is just such a mode, designed to speed and simplify the pro-
duction of TEX and LaTEX documents. Its non-bibliographic features include automated
insertion of simple commands, spelling checking, indexing support [5], and automated in-
vocation of formatters, previewers, and printers. TEX-Mode provides three bibliographic
features:

5



� Bibliography preprocessing scans the LaTEX source �le for citations, creates a dummy
auxiliary �le, and runs BibTEX. This eliminates the need for the �rst run of LaTEX.
This facility can also replace symbolic citations with actual citations in the source �le
and reverse the process, which allows the use of BibTEX with TEX documents.

� Automatic citation prompts the user for a regular expression and then searches for
matching entries in his BibTEX database �les. When the user tells BibTEX-Mode that
the correct entry has been found, a citation of that entry is placed in the document
�le.

� Reference inspection is essentially the inverse of automatic citation. It lets the user
view, in a separate Emacs window, the reference corresponding to a particular citation
in the document source �le.

GNU Emacs BibTEX-Mode is used when editing BibTEX database �les. Its most im-
portant feature is forms-based editing. As can be seen from Figure 1, the language used to
specify references is rather verbose. The forms-based editing routines can create a blank
template of a reference for the user to �ll in. They also provide entry-wise and �eld-wise
navigation and deletion operations. These routines greatly reduce the user's data entry
e�ort. BibTEX-Mode also supports automatic construction and formatting of draft bibli-
ographies, abbreviations which �ll in the text of more than one �eld, and routines for sorting
database �les.

3 Design Goals

As with any system in active use, experience with BibTEX-Mode and the bibliographic
features of TEX-Mode has identi�ed areas where additional functionality would be desirable.
The research described here involved the design and implementation of three new features
intended to meet some of these desires. The three new features were:

� A mechanism for attaching annotations to references,

� A more powerful query method for use with the automatic citation mechanism of
TEX-Mode,

� Enhancement of the reference inspection mechanism of TEX-Mode to allow the user
to view fully formatted references.

This section describes the design goals for each of the three features.

6



3.1 Annotations

The user of a bibliography processing systemmay wish to attach various types of annotations
to the references in his database. Some examples of possible reference annotations are:

� an on-line version of the original document,

� source code of a relevant program,

� a collection of electronic mail messages discussing the document,

� the user's evaluation of the document in his role of referee for a journal,

� informal notes about the document.

The variety of types of annotation shows clearly that reference annotation is an interesting
instance of the general problem of document annotation. Many types of documents can be
viewed as using annotations. For instance, comments in a program are a kind of annotation.
A link in a hypertext system can be viewed as pointing to an annotation. It is quite
possible that a mechanism for annotation of bibliographic references can be extended to
other domains.

BibTEX already supports the traditional notion of reference annotation with the ANNOTE
�eld, which is intended to be printed in annotated bibliographies. However, not all an-
notations should appear in an annotated bibliography and others do not belong in the
reference database. For example, some annotations, such as the original document, could
easily be larger than the bibliography database. The electronic mail messages might well
contain characters strings which would cause formatting errors. Also, some of these anno-
tation types present security problems (e.g. the reviewer's comments or program source).
It would be odd to place the entire text of a document in an annotated bibliography and
it would be inappropriate for a journal referee to store his comments in a shared reference
database. Clearly, this approach to annotation is too limited.

After considering these issues, we set the following goals for BibTEX-Mode's annotation
facility:

Integration The user should be able to view a reference's annotations at any time that
the reference's database entry is visible, without exiting the editor. If the annotation
is itself a TEX document or BibTEX database �le, all the features of the appropriate
mode should be available while visiting it.

Security If a reference database is shared, the user must be able to make his annotations
as public or private as he wishes. If possible, he should be able to hide the fact that
he has made any annotations to a reference at all.

7



Low Overhead The annotations mechanism should be simple and place only limited ad-
ditional burdens on the user. It must not require alterations in BibTEX or TEX or
require that the user maintain special �les. Encryption-based security is possible but
is outside the scope of the present paper.

3.2 Improved Queries for Automatic Citation

The purpose of the automatic citation mechanism of TEX-Mode is to help the user quickly
cite a reference without having to remember its unique identi�er. Instead of remembering
the unique identi�er, the user must provide a regular expression [22] that matches something
in the reference. TEX-Mode then searches through the database for matching references.
The user inspects them one by one until he �nds the correct reference, at which point he
instructs the system to insert a citation of that reference into the document he is editing.

It is possible to express a wide range of complex queries using regular expressions.
However, it is not always easy. Suppose the user wants to locate a reference whose authors
include both Chen and Harrison. In TEX-Mode, he would use the case-insensitive regular
expression,

author *= *{[^}]*\(chen[^}]*harrison\|harrison[^}]*chen\).*}

This regular expression is not a simple construction, because it must account for alternate
orderings of the two names and the possibility of intervening text. In fact, it took a minute
to conceive and correctly type it. Yet, for all its complexity, there exist correct BibTEX
reference entries which it would not match, because, for instance, it ignores the possible
use of tabs or newlines instead of spaces to separate the word `author' from the equals sign.
Because of this complexity, searches are usually performed with simple regular expressions.
Often the regular expression will just be a single word, such as an author's last name or a
word that appears in the title. These simple regular expressions cannot specify which �eld
a word appears in or specify alternate orderings of words separated by intervening text.

When searching small reference databases, simple search queries may be adequate. How-
ever, when used to search large databases, they are likely to match many irrelevant refer-
ences. For instance, suppose the user knows that the reference he wishes to cite was written
by Knuth and contains the word `sorting' in its title. He could search his database using
either `Knuth' or `sorting' as his one word query. Whatever word is chosen is likely to match
many more references than a query which could specify the presence of both words and the
�elds in which they were expected to appear.

In light of the shortcomings of regular expressions, we decided to implement an improved
query mechanism. The approach we took was suggested by a synthesis of the Query-by-
Example database query language [8] and the forms-based editing provided by BibTEX-
Mode. A sample query is presented in Figure 2. This query would match any entry whose

8



@QUERY{,

ANYFIELD = {},

AUTHOR/EDITOR = {harrison chen},

TITLE = {multiple},

JOURNAL/BOOKTITLE = {},

INSTITUTION/ORGANIZATION/SCHOOL = {},

YEAR = {198[6-8]}

}

Figure 2: A sample forms-based query

authors or editors included Harrison and Chen, contained the word \multiple" in its title,
and was published between 1986 and 1988. More precisely, a query is constructed by placing
sets of regular expressions in the �elds of the query template. If multiple regular expressions
are placed in a �eld, they must be separated by white space. If a regular expression contains
white space, it must be enclosed in double quotes. For an entry to match the query, it must
contain every regular expression in the query and each regular expression must appear
in its speci�ed �eld. Regular expressions that appear in �elds with multiple labels (e.g.
AUTHOR/EDITOR) may be matched by text appearing in either type of �eld in the reference
entry. Regular expressions that appear in the \ANYFIELD" �eld of the query may be matched
by any text in the reference entry. We call this approach a forms-based query because the
user speci�es his query by \�lling out a form".

The forms-based query has a number of advantages over regular expressions. The user
can easily specify in which �eld a string occurs, although this is not necessary. It is also
straightforward to specify multiple strings appearing in di�erent �elds. Since no assump-
tions are made about the order in which regular expressions occur, it is not necessary to
specify all possible orderings (contrast Figure 2 with the regular expression example above).
Finally, it appears informally that is easy for users to compose correct forms-based queries.
The same cannot be said of complex regular expressions.

In addition to the general form of the new query method, we established several other
design goals. First, the query template shown in Figure 2 represents a reasonable default
form, but it may not suit all users. For example, the author and editor �elds were combined
because they seldom occur together and both contain similar types of information (i.e.
names). Some users may prefer to keep �elds separate that are currently combined. They
may wish to reduce the size of the template by eliminating �elds or wish to change their
order. Therefore, the choice of which �elds appear and their order should be user-de�nable.
A second goal is that the new query method should not be substantially slower than the

9



Figure 3: Sample display of fully-formated reference inspection.

regular expression based search. The last design goal was that the new query mechanism
should be implemented as an independent component which can later be used for other
search-based operations.

3.3 Enhanced Reference Inspection

The original implementation of reference inspection su�ered from a major shortcoming.
When the user invoked the reference inspection routine, what he wanted to see was some-
thing like what appears in Figure 3. Instead what he saw under the original implementation
is part of the bibliography �le produced by BibTEX. This text contained many macros in
which the user has no interest. For example, this partially formatted version of the same
TEX-Mode reference is shown in Figure 4.

The goal of the third bibliographic enhancement was to support the display of fully
formatted references, such as shown in Figure 3. This goal was chosen for two reasons.
First, it would enhance the aesthetic qualities of TEX-Mode. Second, it would demonstrate

10



\bibitem{phc:texmode}

Pehong Chen.

\newblock Gnu emacs {\TeX} mode.

\newblock Technical Report 87/316, Computer Science Division, University

of California, Berkeley, California, October 1986.

Figure 4: Sample display of partially-formatted reference inspection.

that TEX-Mode could be used to control the on-screen page previewers [12, 16] developed as
part of the VORTEX project. While TEX-Mode was already able to start the previewers, it
did not control them once they had been started. Thus, the implementation of this feature
demonstrates a new level of integration between the previewers and the editing environment.

4 Implementation

This section describes the implementation of the three enhancements whose design goals
were presented in the previous section.

4.1 Annotations

The annotation mechanism was implemented as part of BibTEX-Mode. Annotations are
stored in �les whose names are recorded in a new �eld, the NOTEFILES �eld. For example,
a reference might contain the line:

NOTEFILES = {/usr/public/publicnotes, mynotes, hisnotes}

which names three di�erent �les of annotations. The user can examine annotations by
placing the editor's cursor somewhere within the text of the entry and typing a sequence of
two keys. He is then given the option of viewing each �le in the list, one at a time. If he
chooses to view a �le, it is shown in a separate window of the editor. The user may then
decide to move to the next �le in the list or to edit the �le of annotations. New �les of
annotations can be added, simply by adding new �le names to the list.

Security of annotations is inherited from features of the �le system. If a user wishes to
prevent others from modifying or even from having access to a set of annotations, he simply
places them in a �le to which only he has access. Then, even though others know that such
a �le exists, it is protected to the same extent any other �le can be protected. However,
the list of �le names is not protected.

11



The �le names recorded in the NOTEFILES �eld may be either absolute or relative.
Absolute �le names have only one interpretation to BibTEX-Mode. When a relative �le
name is given, a two step search is made. First, the �le is searched for in the context of the
current working directory. If an accessible �le of that name is not found, then the second
step is performed. In the second step, the �le is located by moving to each directory in
the path de�ned by the environment variable BTXMODENOTEFILES and searching for the �le
from this new context.

The use of relative �le names improves security because it allows a user to place a
name for his annotation �le in the reference database without fully specifying its location.
Creative use of this feature can allow a user to cloak both his ownership of the �le and even
the �le's existence. The disadvantage of allowing relative �le names is best illustrated with
an example. Suppose that user A creates an annotation �le foo and records its relative
name in the shared bibliographic database. If user B also has a �le foo somewhere in the
directory path speci�ed by his BTXMODENOTEFILES environment variable, he will be led to
believe that his �le foo contains annotations for that particular reference when it probably
does not.

Experience with the annotations facility of BibTEX-Mode has shown it to be useful. The
most common use of the facility has been to attach informal notes to a reference, particu-
larly sources for which it is impractical to maintain physical copies. The user interface is
acceptable, but it is probably somewhat too rigid. In particular, it does not easily support
simultaneous viewing of multiple annotation �les.

4.2 Forms-Based Queries for Automatic Citation

When the user invokes the automatic citation mechanism, he is asked to provide a biblio-
graphic �le name, as before. Then, instead of being asked for a regular expression, a new
Emacs window is opened which contains a form like that shown in Figure 2, only not �lled
in, and a recursive editing session is begun. The Emacs window which contains the query
operates under BibTEX-Mode, so the user is able to use familiar commands to move from
�eld to �eld. When the query has been completed, the user ends the recursive editing ses-
sion. The query is parsed and the database �les are searched for matching references. The
user then browses the references in precisely the same manner he did under the previous
implementation. From the user's point of view only the manner in which queries are stated
has changed.

There are two user de�nable options. The user can choose whether to use regular
expressions or forms-based queries by setting a boolean variable. This value of this variable
can be toggled with short key sequences during the editing session. Also, the �elds which
appear in the query are de�ned by a GNU Emacs Lisp variable. This variable holds a list
whose elements are lists of the �eld names which will appear on each line of the query. For

12



example, in the form shown in Figure 2, the line labelled AUTHOR/EDITOR corresponds to
the list element ("AUTHOR" "EDITOR"). It is likely that most users will set these options
by placing the relevant commands in the startup �le used by GNU Emacs.

One of the goals for this implementation was that the performance of forms-based query
be comparable to that for a regular expression search. To test whether the implementation
ful�lled this goal, a series of informal tests were run to compare its performance to that
of the original regular expression method when searching a database of 1000 entries. The
results of these tests indicate that the forms-based query method is about 20% slower than
the regular expression method for searches having no \false positives". However, when a
regular expression search did generate false positives, the user had to examine a number of
matching entries and reject them by striking the appropriate key. For searches with many
false positives, the need for user interaction can slow down the search quite a bit. In an
extreme case where there were nineteen such false positives, a forms-based query (which
generated no false positives) was found to be at least 35% faster than the regular expression
method.

This implementation ful�lls the goals set for it. The informal measurements described
above indicate that it is able to locate references based on a forms-based query nearly as
fast as the regular expression search does. The display, editing, and parsing of the query is
implemented as an independent set of functions which can be used by other routines. The
user is able to freely de�ne the �elds which will appear in the query and which �elds will be
combined. Finally, experience in using the new queries has been positive. The queries are
easy to compose and their expressive power is great enough to justify the small keystroke
overhead required to move from line to line and end the recursive editing session.

4.3 Enhanced Reference Inspection

Reference inspection has two steps. In the �rst step, the main document �le is searched
for a citation. Then, the most recent �le of output from BibTEX must be searched for the
corresponding reference. The implementation of this step was not altered. The second step
displays the reference on the screen. It was to this portion of the reference inspection facility
that the enhancements were made.

The implementation of the enhanced reference inspection feature of TEX-Mode depends
heavily on Steven J. Procter's dvi2x [16] and its auxiliary programs. Dvi2x is a previewer
for TEX dvi �les which runs under the X window system. Commands for dvi2x can be
issued either by the user (via the mouse and keyboard) or by other programs (via a UNIX
socket with a well-known identi�er). One of dvi2x's auxiliary programs is dvisend, which
is used to send messages to the previewer over this socket. Any command which is available
to an interactive user of dvi2x can be invoked using dvisend. In particular, it is possible
to move the display of dvi2x up and down on the page and to jump to speci�c pages.

13



Without Procter's foresight in supporting the full functionality of dvi2x via inter-process
communication primitives, the implementation would have been much more di�cult.

The basic notion in the enhanced reference inspection facility was to format the existing
bibliography �le as part of a dummy document, preview the dummy document using dvi2x

and then use dvisend to move the dvi2x window to display the proper reference. The
only problem with this approach is that there is no way to know from the bibliography �le
where a reference will appear on the page or even what page it will be on. Our solution
to this problem was to modify the bibliography so that each reference in the bibliography
fell on a separate page. Since references are basically just small paragraphs, they should
never require more than a page each. Thus, it is straightforward to keep track of the
correspondence between the reference's position in the bibliography and its page in the
dummy document.

TEX-Mode produces the type of display seen in Figure 3 through a three step process. If
the user wishes to inspect the references for `foo.tex', he must have already run BibTEX to
generate the �le `foo.bbl'. TEX-Mode makes a copy of `foo.bbl' called foo++.bbl which
contains pagebreaks prior to each reference. Next, TEX-Mode creates a dummy document
�le called foo++.tex, which has no text but does have a bibliography, and runs LaTEX on
this �le. Finally, dvi2x is run to display the resulting output. TEX-Mode controls the
display of the references by invoking dvisend from within Emacs. Each time a citation is
inspected, a dvisend process is started which instructs dvi2x to display the proper page.

This new implementation of reference inspection has both considerable power and sub-
stantial limitations. As can be seen from the screen image in Figure 3, it results in a
considerable improvement in display quality. It also demonstrates that a programmable
editor can be used to control other interactive programs in a powerful and interesting way.
However, the success of the implementation results directly from the fact that it can be
assumed that references take up less than one page. There are many related tasks for which
WYSIWIG display would be a valuable tool. However, in many cases, it is not possible to
have the a priori knowledge about the formatted version of the document that is necessary
to construct this type of facility.

5 Related Work

5.1 Annotations

The design of the reference annotation facility of GNU Emacs BibTEX-Mode was in
uenced
by Van De Vanter's earlier work on bibview, a browser for bib databases [27]. Bibview

allowed the user to attach a single �le of annotations to each reference in the database by
placing its name in the %Z �eld, which bib does not normally use. These annotations could
then be viewed and edited in a separate window. Van De Vanter has recently released a

14



descendant of bibview, called BiblioText [26]. BiblioText has a more general annotation
mechanism whereby up to �ve �elds may be de�ned to hold either �le links or cite links .
File links point to �les, while cite links point to other citations in the database.

BibTEX-Mode lacks the sophisticated user interface of BiblioText and has no true brows-
ing facility. However, its annotation facility does have some advantages:

� There are no limits on the number of �les of annotations that may be attached to a
reference.

� The BTXMODENOTEFILES environment variable can be used to gain greater security.

� Because BibTEX-Mode is part of an integrated editing environment and because
changes to BibTEX database �les do not require regeneration of an inverted index
(as with bib), the user can add �le names to the NOTEFILES �eld and view them in
the same session.

5.2 Forms-Based Query

There are a number of interesting query methods used by other tools for bibliography
processing. One of the most common is the imprecise citation. An imprecise citation is
just a collection of words which all appear in the reference being searched for. It was �rst
used as the symbolic citation method in the refer [11] bibliography processing system. It
is also found in most systems which have descended for refer, including BiblioText and
the reference search program, lookup, which accompanies the bib system. BibTEX-Mode's
forms-based queries can be used to duplicate imprecise citations by placing all the words of
the imprecise citation in the ANYFIELD �eld of the query.

Pro-Cite [15], a bibliography database system for personal computers, uses a system
of boolean queries to search its database. These boolean queries can express any possible
query. To reduce e�ort in constructing the queries, Pro-Cite also supports the use of numeric
and date ranges and wildcard characters and provides a query construction dialog box. In
contrast, the forms-based queries of BibTEX-Mode can only express disjunction for text
within a single �eld and do not support negation. However, it is not clear whether the
additional expressive power of Pro-Cite's boolean query language is worth the increased
complexity required for its use.

EndNote [13], another bibliography database system for personal computers, uses a
forms-based approach. When the user requests a search, he is presented with a dialog
box containing three �elds labeled \Author", \Year", and \Text", which correspond to the
AUTHOR, YEAR, and ANYFIELD �elds seen under BibTEX-Mode. EndNote does not support
regular expressions, wildcards or numeric ranges and the query dialog is not con�gurable.

15



Thus, while EndNote uses a query method super�cially similar to the forms-based query of
BibTEX-Mode, it has considerably less power.

Bib-Tool [7] is a bibliographic front-end to the Postgres database system [23]. It
supports database searches using both imprecise citations and a forms-based query method.
The only limitations, relative to BibTEX-Mode, to its forms-based queries are that the query
form is not con�gurable and it can not accept multiple regular expressions in a single �eld.

5.3 Reference Inspection

Two other systems, BiblioText and Grif, can also be said to support reference inspection.
Both systems do so because reference inspection is a special case of a more general function
they provide.

BiblioText supports reference inspection as a special case of browsing. To perform
reference inspection, the user must be viewing the main document �le in some other window.
Using the mouse and the features of the Sunview [24] selection service, the user copies
the citation from that window to the BiblioText prompter. BiblioText then searches the
database for any matching references and displays them. There should only be one such
reference and, as with all references BiblioText displays, it will be shown in formatted form.
Thus, BiblioText can be said to provide reference inspection.

Grif [17], a direct manipulation editor for structured documents, has a much more
general approach. In Grif, bibliographic citations are just one instance of a reference, which
is a link to some other item in the document. One of the many search operations supported
by Grif is a search for a \referenced item". The referenced item of a bibliographic citation
is its entry in the bibliography. So, by selecting a citation and searching for its referenced
item, the user can perform reference inspection.

6 Conclusions and Other Research Questions

These three enhancements to the bibliography management environment provided by GNU
Emacs TEX-Mode and BibTEX-Mode are quite successful. The annotations mechanism rep-
resents the �rst feature of the environment which leaves the domain of document processing
and moves toward a more general system of academic information management. Relying on
well-understood �le system primitives, it supports sharing of both bibliographic data and
annotations while providing substantial assurances of privacy of annotations. One question
that still needs to be answered is whether the current system of handling relative �le names
is acceptable.

The forms-based query system is a considerable improvement over the previous regular
expression mechanism. It is only slightly, if at all, more di�cult to form simple queries and
complex queries are much more easily expressed. Most personal bibliographic databases

16



contain less than two thousand entries. However, there do exist shared databases with
many more entries. The passage of time is bound to create much larger databases with many
entries of substantial similarity. Users of these larger databases will need more powerful
queries like the forms-based queries described here. The forms-based query is not the most
powerful approach, but we believe it o�ers the best compromise between power and ease of
use of any existing system.

The enhanced reference inspection feature succeeds on several fronts. First, it is aes-
thetically far superior to the earlier text-oriented reference display. Secondly, it is a good
example of how the regularity of a class of objects (in this case, formatted references) can be
used to make a di�cult problem quite tractable. Finally, it clearly illustrates the bene�ts
of building systems which provide full control to both programs and users. Here, the ability
to send dvi2x the same commands as a user, but from GNU Emacs, was critical to the
successful implementation of enhanced reference inspection.

GNU Emacs TEX-Mode and BibTEX-Mode are an evolving editing system. In general,
they represent an attempt to emulate a monolithic, integrated editing and formatting en-
vironment using a loosely connected set of programs. The enhancements to this system
have extended it into new areas and thus illustrate the power of a system based on a
programmable editor.

There is room for further research on bibliography processing. The most fundamental
problem with current bibliography processing systems is that they use simple text �les
as databases. These systems provide only limited assistance to the user for assuring the
correctness of database entries and of citations. A bibliography system which could integrate
a real database with the document formatting aspects of bibliography processing would be a
substantial advance. One possible model is that of a bibliography server. The server would
allow users on many machines to input, retrieve, and manipulate entries in a common
database. It would communicate through a well-known interprocess communication port.
Text editors, browsers, and document formatting programs could be altered to interact
directly with the server. Such a system might be able to support very large reference
databases and would naturally support sharing.

Bibliography processing brings together database, hypertext, editor design, and docu-
ment formatting issues and poses an important question. Should bibliography processing be
attacked with a monolithic, integrated system or with a collection of independent routines
or with some compromise between the two models? Perhaps the answer for bibliography
processing is also the answer for systems in general.

References

[1] J. C. Alexander. Tib, A TEX bibliographic preprocessor. Department of Mathematics,

17



University of Maryland, 1986. Version 1.3.

[2] Pehong Chen. GNU Emacs TEX-Mode. Technical Report 87/316, Computer Science
Division, University of California, Berkeley, California, October 1986.

[3] Pehong Chen. GNU Emacs BibTEX-Mode. Technical Report 87/317, Computer Science
Division, University of California, Berkeley, California, October 1986.

[4] Pehong Chen and Michael A. Harrison. Multiple representation document develop-
ment. Technical Report 87/367, Computer Science Division, University of California,
Berkeley, California, July 1987.

[5] Pehong Chen and Michael A. Harrison. Index preparation and processing. Software,

Practice and Experience, 18(9):897{915, September 1988.

[6] Pehong Chen and Michael A. Harrison. Multiple representation document development.
IEEE Computer, 21(1):15{31, January 1988.

[7] William C. Hunter. BIB-TOOL: A bibliographic references manager. Master's thesis,
Computer Science Division, University of California, 1988.

[8] IBM, White Plains, N.Y. Query-By-Example Terminal Users Guide, SH20-2078-0
edition, 1978. as described in [25].

[9] Donald E. Knuth. The TEX Book. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1984. Reprinted as Vol. A of Computers & Typesetting , 1986.

[10] Leslie Lamport. LaTEX: A Document Preparation System. User's Guide and Reference

Manual. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[11] Michael E. Lesk. Some applications of inverted indexes on the UNIX system. Computer
Science Technical Report 69, AT&T Bell Laboratories, Murray Hill, New Jersey, June
1978. Also available in UNIX User's Manual.

[12] Je�rey W. McCarrell. An overview of dvitool, a TEX dvi previewer under the sunview
window system. VORTEX internal report, Computer Science Division, University of
California, Berkeley, California, December 1986.

[13] Niles & Associates, 2200 Powell, Suite 765, Emeryville, CA 94608. EndNote: A Refer-

ence Database and Bibliography Maker, 1989.

[14] Oren Patashnik. BibTEXing. Computer Science Department, Stanford University,
Stanford, California, January 1988. Available in the BibTEX release.

18



[15] Personal Bilbliographic Software, Inc., P. O. Box 4250, Ann Arbor, MI 48106. Pro-Cite
for the Macintosh, User's Manual, �rst edition, April 1988. Version 1.3.

[16] Steven J. Procter. Documentation on dvi2x, a TEX dvi previewer under the x window
system. VORTEX internal report, Computer Science Division, University of California,
Berkeley, California, March 1987.

[17] Vincent Quint and Ir�ene Vatton. Grif: An interactive system for structured document
manipulation. In J. C. van Vliet, editor, Text processing and document manipulation,
pages 200{213. Cambridge University Press, April 1986.

[18] Brian K. Reid. Scribe: A document speci�cation language and its compiler. PhD thesis,
Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
October 1980. Available as technical report CMU-CS-81-100.

[19] R. P. C. Rodgers. Personal Communication, September 1988. Report of bib database
containing 50,000+ entries.

[20] R. P. C. Rodgers, Kenneth Gardels, and Anat Finkelshtain. Bibix|a bibliographic
data base & text formatting system for UNIX. CALM/MedIX Technical Report 86-
1.2, UCSF Laboratory Medicine, July 1987.

[21] Michael D. Spivak. The Joy of TEX. American Mathematical Society, 1985.

[22] Richard M. Stallman. GNU Emacs Manual, Fifth Edition, Version 18. Free Software
Foundation, Cambridge, Massachusetts, December 1986.

[23] Michael Stonebraker and Lawrence Rowe. The design of POSTGRES. In Proceedings,

1986 ACM-SIGMOD International Conference on the Management of Data, June 1986.

[24] Sun Microsystems, Mountain View, California. SunView Programmer's Guide, Release

A of 17, February 1986.

[25] Je�rey D. Ullman. Principles of Database Systems. Computer Science Press, second
edition, 1982.

[26] Michael Van De Vanter. BiblioText: a hypertext browser for bibliographic data and
notes. Technical Report 88/455, Computer Science Division, University of California,
Berkeley, California, October 1988.

[27] Michael Van De Vanter. The user interface for bibview, a bibliographic browser. Un-
published Report, 1988.

19


