REAL Manuals
Srinivasan Keshav

September 1989

Abstract

We present five manuals for REAL, a network simulator described in UCB/CSD/TR 88/472. REAL
allows the user to set up realistic and large simulations of packet switched data networks with little effort.
Several transport protocols and congestion control schemes can be studied.

A table of contents is presented in the manual manual. The installation manual describes the installa-
tion process. The user manual guides users through the user interface and provides a tutorial for beginners.
The NetLanguage manual describes a language used to describe simulation scenarios. The programmer’s
manual is intended for advanced users who wish to modify REAL for their own purposes.

This research has been supported in part by the University of California with a MICRO program grant, by Xerox Corporation
and by AT&T Bell Laboratories. The views and conclusions contained in this document are those of the author and should not be in-
terpreted as the official policies, either express or implied, of any of the sponsoring organizations.

REAL Manual Manual

REAL is a public domain network simulator that tries to simulate Large networks REAlistically.
This manual describes the other REAL and Nest manuals.

The REAL package is based on the Nest simulation testbed from Columbia University! . There are 5
Nest documents described below.

1. Nest manuals

Usenix paper
This paper presented at Usenix Winter Conference 88 provides an overview of Nest and examples of
where it can be used.

Nest System Overview
Describes the overall system organization of Nest. It also includes descriptions of the client-server
protocol and hints for writing node functions.

Nest User’s Guide
Briefly describes Nest source files and how to write node and monitor functions.

Nest Library Reference Manual
Describes facilities in Nest that are used when writing node functions.

Nest User Interface Manual
Describes the control window, how to use it and how to customize it.

2. REAL manuals and reports

REAL: A Network Simulator
UC Berkeley, Computer Science Department Technical Report 88/472. An overview of REAL and
some examples of network analysis using REAL. For copies mail jean@ernie.berkeley.edu.

Manual manual
Describes other Nest and REAL manuals. This manual.

Installation Manual
How to install, care and feed your REAL simulator.

User Manual
A step-by-step tutorial on using REAL for naive users.

NetLanguage Manual
Tutorial introduction to using NetLanguage.

Programmers Manual
Tour of the files in REAL, and a cookbook for modifying REAL and Nest.

NEST, Copyright 1988 Columbia University, a Network Simulation Testbed, written by Alex Dupuy. Direct technical ques-
tions regarding NEST to dupuy@cs.columbia.edu and questions regarding NEST distribution to jed@cs.columbia.edu.

3. Licencing

Please complete the licence documents in sim/sim/user.licence.1 and sim/sim/user.licence.2 and send
them off to the appropriate places. If you would like to use code in REAL or NEST in your own software,
you should contact keshav@ucbarpa.berkeley.edu for a redistribution licence.

REAL Version 2.0 September 6, 1989

REAL Installation Manual

1. Introduction

This manual provides guidelines for installing REAL in your local 4.3BSD system (sorry, there is no
V9 or SysV compatibility).

This manual should accompany the tar file for the REAL release that you have obtained. I will
assume that you have a copy of the tar file on a disk with a reasonable amount of space (at least 3Mb).

Your first step is to untar the file. Move to the directory which will the root for REAL and type
tar -xpf [tarfile]

where tarfile is the name of the tar file. After a suitable interval of time, the file hierarchy described in the
user manual should appear. You are now ready to configure and make the system.

Change directory to sim/src and type

Configure

This will fire up an interactive configuration manager that will ask you several questions about your
system, and will figure out many things by itself.

It is possible the Configure will blow up on you. For example, Configure runs a test that creates
archives of length zero and this can cause a system crash on some machines. To avoid this, you should
comment out the commands that are causing problems, and determine the defauits manually. To continue
with the example, you will need to comment out lines 1143-1144 and 1148-1164 in Configure and rerun it.
It helps to have a Unix guru handy. -

At one point, Configure will ask you to do a shell escape to edit config.sh. At this point, type in
![favorite-editor] config.sh

You will find a file that looks like this:

: use /bin/sh
config.sh
This file was produced by running the Configure script.

d_eunice="undef’
eunicefix=":"
define="define’
expr="/bin/expr’
sed="/bin/sed’
echo="/bin/echo’
cat="/bin/cat’
rm="/bin/rm’
tr="/usr/bin/tr’
sort="/bin/sort’
grep="/usr/ucb/grep’
test="test’
contains='"grep
cpp="/lib/cpp’
cppminus="’
d_charsprf="undef’
d_voidsig="define’
libc="/bsd43/usr/lib/libc.a’

’

n=""
c="package="Nest’
spitshell="cat’
shsharp="true’
sharpbang=": use ’
startsh=": use /bin/sh’
voidfiags="7’
defvoidused="1"
d_getopt="define’
d_itimer="define’
d_systime="/bsd43/usr/include/sysftime.h’
d_memset ='define’
d_bstring="define’
d_psignal="define’
d_rename="define’
d_rusage="define’
d_server="define’
d_sigvec="define’
d_sigvectr="undef’
d_socket="define’
d_oldsock="undef’
socketlib=""
sockethdr=""
mkdep="/bsd43/bin/cc -M’
orderlib="false’
ranlib=":’
stackdir="-1"
CONFIG=true

You have to edit this file to make sure that it describes your system accurately. This is not easy, and
unfortunately there is not much I can do to help you with it. I will describe the variable names in the file,
and you will need to determine if their values are appropriate for your system. Nine times out of ten, this
will be fine, but on machines that try to support both BSD and SysV (such as the MIPS machine), you can
run into annoying problems. _

In general, the convention used for variable names is that d_XXX means that a #define for XXX will
be created in the configuration file nesth. Command names stand for the particular flavor of command
used by your system.

The file starts off with ‘d_eunice’, which is defined if you have a eunice system. This is followed by
definitions for the location of useful commands. If these are not correct, you should modify that. ‘con-
tains’ should be your flavor of grep. ‘cpp’ should be set to your C preprocessor. ‘cppminus’ is the default
flag that you need to give to cpp. ‘d_charsprf” is set if sprintf() is of type char. ‘d_voidsig’ is set if your
system defines signal() to be of type (void).

The next definition (for ‘libc’) is critical, and defines where your C library is. If you have more than
one library, then this might be wrong. For example, on a MIPS, it will be set to the SysV library
Just/lib/libc.a, and you actually should have /bsd43/usr/lib/libc.a. ‘spitshell’ is the command to print data
into a file. ‘shsharp’ is true if ‘#’ can comment out things in your version of shell. ‘voidflags’ is explained
when you do Configure.

Now there are some defines that explore the limits of your operating system. The meanings of these
defines are in the file sim/src/nest.h.SH. Take a minute to make sure that they are correct.

‘socketlib’ is the library that has socket code, if libc.a doesn’t. ‘sockethdr’ is the place where include
files for sockets are kept if they are non-standard. ‘mkdep’ is the command that will generate mak-
edepends for you. Usually this is /lib/cpp -M, but if that doesn’t work, you may have to use /bsd43/bin/cc
-M. ‘orderlib’ is true if the archive command creates unordered libraries. ‘ranlib’ is the command you
need to use to create random libraries (set to “:” if it isn’t needed, then the command becomes a comment).
‘stackdir’ is the direction the stack grows in, 1 is up, -1 is down. Finally, CONFIG is set to indicate that

REAL Version 2.0 September 6, 1989

you have run config.sh.

After you have edited config.sh, you should return to the Configure session. Configure will now
extract some files. Files that end with a .SH suffix are shell scripts that contain shell variables set by
config.sh. Configure runs config.sh to set these variables, then runs the .SH file. This creates a file where
the appropriate variables have been substituted. For example, if Configure determines that the C preproces-
sor, cpp, should be called as fust/lib/cpp -, then the shell variable ‘cpp’ will be set to ‘/ust/lib/cpp’, and the
variable ‘cppminus’ to ‘-’. Suppose Makefile needs to invoke the preprocessor in one of its targets. Then
Makefile.SH will have an entry of the form ‘Scpp $cppminus filename’. When Makefile is extracted, the
correct invocation is automatically generated.

Finally, Configure will offer to do a makedepend for you. This step consists of editing Makefile to
automatically add include file dependencies. The ‘depend’ target in Makefile spawns a small ed script that
edits Makefile to delete the end of the file, and to append dependencies generated by $mkdep.

Configure will now exit. If you are using a Vax, you have two additional steps. First, uncompress
the file sim/src/vax/graphs.c.Z by typing ‘uncompress graphs.c’. Then, move graphs.c and graph.h to
sim/src, overwriting the existing files. Now run a make to create nest.a by typing ‘make nesta’. Ignore
any warnings about non-portablity of the code.

You might run into a problem with extracting state.s from state.S. state.S contains assembly code
that differs for each machine. In some cases, you may not be able to extract the assembly code correctly. If
so, you should extract the state.s file manually, and rerun make. Make will not process state.S if state.s or
state.o already exist.

Now change directory to sim/sim to generate REAL. First, extract the makefile by executing the
makefile.SH shellscript. (You can do this by typing . makefile.SH or sh makefile.SH). Then type in ‘make
final’ to generate the simulation binary ‘simulate’.

You now will need to compile the files for the control window. Change directory to sim/display and
type ‘make sunvclient’. The last step is to create the NetLanguage handling files in sim/lang. Change
directory to sim/lang. ‘make lang.c’ will create the ‘lang’ preprocessor and lang.c which is the result of
processing the default scenario described in lang.inp.

You are now ready to begin simulations. The REAL User manual and Programmers manual should
help you get started. Good luck !

REAL Version 2.0 September 6, 1989

REAL Users Manual

This manual provides a tutorial introduction to setting up a simulation in REAL. If you want to
modify features of REAL you should refer to the REAL Programmers Manual.

1. General Orientation

REAL consists of two parts: a simulator and a control window. The two communicate with each
other over a pair of BSD sockets. The simulator is informed about what it has to simulate using the control
window or a special purpose language, NetLanguage. (NetLanguage is described in the NetLanguage
manual.) The simulator then starts off the simulation, ticking off virtual time. Simulations in progress can
be controlled by the control window.

The simulator is told to simulate a scenario, which is a description of topology, protocols, workload
and control parameters. The network is modeled as a graph, where nodes (vertices) represent either
sources or sinks of data, or gateways!. The interconnection between the nodes is the topology. You also
have to specify the protocol and the workload at each source. Finally, you have to specify control parame-
ters such as the latency and bandwidth of each communication line, the size of trunk board buffers, packet
sizes etc.

1.1. File organization

The simulator files are in a directory called sim. This has six ? subdirectories - bin, sim, src, display,
lang and results. sim/sim has source code for REAL. sim/src has source code for NEST, the simulation
package underlying REAL. sim/display has code for the control window. sim/lang has code for the Net-
Language preprocessor. Finaily, sim/bin has symbolic links to the binaries for the simulator, the control
window and the preprocessor. .

2. Setting up a simulation

You can set up a simulation either using a mouse-based interactive control window or using Net-
Language. I will describe the control window approach first.

2.1. Using the control window

The first step is to start up the control window. You can do that by running sim/bin/sunvclient by typ-
ing:

sunvclient &

This will put it in the background. In a few seconds, a window that looks like the control window in Figure
1 will pop up. (For the moment, ignore everything except the window labelled ‘REAL control panel’ in the
figure.) The window is divided into 5 layers of subwindows. Let me call them layers 1 through 5 from top
to bottom. They are organized as follows:

Layer 1 : Read-only, displays error and status messages.
Layer 2 : Connection status and graph file saving and loading.
Layer 3 : NEST parameters.

Layer 4 : REAL parameters.

Layer 5 : Network

1 will discuss the details of these windows later. At the moment, you should concentrate on layer 2.
This has a host name and a port number. Move the mouse to the host name part and click the mouse left
button so that the dark flashing triangle is at the end of the default host name. Use the ‘Delete’ key on the

! Gateways are used synonymously with routers, bridges and switches to mean elements that route, buffer and schedule packets.
2 If this machine does not run suntools, the display directory will be unusable.

T 3Ynoid

X ARIN RSN AR N LA LN

-~ 910" ann
0z¢ oubes 71 eamos : peddosp y13d (1cres‘esL)

062 oubes 11 eaunos : paddosp ywd (8821697 ¢6L) 06l -
862 aubes ¢1 3aounos : paddoap yad (SBIPSI‘ELL)
987 ou~bas 1Y edmos : peddesp yvd (grei6‘zLL)

$8Z ou~bes 1§ eaunos : peddoup yxd (6SALTZ TLL) 0Ll " e9L " acy]k

21t ou~bes zy edunos : peddoup yyd (9gLask’ebL)

11 ou~bes zt edunos : paddosp ywd (LBLBAS LPL)

6LZ ou~bes 11 e2unos : peddoup yyd (T66107CHL)

412 ou~bas ¥t a3unos ¢ paddosp ywd (BTLTLE GFL) " @bL @€l "QIL " ATl
9¢Lt ou~bas g edunos : parddosp yyd (£25608°902)

962 ou™has Zi edunes : paddoup y1yd (TT@BZF €AL) " "eBL " 669" " " @An

91LZ ou'bas ¢y e2.unos : peddoup yyd (preGL'ara) " "ALa

€8z ou™bes z{ edunos : paddosp I¥d (BSSEG SA9) " “ 899" "@SY < *AEI”* *BEY
142 oubes z1 83unos : peddoup yyd (LebbLS*079)

0L ou'bes 7y e2unos : peddosp yud (eratrpez9)” - " 0z9

zerZ oubes 11 edunos : paddoup yyd (Lpzezy219))8
6181 ouhes g eaunos : paddoup yyd (581ZTP°219) "~ 019" " " enqf

61pZ oubes ¢ saunos : paddosp ywd (LELTIT'PES) B6S" ° @8BS

8sz ou"hes 21 eaunos : J : ‘

1g2 ouhas 21 edunos

ocbt oubes g e3unos : peddosp 1nd (9€THL9’ZLS) " AL " 09S" * *PGC
ZvZ ou~bes 71 edunos : peddosp ywd (bSIrEESHS)
o2 oubes 21 edunos : peddoup yyd (£EGIST EHS)
92t oubas {1 samos : paddoap yyd (ZeLE8L EPS)
99€T ou~bes g eaunos : paddosp yxd (LIEBER°ZPS) " OMS " BES’ " "8IS
vZZ ou~bes 21 edunos : paddoap y3yd (998652 °61S)
L11Z oubes 1 #3unas : paddosp yyd (ERSEEZ‘LIS)
$9Z oubes €1 e3unos : peddosp ywd (8SEZE9°€TS)
60T ou'bes 13 e2unos : peddoup yud (L8SBEL°ZT1G)"* " BIS
%O Sem 8| 1) 3| NsBI" " "aps

327 oubes zy edunos : peddosp yyd (1081L° Z6r)]

0zZ oubas zt 8dunos : paddoap 1yd (9S68Z6° ISP)" " 96H
892 ou"hes g1 83unos : peddoup)yl (986188°88H)
652 oubes gy eaunos : poddosp yyd (6BBIES ARL)° B8P " ‘BLF

682 oubes zt eaunos :

88 ouhes 11 edunos :
6bZ ou~bes €1 e3.n0s : paddop 3¥d (€2OTIC T9H)" "@9p" " BSH"* *OLH
8L oubes §1 @ounos : paddoup yyd (gzoEiL’9Er)
LL ou™bes 11 8dunos : paddosp yxd (9990L5° 9Eb)
668 ou~bas 21 eaunos : paddoup 1wd (BLZEPI SED) " @EP” " T@AZP " CBIN
t22 oubes €1 e2unos : peddoup yud (£08288°96b)" ° @Ab " AEL" " "@8f
312 oubes ¢y edunos : peddosp yyd (ZLE6TZILE)" " "BLE " " B9E" * @SS
782 oubes 1 #3unos : peddosp yud (aR798b Ebe)
607 oubes £t e3unos : peddoup Vud (bELEG*THE) " BRE’ *BEC” " RZS
0T ou~bas g1 a3unos : paddosp 1vd (ZISET8°TIE) " "8I
001 oubes zj 8ounos : paddoup yud (LL60ST°L0E) " A0E" " 06(
191 ovbas ¢ eaunos : paddosp yyd (@2£929'182)° ° "88:
6L ouTbes 2y edunos : peddosp yyd (gBbBEL‘ALZ) " "OLZ 892" " "AGT
Sbt oubes ¢y edunos : peddoup yyd (§596S°bHZ) " BE7
1S oubes 21 eaunos : peddoup 1wd (£LbLL9°7€Z) "REZ 7T OZT " TOL7
SL oubas 1t edunos : paddoup Axd (ZSHSH*LaZ)
pe ou~has 11 aaunos : peddoup yad (S6Szh6°997)
) TR by 21003 18Ys

L 2

1828 es|nyg
8 ! Jegunu [eey
8 : @pou se)noy
L : Kayogd *ysg

T @ wsiueydew uo1)sabuodeg

G MOpUIN QUL 3}
S : mopuim dyy

(
e e

Ld

060t : ezys 3wd Ji4

ep : ez1s yyd Jeuje}

o1 : 8215 Jepyng

9°C : oLley s34yng

98> : 8218 WY

8'¢ : Kepep y19¥3ed s33u]

890 :aey) dnayes 401 |UOW WnISN v P SO} LUOH 10°1 8wt Cwyg
89°T :8wy] ssed Jutlod 0) uenomm 1sexpeoayg a ¥ :ssed "wyg
% :felag 6u16601 BC :SepoN Xew

ap- gueas/sot seueas/Kepdsip/eLs/aeysey/asnszysep; o) t4 ydeay E E

uMauc—cs c
upsuny o3

pajyJisuuo) O

8867 1u0d
edue :)sol

|aued LOJJuu) v3d

|

keyboard to delete the name, and type in the name of the machine on which you want to do the simulation.
Remember not to leave spaces at the end of the entry. (In general, NEVER leave spaces at the end of any
entry in the control window).

The control window connects to the simulation client using two BSD sockets. In the socket abstrac-
tion, every machine supports a number of ‘ports’ which are the endpoints of communication sockets. A
port has a port number which the other end should know about. REAL uses two consecutively numbered
port numbers and we need to ensure that both the control window and the simulator know about the port
numbers that they will use. A note about what values to use: Usually the operating system does not allow
user applications to use port numbers lower than 1024. So, you should pick two numbers larger than that.
The default port numbers are 1988 and 1989 and you must check if these numbers are unavailable by look-
ing at the file /etc/services on both the client and the simulation machine. If they are, you have to change
the port number in the ‘Port Number’ field in Layer 2. Use the same technique described above to change
the port number.

It is now time to start the simulator. Log in to the appropriate machine and start off the simulator in
sim/bin by typing in

simulate -p {port number]

where port number is the smaller of the two port numbers you have decided to use. The simulator will sit
there waiting for the control window to give it a network to simulate.

We will now connect the control window to the simulator. In layer 2, you will find a field marked
‘Detached’ with a circle next to it. The circle means that it is a control field that can change state. It is now
in the detached state, since the simulator is not connected. To start the connection, move the mouse arrow
to the circle and press the left button. The state will change to ‘Connected’ and connection will be initiated.
If the connection does not go through for some reason, the reason will be printed in the Layer 1 subwin-
dow. Possible reasons for non-connection are:

Unknown host: the host cannot be reached by a socket. Either the network is down, or your
system’s name tables are not ok. In any case, you will need to contact your system guru and ask for enlight-
enment. (If you are the local guru, you will need to check why gethostbyname() is failing, could be faulty
BIND tables, broken yp server...). .

Connection in progress...: You typed in the machine name incorrectly, the network is slow, or your
simulator has not put out a connection request yet. Try restarting the simulator.

Once the connection is up, you can now send data to the simulator. However, it is first necessary to
initialize the control window with a default network that is programmed into REAL. When you connected
to the simulator, a new button labelled ‘Paused’ should have appeared in the far right of Layer 2. This indi-
cates that the simulator is now in a paused state. Move the mouse to this control button and click the left
mouse button to start off the simulator. The state will briefly change to ‘Running’ and come back to
‘Paused’. Further, the default graph will appear on the screen in Layer 5. You now have three alternatives:
1) run a simulation on the default topology 2) run a simulation on a stored topology 3) create a new topol-
ogy to simulate. These are described in sections 2.2 through 2.4. Read all three sections below anyway.

2.2. Using the default topology

Even if you are using the default topology, you may want to change node functions and trunk (line)
characteristics. If you press the right mouse button (RMB) when the mouse cursor is placed over a node
(in Layer 5), a pop up menu will appear. Move the cursor to the walking menu labelled ‘Node Functions’.
Another pop up menu will appear with the list of node functions that are available. (If you don’t under-
stand what a node function is, you should go read the tech report at this point.) Move the cursor to the func-
tion that you want to assign to that node and the function will be set automatically for that node. (Note that
if you are using the ‘Show Node Data’ function, changes made in the data pop up menu are NOT set unless
‘Set Node Data’ is also selected.)

The other thing you may want to change is edge characteristics. Move the mouse to an edge and
click the RMB. A pop up menu will appear, and here you should select the entry that says ‘Show Edge
Data’. A data window will now appear, in which you can make changes (followed by a ‘Set Edge Data’ to

REAL Version 2.0 September 6, 1989

fix the changes). . The ‘Edge Weight’ entry specifies the delay on the line, and it should be specified in
microseconds. The ‘Linespeed’ field is the bandwidth of the line in bytes per second, and you should enter
a floating point number into it (i.e. terminating in .0). The channel function stack is set using the control
button in this window. Click the circle icon till the correct channe! function appears (usually ‘tx_delay’).
When all the entries in the data window are correct, select the line for which you wanted to set the charac-
teristics, click the RMB over it, and choose the ‘Set Edge Data’ option in the pop up menu. You may want
to set multiple lines with the same characteristics. In that case, simply do a ‘Set’ for each of the lines.

You are now ready to set the REAL and NEST parameters.

2.2.1. REAL Parameters

All REAL parameters appear in the Layer 4 subwindow. You will find that the default values for
these parameters are already entered. Remember that you should replace floating point values with floating
point values, and integer values with integer values. Here is a brief explanation of each field.

Inter_packet delay: is the mean of the exponential distribution of the inter-packet delay for the
Poisson workload (telnet workload). Specified in seconds.

Ack Size: is the size of the acknowledgment packet in bytes.

Buffer Ratio: This is the threshold at which a Fair Queueing gateway will start setting bits on a
conversation. To be precise, if the parameter is B, then the gateway will set bits on all conversations that
use more than 1/B of their fair share of buffers.

Buffer Size: This is the number of buffers that are available per output line (trunk board). One buffer
can store a packet of arbitrary size (this is the Xerox XNS convention).

Telnet Pkt. Size: is the size of a telnet packet in bytes.
FTP Pkt. Size: is the size of a FTP packet in bytes.

FTP, Telnet Window: are the maximum sizes of ftp and telnet windows. (These are not the same as
the congestion windows, but are their upper bounds.) The window size should not exceed the
MAX_WINDOW_SIZE parameter in sim/sim/config.h.

Decongestion Mechanism: This selects which packet to drop when a conversation’s queue is full. 0

selects the packet at the head of the queue and 1 selects the tail. When this parameter is set to 2, we select
a packet at random amongst all the packets queued at the trunk and drop it.

Scheduling Policy: This is used to select the scheduling policy at the gateways. For historical rea-
sons 3 is FCFS, 7 is Fair Queueing, 8 is FCFS + bit setting (DEC bit), and 9 is Fair Queueing + bit setting.

Router Node: Real Number: Used in distributed simulation.

Pulse Size: An entry of the form X.(Y+1) will generate a pulse of X packets every Y seconds. Y has
to be 3 digits long. So, for example, an entry of 3.008 will generate a pulse of 3 packets every 7 seconds.
(Do not use 3.8 - that will be interpreted as 3 packets every 799 seconds.) This format is ugly and needs to
be changed. Soon, perhaps.

2.2.2. NEST parameters

NEST parameters are found in Layer 3 of the control window. In general you will not need to
change them. Here is a description of each field:

Max Nodes: This is the largest number of number of nodes in the simulation. You can set this to the
number of nodes in the simulation. Note that memory is allocated in proportion to Max Nodes, so you
should not choose something too large. Note also that REAL does not support simulations with more than
ABSOLUTE_MAX_NODES nodes. ABSOLUTE_MAX_NODES is defined in config.h.

Sim. Pass: This is a read only entry that records simulation passes as they happen. To save on com-
munication bandwidth, passes are updated only when you send a control message to the simulator - usually
a 'Send’ (to be discussed).

Sim. Time: This displays the simulation time

Logging: This is supposed to turn on Nest debugging, but this doesn’t seem to work. I prefer to use
dbx (the 4.3BSD symbolic debugger).

REAL Version 2.0 September 6, 1989

Broadcast/Point to Point: Describes if the communication mode is point to point or broadcast.
REAL supports only the point to point mode.

Monitor: Selects the monitor to use. You should use ‘Custom Monitor’ unless you write your own.
Delay: This is the default delay on a communication line (if the edge weight is 0). Use a 0 value.
Wakeup Time: Use 0.00.

Pass time: How often (in virtual time) the monitor is called. I'd recommend 1 second, but you can
make it larger if you want a faster simulator.

Now that you have set up the parameters and the scenario, you should let the simulator know about this.
To do that, move the mouse cursor so that it is not positioned near an edge or a node in Layer 5. The right
mouse button will pop up a menu that has an entry marked ‘Send’. Move the selection bar to this entry and
release the button to send the graph and Nest parameters to the simulator. To send REAL parameters,
select ‘Send Parameters’. Then force initialization by selecting ‘Reset’. Each of these commands will be
acknowledged by messages in Layer 2. Note that the commands should be sent IN THIS ORDER. If, for
example, you do a ‘Reset’ before a ‘Send’, the routing function will create routing tables for an incorrect
network (and will probably crash).

Now, go back to the ‘Paused’ button in Layer 1 and click the left mouse button. This will start the
simulator, and you are off. A subsequent section of the manual discusses the result files and messages
printed out by the simulator.

2.3. Using a Stored Topology

REAL allows you to store topologies in one of two formats : in NetLanguage (Section 5) or in a data
file. To use a stored topology, when the simulator returns with the default graph, you must delete it. Move
the mouse to a node, and click the right mouse button. The first entry in the pop up menu is ‘Delete’. If
you select it, the node will disappear, as will the edges connecting it to the rest of the graph. Repeat this
for all the nodes, so that the window is empty. Now, press the right mouse button, and select the ‘Send’
entry. This will inform the simulator that the default network has been deleted. Now, go to Layer 2 and
select the field marked ‘Graph File'. Type in the full path of the file that has the stored network and then
click the ‘Load’ oval with the left mouse button. The stored network will appear in Layer 5. You may
modify node functions, edge characteristics or simulation parameters as above. Then go through the
sequence of ‘Send’, ‘Send Parameters’ and ‘Reset’ to inform the simulator about the simulation scenario.
Click on the ‘Paused’ flag in Layer 2 to restart the simulation. The simulator will echo the graph back to
you and pause again. Click the ‘Paused’ flag again to start off the simulation.

You can save any changes you made by typing in the name of a file into the ‘Graph File’ field in
Layer 2, and selecting ‘Save’ in Layer 2. Note that this will save the topology, node characteristics and
edge characteristics only. This will NOT save REAL parameters. (This used to be a feature, I'm not so
sure now that it isn’t a bug.)

2.4. Creating a new topology

Follow the steps in the section above till the Layer 5 window has been emptied, and the simulator has
been informed of the deletions by the ‘Send’ operation. You are now ready to create your own scenario.
Clicking the left mouse button will create a node. You should set the node function as described earlier.
(Ignore the start, halt, repeat and clear flags entries.) To create edges, click the middle mouse button when
the cursor is on a node. You can now drag an edge to any other node. Set the edge characteristics and simu-
lation parameters as described above. Now, do the three step ‘Send’, ‘Send Parameters’, ‘Reset’ sequence.
Change the state of the simulation from ‘Paused’ to ‘Running’ by selecting ‘Paused’ in the Layer 2 win-
dow. The simulator will reply with the version of the graph that it received, and go back to the paused
state.

You now have to set the sinks for the source nodes. For each source node, decide which sink it
should send data to. (Currently, this is decided statically. I may introduce a facility to allow users to
dynamically change the destination later.) Find the sink and click the right mouse button on the node.
When the pop up menu appears, select ‘Show Node Data’. This will create a data window in which the

REAL Version 2.0 September 6, 1989

node number of the sink appears. Move to the source node for which the sink has to be set and select
‘Show Node Data’ again. The data window will be updated with the information for the source node.
Type in the sink number in the slot marked ‘Sink’. Select ‘Set Node Data’ to set the sink identity. (If you
do not do this, the change will not be incorporated.) The data window also has a field marked ‘Plot’. If you
want to plot data for that node, select this field and set the data as before. Plotting is discussed in detail in
Section 6 of the manual.

When you have finished setting all the nodes, send the graph. You do not need to send parameters or
reset again. The simulator will confirm the graph, and you should keep hitting the Paused field till the
simulator starts running.

3. Simulation output

The simulator produces four kinds of outputs a) acknowledgments of operations b) announcements
of special events c) time ticks and d) a simulation report.

The simulator will acknowledge operations such as resets and dump commands (‘dump’ is explained
later in this section). When you send new parameters, it will echo them back to you. Also, when it
receives a new graph, it will print out the nodes, their types, the sink they send to, and the characteristics of
all the lines. If you are in stand-alone mode, then the topology being simulated, and the current control
parameters will be printed out.

Special events refers to errors in simulation, or events that you have coded into the node functions.
Some error messages are not quite intuitive. In particular, if you get ‘Result file was empty’, this just means
that the simulator was unable to create the file ". /results/dump”. If this happens, you have probably forgot-
ten to create a directory called sim/results. If you ever get a error ‘... got an invalid packet’, you should
probably send me mail. There is something seriously wrong in the simulator or in your set up. Error mes-
sages are printed out in the stand-alone mode as well.

Time ticks are printed out every ten seconds of simulated time. They are just to show you that some-
thing is going on. In Figure 1, the right hand window shows an example of how time ticks and errors are
printed out. Time ticks are printed out in the stand-alone mode.

Reports are generated in one of two ways: By default, they are generated every 500 seconds (you can
change this by changing the parameter DUMP_INTERVAL in sim/config.h and remaking the binary - type
‘make final’). Or, you can force a dump at any time by selecting the dump option in the pop up menu when
you click the right mouse button away from any node or edge in Layer 5.

In either case, a file called ../results/dump will be appended to. The report is in the form of table and
will look like this:

Report #0 : simulation statistics
Policy # 7
Time is now (500, 10000)

Source Type GatewayWait in Num Num Tao
queue dropped rewx.

1 VITel 3 111,00

0 0 0.080
2 VITel 3 98.0.070

0 0 0.082
20 VIFTP 3 4272.310

26 30 2.194
21 VIFIP 3 714.2.151

34 43 1.771

The header displays the report number and the scheduling policy used in the simulation. It also has the
time at which the report was generated. For each source, the following data is printed:

REAL Version 2.0 September 6, 1989

Source Number: This is the node ID that is assigned to the node by the simulator or by Net-
Language.

Type: This is the name of the node function running on the node.

Gateway: This is gateway number for which the delays are being reported. If the source sends pack-
ets through multiple gateways, then the report will print out the delays at each of the intermediate gate-
ways.

Wait in queue: This is a pair of numbers. The first is the number of packets that were actually sent
out by the gateway onto the output trunk. It does NOT include a count of dropped packets. The second
number is the average number of seconds that a packet from that source had to wait in the queue from the
time that its last bit arrived at the gateway to the time that the first bit in that packet was placed on the out-
put trunk.

Num dropped: This is the number of packets from that source that were dropped by intermediate
gateways.

Num retx.: This is number of packets that the source retransmitted.

Tao: This is the average round trip time that packets from that source took from the time that the first
bit of the packet was placed on the line to the time that the last bit of the acknowledgment arrived. In case
of VJ sources, it is computed only on packets that have never been retransmitted.

In order to avoid corrupting simulation results with data from transients that happen at start up, simu-
lation statistics are flushed after each dump. In other words, the report presents statistics for the last 500
seconds of simulation only.

Note that to compute effective throughput you must subtract the number of retransmissions from the
number of packets sent by the gateway. The effective load is the number of packets sent by the gateway
plus the number of packets dropped by the network.

4. Control of the running simulation

When you click the right mouse button in Layer S on a region that is not near any node or edge, you
will get a pop up menu that has the following items:

Redisplay: This will redisplay the graph in the window.

Send: Sends the graph to the simulator. Nest parameters will also be sent. (But not REAL parame-
ters.)

Clear: Clears the graph from the screen. Doesn’t work properly. It is best to delete nodes one by
one. (I"1l have to fix this sometime.)

Undo: Undoes a clear.

Kill: Stops the simulation.

Reset Re-initializes the simulation and creates the static routing tables.
Send Parameters: Sends REAL parameters to the simulator.

Write Graph: Writes out a NetLanguage description of the graph and the simulation parameters into
a file called LANG_FILE in sim/sim. An existing LANG_FILE will be overwritten.

5. NetLanguage

This is a language used to describe simulation scenarios. The language is simple to understand, and I
will not describe it in any great detail here. You should read sim/lang/lang.inp which is a sample descrip-
tion, and just pattern match. This file is reproduced in the Appendix. NetLanguage is described in greater
detail in the REAL NetLanguage Manual.

I intend three uses for the language. First, it allows you to save experimental scenarios to be
reloaded later. Second, you can draw a simple scenario using the mouse, then use your favorite text editor
to create much larger graphs that are 100 complicated to draw. Finally, you can use it to run simulations
without using a control window. (This is useful if you don’t have access to a Sun.)

REAL Version 2.0 September 6, 1989

The NetLanguage file that you write or generate must be processed as follows. First, the language
should be passed through a preprocessor called lang in sim/bin. This will create two files, lang.c and
extern.lang.h that will have to be moved to sim/sim (alternately, you can set up a soft link from sim/sim to
this file). Then, just type ‘make final’ to rebuild the simulator with the default scenario set to the one
described by your NetLanguage file. You can simulate this scenario without a control window by typing
‘simulate -§°.

In case you are confused, here is a picture of how things work.

/ » Control window
Save Load

~

DATA FILE
(Only stores Nest parameters)

Write Language 4J
NetLanguage file (ASCII)

v
lang < LANG_FILE
make final

simulate -S default graph in control
(stand alone) window

6. Plotting simulation variables

The node functions in REAL have been instrumented to produce traces of certain variables as the
simulation proceeds. I'll describe the nature of these traces, and then how you can plot them out on the
screen or on a printer. Finally, I'll describe how you can trace additional variables.

The plotting function is implemented very simply. Node functions are asked to print out the simula-
tion variable whenever it could change, along with the current simulation time. For example, TCP sources
print out the size of the congestion control window whenever the congestion window could change. These
(time, value) tuples can then be post processed to derive other statistics, such as average values, or can be
plotted out.

To plot the time vs. value graphs for these variables, you must first start up a graphical display tool
called tektool. You can do this by typing:

tektool &

Now, select the tektool window, and type in ‘tty’. This will tell you what the tty for the tektool window is -
it will be of the form ttypX, where X is an integer. To display a graph on this tty, type

REAL Version 2.0 September 6, 1989

P filename X

where filename is a plot file. The semantics of the plot files are described below.

To get a hard copy of the graph, you will need to talk to your local laser printer. Something of the
form

uniq filename | graph | Ipr

will do the job, you may need to consult your local guru for details.

You can select which nodes to plot by bringing up the node data window, selecting the plot option
and setting the node data. This should be done when setting up the simulation, and is described in Section
24. ‘

The files that plot creates are of the form CCCxx, where CCC is a three character identification tag
and xx is the node ID of the node which is producing the plot. The currently available files are

rto: Contains the sequence of retransmission timeout values selected by the node.
rtt: Contains the estimated round trip times.

tao: Contains the actual round trip times.

win: Contains the congestion control window size.

seq: The sequence number of the packet transmitted at that time.

In each case, the X axis is time in seconds, and the Y axis is the data value.

To add your own instrumentation, you have 1o edit the node functions in sim/sim. Choose the vari-
able that you want to plot, and at the appropriate point(s), insert the function call ‘make_plot(filename,
variable);’. For example, to plot the window size, the command I use is ‘make_plot("win", cur_window);’.
To plot real numbers, use ‘make_fit_plot()’. Recompile the simulator (‘make final’), and the plot files will
be produced automatically for each node that has the plot option set.

7. A Note on REAL Configuration

Note that some hard limits on simulation size are defined in the file config.h. If you plan to do large
simulations, you should change this file and recompile the binary. In particular, if you want to simulate
more than 99 nodes, you should reset ABSOLUTE_MAX_NODES to 1000 (or some higher power of 10).

If you would like to do distributed simulation, something that is explained in the technical report and
in the programmer’s manual, you should #define DISTRIBUTE. (The distributed simulation facility is
currently quite unpolished, but you are welcome to try it at your own risk.)

REAL Version 2.0 September 6, 1989

APPENDIX : NetLanguage sample
This is a sample description in NetLanguage that is in sim/lang/lang.inp. The format is explained in the
NetlLanguage manual.

header

{
network:test;
version:1;

}

nest_params {
passtime = 1,0;
wakeups = 0,0;
delay = 0;
logging = false;
broadcast = false;
point2point = true;
timenow = 0,0;
passes = 0;
maxnodes = 30;
MONitor = custom_monitor;

)

real_params {
inter_pkt_delay = 5.0;
ack_size =40.0;
buffer_ratio = 3.0;
buffer_size = 15 ;
telnet_pkt_size =40 ;
ftp_pkt_size = 1000;
ftp_window = §;
telnet_window = §;
decongestion_mechanism = 1;
sch_policy = 3;
router_node = 0;
real_number =0;
pulse_size = 0.0;

)

node_functions {

{
name = VJ_FTP;
function = ftp_source;

}

{

name = VJ_Telnet;
function = telnet_source;
}

{

name = VJ_pulse;
function = vj_pulse;

name = DEC_FTP_source;
function = dec_ftp_source;

}

REAL Version 2.0 September 6, 1989

10

name = DEC_telnet_source;
function = dec_telnet_source ;

)

name = DEC_pulse;

function = dec_pulse;

}

{

name = Vanilla_FTP_source;
function = vanilla_telnet_source;

)

name = Vanilla_telnet_source;
function = vanilla_telnet_source;
]

{

name = Vanilla_pulse;
function = vanilla_pulse;

)

{

name = Malicious_FTP_source;
function = malicious_f£tp_source;
)

{

name = Malicious_pulse;
function = malicious_pulse;

)

{

name = Gateway;

function = router;

}

name = Sink;

function = sink;

)

{

name = CC_Router;
function = real_router;

}
}

channel_functions {

name = Tx_Delay;
function = tx_chan;

}

{
name = Line_Delay;
function = delay_chan;

}
}

monitor_functions {

{

name = Custom_Monitor;

REAL Version 2.0 September 6, 1989

nodes {

edges{

11

function = custom_monitor;

}

name = Default_Monitor;
function = nest_monitor;

}

default {
function = ftp_source;
location = 50,90;
start = true;
repeat = true;
halt = false;
dest =4;
plot = false;
}

node 1 {
function = ftp_source;
location = 50,90;
) .

node 2 {
function = telnet_source;
location = 50,110;
)

node 3 {
function = router;
location = 100,100;
}

node 4 {
function = sink;
location = 150,100;
plot = true;
)

defanit {
bandwidth = 100000;
latency = 0;
channel_stack = tx_chan;
}

{

from 1 to0 3;

}

{

from 2 to 3;

}

{

from 3 t0 4;

REAL Version 2.0

September 6, 1989

12

bandwidth = 1000;
}

REAL Version 2.0 September 6, 1989

REAL NetLanguage Manual

This document describes NetLanguage, a language used to describe simulation scenarios. Net-
Language is purely declarative, and is processed to create C text that is linked to the simulator. This manual
describes the syntax of NetLanguage and describes how it fits into the general scheme of REAL.

1. NetLanguage Syntax

The basic syntactic entities in NetLanguage are keywords, integers, reals and strings. Standard lexi-
cal conventions are used to define these tokens. A NetLanguage description consists of a number of
blocks. Each block declares a logically distinct part of the network. The blocks declare, in order, header,
nest parameters, real parameters, node functions, channel functions, monitor functions, nodes and edges.
Note that each block is preceded by a keyword that describes it.

1.1. Header

The header is used to provide comments to identify the simulation. It has two fields, network and
version. The network field allows a user to name the network. The version field provides additional docu-
mentation. A sample header is

header

{

network : test;
version : 1;

}

These are translated into comments in the C file.

1.2. Nest Parameters

Nest Parameters “are described in Nest documentation and in the REAL Users Manual. Here is a
sample fragment:

nest_params {
passtime = 1,0;
wakeups = 0,0;
delay = 0;
logging = false;
broadcast = false;
point2point = true;
timenow = 0,0;
passes = 0;
maxnodes = 30;
MONitor = custom_monitor;

)

An entry of the form a,b is a time value that represents ‘a’ seconds and ‘b’ microseconds. The monitor
declared should be one of the monitor functions that REAL implements (usually custom_monitor). For
most purposes, this header can be copied without any changes (except perhaps for the maxnodes entry, and
this entry should not be more that 99).

1.3. REAL Parameters
REAL paramters are described in the REAL Users Manual. Here is a sample fragment.

real_params
inter_pkt_delay = 5.0;
ack_size =40.0 ;
buffer_ratio = 3.0;
buffer_size = 15 ;

telnet_pkt_size =40 ;
ftp_pkt_size = 1000;
ftp_window = §;
telnet_window = §;
decongestion_mechanism = 1;
sch_policy = 3;
router_node = 0;
real_number =0;
pulse_size = 0.0;

}

1.4. Node functions

This block declares all the node functions that the simulator will use. The syntax is straightforward.
The only stylistic note is that bracketed subblocks should not be terminated by semicolons. Also, function
names should be a single word. You may use as many underscores as you please, but if you use more than
one word, the language preprocessor will assume a syntax error (this needs to be fixed). Here is a sample
set of node function definitions:

node_functions

{
name = V]_FTP;
function = ftp_source;

}

{
name = VJ_Telnet;
function = telnet_source;

)
{

name = Gateway;
function = router;

}

{
name = Sink;
function = sink;

1.5. Channel and Monitor functions
These are almost identical to the node function declarations. Here is a sample declaration:
channel_functions {

name = Tx_Delay;
function = tx_chan;

}

name = Line_Delay;
function = delay_chan;
}

REAL Version 2.0 September 6, 1989

monitor_functions {

(
name = Custom_Monitor;
function = custom_monitor;

)

name = Default_Monitor;

function = nest_monitor;

) .
}

1.6. Node declarations
Node declarations describe the nodes in simulation. Here is an example that I will discuss:

nodes {

default {
function = ftp_source;
location = 50,90;
start = true;
repeat = true;
halt = false;
dest =4,
plot = false;
)

node 1 {

function = ftp_source;
location = 50,90;
}

node 2 {
function = telnet_source;
location = 50,110;

}

node 3 {
function = router;
location = 100,100;
)

node 4 {
function = sink;
location = 150,100;
plot = true;
)
}

To make it easier to declare the nodes, the first declaration in the block is the default declaration. The
default defines the parameters of each node unless they are overridden by an explicit redeclaration inside
some node. You are not allowed to skip any entries in the defaults declaration, but you may skip as many
entries in the node declaration as you wish.

The number following the keyword ‘node’ is the node ID of that node. The function field is the
name of the C function that should run on that node. The a,b entries in the location field are the Cantesian
coordinates of the node in the control window. (The top left corner is 0,0, and 50 units is about an inch.)
Note that you need not specify the location unless you want to see the network in the control window. In

REAL Version 2.0 September 6, 1989

particular, if you plan to do a stand alone simulation, you can specify the default location to be 0,0. You
should usually set start and repeat to true and halt to false. Dest is the node ID of the sink node to which
data is sent. Finally, you should set plot to true if you want the node function at that node to generate plots.

1.7. Edge Declaration
Here is a sample edge declaration:
edges(
default {
bandwidth = 100000;
latency = 0;
channel_stack = tx_chan;
}
(
from 1to 3;
}

{
from 2 to 3;
channel_stack (
tx_chan;
delay_chan;
}

{
from 3 to 4;
bandwidth = 1000;
}

}

As with the node declarations, there is a default declaration. However, there is an exception here: Net-
Language will allow you to have only a single function on the default channel stack. Thus, if you want to
have multiple channel functions on the channel stack of an edge, you must explicitly declare it each time.
As with node defaults, you are not allowed to skip any fields.

The from..to.. field in the edge declaration declares the node IDs of the endpoints of the edge. The
bandwidth field will accept both integer and real values. The latency in transmission is measured in
microseconds and has to be an integer. The channel stack is the stack of functions that are called in trn by
sendm() when a message has to be sent on that edge.

1.8. A note on usage

Usually, you will not need to change the nest parameter and function declaration sections of the
language file. In most cases, you should just copy these from the file sim/lang/lang.inp.

2. The Place of NetLanguage in REAL

NetLanguage completely describes a simulation scenario, that is, the topology, protocols, workload
and control parameters. Thus it saves the state required to repeat a simulation: you can redo a simulation at
a later date by saving its NetLanguage description.

Since NetLanguage is a human readable ASCII description it can be conveniently edited. You can
take the description of one scenario and process it to create another. This is useful when generating large
simulation scenarios that are painful to draw on the control window.

While it is possible to write out a NetLanguage description by hand, it is more convenient to have
someone write it for you automatically. Precisely this facility is provided by the ‘Write Graph’ command
in the pop up menu in Layer S of the control window. When you select this option, a file called
LANG_FILE that describes the current scenario will be created in sim/sim. You may save this file as a

REAL Version 2.0 September 6, 1989

record of that simulation or can edit it to create new scenarios.

A NetLanguage file has to be processed before it can be used in the simulator. This processing
proceeds in two steps. First, the language description must be translated into C code. The processor is
sim/bin/lang, and it will produce two files in sim/lang: lang.c and extern.lang.h. (You can move these files
to sim/sim or should set up soft links from sim/sim to these files.) The invocation for this step is

lang < filename
Next, this file should be linked into the simulator. You can do this by typing
make final

in sim/sim. The resulting executable, simulate, will now have its default scenario set to the scenario that
you had described in the NetLanguage file.

You now have two options. If you would like to the simulation to proceed without any changes, and
with no communication with a control window (for example, if you don’t have a Sun) then you can run the

simulator in stand-alone mode!. To do so, type
simulate -S

Otherwise, proceed as described in the Users Manual, and the default graph that the simulator will come up
with will be the one described in the NetLanguage file. There is a bug here, in that the display panel for the
REAL parameters will not reflect the values that you placed in the NetLanguage file. What you see is not
what you get, but what you get is what you want. In any case, the simulation report will have the correct
values. Remember that if you want to retain the REAL parameters from the NetLanguage file, you
shouldn’t do a ‘Send Parameters’.

! When you run in stand-alone mode, the simulator will produce exactly the same outputs as it does otherwise. The only differ-
ence is that you cannot control the simulation while it is running

REAL Version 2.0 September 6, 1989

The general scheme of things is presented in the figure below.

—s-Control window

“

Save

"

(Only stores Nest parameters)

Write Language <«——8——/

NetLanLugc file (ASCII)

lang < G FILE
make final

simulate -S default graph in control
(stand alone) window

3. Acknowledgments

The use of defaults in declaring node and edge characteristics was suggested by Ravi Sethi.

REAL Version 2.0

September 6, 1989

REAL Programmers Manual

1. Introduction

This manual provides a detailed description of REAL for users who wish to modify the code or add
to it. Since REAL code (ignoring modified Nest code) spans some 7500 lines of C, it is impossible to
describe all of it in any detail. Instead, I will give a tour of the files comprising REAL, and then some
recipes for things like writing node functions, packet switches and control window code.

You should have read the set of 5 documents on Nest from Columbia. These aren’t very complete,
but at least they will give you an idea of what is going on. You will also need to read the code to fully
understand the system.

2. Tour of the files
The files in REAL can be divided into the following logical classes:

Node functions:
: These are the functions that execute protocols in nodes.
Queune management and routing:
These manage buffers in nodes and gateways, and packet switching.
Distributed simulation:
These are functions to implement DiSREAL.
NetlLanguage generation:
Allow automatic generation of NetLanguage descriptions.
Miscellaneous

These are discussed in subsequent sections.

2.1. Node Functions

Node functions implement computation at each of the nodes in the network. There are three types of
node function: source, router and sink. I will discuss them in this order.

2.1.1. Source

There are eleven source node functions, but almost all of them implement variants of TCP-like tran-
sport layer functionality. The source node function from which all others are derived is vanilla_fipQ.
ftp_source() adds Jacobson’s congestion control modifications. dec_ftp(is vanilla_ftp with the additions
required to do window adjustment the DEC way. malicious_ftp() sends out packets as fast as it can, ignor-
ing all flow control signals. The corresponding telnet sources incorporate modifications to set the sleep
time, which is the time that the source will sleep before it tries to send another packet. Pulse sources are
modified ftp sources that send out a burst of flow controlled packets periodically.

I will now describe vanilla_ftp.c as an example of writing a node function with flow control. The file
starts with some standard headers. The function then declares some protocol variables (such as
round_trip_time, last_ack etc.).

#include "../src/nest.h”
#include "../src/graph.h”
#include "../src/defs.h”

#include "config.h”
#include "types.h”
#include "parameters.i”

extern

enq(), num_in_qQ; /* for queueing retransmitted pkts */
extern PKT_PTR deq(; ol
extern TABLE rt_time[MAX_NODES + 1]; /* round trip time stats */

vanilla_ftp_source()
/* no window adjustment or timeout deviation estimation */
{

/* Misc. variables */

PKT_PTR pkt;

int num, node_number, line_busy = 0;
ident destn, sender, sink;

long key;

timev now, gen, diff;

float erT, timeout;

[* state variables */

timev time_sentfMAX_WINDOW_SIZE];
float round_trip_time, mean_deviation;

int . last_ack, seq_no, last_sent, min_window;

The first executable statement is ‘stop_time()’. It asks Nest to stop the clock while the node exe-
cutes. This corresponds to the assumption that simulation nodes are infintely fast. (You should always start
your node functions with stop_time().) The subsequent lines set some standard variables such as
‘node_number’, the simulation node number for that instance of the node function, and ‘sink’ - the sink to
which this node will send data.

/* dont let any simulation time pass while the node executes */

stop_time Q;
node_number = get_node_id Q;
sink = assigned_sink[node_number];

All nodes are assigned a node type of -1 when they start (in init.c). So, we know that a node is exe-
cuting for the first ime when we see a -1 in source_node_type[get_node_id(Q]. When vanilla_ftp notes this,
it does some initialization of its type and other state variables.

if (source_node_typelget_node_id(Q] is - 1)
/* first time this node has been executed */
{ /* initializations */
hold();
printf(" A new ftp source, node is %d 0, get_node_id();
printf("assigned sink was %d0, sink);
release(1);
source_node_type[node_number] = VANILLA_FTP_SOURCE;
round_trip_time = 10.0;
mean_deviation = 0.0;
last_sent = last_ack = -1;
seq no=0;
alpha_rtt_ftp = (fioat) (1 / (float) 10.0);

REAL Version 2.0 September 5, 1989

/* pretend that you got an INT pkt, go to test */
goto test;

The label ‘recv:’ is the point at which packets are received by the node. This is done by the ‘recvin()’
function. Now, the packet is processed according to its type. (This processing is essentially a state
machine. It is a good idea to first draw out the state diagram, and then write code around it, which is what I
did.)

recv.
sender = recvim (&destn, &key, &pkt);
switch (pkt->type)
/* use packet type to decide what to do */
{

When an acknowledgment is seen (type ACK), we first check for duplications (if its sequence
number < last_ack). Since acks can be aggregated, all the packets that are acknowledged by the ack have
to be ticked off, and their contribution to the round trip time marked. (These RTT estimates are inaccurate,
but generic TCP doesn’t bother about that.) make_fit_plot(), described in the users manual, generates data
for plotting.

case ACK:
{
timev now, diff;
float tao;
int i, last;
now = runtime ();
/*
* last_ack is the highest seq_no that has
* been acked
*/

if (pkt->seq_no > last_ack)
/* ack not seen before */
{
last = last_ack;
for (i = 1; i <= pkt->seq_no - last; i++)
{
diff = time_minus (now, time_sent[(last_ack + i)
% telnet_window]);

/* actual round trip time */
tao = make_float (diff);
/* estimated round trip time */
round_trip_time = round_trip_time +
alpha_rtt_ftp * (tao - round_trip_time);
/* plot data */

REAL Version 2.0 September 5, 1989

make_fit_plot ("tao", tao);
make_fit_plot ("rit", round_trip_time);
make_entry (tao, &rt_time[node_number]);

)
/* update state */
last_ack += (pkt->seq_no - last);

}
hold Q;
/* getrid of the ack packet */
free (pkt);
release (1);
goto test;

INT packets are generated from the trunk, and are used to indicate that the data has been sent out
from the output line, When this happens, since this is a ftp node, and we always have data to send, we gen-
erate a new packet and send it. ftp_window is the window size set in the control panel.

case INT:
/* line is now free */
hold();
line_busy = 0;
free(pkt);
release(1);

/* figure out window size */
min_window = ftp_window;
make_plot("win", min_window);

If we have a retransmission pending (i.e. it was generated, but the line was busy so the packet
couldn’t be sent) then it must be sent before any data packet. The function num_in_q() returns the number
of retransmission packets that are pending. We check to see if any of these packets have been ack-
nowledged since the time they were enqueued, and if they were, they are discarded. Else one of them is
sent out.

num = num_in_q (node_number);
while (num-- !=0)
/* send the timeout packet */
/* but only if an ack has not been received in the interim */

pkt = deq (node_number);
if (pkt->seq_no > last_ack)
/* ok to send , even if later */
{
if (pkt->seq_no <= last_ack + min_window)
/* ok 1o send now */
{
gen = pkt->gen_time;
diff = time_minus (now, gen);

REAL Version 2.0 September 5, 1989

timeout = beta_rtt * round_trip_time;
pkt->gen_time = runtime ();

line_busy = 1;
num_retransmissions[node_number]++;
ftp_safe_send (pkt, timeout, 0, &last_sent);

goto recv;
} else /* save for later */
eng (node_number, pkt);

} else {

hold (;

free (pkt);

release (1);
)
/* drop pkt on the floor */

}

Two things can prevent a packet from being sent out: the flow control window can be full, or the out-
put line can be busy. The test: label tests for both cases, and if both of these conditions are absent a packet
is generated and transmitted. (We need to test for a busy line since we can jump to ‘test:” from more than
one location, and it is not always true that the line is free at that time.) The dest field is processed so that
local nodes get the correct value even in the global (DisREAL) name space. The time at which the packet
is sent is remembered, and the timeout value is set. A call to ftp_safe_send() initiates packet delivery. This
routine generates timeout packets and makes sure that timeouts are generated in nondecreasing order in vir-

tual time.

/* must have a window, and the line should be free */
if (last_sent < last_ack + min_window && !line_busy) {

)

hold();

/* cons up a packet */

pkt = (PKT_PTR) malloc((unsigned) sizeof(PKT));

release(1);

/* set parameters */

pkt->size = ftp_size;

pkt->gen_time = runtime();

pkt->type = FIP;

pkt->seq_no = (seq_no)++;

pkt->dest = assigned_sink[node_number];

if (pkt->dest < ABSOLUTE_MAX_NODES)
pkt->dest += ABSOLUTE_MAX_NODES * realnum;

pkt->alpha = alpha_f;
pkt->source = ABSOLUTE_MAX_NODES * realnum + node_number;

/* update state */

time_sent{(pkt->seq_no) % ftp_window] = runtime();
line_busy = 1;

timeout = beta_rtt * round_trip_time;

/* send out the packet */
ftp_safe_send(pkt, timeout, 0, &last_sent);

break;

REAL Version 2.0 September 5, 1989

If a timeout is received, the packet has to be retransmitted. We first check if the timeout was spuri-
ous. If so, we ignore the timeout. Else, the retransmission counter is updated. If we are able to send the
packet, we do so, else it is enqueued to be dealt with later.

case TIMEOUT:
/* may have been acked */
if (pkt->seq_no > last_ack)
/* cant ignore */
{

/* resend */

now = runtime();

pkt->type = FIP;

hold();

min_window = ftp_window;

/* can send the pkt */

if (pkt->seq_no <= last_ack + min_window && !line_busy) {
timeout = beta_rtt * round_trip_time;
line_busy =1,
pkt->gen_time = runtime();

num_retransmissions[node_number]++;

ftp_safe_send(pkt, timeout, 0, &last_sent);

} else
/* can’t send : save it */
enq(node_number, pkt);

release(1);

} else
/* dump pkt */

holdQ;
free(pkt);
release(1);
}
break;
case DROPPED:
/* kludge - not used any more */
free(pkt);
break;
default:
hold();
free(pkt);
release(1);
pr_error("ftp_source recvd. a pkt of unknown type ");

This basic structure of a source described here is modified to implement the changes made by Jacob-
son and by Jain. It is best to read their papers/technical reports before reading the code.

The major addition that the telnet code makes is to incorporate handling for 2 WAKEUP packet that
indicates that it is time for the next packet to be generated. The ‘sleepy’ variable indicates that the source is
not active at that time. Inactive hosts are allowed to send retransmissions, but not new data packets.

REAL Version 2.0 September 5, 1989

Pulse sources use the pkt->alpha field to generate inter-pulse spacings. They set pkt->alpha, an oth-
erwise disused field, to signal to a channel function that they have sent the end of a pulse. This is used by
the channel function to call reliable() and send a PULSE packet back to the source to start off the next
pulse.

One major limitation of Nest is that it allows only one thread of execution per node. Since a timer is
a logically separate thread of execution, it is difficult to set timeouts. In REAL, timeouts are set by sending
oneself a packet that will return after a known delay. When the timer packet is received, it is as if we
received a timer interrupt and this event is used to trigger off the actions that should happen at the interrupt.

The problem with this is that only channel functions are allowed to call ‘reliable()” which is the only
function that knows how to send packets with a known delay. So, channel functions have to be involved in
setting timeouts. A node function computes at what time it wants TIMEOUT, WAKEUP and PULSE
packets, and tell this to the channel function. The channel function calls reliable() on behalf of the node
function and things work out. The scheme is quite ad hoc, but that is all that is available at the moment.
What we really need is a way to allow reliable() to be called from a node function. For example, the file
reliablenest.c contains a modified version of reliable() that can be called from the monitor. An equivalent
for node functions can probably be cooked up.

2.1.2. Router

router.new.c is the file that contains the node function for the switch. The router is complicated
mainly by the fact that DEC routers need a lot of processing. The basic functionality is actually not too
complicated. Let us step through the file. I will skip parts devoted to processing DEC related stuff. So, it
will not appear here, even though it is present in router.new.c. '

The file opens with a declaration of a debugging flag R_DEBUG. If this flag is set (usually in
switches.c), then some debugging information will be printed out as the simulation proceeds. There are a
number of such flags, and to use them, you should modify and recompile switches.c.

Following the standard includes, the state variables used by fair queueing and DEC queueing are
declared. The DEC variables are complicated, and you should read the algorithm described in their techni-
cal report (part IV) to see what they mean. To save on array sizes, output lines are numbered from 1 to
MAX_FAN_OUT. The mapping is stored in the array q_number and is done during the first time the node
is executed. During this time, some other simulation variables are also initialized.

int R_DEBUG =0;

/* Router debug flag */

extern int LITTLE_DEBUG;
extern int DEC_DEBUG;

#include "../src/mest.h”
#include "../src/graph.h”
#include "../src/defs.h”
#include "config.h”
#include "types.h”
#include "parameters.i”

extern PKT_PTR select_from_op_q Q;
extern timev *convert (;
externint q_num_of_conv[MAX_NODES + 1J]MAX_CONVERSATIONS];
extern int num_active]MAX_NODES + 1][MAX_FAN_OUT];
extern TABLE so_tossed[MAX_NODES + 1]; /* Number of packets
* tossed by source */
extern TABLE so_gw_wait{MAX_NODES + 1][MAX_NODES + 1];
externint num_buffers_allocated[MAX_NODES + 1][MAX_FAN_OUT];

/* some code skipped */

REAL Version 2.0 September 5, 1989

/* set queue numbers */
for (i = 0; i < MAX_NODES + 1; i++)
if (route[node](i] is i)
q_number(i} = count++;

The main loop of the router gets a packet and processes it. After the packet is received, some state
variables are set up - so: the source, dest: the immediate destination, final_dest: the ultimate destination,
gnum: the line on which to send, conv_id: the conversation to which the packet belongs.

for (ever) {
/* get a packet */
sendr = recvim(&destn, &key, &pkt),
safe_print("received a packet at the router ", pkt);

/* set up useful values */

so = pkt->source;

final_dest = pkt->dest;

if ((final_dest / ABSOLUTE_MAX_NODES) is realnum) /* local */
dest = route[node][pkt->dest % ABSOLUTE_MAX_NODES];

else
dest = route[node][cc_router];

/* dest is the actual next node - not the eventual destn */

conv_id = hash(node, so, final_dest);

/*
* if this is a new conversation, conv_id will be assigned a
* new number, else it is an old value
*/

gnum = q_number{dest};

q_num_of_conv[node][conv_id] = gnum;

/* gnum is the output line on which to send */

now = runtime();

pkt->arr_time = now;

Now the packet is processed according to its type. If it is of a type that needs to be forwarded, the schedul-
ing policy is used to decide what has to be done to the packet.

switch (pkt->type) {
case TELNET:

case FIP:

case ACK:

For fair queueing (FQ) gateways, the arrival of a packet is an event which triggers recomputation of
state (the round number). Since this computation is rather involved, it is shunted to function new_arrival().
new_arrival() will also create conversation state for new conversations. Since this needs to be done for
other policies as well, check_conv() is used to check for state, and if it doesn’t exist, add_conv is used to
add this freshly started conversation to the set of conversations. Note the implicit establishment of

REAL Version 2.0 September 5, 1989

connections.

if (policy is FQ !l policy is HOMEBREW)
/1!

* discard any conversations that have become
* invalid and also establish a checkpoint
*/
new_arrival(conv_id, gnum, pkt, dest);
else if (\check_conv(conv_id, gnum))
add_conv(conv_id, gnum);
™
* FQ will update the # of conversations
* automatically - else we have to figure outif a
* new conversation has started on the line, and if
* 50, add this conversation to the list of
* conversations on the line

*/

Ignoring manipulations for DEC, the next step is to check if the packet can be sent out right away (if the
output line is free).

if (busy[node}[qnum])
/* line to dest is busy , so buffer */

safe_print("line was busy", pkt);

If it isn’t we check if there are enough buffers to store the packet. If there aren’t enough buffers,
then we need to drop a packet. Depending upon the decongestion policy selected, we drop a packet from
the head, tail or at a random position in the queue. If the scheduling policy is FCFS, instead of dequeueing,
we will just drop the incoming packet (unless we have to do random decongestion, in which case,
decongest_random() is called).

* decongest if no more buffers */
if (policy != FCFS_FCFS_PKT && policy != DECBIT) {
if (all_op_q_full(gnum)) {
switch (decongest_mechanism) {
case 1: decongest_last(qnum);
break;
case 0: decongest_first(qnum);
break;
case 2: decongest_random(gnum);
break;
)
}

/* in any case, chuck into a buffer */
if (put_in_op_q(conv_id, pkt) = ERROR)
pr_error("Bug in decongestion code ™);
) else { /* policy is fcfs or decbit */
if (all_op_q_full(gnum)) {

REAL Version 2.0 September 5, 1989

10

if (decongest_mechanism is 2) /* random */
decongest_random(gnum);
else {
/*
* drop this packet
* . so0 do nothing
*®
*/...
free(pkt);

Once buffers have been created, the packet is placed into the appropriate queue.

if (put_in_op_g(conv_id, pkt) == ERROR)
pr_error("Output buffer full - CONGESTION ");

If there is space in the buffers, the packet is placed in it, and buffer length statistics are updated.
Other state regarding time of update is also set.

If the line was free, then the packet sent out, and appropriate statistics regarding the packet are col-
lected. If a bit needs to be set, this is done now.

if (set_bit(conv_id, pkt)) {
pkt->decbit = 1;
)

sendm(dest, 0, pkt);
/* rest of file skipped */

If an INT packet arrives, the processing is similar to the case when the line is free. do_transition() and
set_bit() do some processing needed to implement DEC bit setting.

2.1.3. Sink

The sink node function is a universal receiver. It acknowledges every packet it receives with an ack
packet that contains the sequence number of the last in-sequence packet it has seen. The sink uses a small

trick - the packet it receives is converted into an acknowledgement merely by changing its parameters.

2.2. Queue Management and Routing

The queue management functions are written in an object oriented and layered style. The queue
objects are manipulated by a small set of functions. Each layer provides services that the layer above uses
to provide its own services.

The data structures for the queues are in queues.c. Packets are buffered in a per-conversation linked
list and are accessed by two pointers: one points to the packet at the head of the queue, and another points
to the tail. Each packet has a field that points to the next packet in the queue.

REAL Version 2.0 September 5, 1989

11

CONV_TABLE & TABLE

[cip] '

[aroM]

/""a’"

CONV_ TABLE _TA\L

OUTPUT LINE @QNUM HAS

CONVERSATIONS 1 AND 3

Conversations are indexed by a conversation identifier (CID) that uniquely identifies each source-
destination pair. The CID is equivalent to a virtual circuit number, and is used to manage resources that are
allocated to that conversation. The packets queued for a conversation with CID = C are pointed to at the
head by conv_table[C], and at the tail by conv_table_tail[C]. q_num_of_conv[C] is the number of the out-
put line on which C sends packets.

Given the number of an output line, we need to keep track of the set of conversations that are using
it. This is managed by a linked list of conversation structures that contain the CIDs of the conversations on
that output line. q_table[Q] points to the head of the linked list of conversations that share output line Q.

The state of the queues is summarized in two arrays - num_in_op_q[C] is the number of packets in
conversation C’s queue. num_buffers_allocated[Q] is the total number of buffers used by output line Q.

The functions defined in queues.c allow access to elements of queues, and to the queue state. init_g(
initializes queue state. all_op_q full) and op_q mtQ allow read access to the queue state.
put_in_op_q(C) places a packet at the tail of conversation C’s queue. get_from_op_q(gets packets from
the head. dequeue(p) removes a packet pointed to by p from its conversation queue without deleting it.
get_num_in_op_q() returns the number of packets in a conversation’s queue. fc_fs() returns a pointer to
the the packet at the head of a queue (if this packet has to be removed, it must be explicitly dequeue).
get_num_active() returns the number of conversations on an output line that have packets queued to be
sent. dump_q(C) prints out the packets queued in the queue for conversation with CID C.

The next layer handles decongestion (packet dropping) using the functions defined above.
decongest_first(Q) drops a packet from the head of the queue of the conversation that has the most packets
queued up in output line Q. decongest_last(Q) acts similarly, but drops a packet from the tail of the longest
queue. decongest_random(Q) drops a packet chosen at random from the set of all packets queued at that
output line. :

Conversation management is done using three functions add_conv(), delete_conv() and
check_conv(). check_conv(Q) checks if a given CID is present in the list of conversations using output
line Q.

Scheduling policy management is done in layer 3 of the queueing hierarchy. get_fcfs_pkt(Q) returns
a pointer to the packet that arrived first at output line Q and at the same time it dequeues this packet. Thus,
to implement FCFS scheduling, the router has to make a call get_fcfs_pkt(Q), and the appropriate packet
will be presented to it.

get_min_bid(Q) returns the packet that has the least bid amongst all the packets queued on output
line Q. find_min_finish(Q) returns the minimum finish number amongst all the packets queued on output
line Q. It is used to recompute the round number in Fair Queueing.

REAL Version 2.0 September 5, 1989

12

The top layer of queueing deals with packet scheduling and is done in scheduler.c. The function
select_from_op_q(looks at the policy that has been selected for the simulation and calls get_fcfs_pkt(or
get_min_bid() accordingly. Some policies in select_from_op_qQ have been declared but not implemented.
These used to be implemented in an earlier incarnation of the simulator, and have not been ported to this
version. The functions new_arrival() and remove_old_conv() do some processing needed for Fair Queue-
ing.

The entire queueing hierarchy exports a single function: select_from_op_qQ, which is called by the
router. Once the policy has been specified, a call to this function automagically returns with the appropriate
packet. .

node_queue.c provides queue management for retransmitted packets in a node. The interface is
through the functions enq(), deq() and num_in_q() which place a packet at the tail of its queue, remove it
from the head, and tell the queue length.

2.3. Distributed simulation

The distributed version of REAL is called DisREAL. Distributed simulation allows users to spread a
simulation across several machines. The basics of distributed simulation are described in the technical
report. Unfortunately, it does not seem likely that this facility will be useful in simulating networks with
high speed links.

The files that fall in the category are:

cc_router.c This contains the code for real_router() which implements cross computer routing.
When this node function receives a Nest packet, it places the packet in a buffer where the monitor can pick
it up. At the end of the pass, the monitor converts the virtual packet to a real packet and sends it over a
BSD socket to the simulation master. If the packet is not destined for a remote host (i.e. its high order digit
is the same as the local REAL number) then it is merely forwarded on its way. There is a bug here - the
packet is sent even if the INT packet from the previous packet has not arrived (that is, the outgoing line is
assumed to be infinitely fast). This has to be fixed by inserting code from router.new.c, or modifying
router.new.c to do cross computer routing. This will have to be done before DisREAL gets used in any big
way.

coord.c This file contains functions that a REAL monitor links in to be able to coordinate its simula-
tion with other REAL simulations. The function init_socks() opens 2 BSD socket ready to receive on
MASTER_PORT. The function create_receive_connection() defined in sockets.c takes care of the details
necessary to do this.

coord() works in two phases. In the first phase, it sends the master all the packets that had been
stored by cc_router() and follows these by an END packet. It then waits for the master to send it a mes-
sage. If the message is a packet, the packet is delivered using deliver_pkt(). If is a PROCEED signal,
coord() returns to the monitor, and the simulation proceeds. coord.c also provides the queue management
necessary to buffer packets stored by cc_router(). These are the functions add_cc _pkt(and get_cc_pktO.

machines.c The file machines.h contains a list of names of machines on which to run DisREAL and
their REAL numbers. create_machine_listQ) creates a list of machines read from the file machine.h.
step_machine() steps through the list, returning pointers to machines and their associated REAL numbers.

real_master.c The master function performs two functions: synchronization and routing. The master
does simple message based synchronization: when END messages have been received from all the monitor
functions in the distributed simulation, PROCEED messages are sent out to them. The communication
between monitors and the master is through packets with a format defined in real_master.c. The main loop
of real_master reads packets off from any socket that is ready (using ‘select()’). The packet is then pro-
cessed according to its type.

The master has to decide two things: on which socket to send out the packet, and how much delay
the packet should receive. The first is done by figure_out_sock(), the the second by set_delay(. At the
moment figure_out_sock() merely divides the global destination address by ABSOLUTE_MAX_NOPDES,
and takes the integral part as the realnum of the destination. set_delay() assumes that the cross computer
delay is always 1.5 seconds and computes delays on this basis. This value is written into the packet, and the
packet is sent out to the destination simulation. For example, if a packet was generated 1 second before the
pass time, then the destination computer is asked to deliver the packet 0.5 seconds after it receives it.

REAL Version 2.0 September 5, 1989

13

Clearly, these functions have to be made more general. The delay on the cross computer line should
be used to determine the additional delay that the packet should be given in the destination simulation. The
routing should involve a global routing table, and perhaps policy routing can be done. However, this
requires something like EGP between all the monitors, and I am not too enthused about implementing that.

If the master receives an END packet, then the master checks if all the monitors have sent out END
messages. If they have, then the PROCEED message is sent to all the monitors.

The basic socket manipulation code is in sockets.c, and most of this has been stolen from Stuart
Sechrest’s socket primer.

2.4. NetLanguage generation

NetLanguage has been extensively described in the NetLanguage manual. Here, I will describe how
to add features to NetLanguage, and a little bit about automatic NetLanguage generation.

NetLanguage is implemented using lex and yacc, and I expect that you know how to use these tools.
The files for the language are in sim/lang. lang.lex contains definitions for creating a lexical analyzer using
lex. The definitions are pretty straightforward. lang.yacc is the yacc input file. Note the complications
introduced by linked lists: one needs to differentiate between the first function in a list and the rest. The
actions are generally printf statements to generate C code that will actually create the graph structures. This
kind of indirection is needed in order to be able to link in functions whose addresses are not known at
structure generation time.

The automatic generation of NetLanguage poses an interesting situation. The basic problem is that
the simulator knows about function addresses, but not their names. Hence, it needs to access the symbol
table and read off the function names to get back the ascii names. I initially tried to decipher the a.out file
for the simulator, but that was too complicated. Instead, I invoke the ‘nm’ system command to extract
these names. The result is filtered through an awk script nm.awk and read into an internal symbol table
organized as a binary tree keyed on function addresses. This is then used to translate from function
addresses to ascii names.

tree.c contains functions to create a generic binary tree and manage it. sym¢ab.c contains functions to
create a symbol table and access it. The file writelang.c goes through the graph structure and prints out a
language file. If the language definition is changed, writelang.c should also be modified.

2.5. Miscellaneous

channels.c This file contains two channel functions called tx_chan() and delay_chan(). tx_chan() is
used to add transmission delay to a packet. It looks at a packet size and the transmission line speed to
determine the transmission delay for a packet. It then calls delay_chan() (note that I don’t use the Nest
chan_stack facility - I didn’t understand it when I wrote this). delay_chan() looks at line characteristics and
adds latency delay. It also sends ghost (INT) packets back to the sender to tell it that the line is now free.

NEST does not allow reliable() to be called from a node function. This a major problem with
timeouts, since there is no way for a node to set a timeout value directly. To get around this, delay_chan()
has been kludged to generate timeouts, pulse signals etc. The code is not pretty, but it is the best I could
do.

config.h This file contains configuration paramters and other useful definitions. If you want to do
large simulations, you must make sure that you do not exceed the limits defined in config.h. If you do, reset
these values and recompile the binary.

sim.c This has main() for the simulator. It reads in command line arguments, and then calls simu-
late(), never to return. The file declares globals and simulation parameters that are externed to the other
files through parameters.i. sim.c #includes lang.c, which is a C file created by processing a NetLanguage
description. This becomes the default graph for the simulation. If a stand alone simulation (simulate -S) is
specified, then this is the network to be simulated.

hash.c This file contains functions to translate from a source destination pair to a conversation ID. It
used to be a hash table, but I found that a plain old array works with much less trouble, so I switched back
to Neanderthal coding. The file exports two functions: hash() and invert().

REAL Version 2.0 September 5, 1989

14

init.c Some initializations of queues, tables and other simulation variables.

monitor.c This file contains custom_monitor(), which is the monitor function that REAL uses.
custom_monitor() does a number of things. The basic functionality is to open a private socket to the con-
trol window (as opposed to the NEST socket), and then to listen on that socket for commands. The func-
tion also calls coord() to coordinate with other REALSs to do distributed simulation. Since the monitor is
called at every pass and can access all global variables, it is used to do things like printing out time ticks,
printing out simulation reports etc. Here is a guided tour through the file.

After includes and declarations, the monitor checks to see if this is the first time it is executing. If so,
it does some initializations, prints out the simulation parameters using dump _parameters() and tries to open
a socket to the control window. The variable Log_mon_connected is set if the socket is able to open. If
the socket cannot be opened right away, a half second timeout is set, and we try again.

When connection is established, the monitor listens for a message. nbrecv() from sim/src/nbsock.c
does a non blocking receive (if a select for read fails, the recv falls through). The received message is then
serviced by service(). At this point, if distributed simulation is enabled, coord() is called.

service() looks at the first byte of the message to see if it is a special control message (one of dump,
restart, kill or writelanguage). If itis, it is used to execute a function. This is equivalent to a non-blocking
remote procedure call. If the message is not a special command, it is assumed to be a ‘send parameters’
message, and the simulation parameters are set to values received over the socket.

try_to_dump() tests if the time now is a multiple of the control parameter DUMP_INTERVAL
(defined in config.h). Ifitis,a simulation report is printed out.

set_assigned_sinksQ, set _plot_options() and set_line_speeds() set these values from the parameters
received over the Nest socket as part of the graph structure.

plotting.c This file contains two functions make_plot() and make_fit_plot() that are described in the
user manual.

routing.c The function route _graph(g) in this file takes a pointer to a graph structure, and figures out
the shortest hop-count routes between all pairs of nodes. This implements Dijkstra’s all pairs shortest path
algorithm, and is based on pseudocode in Bertsekas’ networks book. The routing is static and centralized.
If we do true EGP like exchange of routing tables between REALS, this has to be rewritten.

switches.c This file collects debug flags defined all over the place. The idea is that setting a flag will
involve recompiling a small file, and a relink, instead of recompiling a large file. Also, it is easier to seta
number of flags all at once.

table.c This contains the functions necessary to manipulate and print out a report of a simulation. It
exports two functions - make_entry(t) and make_time_entry(t) that stores floats and timevals respectively
into the table that t points to. Tables are ‘stored with two fields - mean and num_entries. The mean stores
the sum of all the entries and when it has to be printed out, this is divided by the number of entries. One
majar problem is that the formatting is very sensitive to changes. If you change any fields, good luck!

exptest.c This is used to check if the random number generator on the machine you are using is up to
par or not. It just builds up a histogram of exponentially distributed values, and prints it out. You can eye-
ball this using graph(1) or run it past your favorite randomness tester to be sure that you are not let down
by the simulator’s random number generator. On a Version 9 Unix, use ‘grap !picltroffilp’, on 4.3BSD use
‘graph -g1 -1llpr -g’.

Makefile The makefile is quite standard. Define CFLAGS, LDFLAGS and LINTFLAGS for cc, Id
and lint options. ‘make final’ will get you the binary for the simulator. old: is for backward compatibility.
clean: will remove droppings created by plotting. real_master: will create the real_master.

3. Cookbook

This section of the manual is for the not-so-adventurous programmer who wants (0 make
modifications to the system without having to figure out how the whole thing works. To this end, here are
some recipes for modifying things like the control window, statistics collection etc. By necessity, this sec-
tion is incomplete and suggestions are welcome.

REAL Version 2.0 September 5, 1989

15

4. Modifying random number generation

The random number generator used in REAL is random(3). The macro RANDOM defined in
config.h makes a call to this system utility. If you wish to use your own generator, change the definition.
You can modify change the generator state calling initstate(3) and setstate(3) from the monitor.

4.1. Modifying config.h

config.h has declarations that are used to size the simulator. MAX_NODES is the number of nodes
in the current simulation. ABSOLUTE_MAX_NODES is the nearest power of 10 larger than the max-
imum number of nodes you intend to have in your simulation. No gateway should have more than
MAX_FAN_OUT outgoing trunks. MAX_CONVERSATIONS is the largest possible number of conver-
sations in a simulation. MAX_WINDOW_SIZE is the largest possible window size.

Two definitions control report generation: DUMP_INTERVAL is the time in seconds between
reports. DUMP_FILE is the name of the report file. DISTRIBUTE is defined if you would like to have
distributed simulation.

4.2. Modifying NetLanguage

If you want to add a new parameter to the language, or to change it, you will need to make the fol-
lowing changes: First, change lang.lex to recognize any new tokens. Modify lang.yacc to add the new
token, the new production and the semantic actions necessary for that production. Change lang.inp to add
the new construct to the sample language input. (This will allow you to check your work.) Now, type in
‘make lang.c’. If everything works correctly, the lang.c file should be created. Change directory to
sim/sim, recreate the binary file, and run in single user mode to test that the C code generated is correct.
You will need to modify writelang.c to refiect the change in the language syntax.

Here is an example of how this works. Suppose that you want to add a new paramter 10 the simula-
tor, and want this parameter to be described in NetLanguage. I will assume that the parameter is a global
that is declared in sim.c. The place to add this parameter is probably the real_parameters section of Net-
Language. Let us suppose that the parameter is called my_param.

First, you should decide the syntax the language addition should have. In this case, pattern matching
with other parameter declarations, an appropriate syntax would be

my_param = 5.5;
Next, let us modify lang.lex to recognize the token my_param. Simply add the rule
my_param {return MY_PARAM ;]

to this file, along with the rules for the other parameters. (5.5 is a floating point number and will be recog-
nized as F_NUMBER.) :

We are now ready to modify lang.yacc. Note that real_params are declared in a paramlist. Modify
the ‘param’ non-terminal to add ‘my_param’ to the list. Now, add the rule for ‘my_param’. Pattern match-
ing from the rules already there, this should be

my_param : MY_PARAM =" F_NUMBER
What about semantic actions ? We know that sim.c declares a global called ‘my_param’, so the
action is just
fprintf (g, "my_param = %f;0, $3);

Finally, declare MY_PARAM in the %token list at the head of lang.yacc. You are done with modification
to NetLanguage.

Now, change lang.inp to add your parameter to it. Typing in ‘make lang.c’ will tell you if you did
things right. The lang.c file produced should be correctly created, and should link in with sim.c in sim/sim
correctly.

You still have to modify writelang.c Find the place where the other parameters are printed out. Add
your parameter to the list, and recompile writelang.c. This will make the addition consistent.

P(my_param = %f;, my_param)

REAL Version 2.0 September 5, 1989

16

4.3. Modifying the control window
The control window can be modified to add

1) New parameters in Layer 4

2) New action in pop up menus
Instead of describing how to make changes for each possible menu (there are 5 of these), I will describe a
method to make these changes that is almost painless (and mindless). The trick is to grep in sim/display for
keywords that are close to where you want your new entries. These will bring up new keywords that are
related. Keep grepping till you have found all the places that have a keyword or something very close to it,
and make all the obvious changes. Let me demonstrate this fuzzy technique with an example.

Suppose that you want to add an entry ‘my_entry’ to the entries in the menu that pops up when you
press the right mouse button in layer 5 over a node. Note that the node menu already has an entry called
‘Set Node Data’. So, just grep for ‘Set Node Data’ in sim/display. This is what you get

(ra 42)—> grep "Set Node Data" *.c *.h
menu.c: "Set Node Data", {Set_N_Data, nil},

So, there is something to change in menu.c. Also, it looks liice searching for Set_N_Data is a good idea.
Let us do that.

(ra 47)—~> grep "Set_N_Data"” *.c *.h

actions.c: action_table{Set_N_Data].opcode = Set_N_Data;
actions.c: action_table[Set_N_Datal.function = n_set_data;
actions.c: action_table[SetN_Data].mouse = Node;

actions.c: action_table{Set_N_Data].fixed = No_Arg;

actions.c: action_table[Set_N_Datal.name = "SET_NODEDATA";
events.c: Meta (Right), {Set_N_Data, nil},

menu.c: "Set Node Data”, {Set_N_Data, nil},

action.h:#define Set_N_Data (End_Node + 1)

action.h:#define Show_N_Data (Set_N_Data + 1)

Looks like pay dirt! We need to make changes in actions.c, events.c and action.h. Now, let us search for
"n_set_data”.

(ra 48)—> grep "n_set_data” *.c *.h

actions.c:extern n_set_data (), n_show_data Q,
n_set_func Q; '

actions.c: action_table[Set_N_Data].function = n_set_data;
node.c:n_set_data (nodeptr) /* interactive */

Ok, we add node.c to the things to change. Now, search for SET_NODEDATA.

(ra 49)--> grep SET_NODEDATA *.c *.h
actions.c: action_table[Set_N_Data).name = "SET_NODEDATA";

No new names have come up, so we are practically done. In each of the files that have come up, find
out what has to be changed, and pattern match. For example, in events.c, we see

18 eventmap default_node_map(] =
19 {
20 Left, (Move_Node, nil},
21 Middle, {Start_Edge, (pointer) -1},
22 Right, {Act_Menu, "Node Menu"},
23 Shift (Left), {Delete_Node, nil},
24 Shift (Right), {Show_N_Data, nil},
25 Meta (Right), {Set_N_Data, nil},
26);
Looks like we are mapping mouse clicks to actions. Just select which mouse click should do my_entry’s
actions. Suppose it is Shift (Middle). Then add

Shift (Middle), {My_Entry, nil]r.

REAL Version 2.0 September 5, 1989

17

to the list. Similarly, modify all the other files.

As another example, if you want to add a parameter to the control window Layer 4, you will need to
change display/sunvparam.c, display/comm.c and sim/monitor.c.

There is something extra that you need to do if you want to communicate data from the control win-
dow to the simulator. You have a choice of using the Nest socket or the REAL socket. I would recommend
modifying the REAL socket - it is much cleaner. Suppose that you have installed a new parameter in the
Layer 4 subwindow. To send it to the simulator, you will need to add a function to comm.c that writes the
parameter value (that you have obtained from the window) into a packet to be sent over the socket. When
this is received at the other end by custom_monitor() (in monitor.c), you will need to modify service() so
that the parameter is read in. You may want to make the parameter a global, in which case declaring it in
sim.c and adding it to paramters.i will do the trick.

REAL Version 2.0 September 5, 1989

