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ABSTRACT

Task specification and management is presented as one aspect of a complete model
Jor managing the VLSI design process. I describe the appropriate role of tasks in the
design process, their hierarchical specification, including a detailed description of the
grammar used, how they are invoked, and then present a prototype implementation
integrated into the U. C. Berkeley CAD environment. The task management model
presented includes a Template Manager for handling static operations on task
specifications, called templates, and a Tool Navigator for dynamic operations including
running, previewing, suspending, and resuming tasks.
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Task Specification and Management in the VLSI Design Process

1. Introduction

1.1. The VLSI Design Process

As VLSI designs have grown larger, CAD tools have been developed to assist VLSI
designers by automating some of the steps in the design process. Although some
designers were initially skeptical, maintaining that the results of a program would not
match those done manually, these tools are now widely relied on to produce good-quality
results in a reasonable time-frame. Work has also been done in the area of design data-
bases, such as Oct [SPIC89], developed here at U. C. Berkeley, which provide the struc-
ture needed to organize the data and establish common interface formats for the CAD
tools, and of version servers, such as the prototype also developed here at U. C. Berkeley
[SILV89], which organize the design data with respect to versions and configurations.

These developments lay the groundwork for study of the process of design itself.
With an increasing portion of the design completed using CAD tools, and the design
objects developed held in the database, the process is visible and can be captured, under-
stood, and perhaps most importantly, assisted and better managed.

The study of design processes is inherently different from the traditional treatment
of processes in the manufacturing environment, which deals with the issues of streamlin-
ing and improving a particular process which, once developed, will be repeated many
times. A design process is characterized by uniqueness and unpredictability. It is futile to
attempt to determine beforehand the exact sequence of steps in the process, and unpro-
ductive to stifle a designer’s creativity by applying rigid constraints. Instead, the under-
standing of VLSI design processes must concentrate on the procedural and tool sequenc-
ing behavior exhibited by designers in managing their design efforts manually.

In working with various types of complex software systems, there is a propcnsity of
individual users toward developing their own favorite methods of interacting with the
system. There may be many ways to reach a particular goal, but most people find a path
with which they are comfortable and rarely deviate from it. Some may keep scraps of
paper listing their favorite incantations, while others develop script files and complex
aliases for these sequences. A model of the design process, then, must accommodate this
notion of common sequences, of low-level activity related by function rather than by
association with any particular design object.

Most designers will impose some form of organization on their work, such as keep-
ing folders of drawings related to a piece of the design, maintaining online directories for
related design data, or imposing structure through naming conventions, to cite a few
examples. Accordingly, the design process model must also include a facility for organ-
izing the design and for carrying out the system equivalent of "getting out the notebook
on the ALU design". This context facility must be flexible enough to support the various
styles and degrees of organization exhibited by designers. An organization scheme based
solely on the design data hierarchy (if one can be assumed to always be explicit), for
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example, would be inappropriate for a designer who prefers to organize his work along
the lines of development (e.g., maintaining a directory for all logic descriptions).

In addition to organizing the design, designers almost lways maintain (or wish they
had maintained) a history of their efforts. These efforts include tracking design paths
that have been rejected and intermediate data which is non-essential but valuable for
understanding the current state of the design. In addition, the history necessary for meet-
ing legal requirements. A provision for gathering the information contained in the his-
tory should be integral to the design process model. Ideally, the history information
should be accessible along different axes. For example, a designer may wish to walk
back within a particular context of the design, or he/she may wish to identify the origin
of a specific design object.

1.2. The Activity Model

Although not a full exposition of the nature of the VLSI design process, these per-
ceptions form the basis of the Activity Model developed by the Process Management
Group led by Dr. Randy H. Katz at U. C. Berkeley. Through its two major components,
task specification and the history model, the activity model proposes a mechanism for
process management, which is defined to be the controlled sequencing of design activi-
ties.

Task specification corresponds to the common sequences discussed above. It
enables the encapsulation of the CAD tools using a common graphical user interface, and
hierarchical sequencing specification by means of task templates. My project focused on
the development of the task specification model and on the implementation of a proto-
type task manager to parse task templates and add them to the Oct database, and to pre-
view and run tasks instantiated from the templates. The development of the task
manager was influenced by its role in the overall system, and thus, a brief discussion of
the rest of the model is presented.

The history model encompasses both the organizational and history gathering facili-
ties of the activity model. Dynamic task invocation corresponds to an activity, such as
"design a pla controller”. Operations are available on activities to support cooperative
work, exploratory design, and rolling back the database for reworking an unsatisfactory
portion or for iterative design. These capabilities are closely tied to the maintenance of
history, the record of events captured with respect to an activity and stored in the data-
base.

Fig. 1.1 illustrates the components of the activity model and the relationships
among them. The Template Manager and Tool Navigator are part of task management,
and the Activity Manager and History Manager are part of the history model. Through
the graphical user interface, the designer interacts with every part of the system depicted
in the model, but has no direct contact with the Oct database or with the CAD tools.

The Activity Manager interacts with the designer to establish the context for the
current session, the activiry. After the designer selects a template from the database, the
Template Manager retrieves it and delivers an instance of it to the Tool Navigator, which
obtains the instance-dependent information (e.g., actual inputs, outputs, and parameters)
from the designer, and proceeds to navigate him/her interactively through a sequence of
tool invocations. Only the tools themselves access and modify the design data. These
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Figure 1.1 - Activity Model

events are recorded and, together with the context, passed to the History Manager. The
designer may at any time decide to interact directly with the History Manager for brows-
ing or querying the history of an activity or design object. Outside the realm of design
activity, the Template Manager is also responsible for all operations on the templates
including creation, deletion, retrieval, and perusal. These administrative operations are
independent of any design activity, and need not be part of the design history.

In the next subsection I will examine other work done in this area, with particular
attention paid to task specification.

1.3. Previous Work

While no other model of the VLSI design process includes the same features as the
activity model, some interesting work has been done in this area. The Ulysses Design
Environment [BUSH89] developed at Camegie-Mellon University, employs a rule-based
approach. Design goals are linked with tools through the use of a scripts language. The
goal is posted on a blackboard, and observed by the knowledge source for each tool,
which determines whether its capabilities make it a possible candidate. Tool selection is
done via inferences made from the codified design methodology, or by direct designer
intervention. Sufficient history information is maintained to allow a database rollback
capability, but it’s not clear how that is accomplished or whether the designer can
directly browse history information.

Ulysses defines a rask as a design methodology described in the scripts language.
This notion differs from the task specification in the activity model in that its objects are
goals rather than tools, and its semantics presume system knowledge about the tools
beyond their O behavior and parameters. The rule-based design of the Ulysses system
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reflects the Al philosophy of automating the design process, a goal not undertaken, and
not necessarily deemed appropriate, by the designers of the activity model.

The Cadweld Design Framework [DANI89] was built on top of the Ulysses Design
Environment. It tackles the problem of providing a distributed control mechanism for a
large, complex suite of CAD tools by developing a hierarchical object-oriented class
structure for the tools. It attempts to hide low-level details of the CAD tools, and to fur-
nish such services as automatic translation when possible. This addition certainly eases
the burden on the inference engine in the Ulysses design environment, but it really
doesn’t change the approach of the system. The class structure’s hierarchy is based on
the function and abilities of the tools, unlike the task templates in the activity model,
which may or may not be individually hierarchical in terms of invocation sequences.

Gabbe and Subrahmanyam of AT&T Bell Laboratories [GABB87] present a propo-
sal for an object-based representation of the design process. The design data consists of
modules, which are made up of other modules, such as transistors. The design work is
executed by raskers, which are inherited by all objects, and which consist of four ele-
ments: (1) agents or procedures and meta-agents, (2) controllers, which contain a list of
the agents, (3) tasker superclasses, and (4) local data. The selection of agents is done by
meta_agents, which have knowledge about the state of the design, the details of the
specification, and the goals of the user. The tasker superclasses contain the skeletal
structure for the agents, meta-agents, and controllers, which can be spawned dynamically
as needed. The agents’ and meta-agents’ knowledge base may include preconditions,
postconditions, computational cost, and an understanding of the meaning of success.

This system resembles the Ulysses and Cadweld systems in its knowledge-based
approach. The system does not appear to include any support for history.

In the more general area of design processes and design management, work done at
Hughes Aircraft Corporation [KONS88] regarding standards for design management sys-
tems stresses the need to support exchangeable parts through easy connection and inter-
facing of tools, to concentrate on the multi-stage process involved in design, to reflect the
hierarchical composition of a design, to account for protocols followed in the design pro-
cess, and to identify the sequence of design steps followed and the tools used. The
activity model incorporates the functionality needed to meet all of these goals but with its
inherent flexibility, it doesn’t enforce strict compliance with them. A designer’s indivi-
dual use of the system may make the multi-stage process somewhat difficult to extract
from the history, for example. (This paper also discusses requirements in areas such as
product life cycle maintenance which are beyond the scope of the activity model at
present.)

An interesting investigation of process specification was carried out at the Univer-
sity of Colorado [DEME87]. Demeure and Osterweil examined recipes and developed a
formal language for specifying them. Data representations, parallelism, error handling,
and task attributes were tailored to the application. Some of their conclusions are appli-
cable only to work done on physical objects. For example, a critical section encloses
instructions which must be carried out without intervening pauses, e.g., "after the food is
cooked it must be served before it cools off'. They also specify active vs. stand-alone
sessions. The active property could be associated with interactive tools which require the
presence of the designer. This information is more interesting, however, from the per-
spective of the project manager who is concerned about scheduling and resource
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utilization.

Their discussion of parallelism is also applicable to the VLSI design process. The
sequence of operations is non-deterministic and some method of expressing this parallel-
ism must be found. By parallelism, I don’t necessarily mean that many things are occur-
ring simultaneously (although I don’t preclude that possibility), but rather that the events
are independent and different sequences could occur. The task management model uses
an identical model of parallelism.

Demeure and Osterweil’s approach to tailoring a system for a particular application
was to begin with few assumptions and build the system up as new elements are required.
This is the approach taken with the activity model as well. It isn’t designed to be general
enough to accommodate all types of design systems, but rather to efficiently manage the
VLSI design process.

In the area of software engineering, one of the earliest and most widely used tools
for managing the design process is make [FEL79], which automates the compilation pro-
cess, keeping track of changes made to each module. Source-code control systems, or
SCCS [BTLS81], also widely used, provide versioning control for software systems.
Building on this work, Apollo’s DSEE [LEBL84] includes source-code control,
configuration management, task management, and dependency-tracking with notification.
A DSEE task is a title and a list of textual items used for planning and recording low-
level steps. A current task is specified with active items distinguished from completed
items. When all items are completed, the task becomes a transcript, which can be used
as a form of advice for other software engineers with similar objectives. DSEE also util-
izes task templates containing model active items to derive new instantiated tasks.

This more general view of a task and task items is probably well-suited to to the
software engineering environment, but doesn’t cover many of the features that seem very
beneficial in the VLSI design world with its abundance of complex tools; there is no
order, no hierarchy, and no system support (in general) for the completion of the items.
It’s merely a collection of items which, when completed, finish a task. The emphasis in
DSEE is on consistency and change notification.

1.4. Report Organization

The rest of this report will be organized as follows. In the next section I will
describe the model for task specification and management. Section 3 will describe the
prototype implementation, followed by a section detailing the specification grammar.
Lastly, section 5 will present a summary and my conclusions. Examples of task
specification are found in the appendix.



2. The Task Specification and Management Model

2.1, Motivation

In addition to supporting the natural tendency of CAD designers to use familiar
sequences in their work, there are several other reasons for including task specification
and management in the activity model.

The increasing number and complexity of CAD tools makes it difficult for an indi-
vidual to keep abreast of changes and additions to the tool suite. Learning to use many of
the tools is a non-trivial task, and many designers may prefer using a familiar-but-less-
suitable tool to investing the time and effort in learning to use a new one. One of the
goals of the task specification model is to hide low-level detail in a system with a con-
sistent user interface and an internal knowledge of invocation specifics. Many details
such as command-line arguments and data formats can be determined from the context
and are better maintained in computer memory than human memory.

Another benefit is derived from the difference between what is considered by a
designer to be an atomic goal, or a low-level task, and what constitutes a low-level task
in the CAD tool environment. An atomic goal, as far as the designer is concerned, may
require more than one CAD tool invocation. Accordingly, understanding "what a
designer was trying to do" requires more than knowing that a particular tool was invoked
on a set of Oct objects. The sequence of tool invocations furnishes a context for under-
standing what was occurring. Thus, the use of tasks is essential to maintaining a mean-
ingful history.

The use of tasks also establishes breakpoints or "firewalls" for the activity manager
and history manager. The end of a task is a convenient and meaningful function-related
point for updating the history, garbage collecting temporary data, and for rolling back the
database.

Furthermore, the task manager provides a consistent, graphical interface. While
there may be CAD tool suites developed with consistent interfaces, the task manager
allows a system to be built around tools from different vendors without compromising
the homogeneity of the interface.

From the perspective of project management, task specifications supply a means of
specifying design methods and policy through constraints on the invocation. For exam-
ple, a design policy may prohibit placement and routing before the design has been suc-
cessfully simulated.

2.2. Overview

The two components of the model are task specification, handled by the Template
Manager, and task management, performed by the Tool Navigator, which correspond to
static and dynamic views of the model, respectively. Static task specifications will hen-
ceforth be referred to as templates, and named instances of the templates, with stipulated
inputs, outputs, and parameters will simply be called zasks. A primitive task is equivalent
to an encapsulated tool invocation, a procedure for invoking a tool. Complex tasks are
made up of other tasks, called subtasks, which may be either primitive or complex. Ord-
ering constraints direct the sequence of invocation of the subtasks. A designer invokes
primitive and complex tasks in the same manner.



The templates contain all of the information necessary to invoke the tools, if primi-
tive, and to sequence the tools, if complex. The system has no intelligence about the
objectives of the CAD tools or about the state or merit of the design and thus, makes no
choices regarding the selection of tools. Its knowledge is limited to its template data-
base. While a task is running, the Tool Navigator informs the designer of what steps are
permissible, but not which one is best. The task manager is designed to facilitate the use
of the CAD tools, and to present the designer with a consistent and friendly interface, not
to directly influence the design itself. The system itself imposes no particular design
style, but the capability exists for a group to adhere to a method or style through the use
of invocation and sequencing constraints.

2.3. Parallelism

The term parallelism is used in this model in the context of subtask sequencing. If
there are no dataflow or other constraints on the sequence of execution of two subtasks,
for example, they are considered to be parallel. Either subtask may be executed first, and
neither need wait for completion of the other before commencing. This represents
’AND’ parallelism, in which all paths must be followed but their order doesn’t matter.

Fig. 2.1(a) illustrates a complex task. Subtask "T2" is parallel with the sequence
"T3 followed by T4". Fig. 2.1(b) shows several, but not all, sequencing possibilities for
the subtasks of "Complex_Task", assuming for simplicity that each subtask executes for
the same time duration. The overlapping bubbles represent simultaneous execution of
subtasks.

Note that in each sample sequence, all four subtasks were executed. The graphical
representation may mislead some into thinking that any path from start to finish com-
pletes the task. Parallelism in that sense, the 'OR’ sense, does not exist in this model.
Truly separate paths involving different groups of subtasks are represented by distinct
templates. The single exception to this rule is that any individual subtask may be charac-
terized as optional and may be omitted.

Parallelism in the data domain, i.e., performing the same operations on each set of
data, is made available, although not explicitly, through operations available in the
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Figure 2.1 - Subtask Parallelism



activity manager. This data parallelism is outside the realm of task specification, which
concerns itself with the method of performing those operations.

2.4. Task Invocation

In contrast to the active control used by the VLSI design systems discussed in the
introduction, the task manager takes a more passive role with respect to task invocation.
This decision is based on the view that design work is inherently novel and unpredict-
able. The designers continually test the limits of the tools by applying them in new ways
for different purposes. This view guided my choice of which actions are appropriate for
the system to manage and which properly belong to the designers. This is not to say that
there isn’t some benefit in having the system provide some form of advice to designers
regarding the purpose of the tools. The task manager leaves this up to the individual who
creates the task specifications. It is assumed that the designers will have a library of tem-
plates at their disposal which have been created by the tool suite manager.

In addition to the sequencing constraints on subtasks, a method of controlling task
invocation is available through preconditions. A precondition could be, for example, that
computation-intensive tasks may only be run after midnight, or that the task is available
only to a restricted group of designers. The conditions must be based on information
available to the system, of course, and must be quantifiable. In other words, the system
cannot be asked to decide questions such as whether or not a design track is worth pursu-
ing. Since each subtask is also an instance of another task template with its I/O and
parameters predetermined, any preconditions associated with a primitive task remain in
effect when that task is instantiated as a subtask.

Task invocation is carried out by the Tool Navigator, the part of the task manager
responsible for navigating the designer through the sequence of tasks. Once a task has
been selected by the designer, the Tool Navigator first checks for the existence of precon-
ditions. If they are satisfied, the Tool Navigator obtains all of the information it needs,
the actual inputs and outputs and the selection of parameters, from the designer via the
graphical interface. If the task is primitive, the tool is invoked. If not, what happens next
depends on the sequencing constraints on the subtasks.

T.ooking at the example in Fig 2.1, task T1 must be invoked first. However, that
task may itself be complex. Assuming it to be primitive, the designer now has the option
of setting additional tool parameters, if applicable, (other than those set explicitly in the
specification) or immediately instructing the Tool Navigator to proceed with the task.
Upon completion of T1, the designer is notified that both T2 or T3 are available for exe-
cution and prompted for the next action. Let’s assume that T3 is selected. T2 is still
available and the designer may wish to immediately proceed with its execution. T4 can-
not be invoked, however, until T3 has completed, irrespective of the status of T2.

Some subtasks may be automatically invoked. Assume, for example, that T2 is a
complex task for timing analysis. The first subtask in T2 invokes a translator to create
the appropriate format for input to the timing analysis tool. The translation will always
have to be done and its results, assuming successful completion, are not particularly
interesting. There is no need for the designer to be involved in the decision to run the
translation tool. Itis a prime candidate for automatic execution.



2.5. Successful Task Completion

The concept of completion can be examined on more than one level. At the lowest
level, completion of a tool means that it is no longer executing. At the other extreme, the
designer may not be "done" with a tool until some criterion is satisfied. He/She may not
be finished with the logic simulator until a particular bug is located, or done with the tim-
ing analyzer until he/she’s satisfied that the valid critical path has been located, or done
with the layout compactor until it’s time to go home. Most tools return an exit code
which can be examined for determination of success at that level. Beyond that, it’s up to
the designer to indicate completion of that step. For that reason, at the end of every task
and subtask, the designer is given the option of invoking it again.

Furthermore, any task invoking editors, for both circuits and text, are specified as
members of the editing class. The Tool Navigator requires designer notification of com-
pletion for these tools since editing may extend over multiple sessions.

Postconditions may also be specified for a task. These operate in a manner similar
to preconditions and are subject to the same constraints, but also accept instance-specific
condition parameters which may be used to describe some measure of success. For
example, a layout task may invoke as its final subtask a statistics collector. The designer
can supply a maximum area for the layout, which can be compared with the result for a
decision on the success of the task.

2.6. Task Suspension

The model provides for suspending a running task for later resumption. The
instance-dependent information obtained from the designer is stored in the database, as
well as status information for the subtasks. The designer is prompted for a name for the
instance by which the status is retrieved. The task can be resumed where it left off with
very little overhead and no inconvenience to the designer. There is no limit on the
number of times a task can be suspended.

Given the long runtime for many CAD tools, this capability is very useful, if not
absolutely essential. It also convenient to be able to maintain the status while a designer
is called away temporarily to work on another more pressing problem.

2.7. Error Handling

The automatic and correct handling of errors is an important issue in many manage-
ment systems. This model, however, isn’t designed for self-correction. Designers are
working closely with the system and assumed to be much better qualified for handling
problems that come up. If, for example, a tool hangs or thrashes, it’s up to the designer
to detect and correct the problem. The system isn’t normally on "automatic pilot" and
certainly doesn’t become so in response to errors. Control originates in the designer for
direction of the design and correction of problems.

The related issue of consistency is also relegated to the users of the system. It is
assumed that designers working on parts of the design which interact are working closely
enough with each other to communicate directly and not rely on system notification. The
Activity and History Managers do furnish some support for the consistency issue, both by
recognizing individual and group workspaces, and by providing the means for tracing the
history of a design object.



2.8. The Template Manager

As described briefly in the introduction, the Template Manager handles all of the
operations related to templates. This includes creation, copying, deleting, editing, and
viewing. Copying and editing are available for the easy construction of new variations of
a template. Editing a template can be used for replacing a tool with a different tool or a
newer version. The change can be made to the primitive task and as long as the inputs,
outputs, and parameters don’t change, complex tasks which include this task won’t need
to be modified. If the parameters and I/O do change, the complex templates will need to
be updated, of course. The grammar for the specification will be described in detail in a
later section.

New templates can be created directly from a text file, or interactively via the
graphical interface. Some semantic checks are done to locate specification errors as early
as possible, before the template is added to the database. For example, a template cannot
be both primitive and complex.

As well as interacting with the user to create templates, etc., the Template Manager
retrieves instances of the templates requested by the Tool Navigator. The Tool Navigator
also makes use of the Template Manager’s access to the database for storing and retriev-
ing task status information.

2.9. The Tool Navigator

The Tool Navigator supports three operations. Designers will use it for interactive
guidance through the execution of a task, as described in the sections on invocation, com-
pletion, and parallelism, and for requesting suspension of a task, and tool suite managers
and anyone else responsible for specifying the templates, can use the Tool Navigator for
previewing a task, which refers to walking through a task without executing any of the
tools.

For either the normal task execution or the previewing operation, after the Tool
Navigator obtains an instance of a template from the Template Manager and fills in the
inputs, outputs and parameters, some additional correctness checks are done. For exam-
ple, the subtask sequencing is examined for conflicts with dataflow. This cannot always
be done from the template directly since conditional statements may affect the /O
specifications (that will become more clear when the grammar is described). Also, when
a complex template is specified, the the subtask information is not compared against the
individual templates for consistency. That is done at the time the instance is created.
Since these checks are done by the Tool Navigator, the previewing capability should be
exploited at the time the template is created. Previewing is also helpful in defining new
complex tasks that are combinations of existing tasks. Furthermore, designers will find
this operation useful in deciding whether or not to invoke a task.

During execution of the task, the Tool Navigator maintains state information about
the task and subtasks. While a task is Running, the subtasks are either Ready, Running,
Not Ready, or have already Ran.

Fig. 2.2 shows the "Complex_Task" of Fig. 2.1 in the midst of execution. Subtask
T1 has already progressed through the Ready and Running states. Subtask T2 is Ready,
Subtasks T3 is Running, and Subtask T4 is Not Ready since T3 has not yet completed.
If, after a subtask completes execution, the designer wishes to run the subtask over arain,
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Figure 2.2 - State Model for Tasks and Subtasks

it remains in the Running state. When a task is suspended, the state of each subtask at
that time is remembered. and a listing of the code are found in the appendices.
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3. Prototype Implementation

The prototype implementation of the task specification and management model,
TMGR, implements a subset of the model. Although the model is applicable to the VLSI
CAD environment in general, TMGR is designed specifically for use with the U. C.
Berkeley CAD tool suite and the Oct database. Briefly, this environment includes a data
manager, Oct, a graphical browser and editor, VEM [HARRS9], and a heterogeneous
computing environment, RPC [SPIC87], as well as a wealth of CAD tools. The data
representation in Oct is sufficiently flexible that task templates can be stored as easily as
design data with no loss of information. At this time, the implementation of the Activity
and History Managers is not yet operational, so TMGR operates independently.

In general the majority of the model is implemented by TMGR with the exception
of the graphical user interface, and the precondition and postcondition specifications.
Also, TMGR leads the designer through the tasks as discussed earlier, but doesn’t actu-
ally invoke any tools, so automatic execution is not supported, and task completion infor-
mation must be supplied by the designer.

The Template Manager functions of the creation of task templates and their storage
in and retrieval from Oct are provided, as well as the display of existing templates. Lex
and Yacc are used for parsing the specifications, which are checked for correctness and
stored in the database. TMGR implements all of the Tool Navigator functions, including
executing, previewing, and suspending and resuming a task, albeit with a crude user
interface, and without automatic execution.

Although a graphical interface has not been implemented, the following section on
the grammar specification includes examples of a proposed interface which is designed to
fit into the VEM model with its hierarchical pop-up menus and dialogue boxes. It is also
important that keyboard bindings and console window input be available for all com-
mands, as is the policy with VEM-integrated tools.

3.1. Creation of a Task Instance

After a copy of the template is retrieved from the data, the following steps are taken
to create an instance of the task. For both primitive and complex tasks the first step is get
the designer’s parameter choices and arguments, if applicable. On the basis of the
parameter list, conditional statements can be resolved, which can result in additional
input, output, parameter, and subtask specification. Then, input and output names are
obtained from the designer, if applicable. And finally, subtask instances are built into a
subtask tree.

Building the subtask instances involves a similar process, except that parameters
and input and output names are obtained from the complex task rather than from the
designer directly. Objects and files created and perhaps used by subtasks which don’t
correspond to input and output of the task itself, are given temporary names.

Identifiers used in a template are required to be unique only within a template. For
complex tasks, subtask instance identifiers are explicitly mapped to subtask template
identifiers. Thus the same identifier could occur in a template and in its subtask’s tem-
plate. Fig. 3.1 illustrates the hierarchical mapping. When this instance of Complex_Task
was created, the actual input good_design was mapped to the internal input logic_spec,
which in tur was mapped to the input design of its subtask T4. T4 is itself a complex
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good_design loglc_spec

Complex Task
.. Actual Input: good_desige
S
... Input Name: logic_spec
Subtask T4

Instance Input:  Joglc_spec
Template Input:  design

Instance Ipput:  design

Template Input:  boolean.spec

Instance Input:  optimized_design
design

Instance Output:  optimized_design
Template Output:  result

Figure 3.1 - Task and Subtask Input/Output Name Mapping

task and this input is mapped to boolean_design in its subtask c. c itself has another
input, design which is mapped to T4's internal identifier optimized_design. This inter-
nal identifier serves to direct the output of one subtask to the input of another, without
being visible outside of T4. Note that the identifier design is used both by subtask 74 and
its subtask ¢ without being mapped to the same object.

To keep all of this straight, the instance created at runtime for each task and subtask
has its own name table. Upward pointers link subtask template identifiers to the internal
identifiers of the complex task which instantiated it. For example, the name table entry
for the input design in the instance of subtask T4 points to the entry for logic_spec in
Complex_Task’s name table.

In addition, to avoid following a chain of links to locate the actual name of an input
or output of a primitive task, the actual names propagate down the hierarchy. For exam-
ple, the name table entry for boolean_spec in the instance of subtask c has a copy of the
actual input, good_design.

3.2. Task Execution

Once an instance is created, the execution routine loops through a series of steps
until the task is completed, suspended, or aborted. Looking at the more interesting case
of complex tasks, the first step is to find the subtasks which are ready to execute. If there
is more than one, the designer is presented with the list and prompted for a selection. In
general, once a subtask is in the Ready state, it remains there until it reaches the Ran
state. Optional tasks, however, can require special handling. For example, assume that
subtask 73 in Figure 3.1 is optional, and that subtask T7has Subtasks 72, T3, and T4 are
all Ready. If subtask T4 is selected to run next, subtask 73 is now Not Ready. This spe-
cial case of a subtask which is Not Ready and can never be ready, is detected and
doesn’t prevent the task from completing.
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4. Grammar Specification

In this section I will describe the grammar for task specification in detail, as used in
the prototype TMGR. Two examples will be developed to illustrate the grammar.
Wolfe, a tool for placement and routing of standard cell designs, will illustrate primitive
tasks, and SCdesign, a sequence of tasks for completing a standard cell design, which
includes an instance of wolfe, will illustrate complex tasks. The illustrations will include
both the ascii text format for specification, as implemented, and in some cases, a pro-

posed graphical user interface.

unplaced

wolfe

batch_commands

placed

Optional input or output

Required input or output

(a) "wolfe" - Primitive Template Example

module
SCdesign module_stats
module_timing
chipstats
. gﬂ
|| Synth_ Nelist Sim_ Flat_ Place_ wolfe statistics
cell logic min pads
specify_ create simulate flatten place place n_
logic netlisC foute Check
timing
timing

(b) "SCdesign" - Complex Template Example With
Expanded View Showing Subtasks

Figure 4.1 - Graphical View of Example Templates

Fig. 4.1 (a) and (b) depict the graphical abstractions of these tasks. The small boxes
on the right are inputs, and on the left, outputs. In (b), the subtasks of SCdesign are also
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shown, which flow from left to right. The instance names of the subtasks are shown
below the boxes, and their template names are shown inside.

4.1. Specification Format

The information contained in the template is organized as properties and property
values, in s-expression format as outlined in Figure 4.2. The specification must begin
with (task and be followed by the (name and (class properties, but the remaining pro-
perties may be specified in any order. Any individual task specification will not use all
of these properties.

(task
(reme task_name)
(class class_name_lisf)
(executable executable_name)
(input
input_descriptor_list)
(output
output_descriptor_lisf)
(subtasks
(ordering_constraint subtask_list))
(parameters
parameter_descriptor lisf)
(cond
condition_statment otherwise_statement)

(purpose (string)))

Figure 4.2 - Task Specification Qutline

Words shown in bold print are reserved words for the properties which cannot be
used as identifiers in the specification. More reserved words will be added to this list as
each property is discussed. The following examples will not use bold print since it is not
used in an actual specification. The reserved words are recognized in both upper- and
lower-case, or may begin with an upper-case letter, followed by lower-case letters. For
example, task, TASK, and Task are all recognized forms for the reserved word. The
newlines and indentation in Figure 4.2 are not required by the grammar, but are added for
visual clarity.

Note that the graphical abstraction in Figure 4.1 doesn’t portray all of this informa-
tion, as it would be difficult to present in a clear manner graphically. The additional
information contained in the template should be available through pop-up menus, how-
ever. The user could select parameters, for example, and view the parameters available
for the task and those which have been set. For a complex task, subtasks could be
selected and each individual subtask viewed in greater detail through the selection of pro-
perties in the menu.

Figure 4.3(a) shows the selection of the Create function from the Template
Manager menu, and Figure 4.3(b) shows the secondary menu which lists the available
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properties. Each property will be described in more detail in the following sections.

TMGR TMGR
s ] [Propertis
TEMPLATES —ANime |
A Creale - IExeambb
Deten nputs
g::y Task Name Outputs
View . _wolfe =~ =00 Sulbtasks
Parametenn
Conditions
Purpose
@) ()

Figure 4.3 - Graphical Representation of Template Creation
and Name Specification

4.2. Minimum Requirements

Name, class, and purpose properties must be specified for every task, or the Tem-
plate Manager will report an error. In addition, primitive tasks must specify the name of
the file that implements the tool as the executable, and complex tasks must have more
than one subtask. In general, tasks will require more properties than these to be mean-
ingful, but the Template Manager doesn’t insist that they do.

4.3. Task Names

A task_name must begin with a letter and contain no spaces, parentheses, or double
quotation marks, but may include any other printable ascii character. Names are case-
sensitive. Also, names must be different from the reserved words shown thus far and in
the remainder of the grammar description. These restrictions apply to all user-supplied
identifiers in the specification. The name of a primitive task need not be the same as the
name of the CAD tool it invokes.

In Fig. 4.3(b), the property name is selected from the property menu and the name
wolfe is entered into the dialogue box.

The textual specification for our two examples is shown in Fig 4.4. In my examples
of complex templates, the first letter of the name will be capitalized, to distinguish them
from primitive templates, but this is not required.
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o (task
(name wolfe))
o (task
(name SCdesign))

Figure 4.4 Example Name Specifications

4.4. Task Classes
Tasks are members of one or more of the following classes:

o primitive: A task which has no subtasks and
which invokes a CAD tool.
e complex: A task which is defined in terms

of complex or primitive subtasks.

e editing: A task which requires user notification
that the session has completed.
o utility: A task such as printing or plotting

for which history is not maintained.

Primitive and complex classes are mutually exclusive. Specifying a task as a utility
plays no role in the task specification model but it informs the activity and history
managers that they needn’t capture this step. Editing tasks are singled out for two rea-
sons. First, as discussed earlier, the Tool Navigator cannot determine when an editing
session has completed. Secondly, editors are the only tools which modify the actual
input rather than preserving it, as is the general policy of the system.

A class_name_list is a list of class_names separated by spaces or newlines. Class
specifications are added to our examples in Fig. 4.5(a). In Fig. 4.5(b) examples of class
specification are shown in which a task belongs to more than one class, and Fig 4.6(a)
portrays the interactive method for class specification.
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o (task

(name wolfe)
(class primitive))

o (task

(name SCdesign)
(class complex))

(a) Example Class Specifications

o (class primitive editing)
o (class complex utility)

(b) Additional Examples

Figure 4.5 - Class Specification

TMGR TMGR
[ TASKS | Propertios
A Create E ble
2 Tasx N I(;I;:u
ame
5?33 - wolfe Subtssks
Parameters
Conditions
Purpose
(@) ®)

Figure 4.6 - Graphical Class and Executable Specifications

4.5. Executable

This section applies only to primitive tasks. Following the reserved word execut-
able is the name of the CAD tool to be invoked. The executable_name should be in the
appropriate case normally used to invoke the tool. Fig. 4.6(b) shows the interactive
method for specifying the executable name, and Fig. 4.7 updates the primitive template
example to include the executable.
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(task
(name wolfe)
(class primitive)
(executable wolfe))

Figure 4.7 - Example Executable Specification

4.6. Input and Qutput

The reserved words Input and output are followed by lists of input and output
descriptors. Inputs and outputs which are parameter-dependent are specified in the cond
section of the property declarations.

Input_descriptor_list items and output_descriptor_list items are respectively of the
forms:

((name input_name) (type io_type) (input_property))

((name output_name) (type io_type) (output_property))

An input_name or output_name is a one-word identifier; not necessarily the actual
name of an object or file. The io_type classifies inputs and outputs into one of the fol-
lowing categories:

eoct_name: An Oct object which may be
either physical or symbolic.

eoct_physical: A physical Oct object.
eoct_symbolic: A symbolic Oct object.

e bdnet_text: A text file in bdnet format.
ebds_text: A text file in bds format.

e padp_text: A text file in padp format.

o blif_text: A text file in blif format.

o text: A text file, including bdnet_,

bds_, padp_, and blif_text types.

ecrystal: A file in sim format, readable
by crystal.
e pla_format: A file in Berkeley pla format.
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4.6.1. Input

Inputs are those objects necessary for completing the task, which are not generated
by a subtask. In other words, inputs are required objects which come from outside the
task. Currently the only input_properties arc optional and primary. The property
optional is used for inputs which may or may not be needed, depending on how the
designer uses the tools, but are not dependent on parameter settings. For example, he/she
may wish to create a file of batch commands before running a simulator. That would be
an optional input.

When a primitive task has more than one input, one of the inputs must be given the
property primary. It is this input which is used in the command line invoking the CAD
tool. Data created through standard input during the execution of a task is not con-
sidered to be task input since the task may begin without it. Instead, it is captured as
interactive script output (see Sec. 4.6.2).

Fig. 4.8(a) illustrates the interactive method for input specification. Note that some
of the properties listed in the input dialogue box are in italics. These properties are only
for outputs and will be discussed in the next section. The input to wolfe is shown in Fig.
4.9; SCdesign has no inputs.
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Figure 4.8 - Graphical Input and Parameter Specification

(task

(name wolfe)

(class primitive)
(executable wolfe)

(input

((name unplaced) (type oct_physical) (primary))))

Figure 4.9 - Example Input Specification



4.6.2. Output

What constitutes the output of a task is at the discretion of the designer of the task.
It should include any Oct objects and files which are needed by other tasks. It should
also include a transcript of interactive tool execution which would otherwise be lost to
the history. For example, interactive execution of bdsim, a simulator, includes execution
commands by the designer which should be captured. This type of output is included in
the output properties listed below:

eredirected: Output redirected from standard output.
escript: Output generated interactively and captured from the console.
eabsolute: The name of the output which is some permutation input name.

For example, if the input infile is instantiated with the actual input
mydesign, the absolute output "infile".sim becomes mydesign.sim.

Fig. 4.10 lists the outputs for the examples. Additional files and objects are generated
during the execution of SCdesign which are not considered to be output of the task in this
example, but may be declared as such, at the discretion of the template designer.

e (task
(name wolfe)
(class primitive)
(executable wolfe)
(input
((name unplaced) (type oct_physical) (primary)))
(output
((name placed) (type oct_physical))))
o (task
(name SCdesign)
(class complex))
(output
((name module) (type oct_physical))
((name module_stats) (type text))
((name module_timing) (type text))))

Figure 4.10 - Example Output Specifications

4.7. Parameters

Parameters are used to modify the behavior of a task. For primitive tasks, these
generally correspond to CAD tool switches. A parameter_descriptor_list item is of the
form:

(parameter_name (type parameter _type) (descr (string)))
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A parameter_name is a single, case-sensitive alphabetic character, which does put a
limit on the number of parameters available to a task. A parameter’s type is related to
the existence and semantics of its argument:

e bool: A boolean switch; if listed,
it’s "on".
einput: A switch followed by an object name,

separated by a space.

soutput: A switch followed by an object name,
separated by a space.

enumber: A switch followed by an integer with
Do space.

o format: A switch followed by a list of format
names enclosed in parentheses and
separated by spaces.

e family: A switch followed by the name of a
technology family, separated by a
space.

The input and output parameter types are differentiated from the family type in
that they must correspond to input and output specifications, which appear in the condi-
tional section, and will be discussed later.

Parameter descr is optional. The string can be used to describe the use and purpose
of the parameter. It must be enclosed in double quotation marks; no double quotation
marks should be used within the string.

Fig. 4.8(b) shows the interactive method for specifying a parameter, and Fig.
4.11(a) adds parameters to the wolfe specification, all of which correspond to the tool’s
command-line switches. SCdesign has no parameters. Examples of parameter types not
used in wolfe are shown in Fig. 4.11(b).
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[wolfe] (parameters
(f (type bool) (descr (“run in fast_mode®)))
(o (type output) (descr ("output oct:cell:view specifier®)))
(t (type input) (descr ("read commands from this file")))
(r (type number) (descr ("number of rows")))
(e (type bool) (descr ("extend pins beyond cell bounding box")))
(h (type bool) (descr ("allow hierarchical input™)))))

(a) Example Parameter Specifications

(parameters
(t (type format (pla blif oct)))

(f (type tamily)))

(b) Examples of Other Parameter Types

Figure 4.11 - Parameter Specifications

4.8. Subtasks

This property applies only to complex tasks, naturally. There are two aspects of
subtask specification: constraining the sequencing order for all the subtasks, and specify-
ing instance information for each individual subtask.

The two ordering_constraints available for implementing correct data flow and
process-dependent sequencing are seq and par. Seq indicates that the subtasks must be
completed sequentially in the order listed, while par indicates that the listed subtasks are
sufficiently independent that any ordering is acceptable. These constraints may be nested
to yield any desired ordering. A subtask_list item is either an ordering_constraint fol-
lowed by a subtask_list, or a subtask.

The properties specified for a subtask are:

((name template_name subtask_instance)
(subtask_property_list)
(input input_name input_instance)
(output output_name output_instance)
(parameters (parameter_list)))

Whether a subtask itself is primitive or complex cannot be detected from the
specification.

The general scheme for mapping identifiers used in properties of the subtask
instance to the corresponding items in the template is the triplet:

(property template-identifier instance-identifier)
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(task
(name SCdesign)
(class complex))
(output
((name module) (type oct_physical))
((name module_stats) (type text))
((name module_timing) (type text))))
(subtasks
(seq
((name Synth_cell specify_logic)
(output oct_logic module_logic))
((name Netlist create_netlist)
(output oct_netlist module_netlist))
((name Sim_logic simulate)
(input design module_netlist)
(output sim_results sim_results))
((name Flat_min flatten)
(input hierarchical_logic module_netlist)
(output minimized_logic module_min))
((name Place_pads place_pads)
(input design module_min)
(output pads_placed module_placed))
((name wolfe place_n_route)
(input unplaced module_placed)
(output placed module)
(parameters
(o module)))
(par
((name chipstats get_statistics)
(input oct_cell module)
(output statistics module_stats))
((name Check_timing timing)
(input design_file module)
(output timing_results module_timing))))))

Figure 4.12 - Example Subtask Specification

4.8.1. Subtask Names

Template_name refers to the task_name used in the task specification of the sub-
task. In Fig. 4.12, which specifies the subtasks for SCdesign, the first few
template_names are "Synth_cell", "Netlist", and "Sim_logic". Subtask instance refers
to the name of this instance of the subtask. These names are not required to be different;
nor are they required to be the same. They are useful for relating the subtask to its role in
the task.
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Some subtasks may be optional, and this would be listed as a subtask_property. At
runtime the Tool Navigator interacts with the designer to determine whether or not an
optional subtask will be run.

4.8.2. Subtask Inputs and Outputs

Input_name and output_name refer to the names of inputs and outputs used in tem-
plate specification of the subtask. /Input_instance and output_instance refer to the names
of the inputs and outputs for this instance of the subtask. As with the subtask names,
these names are not required to be different; nor are they required to be the same. Note
that the reserved words Input and output are used with each input and output. If a sub-
task input is optional and is not used in this instance, it should not be listed.

All required inputs and outputs for each subtask must be specified. In some cases,
the designer of the task is not interested in saving an object which is created by one sub-
task and used by another and thus does not specify that object as an output of the task
itself. To perform the mapping, however, an internal identifier must be created, and the
subtasks’ input and output mapped to it.

In SCdesign, for example, the output of the subtask "create_netlist" isn’t mapped to
any outputs of SCdesign, but is mapped to "module_netlist" which, in turn, is mapped to
inputs of the subtasks "Sim_logic" and "Flat_min".

It may appear that the output of the subtask "specify_logic" is not used at all. How-
ever, it is assumed to be used by "create_netlist” without being specified explicitly. This
must be understood by the designer of the task.

4.8.3. Subtask Parameters

The parameter_list is used to set parameters for the subtask. The format is
(parameter_name parameter_argument)

Parameter_names are restricted to one case-sensitive, alphabetic character [A-Za-z].
This corresponds to the informal standard in the Oct world, but the specification could
easily be extended to accommodate CAD tools from other environments. The
parameter_argument is only appropriate for some types of parameters, as discussed in the
previous section.

Fig. 4.13 illustrates the interactive method for specifying some of the subtask pro-
perties. (As is clear by now, the graphical user interface proposal follows a similar for-
mat for each property, so no further interactive examples will be shown.)
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Figure 4.13 - Graphical Subtask Input
and Parameter Specification

4.9. Conditional Properties

Conditional statements are used to specify additional properties based on parame-
ters settings and arguments. Additional inputs, outputs, and parameters can be specified.
Also, additional properties can be added to a subtask which is listed in the subtask
specification section. Conditional statements cannot be used to nullify properties already
specified. The only way in which the information in a conditional statement can affect
the flow of subtasks is by adding the property optional to an existing subtask.

Conditional statements may be nested. The only condition tested is equality. If the
condition evaluates to true the listed properties are added to the specification. If the con-
dition does not evaluate to true, a default list of properties may be specified, subject to
the constraints mentioned above. The format of a conditional is:

(cond condition_statement otherwise_statement)

The otherwise_statement is optional. It corresponds to the "ELSE" in in the commonly
understood "IF-THEN-ELSE" structure. The format of a condition_statement is:

(condition (task_property _list)
in which the task_property_list format for inputs, output, parameters, and conditions is

identical to that already described. The format for subtasks is the same as well, exclud-
ing the ordering constraints.

The format of the condition is:

(eq? var_name instance_value)

In Fig. 4.14, the parameters for wolfe which specify an input or output have a
corresponding condition property. For example, the first condition specifies the input

26



"batch_commands” if the parameter #is set. Although not shown in this example, several
properties can result from a true condition.

(task
(name wolfe)
(class primitive)
(executable wolfe)
(input
((name unplaced) (type oct_physical) (primary)))
(parameters
(f (type bool) (descr (“run in fast_mode")))
(o (type output) (descr ("output oct:cell:view specifier”)))
(t (type input) (descr ("read commands from this file")))
(r (type number) (descr ("number of rows")))
(e (type bool) (descr ("extend pins beyond cell bounding box*)))
(h (type bool) (descr ("allow hierarchical input®))))
(cond
(eq? parameter t) (
(input
((name batch_commands) (type text)))))
(cond
(eq? parameter o) (
(output
((name placed) (type oct_physical))))))

Figure 4.14 - Example Condition Specification

A condition which is not nested must test for the setting of a specific parameter; in
this case the var_name is the word parameter, and the instance_value would be the
name of the parameter, e.g.:

(cond
(eq? parameter a)

A nested condition may test for the setting of a specific parameter, or may test the value
of a parameter, in which case the var_name would be either the name of the parameter,
or the parameter type, for all but the bool parameters. In the latter case, the
instance_value is the value being tested. In some cases, such as with a parameter of type
format, the allowable choices for the instance_value are given in the task specification,
e.g.; assuming a is of type format:

(cond
(eq? parameter a) (
(cond (eq? format oct)

For others, such as with a parameter of type family, it is up to the designer of the
specification to provide a reasonable family name for the instance_value. If parameter a
is of type number, for example, the following specification could be used:
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(cond
(eq? parameter a) (
(cond (eq? a 2)

In the nested condition example shown in Fig. 4.15, if the parameter ¢ is set, the for-
mat argument is tested against two possibilities, and the input properly specified accord-
ingly, and if neither of them is set, the default input type is specified.

(cond
eq? parameter t) (
(cond (eq? format pla) (
(input
((name pla_logic) (type pla_format) (primary)))))
(cond (eq? format oct) (
(input
((name oct_logic) (type oct_symbolic) (primary))))))
(otherwise (
(input
((name blif_logic) (type blif_text)(primary))))))

Figure 4.15 - Example of a Nested Condition

4.10. Purpose

This final, required property permits the task designer to indicate the purpose of the
task. The string is subject to the same restrictions as the parameter-description string.

The purpose specifications for are our examples are shown in Fig. 4.16 (without
reiterating the entire specification).

o [wolfe] (purpose
("Place and route a standard cell design®))

o [SCdesign] (purpose
("Complete standard cell design®))

Figure 4.16 - Example Purpose Specifications

28



5. Summary and Conclusions

Task specification and management plays an important role in the the activity model
for the VLSI design process. This model allows the system to ease the burden on the
designers of learning and using a multitude of complex tools by managing the low-level
details and guiding the interaction of cooperating tools. Unlike other models which have
been proposed or implemented, however, the system takes a passive role and is not
involved in decisions affecting the design. The principles used in developing the model
of the design process are applicable to design processes in general but the model itself is
tailored to the VLSI CAD design environment, and the prototype TMGR, to the Berkeley
Oct environment.

My guiding philosophy in developing the model was to determine what would make
the design process easier for VLSI CAD designers. The task manager could be viewed as
yet another tool to be mastered, and, if it required too much overhead for each step or
were difficult to understand, would be rightfully ignored by designers. I believe the same
fate awaits any design system which behaves too much like a black box. Designers want
to know, and indeed, need to know what’s going on, so as to correct and improve their
use of the CAD environment.

Despite my bias toward the designers’ concerns, task specification and management,
especially when coupled with activity and history management, offer project managers
the information they need to reach their objectives of resource management and main-
taining realistic schedules. They can obtain direct data about the design process and pro-
gress rather than having to rely on the observations and reports of team members.

The elements in the model, e.g., the mechanism for specifying hierarchical task
templates with sequencing constraints on the subtasks, for previewing, running, and
suspending the tasks, and a graphical user interface, represent what I consider to be the
minimum functionality needed for a task management system. Before other features are
added, feedback from groups of designers using the system should be obtained and care-
fully considered. One area that could perhaps benefit from additional flexibility is the
specification of subtask parallelism. Specifically, a feature such as an exclusive-or con-
straint, i.e., "choose only one of this group of subtasks", could be incorporated into the
parallel-sequential constraints.

In conclusion, given that VLSI design is increasingly accomplished using growing
suites of CAD tools, the need for a system to manage these tools will also grow. A
manager such as TMGR can facilitate both the process of design and the management of
the overall design effort.
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Appendix A: Technical Notes

e The template examples in Appendix B are based on the Oct tools
as they existed during Fall 1988, since I did not have access
to the current versions until the end of my project. The
template "components” was included to provide a script for
scanning bds and bdnet files to make component information
visible to the history and activity managers. The script was

never written and is used in the templates as an example only.

e The use of the Oct database itself uses the current version.

¢ TMGR assumes that a directory called "OCTDB" exists in the
current directory for storing and retrieving the Oct templates.
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Appendix B: Template Examples
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design_file timing_results

Check_timing
edit
coegl;}mndn ncrystal |
ncrystal
m—.
ncrystal
ngggl/zml
(task
(name Check_timing)
(class complex)
(input
((name design_file) (type oct_name)))
{output
((name timing_results) (type text)))
(subtasks
(seq
(par
((name edit edit_commands)
(optional)
(output edit_file crystal_commands))
{{(name cct2ncrystal oct2nerystal)
(input translate_file design_fiie)
(output 'translate_file'.sim crystal_file)))
({(name ncrystal ncrystal)
(input crystal_file crystal_file)
(input crystal_commands crystal_commands)
(output timing_results timing_results))))
{purpose

("Translate file to crystal, do timing analysis, save results®)))

'/



hierarchical minimized_

logic logic
Flat_min
octflatten —  misll
flatten minimize

(task
(name Flat_min)
(class complex)
(input
((name hierarchical_logic) (type oct_symbolic)))
{output
((name minimized_logic) (type oct_symbolic)))
(subtasks
(seq
((name octflatten flatten)
(input hierarchical_logic hierarchical_logic)
(output flat_logic flat_logic))
((name misll minimize)
(input oct_logic flat_logic)
(parameters
(toct)
(Toct)
(o minimized_logic))
(output oct_min minimized_logic))))
{purpose
(“Flatten hierarchical oct design and minimize®)))

35
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text_nedlist

Nedist oct_netlist

component_list

— edit —f components [ bdnet -t

edit find creale
netlisi” compogents bdnet

(task
(name Netlist)
(class complex)
(output
((name text_netlist) (type bdnet_text))
((name oct_netlist) (type oct_symbolic))
((name component_list) (type text)))
(subtasks
(seq
((name edit edit_netist)
(cutput edit_file text_netlist))
((name components find_components)
(input container text_netlist)
(output component_list component_list)
(parameters
(n)
((name bdnet create_netiist)
(input bdnet_logic text_netlist)
(input component_list component_list)
(output oct_netlist oct_netlist))))
(purpose
("Create a netlist, find the components, and create the oct representation®)))



design pads_placed

Place_pads

— padp — edit - padp -

terllxﬁsitiall pm{it ndd_plac:nn};m_
(task
(name Place_pads)
(class complex)
(input
((name design) (type oct_name)))
(output
((name pads_placed) (type oct_name)))
(subtasks
(seq
((name padp list_terminals)
(input pad_logic design)
(output pad_list terminal_list)
(parameters (1))
((name edit specify_placement)
(input edit_file terminal_fist)
(output edit_file terminal_list))
((name padp add_placement_info)
(input pad_logic design)
(input pad_specifier terminal_list)
({output placed_pads pads_placed)
(parameters
(D terminal_list)
(o pads_placed)))))
(purpose

("Get list of terminals, and specify their placement™)))
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design sim_results

Sim_logic

e:_}_‘ nbdsim
write Command_ simulate

file

(task
(name Sim_logic)
(class complex)

(input
{(name design) (type oct_symbolic)))
{output
((name sim_resulits) (type text)))
(subtasks
(seq
{(name edit write_command_file)
(output edit_file sim_commands))
((name nbdsim simulate)
(input network design)
(input sim_commands sim_commands )
(output sim_result sim_results))))
(purpose

("Simulate an oct logic network with an optional command file")}))

S
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oct_logic
Synth_cell
yoih_oe component_list
blif_logic
= edit — components — bds2blif —  misl p—t
specify_ et translate minimize
logic compgonints to_blif
(task

{name Synth_cell)
(class complex)
(output
((name oct_logic) (type oct_symbolic))
({(name component_list) (type text))
((name blif_logic) (type blif_text)))
(subtasks
(seq
((name edit specify_logic)
(output edit_file bds_logic))
((name components get_components)
(input container bds_logic)
(output component_list component_list)
{parameters (1))
((name bds2blif translate_to_blif)
(input bds_logic bds_logic)
(input component_list component_list)
(output blif_logic blif_logic))
{(name misll minimize)
(input blif_logic blif_logic)
(parameters
(o oct_logic)
(t blif)
(Toch)
(f SCscript))
(output oct_min oct_logic))))
(purpose
("Specify combinational logic; map to standard cells")))

[y |
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(task

bdnet_logic oct_netlist
bdnet

component_list

(name bdnet)
(class primitive)
(executable bdnet)
(input
((name bdnet_logic) (type bdnet_text) (primary))
((name component_list) (type text)))
(output
((name oct_netlist) (type oct_symbolic) (redirected)))
(parameters
(n (type bool) (descr (“write to standard output”)))
(c (type bool) (descr ("use with -n; show connectors®)))
(i (type bool) (descr ("print inverted netlist™)))
(s (type bool) (descr ("use with -i; for nets with 1 or 0 connections®))))

{purpose
("Check for existence of components; create a netlist using bdnet")))
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(task

(task

bds_logic blif_logic
bds2blif

component _list

(name bds2biif)
(class primitive)
(executable bdsyn)
(input
((name  bds_logic) (type bds_text) (primary))
((name component_list) (type text)))
(output
{{(name blif_logic) (type blif_text) (redirected)))
(parameters
(b (type bool) (descr (“disable cleanup evaluation®)))
(c (type number) (descr ("specify amount of collapsing®)))
(n (type bool) (descr ("print table of variables assumed at logic 07)))
(s (type bool) (descr (*change SELECTALL's to SELECTS's")))
(u {type bool) (descr ("provide periodic updates”)))
(z (type bool) (descr ("assign DON'T CARES to logic 07))))

(purpose
("if all components exist, generate a logic network in blif format from the bds description, using bdsyn™)))

oct_cell statistics

chipstats

(name chipstats)
(class utility primitive)
(executable chipstats)
(input
{(name oct_cell) (type oct_physical)))
(output
({(name statistics) (type text) (redirected)))
(purpose
("Collect statistics on an oct physical representation®)))
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(task

(task

container component_list

components

(name components)
(class primitive)
(executable components)
(input
((name container) (type text)))
{output
((name component_list) (type text) (redirected)))
(parameters
(! (type bool) (descr ("input is a bds logic description®)))
{n (type bool) (descr (“input is a bdnet netlist"))))
(purpose
("Search bds and bdnet descriptions for component celis®)))

edit file edit file

(name edit)
(class editing primitive)
(executable current_editor)
(input
{{name edit_file) (type text) (optional)))
(output
((name edit_file) (type text)))
(purpose
("Text editor as specified in environment?)))
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Input/Ouput Cootrotled

by Parameters

(task

(name misil)

(class primitive)

(executable misi)

(parameters
{t (type format (pla blif oct)))
(T (type format (pla blif oct)))
(o (type output) (descr ("output object spedifier”)))
(c (type family) (descr (“run in batch mode with commands from file")))
(f (type family) (descr (“run in batch mode with commands from file®)))
(n (type bool) (descr ("interactive; do not read in network®)))
(x (type bool) (descr ("suppress final output™)))
(b (type bool) (descr ("run in batch mode*®))))

{cond
(eq? parameter t) (
(cond (eq? format pla) (
(Input
{(name pla_logic) (type pla_format) (primary))}))
(cond (eq? format oct) (
(input
{{(name oct_logic) (type oct_symbalic) (primary))))))
(otherwise (
(input
((name blif_logic) (type blif_text)(primary))))))
(cond
(eq? parameter T) {
(cond (eq? format pla) (
(output
((name pla_min) (type pla_format)))))
(cond (eq? format oct) (
(output
{(name oct_min) (type oct_symbolic)))))
(cond (eq? format blif) (
{output
((name blit_min) (type blif_text)}))}))
(purpose



44

(task

(task

("Run misll"))

mucho_vias less_vias
mizer

{name mizer)

(class primitive)
(executable mizer)
(input
{{name mucho_vias) (type oct_physical)))
(output
((name less_vias) (type oct_physical) (redirected)))
(purpose
("Minimize vias®)))

network sim_results
nbdsim

| sim-commands

(name nbdsim) Y

(class primitive)
(executable nbdsim)
(input
((name network) (type oct_name) (primary))
((name sim_commands) (type text) (optional)))
(output
({(name sim_result) (type text) (script)))
(purpose
("Use nbdsim for interactive or batch simulation®)))
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(task

(task

‘\\\\\\\\ aysal file  timing_results

ncrystal

I crystal_commands

(name ncrystal)
(class primitive)
(executable ncrystal)
(input
((name crystal_file) (type crystal) (primary))
({(name crystal_commands) (type text) (optional)))
{output
((name timing_resuits) (type text) (script)))
{purpose
("Use ncrystal for interactive timing analysis")))

translate_ “translate_
file file " .sim

oct2ncrystal

(name cct2ncrystal)
(class primitive)
(executable oct2crystal)
(input
((name translate_file) (type oct_name)))
(output

((name 'translate_file’.sim) (type crystal) (absolute)))

(purpose

("Translate oct format to 'sim’ format for ncrystal's use®)))

-
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(task

hierarchical fiat_
logic = logic

octflatten

{name octflatten)
(class primitive)
(executable octflatten)
(input

((name hierarchical_logic) (type oct_name) ))
(output

{(name flat_logic) (type oct_name) (redirected)))
(purpose

("Flatten hierarchical oct logic network®)))
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(task

&& pad_logic placed_pads

pad_list

(name padp)
(class primitive)
(executable padp)

(input

{(name pad_logic) (type oct_name) (primary)))

(parameters

(cond

(cond

(cond

{purpose

{1 (type output) (descr (“list pads”)))

(D (type input) (descr (“use placement information from file®)))

(o (type output) (descr ("output file specifier”)))

(f (type bool) (descr (“label pads with property PLACEMENT_CLASS")))
(u (type family) (descr ("use family for unimplemented terminals*)))

(S (type bool) (descr ("add constraints for sparcs")))

(a (type bool) (descr (“place pads according to floorplan®)))

(c(typ e bool) (descr ("place pads clockwise; order generated by oct")))
(C (type bool) (descr ("use FLOORPLANNER's constraints™)))

(g (typ e bool) (descr ("use as module generator”)))

(F (type bool) (descr ("add property MOBILITY with value FIXED")))

(r (type bool) (deser (“place pads randomly®)))

(P (type bool) (descr (“tell padp chip is pad limited™)))

(v (type bool) (descr (“verboss output®))))

(eq? parameter DX
(input
{(name pad_specdifier) (type padp_text)))))

(eq? parameter 1Y
(ocutput
((name pad_list) (type padp_text) (redirected)))))

{eq? parameter o) (
(output
((name placed_pads) (type oct_name)))})

(“Run padp")))
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