Multiprocessor Strategies for Ray-Tracing

Bob Boothe

Master’s Project Report
Under Direction of
Professor Carlo H. Séquin

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
September 1989

ABSTRACT

Ray-tracing is often suggested as a problem which is well suited for execution on
multiprocessors. It is characterized by having abundant parallelism, a very small sequen-
tial part, and aggravatingly long run-times. For simple well behaved scenes, linear
speedup is easily achievable. However for realistic scenes which are typically both com-
plex and non-uniformly distributed, parallel ray-tracing is a challenging problem. This
thesis evaluates and compares implementations of a sophisticated ray-tracer on both
shared memory and distributed memory machines.

Acknowledgements

I would like to thank my research advisor, Dr. Carlo H. Séquin, for suggesting that I compare real
machines with real scenes, rather than studying parallel ray-tracing abstractly. I would also like to thank
him for his support and patience as this research turned out to be more complex than anticipated. Wook
Koh helped me get started using the parallel machines. Finally, I wish to thank Ziv Gigus, Henry Moreton,
Seth Teller, and others for their abundant solicited and unsolicited advice.

This work was supported in part by Tektronix, Inc.

Table of Contents

L. IDIOQUCHON ..coiiiiiiiniieensiansssnsicionnssanesseeastsaessessansasssst sosassnsssasans ssrassnsas e sassssassmsasassnasasassssessrsanse
1.1. Backgroundccecrinniinninencenennseesaennesssnssessessesnessens cerssnessnearenssnressnessereensesnren
1.2, PIEVIOUS WOTK ...ccoviiniriniiineriinnacronsrsnsarsssasassnssssesmassnssosss serassessssssnssesssssanssnsassssassassesssssssasssnnes
2. Shared MemoOTry MUIUPIOCESSOLScccvercenereeisrsserserarssessessersonsrsessessossessessansesssssassassessassssassessessassarsesss
2.1, FIAcCLalS ...urveeecvireninionrnsrisinesnonenresmeesonsrasssssnssssnensanssenes . eeeeeees s
2.1.1. Program Model etssressnsnresaesatesnane crenrassssassrenns
2.1.2. Experimental Resultsccoceernsearcsccursonens ORI
2.2. Ray-Tracing . eresrereaserenesreassrantatasentassnearsssarnrarensarenrns
2.2.1. Basic Program MOGEIcccciiciirircnessmenssnssnssssnmsesssessessrsssnssasssossossssnsssssssrsorssrasssssssrssnes
2.2.2. Model for Simple ANUHAASINGcccrveceercrrensnnrensansrerersersesnssassessersessessesssssssssssessssssssensssne
2.2.3. Model for Complex Antialiasing -
224, ADNALYSIS ..ceceeeerrecereceranearorenesesassnssesessessssssssssesessestssensstentetsassantanenssossnasserssessensnsrestesess
2.2.5. CONCIUSIONceerreeecreeeervarecrerencsaessarasesnssssasassssssssensasssssessesssssssssnns _
3. Algorithms for DiStributed MEMOTYcccivicniisesniisincsisesnssnsmssssssessssssscssesssessssssssasrasssssssssasesns
3.1, Distributed Databasecceeeveererrererscsseseeseesonsesasarsnssesssserasssssssssnssssassssssssassnsas
3.1.1. The Data Caching APProachcccceceeeeeeiceerccreeesesessesencesscsnssssassassensens
3.1.2. The Ray Passing APProachscceceeeerisrervercerersessesseronsassaens eeretencessnssnostsrarnssrenaane
3.2, POOT LOCAHLY .ecereremeeecrrereeneennessnesenneneneressesasssssssssesassensensns
3.3. Reorganized Data SIIUCIULEcccecvrueereerervnrnrsessensaraeres vevevaserseraseneesasasrasaseseentsenesrasenass
3.4. Locality Measurement
3.4.1. Cache Simulationcccceeeerrecrenenn seessenesassnessastasassessresestesntsassassntanerassaranereeresareseseaases
3.4.2. SCENE SLAUSHES ..uvovvrverrmrererersessecsessasestsseseassssssasesresestasessessssassssansssssasensassssassarssessasssseseasas
3.4.3. Performance of Data Caching Algorithm
3.4.4. Performance of Ray Passing AIGOTIthINccoeoeeiececcvcrneenrenenrnessssrssssesssssssssssesaessssonees

3.5. Reorganizing Access Order reretessse st st e s sae s s ne s se st senesasars e sansanererases

3.6. Conclusionsccu.... teteeeeirsstesntesteianesntastresebtesaeas et beratsantans

4, Distributed Memory Implementationecceeeeecceesessescenns etueeress s sessasssaasssrasene
4.1. Program Overview eeesestetenees et eaasn st eaeersea e aesas s ertaRa st e R e et e ae st e ersensaraseatantas

4.2, Ray GENEratioNcccervreerenersesseseeseassssssssssessesersnsnsasaans
4.3, Adjustment GIaNUIATILYccccccciecieimrencenseniessessmrassessessisessessessassassessossassssnessessasssssessssnaresasssesss
4.4, L0ad BalaNCINEc.coeereeeeremeermeenenenrsessessasssnsesssasarssasasesiessssasssssssssssssssssssasssstssssssssnsasesssnssons
4.4.1. LOCAL POLICY .uervcererierirerecesesenessseseseesssssssnsssessesssssssessonsasssssssassssnsssssenssssssesensasessssnsssesesssenss
4.4.2. Global POLCY ..coeceeeeerrieirticsseesseeesresesteressesssessesesssnssssnessernenes eeeeeneereeseseataes e e resnesannes
443, RESUIS ..eceeeererereeetrereresteresestensatssessasisses ssstessesssesssrantesssstssnssentessessstesensssessansssansasessratn
4.5. CONCIUSIONS ...coreerrerreeerneerrarserneanrneansresesasseassnsessssssssssessstesssasssssassssassssssssssssssssesnsssansosseeasssssses

5. CONCIUSIONS ..oeievrieirieirreesieiriiesiessaesanesseesseereessssssssasssesssessscossassnsssssasssesssassssssssnssssesansessnsssssesssensssenssss
6. REFEIEIICES .occorivcieeeri et eeesressstesieessiesseess e esssesrsesssssssesesbessasasesessrasssessssn sbstesnnsssnnsosasssanensssossessasnnsen

iii

KRN B R

1. Introduction

Ray-tracing is often suggested as a task which is well suited for execution on multiprocessors.
Several characteristics make parallel ray-tracing attractive. First, a typical image consists of one million
pixels which can be computed independently. Thus there is abundant high-level parallelism. Second, the

sequential preprocessing portion of the program that reads the scene file and creates the data structures
takes an insignificant fraction of the total total run time (as little as ﬁa). Thus Amdahl’s Law {Amd67]

doesn't preclude achievement of very high speedups. Third, run-times can be several hours or even days.
This is unacceptably long for most uses, so quicker and less realistic rendering techniques are used instead.

An efficient parallél ray-tracer will allow ray-tracing to be more broadly used.

When trying to manually obtain parallelism from a program, higher-level large-grain parallelism is
generally easiest to schedule. For computer animation, where a large number of frames are rendered,
separate executions of the rendering program can be distributed around a network [Pet87]. When there is
enough computing power on the network to provide the desired throughput, and when the long latency for
the computation of a single image can be tolerated, frame parallelism is clearly the best choice. However if
shorter latency for computing a single image is needed, parallelism at a lower level must be used, and a
more tightly coupled multiprocessor will be needed. If a machine must be purchased for the primary pur-
pose of rendering images, a multiprocessor will be the most cost effective choice since a multiprocessor
will have the highest ratio of processors to memory. This paper evaluates implementations of a ray-tracer
on both a shared memory multiprocessor (Sequent Balance) and a message passing multiprocessor (Intel

iIPSC Hypercube).

1.1, Background

Ray-tracing creates highly realistic images by tracing light rays in reverse from the eye point to the
light sources (Figure 1.1). Realistic images are produced because ray-tracing is able to render shadows,
reflections, refractions, and attenuation. For each pixel in an image a ray is traced from the eye point
through the position of the pixel in the image plane to its first intersection with an object in the scene data-

base. From this intersection multiple rays may be recursively sent out to test for shadows and to follow the

reflected and refracted light paths. Eventually all of the rays will have been ‘absorbed’ or have escaped the
scene and their lighting contributions to the pixel can be summed. (On rare occasions rays can keep bounc-
ing around the scene for a long time. At some recursion depth these rays are simply discarded with negligi-

ble effect on the final image.)

Lo

'.Q\' light source
A

shadow ray /

reflected ray

Figure 1.1. Types of Rays

Today’s complex scenes typically have on the order of 10,000 primitives (generally polygons or
spheres). As rendering machines become more powerful, scene complexity will undoubtably increase
further. Finding the intersection of a ray with the closest object in the scene consumes the majority of the
rendering time and therefore must be done efficiently. This is done through either subdividing or clustering
of the object space so that only a few possible intersections need to be tested for each ray. My research is
based on an efficient ray-tracing renderer written by Don Marsh [Mar87]. This renderer uses uniform spa-
tial subdivision.

Uniform spatial subdivision is a technique where the region of space containing objects is mapped
into a three-dimensional grid of cells. A complex scene will use on the order of one million cells. Each
cell contains a list of the objects that intersect it. A ray can be traced through the scene by tracing its path
through the cells of the subdivision. Typically only a few object intersection checks will be required to find

the first intersection. Figure 1.2 shows a two-dimensional analog of how a simple scene could be divided

into an 8 by 12 cell subdivision. The ray shown would be traced through each of the shaded cells until it
first hits the side of the house. In this case only a single object intersection test will be required since all of

the intermediate cells are empty and the final cell contains only a single face.

\

[

Figure 1.2. Cellular Subdivision

A 1000 by 1000 pixel image requires one million rays to be traced, all of which can be traced
independently. Extra rays will be traced to perform antialiasing where edges occur in the image. These
extra antialiasing rays are not independent of the original rays since antialiasing rays are only sent out
when neighboring rays produce pixels of different colors. These dependencies complicate the parallelizing

task, but parallelism is still abundant.

The independence of rays provides the natural point for parallelization. The huge parallelism and

| ray independence has led many people, such as parallel computer manufactures [Seq86], to suggest that
ray-tracing is an ideal application for parallel processing. One difficulty is that different rays can take
significantly different computation times. On a shared memory machine, scheduling of rays for load
balancing purposes is the primary concern. Distributed memory machines have the additional problem of

dynamically adjusting the data distribution tc maintain a balanced load.

1.2. Previous Work

1.2.1. Ullner [U183]

Ullner suggested building a parallel ray-u;acing machine with a two-dimensional grid of processors.
Each processor is assigned a square section of the image and a prismatic slice of the database. The slices
are aligned so that rays cast from the eye point can be traced within the originating processor. Shadow,
reflection, and refraction rays which leave the region of the database contained within a processor can be

sent to a neighboring processor. There are several potential problems.

A mechanism is needed to handle scenes where the section of the database assigned to a processor is
too large for its local memory. Ullner suggested that processors should hold whatever they can and that
when rays attempt to access data not present, the rays should be deferred until later when the data can be
brought in. There are two important ideas here. First, the processors can manage their local memory as a
cache of the the scene database, and second, rays can be traced out of order. These ideas will re-occur in
my research.

The data assignment is optimized so that primary rays (the rays originating from the eye) can be
traced entirely within a single processor. But primary rays can account for as little as 2% of the total rays.
The other rays can be assumed to be oriented randomly, and therefore most of them will have to be sent as
messages to neighboring processors. Often they won’t hit anything and will be sent all the way to the edge
of the database. Many processor boundaries will be crossed in the process. Message traffic will be very
high and may be a significant design challenge for the machine. A three-dimensional grid of processors
and corresponding cells in space might be better since it will minimize sub-volume surface area and will

therefore minimize the total message traffic when rays are oriented randomly.

Load balancing will be poor since some sections of an image will be much easier to compute than
otners. For example, sometimes a corner of the image will be entirely sky. No objects will occur in it at
all. Likewise, some other section may contain a complicated glass object that takes a substantial portion of
the entire sequential run time. Some dynamic load balancing mechanism must be added for efficient utili-

zation of the machine.

1.2.2. Dippe & Swensen [DiS84]

Dippe & Swensen [DiS84] wrote an early spatial subdivision paper. They suggests initially starting
with a coarse uniform 3-D subdivision of space and dynamically moving the dividing walls between cells
based on the amount of activity in each cell. The cells of the spatial subdivision can be assigned to
separate processors arranged in a 3-D grid. The dynamic adjustments to the subdivision serve to balance

the load among all the processors.

The dynamic cell modifications are rather complex and may be a significant overhead if load adjust-
ments are frequent. Eight processors have to be involved and synchronized when a corner of a cell is
moved. I suggest instead that a similar but simpler load balancing mechanism is to give each processor a
collection of cells from a uniform spatial subdivision. To adjust the load distribution, a processor simply
transfers a cell to one of its neighbors. Current subdivision research [Mar87] has found that fine subdivi-

sions are needed anyways in order to minimize the number of ray-object intersection tests.

The authors assume very fast communication speed between processors but do not present results
about the number of messages required. They mention that sufficient local memory is crucial to their archi-

tecture.

1.2.3. Cleary, Wyvill, Birtwistle, & Vatti [CWB86]

Cleary, Wyvill, Birtwistle, & Vatti [CWB86] also studied the subdivision of space onto a grid of pro-
cessors where rays are sent as messages between processors. They compared 2-D meshes to 3-D meshes
and conclude that 2-D meshes are better, although speedup would be less than linear, especially when ten
or more processors are used. Unfortunately their results are based on a static subdivision of a simple uni-
formly distributed scene. Whelan [Whe85] studied the data distribution of real scenes and concluded that

studies based upon such simplified assumptions will invariable lead to incorrect results.

1.2.4. Nishimura, Ohno, Kawata, Shirakawa, & Omura [NOK83]

The LINKS-1 system [NOK83] was a 64 processor machine built to perform parallel rendering using
both parallel and pipelined chains of processors. -1t did only ray-casting (primary rays from the eye point)

and did not usc any spatial subdivsion technique to reduce the number of intcrscction tests. The scene

complexity was limited because the entire scene was stored on each processor. The machine achieved 50%
efficiency when using all 64 processors. The architecture was designed for processing independent tasks
and can not provide the general communications necessary for a scene larger than the local memory of a

Processor.

1.2.5. AT&T Pixel Machine [Pot88]

The AT&T Pixel Machine [Pot88] was designed for executing parallel graphics programs. There are
64 independent processors each with 1/2Mb data storage. Their parallel ray-tracer achieves linear speedup

for scenes in which the entire database fits on each processor.

1.2.6. Priol & Bouatouch [PrB88]

Priol & Bouatouch [PrB88] implemented a parallel ray-tracer on an Intel iPSC Hypercube. They
wisely decided to avoid the many complexities involved in dynamic load balancing, and instead did an ini-
tial static scheduling based upon sub-sampling the image with a small number of rays. The image space
and data were partitioned so that each processor would trace an equal number of rays. Their speedup on 32
processors was 11. This might have been improved if they had used a more accurate load metric than sim-
ply counting the number of rays. The computational load is a function of both the ray flux through a pro-

cessor and the object density.

2. Shared Memory Multiprocessors

The referenced previous works all look at distributed memory machines rather than shared memory
machines. Ray-tracing, however, is very well suited to shared memory multiprocessors. A large read only
data base is shared among the processors, and little ::ommunication or synchronization is needed if imple-
mented correctly. The only drawback of shared memory machines is that their sizes have been limited to

on the order of ten to thirty processors. Some ray-traced images are so expensive that much larger

machines may be desired.
This section discusses research done on a 12 processor Sequent Balance 21000 [Seq86]. This is a
single-bus shared-memory multiprocessor, or multis [Bel85], based on %-MIP NS§32032 processors with

special hardware for fast locking and symmetric I/O [BKT87]. Figure 2.1 shows a typical shared memory

machine.

Mllocal]| |[Mflocal]l| |Ml[local} Mlocal]
3 T - 3
P P P P
o0 0
T T ¥]
M[cache]| [M[cache]] [Mlcache] M([cache]

I
] 1 II

M[global]

Figure 2.1. Shared Memory Architecture

Before I discuss the ray-tracing program, I will analyze a fractal program which is much simpler to
parallelize and will serve as a basis for speedup comparison.
2.1. Fractals

Simple iterative procedures can create intricate fractal images as in Figure 2.2. The computation that

creates these images uses an iterative calculation for each pixel that can take up to a few hundred floating

point operations. A typical image contains a million pixels, all of which can be computed independently.
There isn’t any large shared database as in ray-tracing. The only impediment to perfect parallel speedup is
the non-uniformity of pixel calculation complexities. Some pixels can be finished in one iteration while
others may take a hundred. If the number. of processors used is orders of magnitude smaller than the
number of pixels (which is the case for all machines except for very fine grained parallel machines) the
non-uniformity can be dealt with in two ways. One way is to choose the set of pixels assigned to a proces-
sor so that the pixels are scattered across the image rather than clustered together [Sat85]. A second way is
to dynamically schedule small regions of the image. Scattering a processor’s pixels works because with
high probability the distribution of pixel complexities will match the distribution for the entire image, and

thus all the processors will receive the same load. Dynamic scheduling works because processors that get

easy jobs can be given enough extra jobs that the total work is balanced.

Figure 2.2. Typical Fractal Image of Mandelbrot Set

One reason for preferring dynamic scheduling is that a processor can be assigned a group of neigh-

boring pixels. The coherence of neighboring pixels may be exploited explicidy if possible, or benefits may

result from data reference locality effects of the memory system. This argument doesn’t matter for fractals
because fractal programs don’t take advantage of coherence and don’t reference any data structures. For

ray-tracing, coherence and locality are important.

On a machine with an interleaved-distributed frame buffer, static scheduling is the best choice, since
it balances the load and doesn’t require any communication of resuits. On the Sequent, where the resulting
image is written to a file in scanline order, one process does all of the output to the file and only computes
pixels of the image when there aren’t any pixels ready for output. Dynamic scheduling automatically gives
the process doing the output an appropriately diminished computational load. Dynamic scheduling of
regions starting from the top of the image makes ordering the output easy and allows output to be done

concurrently with image computations. For these reasons I have chosen to use dynamic scheduling.

Job Queue

ol]|

Output Queue

e

Image File
Figure 2.3. Simple Processing Model

2.1.1. Program Model -

Figure 2.3 shows the organization of a four processor system where the processors take jobs from a
global job queue and put results into a global output queue. The last processor is required to do all of the
transfers from the output queue to the image file. The output queue is given higher priority so that it is kept
as small as possible. It will typically reccive a job from each processor before being emptied by the output

Processor.

The most natural units of work to schedule are cither individual pixels or scanlines. If scheduling
cost (synchronized access to a global work qucue) is expensive, pixels will be too fine a work unit. On the
other hand, a large unit such as a scanline won’t incur much overhead from scheduling because there are so

few scanlines, but it will incur a termination loss which is the idle time spent by processors that finish their

10

last work unit before other processors finish.

Figure 2.4 show a hypothetical dynamic scheduling system with four processors. Each of the hor-
izontal strips show the activity of a processor: the shaded boxes represent time spent doing real work, the
white boxes represent time spent scheduling a new piece of work, and the lines represent time wasted wait-
ing for exclusive access to the scheduler. The termination loss (roughly indicated by the triangle) is the

sum of the idle times spent by processors that finish early.
We can model this queuing system to find the size for the scheduling unit that gives an optimal run

time. Let:

C be the sequential computation time
P the number or processors
N the number of jobs which the computation is divided into

S the time to schedule a job
T the average computation time per job (T=—s-)
The total work(W) of the system is (computation time + scheduling time + synchronization time + termina-
tion loss). When formulated in this way the execution time of the parallel program is simply W/P.
The computation time is C.
The scheduling time is $*N.

The synchronization time can be approximated by the waiting time in a M/M/1 queuing system. This

can be seen by treating the critical section as the server and the processors as the customers in the queuing

11

model. The mean service time is § and thus the service rate 1 = 1/S. The mean interarrival time is I;—S

and thus the arrival rate A = 7’%—; Strictly speaking the model does not apply because arrivals and depar-

tures are not Markovian, but for a lightly loaded system the results from this simple model are reasonable.

The average waiting time in a M/M/1 queue is 1 % [Wol89]. This gives an average wait in the

H-A
¢ SPP o el over all N iobs is V- SxP
queue O m e total over Jobs 1s S+T—S*P "

The termination loss is T* (P~1)/2. This comes from noting that if the processes are sorted in order
of termination, as they were in figure 2.4, the expected termination loss will be the area of a triangle with

width equal to T, and height equal to (P -1).
The execution time is thus:

N*S?*p
* —_— -
C+S*N+ S+T—S*P+T*(P 12

P

For the Sequent on a test fractal of size 512x512 pixels: C = 1000 secs, P = 12, S = 45usec. Figure
2.5 shows the predicted effect on execution time as a function of the number of jobs. The optimal point is
when the task is broken into 10,000 jobs of 25 pixels each. The optimal size is so small because scheduling
is very quick and the overhead is primarily a function of the termination loss which is minimized with

small jobs.

Overhead as a Function of Job Size

10 :
P g \
e \
T 6 \
C 4
e 5 \ ,Tscanline: & i
Itl O =TT r k rﬁ‘r‘r. ’ T‘H‘r"ﬂ{l'—'/“r—rﬂ-ﬁw

10 100 1000 10,000 100,000 1,000,000
Number of Jobs

Figure 2.5

12

I chose to use scanlines which are much larger than optimal as the job unit for several reasons: First,
scanlines are a natural unit and their manipulations are slightly easier than other units. Second, the over-
head at this size, although not minimized, only amounts to one percent of the run-time. And finally, my
measurement of the scheduling time is probably underestimated because some of the code outside the criti-

cal section should be counted as scheduling time and not computing time.

If more processors are used, the job size must be decreased because the termination loss becomes
more significant. This simple model indicates that 1,000 processors could be used with 95% efficiency.
There are other limits which appear far before this. Bus bandwidth and I/O bandwidth typically limit the

size of shared memory machine to less than fifty processors [Bel85].

12 Fractal Speedup (Sequent)
11
10
S9
g 8
8 7
ue6
Ps
4
3
2
14

012345678 9101112

Number of Processors
Figure 2.6

2.1.2. Experimental Results

‘Figure 2.6 shows thc speedup curve for the fractal program running on the 12 processor sequent.

The dotted line at 45 degrees show the ideal speedup. The solid linc shows the speedup actually achieved.

13

The sequent is a multiuser machine, so part of it’s resources are consumed by the operating system to ser-
vice other processes. The last processor doesn’t contribute to performance since it is reserved for other

users.

In summary: simple dynamic scheduling is sufficient to obtain linear speedup on shared memory
machines. Fractals are a computationly bound task with abundant high-level parallelism that is easily

exploited.

2.2. Ray-Tracing

The fractal program model and analysis were introduced because they are very similar to the model

of the ray-tracing program.

2.2.1. Basic Program Model

The sequential ray-tracing program works in two phases. First it reads in the scene, does some
preprocessing transformations, and creates the spatial subdivision by linking polygons to all the cells they
touch. Second, the image is rendered by tracing rays through the subdivision. The rendering phase typi-

cally takes 1000 times longer to execute than the startup phase.

Because the startup phase is such a small portion of the total run time, it does not make sense to
parallelize it. My parallel ray-tracer does the startup phase with a single processor and creates the data
structures in shared memory. After the startup processing is completed, a worker process is forked for
each processor. These workers dynamically schedule regions of the image to render. The completed
pieces of the image are left in shared memory for a single processor to correctly order the pieces of the

image and to write the image file.

Dynamic scheduling is used, just as with fractals, so that the output can be done concurrently and so
that the processor with the burden of doing the output can receive a reduced ray-tracing load. As men-
tioned earlier, dynamic scheduling allows coherency to be utilized by scheduling nearby pixels onto the
same processor. Some ray-tracers [JoB86] use simple coherence mechanisms such as saving interscction
points on patches so that the next (hopefully nearby) ray can be intersected faster. Others [HaG86]

remcmber past shadowing polygons and test them first for nearby shadow rays. Speer [SDB85] attempted

[<™ |

14

to find pathways through empty space through which successive rays could be quickly traced, but their
research found the coherence insufficient for this task. A final potential benefit of coherence is that data
reference locality might help the memory caching system perform better. Pixels are actually rather large
computational tasks (from 150,000 to 5,000,000 cycles), and therefore the cache effects (particularly with
the 8K cache on the Sequent) will be small. In summary, coherence is not very important for this ray-
tracer, but it may be important for others. The dynamic scheduling of groups of neighboring pixels allows

this coherence to be utilized.

The scheduled group of pixels need not form a scanline. Square blocks of pixels might logically
have better locality. An expirement mentioned in the next chapter shows that the shape doesn’t matter.

Since scanlines are easiest to manipulate, they will be used.

2.2.2. Model for Simple Antialiasing

So far I have assumed that pixels are independent. This in fact is rarely the case. At one sample per
pixel, images show severe aliasing problems (jagged edges). Rather than take one sample of the scene per
pixel, ray-tracers typically take several samples per pixel and average them to ‘antialias’ the image. Figure
2.7 shows a common antialiasing trick. Each square region encloses a portion of the image that a pixel
should represent. By sampling at the corners of the region, four samples (shown by dots) can be averaged
to form each pixel (shown by a circle). Each sample can be used by four different pixels so that the aver-
age number of samples per pixel is still only one. This technique improves the image quality without

increasing the number of rays to be traced.

Unfortunately, antialiasing introduces dependencies between neighboring pixels. The two pixels
(circles) shown in the figure share two samples along their common edge. Either pixel can be computed
first, but if they are both computed in parallel, the samples will be calculated twice. In general, duplicate
calculations will occur along the edges of the allocated regions. For scanlines this would double the total
amount of work to be done. Square regions would be better, but even for reasonably large regions (20 by
20 pixels) the extra work is significant (10%). An altcrnative approach would be to share the samples at
the edges. This requires synchronization and communication between processes, and could lcad to

processes occasionally waiting for their neighbors to compute the shared samples.

i =

15

(HOm)

[

Figure 2.7. Sample Sharing for Simple Antialiasing

A much easier method exists when one realizes that samples are the independent entity, not pixels.
Lines of samples can be scheduled just as lines of pixels were scheduled before. The output process can do

all the averaging of neighboring samples to form pixels.

Figure 2.8. Sample Sharing for Complex Antialiasing

2.2.3. Model for Complex Antialiasing

More complex antialiasing techniques are in fact generally used since the previous technique still
shows many aliasing problems. If required by variations in the picture, additional shared samples can be
taken along the edges between pixels as shown in figure 2.8. Each pixel (circle) may be computed by com-
bining as many as 32 samples. Instead of simple averaging, the samples are filtered so that samples closer

to the center of the pixel are weighted more strongly.

All of the 32 samples arc not always computed, but rather are adaptively computed as needed. The

16

samples at the grid points are computed first. If neighbors are sufficiently close to the same color, the inter-
mediate samples (super samples) are simply interpolated. Otherwise rays are traced for the super samples.

Grid Super

Samples Samples Filtering Output

Image File

Figure 2.9. Multiple Queue Processing Model

New dependencies are introduced by this antialiasing technique since the computation of the super
samples is dependent upon the results of the grid samples. The best way to deal with these dependencies is
to break the original job queue into several queues as shown in figure 2.9. Jobs from the first queue are
lines of grid samples. Once neighboring lines of grid samples have been computed, jobs from the second
queue compute the super samples. After neighboring supersamples have been computed, the filtering can
be done. Finally, a single processor can do all of the output as before. This reordering of the computation
allows all jobs to be computed independently. The dependencies are managed entirely by the movement

through the four queue system.

If locality were being exploited, one might think that doing the supersamples independently from the
grid samples would sacrifice some locality. The supersamples, however, are samples taken near edges
where locality is poor anyways. The real cost of the multiple queues is the cost of transferring the inter-
mcdiate resuits through global memory buffers.

The allocation of jobs from the queues needs to be managed correctly. If all jobs are allocated from

one qucuc before the next queue is started, excessive buffer space for storing the intermediate results will

be used, and the output processor will be swamped as the filtering queue is emptied. On the other hand, if

17

the later queues are given highest priority, the final job from the first queue will move sequentially through
each stage while the other processors wait. This sequential ordering (required because of the dependen-
cies) will increase the termination loss beyond what it could be. My compromise approach it to leave a
small number of jobs in the later queues until the earlier queues are exhausted. If the number of buffered
jobs is chosen appropriately, at the point where the final job is taken from the first queue, there will be
enough jobs in the second queue to keep the other processors busy until the final job from the first queue is

completed. Likewise at the completion of the second queue there should be enough buffered jobs in the

third queue.
Ray-Tracer Speedup (Sequent) ideal
12
1 —-Fparallel base
0 - no startup
total
s 9 [
A
e 8 2
§7 2
u 6 //
P
5 '/
4
3
2 -
) L

01 2 3 4 5 6 7 8 9 1011 12

Number of Processors
Figure 2.10

Figure 2.10 shows the speedup obtained on the Scquent. The curve labeled ‘total’ computes speedup
by dividing the execution time of the original sequential ray-tracer by the execution time of the parallel
ray-tracer. This is a pessimistic view of the speedup that would be obtained from real use since my test
scenes were only 512 by 512 pixels where as 1024 by 1024 or larger is typically used. Since the startup

cost of placing the scene into the space partitions is constant with respect to the image size, its effect is

kil

18

overemphasized by a factor of at least four.

The curve labeled ‘no startup’ subtracts the non-parallelized startup times from the previous totals.
Although this is an optimistic view, startup costs should not be considered to be the bane of large speedups
that Amdahl’s Law [Amd67] makes them appear to be. Gustafson [Gus88] points out that as faster (paral-
lel) machines become available, startup costs often remain constant while job size increases. Startup costs

lose significance.

The curve labeled ‘parallel base’ computes speedup in relation to the parallel version of the program
using only one processor. The difference between this curve and the previous curve shows the costs of

reorganizing the code for parallelization. These costs are overhead for scheduling and buffering.

For all of these curves, using a twelfth processor does not help because the operating system reserves
the last processor for use by others. Performance actually goes down because of the context switching

needed to run 12 processes on 11 processors.

The shared memory model works very well because the entire scéne data structure can be placed in
shared memory and is accessed primarily for reading. One exception is that each face has a tag that is writ-
ten whenever a processor looks at the face. These tags must be separated out so that local copies can be
made for each processor. A second exception is the global statistics that are kept about various operations
such as: number of rays, number of intersections, and maximum ray depth. All of the statistics are reduc-

tion variables which can be computed locally for each processor and combined at program termination.

The critical sections of the code involve removing ready jobs from queues and linking completed
jobs into queues. The decision of which job to allocate next is also done inside a critical section. To pro-
vide mutually exclusive access to the queues, each queue could have been protected with a separate lock.
Instead, a single mutual exclusion lock was used for everything. The single lock is adequate since very lit-

tle time is spent in the critical sections.

Ba

19

1 BgyTracer Marginal Efficlepey(Sequeny) n
0.9 = ‘*;’(5\': T 5rch+gumby
0.8 SewesT tetra

0.7 ' v
0.6 arch
0.5
0.4
0.3
0.2

0.1

1 2 3 4 5 6 7 8 9 10 11
Number of Processors
Figure 2.11

2.2.4. Analysis

The question typically asked about a multiprocessor application is how well does it scale. While one
is interested in total speedup, a better way to look at the result is the marginal efficiency of each processor.
Marginal efficiency is the increase in computational power resulting from each additional processor. The
integral of the marginal efficiency curve gives the speedup curve. Figure 2.11 shows the marginal
efficiency curves for the test images shown in the appendix. The graph shows only the ‘no startup’ results

where start up costs are ignored and comparison is made relative to the original sequential program.

The performance on all of the scenes is very good. For the more complex scenes (gears and
arch+gumby) the marginal processor efficiency is greater than 90% through the eleventh processor. The
results for the simpler scenes are somewhat noisy but similar. Marginal efficiency starts to decrease after

about the eighth or ninth processor. This may be an indication that bus congestion is starting.

There are four factors that may limit scalability: bus traffic, lock contention, scheduling unit size, and

output bandwidth.

Bus traffic can be reduced by using larger caches. (The Sequent uses only 8K byte caches.) A later

section will show that the large rcad only database has sufficient locality to benefit from large caches.

20

Job Time (ms) | Scheduling Time (ms)
Grid Samples 5220 0.21
Super Samples 1120 021
Filtering 211 0.26
Output 70 0.18
Table 2.1

Table 2.1 shows the average job times and scheduling times for the arch scene. Scheduling times are
insignificant compared to computation times. Hundreds of processors can be supported before lock conten-

tion becomes a problem.

Overhead as a Function of Job Size

10
\ 10 procs \100 procs

]
l
\ \ ~—+ scanline l
A\ N /

10 100 1,000 10,000 100,000

Number of Jobs
Figure 2.12

[T SN« N]

30O~

If more processors are used, the scheduling unit size will have to be reduced to a fraction of a scan-
line. Figure 2.12 shows the job size vs overhead trade off curves for 10 and 100 processors. This uses the
queuing system model from the previous section and averages job times and scheduling times. The over-
head curve for 10 processors is flat over a large enough range that using scanlines (512 jobs) incurs little
overhead. With 100 processors, a job size closer to the optimal value of 50 pixels should be used. The
four stage queue is not really as simple as a single stage queue, but the performance model should still
accurately estimate the lock contention. The termination loss will in fact be less than predicted since it is
based on the draining of the last queue, which fortunately has the smallest jobs. Small jobs will also help
reduce the buffer space needed for the queues. Several megabytes are currently used for intcrmediate

result buffers because the job’s size is so large.

21

Output processing, which is done on a single processor, is the severest scalability constraint. It
accounts for about 1% of total processing and will therefore limit the number of usable processors to 100.
This limit could be extended by doing the run-length encoding portion of output processing as part of the
filtering jobs instead. If a single output file were not required, I/O could be done by several processors in

parallel.

2.2.5. Conclusion

This section has shown that for shared memory multiprocessors, ray-tracing can be parallelized at the
level of image samples. Multiple job queues were used to handle dependencies caused by antialiasing. The
optimal job size is a fraction of a scanline, although this becomes more important for large numbers of pro-
cessors. On the 12 processor Sequent, efficiency was nearly 100% and speedup was linear. If larger

machines can handle the bus traffic, this parallelization method should easily support 100 processors.

B omE

3. Algorithms for Distributed Memory

Machines with distributed memory, such as the N-cube, are not constrained by the bandwidth of a
single shared bus, and can therefore be built with a much larger number of processors. N-cubes have been
built with 1024 processors. Linear speedup on machines of this size has been obtained for some applica-
tions [Gus88]. Using distributed memory machines for ray-tracing, however, is complicated by the large

irregularly accessed database.

When the scene database is small enough to fit entirely within a processor’s memory, the best algo-
rithm is to simply replicate the database, and let each processor render a different section of the image.
The only communications will be for the shipping of results to the host, dynamic scheduling of image
regions, and sample sharing required by the antialiasing mechanism. The algorithm becomes essentially

the same as the shared memory machine.

For complex scenes where the database is too large to fit within a single node this simple algorithm
breaks down. The large database problem can be addressed in two general ways. Data can be moved
around the machine and cached where it is needed, or oppositely, computations can be migrated to where
the data is stored. These two approaches to handling the large database problem for ray-tracing are

analyzed below.

The analysis in this section could be used for any message passing computer, but the specific values
for parameters, such as message passing time, apply to the Intel iPSC Hypercube. The message passing
overhead is frequently found to limit performance of applications for the hypercube. Message passing time
consists of .6ms overhead plus 3ms per kilo-byte of data sent [DoM87]. This high cost of message passing
is the focal point for this study of parallelization methods. To efficiently use the hypercube, one must make
sure that message passing is not the dominant task. A minimum acceptable efficiency is 50%. At this point
half of a processor’s time is spent computing and half is spent passing messages. If message passing is
done concurrently, this is the case where both the processors and the message passing hardware are fully

utilized.

23

24

3.1. Distributed Database

In the work of [Ul183], [CWBS86], [PrB88] and [DiS84] there are two methods to deal with the distri-
buted database: send rays, and send data. [Uli83], [CWB86] and [PrB88] consider only sending rays, while
[DiS84] relies primarily upon sending rays but also sends data for load balancing. A third approach that

we didn’t find in the literature is to only send data and never send rays.

3.1.1. The Data Caching Approach

In this new approach, each processor would dynamically schedule a group of rays and trace them to
completion. The processor wouid manage its local memory as a cache of the scene database. When a ray
needs to access data not in the cache, the processor sends out a request for the data. Eventually when the
data is returned, the ray tracing can be continued. Since all processors perform equivalent tasks and

dynamically schedule work, load balancing is automatically achieved.

This approach requires a high degree of locality among the data references. Messages to move parts
of the database around will be much larger than messages for rays. If this algorithm is to perform better, it

must therefore send fewer messages. An analysis of the reference locality will be given in a later section.

Essentially, this approach emulates a shared memory machine. The differences are that the memory
system is distributed and the caches are managed manually. Cache misses are now very expensive since
messages have to be sent, but if the hit rate is large enough, long miss service time will be acceptable. The
shared memory emulation approach is very appealing because it is simpler than ray-passing algorithms and

automatically solves the load-balancing problem.

3.1.2. The Ray Passing Approach

At a high enough level, the algorithms suggested by [U1183], [CWB86], [PrB88] and [DiS84] are all
roughly the same. Each processor manages a region of the database, and when rays leave a processor’s
region, they are sent to the processor in charge of the neighboring region. The differences lie in the alloca-
tion of data onto the processors and the allocation of image regions. [UlI83] and [CWBS6] statically allo-
cate regions according to arbitrary rules. [PrB88] uses sub-sampled trace results to crcate a more load-

balanced static schedule. [DiS84] performs dynamic adjustments to the regions to balance the load. All

&Y |

25

four algorithms assume that the processors contain mutually exclusive regions of the database. This means
that for simpler scenes most of the memory will be unused, which in turn implies that more message traffic
will occur. [CWB86] suggests that to fully utilize memory, a scene should be packed into as small a group

of processors as possible and that this group should be replicated across all available processors.

3.2. Poor Locality

On an intuitive level, good locality (coherence) would seem likely since neighboring rays generally
hit the same objects and are colored similarly. One study [SDB85] found that coherence was insufficient to
be utilized by software. On second evaluation, reflection angles, particularly off of curved surfaces, are
magnified so that after a few reflections neighboring rays can diverge significantly (figure 3.1). A later

section of this paper quantifies the amount of locality actually observed.

1 hypothesized that sampling in scanline order may waste much of the locality available and that
other scanning orders that cluster neighboring pixels would work better. For example, small rectangular
regions would provide better locality but still be easy to implement. An awkward but very local ordering is
that traced by a Hilbert curve. It turns out that there is no significant improvement from using Hilbert ord-

ering over scanline ordering.

Figure 3.1. Diverging Rays

Other evidence of poor locality comes from noting that the ray tracer will cause virtual memory
thrashing unless therc is enough physical memory for the entire data structure. The primary causc of this
may be that data is simply not organized well in memory. A 100 by 100 by 100 spatial subdivision array

occupies four mega-bytes. As rays move through this array they will access locations at strides of one, one

26

hundred, or ten thousand words. The large strides will hit new pages on each access, and thereby touch

large portions of memory.

If the four mega-byte array is distributed over the 32 processors of the Hypercube, it will occupy
128K on each processor. This is more than half of the available memory. For parallel ray-tracing, a new

data structure with better locality and smaller memory usage is needed.

3.3. Reorganized Data Structure

As seen in the previous section, the uniform cellular subdivision is an inappropriate data structure for

a distributed ray tracer. A better data structure must make more efficient use of memory.

+ X___\
L B

\

Figure 3.2. Oct-tree Subdivision

A common data structure used in ray-tracers is the oct-tree. Figure 3.2 shows a two-dimensional
analogue (quad-tree). For this example, the image is recursively divided into quadrants until each quadrant
contains a small number of objects. For an oct-tree the object space is recursively divided into octants.

This data structure uses large cells for large empty spaces so that little storage is wasted.

Oct-trees have the disadvantage that moving to neighboring cells is more complex and therefore
more expensive than for uniform spatial subdivision. Uniform spatial subdivision has better performance
for scenes where the object distribution is not highly clustered. A second disadvantage is that the distribu-

tion of an oct-tree across a parallel machine appears to be awkward. Finally, replacing the data structure

27

would have required significant modification to the existing ray-tracer.

A compromise data structure is a uniform two-level subdivision. Figure 3.3 shows a two-
dimensional analogy of this. Object space is divided first into relatively large cells, and if these contain too
many objects, they are subdivided further. The size of the small cells is kept the same as it would have
been for uniform spatial subdivision. This allows the same cell stepping method to be used. The advan-

tage of the two-level structure is that large cells can be used for empty space while small cells can be used

only where they are needed.

e - e ——— - - -4 - _—— - -
r--- == -a----7 ——m--r--r - =
! i v :x i :
] I 3 +]
i i ! :(i :
|) { , I
i | | (*' ! :
Lo e R G A0 U S S IO
i | | i T :
! ! : S X A
I I I T, I ~— :
| I ' '
!] i : i :
ERUUN NUDRUNRNI DU U N (S S M U S,
I i | : | !
| I I l { !
i i i X i !
I l)) t !
T s r
B B | : | !
[N S NI DU SN S RN AU S U PR __'_—L__L_—__|

Figure 3.3. Two-Level Subdivision

Figure 3.4 shows a graph of the memory usage for different implementation choices. The vertical
axis shows the total amount of memory used. The horizontal line at 1100K bytes is the memory required
for the objects themselves. The excess above this is the cost of the subdivision structure. Along the hor-
izontal axis is the size of the larger cells. The value 8 at the right end means that large cells contain 8 by 8
by 8 small cells. The value 1 at the left is for the original one level uniform subdivision. The various lines
are for choices of the number of objects allowed in a large cell before it is broken up into small cells. The
lines are for the values O through 4, and since they all appear similar, they have not been specifically

labeled. This particular scene is the Gearbox (see Appendix). Other scenes have similar savings.

Cells of size 4 by 4 by 4 are best for optimal memory usage. The number of objects allowed in large

cells should be 0 since this doesa’t hurt the memory usage and can’t cause any extra intersection tests to be

T aam

28

performed. The performance cost of these choices is between 4 and 8 percent, which results from the

increased complexity of moving between cells.
Not only is memory usage greatly reduced, but reference locality is also improved. The cells of a 4
by 4 by 4 cluster can now be stored together rather than being spread over the global array.
Space Savings From Two Level Subdivision

(gearbox)

6000K

o original one level subdivision

5000K -

4000K -

3000K -

2000K -1

no subdivsion

1000K

0K T T T T

T T
| 2 3 4 5 6 7 8

size of top-level cells (N x N x N)

Figure 3.4

This structure is very appealing for distribution on a parallel machine. The top-level of cells can
serve as a global map of the clusters of small cells, Data caching of top-level cells is easily supported.
Empty cells don’t require any extra storage, just a NULL pointer, so every processor can know where the

cmpty space is. This allows all processors to navigate through empty space without sending any messages.

e

29

3.4. Locality Measurement

The locality of the data reference stream can be measured by the hit rate achieved in a cache. Figure
3.5 shows the hit rate curves for four test scenes (see the Appendix). The graph shows that the gearbox
achieves a 99% hit rate when the cache size is 400K bytes. The other three scenes achieve 99% hit rates

with caches of less than 70K bytes.

100 Ray Tracer Database Locality !

99 [y
T
A/

96 [e
[/

94 /arch

93
92
91
10 100 1000 10000
cache size (K)
Figure 3.5

3.4.1. Cache Simulation

In a parallel implementation, single top-level cells (of which there are typically thousands) will be
the units transferred between processors. The cache simulation therefore treats all of the structures (faces,

vertices and colors) that are referenced from a top-level cell as a single cacheable unit. If two top-level

30

cells each reference the same face, then that face is replicated in both. The cache simulation records the hit
rate that would be achieved if the cache could manage these variable sized units fully associatively with an
LRU replacement policy. Each time that a ray enters a new small cell, an access is registered to the top-
level cell to which it belongs. Accesses to empty top-level cells are ignored since empty cells are known

by all processors and don’t require any data accesses.

The cache simulation gives optimistic results. It ignores the memory management problems of a
variable sized cache, and it ignores the costs of managing this cache. The analysis has the benefit that it is
relatively easy and fast. The performance curve for a fully assosciative LRU cache over all cache sizes can

be calculated in a single pass.

Scene Number | Percent | Percent |Average|Largest|Total| Real | Average
Top Cells | Touched |Occupied{ Size Size | Size | Size |Run Length

Tetra 3584 16% 16% 54K 15K |3.IM|1.6M 24
Arch 7220 6% 18% 14K | 20K |0.6M| .TM 10
Arch+Gumby| 22344 10% 13% 10K | 46K |22M|14M 13
Gearbox 13079 7% 8% 40K | 76K |4.1M{2.IM 11

Table 3.1. Cache Simulation Statistics

3.4.2. Scene Statistics

Table 3.1 shows some other statistics from the cache simulations. Number of Top Cells refers to
the total number of cells in the top-level of the spatial subdivision structure. Precent Touched is the per-
centage of these cells that were ever entered by a ray. These numbers are small primarily because accesses
to empty cells were not recorded but also because some parts of the image are hidden and rays never reach
them. Percent Occupied is the percentage of non-empty cells. This can be compared to the previous
column to see that for the Arch scene only one third of the occupied cells are ever accessed. The other
scenes are more completely accessed. Average Size, Largest Size, and Total Size refer to the data blocks

used to hold the data of a super cell.

With realistic scenes, data is distributed very non-uniformly. Some cells will have only one face
while others may have a hundred polygons to create fine details. The large size of some cells (76K for the

gearbox) will be very cxpensive to send around the computer. This indicates a weakness of the data

e

31

structure. Oct-trees would be able to keep the cell size distribution more uniform.

Real Size is the amount of memory needed for a uni-processor. Generally the parallel algorithm

would use more space because objects referenced by multiple cells must be duplicated.

Average Run Length is the average number of times which a cell is repeatedly accessed. Repeated
accesses occur for several reasons: First, multiple second level cell accesses within a top-level cell are
each recorded as an access. A typical ray passing through a top cell will hit from 4 to 10 small cells.
Second, reflection and shadow rays will originate from the endpoint of the previous ray and thereby con-
tinue accessing from the same cell. Finally, navigation through empty space is not recorded so that it is

possible for several successive rays to touch only one unique occupied cell.

Scene Computation | Message Hit Rate Efficiency Percent of
Time per Overhead | with 200K | with 200K Total Scene
Access cache cache on a Processor
Tetra. 144ps 69600us 99.88 63% 13%
Arch 240us 21600us 99.94 95% 29%
Arch+Gumby 236us 16800us 99.81 88% 14%
Gearbox 680LLs 52800us 96.95 29% 10%

Table 3.2. Data Caching Performance

3.4.3. Performance of Data Caching Algorithm

These cache simulation results along with the times required for computation and message passing
can be used to estimate the performance of the parallel program. Table 3.2 shows the cache hit rates that
would be achieved when 200K bytes are used for the data cache. The computation time is the average run
time between data structure accesses. The message overhead is the transmission time of an average mes-
sage from table 3.1. These hit rates, computation time, and message overhead are used to find the
efficiency of the program. The Gearbox scene will run at only 29% efﬁciency. If the cache size were dou-

bled, it would rcach 50% efficiency. The rest of the scenes are adequately cfficient.

These results are optimistic because they are based on the assumption that data will be easy to locate
and on average will be serviced by a processor that is two nodes away. Unfortunately the trend in the data

is that more complicated scenes, which arc our primary interest, have worse efficicncy than the simpler

32

scenes. On the other hand, as message passing times become shorter and memory sizes become larger

(which is the trend), this algorithm will become more viable.

Number of | Computation | Message
Scene Messages Time per Overhead | Efficiency
per Ray Ray per Ray
Tetra 0.5 6.4ms 1.6ms 80%
Arch 0.9 8.4ms 3.3ms 72%
Arch+Gumby 04 11.2ms 1.6ms 88%
Gearbox 0.3 12.4ms 1.0ms 93%

Table 3.3. Ray Passing Performance

3.4.4. Performance of Ray Passing Algorithm

Simple execution statistics can also be used to analyze the ray passing algorithm. Table 3.3 shows
estimates of the number of messages that will be sent per ray. This is based on analyzing the distance a ray
travels before it hits an object, and the likely size of a data cluster. Most rays will not leave their starting
cluster énd therefore won’t require any messages. For all of the scenes, less than one message per ray is
needed on average. The efficiency has been estimated based on the overhead for sending messages and the
average computation time per ray. Unlike the results for the data caching algorithm, the more complicated

scenes do better here.

The results are again optimistic since there were many simplifying assumptions that went into these
estimates. Rays were assumt;d to go to adjacent nodes since physically neighboring processors are
expected to contain neighboring regions of the object space. Memory size was assumed to be sufficient,
and load balancing was assumed to be completely effective, cost free, and capable of maintaining reason-
ably round clusters of cells assigned to each processor. These are serious issues and need to be studied

further.

0= the optimistic side, duplication of heavily referenced parts of the database may be able iv reduce
the number of messages needed. The optimization that allows all processors to know where empty space is
will sometimes allow a processor to send rays directly to a distant processor. Bundling messages that are

sent to the same node could be used to overcome the overhead associated with sending short messages. A

33

good load balancing mechanism might even be able to adjust the object distribution away from round clus-

ters to oblong clusters that follow the major channels of ray flux through the scene.

3.5. Reorganizing Access Order

The data caching algorithm might be improved by allowing processors to trace more than one ray at
a time. When a ray misses the cached data, it’s execution can be deferred until later. The hope is that a
large collection of rays can be traced until they all leave the current data collection, and then new data can
be loaded and most of the rays can be traced through it as well. In contrast, the non-deferring system
would have shuffled data in and out of the cache repeatedly for subsequent rays and thus required a much
higher messages traffic. This modification is equivalent to allowing a traditional data cache to look ahead
in its address stream and service requests out of order. Clearly this is an advantage, but the magnitude of

the advantage needs to be studied. WiLh large caches and high hit rates, the advantage should be small.

A combination of the data caching and ray passing algorithms will probably work best. Ray passing
has an advantage because rays can be sent as compact messages, but data passing is required for load
balancing. Probably the only way to study the interactions of these two approaches is to actually imple-

ment them on a real machine.

There is one difficulty that I have neglected so far. Whenever an object is intersected against a ray, it
is tagged so that the intersection against the same object will not be performed again in another cell. One
can imagine a ray grazing along the surface of an object through many cells but never actually hitting the
object. Without the tagging optimization, the intersection test would have to be performed for each cell. In

practice this optimization halves the number of intersection tests performed.

The problem is that tags are global variables referenced by more than one cell. When a ray leaves a
processor, the tags of the objects that were hit nced to be moved also. It is impractical to send the entire tag

table since it may have 10,000 or more cntries.

sl

34

Extra Face Tests
Arch | Gearbox
Remember originating face | 62% 27%
16 entry hash table 5% 9%
64 entry hash table 2% 5%
Local tags 16%

Table 3.4. Mechanisms for Reducing Extraneous Face Tests

Table 3.4 shows the performance of several mechanism for reducing the number of extraneous face
tests. The simplest optimization is to remember the face from which a ray originates (for secondary rays)
and avoid testing for an intersection with that face. A better method is to keep a small hash table of the
most recently intersected faces. Experiments indicate that a 16 entry table will reduce the extra intersection
tests to 9% or less, and that a 64 entry table cut this to 5%. This is not entirely satisfactory since a 64 entry
table takes more space than the ray itself, thus more than doubling the message passing overhead. Another
possibility was studied in the actual implementation. Complete tags were kept locally, but they were left
behind when moving to a new processor. Extra tests are only required for objects that straddle processor

domains. For the arch scene the resulting performance penalty was 16% extra tests.

3.6. Conclusions

This section has demonstrated that despite abundant parallelism, ray-tracing of complex scenes is not
the ideal task for parallel computers that it is often believed to be. Performance estimates of data caching
and ray passing algorithms indicate that ray passing is better for complex scenes. The analysis makes
many aséumptions that should be verified with a real implementation. Larger memory sizes and faster

message passing will improve the efficiency of both algorithms.

Yy |

4. Distributed Memory Implementation

This section discusses the implementation of the ray-tracer on a distributed memory hypercube archi-
tecture. Two good papers introducing first generation hypercubes are [Sei85] and [TPP85]. We have at
Berkeley a 5 dimensional Intel iPSC hypercube with 32 nodes. Each node consists of an Intel 80286 pro-
cessor, 80287 floating point co-processor, and 512K bytes of local memory. Only about 300K of this
memory is available to the user because the operating system uses the rest [Hyp86]. Code is written in C.

A library of message passing routines is used to communicate between nodes.

Berkeley also has available a 64 processor N-Cube, but its nodes only have 96K bytes available to
the user. Similar work [Lia87] on parallel beam-tracing found the memory size of the N-Cube much too

constrictive. The code size of the parallelizable kernel of the ray-tracer is more than 100K bytes.

The hypercube as shown in figure 4.1a is a beautifully symmetric interconnection topology. With N
processors, there is a path of length at most log,N that connects any two processors. Other useful topolo-
gies such as linear arrays, 2-D grids, 3-D grids and binary trees can be embedded using a subset of the con-
nections. However from the [/O perspective as shown in figure 4.1b, the system has a potential bottleneck
since it must drain all output through a single link to the host. Fortunately ray-tracing is sufficiently com-

pute bound that this I/O bottleneck is not a problem.

A
win: o QF
Q;ﬁﬁ ik \Lfé\ G0 {Ef IOIOIOIOIO
— PHol LD
5 \;/\7‘\ \r/ A N
A k
ost

35

36

The hypercube nodes have routing hardware that allows multi-hop messages to be passed through
intermediate nodes without affecting their processors. This independence from message traffic lets all
nodes provide an identical computational resource. Recall that on the Sequent ray-tracer, one processor
was burdened with all of the I/O processing and therefore could not do as much computation as the other
processors. The balanced performance of the nodes suggests that static scheduling can be effectively used.
Priol & Bouatouch [PrB88] took this approach, but with only limited success. Probably their disappointing
performance resulted from an inaccurate load metric that they used for scheduling. In retrospect, I should
have chosen static scheduling, but instead chose to experiment with the more difficult problems that arise

from a dynamic solution to load balancing.

4.1. Program Overview

From the simulation studies, I have shown that ray passing is the more promising algorithm to inves-
tigate. This section gives a brief overview of the structure of the Hypercube ray-tracer. The remaining

sections explain the important design decisions.

Each processor is assigned responsibility for some region of space and stores the data associated with
all objects that fall in its region. As a processor traces a light ray through its region, that light ray will
either hit an object or pass through to a region managed by a different processor. When a ray passes
through to another processor, it is sent as a message. When it hits an object, the resulting color of the ray is

determined and sent back to the processor that originated the ray.

Actual operation is much more complex. A ray does not stop when it hits an object, but rather
spawns a tree of rays that determine tl_le reflection, refraction, and shadow contributions to the color of the
ray. On the sequential ray-tracer, this tree is evaluated recursively. When a ray hits an object, the
reflection, refraction and shadow rays are recursively traced and then combined by weighting their contri-
butions according to the surface properties of the object. This recursive evaluation tree presents a problem

for parallel execution because of the long latency when part of the tree is computed on another processor.

The latency could be dealt with by context switching, but instead, the recursive calculation can be

reorganized to eliminate the need to return results back up the tree. Instead of computing each ray’s contri-

37

bution after the ray’s completion, the contribution factor is computed before the ray is started. When the
color of a terminating ray is eventually determined, the color is scaled by the ray’s contribution factor, and
the result is added directly to the final pixel value. Now whep a ray leaves a processor, the sender does not
have to wait for the result since wherever the result is eventually determined, it can be sent directly to the
processor collecting results. Many rays can be sent simultaneously and they each require only a small
buffer in which to collect the pixel color as result messages are returned from the various branches of the

ray tree. When all the result messages are eventually received, the pixel value is finished.

The advantages of this new method are that it is easier to manage the result buffers than the multiple
execution threads of many ray trees and that much less space is needed for a single result buffer than for a
saved process state. A disadvantage is that more result traffic may be required. Rather than recombining
results along the ray tree, which would most likely involve messages to nearby nodes, results are sent all
the way to the collection site, which might be many nodes away. This is not as large of a problem as it
might seem since distant nodes in a 2-D or 3-D grid are often closer when the extra dimensions of the
hypercube are used. Furthermore, at the cost of increased latency, much of the overhead due to returning
result messages can be eliminated by packaging results destined for the same processor together. The pri-

mary overhead of small messages is dependent on the number of messages, and not their size.

A technique suggested by Ullner [U1183] is used to determine when all contributions to a pixel have
been received. The contribution fractions are returned along with the results of a ray. As the results are
added to the pixel value, the contribution fractions are also summed. When the sum of the contribution
fractions reaches 100%, the pixel has been completed. Integer arithmetic is needed to avoid roundoff, and
integer precision turns out to be adequate since the ray tree is truncated at the point where the contribution

of a ray is less than the precision of a pixel, and pixel colors have only 8 bit precision.

The difficulties that arise when implementing this algorithm are deadlack avoidance and load balanc-
ing. Deadlock occurs when too many rays are released into the system and some buffering capability is
exceeded. This can be in the system's buffers for routing messages or in a process’s internal buffers for
storing rays received from ncighbors. Load balancing is required because the computational density of the

data base is very nonuniform. Some rcgions are hit by many rays, and some by few or none. The rcgions

38

managed by the processors must be adjusted if all of the processors are 1o be kept busy.

4.2. Ray Generation

The first decision to be made about ray generat.izm is whether a single processor (possibly the host)
will be responsible for initiating all of the rays, or if all of the processors will initiate a fraction of the rays.
An advantage of a single processor generating all of the rays is that controlling the number of messages in
the system, so as to avoid deadlock, is easier. Unfortunately, a single processor is unable to generate rays

quickly enough to keep 32 processors busy.

In the static data distribution by Priol & Bouatouch the image plane was subdivided into regions with
equal expected computational load. The data objects were then distributed among the processors in rec-
tangular cones so that primary rays (rays from the eye point) would stay within the originating processor.
This is a minor optimization since only a few percent of the total rays are primary rays. With dynamic load
redistribution I can’t predict where the data will end up, so I simply divide up the image evenly. Each pro-
cessor generates rays for a rectangular block of the image. Data objects are initially distributed so that pri-
mary rays can stay on the same processor, but the reality of fitting the data onto the processors and later

balancing the workloads will disturb the correspondence between image regions and data regions.

Regulating the ray generation rate to avoid deadlock is a very difficult problem. The operating sys-
tem has 100 message buffers per processor for routing (which unfortunately use 1K of memory each
regardless of message size.) Despite the large number of buffers, the operating system is quite susceptible

to deadlock whenever the processes let messages accumulate without receiving them.

From the program’s perspective the exact size of messages is known (258 bytes for a ray), and
buffering can be done more efficiently inside the program than by the Operating System. The program allo-
cates spacc for 50 rays (and possibly more on demand). The input queues must not be allowed to reach this
limit, or deadlock can result when some processor tries to send a message to a congested processor and the
congested processor tries to send a message back. In practice, once a processor’s buffers fill up, the

deadlock cycle is completed quickly.

et

39

One can try to avoid deadlock by many methods: the number of rays in the system can be limited, the
current buffer status can be frequently propagated around the machine, panic messages can be sent when

buffers are nearly full, or the rate at which new rays are generated can be regulated.

The most critical test for the ray generation strategy is immediately after start up. The data distribu-
tion is probably quite poor, and a great number of rays are likely to converge on a single unlucky proces-

sor. The processors must be subdued from their haste in generating rays.

The first strategy, where the number of rays allowed in the system is limited by some sort of token
system, fails because the number of tokens is limited by the resources of a single processor to 50. However
50 tokens spread over 32 processors is not enough to allow even basic operation since a single ray will typ-

ically spawn several offspring.

The second strategy of frequently propagating the buffer status across the machine was rejected
because of the large message overhead required to implement it. Perhaps this information could have been

piggybacked onto other messages, but this wasn’t tried.

The third strategy of sending out panic messages at a high water mark was tested and performed very
poorly. The panic messages had to be sent out before the buffers were even half full because of the latency
and backlog of messages in the system. Once panics started inhibiting execution, the whole machine

would soon grind to a halt until the paniced processor caught up on its backlog of rays. The whole

machine would stutter along with horrible performance. Occasionally misfortune would still conspire to

deadlock the machine.

The fourth strategy was to have a global rate at which all processors could generate rays. For exam-
ple each processor might be allowed to generate rays at the rate of 25 rays per second. The global perfor-
mance was monitored, and if all of the processors were sitting idle for some fraction of time because they
weren’t allowed to generate enough rays, the global generation rate would be increased. If on the other
hand a processor was overworked and couldn’t keep up with its ray generation quota, the global generation
rate would be decreased. The net effect of this management technique is that the most heavily loaded pro-
cessor would be fully utilized and the other processors would be less fully utilized in proportion to their

respective loads. Since all processors generate rays at the same rate, they will all complete at the same

v .

40

time. The goal of load balancing becomes to match the loads on the processors so that they can all be fully
utilized. Unfortunately, this technique also suffers from instability. Occasionally coincidental events will
require a rapid decrease in the generation rate to avoid buffer overflow. Adding damping to the system

slowed down its recovery but wasn’t able to prevent instability problems.

The fifth strategy was to limit the number of rays that a processor could be waiting upon for results.
The limit started out small but was slowly increased as results were successfully returned. When a panic
message was received from a processor, the pending ray limit was frozen so that a result would have to be
returned before the next ray was sent out. This, in a sense, provides acknowledgement for free. As each
result is returned, it signifies that the buffer that had held it is now empty. Processors give preference to
processing rays passed from neighbors rather than generating rays of their own. This keeps input buffers
constantly drained, but whenever a processor finishes its passed rays, it can start generating rays of its own
and thus never needs to sit idle except when the machine is congested. This technique worked well with 16

processors but occasionally deadlocked with 32 processors because buffer space was inadequate.

Figure 4.2 shows a performance graph for a run where the load is well balanced. This is for a 16
processor configuration. Each individual graph shows a processor’s utilization as a function of time. Note
that the processors are fully utilized until a point near the end of the run. At this point their utilization
drops dramatically. Figure 4.3 shows the progress that each processor makes towards completing its
assigned block of rays. The falloff in utilization corresponds to the point at which the processor can no
longer generate rays to keep itself busy but must wait for rays passed from neighbors. The occasional

small dips in performance correspond to congestion problems.

The scenc used for figures 4.2 and 4.3 is an artificial scene designed to be well load balanced. Fig-
ures 4.4 and 4.5 are the performance graphs for the Arch scene. This is a very poorly load balanced scene.
Note that some processors (lower left corner) finish all of their rays in 5% of the total runtime, and then sit
nearly idle. Other processors (upper right corner) sit nearly idle but make only slow progress towards
finishing their work. This suggests that the rays they gencrate are sent to another processor for computa-
tion while the sender waits. Only one processor (lower left middle) is fully utilized. This processor is

greatly overburdened and spends all of it’s time processing rays passed from neighbors. Not until near the

- Y v ™
T)} H"
v v v v o vy ' Y Y
%l' :F' """"" I 7 1
X 1
y
! YT XX - 1
1
\h'a'
y 1) | ¥ 1
] |
R | vy
oo o Nagen
Figure 4.2. Processor Utilization (0 to 100%)
. . o .
o B S ———— .
P . . .
o o e ——
. . e~ ——
o ——— v o —— e ———
—— o e~
T Py —— .
—— N — e ——
. e . e
. e o o
o . . o

Figure 4.3. Remaining Work (0 to 100%)

end of the run when it has finished the neighbors’ rays, is it able to make progress on its own rays.

4.3. Adjustment Granularity

The two level spatial subdivision structure was originally developed to save memory when storing
the scene. The large cells, consisting of a 4 by 4 by 4 block of small cells, also form a convenient unit for

load balancing. Each processor maintains a map of where the large cells are located and routes messages

according to that map.

41

42

] yL A
o s ——_ oo — Jproniss hisa' o W e
Nowa |
3
1
hY
L
R, o~ o o
. o e S
e e B
e SN o —
\ \ ., (Y
S, \ P S \
N \ ~
N N \
A N
\ h \ |
1 . \ Y
1 S \ \

Figure 4.5. Remaining Work (0 to 100%)

The analysis in the section 3 was based on simple averages of statistics. Averages can look good,

however, while the actual distributions can be disastrous.

Twao distributions nf interest are the amount of data contained in a cell, and the percentage of compu-
tation occurring in a cell. A few big data cells can clog the load balancing mechanism, and a few heavy
computational cells can become bottlenecks. Cleary if there exists a cell that can fill up a processor’s

memory, then whichever processor gets the cell will be stuck with whatever load is required by that cell.

43

Sufficiently small size granularity is needed for load balancing.

Likewise if there exists a cell that requires more computation than one processor’s share of the total,
that cell will be a bottleneck limiting the machine’s performance. This can be dealt with by duplication,

but that requires more complicated mapping to allow multiple ownership.

Even if cells are small enough so that the average computation per cell over the entire run is
sufficiently small, there are only a limited number of rays active in the machine at any particular point in
the computation. For load balancing at any particular instant, only the computations required by the set of
active rays is relevant. If the load presented by the set of active rays falls onto a small number of cells,
then the load balancer will once again be unable to distribute the load evenly. Rather than generate rays in

scanline order, rays must be distributed across the image to make sure they don’t overuse any cell.

Super Cell Size Distribution

Scene 80K-60K | 60K-40K | 40K-20K | 20K-10K | 10K-5K | 5K-0K
Tetra 0 0 0 35 270 263
Arch 0 0 0 10 6 1315
Arch+Gumby 0 1 0 7 19 2868
Gearbox 4 11 20 28 37 985

Table 4.1

Sub Cell Size Distribution -

Scene 80K-60K | 60K-40K | 40K-20K | 20K-10K | 10K-5K | SK-0K
Tetra 0 0 0 0 0 8980
Arch 0 0 0 0 6 20618
Arch+Gumby 0 0 0 2 7 45113
Gearbox 0 0 2 66 185 17683

Table 4.2

After the operating system, the program, and the message buffers take their share of each node’s
memory, there is only 100K bytes left for storing data. Tables 4.1 and 4.2 show the distribution of cell
sizes for super cells and sub cclls respectively. The vast majority of the cells contain less than 10K of data,
however for the more complex scenes there are a few super cells larger than 40K. These cells must be bro-

ken up. Table 4.2 shows that even the sub cells can be large, but none of them exceeded 40K in the scenes

studied.

Tables 4.3 and 4.4 show a metric of the amount of computation occurring in the cells. Again, the
majority of the cells are well behaved but a few contain a large fraction of the total computation. If a sin-
gle cell contains 1% of the total computation, speedup is clearly limited to 100 regardless of the number of
processors available. Since there are many sub cells that contain more than 1% of the computation, data
replication techniques will clearly be required for large machines. Even with only 32 processors, there are

single sub cells that constitue several percent of the total computation, and thus will severly restrict the

ability to load balance.
Super Cell Usage (% of total intersections)

Scene 15%-10% | 10%-5% | 5%-2% | 2%-1% | 1%-0.5% | 0.5%-0%
Tetra 0 0 0 4 38 508
Arch 1 6 7 4 4 182
Arch+Gumby 1 4 7 14 9 649
Gearbox 0 2 11 17 16 913

Table 4.3

Sub Cell Usage (% of total intersections)

Scene 15%-10% | 10%-5% | 5%-2% | 2%-1% | 1%-0.5% | 0.5%-0%
Tetra 0 0 0 0 0 7201
Arch 0 0 4 20 28 1134
Arch+Gumby 0 0 1 14 24 2971
Gearbox 0 0 0 2 < 20 9944

Table 4.4

For reasons of both size granularity and computational granularity, some super cells must be broken
into sub cells for load balancing. For space reasons, the super cell structure is required. The conclusion is
that both level of cells will have to be used as load balancing units. This suggests that a full oct-tree struc-
ture would be desirable and nerhaps not much more complex. Oct trees would provide greater flexibility to

subdivide until sufficiently fine spatial and computation! granularity is achieved.

45

4.4. Load Balancing

The results from the previous section shows that load balancing is necessary except for specially
constructed artificial scenes. To do load balancing, one needs both a policy and a mechanism. The policy
is used to decide when and what to load balance. The mechanism must be capable of implementing the
policy decision.

A load balancing policy should be stable. This means that under constant load, the system will reach
a point where load balancing is not needed. This is only possible within the precision of the load balancing

unit. If large portions of the load must be shifted, any shift will necessarily leave the load unbalanced.

The load balancing mechanism selected is the shifting of responsibility for cells in the subdivision.
When a cell is moved between processors, the global routing tables become invalid. There are two simple
approaches to deal with this. The most obvious approach is to broadcast the ownership change to all pro-
cessors. The other approach is to allow the routing tables to become inconsistent and simply forward mes-
sages to the correct processor. The sequence of previous owners of a cell will form a chain that leads to the
current owner. The broadcasting approach is wasteful since many of the distant processors will never send
a message to the cell and therefore never need to know that the cell was moved. The forwarding approach
is wasteful since each time a cell is migrated, all future references to it will require an extra message for-
warding operation.

A compromise approach is to forward messages, but also notify the ray originator of the changed
ownership. This limits updates to only those processors that need to know that a cell has migrated. In
practice this works extremely well. The new and old owners of a cell automatically know that it has

moved. On average only 0.6 relocation messages per migrated cell are sent to other processors.

4.4.1. Local Policy

My original experiments with load balancing policies were with local policies. Each processor tried
to balance its load against the loads of its neighbors. Since all processors are trying to balance their loads
with their neighbors, after scveral iterations a balance across the entire machine should be achieved. Each

processor monitored its own utilization and occasionally compared it against the utilization of its ncigh-

46

bors. When a processor noticed a significant difference in loads between itself and a neighbor, it would

arrange to balance their loads.

A fundamental problem arose with this method that was unsolvable. When two processors rendez-
voused to transfer cells between them and attempt to balance their loads, the rest of the processors would
continue to send them rays. Selecting just a single cell and performing the transfer could take long enough
that incoming messages from other processors could congest the machine and cause deadlock. The local

load balancing policies eventually had to be abandoned in favor of a global policy.

4.4.2. Global Policy

The global policy is to make a global decision that load balancing is needed, stop all of the ray-
tracing activity, adjust the load distribution and then resume tracing rays. Since all processors are stopped
together, it was felt that a single global redistribution of data should be used instead of the many local

redistributions that would otherwise be required.

+4 +4 & T -
i t " Mt
1 I I I
<+ &+ —
+ * ™"
{ | [
.16 =
| | i
v ias
+4 +4 s & =
Figure 4.6a. Desired Data Changes Figure 4.6b. Resulting Transfers

The goal of load balancing is for all processors to finish their share of the work at the same time and
1o stay tusy for the entire run. At each pause for load balancing, the processors send information about
their workload, progress toward completion, and cpu utilization to a central node (node 0 was chosen arbi-
trarily). The central node calculates how the workload on cach processor should change to bring about a

balanced load and how to redistribute the workload around the machine. The results of this calculation are

47

then sent to the processors, and the processors arrange with their neighbors to transfer the data between
them. Figures 4.6a and 4.6b show an example. Figure 4.6a shows a redistribution map where each square
represents a processor and the numbers indicate the amount of data to be transferred. Figure 4.6b shows

the transfer map that would be calculated.

The amount of data to be transferred can be measured in many ways. Each processor determines by
what percentage the workload should change and it transfers that portion of its cells which it believes will
provide the desired workload change. Ideally one would like to measure cell workload by the amount of
computation that uses each cell. This would require sub-sampling the image at uniform density and gather-
ing usage statistics for every cell. This is a difficult statistic to measure. Instead, one can make the simpli-
fying assumption that all cells are used equally, or better, that all objects are used equally, or better yet, that
all objects are used in proportion to their size. All of these assumptions are inaccurate but easy to measure.
I chose to measure usage in proportion to object size, and scaled this separately for each processor by the

processor’s utilization.

One can make a comparison between static and dynamic load balancing. With a perfect load metric,
dynamic load balancing reduces to static load balancing because the load will be balanced by a single load
balancing phase. For a less accurate metric dynamic load balancing has the additional ability to measure
the effectiveness of its previous attempts and try again. I hoped that after several attempts a poor but easy

to measure load metric could be used to balance the load. The results were disappointing.

4.4.3. Results

Compare figure 4.7 to figure 4.4. Figure 4.4 shows the Arch scene run without load balancing.
Because many of the processors sit idle the speedup relative to the serial program was only 2.9. When load
halancing was added (figure 4.7) the speedup was improved to somewhere between 4.0 and 4.8. The larger
figure results if one ignores the time spent for load balancing. This is valid since a small image was used
for testing purposes. On a full size image the time spent for load balancing will stay the same, but the time
spent ray-tracing will increase by a factor of 25. The time spent load balancing becomes negligible. These

results also ignore start up costs for the same reason.

[

48

Do 1) SR SOt MRS B SRSt 1 A - A
s | 4 Fo | ey | Y
f o VR I ¥ SO T o VOEN DU | e | 5 TR N § 3 TR ee) W PRI
L] i F SR SR .Y S -\ [l X t

Figure 4.7. Processor Utilization - With Load Balancing

In figure 4.7 load balancing was performed five times. These phases can be identified because the
utilization (as far as ray-tracing is concemed) drops to 0. The five dips are easily visible for the processors
in the center of the chart. Notice that the load shifts around but never becomes well balanced. In the pro-

cess of load balancing, the memory of some processors fills up before an adequate workload is obtained.

The arch is the smallest of the test scenes. Memory is clearly inadequate for the other scenes. There
are actually 32 processors on our hypercube, which if all used would provide twice as much memory as 16
processors provide. Unfortunately, as the number of processors is increased, more buffer space is needed
to avoid deadlock. The memory that would have been gained by adding more processors is lost to provide

sufficient buffers. Substantially more memory is needed per node.

4.5. Conclusions

This section has described my attempts at parallelizing a sophisticated ray-tracer. Dealing with real-
istic scenes that have non-uniform scene density provides many challenges. The chaotic flow of rays
through the scene is inherently deadlock prone. An adequate ray regulation method was found which
avoids deadlock, but it requires substantial buffer space. Load balancing was only moderately successful
because of the limited memory available. Given the complexity of dynamic load balancing, static load

balancing scems to hold more promise.

g

49

The data caching approach was not implemented. It remains an open problem to determine if this
approach will work when adequate memory is available, and to determine how much memory is needed

relative to the scene size.

» B

5. Conclusions

The first conclusion that can be drawn from this thesis is that parallel ray-tracing is a much harder
problem than it is generally believed to be. Toy implementations with simple artificial scenes do not
encounter the difficulties that occur when realistic scenes are used. Real scenes have both substantial com-
plexity and non-uniformity. Production quality ray-tracers are even more complex than the one used in this
study. Typically they have fancier antialiasing, more types of primitive objects, and texture mapping.
Dealing with the large amount of texture data is a serious problem which still needs to be studied. Diver-

sity in object types and surface properties presents a serious problem for SIMD implementations [Del88].

Second, shared memory machines are much easier to use than distributed memory machines (at least
for applications where a large shared data base is involved.) Converting the program to run on the Sequent
took a few months compared to nearly a year spent on the Hypercube version. The original ray tracer was
10,000 lines of code. The Sequent version had 400 lines of code modified or added. The hypercube ver-
sion had 6,000 lines modified or added. The Sequent version is robust and achieves linear speedup, and it
has been used for producing thousands of images for an animated video. The hypercube version is unreli-

able and achieves only moderate speedups (due in part to insufficient memory).

Third, it is unreasonable to require a programmer to manage a complex distributed data structure.
The code to pull apart linked structures, package them into messages, and unpackage them at the recipient
was laborious. Adding failure recovery when memory filled made this coding even more difficult. Provid-

ing a shared memory model to a programmer is acceptable; providing a distributed memory model is not.

Finally, load balancing on a shared memory machine through dynamic scheduling of many small
jobs is a simple and reliable technique. To balance workloads on a distributed memory machine, as

attempted on the Hypercube, requires extensive programming as well as careful measurement, and tuning.

The soie advantage of distributed memory machines is that they can be scaled to large numbers of
processors at almost linearly increasing cost. If large shared memory machines were available, ray-tracing

would be a well suited application.

Ray-tracing on a shared memory machine should be considered a nearly solved problem. Three

issues not included in this rescarch are higher order surface primatives, texture mapping, and stochastic

51

52

antialiasing. Using higher order surface primatives will increase the computation time, but will not other-
wise affect performance. Dealing with large amounts of texture data will probably not be any more trou-
blesome than it is for uniprocessors. Scheduling stochastically antialiased image samples is the most

difficult open issue.

Ray-tracing on a distributed memory machine remains unsolved. The attempts at load balancing

tried in this research were unsuccessful. Whether other approaches will work remains to be seen.

[Amd67]

[BKT87]

[Bel85]

[CWBS86]

{Del88]

[DiS84]

{DoM87]

[Gus88]

[HaG86]

[Hyp86]

[JoB86]

[Lia87]

[Mar87]

6. References

G. M. Amdahl, Validity of the Singe Processor Approach to Achieving Large Scale
Computing Capabilities, Proceedings AFIPS 1967 Spring Joint Computer Conference, April

1967, 483-485.

B. Beck, B. Kasten and S. Thakkar, VLSI Assist For A Multiprocessor, ASPLOS IT 15, 5

(October 1987). published as part of Computer Archtecture News.
C. G. Bell, Multis: A New Class of Multiprocessor Computers, Science 228 (April 26, 1985).

J. G. Cleary, B. M. Wyvill, G. M. Bintwistle and R. Vatti, Multiprocessor Ray Tracing,

Computer Graphics Forum 5, 1 (March 1986), 3-12.

H. Delany, Ray Tracing On A Connection Machine, 1988 International Conference on

Supercomputing, July 1988, 659-667.

M. Dippe and J. Swensen, An Adaptive Subdivision Algorithm and Parallel Architetcure for

Realistic Image Synthesis, SSGGRAPH '84 18, 3 (July 1984), 149-158.

G. B. Doshi and E. V. Munson, Benchmarking the Cubes, CS252 Spring 1987 projects I

(Spring 1987).

J. L. Gustafson, Reevaluating Amdahl’s Law, Communication of the ACM 31, 5 (May 1988),

532-533. Technical Note.

E. A. Haines and D. P. Greenberg, The Light Buffer: A Shadow-Testing Accelerator, /EEE

Computer Graphics and Applications 6, 9 (September 1986), 6-16.
Hypercube, iPSC Program Development Guide, Intel Corporation, 1986.

K. Joy and M. Bhetanabholta, Ray Tracing Parametric Surface Patches Utilizing Numerical

Techniques and Ray Coherence, SIGGRAPH '86 20, 4 (August 1986), 279-285.

C. Liao, Parallel Bundle Tracing, University of New Hampshire, December 1987. Masters

Thesis.

D. Marsh, UgRay - An Efficient Ray-Tracing Renderer for UniGrafix, U. C. Berkeley, May

53

54

[NOKS83]

[Pet87]

[Pot88]

(PrB88]

{Sat85]

[Sei85]

[Seq86]

[SDB&5]

[TPP85]

[U183]

[Whe835]

[Wol89]

1987. Masters Thesis.

H. Nishimura, H. Ohno, T. Kawata, I. Shirakawa and K. Omura, LINKS-1: A Parallel
Pipelined Multimicrocomputer System for Image Creation, in Proceedings of the 10th

Symposium on Computer Architecture, vol. 11 , SIGARCH, 1983, 387-39%4.

J. W. Peterson, Distributed Computation for Computer Animation, University of Utah, June

1987. Tech. Rep. UUCS 87-014.
M. Potmesil, personal communication, AT&T Pixel Machines, February 1988.

T. Priol and K. Bouatouch, Experimenting with a Parallel Ray-Tracing Algorithm on a

Hypercube Machine, Eurographics, 1988, 243-259.

H. Sato, Fast Image Generation of Constructive Solid Geometry Using a Cellular Array

Processor, SIGGRAPH '85 19, 3 (July 1985), 95-102.
C. L. Seitz, The Cosmic Cube, Communications of the ACM 28, 1 (January 1985), 22-33.
Sequent, Balance Guide To Parallel Programming, Sequent Computer Systems, Inc., 1986.

R. L. Speer, T. D. DeRose and B. A. Barsky, A Theoretical and Empirical Study of Coherent

Ray-tracing, in Proceeding of Graphics Interface '85, Montreal, May 1985, 1-8.

J. Tuazon, J. Peterson, M. Pniel and D. Liberman, CALTECH/JPL MARK II Hypercube
Concurrent Processor, Proceedings of the 1985 Internation Conference on Parallel

Processing, 1985, 666-673.

M. K. Ullner, Parallel Machines for Computer Graphics, California Institute of Technology,

January 1983. Computer Science Technical Report 5112.

D. S. Whelan, A Multiprocessor Architecture for Real-Time Computer Animation, California

Instituic of Technology, 1685. Ph.D. Thesis.

R. W. Wolff, Stochastic Modeling and The Theory of Queues, Prentice Hall, 1989.

7. Appendix

Example Ray-Traced Images
Scene Faces | Sequential Run Time Comments
(1 MIP processor)
Tetra 4096 8 minutes no reflections
not antialiased
Arch 375 17 minutes flat faces
Arch+Gumby 558 27 minutes smooth shaded faces
(similar to curved faces)
Gearbox 7169 13 hours glass with many

internal reflections

55

T

kil

