Branch Target Buffer Design*

Chris H. Perleberg

Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

The Branch Target Buffer (BTB) can reduce the performance penalty of
branches in pipelined processors by predicting the path of the branch and caching
information used by the branch. This paper discusses two major issues in the
design of BTBs with the theme of achieving maximum performance with a lim-
ited number of bits allocated to the BTB design. First is the issue of BTB
management - when to enter and discard branches from the BTB. Higher perfor-
mance can be obtained by entering branches into the BTB only when they experi-
ence a branch taken execution. A new method for discarding branches from the
BTB is examined. This method discards the branch with the smallest expected
value for improving performance, outperforming the LRU strategy by a small
margin, at the cost of additional complexity.

The second major issue discussed is the question of what information to
store in the BTB. A BTB entry can consist of one or more of the following:
branch tag (i.e. the branch address), prediction information, the branch target
address, and instructions at the branch target. A variety of BTB designs, with
one or more of these fields, are evaluated and compared. This study is then
extended to multilevel BTBs, in which different levels have different amounts of
information per entry. For the specific implementation assumptions used, multi-
level BTBs improved performance over single level BTBs only slightly, at the
cost of additional complexity. Multi-level BTBs may provide significant perfor-
mance improvements for other implementations, however.

Design target miss ratios for BTBs are also developed, so that the perfor-
mance of BTBs for real workloads may be estimated.

December 23, 1989

* The material presented here is based on research supported in part by the National Science Foundation under grant
MIP-8713274, by NASA under consortium agreement NCA2-128, by the State of California under the MICRO program,
and by the Digital Equipment Corporation, International Business Machines Corporation, Philips Laboratories/Signetics
and Apple Computer Corporation.

Branch Target Buffer Désign*

Chris H. Perleberg

Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

Table of Contents

1.0 INETOAUCHION .eoeeeeeeceeeencererrersrsssessasssassssssmsnssesssess sesessresesssesssasasassassssssensas sossssnsassenssansssunsnsassnsesusssasass 2
2.0 Solutions to the Branch PTODIEINcccoceecvuinmiinrimereserisassnesessssessacstssssssss senarmntsssssasasssssscacscsssas: 2
3.0 Methodologycmveueee eeteeemetsestesasssersasEtRe e A e e sasasenesR SRS RS ee R SR e R se RS e R s s ss et es 5
3.1 Trace DIiven SIMUIALONcoeeicrsreeceeereerssesiscserensssesssasssenssrssssssasssesssssssssssnsarassasasssassssasesassces 5
3.2 Description of Traces . easerssssssasnssnsresasasases rereresseesesssenensas bR R e ar s e R e p sttt ens 5
4.0 BTB Design Optimization .. rereseaseasesesests et aas s aR s s be e R s s st R RS0 st R SR s 8
5.0 BranCh PTEAICHON ...ououiuiceeivresrecncaesesressenessrinssessresssssesenmasssnssssssass sessesssssnosssissassnss sesssssssnsorsssssosssos 9
5.1 Best Case PrediCHON RALESovvecverrereeeeccrcmsusussessnssssssssesssasasserssssssssatssssss sismmmrsnsassnsssssssssssessasscos 10
5.2 Effect of Context Switching on PrediCtion RAEScocueccmiciiieimiiiietisissniencinensceniininiins 12
6.0 BTB MANAZEIMIENL «....cooenmerimerirnisrirssissassssessssersesssessosssosssstss sasemssmrsss sessssassasasasss s sissssnssosssnssesas s ses 14
6.1 Entering Branches int0 the BTB ...cciiocenimiineninns et ss s ssans s 14
6.2 Discarding Branches from the BTB ..ot sssssssessecssetssnsssasensss i casnss 15
7.0 Relationship between BTB and Instruction Cache Miss RAtES couveuvecuirrirnccissccrcicimsinnncinnnn. 19
7.1 BTB Design Target Miss Ratiosccoeeeeennene . eeesesnesesnersa st sas e assanenens 21
8.0 Information Stored in the BTB reosessisesesebas s aet st st et e eReasrede st e R s se R s R SRS RS US S SRR s SSS SRS 00 22
8.1 Tradeoffs Between Size and Number of Prediction Bitscooveeeeeencncienimmennniencnnnnes 26
8.2 MUIE-LEVE] BTBS ceeoeeeitieeecrerisesessrssssssstseseesesescnsssss sesssasssssssssssssnsssasossase sasstsssesissosensraesasasnssssassas 26
8.2.1 Results of Simulating Multi-Level BTBS ..ottt escnensises 28
9.0 CONCIUSIONS ..oeoeeereeveneeerrresesrsssenesssssssssestsssescenassosssossssssrsnssseasass s sasarasasasease st siosssessinsmnsamssasssarsssessas 30
10.0 APPEDAIX ovuvrncnrusrrssnresssnsersrnssssssssssssesessessrsssass s ses s sasse rass s 4822408 s 32
11.0 BIDHOZIAPRY oeoeeuuecrmrcrnrisnncirsnsransrsiussssssesssses s sesssesssensss sinsesmssess s s s s s st ssomssecuscsinssanssnsenss 57

* The material presented here is based on rescarch supported in part by the National Science Foundation under grant
MIP-8713274, by NASA under consortium agreement NCA2-128, by the State of California under the MICRO program,
and by the Digital Equipment Corporation, International Business Machines Corporation, Philips Laboratories/Signetics
and Apple Computer Corporation.

1. Introduction

Most modern computers use pipelining to significantly increase performance. Pipelining
divides the execution of each instruction into several pieces, normally called pipeline stages. A
typical pipeline might have five pipeline stages, including instruction fetch, instruction decode,
operand fetch, execution, and result writeback. It is important that the operation time of each
pipeline stage is almost identical, since the rate at which instructions flow through the pipeline is
limited by the slowest pipeline stage. In the optimal case, five instructions could be operated on
simultaneously in this pipeline, each in a separate pipeline stage. This optimal case, though sel-
dom achieved in practice, would produce a five fold performance gain over the same processor
designed without a pipeline. More details about pipelining can be found in [Ramamoorthy76]
and [Kogge81].

Branch instructions can reduce the performance of pipelines by interrupting the steady flow
of instructions into the pipeline. To execute a branch, the processor must decide whether the
branch is taken, calculate the branch’s target address, and then, if the branch is taken, fetch
instructions from the target address. Branches hurt performance because the pipelined processor
needs to know the path of the branch (in order to fetch more instructions) before the path of the
branch has been determined. Thus, when a branch occurs, the processor has two choices, either
wait for the branch to finish executing before fetching more instructions, or continue fetching
instructions, possibly from the wrong path. Either choice hurts performance, although the second
choice hurts less, especially if the path of the branch is predicted correctly most of the time.

The Branch Target Buffer (BTB) can be used to reduce the performance penalty of branches
by predicting the path of the branch and caching information about the branch [Lee84]. This
paper discusses two major issues in the the design of BTBs, with the theme of achieving max-
imum performance with a limited number of bits allocated to the BTB design. First, the question
of BTB management, when to enter branches into the BTB, and how to discard branches from the
BTB. Second, the question of what information to keep in the BTB. Four types of information
have been kept in BTBs, including branch tags, the branch target address, prediction information,
and instruction bytes from the branch target address. A BTB contains a subset of these four types
of information, and a multi-level BTB contains several distinct subsets, each in a separate level of
the BTB. Higher performance BTBs generally contain a larger subset of the possible information
types than lower performance BTBs. As a sidenote, a comparison of BTB and instruction cache
miss rates is performed, with the purpose of showing that BTB miss rates can be derived from the
instruction cache miss rates that exist in literature [SmithAJ87].

This paper is organized as follows. In the following section, a number of solutions to the
branch problem are surveyed. The methodology used to generate the results in this paper (trace
driven simulation) is then presented, followed by a discussion of optimizations in the design of
BTBs. Branch prediction is covered, and the issue of BTB management. A discussion on miss
rates of BTBs and instruction caches is followed by a consideration of the issue of what informa-
tion to keep in a BTB. Conclusions are then provided.

2. Solutions to the Branch Problem

This survey of solutions to the branch problem is intended to give a brief explanation of
each solution, and provide the names of a few machines that have used each solution. Further
discussion is available in [Lee84], [Lilja88], and [McFarling86].

Static Branch Prediction: As discussed in the introduction, if the path of a branch can be
correctly predicted, the branch penalty can be reduced. Predicting all branches not taken or
predicting all branches taken (Lee and Smith found 68 percent of branches to be taken [Lee84];
we found 70 percent of branches to be taken) is the simplest type of static prediction. Predicting

-3

branches based on the direction of the branch (forward or backward) and/or the branch opcode is
also possible [SmithJ81]. The National Semiconductor NS32532 uses the branch opcode and the
branch direction to predict 71 percent of branches correctly [Maytal89]. A static prediction bit in
each branch instruction, used to indicate which path the branch will probably take, is also effec-
tive. The bit can be set using heuristics and execution profiling [McFarling86]. The Ridge Com-
puters Ridge-32 [Folger83], the Intel 80960 [Hinton89], and the AT&T CRISP [Ditzel87] all use
a static prediction bit. An average prediction rate of 85 percent has been reported for the static
prediction bit method [McFarling86].

Dynamic Branch Prediction: Dynamic branch prediction predicts branch paths based on -
the runtime execution history (the sequence of taken and not taken executions, represented with
one bit per execution) of each branch. One proposed dynamic method uses a two bit counter state
machine which takes the branch execution history as input and outputs the predicted branch path
for the next branch execution [SmithJ81]. Another method examines the last n executions (taken
or not taken) of a branch, and using statistics gathered beforehand to calculate the chance of a
taken branch, predicts the branch path [Lee84] [Widdoes77]. Widdoes proposes keeping bits
with each instruction in the instruction cache for storing branch execution history [Widdoes77].
Machines that use dynamic branch prediction include the S-1 [Hailpern79], the MUS5 [Rau77],
several TRON microprocessors [Sakamura87], the Edgecore Edge 2000 (Motorola 680X0 com-
patible) [Manual87] [Walter89], and the NexGen processor (Intel 80386 compatible) [Stiles89a].

Delayed Branch: Executing n instructions after a branch whether the branch is taken or not
often allows useful instructions to be executed while the branch path is resolved and branch target
address calculated. The n instructions (usually n=1) are called delay instructions. For more fiexi-
bility, some machines allow the execution of the delay instructions to be skipped, depending on
the value of a "squash” bit in the branch and the path of the branch, taken or not taken [McFar-
ling86). The delayed branch technique is used in most RISC processors, and requires intelligent
compilers for optimal use [DeRosa87] [Gross82] [McFarling86] [Patterson81].

Loop Buffers: Loop buffers are small, high speed buffers used for instruction prefetching
and fast execution of instruction loops. If a loop is completely contained within a loop buffer, the
loop can be executed from the high speed buffer, instead of accessing slower main memory for
the instructions. Multiple loop buffers allow multiple non-contiguous loops to execute from the
buffers. Machines using loop buffers include the CDC-6600 with eight 60-bit words [Thorn-
ton64], the CDC-7600 with twelve 60-bit words [Elrod70}, the IBM 360/91 and the IBM 360/195
with eight 64-bit words [Anderson67] [Murphey70], the Cray-1 with. four 128-byte buffers
[Russell78], and the Cray-XMP with four 256 byte buffers [Hwang84].

Multiple Instruction Streams: To avoid the penalty of a wrong branch prediction, both
paths of a branch can be fetched and executed, and the results of the incorrect path discarded once
the branch is resolved. This method requires duplication of hardware, early calculation of the
branch target address, high memory and register file bandwidth, and a method for handling more
than one branch in the pipeline. This technique has been used in mainframes, including the IBM
370/168 and the IBM 3033 [IBM73] [IBM73].

Prefetch Branch Target: Many computers predict all branches not taken and pay a penalty
if the branch is taken. This penalty may be reduced if instructions from the branch target address
are fetched while the branch (and the instructions in the not taken branch path) is executing. The
IBM 360/91 prefetches two double-words (each 64 bits long) from the target address [Ander-
son67].

Prepare to Branch: The "Prepare-to-Branch” and "Load-Look-Ahead" instructions of the
Texas Instruments ASC computer direct the machine to prefetch from the target address of an
upcoming branch, rather than from the sequential addresses after the branch [Gaulding75]. The
CHOPP supercomputer has a similar instruction [Kartashev90]. Use of these instructions with

branches that are usually taken can increase performance.

Shared Pipeline Multiprocessor: An n stage pipelined processor executing » independent
instruction streams simultaneously, each with a single instruction occupying one of the pipeline
stages, eliminates the performance penalty of branches. Within an individual instruction stream,
each instruction completes execution before the next instruction begins execution, so branch
instructions do not have to wait during execution for prior instructions to finish executing. Each
independent instruction stream receives a 1/n fraction of total processor power. The shared pipe-
line multiprocessor concept was implemented in the Denelcor HEP computer [Jordan83], and is
examined in [Shar74].

Branch Folding: The AT&T CRISP processor uses a technique called branch folding to
reduce branch execution time to zero [Ditzel87]. CRISP uses a decoded instruction cache; each
non-branch instruction is transformed into a line of microcode in a cache of decoded instructions.
Each entry includes a next address field pointing to the next line of microcode to be executed.
Unconditional branches are simply "folded" into the next address field of the previous line of
microcode. No branch execution time is necessary once the unconditional branch is in the
decoded cache. Conditional branches make use of a second next address field in the microcode
and static branch prediction. A bit in the branch instruction predicts whether the branch will be
taken or not, and the predicted next address field is selected to find the next line of microcode to
execute. If the predicted path is found to be wrong once the condition flag is resolved, the
incorrect path results are discarded, and the correct path is executed. Like the unconditional
branch, the conditional branch has been folded into the previous line of microcode, resulting in a
zero cycle execution time for a correctly predicted branch in the decoded cache. Note that branch
folding does not require a decoded instruction cache. Branch folding can be implemented with a
branch target buffer that caches instructions from both the taken and not taken branch paths of
each branch.

Branch Target Buffer: The Branch Target Buffer (BTB) can be used to reduce the perfor-
mance penalty of branches by predicting the path of the branch and caching information about the
branch [Lee84]. Up to four types of information can be cached in a BTB: a tag identifying the
branch the information corresponds to (usually the branch address), prediction information for
predicting the path of the branch, the branch target address, and instruction bytes from the branch
target address. A BTB with all four types of information works as follows. As each instruction is
fetched from memory, the instruction address is used to index into the BTB. If a valid BTB entry
is found for that address, the instruction is a branch. The branch path is predicted using the
branch’s prediction information. If the branch is predicted taken, the pipeline is supplied with the
cached instructions in the BTB, and the processor begins fetching instructions from the target
address, offset by the number of bytes of instructions cached in the BTB. If the branch is
predicted not taken, the processor continues fetching sequentially after the branch. After the pro-
cessor finishes executing the branch, it checks to see if the BTB correctly predicted the branch. If
it has, all is well, and the processor can continue sequentially. If the branch was predicted
incorrectly (or the branch was taken and the target address changed), the processor must flush the
pipeline and begin fetching from the correct branch path. In either case, the branch prediction
information and branch target address (if changed) must be updated after the branch. Machines
that use a variation of the BTB include: the Advanced Micro Devices Am29000 [AMD388] and
the General Electric RPM40 [Lewis88] with branch target caches (no prediction information, just
a cache of target instructions); the Mitsubishi M32 with a BTB containing dynamic prediction
information, branch tag, and instructions from the target address (no mention of target address
being stored) [Yoshida87]; the Edgecore Edge 2000 with a direct map 1024 entry BTB contain-
ing one dynamic prediction bit, a branch tag, and the branch target address for each entry
[Walter89]; and the NexGen processor with a fully associative LRU replacement BTB containing
prediction information, branch tag, branch target address, and instructions from the target address

[Stiles89a] [Stiles89b].
3. Methodology

3.1. Trace Driven Simulation

To date, there exists no generally accepted model of program behavior with respect to the
performance of BTBs. As a result, we use trace driven simulation to generate the data presented.
Trace driven simulation uses a recording (known as a trace) of the execution of a program as
input to a software design simulator. Each trace contains a record of the data and instruction
addresses issued by the program and the actual instruction bytes fetched by the program. Using a
number of these traces as input to a software simulator can give accurate performance numbers,
within the accuracy of the simulator itself, and allows a flexibility in varying design parameters
that is very difficult to achieve in a hardware prototype. There are, however, reasons to be cau-
tious when dealing with the results of trace driven simulation [SmithAJ85]. Traces tend to be
short recordings (less than 1 CPU second) and may not be representative of the expected work-
load. They often do not include the effects of context switching, operating sytem code execution,
and input/output. In addition, traces are often dependent on the implemention of the computer
architecture the trace is recorded on (e.g. number of bytes fetched per instruction fetch), and may
not match the assumptions of the simulated design. We have used a wide variety of traces of
both small and large programs from a number of different machines and believe that our results
are representative of what could be expected in practice.

3.2. Description of Traces

A total of 32 program traces are used in this paper. Four processors are represented in the
traces, including the MIPS Co. R2000 (MIPS), the Sun Microsystems SPARC (SPARC), the
DEC VAX 11/780 (VAX), and the Motorola 68010 (68k) [DEC77] [Fujitsu87] [Kane89]
[Motorola89]. The traces are divided into six workloads, so the individual characteristics of the
workloads can be observed in the results [Lee84]. The workloads include COMP (MIPS com-
piler related traces), FP (MIPS floating point traces), TEXT (MIPS text processing traces),
SPARC (SPARC traces), 68k (68010 traces), and VAX (VAX traces). The large number of
traces for the MIPS reflects the fast, flexible, and bug free tracer "pixie” that MIPS Co. provides
for its computers. The small number of traces for the SPARC is due to difficulty with the
SPARC tracer. The 68k traces are described in [Grochowski86]. The VAX traces are described
in [Henry83]. In general, the traces, in order of significance (and confidence in the results they
generate), are the MIPS, the SPARC, the 68k, and the VAX.

In some of our discussions, we refer to "static” and "dynamic" instructions. The instruc-
tions in the execution trace are dynamic instructions. The instructions in the executed program
that appear in the trace are static instructions. Thus, with a two instruction loop that is executed
10 times, there are two static instructions, and 20 dynamic instructions.

The BTB simulators used in this paper use a reduced trace as input, which is composed of
all control transfer (branch) instructions (which average 19 percent of the "static” instructions),
both conditional and unconditional [DEC77] [Fujitsu87] [Kane89] [Motorola89]. As a result,
all of the data presented is for BTBs that handle both conditional and unconditional branches.

The individual workloads and traces are described below. For a summary of statistics on
the traces and workloads, see Table #1. A complete table of data is presented in the appendix
(Table #A-1).

1) COMP: MIPS Compiler Traces. This workload is comprised of traces of MIPS

compiler related programs. The traces are of significant real world programs, as the
names, and numbers in Table #1 show. There are seven traces in this workload:

Table #1: Average Workload and Trace Statistics
COMP| TEXT | FP_ | SPARC| VAX | 68k Work Ave Trace Ave
CPU MIPS | MIPS | MIPS | SPARC | VAX | 68k | |
Dynamic Instr (2161788 2428066/ 2439411 1976181| 1045646| 681475 1788761 1644401
Static Instr | 15737] 11696i 14157 4860 2832) 3978 8877 8619
Object Instr | 54516/ 48287 60658 43235 na na na na
Object Bytes | 218064| 193148/ 242632 172940 na na na na
Stat Branch Instr| 17.47 19.93 12.29 21.11 26.05| 23.69 20.09 20.71
Stat Branch Bytes| 17.47 19.93 12.29 21.11 13.06) 20.76 17.44 17.23
Stat Cond Instr 9.74 12.97 8.03 11.77 16.04] 11.60 11.69 11.90
Stat Uncond Instr 7.73 6.96/ 4.26 9.34 10.01! 12.10 8.40 8.81
Branch Taken 72.84 67.80 69.91 59.29 70.79; 69.50 68.36 69.39
Cond Taken 64.48 63.44 59.49 44.18 61.14| 56.62 58.23 59.73
Dyn Blk Instr 5.65 5.00 10.38 4.60 3.38 4.27 5.55 5.26
Dyn Bik Bytes 22.61 19.98 41.53 19.72 14.26/ 11.97 21.68 20.22
Stat Blk Instr 5.86 5.03 8.92 4.75 396 425 5.46 5.27
Stat Blk Bytes 23.46 20.10 35.68 19.01 17.60| 14.25 21.68 20.85
Obj BIk Instr . 5.38 4.70 7.08 4.46 na na na na
Obj Blk Bytes 21.52] 18.791 26.56] 17.85 nal na na| na
Definitions
Dynamic Instr Average number of dynamic instructions
Static Instr Average number of static instructions
Object Instr Average number of instructions in the entire program (object text segment)
Object Bytes Average number of bytes in the entire program (object text segment)
Stat Branch Instr Percentage static branch instructions of all static instructions
Stat Branch Bytes Percentage bytes of static branch instructions of all static instruction bytes
Stat Cond Instr Percentage static conditional branch instructions of all static instructions
Stat Uncond Instr Percentage static unconditional branch instructions of all static instructions
Branch Taken Percentage of branches that are taken
Cond Taken Percentage of conditional branches that are taken
Dyn Blk Instr Dynamic basic block size in instructions, including branch instruction
Dyn Blk Bytes Dynamic basic block size in bytes, including branch instruction
Stat Blk Instr Static basic block size in instructions, including branch instruction
Stat Blk Bytes Static basic block size in bytes, including branch instruction
Obj Blk Instr Object (text segment) basic block size in instructions, including branch instruction
Obj Blk Bytes Object (text segment) basic block size in bytes, including branch instruction
Work Ave Average of all the workload average values
Trace Ave Average of all of the individual trace values 1

Table #1: This table contains statistics on the 32 traces we used. The values are all averages, in-
cluding the workload averages (COMP, TEXT, FP, SPARC, VAX, and 68k), the overall trace
average for the 32 traces (Trace Ave), and the average of the workload averages (Workload Ave).
More information can be found in Table #A-1.

)

3)

C))

&)

©6)

-7-

asm MIPS Co. assembler, as01.21

ccom MIPS Co. C Compiler front end, ccom1.21

fcom MIPS Co. F77 Fortran Compiler front end, fcom1.21
1d MIPS Co. link editor, 1d1.21

ugen MIPS Co. microcode generator, ugenl.21

uopt MIPS Co. microcode optimizer, uoptl.21

upas MIPS Co. Pascal Compiler front end, upasl.21

TEXT: MIPS Text Traces. This workload is comprised of traces of MIPS text pro-
cessing programs. There are four traces in this workload:

emacs GNU Emacs compiled on the MIPS.

grep GNU grep version 1.1 compiled on the MIPS.
nroff MIPS Co. version of nroff.
vi MIPS Co. version of vi.

FP: MIPS Floating Point Traces. This workload is comprised of floating point inten-
sive programs compiled on the MIPS using the MIPS Co. fortran77 compiler. There
are four traces in this workload:

doduc F77 high energy physics program (doduc.f) [Doduc89].

integ F77 integration program (integral.f)
mold F77 molecular dynamics program (moldyn.f)
spice F77 circuit simulator program (spice2g6) [UCB87].

SPARC: SPARC Program Traces. This workload is comprised of three traces, not
quite as significant as the MIPS traces.

ccom2 Old (unknown) version of Sun 4 C Compiler front end.

esp2 Trace of espresso, logic minimization program.

gbis2 Trace of GNU Bison, "yacc’ like program.

VAX: VAX Program Traces. This workload is comprised of seven traces [Henry83].
awk Unix awk

Is - Unixls

otmdl Parser/Constructor, written in Pascal, uses set operations
sedx Unix stream editor sedx

spic Spice circuit simulator

troff Unix troff

ymerge Parse table compacter, written in C

68k: 68010 Program Traces. This workload is comprised of seven traces (Gro-
chowski86].

as Unix assembler as

egrep Unix egrep utility

fortl F77 matrix manipulation program
fortla Trace of *fort1’ compiled with optimizer
Is Unix Is program with ’-R’ flag set

stat Trace analyzer ’stat’
stata Trace of ’stat’ compiled with optimizer

4. BTB Design Optimization |

The theme of this paper is to maximize BTB performance with a limited number of bits
allocated to the BTB implementation. Describing this problem mathematically helps to clarify
the issues. To begin, it is necessary to understand the performance impact of different amounts
and types of information stored for each branch in the BTB.

Potential BTB performance increases as the information content of each entry of the BTB
increases, and as the number of entries increases. Increased information content requires more
bits of storage, as does an increased number of entries. The simplest BTB with the lowest level
of performance contains only prediction information. Predicting the branch direction can reduce
the branch penalty. A medium complexity BTB which gives equal or higher performance con-
tains the branch tag, prediction information, and the branch target address. With the branch target
address available before it is normally calculated, fetching can occur earlier at the branch target.
A high complexity BTB with still higher performance contains the branch tag, prediction infor-
mation, target address, and instruction bytes from the target address. This design can decrease
the delay in fetching instructions from the target. Increasing the number of types of information
(e.g. prediction information, target address, target instruction bytes) stored for each branch
improves performance. In addition, increasing (per entry) the amount (bits of storage) of each
type of information also improves potential performance.

An optimization problem exists if a2 maximum performance BTB is to be designed with a
limited number of bits. As both greater numbers of entries and greater amounts of information
per entry increase performance, the problem is selecting the number of entries and the amount of
information per entry that will maximize performance. Which design provides better perfor-
mance, a large number of entries with a small amount of information per entry, or 2 small number
of entries with a large amount of information per entry?

The following simple mathematical BTB model is intended to help clarify the problem.
This model gives insight into how to maximize the performance of a BTB design that has been
added onto a processor that normally predicts all branches not taken. The equation presents the
probable savings per branch of an optimal BTB designed with N storage bits. Some
simplifications have been made in setting up this equation, as noted below.

Max {Z‘:h(i){t(i wer(WV(E)— At)pme(i)W(i)} } such that ;num_bits (i) €N

where:

N = number of storage bits in the BTB

h(i) = probability that branch i is referenced (executed)

t(i) = probability that branch i will be taken

pr(i) = probability of predicting branch i taken, given that branch i is taken
prnt(i) = probability of predicting branch i taken, given that branch is not taken
V(i) = cycle savings for correct taken prediction of branch i

W(i) = cycle cost for incorrect taken prediction of branch i

num_bits(i) = number of bits in BTB allocated to branch {

-9-

Note that pre(i) and pene(i) are zero for branches not in the BTB, so the sum is only effected by
branches in the BTB.

The first product in the equation, when summed up, is the expected cycle savings due to the
BTB, in the case of a correct taken prediction. The second product in the equation, summed up,
is the expected cycle cost of an incorrect taken prediction. The difference of these two sums is
the net cycle savings per branch due to the BTB. The case of a correct not taken prediction has
no performance penalty with or without the BTB (unless branch folding is used, in which case
there may be a savings), so it does not appear in the equation. The case of incorrect not taken
prediction is not included, since the cost is the same with or without a BTB (except when the
BTB contains target instructions).

The problem of selecting the best BTB design is described by the equation above. For a
fixed number of bits, increasing the performance of entries in the BTB is equivalent to increasing
V(i) and decreasing W(i), and decreases the number of entries. Increasing the number of entries
in the BTB adds more branches into the sum, and decreases the information per entry. Finding
the best performance for a limited number of total bits in the BTB requires a careful balance
between performance per entry and number of entries.

The simple BTB model supports three concepts used later in this paper.

() If a branch does not have potential for improving performance, do not enter it into the
BTB. The BTB model indicates that the BTB should be filled with the branches that have
the most potential for improving performance. Placing into the BTB branches with no per-
formance value displaces branches that may have performance value.

(i) When it is necessary to discard a branch from the BTB, discard the branch with the least
potential performance value. The BTB should contain the branches with the most potential
for improving performance. A replacement strategy based on this concept might discard
the branch that is least likely to be referenced AND least likely to be taken. A not taken
branch that is in the BTB has the same performance as one that is not in the BTB, so dis-
carding a branch that is not likely to be taken has little penalty.

(iii) A multi-level BTB, each level possibly containing different amounts/types of information
per entry, may be able to maximize performance by achieving a better balance of number
of entries and quantity of information per entry. Note that V(i) and W(i) in the BTB model
are functions of i. The BTB performance may be maximized if V(i) and W(i) are not con-
stant. If branches with high performance potential are allocated more bits per entry, and
branches that have less performance potential are allocated fewer bits per entry (but more
entries), higher overall performance may be achieved. The constraint of a limited number
of storage bits for the BTB design exists, so not all branches can be given the large size
(higher performance) BTB entries.

5. Branch Prediction

In this paper, dynamic branch prediction is used, in which predictions are based on proba-
bility of taken branch statistics (as a function of » bits of branch execution history, known as
prediction bits) compiled from all 32 traces. Since every branch has a startup period during
which n bits of execution history are not available (only 1 to n-1 bits are available in this period),
statistics were also compiled for partial bit strings of execution history, from 1 to »-1. The statis-
tics give the measured probability of a taken branch for the 32 traces as a function of n bits of
execution history. As a result, predictions based on these statistics are the best possible predic-
tions (yielding the highest correct prediction rate) for the 32 traces of any fixed, (i.e. non-learning
or adaptive) method that only uses n bits of execution history as input. Table #A-2 (in appendix)
gives probability of taken and probability of occurrence statistics for 6 branch history bits for

-10-

each of the workloads and for the 32 trace average. The statistics in Table #A-2 are appropriate
for BTBs that enter branches on the first execution. Similiar statistics are contained in Table #A-
3 for BTBs that enter branches on taken branch executions only.

Achieving the highest prediction rate is not the same as achieving the highest performance.
Four cases are possible when a prediction is made: predict not taken, branch not taken (zero cycle
cost); predict not taken, branch taken (cycle cost b); predict taken, branch not taken (cycle cost c);
and predict taken, branch taken (cycle cost d). Maximizing the prediction rate is accomplished
by predicting branch taken whenever the probability p of a taken branch is greater than 50 per-
cent. Maximizing performance (minimizing cycle cost) is accomplished by predicting branch
taken when the cost of predicting taken is less than the cost of predicting not taken (i.e. when (1-
p)*c + p*d < p*b). As this equation requires implementation dependent numbers (b,c,d), all pred-
iction rates presented in this paper are based on predicting taken if the probability of taken is
greater than 50 percent. Later, in our discussion of multi-level BTBs, for which a single predic-
tion rate is not a useful measure, performance is maximized using a set of cycle costs for the four
cases described above. -

5.1. Best Case Prediction Rates

As a reference point, it is useful to know the realistic upper limit for prediction rates. To
determine this upper limit, two infinite size BTB simulators were designed (BTB#1 and BTB#2).
Design BTB#1 takes in branches on their first execution and keeps them in the BTB until the end
of the trace. Design BTB#2 takes in branches on their first taken execution and keeps them in the
BTB until the end of the trace. Both BTBs predict all instructions that are not in the BTB as not
taken. Note that the BTB prediction rate is independent of the amount of information per entry in
the BTB, although the BTB must contain prediction bits and a branch tag (i.e. this is not a hash
table BTB).

Table #2: Branch Prediction Rates (including target change effects)
Prediction | BTB | ~o\p | TEXT | FP | SPARC | VAX | 68k | Average
Bits Design
0 BTB#1 67.21 66.13 | 61.78 56.80 68.85 | 64.96 64.29
0 BTB#2 81.27 80.86 | 81.04 73.04 81.54 | 76.68 79.07
1 BTB#1 86.30 94.83 | 85.03 87.51 89.71 | 85.55 88.15
1 BTB#2 86.30 94.83 | 85.03 87.51 89.71 | 85.55 88.15
2 BTB#1 87.81 9545 | 86.72 88.69 91.56 | 86.27 89.42
2 BTB#2 87.81 9545 | 86.72 88.69 91.56 | 86.27 89.42
4 BTB#1 88.66 96.02 | 87.85 90.61 93.36 | 88.21 90.79
4 BTB#2 88.66 96.02 | 87.84 90.61 93.35 | 88.20 90.78
8 BTB#1 89.19 96.18 | 89.28 91.78 93.70 | 89.00 91.52
8 BTB#2 89.19 96.18 | 89.27 91.77 93.67 | 88.97 91.51
16 BTB#1 90.14 96.40 | 89.90 92.93 95.25 | 9148 92.68
16 BTB#2 90.13 96.39 | 89.89 9291 9522 | 91.45 92.67

Table #2: Prediction Rates for BTB#1 and BTB#2, both of infinite size. BTB#1 enters all
branches as they are executed. BTB#2 enters branches only as they are taken. These prediction
rates are upper limits on the prediction rates possible from finite BTBs.

-11-

Table #3: Prediction Rate Reduction due to Target Change
COMP | TEXT | FP | SPARC | VAX | 68k | Average
520 | 141 7.78 235 1 161 | 4.18 3.75

Table #3: This table indicates the constant reduction of the prediction rate due to the effect of tar-
get address changes.

Table #4: Lee and Smith’s Percentage Target Changes [Lee84]
IBM/CPL | IBM/BUS | IBM/SCI | IBM/SUP | PDPI11 | CDC6400 | Average
42 i 2.1 4.4 1.4 120 | 29 |45

Table #4: Lee and Smith’s percentage probability of target change for their workloads [Lee84].

BTB#1 and BTB#2 prediction rates are presented in Table #2 (the full set of results is
presented in the appendix, Table #A-4). The prediction rates in each column under a workload
name are simple workload averages, and the Average column is the average of the workload
averages. Table #2 includes the effect of target address changes in the prediction rate by consid-
ering a target change occurring during a taken branch to be a misprediction. Note that target
changes do not affect a BTB that contains only prediction bits (no target address or instructions
are stored). It happens that virtually all target changes occur for branches that are always taken
(e.g. subroutine returns) and thus the effect of target changes is to decrease prediction accuracy
by a constant amount. Those constants can be found in Table #3, and are identical for BTB#1
and BTB#2. Equivalent constants for the six workloads of Lee and Smith are shown in Table #4
[Lee84]. Figure #1 shows the average prediction rate for BTB#2 (including and not including the
effect of target changes) as a function of the number of prediction bits.

The BTB#1 and BTB#2 prediction rates are very similiar, except for the case of zero pred-
iction bits. For zero prediction bits, the BTB#2 prediction rate is higher than BTB#1’s prediction -
rate. This is due to the fact that for zero prediction bits, BTB#2 only predicts as taken those
branches that are in the BTB. Since BTB#2 only enters branches into the BTB on a taken branch
execution, branches that are never taken or are initially not taken are correctly predicted, thus
boosting the prediction rate. BTB#1 enters branches into the BTB on the first execution, predict-
ing the branches as taken thereafter, for the zero prediction bit case. Thus, the prediction rate of
BTB#1 is approximately the average percentage of taken branches. Note that even with zero
prediction bits, a BTB can be useful by caching the branch target and instructions at the branch
target; in such a design, all branches in the BTB are predicted as taken.

The prediction rates are very close to those of Lee and Smith [Lee84]. Table #5 contains
three columns of prediction rates, one for the average of prediction rates from Lee and Smith, one
for the BTB#1 prediction rate (calculated in a similiar fashion to Lee and Smith), and one for the
BTB#2 prediction rate. These prediction rates do not include the effect of target address changes,
so our values are from Table #2 with the Average constant from Table #3 added in. Lee and
Smith use the percentage of taken branches as the prediction rate for zero prediction bits, basi-
cally the same as BTB#1, which is not comparable to the BTB#?2 zero prediction bit case for rea-
sons explained above. Lee and Smith generated prediction rates for up to 5 prediction bits. For
up to four prediction bits, the prediction rate increases sharply. For more than 4 prediction bits,
Figure #1 indicates that the prediction rate grows slowly.

-12-

BTB#2 Prediction Rate
U1 A A A A R

P DO RO

34567 8 910111213141516
Number of Prediction Bits

<
O R CLUETTE SETPRPREE Bt
S

Figure #1: BTB#2 (best case) prediction rates as a function of number of prediction bits.

Table #5: Prediction Rate Comparison
Prediction Lee
Bits & Smith BTB#1 | BTB#2
0 67.4 68.0 82.8
1 88.7 91.9 91.9
2 92.0 93.2 93.2
3 92.7 93.6 93.6
4 93.3 94.5 94.5
5 93.5 94.7 94.7 |

Table #5: Comparison of BTB#1 and BTB#2 prediction rates (o those of Lee and Smith [Lee84].

5.2. Effect of Context Switching on Prediction Rates

Multitasking computer systems frequently experience context switches. During a context
switch, the processor stops executing one program and begins executing another. The BTB nor-
mally contains invalid data after a context switch, and is flushed. As a result, context switching
has a detrimental effect on the prediction rate of the BTB. In order to observe this effect, the
infinite size BTB#2 simulator was altered to flush the BTB after every N instructions. Prediction
rates were generated for N equal to 1000, 3160, 10000, 31600, 100000, 316000, and 1000000.

-13-

The results are shown in Figure #2, with curves for 0, 1, 2, 4, 8, and 16 prediction bits (the full set
of results are presented in the appendix in Table #A-5). Each curve represents the average pred-
iction rate of the six workload averages. The prediction rates include the effect of branch target
changes (i.e. target change on a taken branch is considered a misprediction).

Effect of Context Switching on Prediction Rates
0 e A 3

98 ; : :
04 g I kP

92 ;) — 16 pred. bits
8 pred. bits
: 4 pred. bits
2 pred. bits
1 pred. bits

0 pred. bits

O DOeO A0 ~g

1000 10000 100000 1000000
Number of Instructions Between Context Switches

Figure #2: Effect of context switching on the prediction rate of BTB#2. Each of the curves is for
BTB#2 with a constant number of prediction bits.

Examining Figure #2, it is apparent that context switching significantly reduces the predic-
tion rate, and correspondingly, the performance benefit of a BTB. With N=10000, two prediction
bits attain a 84 percent prediction rate while with no context switching they attain a 89 percent
prediction rate. For context switches that occur less than every 10000 instructions, the effective-
ness of adding additional prediction bits to increase the prediction rate is limited. For N above
10000 instructions, adding prediction bits has a stronger effect on the prediction rate. Some of
the traces contain fewer instructions than N (for some N), so that for N greater than the number of
instructions in the trace, the context switching does not effect the prediction rate for the trace.

The curve for zero prediction bits in Figure #2 is interesting. Apparently, with zero predic-
tion bits, context switching can increase the prediction rate. This anomally is due to the charac-
teristics of the zero prediction bit BTB, discussed in the previous section. The zero prediction bit
BTB correctly predicts taken branches that are in the BTB, and not taken branches that are not in
the BTB. Context switches clear the BTB of branches that are experiencing not taken executions,
allowing them to be predicted correctly. These correct predictions counter the mispredictions it
takes to get taken branches back into the BTB, producing a maximum prediction rate for a finite
context switch rate.

-14 -

6. BTB Management

Management of BTBs is concerned with the issue of entering and discarding branches from
the BTB. Good management schemes significantly improve the performance of a BTB. In this
section, the first two optimization concepts presented in the BTB Design Optimization section
are used to present alternative BTB management schemes.

6.1. Entering Branches into the BTB

The first concept presented in the BTB Design Optimization section is: If a branch does
not have the potential for improving performance, do not enter it into the BTB. Two methods for
entering branches into the BTB are evaluated here. The first method is to enter branches into the
BTB when branches are first executed (design BTB#3). This obvious method has an apparent
drawback. If a branch is entered into the BTB on a not taken execution, the BTB will not
improve performance while the branch continues not taken executions, and will mispredict the
first taken execution (with no performance improvement) that the branch experiences. In addi-
tion, if the BTB contains target instruction bytes, entering the branch on a not taken execution
requires extra memory bandwidth to fetch the target instruction bytes. The second method for
entering branches into the BTB is to enter branches on their first taken execution (design BTB#4).
This method avoids entering into the BTB entries of limited usefulness, which may themselves
displace more useful entries. Thus, the BTB does not have to deal with branches that are never
taken and which have no performance penalty that the BTB can reduce. If the BTB contains tar-
get instructions, entering branches on taken execution allows the target instructions to be cached
in the BTB at no cost, since they are normally fetched on a taken branch execution.

The two methods of entering branches into the BTB were simulated. Design BTB#3 enters
branches into the BTB on the first branch execution, is set associative, and uses LRU (least
recently used) replacement. Design BTB#4 enters branches into the BTB on the first branch
taken execution, is set associative, and uses LRU replacement. Both BTBs use branch tags to
uniquely identify the branches. The BTBs were simulated for 0 to 16 prediction bits, 16 to 2048
entries, and set sizes of 1 to 16. The prediction rates presented are averages of the workload aver-
ages, and include the effect of target address changes (i.e. a target change on a taken branch exe-
cution is considered an incorrect prediction).

Table #6 presents the prediction rates for the two BTB designs, for set size of 4, and
number of prediction bits 0, 1, 2, 4, 8, and 16 (the full set of results is presented in the appendix
in Table #A-6). As expected, BTB#4 significantly outperforms BTB#3 in every case, but espe-
cially for low numbers of entries in the BTB. Entering branches into the BTB on the first taken
execution avoids placing useless information in the BTB that displaces useful information. For
the 32 traces, 17 percent of all static branches are never taken, and these never taken branches
constitute 12 percent of all dynamic branch executions. These branches never enter BTB#4, but
they enter BTB#3, hurting performance. Not only does BTB#4 have higher performance, it also .
has a simplier design. The BTB is notified to enter a branch whenever a branch is taken that does
not exist in the BTB. If the BTB contains target instructions, they can be stored into the BTB as
the instruction fetch stage of the processor fetches from the target address of the taken branch.

Table #6 indicates that the number of entries in a BTB has a significant impact on the pred-
iction rate of the BTB. With two prediction bits, prediction rates range from 64 percent with 16
entries to 89 percent with 2048 entries. The growth in prediction rates (as a function of BTB
size) levels off after 512 entries, so for the traces used, a 512 entry BTB would have about the
same performance as a 2048 entry BTB, at a much lower cost.

=15 -

Table #6: Comparison of Methods of Entering Branches into a BTB
Number of BTB Entries
P“’g;::‘"“ DlgiBn SS; 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
0 BTB#3 | 4 | 47.60 | 50.63 | 55.58 | 58.97 | 61.46 A 63.18 | 63.92 | 64.18
0 BTB#4 | 4 | 6272 | 69.47 | 74.68 | 77.10 | 78.32 | 78.96 | 79.00 | 79.05
1 BTB#3 | 4 | 59.39 | 67.68 | 75.31 | 80.67 | 84.20 | 86.58 | 87.63 | 83.01
1 BTB#4 | 4 | 63.61 | 7127 | 77.92 | 82.11 | 85.28 | 87.10 87.83 | 83.08
2 BTB#3 | 4 | 59.74 | 68.20 | 76.22 | 81.72 | 85.36 | 87.81 | 88.88 | 89.27
2 BTB#4 | 4 | 64.01 | 72.03 | 78.88 | 83.21 | 86.47 | 88.33 | 89.09 | 89.33
4 BTB#3 | 4 | 59.97 | 68.59 | 76.89 | 82.65 | 86.51 | 89.11 | 90.23 | 90.64
4 BTB#4 | 4 | 6425 | 72.50 | 79.57 | 84.19 | 87.65 | 89.64 | 90.43 | 90.70
8 BTB#3 | 4 | 60.13 | 68.81 | 77.31 | 83.15 | 87.13 | 89.79 | 90.95 | 91.37
8 BTB#4 | 4 | 6443 | 72.85 | 80.01 | 84.70 | 88.30 | 90.34 | 91.16 | 91.42
16 BTB#3 | 4 | 6029 | 69.02 | 77.61 | 83.71 | 87.94 | 90.82 | 92.07 | 92.52
16 | BTB#4 | 4 | 64.60 | 73.09 | 80.41 85.35 | 89.19 | 91.40 | 92.29 | 92.58 |

Table #6: Comparison of two methods of entering branches into a BTB. Higher prediction rate
indicates higher performance. BTB#3 enters branches into the BTB on the first branch execution,
while BTB#4 enters branches on the first branch taken execution.

6.2. Discarding Branches from the BTB

The second concept presented in the BTB Design Optimization section is: When it is
necessary to discard a branch from the BTB, discard the branch with the least performance
value. 1t is not possible to determine the branch with the least performance value in a real sys-
tem, but it is possible to find a branch that probably has the least performance value. The Least
Recently Used (LRU) algorithm is known by experience to work well for replacing (discarding)
entries in caches, although the random algorithm works better with small caches, avoiding the
worst case behavior of the LRU algorithm for loops that are larger than the small cache
[SmithJ83]. The LRU algorithm replaces the entry that has been accessed least recently. Design
BTB#4, described above, uses LRU replacement.

A BTB has an added level of complexity over a cache, since each entry can contain predic-
tion bits. The prediction bits provide more information that can be used in finding the branch
with the least performance value. If a branch’s prediction bits strongly predict not taken, it may
be reasonable to discard the branch, as the BTB does not contribute to the performance of a not
taken branch. But if this branch has a high probability of being referenced, it will probably be
executed soon, and may predict taken in the future, and thus probably has some performance
value. What is needed is a algorithm that replaces the branch that is least likely to be used and
least likely to be taken. The Minimum product of Probability of reference and Probability of
taken (MPP) algorithm is a good approximation. This algorithm replaces the branch with the
minimum product of probability of reference and probability of branch taken. The probability of
reference can be obtained empirically as a function of LRU bits that the algorithm maintains.
The LRU bits indicate the order in which the branches have been referenced. The probability of
branch taken is obtained from the branch prediction statistics. Table #7 gives the probability of
reference values for three BTB sizes and a set size of four (LRU bits=0 is the most recently refer-
enced entry in the set, LRU bits=3 is the least recently referenced entry in the set). Table #38

-16 -

gives the probability of a taken branch as a function of three prediction bits of branch history.
Table #9 presents an ordered list of the possible MPP products with a 128 entry 4 way set associ-
ative three prediction bit BTB (combination of Tables #7 and #8, disregards partial .history
strings). Table #A-3 (in appendix) gives probability of taken and probability of occurrence statis-
tics for 6 branch history bits for each of the workloads and for the 32 trace average (these statis-
tics are for BTBs that enter branches on taken executions only).

Table #7: Probability of Reference (Set Size of 4)
LRU bits: Order of Reference
BTB
Entries 0 1 2 3
16 S111 2199 1464 1225
32 5504 2123 .1405 .0969
64 6147 2030 1073 .0750
128 7016 1729 .0812 .0443
256 T771 .1401 .0550 .0277
512 .8450 | .1060 .0337 .0153
1024 .8967 .0781 .0188 .0064
2048 9417 .0474 .0084 .0025

Table #7: For several sizes of a 4 way set associative BTB, this table gives the probability of
reference of the entries in each set as a function of the LRU bits. The most recently accessed en-
try of the set has LRU bits=0, while the least recently accessed entry of the set has LRU bits=3.

Table #8: Probability of Taken Branch
Branch Probability | Probability
History of of

N = Not_taken | Occurrence Taken
T = Taken Branch
NNN .1305 .0780
NNT 0151 .3405
NTN .0207 5186
NTT 0249 6794
TNN 0154 3258
TNT .0307 6469
TTN 0250 7914
TTT 7377 9766

Table #8: As a function of a branch’s history, this table gives the probability that the next execu-
tion of the branch will be taken, and the probability with which this branch history will occur.

The MPP algorithm can be implemented relatively cheaply. A set size of two or four
entries is common in caches, so only one or two LRU bits are required. Context switching has a
severe impact on the performance of large numbers of prediction bits so one to five prediction

-17-

Table #9: Order of Possible MPP Products for 128 Entry
4 Way Set Associative Three Prediction Bit BTB
LRU Bits Prediction Bits | MPP Products
0 TTT .6852
0 TTN 5552
0 NTT 4767
0 TNT 4539
0 NTN 3638
0 NNT 2389
0 TNN .2286
1 TTT .1689
1 TTN 1368
1 NTT 175
1 TNT 1118
1 NTN .0897
2 TTT .0793
2 TTN .0643
1 NNT .0589
1 TNN 0563
2 NTT .0552
0 NNN 0547
2 TNT .0547
3 TTT .0433
2 NTN .0421
3 TTN .0351
3 NTT 0301
3 TNT 0287
2 NNT 0276
2 TNN .0230
3 NTN 0230
3 NNT 0151
3 TNN 0144
1 NNN .0135
2 NNN .0063
3 NNN .0035

Table #9: Table lists in order of MPP product value the 32 possible products for a 128 entry 4
way set associative BTB with three prediction bits. The products from branch history strings of
less than three are not presented. Note that the MPP algorithm would replace the entry (one of
four) that has the minimum product value.

-18 -

bits is reasonable. Probability of reference is a function of the LRU bits, and probability of taken
is a function of the prediction bits. Therefore, at most seven bits of input are required to calculate
the product for MPP for each entry. A total of four input bits will probably be typical. Four input
bits indicate 16 possible values. What is important is not the actual value of each product of pro-
bability of reference and probability of taken but the relative ordering of the products. Each
branch’s product can therefore be encoded into four bits, and can be generated by a simple four
bit table with four bits of input. The four bit results of the branches in a set can be quickly com-
pared to find the branch with the minimum product.

To compare the LRU and MPP algorithms, two BTB simulators were constructed. Design
BTB#4 is set associative, uses LRU replacement, and enters branches on taken executions.
Design BTB#5 is set associative, uses MPP replacement, and enters branches on taken execu-
tions. Both BTBs contain branch tags and prediction bits. The BTBs were simulated for Oto 16
prediction bits, 16 to 2048 entries, and set sizes of 1 to 16. The prediction rates presented are
averages of workload averages, and the effect of target changes is included in the prediction rate
(i.e. a target change on a taken execution is a misprediction). The full table of prediction rate
data is in the appendix in Table #A-6. Table #10 contains prediction rate data for BTB#4 and
BTB#5 with set sizes of four and number of predictions bits 0, 1,2, 4, 8, and 16.

Table #10: Comparison of BTB Replacement Strategies
Number of BTB Entries
Prediction . BTB | Set | ,c | 35 | ¢4 | 128 | 256 | 512 | 1024 | 2048
Bits Design | Size

0 BTB#4 | 4 62.72 | 69.47 | 74.68 | 77.10 | 78.32 | 78.96 | 79.00 | 79.05

0 BTB#5 4 | 627216947 | 74.68 | 77.10 | 78.32 | 78.96 | 79.00 | 79.05

1 BTB#4 | 4 63.61 | 71.27 | 77.92 | 82.11 | 85.28 | 87.10 | 87.83 | 88.08

1 BTB#5 4 | 6392|7150 78.14 | 82.28 | 85.35 | 87.13 | 87.84 | 88.08

2 BTB#4 | 4 64.01 | 72.03 | 78.88 | 83.21 | 86.47 | 88.33 | 89.09 | 89.33

2 BTB#5 4 64.17 | 72.11 | 79.02 | 83.26 | 86.52 | 88.35 | 89.09 | 89.34

4 BTB#4 | 4 | 64.25 | 72.50 | 79.57 | 84.19 | 87.65 | 89.64 | 90.43 | 90.70

4 BTB#5 4 64.50 | 72.56 | 79.68 | 84.25 | 87.71 | 89.65 | 90.44 | 90.70

8 BTB#4 | 4 64.43 | 72.85 | 80.01 | 84.70 | 88.30 | 90.34 | 91.16 | 91.42

8 BTB#5 4 | 64.69 | 72.91 | 80.11 | 84.77 | 88.34 | 90.35 | 91.16 | 91.43
16 BTB#4 | 4 | 64.60 | 73.09 | 80.41 | 85.35 | 89.19 | 91.40 | 92.29 | 92.58
16 BTB#5 4 64.85 | 73.14 | 80.46 | 85.33 | 89.19 | 91.39 | 92.29 | 92.57

Table #10: This table contains a comparison of the MPP and LRU replacement strategies.
BTB#4 uses LRU replacement and BTB#5 uses MPP replacement. The MPP strategy has a
slightly higher prediction rate in most cases.

Examining Table #10, the MPP replacement algorithm (BTB #5) outperforms the LRU replace-
ment algorithm (BTB #4) except for a few BTB sizes with 16 prediction bits. However, the pred-
iction rate difference between the two designs is trivial, and probably does not justify the extra
complexity of the MPP design.

-19 -

7. Relationship between BTB and Instruction Cache Miss Rates

Smith hypothesized that a BTB and a instruction cache should have similiar miss rates if
the following conditions are met [SmithAJ89]: ‘

(i) The cache line is one instruction in length.

(ii) The cache size is the BTB size (number of entries) multiplied by the average basic block
size.

His reasoning is that a BTB is simply an instruction cache that only holds branches. Assume the
_ basic block size is n instructions (lines). One branch exists in every basic block (i.e. on average,
one of every n instructions is a branch). Therefore, the instruction cache has » misses for every
miss in the BTB and » hits for every hit in the BTB. If the two conditions above are met, the
miss ratio should be the same.

The hypothesis was tested with a BTB and a cache simulator. The BTB simulator (design
BTB#3, the same design as was used previously) is set associative with LRU replacement and
enters branches on their first execution (both taken and not taken). The BTB sizes are powers of
two. The cache simulator is set associative with LRU replacement and a four byte line size.
Cache sizes are not powers of two since the cache size is equal to the BTB size multiplied by the
basic block size. The six workloads were fed into the simulators, each workload using its own
average basic block size to size the cache. The BTB and cache miss rates can thus be compared
for equality within each workload. Table #A-7 (in appendix) contains the resulting miss rates.
Each miss rate in the table is the geometric mean of the miss rates of a workload’s traces.

Figure #3 displays the cache and BTB#3 miss rates for the COMP, TEXT, and FP work-
loads with set size of four. Figure #4 displays the cache and BTB#3 miss rates for the SPARC,
VAX, and 68k workloads with set size of four. It is immediately apparent that the cache and
BTB miss rates are nearly equivalent. The four byte line size worked very well for the MIPS
(COMP, TEXT, FP) and SPARC (SPARC) traces, since MIPS and SPARC only have four byte
instructions. In Table #1, by dividing Dyn Blk Bytes with Dyn Blk Instr, we can calculate that
the VAX traces have an average instruction length of 4.2 bytes and the 68k traces have an aver-
age instruction length of 2.8 bytes. The curves in Figure #4 for the VAX are not compensated for
this slightly larger instruction length. The 68k curves in Figure #4, however, have been compen-
sated by multiplying the cache miss rate by a factor of 4.0/2.8. The compensation is necessary
since a single miss in the cache reads in 4.0/2.8 instructions instead of the assumed 1 instruction,
thus lowering the cache miss rate by a factor of 2.8/4.0. Once compensated, the BTB and cache
miss rates for the 68k are virtually equivalent.

With set sizes of 1 and 2, the cache and BTB miss rates differ more than for set sizes of 4
or 8. Generally, with set size of one or two, the BTB miss rate is higher than the cache miss rate.
The reason for this is simple. Programs tend to have code that is slightly ordered with respect to
powers of two, and a cache with a power of two number of sets will have more collisions than
one that has an non-power of two number of sets. The effect of collisions is greatest when the set
size is small [Hill89].

The BTB#3 design (branches entered on first execution) has been shown to not perform as
well as the BT3#4 design (branches entered on first taken execution). It is interesting, therefore,
to compare their miss rates. Table #A-8 (in the appendix) contains the miss rate data for BTB#3
and BTB#4. Each value under a workload heading is a geometric mean of the miss rates for the
traces in the workload. The average column contains values that are geometric means of the
workload geometric mean miss rates.

Figure #5 contains the BTB#3 and BTB#4 miss rates for the COMP, TEXT, and FP work-
loads (set size of four), and Figure #6 contains the BTB#3 and BTB#4 miss rates for the SPARC,
VAX, and 68k workloads (set size of four). The miss rate curves indicate that BTB#4 has

-20 -

40.0 7
35.07
30.01
M 250-
S
S
20.01
R
a 4
t <
Loo1so

5.09<

0.0 : ; i .
64*BB 128*BB 256*BB 512*BB 1024*BB
BTB and Cache Size (4 way set assoc)

Figure #3: BTB#3 and corresponding instruction cache miss rates for the workloads COMP,
TEXT, and FP. This figure shows that the BTB and cache miss rates can be computed from one
another.

significantly lower miss rates than BTB#3.

The relationship between the BTB#3 and BTB#4 miss rates depends on the percentage of
taken branches and the BTB size. BTB#3 enters branches into the BTB on the first execution of
the branches, and BTB#4 enters branches on the first taken execution of the branches. Therefore,
as the percentage of taken branches increases, the BTB#4 miss rate approaches the BTB#3 miss
rate. The effect of BTB size on the relationship between BTB#3 and BTB#4 miss rates can be
observed by examining the two cases, infinite BTB size and small BTB size. In an infinite size
BTB, BTB#4 will not miss on those branches that are never taken (17 percent of static branch
instructions in our traces), so the number of misses for BTB#4 is the number of misses for
BTB#3 (number of static branches) minus the number of static branches that are never taken. For
our traces, the resulting miss rate for BTB#4 is 83 percent of the BTB#3 miss rate. As BTB size
decreases, entering not taken branches generates additional misses by displacing useful branches.
The result is that BTB#3’s miss rate grows relative to BTB#4’s miss rate, as BTB size decreases.

Table #11 contains the BTB#3 and BTB#4 miss rates and their ratio as a function of BTB
size for a 4 way set associative BTB. Notice that for BTB#3 miss rates that are greater than
1.0%, the BTB#4/BTB#3 ratio ranges between .542 and .598 (a relatively small range) with an
average value of .57. With less than a 1.0% miss rate for BTB#3, the ratio rises sharply. A sim-
ple model of the BTB#4/BTB#3 miss rates ratio is therefore .57 for BTB#3 miss rates greater
than 1.0%, and undefined for BTB#3 miss rates less than 1.0% (alternatively, this region could be
assigned a worst case miss rate ratio of 1.0). This model works reasonably well for set sizes other

221 -

40.0 :
DY RN w—
30.04-

M 9501

1

S

S
20.0

R o

a

t d

to1s0

10.01

5.0]¥

0.0 : u s ;
64*BB 128*BB 256*BB 512*BB 1024*BB

BTB and Cache Size (4 way set assoc)

Figure #4: BTB#3 and corresponding instruction cache miss rates for the workloads SPARC,
VAX and 68k. This figure shows that the BTB and cache miss rates can be computed from one
another.

than four as well. This model does not take into account the effect of the taken branch percen-
tage, so workloads with taken branch percentages other than 70 percent may need a different
model.

7.1. BTB Design Target Miss Ratios

Given the relationship that we have obtained between BTB and instruction cache miss
ratios, we can derive design target miss ratios for BTBs. Design target miss ratios are those to be
expected for an "average” workload on a real machine in normal operation. They were defined
and created in [SmithAJ85] and [SmithAJ87]; the methodology is described in those papers. To
convert instruction cache design target miss ratios to design target miss ratios for BTBs, the aver-
age basic block size and the average instruction size in the workloads used are needed. We have
combined our data with that from some other published sources. Peuto and Shustek extracted
extensive information from seven IBM 370 traces that indicate average basic block size of 24.22
bytes and an average instruction size of 3.68 bytes [Peuto77]. Lee and Smith used four IBM 370
workloads with a total of 15 traces that have an average basic block size of 18.98 bytes, assuming
an average instruction length of 3.68 bytes [Lee84]. Our 7 VAX traces indicate an average basic
block size of 4.2 bytes and basic block size of 14.26 bytes. The average instructions lengths
bracket 4 bytes per instruction, so for simplicity, 4 bytes per instruction is assumed in the conver-
sion calculations. The basic block sizes bracket our 32 trace average of 20.22 bytes so this basic
block size is assumed.

.22

BTB#3 and BTB#4 Miss Rates
350'~ ---------- -1
30.01
25.01
M
i
s 20.01
S -
R
a 15.04
t
e
10.01
5.0
0.0 r
64 128 256 512 1024

BTB Sizes (4 way set assoc)

Figure #5: BTB#3 and BTB#4 miss rates for the workloads COMP, TEXT, and FP as a function
of the number of BTB entries. BTB#4 has significantly lower miss rates than BTB#3.

Using data from [SmithAJ87] for a 4-way set associative instruction cache with 4-byte line
size, LRU replacement, and cache sizes from 32 bytes 10 32768 bytes, BTB miss ratio data was
generated. Note that miss ratios for caches with line sizes greater than 4 bytes can be converted
to an equivalent 4-byte line size miss ratio using the ratios of miss ratios data in [SmithAJ87].
Figure #7 contains the resulting miss ratios for BTB designs BTB#3 and BTB#4 (four way set
associative, LRU replacement). Table #12 contains BTB design target miss ratio data for 2 to
1024 BTB entries.

8. Information Stored in the BTB

The information stored in a BTB strongly influences the performance of the design. Four
types of information have been stored in BTBs: branch tags (uniquely identifying the branch),
prediction information, branch target address, and target instruction bytes. In addition, in a BTB
design described below, the instruction bytes immediately following the branch instruction are
storad in the BTB, allowing branch folding to occur (eliminating branch execution time). In
order to get an idea of the performance potential of the above types of information, we will con-
sider their effect using the five stage pipeline mentioned in the introduction. Seven possible
single-level BTB designs will be discussed using this example pipeline. The five pipeline stages
are: instruction fetch, instruction decode, operand fetch, execution, and result writeback. All the
pipeline stages normally take one cycle to execute.

For a processor with branch instructions that have a simple uniform target address encod-
ing, the target address can be available after the instruction decode stage, if all instructions

-23-

rnm.--g

o~ 5

64 128 256 512 1024
BTB Sizes (4 way set assoc)

Figure #6: BTB#3 and BTB#4 miss rates for the workloads SPARC, VAX, and 68k. BTB#4 has
significantly lower miss rates than BTB#3.

Table #11: Miss Rates for BTB#3 and BTB#4 and Ratio of Miss Rates BTB#4/BTB#3
Entries Set Size BTB#3 Miss Rate BTB#4 Miss Rate BTB#4/BTB#3
16 4 46.82 25.90 553
32 4 29.06 15.74 542
64 4 14.87 8.34 561
128 4 7.55 442 585
256 4 3.58 2.14 .598
512 4 1.65 0.97 .588
1024 4 0.81 0.52 642
2048 4 0.53 0.41 774

Table #11: Table gives the miss rates of BTB#3 and BTB#4 and the ratio of their miss rates as a
function of BTB size.

(branch and non-branch, since the instruction type is not determined until after decode) undergo
target address calculations during the instruction decode stage. In the following designs, it is
assumed that the target address is available after the decode stage. The conditions for a condi-
tional branch are stable at the end of the operand fetch stage (i.e. at the end of the execution stage

-24 -

80.01
75.01
70.01
65.01
60.0 1
55.01
50.01
45.01
40.0 1
35.01
30.0
25.01
20.01
15.0¢
10.01

5.0

0.0

mmu—-z

O e

1.0 10.0 100.0 1000.0 10000.0
Number Entries in BTB

Figure #7: BTB design target miss ratios, converted from cache design target miss ratios in
[SmithAJ87].

of the previous instruction), at which time instructions can be fetched from the target address if
the branch is taken. With one cycle random access memory, this pipeline’s branch penalty for a
taken branch is two cycles. '

With the pipeline and assumptions given above, seven BTB designs are discussed below.

i) Hash Table of Prediction Information: This simple BTB is accessed with the branch
instruction address (modulo the table size) during the instruction decode (or fetch) stage to obtain
prediction information. If the decoded instruction is a branch, the predicted branch path is
fetched. In the example pipeline, this design saves a cycle for a correctly predicted taken branch
(removes the delay between target address available and conditions stable). The prediction infor-
mation must be updated after every branch execution. Note that the hash table (in which no
branch tag exists) allows collisions to occur (multiple branches accessing the same entry) which
reduces the prediction rate. The Mitsubishi GMICRO/100 uses a one prediction bit 256 entry
BTB of this type [Sakamura87].

ii) Branch Tag and Prediction Information: A branch tag identifies a branch instruction
with an entry in the BTB before the decoding stage of the processor determines the instruction is
a branch. Using a branch tag can remove a cycle of delay (the decode stage time) in the example
pipeline if early branch identification is useful. However, in our pipeline, since the target address
is not available until after the instruction decode, this BTB design will not reduce the branch
penalty more than BTB (i), but it will eliminate collisions (multiple branches accessing the same
entry in the hash table) at the cost of supporting the branch tag.

225

Table #12: Design Target Miss Ratios
Number Miss - Miss
BTB Ratio Ratio
Entries BTB#3 BTB#4
2 70.8 40.4
4 65.4 37.3
8 60.7 34.6
16 58.2 33.2
32 54.2 30.9
64 46.6 26.6
128 35.0 20.0
256 23.8 13.6
512 16.4 9.3
1024 12.9 7.4

Table #12: BTB design target miss ratios, converted from cache design target miss ratios in
[SmithAJ87].

iii) Hash Table of Prediction Information and Target Address: This BTB can remove
the delay from the time of identifying the branch instruction to the time of conditions stable for a
correctly predicted taken branch. In our pipeline, the branch is identified after the decoding stage
when the target address is available, so this BTB has no performance benefit over BTB (i). How-
ever, if a delay exists between the time the instruction is identified as a branch and the time of tar-
get address available, this BTB will remove that additional delay, unlike BTB (i). For example,
in our pipeline, if branches have a very simple encoding, they may be identified before going
through the decoding stage, saving an additional cycle over BTB (i) for a correctly predicted
taken branch. As with BTB (i), the hash table allows collisions to occur.

iv) Branch Tag, Prediction Information, and Target Address: In this BTB, the branch
tag improves performance for our pipeline, unlike BTB (ii). This BTB removes the delay from
the time of branch identification to the time of conditions stable. Since the branch tag identifies
the branch one cycle earlier than the decoding stage, this BTB saves two cycles from the taken
branch delay. The Edgecore E2000 uses a 1024 entry direct map BTB of this type, with one
prediction bit, branch tag, and target address [Walter89].

v) Target Instructions: This BTB is often called a branch target cache. It is basically an
instruction cache that caches instructions from the target addresses of branches. It has been used
in the Am29000 and the GE RPM40 [AMDS88] [Lewis88]. Hill compares it with instruction
caches and instruction buffers [Hill§7].

vi) Branch Tag, Prediction Information, Target Address, and Target Instructions:
This BTB removes the delay from identifying a branch to receiving target instructions for a taken
branch. In our pipeline, with one cycle random access memory, this BTB does not improve per-
formance over BTB (iv). However, if the memory is static column memory, with a 2 cycle initial
column access, and one cycle for same column accesses thereafter, the availability of the target
instructions will reduce the taken branch delay by one additional cycle (total of three cycles
saved). The target instructions can also reduce the delay in deep pipelines. This type of BTB is
used in the NexGen processor [Stiles89a]. '

-26-

vii) Branch Tag, Prediction Information, Target Address, Target Instructions, and
Instructions after the Branch: This BTB can implement branch folding, eliminating the execu-
tion time of branches [Ditzel87]. This BTB identifies a branch during instruction fetch, and
instead of decoding the branch, decodes an instruction (taken from the BTB) from the predicted
branch path. Extra hardware is required to decode and execute the branch in parallel, to verify
the predicted branch path and target address. Simple branch encodings can reduce the decoding
hardware required. This BTB allows branches to execute in zero time.

8.1. Tradeoffs Between Size and Number of Prediction Bits

Not only does the type of information contained in the BTB have an impact on cost and
performance, the quantity of each type of information has an impact as well. In particular, Table
#6 shows that significant tradeoffs can be made between size of the BTB (BTB#4) and number of
prediction bits. For example, if a BTB with a prediction rate of 83 percent is required, both a one
prediction bit 2048 entry BTB and a two prediction bit 512 entry BTB will suffice. If each BTB
entry has enough storage bits such that the number of prediction bits is insignificant, then the two
prediction bit BTB has the same performance as a one prediction bit BTB which uses four times
as many storage bits. If a BTB with a prediction rate of 89 percent is needed, a two prediction bit
1024 entry BTB can be used, or, for about half of the storage bits (assuming the number of pred-
iction bits is small compared to the total number of bits per entry), a four prediction bit BTB
with 512 entries will do. The potential cost savings encourage the designer to be careful in
selecting a BTB configuration.

8.2. Multi-Level BTBs

The third concept presented in the BTB Design Optimization section is: A multi-level
BTB, each level possibly containing different amountsitypes of information per enwry, may be able
to maximize performance by achieving a better balance of number of entries and quantity of
information per entry. Within the constraint of a finite number of storage bits allocated to a BTB
design, a multi-level BTB may maximize performance.

To test this concept of multi-level BTBs, four BTB designs were simulated. The multi-
level BTBs have up to three levels. The first level, the highest performance level, contains a
branch tag, prediction bits, target address, and target instruction bytes for each entry. The second
level, the medium performance level, contains a branch tag (one design eliminates this), predic-
tion bits, and a target address for each entry. The third level, the low performance level, is a hash .
table of prediction bits. Higher performance levels require more storage bits than the lower per-
formance levels.

Table #13: Cycle Cost Sets Costx and Costy
costx costy
Four Branch Cases levell | level2 | level3 || levell | level2 | level3
Pred. not taken, branch not taken 0 0 0 0 0 0
Pred. not taken, branch taken 4 4 4 4 4 4
Pred. taken, branch not taken 4 4 4 4 4 4
Pred. taken, branch taken 0 2 3 0 1 2

Table #13: The cycle costs for the two cost sets, costx and costy, as a function of BTB level and
the four possible branch cases.

.27 -

Note that a simple prediction rate does not adequately represent the performance of a
multi-level BTB. To obtain a measure of performance, implementation dependent cycle costs are
required. Each of the three levels has different cycle costs for the four possible cases when a
branch executes: predict not tdken, branch not taken; predict not taken, branch taken; predict
taken, branch not taken; predict taken, branch taken. Two sets of cycle costs, costx and costy, are
used, and appear in Table #13. The predict not taken, branch not taken case has a zero cycle cost
for all three levels and both cost sets. For simplicity, the two incorrect prediction cases (predict
not taken, branch taken; predict taken, branch not taken) have a 4 cycle cost for both cost sets.
The Amdahl 470 V/6 has a 4 cycle penalty when a branch is taken [Amdahi76], and the
CLIPPER has a 3 to 5 cycle penalty [Hollingsworth89]. Note that in general, the two incorrect
prediction cases need not have the same COSts. Normally the sequential instruction stream is
available, so an incorrect taken prediction costs less than a incorrect not taken prediction, in the
second and third levels.

For the predict taken, branch taken case, the cycle costs are more interesting. In costx, a
static column memory is assumed, with a three cycle initial column access, and one cycle access
in that column thereafter. The target address is available one cycle after fetching the branch, and
the conditions (for conditional branches) are stable one cycle after that. Level one entries have a
zero cycle penalty by caching 8 bytes of instructions to make up for the extra two cycle delay in
the initial three cycle target fetch. This assumes one instruction (4 bytes) executed every cycle.
Level two entries have a two cycle penalty, due to the extra two cycle delay in the initial three
cycle target fetch. Level three entries have a three cycle penalty, due to the one cycle to calculate
the target address, and the two cycle delay in the initial target fetch.

For costy, the predict taken, branch taken case is similiar. A static column memory is
again assumed, with a two cycle initial column access, and one cycle per access in that column
thereafter. The target address is available one cycle after branch instruction fetch, and the condi-
tions are stable two cycles after that. The level one entries have a zero cycle penalty by caching 4
bytes of target instructions to eliminate the extra cycle of the initial two cycle target access. The
level two entries have a one cycle penalty, the extra cycle on the initial target access. The level
three entries have a two cycle penalty, the cycle to calculate the target address plus the extra cycle
of the initial target access.

Using the cost sets costx and costy, four multi-level BTB designs were simulated. All the
designs use global LRU replacement where needed so small regular size changes can be made in
the various levels. (In a real implementation, levels one and two would be set associative).
Branches in lower levels are promoted to the highest level on a branch taken execution so that the
target instructions can be fetched without increasing memory demands. Entries at higher levels
are demoted one level at a time as they are replaced at the higher levels. The number of predic-
tion bits used in all levels is fixed at two. Table #14 contains the approximate number of bits
required by each entry of the levels in the designs. Justification for the bit allocations is provided
in the following paragraphs.

BTB#6 contains level one and level two. For costx, level one requires approximately 32
bits of branch tag, prediction bits, 32 bits of target address, and 8 bytes of target instructions, for a
rough total of 128 bits per entry. For costy, level ons requires branch tag, prediction bits, target
address, and only 4 bytes of target instructions, for a rough total of 96 bits per entry. In BTB#6,
level two is implemented as a hash table (no branch tag) containing prediction bits and target
address for an approximate total of 32 bits for both costx and costy. This level two depends on a
simple branch instruction encoding that allows the branch to be identified at the end of instruction
fetch. Note that this hash table will experience collisions (multiple branches accessing the same
entry) that will reduce performance.

-28 -

Table #14: Bits Per Entry As Function of BTB Design, Cost Set, and Level
BTB#6 | BTB#7 BTB#8 BTB#9
costx | costy || costx | costy | costx | costy | costx costy

levell 128 96 128 96 128 96 128 96
level2 32 32 64 | 64 64 64
level3 | i 2 2 | 2 2

Table #14: Number of storage bits required per entry of the four multi-level BTBs, as a function
of cost set and BTB level.

BTB#7 is identical to BTB#6 except that level two contains a branch tag that increases the
number of bits per entry to roughly 64.

BTB#8 is a full three level BTB. Levels one and two are identical to BTB#7. Level three
is a 1024 entry hash table of two prediction bit entries. Note that collisions do occur in level
three.

BTB#9 contains level one (same as BTB#6) and level three, each entry of which requires
two bits.

8.2.1. Results of Simulating Multi-Level BTBs

Each of the four multi-level BTB designs was simulated with two cost sets (costx and
costy), three values for total number of bits in the BTB (4096, 8192, 16384), and nine different
bit allocations between the levels of the BTBs for each of the six possible cost sets and total
number of bits combinations. The resulting cycle savings per branch data is given in full in six
tables in the appendix (Table #A-9 to Table #A-14). The values in the workload columns are
workload averages, and the average column contains the average of the workload averages. Six
reduced tables presenting the average cycle savings per branch are presented here (Table #15 to

_Table #20). Tables #15 and #16 are for 4096 total bits and cost sets costx and costy respectively.
Tables #17 and #18 are for 8192 total bits and cost sets costx and costy respectively. Tables #19
and #20 are for 16384 total bits and cost sets costx and costy respectively.

It is important to understand that the results presented are dependent on the cost sets, the bit
allocations per entry, and the BTB designs. A multi-level BTB may or may not be practical,
strongly depending on the specific implementation.

The cycle savings per branch results for BTB#6 and BTB#7 indicate that it is worth allo-
cating all available bits to the high performance level one, since any other bit allocation between
levels one and two increases the cycle savings per branch by at most 1.5 percent, and in most
cases makes performance worse. This is true for all three total bit sizes, and over both cost sets,
costx and costy.

BTB#8, the full three level BTB, achieves optimum results with a 1024 entry level three
and all the remaining bits allocated to level one. Bits allocated to levet two did not improve per-
formance. BTB#8 outperforms BTB#6 and BTB#7 in four of the six cost set/number of bits
combinations. In terms of cycle savings per branch, BTB#8 outperforms BTB#6 and BTB#7 by
a maximum of 5 percent.

BTB#9 performs the best of all, in one configuration (costy, 4096 bits, 32 level one entries,

512 level three entries) outperforming designs with all bits allocated to level one by about 10 per-
cent. For this best case, if we assume one cycle per non-branch instruction, basic block size of

229 -

Table# 15: Average Cycle Savings Per Branch, 4096 bit BTB, costx
BTB#6 Entries BTB#7 Entries BTB#8 Entries BTB#9 Entries Cycle Savings
levllev2 | lev3 |levl lev2 | lev3 levl/lev2 ! lev3 llevl|lev2 | lev3 BTB#6BTB#7BTB#3BTB# 9
0128 O 064 | O 0] 32 11024l 0] 0 [2048]/0.903 | 0.902 | 0.903 ! 0.522
4|1112| O 415 | 0 21 28 [1024| 4| 0 11792/ 1.298 | 1.309 | 1.195 | 1.115
8] 96| O 8148 | 0 4|24 [1024|| 8! 0 |1536|[1.411 | 1.424 | 1.300 | 1.294
121 80! 0 {12140 | O 6120 11024/112| 0 [1280/1.515|1.523 | 1.369 | 1.435
16 64| 0 (|16 32 | O 81 16 |1024| 16| 0 [1024| 1.561 | 1.574 | 1.412 | 1.556
200 48| 0 ||20/ 24 | O 10| 12 [1024)201 0 | 768]/1.589 | 1.605 | 1.484 | 1.610
24 32 0 [l24] 161 0 |[12] 8 |1024[|24] 0 | 512//1.601 | 1.628 | 1.509 | 1.668
281 161 0 28] 81 0 [[14! 4 /1024/28| 0 | 256/1.599|1.638 | 1.530 | 1.679
32 0l 0 [/32] 0| O (|16 0 [1024||32]| O 0]/ 1.665 | 1.665 | 1.556 | 1.665
Table# 16: Average Cycle Savings Per Branch, 4096 bit BTB, costy
BTB#6 Entries|BTB#7 Entrie;ﬁBTB#S Entries|BTB#9 Entries Cycle Savings
levl lev2 | lev3 llevl lev2 | lev3 levllev2 | lev3 [levl lev2 | lev3 BTB#6BTB#7BTB#8BTB#9
0/128] O 0,64, 0 0] 32 11024 0] O !2048| 1.465|1.420 | 1.506 | 1.136
5(112 0 50561 0 2128 11024/ 5| 0 11792| 1.674 | 1.645 | 1.660 | 1.560
10| 96| 0 |10 48 | O 5| 24 11024[10| 0 |1536| 1.747 | 1.719 | 1.733 | 1.711
16| 80| 0 |[16] 40| O 81 20 1024|16! O |1280l1.785 |1.759 | 1.771 | L.777
211 641 0 21] 32 0 |10} 16 |1024[/21 1 0 |1024|1.793 |1.774 | 1.805 | 1.867
26| 48| 0 26! 24 1 0 [[13] 12 |1024[26| 0 | 768|1.794 | 1.779 | 1.829 | 1.884
320 321 0 32116] 0 |16 8 11024|32| 0 | 512|1.802|1.792 | 1.847 | 1.945
37| 16| 0 |37 8| O [[18] 4 11024(37 0 | 256 1.796 1.781 | 1.855 | 1.937
42 0,0 ||42] 0] 0 |[[21] 0]1024/42| O 0l 1777 11.777 | 1.867 | 1.777 '

Table #15: Average cycle savings per branch for the four BTB designs (BTB#6-BTB#9) with a
total of 4096 storage bits and cost set costx.

Table #16: Average cycle savings per branch for the four BTB designs (BTB#6-BTB#9) with a
total of 4096 storage bits and cost set costy.

5.26 instructions, and 70 percent branches taken, BTB#9 speeds up processor performance by 32
percent, and BTB#6 or BTB#7, with all bits allocated to level one (42 level one entries), speed up
processor performance by 28 percent. So in this case, the multi-level BTB produces a net proces-
sor speedup of 4 percent over a single level BTB. In practice, the net speedup will be less than 4
percent since the average non-branch instruction will not execute in one cycle.

The limited speedup of a multi-level BTB compared to a single level BTB suggests that the
additional complexity of the multi-level BTB is not cost effective. If the complexity of the
multi-level BTB requires significant chip area, converting this area to storage bits for a simple
single level BTB may produce equal or better performance. But multi-level BTBs are strongly
dependent on the implementation. BTB#9 produced optimal performance for costy which gives
lower BTB levels more performance value per entry than costx. RISC processors, with delayed
branches, and very small (usually one cycle) branch penalties, will probably not find that multi-

-30 -

[Table# 17: Average Cycle Savings Per Branch, 8192 bit BTB, costx
\BTB#4 Entries BTB#5 EntriesBTB#6 Entries/ BTB#7 Entries Cycle Savings

levl lev2 | lev3 levl lev2 | lev3 |levlilev2 | lev3 fevlilev2 ! lev3 BTB#4BTB#5BTB#6BTB#7
0:25| 0 { 01128 O 0 96 11024 0| 0 |4096(0.969 1 0.968 | 0.992 | 0.529
8,224 0 81112| O 6 84 |1024] 8| 0O |3584|1.498 |1.504 | 1.483 | 1.304
1611921 0 |16 96| 0 12| 72 11024|16 | 0 13072} 1.680 | 1.680 | 1.643 | 1.567
2411601 0 |24 80| O |[18] 60 |1024[24| 0 12560/ 1.758 | 1.765 | 1.737 1.685
321128 0 [32] 64 O ||24] 48 102432 0 |2048 11.826 1 1.837 | 1.797 | 1.811
40 96! 0 40| 48! 0 30| 36 [1024]/40| 0 |1536) 1.859 | 1.878 1.845 | 1.869
48] 64| 0 |48 32| 0 |/361 24 [1024]|48 | 0 [1024] 1.891 | 1.911 1.890 | 1.932
56| 32, 0 ||56 161 0 |42 12 11024||56| O 512(11.910 | 1.940 | 1.913 | 1.971
641 0] 0 64 0] 0 /48] 0 11024/64] 0 0}l 1.950 | 1.950 | 1.932 | 1.950

Table# 18: Average Cycle Savings Per Branch, 8192 bit BTB, costy
BTB#4 Entries BTB#5 Entries !BTB#6 Entries|BTB#7 Entries Cycle Savings

levl lev2 | lev3 levl lev2 lev3|levl lev2 | lev3 llevlilev2 | lev3 BTB#4BTB#5BTB#6BTB#7
0,25 0 01128] 0 |l 0! 96 11024 0| O |4096| 1.545 1.520 | 1.595 | 1.145
10224 0 110/112] O 8| 84 |1024//10| 0 |3584|1.858 | 1.835|1.881 | 1.734
211192] 0 {[21] 96| O |16} 72 11024[21| 0 |3072}1.932 | 1.909 |.1.967 1.887
3211601 0 [[32] 80| 0 |24 60 |1024]32 0 |2560|1.969 | 1.956 | 2.011 1.984
420128 0 42 641 0 1132] 48 /1024|142 0 |2048) 1.982 | 1.978 | 2.047 | 2.035
s3] 96| 0 I[53] 48| O |[40| 36 [1024|53| 0 [1536]/2.001 | 1.998 | 2.068 2.086
64! 64| 0 64 32| 0 |48 24 |1024| 64| 0O [1024]2.007 | 2.009 2.087 | 2.111
741 320 0 [|74] 16| 0 |56 12 {102474| 0 | 512} 1.995 | 2.009 | 2.103 2.109
85 0| 0 ||85 0| 0 |64 0 (102485 O 0/ 2.008 | 2.008 | 2.111 | 2.008

Table #17: Average cycle savings per branch for the four BTB designs (BTB#6-BTB#9) with a
total of 8192 storage bits and cost set costx.

Table #18: Average cycle savings per branch for the four BTB designs (BTB#6-BTB#9) with a
total of 8192 storage bits and cost set costy.

level BTBs, or any BTB for that matter, significantly improve performance. CISC processors,
however, with deep pipelines and larger branch penalties, may find multi-level BTBs useful, and
almost certainly will find that a single level BTB significantly improves performance.

9. Conclusions

A Branch Target Buffer can reduce the performance penalty of branches in pipelined pro-
cessors by predicting the path of the branch, and caching information that the branch needs to
execute quickly. Using a set of program traces and software BTB simulators, BTB performance
data was generated. Prediction rates for infinite size BTBs, using a dynamic prediction method,
increased significantly up to four prediction bits, after which the prediction rate increased slowly
up to our maximum measured size of 16 prediction bits. Context switching was found to have a
significant negative effect on the prediction rates. With a context switch occurring every 10000
instructions, two prediction bits have a prediction rate of 84 percent, as compared to 89 percent

231 -

[Table# 19: Average Cycle Savings Per Branch, 16384 bit BTB, costx
|BTB#6 Entries|BTB#7 Entries BTB#8 Entries BTB#9 Entries Cycle Savings

levl lev2 | lev3 levl lev2 | lev3 levl lev2 | lev3 levlllev2 | lev3 BTB#6BTB#7BTB#8BTB#9

0/5121 0 0/ 256 0 0/ 22411024/ 0/ 0O [8192(1.017 | 1.044 1 1.040 | 0.531
161448 | 0 | 161224 0 | 141196 1024]| 16 0 |7168]1.736 1.761 | 1.723 1.576
320384 | O |/ 32/192] 0 || 28/ 168 1024} 32| 0 |6144| 1.907 1.922 | 1.879 | 1.819
48 320 O || 48/ 1601 O | 42/ 140|1024| 48/ 0 |5120(1.993 | 2.004 | 1.981 | 1.949
64/ 256 0 | 641128 | 0O | 56[112 11024]1 64| 0 [4096/ 2.048 | 2.055 | 2.045 | 2.034
801192 0 |/ 801 96| 0O | 70/ 84 |1024] 80| 0 |3072] 2.064 12.066 | 2.073 | 2.065
96/ 128 | 0 | 96, 64| 0O | 84| 56 1024| 96| 0 |2048| 2.067 | 2.076 | 2.087 | 2.090
112] 64| 0 [112] 32| 0 |l 98 2811024[112| 0O |1024|2.065 | 2.083 | 2.096 2.104
128/ 0| O |128/ 0| 0 |112] 0,1024|128 0 0/ 2.085 | 2.085 | 2.104 | 2.085

Table# 20: Average Cycle Savings Per Branch, 16384 bit BTB, costy
BTB#6 Entries|BTB#7 EntriesBTB#8 Entries }BTB#9 Entries Cycle Savings

levl lev2 | lev3 |levll lev2 | lev3 llevlilev2 | lev3 llevl lev2 | lev3 |BTB#6BTB#7BTB#8BTB#9
0/512; 0 01256 0 01224 1024 0| 0 [8192||1.604 ;1.633 | 1.644 | 1.148
211448 | 0 | 21224 | 0 || 18] 196 1024| 21| 0 |7168] 2.002 | 2.033 | 2.031 | 1.892
421384 0 | 421192 0 | 37 1681024} 42| 0 |6144]2.084 |2.102 | 2.113 | 2.045 |
6413201 0 | 64, 160| 0 || 56/ 140|1024| 64| 0 |5120]2.124 | 2.138 | 2.159 2.130
851256 | 0 Il 85128 | O || 74 112]1024| 85 0 [4096||2.131 | 2.145 2.175 | 2.157
106/ 192 | 0 [106] 96| 0 || 93 84|1024|106] 0 [3072}2.133 2.14712.182 | 2.175
128/ 128 1 0 (128 64| O ||112] 56 1024|128 0 |2048|2.127 | 2.147 | 2.188 2.190
149] 64| 0 [149] 32| 0 130 28]1024[149] 0 |1024]2.122 | 2.141 | 2.192 2.197
170, 0! O [170/ 0| O ||149] 0]1024}170, 0 0 2.138 | 2.138 | 2.197 | 2.138

Table #19: Average cycle savings per branch for the four BTB designs (BTB#6-BTB#9) with a
total of 16384 storage bits and cost set costx.

Table #20: Average cycle savings per branch for the four BTB designs (BTB#6-BTB#9) with a
total of 16384 storage bits and cost set costy.

without context switching.

BTB management, when to enter and discard branches from the BTB, was explored. We
found that entering branches into the BTB only on a branch taken execution yields better results
than entering branches on both taken and not taken executions. Entering branches on taken exe-
cutions avoids entering into the BTB branches that can’t improve performance at the expense of
discarding branches that can improve performance. A new method of discarding BTB entries
was discussed and compared to the simple LRU replacement strategy. This new method discards
branch information that is both not likely to be referenced (i.e. low in the LRU stack), and not
likely to be useful (i.e. predicts not taken). This method performed slightly better than simple
LRU.

We found a relationship between miss ratios for BTBs and instruction caches. This

allowed us to convert miss rates for caches to BTB miss rates and vice versa. Using this capabil-
ity, design target miss ratios for instruction caches were taken from the literature and converted to

-32-

design target miss ratios for BTBs.

Finally, the nature of BTB entries was discussed. The type and amount of information
stored in a BTB has a significant impact on the performance of the BTB. Several BTB designs:
were presented and evaluated, including entries with one or more of the following information
types: branch tag, prediction bits, branch target address, and branch target instructions. Varying
the amount of individual types of information has a significant impact, as shown by examining
the tradeoffs possible between number of prediction bits and number of entries in the BTB.
Multi-level BTBs were considered, i.e. BTBs that vary the information content in each level in
the BTB. The multi-level BTBs simulated, with specific cycle cost and implementation assump-
tions, did outperform single level BTBs, but by a small margin. However, depending on the
implementation, multi-level BTBs may significantly improve performance.

10. Appendix

-33-

Table #A-1: Trace and Workload Information

Workload | CPU | Trace [Dynamic|Static| Object| Object; StaticTStxtic Static| Static [Branch| Cond | Dyn |Dyn sm§sm Obj| Obj
Name | Instr |Instr| Instr | Bytes [Branch|Branch|{Cond{Uncond| Taken |Taken Bik | Bik | Blk | Blk | Blk | Blk

. instr | bytes |instr | instr instr |bvtes| instr |bvtes|instr|bytes:
COMP MIPS |asm 2618790114757] 31794(127176| 17.31 | 17.31 |10.40| 6.92 | 66.46 | 55.62 6.27!25.08| 5.78/23.12/5.8523.40
COMP MIPS lccom [2347578{16719| 49014196056 21.47 | 21.47 |14.88| 6.59 | 68.24 59.77 | 5.26(21.04| 4.66{18.64/4.7318.92
COMP MIPS Ifeom |2399675(18001| 58702/234808| 20.94 | 2094 |13.48| 7.46 | 74.02 | 68.36 5.07/20.28] 4.78]19.12]4.66 |18.64,
COMP MIPS |id 2139419 (11201| 359501143800| 16.93 | 16,93 | 873 820 | 75.82 | 68.57 | 5.53[22.12 5.91(23.64/5.7823.12
COMP MIPS |ugen |2198663 (14541 54798219192 1750 | 17.50 | 8.87| 863 | 77.13 | 67.25 | 5.7623.04| 5.71|22.84(5.56(22.24
COMP MIPS |uopt |2005789| 8019 82754{331016 1375 | 1375 | 394 9.81 | 77.44 |69.16 | 5.94|23.76| 7.27\29.08}5.25|21.00|
COMP MIPS |upas |2122605{26923| 68602/274408| 1440 | 14.40 791| 6.50 | 70.80 | 62.65| 5.74122.96| 6.94{27.76/5.83123.32

COMP MIPS |average|2161788115737| 54516/218064] 17.47 17.47 | 974 7.73 | 72.84 | 64.48 | 5.65{22.61| 5.86/23.465.38|21.52
TEXT MIPS |emacs | 2248793 |22152|114909|459636(19.95 | 19.95 [13.11] 6.84 | 68.43 163.15 | 4.44 17.76] 5.01|20.04/4.84 |19.36
TEXT MIPS |grep |2659545| 4666, 14882 59528| 18.69 18.69 11327| 5.42 | 55.77 | 55.26 | 5.63|22.52] 5.35{21.40|4.85|19.40
TEXT MIPS lnroff |2524763| 7237| 17352 69408] 19.84 | 19.84 |11.94| 7.90 | 69.72 | 64.12| 5.26 21.04| 5.04/20.16]/4.79|19.16
[TEXT MIPS _ivi 2279164 |12728| 42006/168024| 2127 | 21.17 [13.55| 7.72 | 77.28 | 71.24 | 4.65|18.60; 4.70 18.8014.31117.24
ITEXT MIPS |avcrage| 2428066 |11696] 48287|193148| 1993 | 19.93 1297 6.97 | 67.80 |63.44| 5.00{19.98] 5.03|20.10i4.70118.79
[FP MIPS |doduc | 2548784 20191] 53414[213656| 835 | 835 | 587 247 | 65.90 {59.37 9.08/36.32(11.98(47.928.03 |32.12
[FP MIPS lintcg |2548031{10187| 35946143784/ 10.05 1005 | 6.19| 3.86 | 68.31 |51.48|11.55146.20| 9.95{39.80/5.58 |22.32
[FP

[FP

[FP

SPARC
SPARC
SPARC
SPARC

MIPS |mold |2436649| 4774| 29782/119128] 1898 | 1898 |12.19| 6.79 | 71.08 | 61.41 13.60(54.40| 5.27]21.084.89(19.56
MIPS spice |2224179|21475|1234901493960! 1179 | 11.79 | 7.87 3.92 | 74.33 | 65.68 | 7.30129.20 8.48|33.92(9.8139.24

MIPS |average!2439411114157] 60658]242632| 12.29 | 12.29 | 8.03 426 | 6991 |59.49 {10.38/41.53| 8.92!35.68|7.08 |26.56|

SPARC|ccom? | 2014692 | 4984| 56898/227592| 20.89 | 20.89 [10.75| 10.13 | 66.66 | 49.36 | 4.76 19.04(4.79{19.16|3.90|15.60
SPARClesp2 |1992550| 5722; 47261|189044| 19.82 | 19.82 11.50| 8.32 | 65.07 | 54.34| 5.0320.12| 5.05|20.20{4.65|18.60
SPARClgbis? | 1921300 3875| 25546(102184] 22.63 | 22.63 |13.06 9.57 | 46.14 |28.85| 4.00/20.00| 4.42|17.68/4.84{19.36

SPARClaverage| 1976181 | 4860 43235/172940| 21.11 } 21.11 1177 9.34 | 59.29 | 44.18 | 4.60[19.72| 4.75/19.01/4.46|17.85

VAX VAX |awk 111806| 1084 na na | 2537 | 12.57 |13.10] 12.27 | 65.15 | 51.21| 3.71]16.46{ 3.94/16.55| na | na

VAX VAX s 91579 1686 na na | 2734 | 1549 {1744} 991 | 66.25 |59.29| 3.11| 9.81| 3.66|13.85| na | na

VAX VAX jotmdl {3044481{ 1680| na na | 19.88 | 10.39 |12.68| 7.20 | 67.37 | 59.06| 3.41{1125| 5.03|22.19| na | na

VAX VAX |sedx 123562 883] na na | 32.84 | 17.42 (21.97| 10.87 | 87.19 | 85.42| 2.37| 7.55] 3.05|12.53{ na | na

VAX VAX |spic [2463599[10064| na pa | 22.59 | 892 |11.91) 10.67 | 72.23 | 50.62 | 4.47|29.44| 4.43|26.36| na | na

VAX VAX |troff 221684 2065| na na | 31.82 | 1490 |21.89| 9.93 | 67.70 | 61.10| 3.05(14.19| 3.14[14.2]1| na | na

VAX 'VAX |vmerge|1262814| 2360| na na | 2254 | 1176 [13.30] 9.24 | 69.61 {61.27 | 3.51!11.14) 4.44{17.49! na | na

VAX VAX laverage|1045646| 2832] na ne | 2605 | 13.06 16.04! 10.01 | 70.79 | 61.14 | 3.38]14.26| 3.96{17.60| na | na

68K 68K |as 597346| 5186 na na | 2478 | 20.61 |13.11] 11.67 | 62.52 | 44.56 | 4.42|12.50(4.04{13.51| na | na

68K 68K |egrep | 660000 1410 ne na | 2071 | 17.03 (1149 9.22 | 81.98 |77.04| 4.75{14.99| 4.83)16.09| na | na

68K 68K |fortl 916064 | 5390| na na | 22.06 | 21.79 | 991] 12.15 | 70.68 | 58.77 | 4.78/11.95| 4.53{1522} na | na

68K 68K |fortla | 900866 5271| na na | 21.87 { 2093 |10.13] 11.74 | 70.52 | 58.58 | 4.80(12.00| 4.57|15.62| na | na

168K 68K |ls 296050 2003| na na | 26.51 | 21.13 [13.78| 12.73 | 66.92 | 53.32| 3.40; 9.82} 3.7712.06| na | na

68K 68K |stat 700000 4377| na na | 2536 | 2208 {11.08} 14.28 | 67.26 |51.99 | 3.88|11.41| 3.94|13.47| na | na

68K 68K Istata 700000 | 4212] na na | 2457 | 21.76 |11.68] 12.89 | 66.62 | 52.09 | 3.8311.15| 4.07|13.76) na | na

68K 68K laverage| 681475! 3978 na na | 2369 | 20.76 [11.60] 12.10 | 69.50 |56.62 | 4.27111.97| 4.25|1425| na | na

Workload Ave 11788761 | 8877] na na | 2009 | 17.44 [11.69] 8.40 | 68.36 |58.23 | 5.55|21.68! 5.46/21.68| na | na

[Trace Ave \ 11644401 | 8619| na ne | 2071 | 17.23 [11.90] 8.81 | 69.39 | 59.73 | 5.26120.22] 5.27|20.85| na | na
Definitions

Dynamic Instr Number of dynamic instructions in the trace

Static Instr Numbser of static instructions in the trace

Object Instr Number of instructions in the entire program (object text scgment)

Object Bytes Number of bytes in the entire program (object text segment)

Static Branch instr Percentage static branch instructions of all static instructions

Static Branch bytes Percentage bytes of static branch instructions of all static instruction bytes

Static Cond instr Percentage static conditional branch instructions of all static instructions

Static Uncond instr Percentage static unconditional branch instructions of all static instructions

Branch Taken Percentage of branches that are taken

Cond Taken Percentage of conditional branches that are taken

Dyn Blk instr Dynamic basic block size in instructions, including branch instruction

Dyn Blk bytes Dynamic basic block size in bytes, including branch instuction

Stat Blk instr Static basic block size in instructions, including branch instruction

Stat Bk bytes Static basic block size in bytes, including branch instruction

Obj Blk instr Object (text scgment) basic block size in instructions, including branch instruction

Obj Blk bytes Object (text segment) basic block size in bytes, including branch instruction

'Workload Ave Average of all the workload average values

{Trace Ave Average of all of the individual trace values J

Table #A-1: This table contains the statistics gathered from all 32 traces. Values are presented for indivi-
dual traces, workload averages, average of workload averages, and the trace average of all 32 waces.
Definitions for headings in the columns and rows are given at the bottom of the table.

234 -

i Table #A-2: Branch History Sequences: Probability of Taken, Probability of Occurrence
i (For BTBs with 6 pred. bits that enter branches on first execution of branch)

iBra. History‘l Probability of Next Execution Taken Probability of Occurrence
i I !
N;‘I:(I)‘ta:(a;en comp | text | fp | sparc | vax 68k | ave comp | text | fp |sparc) vax i 68k | ave
NNNNNN| 019 | .009 | .016 | .017 | .015 | 041 | .020[201 |.290:.245| .312 |.224.199.233
NNNNNT]| 279 | 216 | .209 | .264 | .221 | .285 | .260 || .005 | .0031.004| .006 |.004|.010.005
NNNNTNI 180 | .070 | .092 | .115 |.170 | .121 | .133 || .004 [.0031.004| .006 | .003|.008 .005
NNNNTT| 545 | .697 | .748 | .601 | .618 | .586 | .601 | .002 |.001|.001| .003 :.001.003 .002
NNNTNN| 174 | .072 | .074 | .168 | .123 | .122 | .130 | .004 |.003|.004} .007 |.004.009.005
NNNTNT| 257 | 246 | .169 | 271 | .266 | 271 | .260 || .001 |.000{.001} .001 |.001 .002 .001
NNNTTN| 276 | 285 | .340 | .190 |.275 | .170 | 231 .001 |.000/.001 .002 |.001.002|.001
NNNTTT 630 | .845 | 830 | .688 | .691 | 785 |.736 | .001 |.001|.001| .002 |.001.003 .002
NNTNNN| 233 | 114 | .099 | .258 |.293 | .193 | .212 | .004 1.0031.004 | .007 |.004|.009|.005
NNTNNT|| 239 |.109 | .093 | .188 |.096 | .234 | .182 | .001 |.001|.001| .002 |.002.002 |.002
NNTNTN| 451 448 | 578 | .499 | .660 | .437 | .505 | .001 |.000|.001| .002 |.001|.0021.001
NNTNTT| 405 | 585 | .615 | .492 | .460 | 322 | 412] .00L |.000|.000] .001 |.000 .001 .001
NNTTNN| 343 | 370 | 290 | .550 |.511 | .328 | .409 | .001 |.000].001 .003 |.001.002 .001
NNTTNTI|| 518 | .603 | .405 | .581 | .463 | .572 | .525 || .001 |.000|.000 001 |.001.001.001
NNTTTNI 427 | 377 | 298 | .283 | .436 | 293 | .361 || .001 |.000|.000| .001 |.001.001 .001
NNTTTT| 726 | .878 | .848 | .674 | .775 | .713 | .743 | .002 |.001|.001| .003 |.002|.004 .002
NTNNNNI 195 |.107 | .110 | .216 |.179 |.188 | .177 || .004 |.003.004 .006 |.003 .008 .005
NTNNNT| 203 | .179 | .230 | .169 | .204 | 236 | 211 | .001 |.0001.001! .002 |.002.002:.002
NTNNTNI| 325 | 297 | .194 | 313 |.261 | 322 | .294 | .002 |.001].001| .003 |.002).002.002
NTNNTT| 499 | 561 | 479 | .465 | .566 | .458 | .489 | .001 |.000|.000| .001 |.000.001|.001
NTNTNN| 366 | 342 | 373 | .510 | .492 | 405 | .423 || .001 [.000!.001] .002 |.001.002 .001
NTNTNT| 312 |.125 | .103 | .100 | .086 | .171 | .131 || .003 |.001].004 | .010 [.012.006|.006
NTNTTNI .801 | .605 | .799 | .664 |.719 | .530 | .690 || .002 !.0001.000 | .002 |.001.001.001
NINTTT| 524 710 | .615 | 589 | .777 | .702 | 659! .001 |.000.000| .002 |.001].002.001]
NTTNNNI| 302 | .163 | .548 | .380 | .431 | .166 | .294 || .001 |.000.001] .002 |.001 1002 1.001 |
NTTNNT| 523 | .601 | 711 | .794 | .474 | .419 | .563 || .001 |.0001.000 .002 |.001 .001 |.001 |
NTTNTNI 723 | 649 | 651 | .795 | .804 | .546 | .707 | .001 }.000.001 | .001 |.001 .001|.001
NTTNTT| 393 | .446 | 017 | 315 |.477 | 362 | 230 (| .003 |.001|.013) .004 |.002.004.004
NTTTNN| 428 | 343 | 648 | .378 | .403 | .307 | .389 || .001 1.000}.000| .001 |.001].001 .001
NTTTNT! 856 | .871 | .807 | .784 | .828 | .654 | .803 | .004 |.001.001| .003 ;.002.002.002
NTTTTN| 801 | .877 | .816 | .641 | .845 | .630 | .751 | .002 |.001.001| .002 |.002.002 .002
NTTTTT 915 | .879 | .938 | .835 | .928 | .872 | .899 | .012 |.008|.006| .008 |.011|.012.010
TNNNNN] 192 |.121].091 | .177 | .142|.166 | .158 || .005 |.0031.004 .006 |.004 .010|.005
TNNNNT| 398 | 294 | 264 | 413 | 358 | 215 | .319]| .001 |.000|.001 .002 |.001 .002 | .001
TNNNTN| 249 | .135 | 327 | 231 | 214 | 293 | 252 .001 |.000|.001] .002 |.002|.002|.001,
TNNNTT| 575 | .653 | .602 | .497 | .465|.756 | .610 || .001 1.000.001| .001 |.001.001 001"
TNNTNNI 486 | .630 | .763 | .483 | .611 | 547 | .564 | .001 |.000.001| .002 |.002|.002 .002
TNNTNTI 461 | 414 | 271 | .356 |.271 | 381 |.371| .001 |.000|.000| .001 |.001].001 .001
TNNTTNI 480 | 301 | .450 | .264 | .464 | .415 |.396 || .001 |.000.000 .002 |.001 .001 .001
TNNTTT] .600 | .871 {.731 | .739 |.792 | .829 | .758 || .001 |.001.001, .001 |.001 |.002|.001
TNTNNN|| 321 |.194 | 242 | .391 | .424 | 433 .001 |.000/.001| .001 |.001].002].001

a7

-35.

Table #A-2 (cont.): Branch History Sequences: Probability of Taken, Probability of Occurrence
(For BTBs with 6 pred. bits that enter branches on first execution of branch)

Bra. History Probability of Next Execution Taken ‘ Probability of Occurrence
N;il;ta;a:;en comp | text | fp | sparc | vax | 68k | ave |comp | text fp |sparc|vax | 68k | ave
TNTNNT| .398 | .369 | .378 | .337 | .261 | .333 | .340 | .001 .0001.000| .001 |.001.001.001
TNTNTN| 806 | 911 | .891 | .918 | .934 | .855 | .898 || .003 |.001|.004| .010 |.011|.006.006
TNTNTT| 429 | .790 | .465 | .525 | .528 | .684 | .551 | .002 |.000{.001| .002 |.002|.002.002
TNTTNN| 633 | 577 | 646 | 677 | 462 | 513 ' .569 || .001 |.000].000] .001 |.001}.001 .001
TNTTNT| .693 | .881 | 974 | .767 | .625 | .828 | .833 | .004 |.001].013 | .005 |.002,.004|.004
TNTTTN 915 | .815 | .874 | .865 | .866 | .824 | .875] .004 |.001].001| .003 [.002|.002.002
TNTTTT| 880 | 919 | .866 | .819 | .822 | .868 | .861 || .013 |.007,.005| .008 | .011 .011:.010
TTNNNN| 260 | .136 | .137 | .358 | 310 |.141 | 219} .002 |.001 .001| .003 |.001.003 002
TTNNNT, 578 | .799 | .816 | .650 | .680 | .753 | .689 | .001 |.000|.001 | .001 |.001.001.001
TTNNTN| 561 | .638 | .425 | .559 |.505 | .396 | .490 || .001 |.000|.000 | .001 |.001.001 .001
TTNNTT| 614 | .765 | .648 | 358 |.678 |.728 | .619 | .001 |.001.001| .003 |.001|.002 .001
TTNTNN| 569 | 279 | .588 | .628 | .297 | .303 | .429 || .001 |.000|.000 | .001 |.000.001|.001
TTNTNT| 591 | .623 | 335 | .612 | .413 | .560 | .533 1| .002 |.000(.001| .002 |.002.002.002
TTNTTN 834 | 906 | .980 | .878 | .842 | .892 | .914 | .003 |.001|.013| .004 {.002|.004 .004
TTNTTT| .782 | .896 | .875 | .749 | .889 | .880 | .842 || .016 |.008.006| .009 |.012.011.011
TTTNNN 343 | 208 | 262 | 204 | 348 | 271 | .284 || .001 {.001}.001| .002 |.001{.003.002
TTTNNT .686 | .855 | .773 | .716 | .878 |.796 | .787 | .001 |.001|.000| .001 |.001}.002;.001
TTTNTN! 675 | 610 | .784 | .772 | .786 | .743 | .733 | .001 |.001|.000| .002 {.001|.002 .001
TTTNTT| .930 | .953 | 937 | .862 |.934 | .879 | .917 || .016 |.008.006| .009 |.012.011}.011
TTTTNN| 418 | 516 | .168 | 364 | .564 | 387 | .418{ .001 |.001!.001| .002 |.002.003|.002
TTTTNT| 943 | .947 | 948 | .884 | 941 |.871 | .921 | .013 |.008.006 .008 |.011 .0121.010
TTTTTN| 911 | .904 | .839 | .802 | .867 | .816 | .862 || .012 |.008|.006| .008 |.011.012|.010
TTTTTT .981 | .989 | .991 | 986 | .984 | 981 | .984 | .616 |.6241.622| .485 |.609|.575].595
NNNNN| .022 | .010 | .017 | .020 |.017 | .046 | .023 || .205 [.293.249} .318 |.228|.209.238
NNNNT! 305 | 225 | 215 | 303 | .249 | 273 | 271 .006 |.003|.005| .009 |.005 .012|.007
NNNTN| .198 | 078 | .119 | .147 | .183 | .156 | .160 | .006 |.003/.004| .008 |.0051.011].006
NNNTT| .555 | .688 | .697 | .570 | .555!.637 | .604 || .003 |.001].002 .004 .002).005 .003
NNTNN| 252 | .148 | 242 | 243 | 266 | .210 | .231| .006 |.003|.005| .009 .006 1.011|.007
NNTNT! 353 | 333 | 212 | 315 | .269 | .316 | .310 .002 {.001].001| .003 |.002/.003 .002
NNTTN! 362 | 293 | .387 | .233 | .351 | 260 | .302 || .002 |.001[.001| .004 |.001.003.002
NNTTT] .618 | .856 | .799 | .709 | .743 | .800 ; .745 .002 |.001|.002| .004 |.002.005.003
NTNNN| 251 | .124 | .118 | 275 |.316 |.234 | 240 .006 |.003.004| .008 |.005|.011}.006
NTNNT| 300 | .180 | .170 | 242 |.150 | 264 | .234 || .002 |.001|.002| .004 |.002.003 |.002
NTNTN| 688 | .822 | .848 | .855 | .907 | .747 | .828 {| .004 {.002|.005! .011 |.013.007.007
NTNTT/| 423 | .732 | 500 | 517 | .513 | .576 | .515] .003 |.001,.001! .003 |.002].003!.002
NTTNN| 455 | .431 | 434 | 583 |.493 | .393 | 464 | .002 |.001.001| .004 |.002.003|.002
NTTNT|| .664 | .840 .960! 737 | .593|.791 | .798 || .004 |.001[.013| .005 |.003|.005.005
NTTTN| .820 | 748 | 717 | .718 | .749 | .651 | .749 | .005 |.001.001 | .004 |.002.003.003
NTTTT| 864 | 914 | .863 | .785 | .817 |.830 | .841 | .014 |.008.007 | .010 |.013.015.012
TNNNN| 213 | 113 | .115 | 262 | .209 |.173 | .188 | .006 |.003}.005} .009 |.005.012.007 -
TNNNT| 340 | 365 | .528 | .328 | .348 .384 | 367 || .002 |.001].001| .003 |.002,.003}.002

-36-

Table #A-2 (cont.): Branch History Sequences: Probability of Taken, Probability of Occurrence

(For BTBs with six pred. bits that enter branches on first execution of branch)

Bra. History Probability of Next Execution Taken Probability of Occurrence
N;I:'(;‘ta:(ael;en comp | text | fp | sparc | vax | 68k | ave jjcomp | text fp |sparc| vax | 68k | ave
TNNTN| 397 | 377 | 224 | 373 |.316|.343 | 344 | .002 |.001 .002 | .004 £.002.003.002
TNNTT/| 570 | .731 | .593 | .384 | .656 | .634 | .581 | .002 [.001].001| .004 .0021.003 1.002
TNTNN 447 | 315 425 | 543 | 445|370 | .425 | .002 |.001;.001! .002 .002 .003 |.002
TNTNT| .426 | 239 | .138 | .199 |.127 | .277 | 216 || .005 |.002|.005| .012 {.013|.008 .008
TNTTN .822 | 857 | 974 | 819 |.792 |.799 | .866 | .004 |.001.013 | .006 |.003).005 .005
TNTTT .764 | 886 | .857 | .725 | .879 | .856 | .825 | .017 |.008|.006| .011 |.0131.013 .012
TINNN| 325 | 194 | 352 | 278 |.380|.229 | .287 || .002 |{.001].002| .004 |.002|.004.003
TTNNT) .608 | .778 | .741 | 765 | .723 | .634 | .683 || .002 .001|.001| .004 |.002.003].002
TTNTN| .700 | .622 | .711 | .783 | .796 | .681 | .721 || .003 |.001|.001| .003 |.002|.003 .002
TTNTT .846 | .904 | 305 | .697 | .881 {.750 | .738 | .018 [.009|.019]| .013 .013].015;.015
TTTNN| .421 | 471 | 281 | 368 |.527 | .368 | .409 | .002 |.001{.001| .004 [.002.004;.003
TTTNT| 922 | 939 | 929 | 857 |.927 | .842 | .900 | .017 |.008.006| .011 .0131.0131.012
TTTTN| 895 | 901 | .835 | .767 | .863 | .784 | .844 | .014 |.008/.007| .010 |.013].015].012
TTTTT)| .980 | .988 | .991 | .983 |.983 | .979 | .983 | .629 |.632/.628 | 493 ;.620 .587.605
NNNN| 028 | .012 | .019 | .027 |.021 |.053 {.027] .211 |.296.253| .327 |.233|.221.245
NNNT| 315 | 246 | 272 | 310 | 282 | 299 | .296 | .008 |.004|.006| .012 |.007.015|.009
NNTN| .259 | .136 | .148 | 214 |.227 | .203 212 | .008 |.004].006| .012 |.007].0141.009
NNTT| 562 | 706 | .661 | 478 | .603 | .636 | .595 || .004 |.0021.002| .007 |.004|.007.004
NTNN| 303 | .174 | 273 | 303 | .305 | .243 | 273 || .008 |.004!.006| .011 |.007.0141.009
NTNTI| 403 | 260 | .150 | 219 |.143 | .287 | .235 | .007 |.002|.006 .015 |.015].011].009
NTTN| 682 | 671 | .940 | 581 |.631].615|.713 || .006 |.002].014 | .009 |.004|.008.007
NTTT| 746 | .881 | .845 | .722 | .859 | .841 | .811 | .019 |.009|.008| .015 |.015.017.015
TNNN| 273 | 140 | .179 | 276 |.331].232 | .253| .008 |.004|.006| .012 |.007|.015 .009
TNNTI| 436 | 498 | 352 | 508 | .419 | .427 | .437 || .004 |.0011.002} .007 |.0041.006|.004
TNTN| 693 | .766 | .821 | .839 | .891 |.729 | .803 || .007 |.002/.006 | .014 |.015|.011].009
TNTT| .791 | .892 | .313 | .662 | .830 |.721 |.709 || .021 0091.020| .017 |.015,.018/.017
TTNN| 436 | .458 | .338 | 481..513 | .378 | .432 || .004 |.002|.002| .008 |.004|.007.004
TTNT! .869 | 928 | 950 | .817 | .870 |.829 | .871 | .021 {.009|.020| .016 |.015.018|.017
TTTN| 876 | 883 | .816 | .753 | .847 | .763 | .826 | .019 1.009,.008| .014 |.015.017 .015
TTTT 977 | 987 | .989 | .979 |.979 | .976 | .980 || .643 |.640|.635] .504 |.633|.602|.617
NNN| .037 | .013 |.023 | .035 |.030 |.064 | .035 | .219 [.300].259| .339 |.239|.235|.254
NNTI| 357 | 312 | 295 | 384 | .333|.336|.342 .012 |.005|.008 | .019 |.011].021.013
NTN| 460 | 386 | 482 | 559 | .666 | 430 | .518 | .015 |.006|.012| .026 |.022.025].018
NTT 752 | 863 | 353 | .606 | .786 | .697 | .685 | .025 |.011|.022| .024 |.019.025.022
TNNI 350 | 259 | 290 | 373 | .376 | .288 | .327 || .012 |.005.008 | .019 !.011.021].013
TNT 755 | 793 |.772 | 535 | .513 | .627 | .645| .028 |.012}.025| .031 |.030.028.026
TTN 827 | 853 | .896 | .685 | .800 |.718 | .790 | .025 |.011].022| .024 |.019.025.022
TTT| 971 | .985 | 987 | 972 | .977 | .972 | 976 || .663 |.6501.643| 518 | .648.620 .632
NN .053 | .018 | .031 | .053 | .045 |.082 |.050 | .232 |.305|.267| .358 |.251 .256.267
NT! 632 | 641 | .655 | .478 | .465 | .503 | .544 || .040 |.017].034 | .050 |.0411.049.040
TN| .692 | 685 |.752 | .619 |.727 | .575 | .665 || .040 1.0171.034] .050 |.0411.049.040

-37-

Table #A-2 (cont.): Branch History Sequences: Probability of Taken, Probability of Occurrence
(For BTBs with six pred. that enter branches on first execution of branch)

Bra. History Probability of Next Execution Taken Probability of Occurrence

N=Not taken |

T=Taken comp | text | fp |sparc | vax | 68k | ave comp texti fp {sparc|vax | 68k | ave
TT 963 | .983 | 966 | .956 | 971 | .961 | .967 || .688 |.661 .665| .543 | .667.645 .654

N 147 | 053 | .112 | .123 |.141.162|.129 || 272 |.322/.301 | .407 |.292.305 306

T|.945 | 975 |.951 | 916 |.942 | 929 | .943 | .728 678 1.699 | .593 |.708 |.695 |.69%4

Table #A-2: This table contains the probability of occurrence and probability of next branch execution tak-
en statistics, as a function of up to the past six branch executions. These statistics can be used by BTBs
that enter branches on both taken and not taken executions. Statistics are gathered beginning with the first
execution of each static branch.

.38 -

Table #A-3: Branch History Sequences: Probability of Taken, Probability of Occurrence
(For BTBs with 6 pred. bits that enter branches on first taken execution of branch)

Bra. Histery Probability of Next Execution Taken Probability of Occurrence
N-;]:;tatl:l:]en comp | text | fp |sparc | vax | 68k | ave |comp text fp |sparc|vax | 68k | ave
NNNNNN| 059 |.018 | .075 | .033 |.031.096 | .048 || .071 |.169:.062| .185 |.1121.094.107
NNNNNT| 279 | 206 | 208 | 258 | 214 | 283 | 256 | .005 |.003{.005| .007 |.004 .011|.006
NNNNTN| .180 | .067 | .090 | .114 | .174 | .120 | .1321 .005 |.003).005| .007 |.004.010].006
NNNNTT! 538 | .691 | .754 | .588 |.616 | .589 | .599 || .002 |.001].001| .003 |.001.003 .002
NNNTNN| .173 | .069 | .072 | .168 |.125|.120 | .129 | .005 |.003|.005 | .008 |.005 .010 .006
NNNTNT]| 257 | 248 | .168 | .270 | 268 | 266 | .258 || .001 |.000|.001 | .001 |.001,.002 .001
NNNTTN| 276 | 273 | 345 | .185 |.285!.173 | .234 || .001 |.000|.001 .002 |.001,.002 .001
NNNTTT|| 625 | .842 | .835 | .680 | .684 | 789 | .735 || .002 1.001/.001 | .002 |.001].003 .002
NNTNNNI| 236 | .114 | .095 | .257 | .296 | .194 | .213 || .005 |.003 |.005]| .008 | .005 .010.006
NNTNNT| 240 | .108 |.094 | .190 | .099 | .234 | .183 || .002 1.001 |.001 | .003 |.002.003|.002
NNTNTN| 449 | .448 | 580 | .497 | .664 | .434 | .504 || .002 [.000|.001| .002 |.001).002.001
NNTNTT| .408 | .583 | .614 | .497 | .450 | .322 | .413 | .001 |.000.000| .001 |.001.001].001
NNTTNN| 343 | 375 | 284 | .543 |.532|.327 | 410 .001 |.000|.001 .003 |.001.002.001
NNTTNT| 519 | 603 | .390 | .576 | .456 | .569 | .520 | .001 |.000.000| .001 |.001.001 .001
NNTTTN| 427 | .383 | .290 | .280 | .447 | 286 | .362 || .001 |.000.000| .001 |.001.001].001
NNTTTT]| .724 | .875 | .859 | .672 |.768 | .711 | .742 || .002 |.001|.002| .003 |.002 .004 |.002
NTNNNN| .196 | .107 | .110 | .215 | .185 | .186 | .178 || .005 |.003 |.005] .007 |.004 |.009|.006
NTNNNT| 204 |.174 | 238 | .167 | .204 | 230 | .208 || .002 |.000].001| .003 |.002].003 .002
NTNNTN| 325 | 301 | .188 | .313 | .263 | .321 | .294 || .002 |.001|.002| .003 |.002.003|.002
NTNNTT|| 500 | .560 | .468 | .471 | .575 | .459 | 491 | .001 |.000|.000]| .001 |.000.001 .001
NTNTNNI 366 | .353 | .369 | .510 | .487 | .401 | .421 | .001 |.000].001} .002 |.001.002.001
NTNTNT| 313 |.124 |.103 | .101 | .087 |.168 | .131] .003 |.002|.005| .011 |.013 .006.007
NTNTTN| .800 | .604 | .794 | .662 |.719 | .536 | .692 | .002 |.000|.001| .002 |.001.001|.001
NTNTTT| .524 | .706 | .610 | .581 |.774 | 699 | .655 || .001 |.001 .001] .002 |.001 .002}.001
NTTNNN|| 305 | .164 | .570 | .376 | 461 | .166 | .302 | .001 |.000|.001] .002 |.001 .002 .001
NTTNNT| 524 | .607 | .720 | .793 | .469 | 418 | .564 || .001 |.000|.001 .003 |.001:.001 .001
NTTNTN| .721 | .646 | .647 | .795 | .806 | .550 | .707 || .002 |.000|.001| .002 |.001 |.001.001
NTTNTT]| 396 | .439 | .016 | 309 | 483 | 360 | .221 || .003 |.001.017| .005 |.002.004 |.005
NTTTNN| 431 | .350 | .677 | .379 | .414 | .307 | .396 | .001 |.000|.000{ .001 |.001.001].001
NTTTNT] .855 | .872 | .807 | .781 | .828 | .653 | .802 | .005 |.001|.001| .003 |.002}.002].002
NTTTTN]| 803 | 882 | .818 | .649 | .846 | 629 | .753 || .002 |.001|.001 .003 |.003|.003|.002
NTTTTT| 914 | .880 | .939 | .834 | 926 | .872 | .898 || .014 |.009].007| .009 |.012.014 | .012
TNNNNNI 192 | .118 | .089 | .177 | .144 | .167 | .158 || .005 |.004|.005| .008 |.004.011|.006
TNNNNT] 400 | 290 | 263 | .410 | .357 | .213 | 318 | .001 |.000.001 .003 |.001|.002.001
TNNNTN| 250 |.132 |.335 | .232 |.218 | .290 | .253 || .002 {.000.001 | .003 |.002.002.002
TNNNTT! 574 | .651 | .609 | .493 | .464 | 755 | .607 || .001 |.000{.001| .001 |.001 .001.001
TNNTNN| 484 | 629 | .775 | .484 | .604 | .552 | .566 || .002 |.001].002| .003 |.002.003 .002
TNNTNT| .462 | 415 | 274 | 353 | 271 |.377 | .370 .001 |.000|.000} .002 |.001.001].001
TNNTTN| 481 | 298 | .454 | 263 | .468 | 420 | .398 | .001 {.000!.000| .003 |.0011.001 .00l
TNNTTT] 602 | .871 | .726 | .742 | .787 | .826 | .754 || .001 |.001|.001| .002 |.001.002}.001
TNTNNN| 322 |.197 | .239 | .387 | 427 | 430 | .375 | .001 2000 1.001 1 .001 |.001.002].001

-39-

Table #A-3 (cont.): Branch History Sequences: Probability of Taken, Probability of Occurrence
(For BTBs with 6 pred. bits that enter branches on first taken execution of branch)

Bra. History Probability of Next Execution Taken Probability of Occurrence

N;I:;tai(a::n comp | text | fp | sparc | vax | 68k | ave |comp | text fp |sparc|vax | 68k | ave
TNTNNT! 401 | 365 | 392 | .336 | .265 {.327 | .342 || .001 |.0001.001 | .001 |.001 .001,.001
TNTNTN, 805 | 911 | .891 | .918 | .933 | .855 | .897 | .003 |.002/.005| .011 |.013 .006|.007
TNTNTT| 434 | .787 | .459 | .528 | .528 | .684 | .551 | .002 |.001,.001| .003 |.002 .002.002
TNTTNN .630 | 581 | 656 | .673 | .457 | 512 .568 | .001 {.000].000 .001 |.001 .001.001
TNTTNT| 694 | .882 | 974 | 771 | .625 | .831 | .839 || .004 |.001|.017| .005 {.002.005 .005
TNTTTN| 914 | .816 | 872 | .861 | .866 | .826 | .875 | .005 |.001].001] .003 '.002 .002.002
TNTTTT| 877 | 921 | 871 | .818 | .822 | .869 | .861 | .015 |.009.007 | .009 |.013 .0131.012
TTNNNN| 259 | .134 |.132 | 359 | .306 | .140 | .219 | .002 |.001 .001| .003 |.001 .004 .002
TTNNNT, 576 | 798 | .823 | .647 | 678 {.750 | .687 |l .001 |.000(.001| .001 |.001 .001|.001
TTNNTN| 558 | .638 | 432 | .561 |.507 | .398 | .493 | .001 |.000.000 | .001 |.001 .001.001
TTNNTT| .617 | .759 | .655 | .359 | .679 | .728 | .620 | .001 |.001|.001| .003 |.002 .0021.002
TTNTNN| 567 | 283 | .600 | .628 | .300 | .307 | .434 | .001 |.000.000| .001 |.001.001 .001
TTNTNT 590 | .619 | .329 | 612 | .416 | .568 | .535 | .002 |.001.001] .003 |.002 .002|.002
TTNTTN| 833 | .907 | .980 | .880 | .842 | .896 | 918 || .003 [.001|.017| .005 |.002 .004 |.005
TTNTTTI .780 | .899 | .878 | .754 | .887 | .879 | .842 | .018 |.009(.007 .011 {.013].013].013
TTTNNN| 343 | 208 | 262 | .202 | 350 | .265 | .282 | .002 {.001.001 | .003 |.001 .0031.002
TTTNNT 687 | .851|.775 | .710 | .881 | .794 | .786 | .001 |.001|.001] .002 |.001 .0021.001
TTTNTN| 674 | 618 | .783 | .771 |.786 | .746 | .734 || .002 |.001.001| .002 |.001 .0021.001
TTTNTT! 929 | 954 | 935 | .866 |.932|.878 | 916 .018 |.009].007 .011 |.013 .0131.013
TTTTNN| 421 | 509 | .159 | 366 | .567 | .382 | .414 | .002 |.001|.001| .003 1.002 .0041.002
TTTTNT)| 941 | 949 | 950 | .885 | .940 | .873 | .921| .015 |.009.007| .009 .013 .013.012
TTTTTN| 908 | .907 | .836 | .805 | .865 | .817 | .861 || .014 |.009].007| .009 |.012.014 .012
TTTTTT) .982 | 989 | .091 | 986 | .984 | 981 | .985 | .718 |.731|.7741 .579 |.698 .650.694
TNNNN!| 213 | .111 |.114 | 260 | 210 |.173 | .188 | .008 .005,.007 .014 |.0071.017 .010
TNNNT| 340 | 363 | .545 | 324 | .352|.375|.365 .003 |.001.002| .005 {.003.005 003
TNNTN| 397 | 381 | .220 | 373 | .318 | .341 | .344 | .003 |.001[.002| .006 |.003|.005 .004
TNNTT, 572 | .726 | .596 | .386 | .658 | .633 | .582{ .003 |.001|.001}| .006 .003 .004|.003
TNTNN| 446 | 319 | 428 | 542 | .442 | 370 | 425 .003 |.001.001| .004 |.002.004 .003
TNTNT| 425 | 238 | .137 | 200 |.129 | 275 | 217 || .007 |.003].007 | .020 |.018.011 011
TNTTN| 821 | .857 | 974 | .820 |.791 | .805 | .871 | .006 |.001.020| .009 |.004|.007 007
TNTTT .762 | .889 | .860 | .728 | .877 | .855 | .824 || .023 {.012].009| .018 |.018.019 017
TTNNN| 324 | .192 | 356 | 277 | .382 | .225 | .288 | .003 |.001.002 .006 .003.006 004
TTNNT! 609 | 773 | 745 | 762 | .723 | 633 | .683 | .003 |.001.001| .006 |.003|.004 .003
TTNTN| 698 | 628 | .705 | .782 | .797 | .683 | .722 || .004 |.001|.001; .005 |.003|.004 003
TTNTT! 845 | 904 | 297 | .698 |.878 | .748 | .729 || .025 |.013].027| .022 |.019.022.021
TTTNN| 423 | 468 | 280 | 370 | .530 | 364 | .408 || .003 |.002.002| .006 |.003|.006.004
TTTNT| 920 | 941 | 932 | 857 | .925 | .843 | 900 | .023 |.012,.009 .018 |.018.019.017
TTTTN| .893 | 904 | .833 | .771 | .861 | .786 | .844 || .019 [.012,.009| .017 .0181.021 017
TTTTT .980 | .988 | .991 | 984 | .983 | .979 | .983 | .864 1.933|.899| .837 |.875].845|.874
TNNN| 274 | .139 | .179 | 274 | 332].230 | 252 .011 |.0061.008 | .020 |.010.022 .013
TNNT|| .438 | 494 | 357 | 504 |.422 | 422 | 436 .006 |.002 003 .012 J.OO6 .009{.006

- 40 -

Table #A-3 (cont.): Branch History Sequences: Probability of Taken, Probability of Occurrence
(For BTBs with six pred. that enter branches on first taken execution of branch)
Bra. History]| Probability of Next Execution Taken Probability of Occurrence
T ,

N;I:;tatka;en comp| text | fp | sparc| vax | 68k | ave \comp: text fp |sparc| vax | 68k | ave
TNTN| 692 | 768 | 8191 .838 {.8901.729 | .802 | .009| .003, .008| .024| .021| .015 .013
TNTT .790 | .893 | 305 | .664 |.827|.720.702) .029! .014; .028] .027 .022| .026 .025
TTNN| 435 | .455 | 338 | 478 |.514|.375]|.431 .006 .002] .003| .012| .005 .010] .006
TTNT| .868 | .930 [.952| .818 |.868 .830|.872| .029| .014| .029| .027| .022 026 .025
TTTN| 873 | 885 | .813 | .755 | .845.765|.825| .026| .014) .011] .024| .021 025 .021
TTTT! 978 | 987 | 989 | 980 |.979|.976 | 981 .884| .945| 909 .854| .894 .867 .891

TNNI 349 | 256 | 294 | 370 |.3751.285/.3261 .017! .008| .012| .032| .016| .030 .019
TNT| .753 | 796 | 779 | 536 |.513|.627|.647] .038] .017| .036] .051| .042| .041 .038
TTN| 824 | 855 | 896 | .686 798 |.722(.791| .035| .016] .032| .039| .027| .036 031
TTT! 971 | 985! .988 | 973 |.977 |.9721.977| .910| 959 .920| .878| .915 .8921 912
TN 689 | .686 .755]| .617 |.726 | .575|.666| .055| .025| .048| .082| .058| .072 057
TT! 963 | 983 |.966| 957 |.971 | .961 | .967| .945| .975| .952| .918| .942 928 .943
T/ 928 1.9751.951 | 918 |.942|.928 [.943 |/1.0001.000 1.000/1.000{1.00011.000/1.000

Table #A-3: This table contains the probability of occurrence and probability of next branch execution tak-
en statistics, as a function of up to the past six branch executions. These statistics can be used by BTBs
that enter branches on taken branch executions only. Statistics are gathered beginning with the first taken
execution of each static branch. Partial history strings (less than six) all start with a taken execution, as is

expected.

.41 -

Table #A-4: Branch Prediction Rates (including target change effects)

Prediction | BTB | ovp TEXT = FP. | SPARC | VAX | 68k Average
Bits Design s
0 BTB#L | 6721 | 6613 | 6178 | 5680 | 68.85 | 6496 | 6429
0 BTB#2 | 8127 | 8086 | 81.04 | 73.04 | 8154 | 7668 | 79.07
] BTB#L | 8630 | 9483 | 8503 | 8751 | 8971 | 8555 | 88.15
1 BTB#2 | 8630 | 9483 | 8503 | 87.51 | 89.71 | 8555 | 88.15
2 BTB#L | 8781 | 9545 | 8672 | 8869 | 9156 | 8627 | 89.42
2 BTB#2 | 8781 | 9545 | 8672 | 88.69 | 9156 | 8627 | 89.42
3 BTB#1 | 88.16 | 9565 | 87.05 | 89.13 | 9193 | 8695 | 89.81
3 BTB#2 | 88.16 | 9565 | 8705 | 89.13 | 9193 | 8695 | 8981
4 BTB#1 | 88.66 | 9602 | 8785 | 9061 | 9336 | 8821 | 90.79
4 BTB#2 | 88.66 | 9602 | 87.84 | 90.61 | 9335 | 8820 | 9078
5 BTB#L | 88.76 | 9608 | 87.90 | 91.00 | 93.49 | 88.41 | 90.94
5 BTB#2 | 8875 | 9608 | 87.89 | 91.00 | 93.48 | 8839 | 90.93
6 BTB#1 | 8890 | 9612 | 8922 | 9131 | 9354 | 88.68 | 9130
6 BTB#2 | 8890 | 9612 | 8921 | 9131 | 9352 | 88.66 | 9129
7 BTB#1 | 8898 | 9615 | 89.22 | 0163 | 93.65 | 8881 | 9141
7 BTB#2 | 8896 | 9614 | 8923 | 91.65 | 93.63 | 8879 | 91.40
8 BTB#L | 8919 | 9618 | 8928 | 9178 | 9370 | 89.00 | 9152
8 BTB#2 | 8919 | 9618 | 8927 | 9177 | 9367 | 8897 | 9151
9 BTB#1 | 8929 | 9619 | 89.33 | 0185 | 93.83 | 89.3 | 9160
9 BTB#2 | 8928 | 9619 | 8932 | 918 | 93.81 | 89.11 | 9159
10 BTB#1 | 8937 | 9622 | 89.41 | 91.94 | 9398 | 8932 | OL71
10 BTB#2 | 8935 | 9622 | 89.40 | 91.93 | 9397 | 8930 | 9169
11 BTB#L | 89.44 | 9624 | 8946 | 9203 | 9413 | 8958 | 9181
11 BTB#2 | 8943 | 9623 | 89.46 | 92.04 | 9411 | 8954 | 91.80
12 BTB#1 | 8951 | 9625 | 89.51 | 92.13 | 9434 | 8996 | 91.95
12 BTB#2 | 8950 | 9624 | 89.50 | 9213 | 9432 | 89.93 | 91.94
13 BTB#1 | 8959 | 9626 | 89.55 | 9229 | 9457 | 9031 | 92.10
13 BTB#2 | 8958 | 9626 | 89.54 | 92290 | 9455 | 9027 | 92.08
14 BIB#L | 8972 | 9630 | 89.64 | 9244 | 9480 | 9072 | 9227
14 BTB#2 | 8972 | 9630 | 89.63 | 9243 | 9478 | 90.67 | 9225
15 BTB#1 | 8990 | 9633 | 89.73 | 9260 | 9506 | 91.03 | 92.44
15 BTB#2 | 89.89 | 9632 | 8972 | 9259 | 95.04 | 9099 | 9243
16 BTB#1 | 9014 | 9640 | 89.90 | 92.93 | 9525 | 9148 | 92.68
16 BTB#2 | 9013 | 9639 | 89.89 | 9291 | 9522 | 9145 | 92.67

Table #A-4: Prediction rates for infinite size BTBs, BTB#1 and BTB#2, as a function of prediction bits
and workload.

.42 .

Table #A-5: Effect of Context Switching on Prediction Rates
Thousands of Instructions per Context Switch
| Prediction 1K 3.16K | 10K | 316K | 100K | 316K | 1000K
Bits
0 71.40 | 7728 | 80.63 | 82.09 | 81.93 | 81.12 | 79.96
1 7178 | 78.43 | 83.01 | 85.76 | 87.12 | 87.75 | 88.04
2 7244 | 7936 | 84.11 | 86.94 | 88.35 | 89.00 | 89.30
3 7250 | 79.53 | 84.36 | 87.27 | 88.71 | 89.39 | 89.69
4 7265 | 79.92 | 8499 | 83.06 | 89.60 | 90.33 | 90.65
5 72.68 | 79.98 | 85.08 | 88.19 | 89.74 | 90.47 | 90.80
6 72.81 | 8020 | 8536 | 88.51 | 90.09 | 90.83 | 9L.15
7 72.82 | 8023 | 8543 | 88.60 | 90.19 | 90.93 | 91.27
8 72.83 | 80.25 | 85.48 | 88.68 | 90.29 | 91.04 | 91.37
9 72.84 | 8028 | 85.54 | 88.75 | 90.37 | 91.12 | 91.46
10 72.87 | 80.32 | 85.58 | 88.82 | 9045 | 91.22 | 91.56
11 72.88 | 80.34 | 85.63 | 88.89 | 90.55 | 91.32 | 91.66
12 72.89 | 80.36 | 85.70 | 89.00 | 90.67 | 91.45 | 91.80
13 72.91 | 80.39 | 85.75 | 89.10 | 90.80 | 91.59 | 91.94
14 7292 | 8040 | 85.81 | 89.22 | 90.94 | 91.75 | 92.11
15 72.93 | 80.42 | 85.86 | 89.31 | 91.07 | 91.91 | 92.28
16 7294 | 8044 | 8592 | 89.44 | 91.26 | 92.13 | 9251

Table #A-5: Table presents the effect of context switching on the prediction rate of infinite size BTB#2.
The values are averages of the workload average prediction rates.

.43 -

Table #A-6: Prediction Rates for Designs BTB#3, BTB#4, and BTB#5

Number of BTB Entries
Prediction | BTB | Set | ¢ 32 64 128 | 256 | 512 | 1024 | 2048
Bits Design | Size
0 BTB#3 T | 4626 | 50.10 | 53.90 | 56.91 | 59.46 | 61.41 | 62.66 | 63.51
0 BTB#4 | 1 | 6100 | 67.70 | 71.98 | 75.10 | 76.77 | 78.00 | 78.90 | 78.97
0 BTB#5 1 | 61.00 | 6770 | 71.98 | 75.10 | 76.77 | 78.00 | 78.90 | 78.97
0 BTB#3 | 2 | 46.76 | 50.64 | 54.95 | 58.13 | 60.80 | 62.66 | 63.62 A 64.06
0 BTB#4 | 2 | 6242 | 68.76 | 73.70 | 76.38 | 78.14 | 78.86 | 79.02 | 79.03
0 BTB#5S | 2 | 6242 | 68.76 | 73.70 | 76.38 | 78.14 | 78.86 | 79.02 | 79.03
0 BTB#3 | 4 | 47.60 | 50.63 | 55.58 | 58.97 | 61.46 | 63.18 | 63.92 | 64.18
0 BTB#4 | 4 | 6272 | 69.47 | 74.68 | 77.10 | 7832 | 7896 | 79.00 | 79.05
0 BTB#5 = 4 | 6272 | 69.47 | 74.68 | 77.10 | 78.32 | 78.96 | 79.00 | 79.05
0 BTB#3 | 8 | 4696 | 51.16 | 55.95 | 59.27 | 61.72 | 63.44 | 64.00 | 64.23
0 BTB#4 | 8 | 6256 | 69.80 | 7533 | 77.19 | 78.54 | 78.88 | 79.04 | 79.06
0 BTB#5 | 8 | 6256 | 69.80 | 75.33 | 77.19 | 78.54 | 78.88 | 79.04 | 79.06
0 BTB#3 | 16 | 46.79 | 5122 | 56.04 | 59.41 | 61.81 | 63.55 | 64.04 | 64.25
0 BTB#4 | 16 | 6343 | 69.64 | 75.42 | 77.18 | 78.60 | 78.91 | 79.06 | 79.09
0 BTB#5 | 16 | 63.43 | 69.64 | 7542 | 77.18 | 78.60 | 78.91 | 79.06 | 79.09
1 BTB#3 | 1 | 58.11 | 6584 | 72.01 | 77.14 | 81.02 | 84.07 | 85.92 | 87.04
1 BTB#4 | 1 | 61.99 | 69.11 | 74.69 | 79.02 | 82.36 | 84.85 | 86.34 | 87.27
1 BTB#5 | 1 | 6199 | 69.11 | 74.69 | 79.02 | 82.36 | 84.85 | 86.34 | 87.27
1 BTB#3 | 2 | 58.54 | 6734 | 7428 | 79.39 | 83.22 | 85.85 | 87.21 | 87.85
1 BTB#4 | 2 | 6332 | 70.51 | 76.75 | 81.05 | 84.41 | 86.46 | 87.51 | 87.96
1 BTB#S | 2 | 63.47 | 7069 | 76.90 | 81.05 | 84.41 | 86.46 | 87.51 | 87.96
1 BTB# | 4 | 5939 | 67.68 | 75.31 | 80.67 | 84.20 | 86.58 | 87.63 | 83.01
1 BTB#4 | 4 | 63.61 | 7127 | 77.92 | 82.11 | 85.28 | 87.10 | 87.83 | 88.08
1 BTB#5S | 4 | 6392 | 7150 | 78.14 | 82.28 | 85.35 | 87.13 | 87.84 | 88.08
1 BTB#3 | 8 | 59.72 | 6832 | 75.71 | 81.13 | 84.57 | 86.94 | 87.75 | 83.08
1 BTB#4 | 8 | 63.79 | 7173 | 78.63 | 82.56 | 85.74 | 87.36 | 87.92 | 88.12
1 BTB#5 & 8 | 6439 | 72.07 | 78.93 | 82.72 | 8591 | 8741 | 87.92 | 88.12
1 BTB#3 | 16 | 6149 | 68.60 | 75.97 | 81.37 | 8471 | 87.12 | 87.81 | 88.10
1 BTB#4 | 16 | 64.72 | 71.53 | 78.89 | 82.63 | 85.98 | 87.46 | 87.96 | 88.14
1 BTB#5 | 16 | 64.90 | 71.92 | 79.23 | 82.80 | 86.17 | 87.49 | 87.97 | 88.14
2 BTB#3 | 1 | 58.41 | 6643 | 7275 | 77.99 | 82.08 | 8522 | 87.13 | 88.29
2 BTB#4 | 1 | 6234 | 69.79 | 75.52 | 79.95 | 83.43 | 86.01 | 87.55 | 88.50
2 BTB#5 1 | 6234 | 6979 | 7552 | 79.95 | 83.43 | 86.01 | 87.55 | 88.50
2 BTB#3 | 2 | 58.87 | 67.90 | 75.12 | 80.37 | 84.33 | 87.05 | 88.45 | 89.10
2 BTB#4 | 2 | 6372 | 7122 | 77.70 | 82.11 | 85.56 | 87.68 | 88.76 | 89.21
2 BTB#5 | 2 | 6372 | 7123 | 77.72 | 82.15 | 8559 | 87.68 | 88.76 | 89.21
2 BTB#3 | 4 | 59.74 | 6820 | 76.22 | 81.72 | 85.36 | 87.81 | 88.88 | 89.27
2 BTB#4 | 4 | 6401 | 72.03 | 78.88 | 83.21 | 86.47 | 8833 | 89.09 | 89.33
2 BTB#5 | 4 | 6417 | 7211 | 79.02 | 83.26 | 86.52 | 88.35 | 89.09 | 89.34
2 BTB#3 | 8 | 59.98 | 68.92 | 76.60 | 82.18 | 8573 | 88.17 | 89.00 | 89.34
2 BTB#4 | 8 | 64.18 | 7247 | 79.58 | 83.67 | 86.94 | 88.61 | 89.18 | 89.38
2 BTB#5S | 8 | 6446 | 7259 | 79.77 | 83.77 | 87.05 | 88.64 | 89.18 | 89.38
2 BTB#3 | 16 | 6171 | 69.22 | 76.88 | 82.43 | 85.87 | 88.35 | 89.07 | 89.37
2 BTB#4 | 16 | 65.19 | 7229 | 79.86 | 83.73 | 87.18 | 88.71 | 89.22 | 89.40
2 BTB#5 | 16 | 65.40 | 72.72 | 80.25 | 83.88 | 87.33 | 88.74 | 80.23 | 89.40

Table #A-6 (cont.): Prediction Rates for Designs BTB#3, BTB#4, and BTB#5

Number of BTB Entries

Prediction | BTB | Set | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
Bits Design | Size
3 BTB#5 | 1 | 5845 | 66.51 | 72.89 | 78.19 | 82.35 | 85.54 | 87.47 | 88.66
3 BTB#4 | 1 | 6237 | 69.88 | 75.68 | 80.18 | 83.72 | 86.34 | 87.92 | 88.89
3 BTB#5 | 1 | 6237 | 69.88 | 75.68 | 80.18 | 83.72 | 8634 | 87.92 | 88.89
3 BTB#3 | 2 | 58.92 | 67.98 | 7528 | 80.60 | 84.64 | 87.41 | 88.83 | 89.49
3 BTB#4 | 2 | 63.76 | 71.32 | 77.89 | 8236 | 85.89 | 88.05 | 89.14 | 89.61
3 BTB#5 | 2 | 63.78 | 7132 | 77.90 | 8239 | 85.91 | 88.06 | 89.14 | 89.61
3 BTB#3 | 4 | 59.78 | 68.28 | 76.38 | 81.97 | 85.68 | 88.18 | 89.27 | 89.67
3 BTB#4 | 4 | 64.05 | 72.13 | 79.06 | 83.49 | 86.81 | 88.71 | 89.48 | 89.73
3 BTB#S | 4 | 64.12 | 7222 | 7920 | 83.57 | 86.88 | 88.74 | 89.48 | 89.73
3 BTB# | 8 | 60.02 | 69.02 | 76.75 | 82.43 | 86.07 | 88.55 | 89.39 | 89.74
3 BTB#4 | 8 | 6423 | 72.58 | 79.76 | 83.94 | 87.29 | 89.00 | 89.57 | 89.78
3 BTB#5 | 8 | 6441 | 7271 | 79.96 | 84.08 | 87.41 | 89.02 | 89.58 | 89.78
3 BTB#3 | 16 | 6178 | 69.31 | 77.04 | 82.69 | 86.21 | 88.74 | 89.46 | 89.76
3 BTB#4 | 16 | 6526 | 72.38 | 80.06 | 84.00 | 87.53 | 89.10 A 89.61 A 89.80
3 BTB#5 | 16 | 65.47 | 72.84 | 80.46 | 8426 | 87.68 | 89.12 | 89.63 | 89.80
4 BTB#3 | 1 | 58.65 | 66.79 | 73.31 | 78.78 | 83.08 | 86.37 | 88.36 | 89.59
4 BTB#4 | 1 | 62.56 | 70.18 | 76.13 | 80.78 | 84.45 | 87.17 | 88.80 | 89.83
4 BTB#5 | 1 | 62.56 | 70.18 | 76.13 | 80.78 | 84.45 | 87.17 | 88.80 | 89.83
4 BTB# | 2 | 59.12 | 68.30 | 75.73 | 81.24 | 85.44 | 88.30 | 89.77 | 90.45
4 BTB#4 | 2 | 63.97 | 71.66 | 7837 | 83.03 | 86.70 | 88.94 | 90.08 | 90.56
4 BTB#5 | 2 | 63.98 | 71.67 | 7838 | 83.04 | 86.70 | 88.95 | 90.08 | 90.56
4 BTB#> | 4 | 59.97 | 68.59 | 76.89 | 82.65 | 86.51 | 89.11 | 90.23 | 90.64
4 BTB#4 | 4 | 6425 | 7250 | 79.57 | 84.19 | 87.65 | 89.64 | 90.43 | 90.70
4 BTB#5 | 4 | 6450 | 72.56 | 79.68 | 84.25 | 87.71 | 89.65 | 90.44 | 90.70
4 BTB#3 | 8 | 6022 | 69.34 | 77.25 | 83.13 | 86.91 | 89.48 | 90.36 | 90.70
4 BTB#4 | 8 | 6445 | 72.93 | 8029 | 84.65 | 88.15 | 89.93 | 90.53 | 90.74
4 BTB#5 | 8 | 64.82 | 73.05 | 8045 | 84.75 | 8824 | 89.96 | 90.53 | 90.74
4 BTB# | 16 | 6201 | 69.64 | 77.56 | 83.41 | 87.07 | 89.68 | 90.42 | 90.73
4 BTB#4 | 16 | 65.52 | 72.75 | 80.60 | 8471 | 88.41 | 90.03 | 90.57 | 90.76
4 BTB#5 | 16 | 65.69 | 73.17 | 80.96 | 84.92 | 88.52 | 90.06 | 90.58 | 90.76
5 BTB#3 | 1 | 58.68 | 66.83 | 73.37 | 78.87 | 83.19 | 86.50 | 88.50 | 89.74
5 BTB#4 | 1 | 6259 | 70.22 | 76.19 | 80.86 | 84.56 | 87.30 | 88.94 | 89.98
5 BTB#5 | 1 | 62.59 | 70.22 | 76.19 | 80.86 | 84.56 | 87.30 | 88.94 | 89.98
5 BTB# | 2 | 59.14 | 68.34 | 75.78 | 81.33 | 85.56 | 88.44 | 89.92 | 90.60
5 BTB#4 | 2 | 64.00 | 71.70 | 78.42 | 83.12 | 86.81 | 89.08 | 90.23 | 90.71
5 BTB#5 | 2 | 64.01 | 7171 | 78.43 | 83.13 | 86.82 | 89.08 | 90.23 | 90.71
5 BTB# | 4 | 59.99 | 68.63 | 7695 | 82.74 | 86.64 | 89.24 | 90.37 | 90.79
5 BTB#4 = 4 | 6428 | 72.55 | 79.63 | 84.28 | 87.78 | 89.78 | 90.58 | 90.85
5 BTB#5 | 4 | 6453 | 72.61 | 79.74 | 8434 | 87.83 | 89.80 | 90.58 | 90.85
5 BTB#3 | 8 | 6024 | 69.38 | 7732 | 8323 | 87.04 | 89.63 | 90.51 | 90.86
5 BTB#4 | 8 | 64.47 | 72.98 | 8036 | 84.75 | 88.28 | 90.08 | 90.67 | 90.89
5 BTB#5 | 8 | 64.85 | 73.10 | 8052 | 84.84 | 88.36 | 90.10 | 90.68 | 90.89
5 BTB#3 | 16 | 62.03 | 69.68 | 77.62 | 83.50 | 87.20 | 89.82 | 90.58 | 90.89
5 BTB#4 | 16 | 65.55 | 72.80 | 80.67 | 84.82 | 88.54 | 90.18 | 90.72 | 9091
5 BTB#5 | 16 | 65.72 | 73.22 | 81.02 | 85.01 | 88.65 | 90.20 | 90.73 | 90.91

- 45 -

Table #A-6 (cont.): Prediction Rates for Designs BTB#3, BTB#4, and BTB#5

Number of BTB Entries

Prediction | BTB | Set | .o | 3 | ¢ | 128 | 256 | 512 | 1024 | 2048
i Bits Design | Size
6 BTB# | 1 | 5881 | 61.08 | 73.63 | 79.14 | 83.50 | 86.83 | 88.83 | 90.08
6 BTB#4 | 1 | 6273 | 70.47 | 76.46 | 81.15 | 84.88 | 87.64 | 89.28 | 90.33
6 BTB#s | 1 | 6273 | 7047 | 76.46 | 81.15 | 84.88 | 87.64 | 89.28 | 90.33
6 BT | 2 | 5927 | 68.57 | 7604 | 81.62 | 85.88 | 88.77 | 90.26 | 90.95
6 BTB#4 | 2 | 6413 | 71.94 | 7870 | 83.41 | 87.14 | 89.42 | 90.58 | 91.06
6 BTBH5 | 2 | 6414 | 71.95 | 7872 | 83.42 | 87.14 | 89.43 | 90.58 | 91.06
6 BT | 4 | 60.11 | 68.77 | 7722 | 83.04 | 8696 | 89.58 | 90.73 | 9l.14
6 BTB#1 | 4 | 6441 | 7279 | 79.92 | 8458 | 88.11 | 90.13 | 90.93 | 9120
6 BTB#s | 4 | 6466 | 72.86 | 80.02 | 8464 | 88.16 | 90.14 | 90.94 | 91.20
6 BTB® | 8 | 6027 | 69.62 | 77.60 | 83.53 | 87.36 | 89.98 | 90.86 | 91.22
6 BTB#2 | 8 | 6461 | 73.23 | 80.65 | 85.05 | 88.62 | 90.43 | 91.03 | 9125
6 BTB#5 | 8 | 6497 | 73.35 | 80.81 | 85.14 | 88.70 | 90.45 | 91.04 | 91.25
6 BTBM | 16 | 6206 | 69.91 | 77.00 | 83.81 | 87.52 | 90.17 | 90.93 | 91.24
6 BTB#4 | 16 | 6577 | 73.04 | 80.96 | 85.12 | 88.88 | 90.53 | 91.08 91.27
6 BTB#5 | 16 | 6593 | 73.46 | 8131 | 8531 | 88.99 | 90.55 | 91.09 | 91.27
7 BTBE | 1 | 5883 | 6711 | 73.66 | 79.18 | 83.57 | 86.92 | 88.93 | 90.19
7 BTB#4 | 1 | 6275 | 70.51 | 7650 | 8121 | 84.96 | 87.73 | 89.38 | 90.43
7 BTB#s | 1 | 6275 | 70.51 | 7650 | 8121 | 84.96 | 87.73 | 89.38 | 90.43
7 BTB# | 2 | 5927 | 68.59 | 76.08 | 81.67 | 85.96 | 88.87 | 90.37 | 91.06
7 BTB#4 | 2 | 6416 | 71.98 | 7874 | 83.48 | 8723 | 89.53 | 90.69 | 91.18
7 BTB#5 | 2 | 64.16 | 71.98 | 78.76 | 83.49 | 87.24 | 89.54 | 90.69 | 91.18
7 BTB#H | 4 | 60.13 | 68.80 | 7727 | 83.10 | 87.04 | 89.69 | 90.84 | 9126
7 BTB#4 | 4 | 6442 | 72.84 | 7997 | 8465 | 8821 | 90.24 | 91.05 | 9131
7 BTB# | 4 | 6468 | 72.89 | 80.07 | 8470 | 8826 | 90.25 | 91.05 | 9132
7 BTB® | 8 | 6028 | 69.64 | 77.64 | 83.59 | 87.45 | 90.09 | 90.97 | 91.33
7 BTB#4 | 8 | 6462 | 73.27 | 8070 | 85.12 | 88.72 | 90.54 | 91.14 | 91.36
7 BTB#5 | 8 | 6499 | 73.40 | 80.86 | 8521 | 88.79 | 90.56 | 91.15 | 9136
7 STB#3 | 16 | 62.07 | 69.95 | 7795 | 83.86 | 87.62 | 90.28 | 91.04 | 91.36
7 BTB#4 | 16 | 6579 | 73.08 | 81.01 | 85.19 | 88.99 | 90.64 | 91.19 | 9138
7 BTB#S | 16 | 6595 | 73.50 | 8136 | 85.38 | 89.08 | 90.67 | 91.20 | 9139
3 STB#s | 1| 5883 | 6113 | 73.68 | 7923 | 83.64 | 87.00 | 89.02 | 90.30
3 BTB#4 | 1 | 6275 | 70.52 | 7653 | 8126 | 85.02 | 87.81 | 89.47 = 90.54
3 BTBSS | 1 | 6275 | 70.52 | 7653 | 8126 | 85.02 | 87.81 | 89.47 | 90.54
3 BTB# | 2 | 5928 | 68.61 | 76.10 | 81.72 | 86.04 | 88.97 | 90.47 | 91.17
3 BTB#4 | 2 | 6416 | 72.00 | 78.77 | 83.53 | 87.31 | 89.63 | 90.80 | 91.28
3 BTB#s | 2 | 6417 | 72.00 | 78.78 | 83.54 | 87.32 | 89.63 | 90.80 | 91.28
3 BT | 4 | 60.13 | 68.81 | 7731 | 83.15 | 87.13 | 89.79 | 90.95 | 9137
8 BTB#4 | 4 | 6443 | 72.85 | 80.01 | 8470 | 8830 | 9034 | 91.16 | 9142
8 BTB#S | 4 | 6469 | 72.91 | 80.11 | 8477 | 8834 | 90.35 | 91.16 | 91.43
3 BTB# | 8 | 6028 | 69.65 | 77.67 | 83.64 | 87.54 | €0.19 | 91.09 | 91.44
8 BTB#2 | 8 | 6463 | 73.29 | 8074 | 85.18 | 88.82 | 90.65 | 91.25 | 91.47
3 BTB#5 | 8 | 6499 | 73.41 | 80.89 | 8527 | 88.89 | 90.67 | 91.26 | 91.47
3 BTB# | 16 | 62.08 | 69.04 | 77.99 | 83.92 | 87.71 | 9039 | 91.15 | 91.47
g BTB#4 | 16 | 6579 | 73.10 | 81.05 | 8526 | 89.08 | 90.75 | 91.30 | 91.49
8 BTB#5 | 16 | 6597 | 73.51 | 8139 | 85.44 | 89.16 | 90.77 | 91.31 | 91.49

- 46 -

Table #A-6 (cont.): Prediction Rates for Designs BTB#3, BTB#4, and BTB#5

Number of BTB Entries

Prediction | BTB | Set .o | 5 | ¢ | 128 | 256 | 512 | 1024 | 2048
Bits Design | Size
9 BTB# | 1 | 5885 | 6714 | 73.12 | 79.28 | 83.60 | 87.07 | 89.10 | 90.38
9 BTB#4 | 1 | 6277 | 7054 | 7656 | 81.31 | 85.08 | 87.88 | 89.55 | 90.62
9 BTB# | 1 | 6277 | 70.54 | 7656 | 8131 | 85.08 | 87.88 | 89.55 | 90.62
9 BIB# | 2 | 5930 | 68.63 | 76.13 | 81.76 | 86.10 | 89.05 | 90.56 | 91.26
9 BTB#4 | 2 | 6418 | 72.03 | 7881 | 83.58 | 87.38 | 89.71 | 90.88 | 9137
9 BTB#5 | 2 | 6419 | 72.03 | 7882 | 8359 | 87.38 | 89.71 | 90.88 | 9137
9 BIB#H | 4 | 60.15 | 68.83 | 7733 | 8320 | 87.19 | 89.87 | 91.03 | 91.45
9 BTB#4 | 4 | 6445 @ 72.87 | 80.05 | 8477 | 8837 | 90.42 | 9124 | 91.51
9 BTB#S | 4 | 6471 | 72.93 | 8014 | 8482 | 8841 | 90.43 | 91.24 | 9151
9 BIB#H | 8 | 6030 | 69.67 | 7770 | 83.70 | 87.61 | 90.27 | 91.17 | 9152
9 BTB#4 | 8 | 6465 | 7331 | 8078 | 8525 | 88.89 | 90.73 | 91.34 | 9155
9 BTB#5 | 8 | 65.01 | 73.43 | 80.92 | 8533 | 88.96 | 90.74 | 91.34 & 9156
9 BIB# | 16 | 62.09 | 69.96 | 78.01 | 83.98 | 87.78 | 90.47 | 91.24 | 9155
9 BTB#4 | 16 | 6581 | 73.12 | 81.10 | 8533 | 89.16 | 90.83 | 91.39 | 91.58
9 BTB#5 | 16 | 65.99 | 73.54 | 81.42 | 85.49 | 89.24 | 90.85 | 91.39 | 91.58
10 BIB# | 1 | 58.86 | 61.16 | 73.75 | 7933 | 83.75 | 87.14 | 89.19 | 90.48
10 BTB#4 | 1 | 6279 | 70.57 | 76.60 | 8136 | 85.15 | 87.96 | 89.64 = 90.71
10 BTB# | 1 | 6279 | 7057 | 76.60 | 8136 | 85.15 | 87.96 | 89.64 | 90.71
10 BTB#H | 2 | 5931 | 68.65 | 76.17 | 81.81 | 86.17 | 89.13 | 90.65 | 9136
10 BTB# | 2 | 6420 | 72.06 | 78.86 | 83.64 | 87.45 | 89.80 | 90.98 | 91.46
10 BTB#5 | 2 | 6420 | 72.07 | 7887 | 83.65 | 87.46 | 89.80 | 90.98 | 91.46
10 BIB# | 4 | 60.16 | 68.85 | 7736 | 8325 | 87.26 | 89.96 | 91.13 | 9155
10 BTB#4 | 4 | 6447 | 72.91 | 80.09 | 8482 | 8845 | 90.51 | 91.34 | 9161
10 BTB#S | 4 | 6473 | 72.97 | 80.18 | 84.87 | 8848 | 90.52 | 9134 | 9161
10 BIB#H | 8 | 6032 | 69.70 | 77.74 | 83.74 | 87.68 | 90.36 | 9127 | 91.63
10 BTB#4 | 8 | 6467 | 73.35 | 80.82 | 8531 | 88.97 | 90.82 | 91.44 | 9166
10 BTB#5 | 8 | 65.03 | 73.47 | 8097 | 8538 | 89.04 | 90.84 | 91.44 | 91.66
10 BIB#M | 16 | 62.11 | 69.99 | 78.05 | 84.02 | 87.85 | 90.57 | 91.33 | 91.65
10 BTB#4 | 16 | 65.84 | 73.16 | 81.14 | 8539 | 8924 | 90.93 | 91.48 | 91.68
10 BTB#S | 16 | 65.98 | 73.57 | 8147 | 8554 | 8931 | 90.95 | 91.49 | 91.68
1 BIB® | 1 | 58.88 | 67.19 | 73.79 | 79.38 | 83.81 | 87.21 | 89.28 | 90.57
1 BTB# | 1 | 6281 | 70.60 | 76.64 | 81.42 | 8523 | 88.05 | 89.73 | 90.81
11 BTB#5 | 1 | 6281 | 70.60 | 76.64 | 81.42 | 8523 | 88.05 | 89.73 | 90.81
11 BETB#H | 2 | 5932 | 68.68 | 7621 | 81.86 | 86.23 | 89.22 | 90.75 | 91.46
1 BTB#4 | 2 | 6422 | 72.00 | 7890 | 83.70 | 87.54 | 89.89 | 91.08 | 91.57
1 BTB#5 | 2 | 6422 | 72.10 | 7891 | 83.70 | 87.54 | 89.89 | 91.08 | 9157
11 BTB# | 4 | 60.18 | 68.88 | 7741 | 8331 | 8733 | 90.05 | 91.23 | 91.66
11 BTB#4 | 4 | 6450 | 72.94 | 80.14 | 84.89 | 88.53 | 90.61 | 91.44 | 91.72
11 BTB#5 | 4 | 6475 | 73.00 | 8023 | 84.93 | 88.56 | 90.62 | 91.45 | 91.72
T BTB#3 | 8 | 6034 | 69.73 | 7778 | 8381 | 87.77 | 90.46 | 91.37 | 9173
11 BTB#4 | 8 | 6470 | 73.38 | 80.87 | 8538 | 89.06 | 90.93 | 91.54 | 91.77
11 BTB#5 | 8 | 65.06 | 73.50 | 81.00 | 85.44 | 89.12 | 90.94 | 91.54 | 91.77
T BTB# | 16 | 62.13 | 70.02 | 78.10 | 8408 | 87.93 | 90.66 | 91.44 | 91.76
1 BTB# | 16 | 65.86 | 73.19 | 81.19 | 85.45 | 8933 | 91.03 | 91.59 | 91.78
1 BTB#S | 16 | 66.01 | 73.60 | 8150 | 85.61 | 89.40 | 91.05 | 91.60 | 91.79

.47 -

Table #A-6 (cont.): Prediction Rates for Designs BTB#3, BTB#4, and BTB#5

Number of BTB Entries

Prediction | BTB | Set | 32 64 | 128 | 256 | s512 | 1024 | 2048
Bits Design | Size
12 BTB#® | 1 | 5800 | 67.22 | 73.83 | 7945 | 83.90 | 87.33 | 89.39 | 90.70
12 BTB#4 | 1 | 62.83 | 70.63 | 76.69 | 81.49 | 8533 | 88.16 | 89.86 | 90.94
12 BTB#5 | 1 | 62.83 | 70.63 | 76.69 | 81.49 | 8533 | 88.16 | 89.86 | 90.94
12 BTB#H | 2 | 5934 | 68.71 | 7625 | 81.93 | 86.34 | 89.34 | 90.88 | 91.60
12 BTB#4 | 2 | 6424 | 72.11 | 7895 | 83.77 | 87.64 | 90.02 | 91.21 | 91.71
12 BTB#S | 2 | 6424 | 72.12 | 7896 | 83.78 | 87.64 | 90.02 | 91.21 | 91.70
12 BTB#3 | 4 | 6021 | 68.90 | 7745 | 8339 | 87.44 | 90.18 | 91.36 | 91.80
12 BTB#4 | 4 | 6452 | 72.97 | 80.19 | 84.97 | 88.65 | 90.74 | 91.58 | 91.85
12 BTB#S | 4 | 64.77 | 73.03 | 8028 | 85.01 | 88.67 | 90.75 | 91.58 | 91.85
12 BTB# | 8 | 6037 | 69.75 | 77.82 | 83.89 | 87.87 | 90.59 | 91.51 | 91.87
12 BTB#4 | 8 | 6472 | 73.41 | 8092 | 8547 | 89.18 | 91.06 | 91.67 | 91.90
12 BTB#S | & | 65.08 | 73.52 | 81.04 | 8553 | 89.23 | 91.07 | 91.68 | 91.90.
12 BTB# | 16 | 62.15 | 70.04 | 78.14 | 84.17 | 88.05 | 90.79 | 91.57 | 91.90
12 BTB#4 | 16 | 65.89 | 73.22 | 8125 | 85.55 | 89.46 | 9116 | 91.72 | 91.92
12 BTB#S | 16 | 66.03 | 73.62 | 8154 | 85.69 | 89.52 | 91.18 | 91.73 | 91.92
13 BTB# | 1 | 58.93 | 6726 | 73.88 | 79.51 | 83.98 | 87.43 | 89.52 | 90.83
13 BTB#4 | 1 | 62.86 | 70.66 | 76.73 | 81.56 | 85.42 | 88.26 | 89.98 | 91.07
13 BTB#5 | 1 | 62.86 | 70.66 | 76.73 | 81.56 | 85.42 | 88.26 | 89.98 | 91.07
13 BTB#3 | 2 | 5937 | 68.74 | 7629 | 81.99 | 86.44 | 89.46 | 91.01 | 91.74
13 BTB#4 | 2 | 64.26 | 72.15 | 79.00 | 83.85 | 87.75 | 90.14 | 91.35 | 91.85
13 BTB#S | 2 | 6426 | 72.15 | 79.00 | 83.85 | 87.75 | 90.14 | 91.35 | 91.85
13 BTB#® | 4 | 6023 | 68.93 | 7749 | 83.46 | 87.55 | 90.31 | 91.51 | 91.94
13 BTB#4 | 4 | 64.54 | 73.00 | 80.24 | 85.06 | 88.76 | 90.87 | 91.72 | 92.00
13 BTB#5 | 4 | 64.80 | 73.06 | 8032 | 85.08 | 88.79 | 90.88 | 91.73 | 92.00
13 BTB#3 | 8 | 6039 | 69.78 | 77.87 | 83.97 | 87.99 | 90.73 | 91.65 | 92.01
13 BTB# | 8 | 6475 | 73.44 | 8097 | 85.56 | 89.31 | 91.19 | 91.82 = 92.04
13 BTB#5 | 8 | 65.11 | 73.56 | 81.09 | 85.60 | 89.35 | 91.21 | 91.82 | 92.05
13 BTB# | 16 | 62.18 | 70.07 | 78.18 | 84.25 | 88.17 | 90.93 | 91.72 92.04
13 BTB# | 16 | 65.92 | 73.26 | 81.30 | 85.64 | 89.59 | 91.30 | 91.87 | 92.06
13 BTB#S | 16 | 66.05 | 73.65 | 8158 | 85.76 | 89.63 | 91.31 | 91.88 | 92.07
14 BTB#3 | 1 | 58.05 | 6729 | 73.91 | 79.58 | 84.08 | 87.55 | 89.66 | 90.99
14 BTB#4 | 1 | 62.88 | 70.69 | 76.78 | 81.64 | 85.53 | 88.40 | 90.13 | 91.23
14 BTB#5 | 1 | 62.88 | 70.69 | 7678 | 81.64 | 85.53 | 88.40 | 90.13 | 91.23
14 BTB#® | 2 | 5939 | 68.77 | 7633 | 82.06 | 86.55 | 89.61 | 91.18 | 91.91
14 BTB#4 | 2 | 6428 | 72.18 | 79.04 | 83.93 | 87.89 | 90.30 | 91.51 | 92.02
14 BTB# | 2 | 6429 | 72.18 | 79.04 | 83.93 | 87.88 | 90.29 | 91.51 | 92.02
14 BTB#3 | 4 | 60.26 | 68.96 | 77.53 | 83.53 | 87.67 | 90.47 | 91.67 | 92.11
14 BTB#4 | 4 | 6456 | 73.03 | 8030 | 85.15 | 88.90 | 91.03 | 91.89 | 92.17
14 BTB#5 | 4 | 64.82 | 73.09 | 8038 | 85.17 | 88.92 | 91.04 | 91.89 | 92.17
14 BTB# | 8 | 60.41 | 69.81 | 7791 | 84.06 | 88.12 | 90.89 | 91.82 | 92.19
14 BTB#4 | 8 | 6477 | 73.47 | 81.04 | 8566 | 89.46 | 91.36 | 91.99 | 92.22
14 BTB#5 | 8 | 65.12 | 73.59 | 81.14 | 85.68 | 89.49 | 91.37 | 91.99 | 92.22
14 BTB#3 | 16 | 6220 | 70.10 | 78.23 | 84.35 | 88.30 | 91.09 | 91.89 | 92.22
14 BTB#4 | 16 | 65.94 | 73.29 | 8137 | 8574 | 89.73 | 91.47 | 92.04 | 92.24
14 BTB#5 | 16 | 66.07 | 73.68 | 81.62 | 85.84 | 89.76 | 91.48 | 92.05 | 92.24

.48 -

Table #A-6 (cont.): Prediction Rates for Designs BTB#3, BTB#4, and BTB#5
Number of BTB Entries
Prediction | BTB | Set | 32 64 1 128 | 256 | 512 | 1024 | 2048
Bits Design : Size

15 BTB#3 1 5896 | 67.31 | 73.94 | 79.64 | 84.17 | 87.67 | 89.80 | 91.15
15 BTB#4 1 62.89 | 70.72 | 76.82 | 81.71 | 85.63 | 88.53 | 90.28 | 91.39
15 BTB#5 1 62.89 | 70.72 | 76.82 | 81.71 | 85.63 | 88.53 | 90.28 | 91.39
15 BTB#3 2 59.40 | 68.80 | 76.37 | 82.13 | 86.66 | 89.74 | 91.33 | 92.08
15 BTB#4 2 6430 | 72.21 | 79.10 | 84.01 | 88.00 | 90.44 | 91.67 | 92.18
15 BTB#3 2 6430 | 72.20 | 79.09 | 84.00 | 87.99 | 90.44 | 91.67 | 92.18
15 BTB#3 4 60.27 | 68.99 | 77.56 | 83.61 | 87.79 | 90.61 | 91.84 | 92.28
15 BTB#4 4 64.58 | 73.06 | 80.35 | 8524 | 89.02 | 91.19 | 92.06 | 92.34
15 BTB#5 4 64.84 | 73.11 | 80.41 | 8523 | 89.03 | 91.19 | 92.06 | 92.34
15 BTB#3 8 60.43 | 69.83 | 77.94 | 84.14 | 88.25 | 91.04 | 91.99 | 92.36
15 BTB#4 8 64.79 | 73.50 | 81.09 | 85.76 | 89.59 | 91.52 | 92.16 | 92.39
15 BTB#5 8 65.13 | 73.61 | 81.17 | 8577 | 89.60 | 91.52 | 92.16 | 92.39
15 BTB#3 16 6222 | 70.12 | 7826 | 84.43 | 88.43 | 91.25 | 92.05 | 92.39
15 BTB#4 16 65.96 | 73.32 | 81.42 | 85.84 | 89.87 | 91.63 | 92.21 | 9241
15 BTB#5 16 66.08 | 73.69 | 81.66 | 85.90 | 89.87 | 91.63 | 92.21 | 9241
16 | BTB#3 1 5897 | 67.34 | 73.98 | 79.71 | 84.30 | 87.83 | 89.99 | 91.36
16 BTB#4 1 62.90 | 70.75 | 76.88 | 81.80 | 85.77 | 88.70 | 90.48 | 91.61
16 BTB#5 1 62.90 | 70.75 | 76.88 | 81.80 | 85.77 | 88.70 | 90.48 | 91.61
16 BTB#3 2 59.42 | 68.83 | 76.42 | 8221 | 86.79 | 89.94 | 91.56 | 92.31
16 BTB#4 2 6432 | 7224 | 79.16 | 84.11 | 88.15 | 90.64 | 91.90 | 92.42
16 BTB#5 2 6432 | 7223 | 79.15 | 84.10 | 88.14 | 90.63 | 91.89 | 92.42
16 BTB#3 4 60.29 | 69.02 | 77.61 | 83.71 | 87.94 | 90.82 | 92.07 | 92.52
16 BTB#4 4 64.60 | 73.09 | 80.41 | 8535 | 89.19 | 91.40 | 92.29 | 92.58
16 BTB#5 4 6485 | 73.14 | 80.46 | 8533 | 89.19 | 91.39 | 92.29 92.57
16 BTB#3 8 60.45 | 69.86 | 77.99 | 84.24 | 88.42 | 91.25 | 92.22 | 92.60
16 BTB#4 8 64.81 | 73.53 | 81.15 | 85.88 | 89.78 | 91.73 | 92.39 | 92.63
16 BTB#5 8 65.15 | 73.63 | 8122 | 85.86 | 89.76 | 91.73 | 92.39 | 92.63
16 BTB#3 16 62.24 | 70.15 | 78.30 | 84.54 | 88.60 | 91.46 | 92.29 | 92.63
16 BTB#4 16 65.98 | 73.35 | 81.49 | 85.96 | 90.06 | 91.85 | 92.45 | 92.65
16 BTB#5 16 66.10 | 73.71 | 81.70 | 85.99 | 90.02 | 91.84 | 92.44 | 92.65 |

Table #A-6: Table presents the prediction rates of BTB#3, BTB#4, and BTB#5 as a function of number of
prediction bits, set size, and BTB size. BTB#3 uses LRU and enters branches on taken and not taken exe-
cutions. BTB#4 uses LRU and enters branches on taken executions only. BTB#5 uses MPP and enters
branches on taken executions only.

-49.-

Table #A-7: Miss Rates for Instruction Cache and BTB#3

Size Set Size | Design | COMP | TEXT | FP | SPARC | VAX ' 68k
64 1 BTB#3 | 4323 | 2097 | 11.18 | 31.88 | 1723 | 25.69 |

BTB#3 7.58 2.11 1.54 4.26 0.88 2.66

Cache 5.21 1.64 1.03 3.60 0.65 1.72
BTB#3 451 1.46 1.28 2.19 0.59 1.84
Cache 4.49 1.36 0.90 1.10 0.62 1.16
BTB#3 4.16 1.24 1.13 1.02 0.53 1.36
Cache 423 1.20 0.85 0.65 0.57 0.82
BTB#3 7.55 3.06 139 425 1.37 3.53
Cache 6.08 1.49 0.95 3.49 0.62 1.94
BTB#3 3.84 1.18 0.92 1.34 0.62 1.26
Cache 2.73 0.87 0.75 0.65 0.49 0.80
BTB#3 241 0.76 0.76 0.53 0.46 0.81
Cache 2.21 0.69 0.70 0.33 0.45 0.54
BTB#3 2.08 0.61 0.67 0.30 041 0.72
Cache 1.90 0.60 0.70 0.26 0.42 0.53

512
512*BB
512
512*BB
512
512*BB
1024
1024*BB
1024
1024*BB
1024
1024*BB
1024
1024*BB

64*BB 1 Cache 40.61 19.84 20.35 31.48 1047 | 19.66
64 2 BTB#3 36.79 17.14 8.21 30.08 9.80 | 23.42
64*BB 2 Cache 35.35 17.60 12.97 29.06 620 | 1598
64 4 BTB#3 33.81 15.07 6.77 28.71 6.00 | 18.16
64*BB 4 Cache 33.82 16.59 5.08 28.97 5.06 | 12.85
64 8 BTB#3 34.77 15.21 6.43 27.86 544 | 17.52
64*BB 8 Cache 33.46 16.37 5.18 29.09 459 | 11.82
128 1 BTB#3 31.11 14.13 8.11 22.36 7.81 17.72
128*BB 1 Cache 28.02 14.21 991 21.21 5.21 13.42
128 2 BTB#3 23.05 10.08 472 20.04 332 | 1251
128*BB 2 Cache 20.72 9.15 8.48 20.19 2.96 | 10.68
128 4 BTB#3 17.68 8.32 3.75 18.61 1.88 9.64
128*BB 4 Cache 14.98 7.31 2.92 18.17 1.68 7.04
128 8 BTB#3 14.18 6.94 3.56 17.77 1.43 8.74
128*BB 8 Cache 13.71 6.30 2.85 17.83 1.49 6.67
256 1 BTB#3 20.85 8.45 5.61 14.05 417 | 10.67
256*BB 1 Cache 15.70 5.79 2.32 14.20 2.99 6.01
256 2 BTB#3 13.85 4.66 2.82 10.60 1.58 5.51
256*BB 2 Cache 9.98 492 1.72 8.94 1.60 4.29
256 4 BTB#3 8.94 3.23 2.29 7.87 0.93 4.39
256*BB 4 Cache 7.66 3.01 1.62 7.42 0.82 3.32
256 8 BTB#3 7.06 3.00 2.05 6.67 0.79 3.58
256*BB 8 Cache 7.11 2.92 1.49 6.28 0.79 2.89
512 1 BTB#3 12.55 5.36 2.62 7.96 2.03 5.54
512*BB 1 Cache 10.59 2.35 1.35 6.18 1.23 3.02

2

2

4

4

8

8

1

1

2

2

4

4

8

8

Table #A-7: Table compares the miss rate of BTB#3 and a comparable instruction cache, as a function of
size, set size, and workload. Each workload miss rate is the geometric mean of the workload trace’s miss
rates.

-50-

o Table #A-8: Miss Rates for BTB#3 and BTB#4

Size SetSize | Design | COMP | TEXT | FP | SPARC | VAX 68k | ave

64 BIB# | 4323 | 2097 | 11.18 | 31.88 | 1723 | 25.69 | 22.87
64 BTB#4 | 27.15 | 1123 | 648 | 19.35 750 | 16.19 | 12.91
64 BTB# | 3679 | 17.14 | 821 | 30.08 980 | 23.42 | 18.15
64 BTB#4 || 21.25 958 | 481 | 18.09 542 | 13.57 | 10.45
64 BTB#3 || 3381 | 1507 | 677 | 2871 600 | 18.16 | 14.87
64 BTB#4 || 18.12 793 | 402 | 17.67 313 | 10.56 | 8.34
64 BTB#3 | 3477 | 1521 | 643 | 27.86 544 | 1752 | 14.43
64 BTB#4 | 17.01 600 | 341 | 17.82 260 ' 979 | 735
128 BTB#3 | 3111 | 1413 | 811 | 2236 781 | 17.72 | 14.92
128 BTB#4 || 20.16 748 | 439 | 13.78 447 | 1079 | 872
128 BTB#® || 23.05 | 1008 | 472 | 20.04 332 | 1251 | 9.85
128 BTB#4 || 13.68 491 | 294 | 11.89 199 | 685 | 564
128 BTB#3 || 17.68 832 | 3.75 | 18.61 188 | 9.64 | 7.55

128 BTB#4 || 9.89 394 | 237 | 1049 131 | 590 | 4.42
128 BTB#3 || 14.18 694 | 356 | 17.77 143 | 874 | 6.53

128 BTB#4 | 7.89 319 | 215 9.66 093 | 543 | 372
256 BTB#3 | 20.85 845 | 5.61 | 14.05 417 | 1067 | 9.23

256 BTB#4 || 1327 368 | 272 8.71 243 | 647 | 5.13
256 BTB#3 || 13.85 466 | 2.82 | 10.60 158 | 551 | 5.06
256 BTB#4 | 834 243 | 183 6.10 097 | 336 | 3.00

256 BTB#4 542 1.87 1.48 3.79 0.65 2.61 2.14
256 BTB#3 7.06 3.00 2.05 6.67 0.79 3.58 3.06
256 BTB#4 439 1.63 1.35 2.89 0.55 2.07 1.78
512 BTB#3 12.55 5.36 2.62 7.96 2.03 5.54 5.01
512 BTB#4 8.12 2.36 1.64 4.80 1.21 4.06 3.01
512 BTB#3 7.58 2.11 1.54 4.26 0.88 2.66 2.50
512 BTB#4 4.63 1.24 1.01 2.33 0.60 1.65 1.54
512 BTB#3 4.51 1.46 1.28 2.19 0.59 1.84 1.65
512 BTB#4 2.76 0.85 0.84 0.90 0.43 1.09 0.97
512 BTB#3 4.16 1.24 1.13 1.02 053 1.36 1.28
512 BTB#4 2.49 0.74 0.72 0.41 0.38 0.84 0.75
1024 BTB#3 7.55 3.06 1.39 4.25 1.37 3.53 2.95
1024 BTB#4 4.84 1.41 1.01 2.48 0.84 2.67 1.84
1024 BTB#3 3.84 1.18 0.92 1.34 0.62 1.26 1.28
1024 BTB#4 2.48 0.67 0.66 0.71 0.41 0.87 0.81
1024 BTB#3 241 0.76 0.76 0.53 0.46 0.81 0.81
1024 BTB#4 1.50 0.47 0.55 0.26 0.35 0.58 0.52
1024 BTB#3 2.08 0.61 0.67 0.30 041 0.72 0.65
1024 BTB#4 1.27 041 0.50 0.20 0.33 0.50 0.45 |

1
1
2
2
4
4
8
8
1
1
2
2
4
4
8
8
1
1
2
2
256 4 BTB#3 8.94 3.23 2.29 7.87 0.93 439 3.58
4
8
g
1
1
2
2
4
4
8
8
1
1
2
2
4
4
8
8

Table #A-8: Table compares the miss rates of BTB#3 and BTB#4 as a function of size, set size, and work-
load. BTB#3 uses LRU and enters branches on taken and not taken executions. BTB#4 uses LRU and
enters branches on taken executions only. Workload miss rates are geometric means of the workload trace
miss rates. Ave is the geometric mean of the workload geometric means.

-51-

Table #A-9: Average Cycle Savings Per Branch, 4096 bit BTB, costx

. Design | levl | lev2 | lev3 | COMP | TEXT | FP SPARC | VAX 68k | ave

BTB#6 0 128 0 0.832 1.060 | 0.937 0.660 1.078 | 0.852 | 0.903
BTB#6 4 112 0 1.121 1.583 1.244 | 0.888 1.763 | 1.190 | 1.298
BTB#6 8 96 0 1.226 1.633 1.496 1.081 1.829 | 1.202 ! 1.411
BTB#6 | 12 80 0 1.259 1.749 1.673 1.106 1.880 | 1.426 | 1.515
BTB#6 | 16 64 0 1.255 1.810 1.850 1.134 1.892 | 1.426 | 1.561
BTB#6 | 20 | 48 0 1.300 1.837 1.864 1.163 1.958 | 1.414 | 1.589
BTB#6 | 24 | 32 0 1.310 1.849 1.845 1.151 2.012 | 1.439 | 1.601
BTB#6 | 28 16 0 1.313 1.828 1.848 1.116 2.035 | 1.452 | 1.599
BTB#6 | 32 0 0 1.337 | 2.000 1.834 1.202 2.068 | 1.547 | 1.665
BTB#7 0 | 64 0 0.846 1.073 | 0.956 0.610 1.111 | 0.815 | 0.902
BTB#7 4 56 0 1.132 1.579 1.281 0.882 1.789 | 1.192 | 1.309
BTB#7 | 8 48 0 1.245 1.657 1.500 1.082 1.856 | 1.204 | 1.424
BTB#7 12 40 0 1.265 | 1.758 1.693 1.114 1.923 | 1.386 | 1.523
BTB#7 16 32 0 1.238 1.846 1.862 1.149 1.934 | 1.415 | 1.574
BTB#7 | 20 24 0 1.299 1.876 1.872 1.175 1.975 | 1.434 | 1.605
BTB#7 | 24 16 0 1.320 ! 1.890 1.868 1.184 2.025 | 1.480 | 1.628
BTB#7 | 28 8 0 1.337 1.881 1.868 1.192 2.054 | 1498 | 1.638
BTB#7 32 0 0 1.337 2.000 1.834 1.202 2.068 | 1.547 | 1.665
BTB#8 0 32 | 1024 0.807 1.071 0.920 0.693 1.064 | 0.860 | 0.903
BTB#8 2 28 | 1024 1.057 1.511 1.160 0.789 1.543 | 1.107 | 1.195
BTB#8 4 24 1 1024 1.107 1.519 1.251 0.958 1.741 | 1.223 | 1.300
BTB#8 6 20 | 1024 1.187 1.565 1.367 1.093 1.773 | 1.231 | 1.369
BTB#8 8 16 | 1024 1.228 1.594 1477 1.150 1.794 | 1.228 | 1.412
BTB#8 10 12 | 1024 1.233 1.640 1.637 1.172 1.815 | 1.404 | 1.484
BTB#8 12 g8 | 1024 1.267 1.686 1.675 1.176 1.843 | 1.405 | 1.509
BTB#8 14 4 | 1024 1.276 1.767 1.682 1.176 1.840 | 1.440 | 1.530
BTB#8 16 0 | 1024 1.253 1.765 1.847 1.194 1.831 | .1.445 | 1.556
BTB#9 0 0 | 2048 0.529 0.589 | 0.544 0.409 0.561 | 0.502 | 0.522
BTB#9 4 0 | 1792 0.942 1.341 1.000 0.788 1.575 | 1.044 | 1.115
BTB#9 8 0 | 1536 1.142 1.453 1.308 1.090 1.689 | 1.080 | 1.294
BTB#9 12 0 | 1280 1.187 1.598 1.581 1.104 1.780 | 1.357 | 1.435
BTB#9 16 0 | 1024 1.253 1.765 1.847 1.194 1.831 | 1.445 | 1.556
BTB#9 | 20 0 768 1.356 -1.808 1.853 1.236 1.952 | 1.457 | 1.610
BTB#9 | 24 0 512 1.421 1.856 1.873 1.276 2.036 | 1.550 | 1.668
BTB#9 | 28 0 256 1.442 1.854 1.880 1.255 2.085 | 1.561 | 1.679
BTB#9 | 32 0 0 1.337 2.000 1.834 1.202 2.068 | 1.547 | 1.665

.52.

Table #A-10: Average Cycle Savings Per Branch, 4096 bit BTB, costy

Design | levl | lev2 | lev3 | COMP | TEXT | FP_ | SPARC | VAX | 68k | ave

BTB#6 = 0 128 0 1.394 1.689 1.511 ¢« 1.071 | 1.740 | 1.387 | 1.465
BTB#6 5 112 0 1.593 1.960 1.696 1.194 | 2.067 | 1.535 | 1.674
BTB#6 10 96 | 0 1.587 1.987 1.888 1.281 2.087 | 1.649 | 1.747
BTB#6 16 80 | 0 1.582 2.062 1.979 1.300 2.111 | 1.673 | 1.785
BTB#6 | 21 64 | 0 1.629 2.051 1.960 1317 2.160 | 1.643 | 1.793
BTB#6 | 26 48 0 1.608 2.056 1.978 1314 2.151 | 1.655 | 1.794
BTB#6 | 32 32 0 1.595 2.124 1.966 1.275 2.186 | 1.667 | 1.802
BTB#6 | 37 16 0 1.564 2.123 1.992 1.251 | 2.184 | 1.665 | 1.796
BTB#6 | 42 0 0 1.488 2,133 | 2.004 1265 | 2.161 | 1.611 | 1.977
BTB#7 0 | 64 0 1.345 1.643 1.521 0.980 1.752 | 1277 | 1420
BTB#7 5 56 0 1.532 1.913 1.723 1.136 2.091 | 1476 | 1.645
BTB#7 10 48 0 1.547 1.962 1.889 1.233 2.113 | 1.568 | 1.719
BTB#7 16 40 0 1.555 2.035 1.973 1.254 2.143 | 1597 | 1.759
BTB#7 | 21 32 0 1.562 2.051 1.969 1.274 2.195 | 1594 | 1.774
BTB#7 | 26 24 0 1.553 2.060 1.967 1.288 2202 | 1605 | 1.779
BTB#7 | 32 16 0 1.520 2.126 1.973 1.298 2.218 | 1.619 | 1.792
BTB#7 | 37 8 0 1.496 2.131 1.993 1.288 2.163 | 1618 | 1.781
BTB#7 | 42 0 1.488 2.133 | 2.004 1.265 2.161 | 1611 | 1.777

BTB#8 0 32 | 1024 1.433 1.712 1.521 1.195 1.732 | 1.441 | 1.506

BTB#8 2 28 | 1024 1.574 1.922 | 1.667 1.248 1.971 | 1577 | 1.660

BTB#8 5 24 | 1024 1.640 1.948 1.735 1.351 2.082 | 1.640 | 1.733

BTB#8 8 20 | 1024 1.672 1.952 | 1.834 1.434 2.095 | 1.640 | 1.771

BTB#8 10 16 | 1024 1.673 1.978 1.909 1.446 2.094 | 1.732 | 1.805

BTB#8 13 12 | 1024 1.689 2.047 1.926 1.451 2,116 | 1.748 | 1.829
BTB#8 16 g8 | 1024 1.693 2.050 | 2.001 1.465 2.119 | 1.756 | 1.847
BTB#8 18 4 | 1024 1.719 2.047 | 2.004 1.473 2.134 | 1.753 | 1.855
BTB#8 | 21 0 | 1024 1.728 2.059 | 2.009 1.482 2.171 | 1.754 | 1.867
BTB#9 0 0 | 2048 1.175 1.230 1.180 0.920 1.201 | 1.111 | 1.136
BTB#9 5 0 | 1792 1.521 1.760 1.513 1.193 1.903 | 1.472 | 1.560
BTB#9 10 0 | 1536 1.582 1.854 1.786 1.389 1.975 | 1.682 | 1.711
BTB#9 16 0 | 1280 1.592 1.983 1.968 1.388 2027 | 1.702 | 1.777
BTB#9 | 21 0 | 1024 1.728 2.059 | 2.009 1.482 2.171 | 1.754 | 1.867
BTB#9 | 26 0 768 1.751 2.080 | 2.006 1.479 2.199 | 1.792 | 1.884
BTB#9 | 32 0 512 1.787 2224 | 2.035 1.507 2.260 | 1.856 | 1.945
BTB#9 | 37 0 256 1.761 2226 | 2.061 1.464 2.281 | 1.828 | 1.937
BTB#9 | 42 0 0 1.488 | 2.133 | 2.004 1.265 2.161 | 1.611 | 1.977

-53-

Table #A-11: Average Cycle Savings Per Branch, 8192 bit BTB, costx

Design | levl | lev2 | levd || COMP . TEXT FP SPARC | VAX | 68k 1 ave

BTB#6 0 256 0 0.920 1.122 0.972 0.748 1.124 | 0.931 | 0.969
BTB#6 8 224 0 1.357 1.720 1.549 1.191 1.893 | 1.280 | 1.498
BTB#6 16 192 0 1.417 1.923 1.924 1.266 1.986 | 1.564 | 1.680
BTB#6 | 24 160 0 1.550 1.987 1.942 1.307 2.131 | 1.636 | 1.758
BTB#6 | 32 128 0 1.601 2.131 1.970 1.343 2203 | 1.711 | 1.826
BTB#6 | 40 96 0 1.627 | 2.179 | 2.051 1.328 2.247 | 1.724 | 1.859
BTB#6 | 48 64 0 1.689 2.207 2.059 1.360 2306 | 1.724 | 1.891
BTB#6 | 56 32 0 1.780 2209 | 2.073 1.318 2.325 | 1.755 | 1910
BTB#6 | 64 0 0 1.868 2230 | 2.110 1.362 2.363 | 1.767 | 1.950
BTB#7 0 128 0 0.946 1.113 0.976 0.715 1.143 | 0.912 | 0.968
BTB#7 8 112 0 1.385 1.707 1.546 1.181 1.907 | 1297 | 1.504
BTB#7 16 96 0 1.459 1.910 1.926 1.244 2.006 | 1.536 | 1.680
BTB#7 | 24 80 0 1.593 1.981 1.951 1.308 2.153 | 1.607 | 1.765
BTB#7 | 32 64 0 1.655 2.136 1.986 1.335 2.229 | 1.684 | 1.837
BTB#7 | 40 48 0 1.705 2.182 | 2.060 1.347 2270 | 1.705 | 1.878
BTB#7 | 48 32 0 1.760 2212 | 2.075 1.362 2.331 | 1.727 | 1911
BTB#7 | 56 16 0 1.840 2226 | 2.090 1.359 2351 | 1.774 | 1.940
BTB#7 | 64 0 0 1.868 2230 1 2.110 1.362 2.363 | 1.767 | 1.950
BTB#8 0 96 | 1024 0.966 1.144 | 0.995 0.764 1.147 | 0.939 | 0.992
BTB#8 6 84 | 1024 1.359 1.704 1.450 1.169 1.884 | 1334 | 1.483
BTB#8 12 72 | 1024 1.464 1.844 1.767 1.256 1.987 | 1.339 | 1.643
BTB#8 18 60 | 1024 1.562 1.955 1.950 1.311 2.052 | 1.595 | 1.737
BTB#8 | 24 48 | 1024 1.622 2.013 1.967 1.354 2.160 | 1.670 | 1.797
BTB#8 | 30 36 | 1024 1.665 2.088 1.992 1.379 2228 | 1.718 | 1.845
BTB#8 | 36 24 | 1024 1.701 2.190 | 2.045 1.399 2252 | 1.756 | 1.890
BTB#8 | 42 12 | 1024 1.726 2230 | 2.069 1.416 2270 | 1.768 | 1913
BTB#8 | 48 0 | 1024 1.740 2242 | 2.072 1.448 2317 | 1.774 | 1932
BTB#9 0 0 | 4096 0.542 0.597 0.546 0.415 0.563 | 0.512 | 0.529
BTB#9 8 0 | 3584 1.164 1.463 1.311 1.099 1.693 | 1.092 | 1.304
BTB#9 16 0 | 3072 1.276 1.775 1.851 1.206 1.836 | 1.459 | 1.567
BTB#9 | 24 0 | 2560 1.454 1.869 1.880 1.293 2.045 | 1.570 | 1.685
BTB#9 | 32 0 | 2048 1.580 2.118 1.937 1.364 2.165 | 1.701 | 1.811
BTB#9 | 40 0 | 1536 1.644 2.188 2.040 1.387 2222 | 1.735 | 1.869
BTB#9 | 48 0 | 1024 1.740 2242 | 2.072 1.448 2317 | 1.774 | 1.932
BTB#9 | 56 0 512 1.853 2260 | 2.092 1.439 2.351 | 1.832 | 1.971
BTB#9 | 64 0 0 1.868 2230 | 2.110 1.362 2.363 | 1.767 | 1.950

.54 -

Table #A-12: Average Cycle Savings Per Branch, 8192 bit BTB, costy

Design | levl | lev2 | levd || COMP | TEXT | FP | SPARC « VAX | 68k | ave
BTB#6 | 0 | 256 0]| 1491 r 1756 | 1.554 | 1200 | 1.793 | 1478 | 1.545
BTB#6 | 10 | 224 0| 1740 | 2087 | 1.957 | 1437 | 2.168 | 1.757 | 1.858
BTB#6 | 21 | 192 0| 1.805 | 2181 | 2.062 | 1481 | 2.257 | 1.807 | 1932
BTB#6 | 32 | 160 0 | 1.843 | 2257 | 2.069 | 1469 | 2.315 | 1.863 ' 1.969
BTB#6 | 42 | 128 0 1866 | 2279 | 2.108 | 1464 | 2.318 | 1.855 | 1.982
BTB#6 | 53 96 0 | 1920 | 2288 | 2.122 | 1440 | 2.364 | 1.870 | 2.001
BTB#6 | 64 | 64 0 1962 | 228 | 2139 1428 | 2.369 | 1862 @ 2.007
BTB#6 = 74 | 32 01 1966 | 2274 | 2.140 | 1377 | 2.373 | 1.842 | 1995
BTB#6 | 85 0 0l 1973 | 2264 | 2.143 | 1443 | 2400 | 1.826 | 2.008
BTB#7 | 0 | 128 01 1500 | 1704 | 1.551 | 1142 [1.798 | 1.421 | 1520
BTB#7 | 10 | 112 01 1742 | 2.036 | 1.946 | 1390 | 2.186 | 1.710 | 1.835
BTB#7 | 21 96 01 1818 | 2132 | 2052 | 1428 | 2279 | 1.746 | 1.909
BTB#7 | 32 | 80 0| 1864 | 2225 | 2071 | 1448 | 2.327 | 1.804 | 1956
BTB#7 42 | 64 0 1.889 | 2253 | 2113 | 1455 | 2.348 1811 1978
BTB#7 | 53 | 48 0 1938 | 2267 | 2120 | 1466 | 2.384 | 1.815 | 1.998
BTB#7 | 64 | 32 0 1969 | 2270 | 2.136 | 1461 | 2.393 | 1.824 | 2.009
BTB#7 | 74 16 0 1973 | 2266 | 2.140 | 1451 | 2.398 | 1.829 | 2.009
BTB#7 | 85 0 01 1973 | 2264 | 2.143 | 1443 | 2.400 | 1.826 | 2.008
BTB#8 | O | 96 | 1024 || 1592 | 1786 | 1.595 | 1268 | 1.816 | 1513 | 1.595
BTB#8 | 8 84 | 1024 | 1840 | 2092 | 1913 | 1512 | 2.196 | 1.730 | 1.881
BTB#8 | 16 | 72 | 1024 || 1.878 | 2.195 | 2.090 | 1545 | 2.241 | 1.855 | 1.967
BTB#S | 24 | 60 | 1024 | 1947 | 2231 | 2.103 | 1574 | 2314 | 1895 | 2.011
BTB#8 | 32 | 48 | 1024 || 1978 | 2313 | 2.117 | 1.582 | 2.353 | 1.939 | 2.047
BTB#8 | 40 | 36 | 1024 | 2.004 | 2338 | 2.152 | 1588 | 2.373 | 1952 | 2.068
BTB#S | 48 | 24 | 1024 | 2032 | 2353 | 2.161 | 1608 | 2.403 | 1.964 | 2.087
BTB#8 | 56 12 | 1024 | 2076 | 2362 | 2.168 | 1.611 | 2.415 | 1.989 | 2.103
BTB#8 | 64 0 | 1024 || 2095 | 2365 | 2.181 | 1614 | 2423 | 1.988 | 2.111
BTB#9 | 0 0 | 4096 || 1.193 | 1240 | 1.182 | 0928 | 1.203 | 1.124 | 1.145
BTB#9 | 10 0 | 3584 | 1626 | 1.883 | 1.798 | 1417 | 1.980 | 1.699 | 1.734
BTB#9 | 21 0 | 3072 | 1773 | 2076 | 2.016 | 1506 | 2.176 | 1.777 | 1.887
BTB#9 | 32 0 | 2560 || 1.864 | 2262 | 2.051 | 1.557 | 2.274 | 1.899 | 1.984
BTB#9 | 42 0 | 2048 | 1934 | 2323 | 2133 | 1585 | 2.322 | 1917 | 2.035
BTB#9 | 53 0 | 1536 || 2.035 | 2354 | 2.150 | 1614 | 2.396 | 1.969 | 2.086
BTB#9 | 64 0 | 1024 || 2095 | 2365 | 2.181 | 1.614 | 2.423 | 1.988 | 2.111
BTB#9 | 74 0 | 512 || 2088 | 2361 | 2.182 | 1595 | 2.431 | 1.994 | 2.109
BTB#9 | 85 0 0 || 1973 | 2264 | 2.143 | 1443 | 2400 | 1.826 | 2.008

-55.

Table #A-13: Average Cycle Savings Per Branch, 16384 bit BTB, costx

Design | levl | lev2 | lev3 || COMP | TEXT FP | SPARC | VAX . 68k | ave
BTB#6 0| 512 01 0988 | 1.159 | 1.004 | 0.813 1.148 | 0989 | 1.017
BTB#6 | 16 | 448 0 || 1.503 1.970 | 1951 i 1.332 2017 | 1.641 | 1.736
BTB#6 | 32 | 384 01 1718 2201 | 2.012 | 1.456 2248 | 1.806 | 1.907
BTB#6 | 48 | 320 0| 1.841 2286 | 2.107 1.510 2356 | 1.855 | 1.993
BTB#6 | 64 | 256 0| 1988 2313 | 2.153 1.516 2404 | 1917 | 2.048
BTB#6 | 80 | 192 0 2031 2321 | 2.165 1.517 2421 | 1.928 | 2.064
BTB#6 | 96 | 128 0| 2.041 2318 | 2.162 1.541 2420 | 1.923 | 2.067
BTB#6 | 112 64 0 || 2.043 2.309 | 2.155 1.529 2423 | 1.931 | 2.065
BTB#6 | 128 0 0 i 2.082 2312 | 2.151 1.578 2427 | 1.960 | 2.085
BTB#7 0 | 256 0| 1.002 1.194 | 1.014 0.856 1.165 | 1.031 | 1.044
BTB#7 16 | 224 0, 1528 1.988 | 1.961 1.388 2.030 | 1.673 | 1.761
BTB#7 | 32 | 192 0| 1737 2219 | 2.020 1.470 2257 | 1.829 | 1.922
BTB#7 | 48 | 160 0| 1858 2300 | 2.105 1.522 2361 | 1.876 | 2.004
BTB#7 | 64 | 128 0 2.002 2324 | 2.147 1.515 2404 | 1.937 | 2.055
BTB#7 | 80 96 0| 2.042 2303 | 2.156 1.523 2417 | 1.954 | 2.066
BTB#7 | 96 64 0| 2.060 2310 | 2.154 1.563 2419 | 1.950 | 2.076
BTB#7 | 112 32 0| 2074 2315 | 2.152 1.570 2.425 | 1.963 | 2.083
BTB#7 | 128 0 0| 2.082 2312 | 2.151 1.578 2427 | 1.960 | 2.085
BTB#8 0 | 224 | 1024 || 1.010 1.191 | 1.013 0.845 1.163 | 1.017 | 1.040
BTB#8 14 | 196 | 1024 || 1.528 1.987 | 1.791 1.350 2021 | 1.661 | 1723
BTB#8 | 28 | 168 | 1024 || 1.727 2.081 | 2.004 1.459 2221 | 1.784 | 1.879
BTB#8 | 42 | 140 | 1024 | 1.829 2278 | 2.105 1.502 2303 | 1.871 | 1.981
BTB#8 | 56 | 112 | 1024 || 1972 2305 | 2.130 1.538 2386 | 1.937 | 2.045
BTB#8 | 70 84 | 1024 || 2.038 2321 | 2.156 1.547 2413 | 1.960 | 2.073
BTB#8 | 84 56 | 1024 || 2.069 2329 | 2.168 1.572 2425 | 1.961 | 2.087
BTB#8 | 98 28 | 1024 || 2.085 2339 | 2.170 1.600 2428 | 1.958 | 2.096
BTB#8 | 112 0 | 1024 || 2.097 2345 | 2171 1.608 2432 | 1.971 | 2.104
BTB#9 0 0 | 8192 || 0.547 0.599 | 0.547 0.419 0.564 | 0514 | 0.531
BTB#9 | 16 0 | 7168 || 1.299 1.781 | 1.854 1.217 1.836 | 1.466 | 1.576
BTB#9 | 32 0 | 6144 || 1.598 2.127 | 1.940 1.374 2.167 | 1.710 | 1.819
BTB#9 | 48 0 | 5120 || 1777 2255 | 2.078 1.469 2321 | 1.791 | 1.949
BTB#9 | 64 0 | 4096 || 1.991 2301 | 2.146 1.490 2394 | 1.880 | 2.034
BTB#9 | 80 0 | 3072 || 2.053 2320 | 2.164 1.519 2419 | 1917 | 2.065
BTB#9 | 96 0 | 2048 || 2.084 2338 | 2171 1.588 2423 | 1.934 | 2.090
BTB#9 | 112 0 | 1024 || 2.097 2345 | 2.171 1.608 2432 | 1971 | 2.104
BTB#9 | 128 0 0 | 2.082 2312 | 2.151 1.578 2.427 | 1.960 | 2.085

-56-

| Table #A-14: Average Cycle Savings Per Branch, 16384 bit BTB, costy
Design | levl | lev2 lev3 COMP | TEXT FP SPARC | VAX 68k ave
BTB#6 0 512 1.586 1.800 1.591 1.293 1.813 | -1.541 | 1.604
BTB#6 21 448 1.908 2230 | 2.093 1.577 2297 | 1.905 | 2.002
BTB#6 42 | 384 2.002 2.363 2.157 1.632 2373 | 1976 | 2.084
BTB#6 64 | 320 2.099 2382 | 2.188 1.632 2431 | 2014 | 2.124
BTB#6 85 256 2.116 2379 | 2.188 1.639 2.437 | 2.025 | 2131
BTB#6 | 106 192 2.122 2.385 2.189 1.642 | 2.439 | 2.022 | 2.133
BTB#6 | 128 128 2.123 2370 2.177 1.627 2.437 | 2.027 | 2.127
BTB#6 | 149 64 2.111 2.357 2.171 1.616 2435 | 2.042 | 2.122
BTB#6 | 170 0 2.136 2344 | 2176 1.652 2.436 | 2.083 | 2.138
BTB#7 0 | 256 1.586 1.826 1.608 1.350 1.832 | 1.598 | 1.633
BTB#7 21 224 1.920 2.252 | 2.108 1.646 2315 | 1.956 | 2.033
BTB#7 42 192 2.005 2374 2.164 1.668 2387 | 2.017 | 2.102
BTB#7 64 160 2.097 2.396 2.187 1.666 2436 | 2.042 | 2.138
BTB#7 85 128 2.118 2.399 2.184 1.670 2.445 | 2.051 | 2.145
BTB#7 | 106 96 2.126 2.396 | 2.181 1.673 2445 | 2.061 | 2.147
BTB#7 | 128 64 2.135 2.395 2177 1.661 2.442 | 2075 | 2.147
BTB#7 | 149 32 2.138 2350 | 2.175 1.658 2.438 | 2.089 | 2.141
BTB#7 | 170 0 2,136 | 2344 2.176 1.652 2.436 | 2.083 | 2.138
BTB#8 0 | 224 | 1024 1.639 1.835 1.613 1.353 1.832 | 1591 | 1.644
BTB#8 18 196 | 1024 1.969 2.253 2.108 1.644 2277 | 1937 | 2.031
BTB#8 37 168 | 1024 2.048 2.376 2.158 1.685 2.385 | 2.027 | 2.113
BTB#8 56 140 | 1024 2.141 2412 2.186 1.707 2433 | 2.073 | 2.159
BTB#8 74 112 | 1024 2.181 2421 2.204 1.708 2.450 | 2.089 | 2.175

Clo|lo|lo|ocic|oIQ|o|le|cioio ||l

BTB#8 93 84 | 1024 2.198 2.408 | 2.207 1.730 2452 | 2.095 | 2.182
BTB#8 | 112 56 | 1024 2.209 2412 | 2.207 1.739 2.455 | 2.104 | 2.188
BTB#8 | 130 28 | 1024 2.218 2413 | 2.205 1.746 2458 | 2.115 | 2.192
BTB#8 | 149 0 | 1024 2.223 2.416 | 2.205 1.752 2.459 | 2129 | 2.197
BTB#9 0 0 | 8192 1.199 1.243 1.183 0.935 1.204 ¢ 1.127 | 1.148
BTB#9 21 0 | 7168 1.788 2.079 | 2.017 1.512 2.177 | 1.781 | 1.892
BTB#9 42 0 | 6144 1.956 2.331 2.136 1.595 2324 | 1.927 | 2.045
BTB#9 64 0 | 5120 2.139 2380 | 2.188 1.639 2.428 | 2.007 | 2.130
BTB#9 85 0 | 4096 2.188 2397 | 2.203 1.679 2.445 | 2.032 | 2.157
BTB#9 | 106 0 | 3072 2.211 2408 | 2.206 1.716 2.453 | 2.059 | 2.175
BTB#9 | 128 0 | 2048 2.228 2415 | 2.205 1.741 2458 | 2.093 | 2.190
BTB#9 | 149 0 | 1024 2.223 2416 | 2.205 1.752 2.459 | 2.129 | 2.197
BTB#9 | 170 0 0 2.136 2344 | 2.176 1.652 2.436 | 2.083 | 2.138

Table #A-9 - Table #A-14: These tables give the average cycle savings per branch for the multi-level
BTBs BTB#6 - BTB#9. Each table gives the average cycle savings for a constant total number of storage
bits in the BTB design (4096 to 16384) and a set of cycle costs (costx or costy). Each BTB design has nine
different configurations in each table, varying the number of bits allocated to the various levels in the BTB,
allowing optimal configurations (highest average cycle savings per branch) to be spotted.

11. Bibliography
[AMDS8S8]

[Amdahl76]

{Anderson67]

[DeRosa87]
[DEC77]

[Ditzel87]

[Doduc89]
[Elrod70]

[Folger83]
[Fujitsu87]

[Gaulding75]

[Grochowski86]
[érossSZ]
[Henry83]
[Hill87]

[Hili89]

[Hinton89]
[Hollingsworth89]

[Hwangg4]

[IBM73]

-57-

Advanced Micro Devices, "Am29000 Streamlined Instruction Processor
User Manual," Advanced Micro Devices, 1988

Amdahl, "Amdahl 470 V/6 Machine Reference Manual," Amdahl, Sun-
nyvale, Calif., 1976

D.W. Anderson, F.J. Sparacio, and R.M. Tomasulo, "The IBM System/360
Model 91: Machine Philosphy and Instruction-Handling," IBM Journal of
Research and Development, Jan. 1967, pp. 8-24

J.A. DeRosa and HM. Levy, "An Evaluation of Branch Architectures,”
Proc. 14th Ann. Symp. Computer Architecture, 1987, pp. 10-16

Digital Equipment Corporation, "VAX 11/780 Architecture Handbook,"
Digital Equipment Corportion, 1977

DR. Ditzel and HR. McLellan, "Branch Folding in the CRISP Micropro-
cessor: Reducing Branch Delay to Zero," Proc. 14th Ann. Symp. Computer
Architecture, 1987, pp. 2-9.

N. Doduc, "Fortran Execution Time Benchmark,” unpublished report, V.20,
March 1989

TH. Elrod, "The CDC 7600 and SCOPE 76," Datamation, Apr. 1970, pp.
80-85

D. Folger and E. Basart, "Computer Architecture - Designing for Speed,"
Spring COMPCON 1983, pp. 25-31

Fujitsu Microelectronics, Inc., "MB86900 RISC Processor Architecture
Manual," Fujitsu Microelectronics, Inc., 1987

S.N. Gaulding and D.P. Madison, Jr., "Optimization of Scalar Instructions
for the Advanced Scientific Computer,” Spring COMPCON 1975, pp. 189-
193

E.T. Grochowski, "An Instruction Tracer for the Motorola 68010," UC
Berkeley Masters Report, 1986

TR. Gross and J.L. Hennessy, "Optimizing Delayed Branches,” Proc. 15th
Ann. Workshop on Microprogramming, Oct. 1982, pp. 114-120

R.R. Henry, "VAX Address and Instruction Traces,” unpublished report,
1983

M.D. Hill, "Aspects of Cache Memory and Instruction Buffer Performance,”
UC Berkeley Technical Report UCB/CSD 87/381, November 1987

M. Hill and A.J. Smith, "Evaluating Associativity in CPU Caches," Univ. of
Wisconsin Computer Sciences Technical Report #823, Feb. 1989, to appear
in IEEE TOC, Dec. 1989

G. Hinton, "80960 - Next Generation," Spring COMPCON 1989, pp. 13-17
W. Hollingsworth, H. Sachs, and A.J. Smith, "The CLIPPER Processor:
Instruction Set Architecture and Implementation,” Communications of the
ACM, Feb. 1989, pp. 200-219

K. Hwang and F.A. Briggs, "Computer Architecture and Parallel Process-
ing," McGraw-Hill, 1984, pp. 714-729

IBM, "IBM Maintenance Library System/370 Model 168 Theory of
Operation/Diagrams Manual," Vol. 2, 1973, IBM, Poughkeepsie, N.Y.

[IBM78]

[Jordan83]

[Kane89]

[Kartashev90]

[Kogge81]

[Lee84]

[Lewis88]

[Lilja88]
[Manuel87]
[McFarling86]
[Motorola89]
[Murphey70]

[Patterson81]

[Peuto77]

[Ramamoorthy77]

[Rau77]

[Russell78]

[Sakamura87]
[Shar74]

[SmithJ81]

-58 -

IBM, "IBM Maintenance Library 3033 Processor Complex Theory of
Operation/Diagrams Manual,” Vols. 1-3, Jan. 1978, IBM, Poughkeepsie,
N.Y.
H.F. Jordan, "Performance Measurements on HEP - A Pipelined MIMD
Computer,” Proc. 10th Ann. Symp. Computer Architecture, 1983, pp. 207-
212

G. Kane, "MIPS RISC Architecture,” Prentice Hall, 1989

S.P. Kartashev and S.I Kartashev, "Supercomputing Systems,” Van Nos-
trand Reinhold, 1990, pp. 106-153

P.M. Kogge, "The Architecture of Pipelined Computers,” McGraw-Hill,
1981

JK.F. Lee and A.J. Smith, "Branch Prediction Strategies and Branch Target
Buffer Design," Computer, Jan. 1984, pp. 6-22.

DK. Lewis, J.P. Costello, and D.M. O’Connor, "Design Tradeoffs for a 40
MIPS (Peak) CMOS 32-bit Microprocessor,” Proc. IEEE Int’l Conf. Com-
puter Design: VLSI in Computers & Processors, Oct. 1988, pp. 110-113

DJ. Lilja, "Reducing the Branch Penalty in Pipelined Processors," Com-
puter, July 1988, pp. 47-55.

T. Manuel, "Getting Mainframe Power out of a CISC Supermicro,” Elec-
tronics, Sept. 3, 1987, pp. 66-69

S. McFarling and J. Hennessy, "Reducing the Cost of Branches,” Proc. 13th
Ann. Symp. Computer Architecture, 1986, pp. 396-403.

Motorola, "M68000 8-/16-/32-Bit Microprocessors User’s Manual,” Pren-
tice Hall, 1989

J.0. Murphey and R.M. Wade, "The IBM 360/195," Datamation, Apr. 1970,
pp- 72-79

D.A. Patterson and H. Sequin, "RISC-I: A Reduced Instruction Set VLSI
Computer,” Proc. Eighth Symp. Computer Architecture, May 1981, pp.
443458

B.L. Peuto and L.J. Shustek, "An Instruction Timing Model of CPU Perfor-
mance," Proc. 4th Ann. Symp. Computer Architecture, Mar. 1977, pp.165-
178

C.V. Ramamoorthy and H.F. Li, "Pipeline Architectures,” Computing Sur-
veys, March 1977, pp. 61-102.

B.R. Rau and G.E. Rossman, "The Effect of Instruction Fetch Strategies
upon the Performance of Pipelined Instruction Units,” 4th Ann. Symp. Com-
puter Architecture, 1977, pp. 80-87

R.M. Russell, "The CRAY-1 Computer System,” Comm. of the ACM, Jan.
1978, pp. 63-72

K. Sakamura, "TRON Project 1987," Springer-Verlag, 1987

L.E. Shar and E.S. Davidson, "A Multiminiprocessor System Implemented
Through Pipelining,” IEEE Computer, Feb. 1974, pp. 42-51

J.E. Smith, "A Study of Branch Prediction Strategies,” Proc. Eighth Symp.
Computer Architecture, May 1981, pp. 135-148

[SmithT83]

[SmithAJ8S5]
[SmithAJ87]
[SmithAJ89]
[Stiles89a]
[Stiles89b]
[Thornton64]

[UCB87]
[Walter89]

[Widdoes77)]

[Yoshida87]

.59 -

J.E. Smith and J.R. Goodman, "A Study of Instruction Cache Organizations
and Replacement Policies," Proc. 10th Symp. Computer Architecture, June
1983, pp. 132-137

A.J. Smith, "Cache Evaluation and the Impact of Workload Choice,” Proc.
12th Symp. Computer Architecture, June 1985, pp. 64-74.

A.J. Smith, "Line (Block) Size Choice for CPU Cache Memories,” IEEE
Transactions on Computing, Sept. 1987, pp. 1063-1075.

A.J. Smith, conversation on branch target buffers, Spring 1989

D.R. Stiles and H.L. McFarland, "Pipeline Control for a Single Cycle VLSI
Implementation of a Complex Instruction Set Computer," Spring COMP-
CON 1989, pp. 504-508

DR. Stiles (of NexGen Microsystems), persomal interview concerning
branch prediction cache of NexGen processor, Sept. 25, 1989

J.E. Thornton, "Parallel Operation in the Control Data 6600," AFIPS Fall
Joint Comp. Conf., 1964, pp. 33-40

U.C. Berkeley CAD/IC Group, "SPICE2G.6," March 1987

S. Walter (of Edgecore), personal interview concerning branch cache in
Edge 2000, Sept 20, 1989

L.C. Widdoes, Jr., "Jump Prediction,” Stanford University (unpublished
draft), February 1977

T. Yoshida and T. Enomoto, "The Mitsubishi VLSI CPU in the TRON Pro-
ject,” IEEE Micro, Apr. 1987, p. 24

