Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

OPTIMIZATION TECHNIQUES FOR
NEURAL NETWORKS

by

Alan H. Kramer and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M89/1

3 January 1989

OPTIMIZATION TECHNIQUES FOR
NEURAL NETWORKS

by

Alan H. Kramer and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M89/1

3 January 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Optimization Techniques
for Neural Networks

Alan H. Kramer Alberto Sangiovanni-Vincentelli

January 1988

Abstract

Parallelizable optimization techniques are applied to the problem
of learning in feedforward neural networks. In addition to having
superior convergence properties. optimization techniques such as the
Polak-Ribiere method are also significantly more efficient than the
Back-propagation algorithm. These results are based on experiments
performed on small boolean learning problems and the noisy real-
valued learning problem of hand-written character recognition.

1 INTRODUCTION

The problem of learning in feedforward neural networks has received a great
deal of attention recently because of the ability of these networks to repre-
sent seemingly complex mappings in an efficient parallel architecture. This
learning problem can be characterized as an optimization problem. but it is
unique in several respects. Function evaluation is very expensive. However.
because the underlying network is parallel in nature. this evaluation is easily
parallelizable. In this paper. we describe the network learning problem in
a numerical framework and investigate parallel algorithis for its solution.
Specifically. we compare the performance of several parallelizable optimiza-
tion techniques to the standard Back-propagation algorithm. Experimental
results show the clear superiority of the numerical techniques.

2 Neural Networks

A neural network is characterized by its architecture. its node functions.
and its interconnection weights. In a learning problem, the first two of
these are fixed. so that the weight values are the only free parameters in
the system. when we talk about “weight space” we refer to the parameter
space defined by the weights in a network. thus a “weight vector” w is a
vector or a point in weightspace which defines the values of each weight
in the network. We will usually index the components of a weight vector
as w;;, meaning the weight value on the connection from unit / to unit j.
Thus N(w.r). a network function with n output units. is an n-dimensional
vector-valued function defined for any weight vector w and any input vector
r:
N(w.r) = [o(w.r).0o(W.T). ..., o,,(w,r)]T

where 0; is the iy} output unit of the network. Any node j in the network
has input
ij(W. r) = Z o,-(w.r)w;,-
iefa.m'n,-
and output
oj(w,r) = fi(ij(w,r)),

where f;() is the node function. There are various node functions in use but
the one we shall concentrate on here is the “sigmoid” or logistic function:

The evaluation of N() is inherently parallel and the time to evaluate N()
on a single input vector is O(#layers). If pipelining is used, multiple input
vectors can be evaluated in constant time.

3 Learning

The “learning” problem for a neural network refers to the problem of finding
a network function which approximates some desired “target” function T().
defined over the same set of input vectors as the network function. The
problem is simplified by asking that the network function match the target

2

function on only a finite set of input vectors. the “training set”™ R. This is
usually done with an error measure. The most common measure is sum-
squared error. which we use to define the “instance error™ between N(w.r)
and T(r) at weight vector w and input vector r:

entT(w.r)= Y. Y(Tir)—oiw.r))? =}|T(r) - N(w.r)|.
ieoutputs .
We can now define the “error function™ between N() and T() over R as a
function of w:
Entalw)=)_ ent(w.r)
reR

The learning problem is thus reduced to finding a w for which En.1.r(W)
is minimized. If this minimum value is zero then the network function
approximates the target function exactly on all input vectors in the training
set. Henceforth. for notational simplicity we will write e() and E() rather
than en.1() and En.1.R().

4 Optimization Techniques

As we have framed it here, the learning problem is a classic problem in
optimization. More specifically, network learning is a problem of function
approximation, where the approximating function is a finite parameter-
based system. The goal is to find a set of parameter values which minimizes
a cost function, which in this case, is a measure of the error between the
target function and the approximating function.

Among the optimization algorithms that can be used to solve this type
of problem. gradient-based algorithms have proven to be effective in a vari-
ety of applications {Avriel, 1976}. These algorithms are iterative in nature.
thus wy, is the weight vector at the ky, iteration. Each iteration is charac-
terized by a search direction dj and a step ax. The weight vector is updated
by taking a step in the search direction as below: '

for(k=0; evaluate(w;) != CONVERGED; ++k) {
d, = determine.search.direction();
ar = determine_step();
Wi41 = Wi + apdy;

}

If d, is a direction of descent. such as the negative of the gradient. a suf-
ficiently small step will reduce the value of E(). Optimization algorithms
vary in the way they determine a and d, but otherwise they are structured
as above.

5 Convergence Criterion

The choice of convergence criterion is important. An algorithm must ter-
minate when E() has been sufficiently minimized. This may be done with
a threshold on the.value of E(). but this alone is not sufficient. In the case
where the error surface contains “bad” local minima. it is possible that
the error threshold will be unattainable. and in this case the algorithm
will never terminate. Some researchers have proposed the use of an itera-
tion limit to guarantee termination despite an unattainable error threshold
{Fahlman, 1989}. Unfortunately, for practical problems where this limit is
not known a priori. this approach is inapplicable.

A necessary condition for w* to be a minimum, either local or global. is
that the gradient g(w") = VE(w") = 0. Hence, the most usual convergence
criterion for optimization algorithms is

llg(we)l| < e

where ¢ is a sufficiently small gradient threshold. The downside of using
this as a convergence test is that, for successful trials, learning times will be
longer than they would be in the case of an error threshold. Error tolerances
are usually specified in terms of an acceptable bit error, and a threshold
on the mazimum bit error (MBE) is a more appropriate representation of
this criterion than is a simple error threshold. The maximum bit error is
the maximum individual output unit error over all outputs and over all
training vectors:

MBE(w,) = max (max (%(Tg(r) - o;(wk.r))z)) .

réER \ieoutputs

We have chosen a convergence criterion consisting of a gradient threshold
and an M BE threshold (7). terminating when

lg(wi)|| < € or MBE(wy) < 7.

6 Steepest Descent

Steepest Descent is the most classical gradient-based optimization algo-
rithm. In this algorithm the search direction d; is always the negative of
the gradient - the direction of steepest descent. For network learning prob-
lems the computation of g(w). the gradient of E(w). is straightforward:

T .
gw)=VE(w)= [—d- > e(w._r)] =Y Ve(w.r).

dw reR r€R
where ~ T
Te(w.r) = Oe(w.r) de(w.r) de(w.r)
E) = e Do .
Jde(w.r) .
Fwg = o;(w,r)dj(w.r)

where for output units
§i(w.r) = fi(ij(w,r))(0j(w.r) = Tj(r)),
while for all other units '
§i(w,r) = fiij(w.r)) Y. (w.r)wje.

kefanout;
The evaluation of g is thus almost dual to the evaluation of N; while
the latter feeds forward through the net, the former feeds back. Both
computations are inherently parallelizable and of the same complexity.
The method of Steepest Descent determines the step aj by inezact
linesearch. meaning that it minimizes

E(Wk - akdk).

There are many ways to perform this computation. but they are all iterative
in nature and thus involve the evaluation of E(w). — ad;) for several values
of ai. As each evaluation requires a pass through the entire training set, this
is expensive. Curve fitting techniques are employed to reduce the number
of iterations needed to terminate a linesearch. Again, there are many ways
to curve fit . We have employed the method of false position and used the
Wolfe Test to terminate a linesearch {Luenberger. 1986}. In practice we
find that the typical linesearch in a network learning problem terminates
in 2 or 3 iterations.

ot

7 Partial Conjugate Gradient Methods

Because linesearch guarantees that E(wis1) < E(wy), the Steepest De-
scent algorithm can be proven to converge for a large class of problems
{Luenberger. 1986}. Unfortunately. its convergence rate is only linear and
it suffers from the problem of “cross-stitching” {Luenberger. 1986}. so it
may require a large number of iterations. One way to guarantee a faster
convergence rate is to make use of higher order derivatives. Others have
investigated the performance of algorithms of this class on network learn-
ing tasks. with mixed results {Becker. 1989}. We are not interested in such
techniques because they are less parallelizable than the methods we have
pursued and because they are more expensive. both computationally and
in terms of storage requirements. Because we are implementing our al-
gorithms on the Connection Machine, where memory is extremely limited.
this last concern is of special importance. We thus confine our investigation
to algorithms that require explicit evaluation only of g. the first derivative.

Conjugate gradient techniques take advantage of second order informa-
tion to avoid the problem of cross-stitching without requiring the estimation
and storage of the Hessian (matrix of second-order partials). The search
direction is a combination of the current gradient and the previous search
direction:

di+1 = —8k+1 + Brds.

There are various rules for determining 8i; we have had the most success
with the Polak-Ribiere rule, where f is determined from gi+; and g ac-
cording to :
8, = (8k+1 — 8k)T - B4
k= T .
8k " 8k

As in the Steepest Descent algorithm, oy is determined by linesearch. With
a simple reinitialization procedure partial conjugate gradient techniques are
as robust as the method of Steepest Descent {Powell. 1977}: in practice
we find that the Polak-Ribiere method requires far fewer iterations than
Steepest Descent.

8 Back-propagation

The Batch Back-propagation algorithm {Rumelhart, 1986} can be described
in terms of our optimization framework. Without momentum. the algo-
rithm is very similar to the method of Steepest Descent in that

di = —g.

Rather than being determined by a linesearch. a. the “learning rate™. is a
fixed user-supplied constant. With momentum. the algorithm is similar to
a partial conjugate gradient method, as

di+1 = —r41 + Frdi

. though again 3. the “momentum term”, is fixed. On-line Back-propagation
is a variation which makes a change to the weight vector following the pre-
sentation of each input vector:

di = Ve(wg, ri).

Though very simple, we can see that this algorithm is numerically un-
sound for several reasons. Because f is fixed, d; may not be a descent
direction, and in this case any a will increase E(). Even if di is a direction
of descent (as is the case for Batch Back-propagation without momentum),
a may be large enough to move from one wall of a “valley” to the opposite
wall, again resulting in an increase in E(). Because the algorithm can not
. guarantee that E() is reduced by successive iterations, it cannot be proven
to converge. In practice, finding a value for a which results in fast progress
and stable behavior is a black art, at best.

9 Weight Decay

One of the problems of performing gradient descent on the “error surface”
is that minima may be at infinity. (In fact, for boolean learning prob-
lems all minima are at infinity.) Thus an algorithm may have to travel a
great distance through weightspace before it converges. Many researchers
have found that weight decay is useful for reducing learning times {Hinton,
1986}. This technique can be viewed as adding a term corresponding to the

T

length of the weight vector to the cost function: this modifies the cost sur-
face in a way that bounds all the minima. Rather than minimizing on the
error surface, minimization is performed on the surface with cost function

C(w) = E(w) + Z||w]]

where v, the relative weight cost, is a problem-specific parameter. The
gradient for this cost function is

g(w) = VC(w) = VE(w)+ W,

and for any step ai. the effect of 4 is to “decay”™ the weight vector by a
factor of (1 — axv):

Wis1 = Wi — o = Wi(1 — ary) — ax VE(wy).

10 Parallel Implementation Issues

We have emphasized the parallelism inherent in the evaluation of E() and
g(). To be efficient, any learning algorithm must exploit this parallelism.
Without momentum, the Back-propagation algorithm is the simplest gradi-
ent descent technique, as it requires the storage of only a single vector, gk.
Momentum requires the storage of only one additional vector, di_;. The
Steepest Descent algorithm also requires the storage of only a single vector
more than Back-propagation without momentum: dj, which is needed for
linesearch. In addition to di, the Polak-Ribiere method requires the storage
of two additional vectors: di—, and gi_;. The additional storage require-
ments of the optimization techniques are thus minimal. The additional
computational requirements are essentially those needed for linesearch - a
single dot product and a single broadcast per jteration. These operations
are parallelizable (log time on the Connection Machine) so the additional
computation required by these algorithms is also minimal. especially since
computation time is dominated by the evaluation of E() and g(). Both
the Steepest Descent and Polak-Ribiere algorithms are easily paralleliz-
able. We have implemented these algorithms, as well as Back-propagatmn
on a Connection Machine {Hillis, 1986}.

11 Experimental Results

We have compared the performance of the Polak-Ribiere (P-R). Steep-
est Descent (S-D), and Batch Back-propagation (B-B) algorithms on small
boolean learning problems. In all cases we have found the Polak-Ribiere al-
gorithm to be significantly more efficient than the others. All the problems
we looked at were based on three-layer networks (1 hidden layer) using the
logistic function for all node functions. Initial weight vectors were gener-
ated by randomly choosing each component from (+r.—r). 4 is the relative
weight cost. and € and 7 define the convergence test. Learning times are
measured in terms of epochs (sweeps through the training set). All Back-
propagation trials used a = 1 and 3 = 0: these values were found to work
about as well as any others.

The n-m-n encoder problem has n inputs, m hidden units and n outputs.
There are n 1-hot encoded input vectors and the desired output vectors are
the same 1-hot encoding. The encoder problem is of interest because it
is easily scaled and has no bad local minima (assuming sufficient hidden
units: log(#inputs)). The following three graphs compare the performance
of the Polak-Ribiere technique (P-R), Steepest Descent (S-D), and Back-
Propagation (BP) on a single run of the 10-5-10 encoder problem in terms
of E, MBE and |g||. All three were begun from the same initial random
weight vector chosen with r = 1.0 and a value of 0.001 was used for . Note
that all the plots are log-log. In terms of error or bit-error, Polak-Ribiere
offers about an order of magnitude improvement for this example. More
striking is the comparison of gradients, where Polak-Ribiere is almost two
orders of magnitude more efficient. Note the cross-stitching that can be
seen on the gradient plot for the steepest descent method (D).

Table 1 summarizes the results of our experiments on encoder problems.
Average convergence times (in #epochs) for 100 independent trials of all
three algorithms are shown, both for MBE convergence (first 5 entries) and
gradient convergence (second 5 entries). Standard deviations for all data
were insignificant (< 25%). The minimum MBE possible for this problem
(defined with v = 0.001) was about 0.006, which explains the sudden rise
for all three algorithms with 7 = 0.007: satisfying this MBE convergence
criterion essentially requires finding the exact minimum which is equivalent
to satisfving a gradient convergence criterion. Besides the fact that Polak-
Ribiere was most efficient everywhere, the significant thing to note from the

9

data is the superior convergence properties of Polak-Ribiere in satisfying a
gradient criterion. Polak-Ribiere converges to minima at a rate of about
35 iterations per decade of accuracy (e) while Back-Propagation converges
at a rate of over 5000 iterations per decade!.

Tight encoders are encoders on networks where the size of the hidden
layer is exactly equal to log(#inputs). that is n-(log n)-n encoders. Scaling
experiments were done on the tight encoder problem from the 2-1-2 encoder
to the 32-3-32 encoder. The results are summarized in the final 3 lines of
table 1. but the important thing to note is that all of the algorithms scale
linearly and thus that the optimization techniques retain their superiority
over Back-Propagation.

TABLE 1. Encoder Results

Encoder | num Parameter Values Avg Epochs to Convergence
Problem | trials r 5 T € P-R S-D B-B

10-3-10 100 | 1.0 | 1e-3 | 1e-1 | le-8| 63.71 | 109.06 196.93
10-5-10 100 [1.0 | 1e-3 | 5e-2 | le-8 | 66.89| 119.91 225.90
10-5-10 100 [1.0 | 1e-3 | 2e-2 | 1le-8 | 71.27| 14231 299.55
10-5-10 100 | 1.0 | 1e-3 | 1le-2 | 1le-8| 77.33| 178.70 549.66
10-3-10 100 | 1.0 | 1e-3 | 7e-3 | le-8 | 104.70 | 431.43 | 3286.20

10-5-10 100 { 1.0 | 1e-3| 0.0 | 1e-4 | 279.52 | 1490.00 | 13117.00
10-3-10 100 { 1.0 | 1e-3| 0.0 | 1e-5 | 318.02 | 1787.00 | 19792.00
10-3-10 100 (1.0 | 1e-3| 0.0 1e-6 | 353.30 | 2265.00 | 24910.00
10-5-10 100 | 1.0 [1e-3| 0.0 | 1e-7 | 384.65 | 2503.00 | 30076.00

10-5-10 100 | 1.0 [1e-3| 0.0 | le-8 | 417.90 | 2863.00 | 35260.00

4-2-4 | 100|1.0]1e-3| 0.1] le-8| 36.92 56.90= 179.95
8-3-8 100 {1.0 | 1e-3| 0.1] le-8| 67.63| 194.830 594.76
16-4-16 | 100 [1.0|1e-3| 0.1 | 1e-8|121.30 | 572.30 990.33

32-5-32 25(11.0|1e-3| 0.1 | 1le-8| 208.60 | 1379.40 | 1826.15

64-6-64 25 (1.0 | 1le-3| 0.1 1e-8 | 405.60 | 4187.30 | > 10000

The parity problem is interesting because it is also easily scaled and
its weightspace is known to contain bad local minima. In the case where
the initial random weight vector is in the basin of attraction of a bad lo-
cal minima. the MBE threshold can not be satisfied and to terminate. the

9

L

10

algorithm must satisfy the gradient threshold. In these cases the bad con-
vergence properties of the Back-Propagation algorithm are most evident.

Problems such as parity also raise the question of how to report learn-
ing times for a weight space which contains bad minima. Most researchers
report only learning times of successful trials. At most, they report the
percentage of unsuccessful trials without mentioning the number of epochs
required to decide that a trial is unsuccessful. To allow comparison of
algorithms on neural network learning problems, it is important that the
research community agree upon a metric for measuring learning times which
is meaningful even in weight spaces with bad local minima. e propose
a measure which we call ezpected epochs to solution (EES). This mea-
sure makes sense, especially if one considers an algorithm with a restart
procedure which is able to restart itself from a new random weight vector
whenever its gets stuck in a bad local minima. EES is thus the expected
number of epochs needed for such an algorithm to find a solution vector in
the weight space.

If P(h) is the probability that a randomly chosen weight vector is in the
basin of attraction of a solution (a hit) and P(m) is the probability that that
a randomly chosen weight vector is in the basin of attraction of a bad local
minimum (a miss), then to calculate EES we see that a trial requiring i
restarts has probability P(h)P(m)'. If E(h) is the expected epoch count for
a hit, and E(m) is the expected epoch count for a miss, then the expected
epoch count for this trial with i restarts is E(h) +iE(m). EES is simply the
accumulated expectation on trials with all possible numbers of restarts:

EES = iP(h)P(m)‘(E(h)-i—iE(m))
=0
= P(h)E(h)f:P(m)‘+P(h)E(m)§:;P(m)‘
=0 i=0
_ 1 » P(m)
= P(h)E(h)———1 ~Bim) -l-P(h)E(m)———(1 —Bm))?
P(R)E(h) + P(m)E(m)

P(h)

EES can thus be estimated fram a set of non-restarting trails as the ratio
of total epochs to successful trials.

11

The results of the parity experiments are summarized in table 2. Again.
the optimization techniques were more efficient than Back-propagation.
This fact is most evident in the case of bad trials. All trials used r = 1.
~ =1le—4. 7 =01 and € = le — 8. Back-propagation used a = 1 and
3=0.

TABLE 2. Parity Results

ol [7 | Voo | @0 0emze (500 | atumy__(54)] BES]
P-R| 100 | 72% 73 (43) 232) 163
D | 100]| 80% 95 (115)] 3077 (339)| 864 |

8% 684 (1460) [47915 (5505) | 14197 “

[Parity

61% | 352 (122)] 453 (111)] 641
99% | 2052 (1753) | 18512)| 232 |
T1% | 8704 (8339) | 95345 (11930) | 48430 ||

8-8-1 16 | 50% 1716 (743) 953 (335) | 2669 "
- 6 - [>1ed >led >led |
B-B 2 - | >1led >led >1led

12 Real-World Learning Problems

One of the criticisms of batch-based gradient descent techniques is that,
for large real-world, real-valued learning problems, they will be be much
less efficient than On-line Back-propagation. The reasoning behind this
criticism can be seen from the following example: consider a training set Ro
consisting of m distinct training examples. and consider a second training
set R, consisting of 2" copies of Ry. That is. each of the m distinct input
vectors in Ry is repeated 2" times in R,. In this case Epg, is simply 2" Eg,
and VEpg, is 2"V Ep, although the time to evaluate VEg, is 2" times that
to evaluate ¥ Ep, because of the difference in training set sizes. It is clear
in this case that a lot of computational effort is being wasted in evaluating
VEpg,. '
On-line Back-propagation is a variation of Back-propagation which makes

a small change to the weight vector following the presentation of each ind:-
vidual input vector. Assuming the vectors of R, are arranged as a repeat-
ing sequence of the vectors in Ro. On-line Back-propagation will require

12

the same number of vector presentations, whether the vectors are coming
from R, or Ry. Thus the learning from R, will require 5= of the number of
complete passes through the training set as the learning from R, and the
overall learning times for both problems will be identical. '

This will not be so for Batch Back-propagation. which only makes a
change to the weight vector following an entire pass through the training
set. Assuming that the learning rates have been normalized so that the
learning rate for the problem based on R, is zi,. the learning rate for the
problem based on R,. Batch Back-propagation will take the same moves
for both problems and will require the same number of passes through
the training sets. Because |R,| is 2°|Ro|. the overall learning time for the
problem based on R, will be 2" times that for the problem based on Rp.

The argument goes that for learning problems with training sets con-
sisting of many noisy input vectors. the situation is similar to the one
described above. Because optimization techniques are similar to Batch
Back-propagation in that they require a pass through the entire training
set to evaluate VE before any changes are made to the weight vector. it is
possible that for problems of this class optimization techniques may be less
efficient than On-line Back-propagation.

13 Incremental Learning

If we consider a learning problem based on a training set consisting of
many noisy examples of each of a finite number of output classes, then one
way to increase the efficiency of batch-based algorithms on this problem
would be through incremental learning. The idea of an incremental learning
paradigm is to break the learning of a large training set into successive
increments. Given a large training set consisting 2" noisy examples of each
of m output classes, we could directly train a naive network (one with a
‘ random initial weight vector wg) on the entire training set. Alternatively.
we could create a series of successively larger training sets. Ry would contain
1 example of each output class. R; would contain Ry plus another example
of each output class, R2 would contain R, plus another 2 examples of each
output class, etc... In general, R; would contain R;_; plus another 2i-1
examples of each output class. R, would thus be our original training set
consisting of 2" examples of each output class. To perform incremental

13

learning. we could now train a network on R, beginning from an initial
weight vector wo) which is random. We could then use the resulting trained
weight vector w'® as the initial weight vector for training on R;:. (1)

£0). w'!) would be the initial vector for training on Ry, etc... In genem.l.
we would have that '
wil = wli=1),

There are several reasons to think this approach may be more efficient.
If we consider a contrived. fully redundant training set such as the one we
used to compare On-line to Batch Back-propagation. a training set which
consists of the same m output examples repeated 2" times. it is clear that
this incremental learning paradigm solves the inefficiency of Batch Back-
propagation. When we finish training on the smallest training set. Ro. the
resulting weight vector. w'” is a solution to all the remaining incremental
learning problems, and thus learning is complete.

For more realistic training sets which contain multiple noisy examples
of the same output class, we must consider the learning problem from a
slightly different perspective. A weight vector is a “solution” to a learning
problem if it causes the network to correctly classify all (or most) of the
examples in the training set. There are two ways in which weight vector
can accomplish this:

Memorization - the weight vector effectively stores all of the input
vectors. The weight values on each of the hidden units encodes one of
the input vectors and the output units values are determined according
to which of the hidden units (now acting as “input vector detectors™) are
active. The resulting network will be very good at classifying the training
vectors, but not very good at classifying new vectors it has not been trained
on. :

Generalization - the weight vector effectively defines a feature set for
encoding the input vectors. The weight values on each of the hidden units
encodes a particular “feature” which may be'part of multiple input vectors.
The output units values are determined by the set of features detected by
the hidden layer. If many different examples of the same output class
activate the same feature set, there is reason to hope than new examples
of that input class will also activate the same feature set and thus that the
network will be effective at classifying new input vectors that it has not
been trained on.

14

If wi~ . the solution to the learning problem based on R;_;. is the
result of memorization, then w' ™" is far from a solution to the learning
problem based on a larger training set. R;. If. however. w1 is the result
of good generalization, then it should be close to a solution for the learning
problem based on R;. In this case, w'? should also the result of good
generalization and so should be close to a solution for the learning problem
based on R;4;. etc...

Another way to view this idea is in terms of weight spaces. If we define
TV to be the weight space defined by a learning problem, then our incremen-
tal training sets define a series of weight spaces Wo. 117, ... If this series is
converging. in the mathematical sense. to some limit W', then there ought
to be some N such that. for all { > V. wi. a solut1on vector in ;. is a
solution vector in TW... In this case, we would have reason to expect that
the incremental learning paradigm would be effective at reducing learning
time.

14 Letter Recognition

The task of characterizing hand drawn examples of the 26 capital letters
was chosen as a good problem to compare the performance of gradient-
based optimization techniques to On-line Back-propagation. This choice
was made partly because others have used this problem to demonstrate that
On-line Back-propagation is more efficient than Batch Back-propagation
{Le Cun, 1986}. The experimental setup was as follows:

Characters were hand-entered in a 80 x 120 pixel window with a 5 pixel-
wide brush (mouse controlled). Because the objective was to have many
noisy examples of the same input pattern, not to learn scale and orientation
invariance, all characters were roughly centered and roughly the full size of
the window. Following character entry, the input window was symbolically
gridded to define 100 8 x 12 pixel regions. Each of these regions was an
input and the percentage of “on” pixels in the region was its value. There
were thus 100 inputs, each of which could have any of 96 (8 x 12) distinct
values. 26 outputs were used to represent a one-hot encoding of the 26
letters. and a network with a single hidden layer containing 10 units was
chosen. The network thus had a 100-10-26 architecture; all nodes used the
logistic function.

A training set consisting of 64 distinct sets of the 26 upper case letters
was created by hand in the manner described. 25 “A” vectors are shown
in figure 1. This large training set was recursively split in half to define
a series of 6 successively larger training sets: Ry to Re. where Rp is the
smallest training set consisting of 1 of each letter and R; contains R,_, and
2i=1 new letter sets. A testing set consisting of 10 more sets of hand-entered
characters was also created to measure network performance. For each R;.
we compared naive learning-to incremental learning. where naive learning
means initializing w() randomly and incremental learning means setting

wi to w1 (the solution weight vector to the learning problem based
on R,_l) The incremental epoch count for the problem based on R; was
normalized to the number of epochs needed starting from wi™V plus ! the
number of epochs taken by the problem based on R;_; (since |R;_;| = -IR).
This normalized count thus reflects the total number of relative epochs
needed to get from a naive network to a solution incrementally.

FIGURE 1 25 “A”s

B . 00 ["
-gossssen [T L]
pe [] [0 .
E. [T :]

16

Both Polak-Ribiere and On-line Back-propagation were tried on all
problems; results are summarized in table 3. Only a single trial was done
for each problem and all problems had r = 1, v = 0.01, 7 = le — 8 and
¢ = 0.1. On-line Back-propagation was tried with a = 1.0 and a = 0.1 and
in both cases 3 was 0. For On-line Back-propagation. ¥ was normalized to
0.01 divided by the trainingset size, thus giving an effective net 5 of 0.01.
Performance on the test set is shown in the last column. .

TABLE 3. Letter Recognition

Learning Time (epochs) Test
Polak-Ribiere On-line Back-prop %
a=1.0

RO 92 92 92 267 2174 | 33.5
R1 33 120 8 135 1060 | 69.2
R2 31 90 104 69 379 | 80.4
R3 17 62 114 35 278 | 83.4
R4 109 140 160 21 192 | 92.3
R5 107 177 363 17 141 | 98.1
R6 46 134 684 300 7094 | 99.6

There are several things to note from the data. The first is that the in-
cremental learning paradigm was very effective at reducing learning times.
This is an indication that the solutions found show good generalization.
In terms of epochs, the normalized learning times show a roughly constant
learning time independent of problem size. This represents a learning time
which is linearly dependent on the trainingset size in terms of real time.
Larger problem sizes must be attempted to determine whether the down-
ward trend on the largest problem continues. This would indicate that
solutions to the smaller problems are solutions to the larger problems. so
that little additional learning is required.

The On-line data is interesting as well. For many of the problems.
learning time in terms of epochs is inversely proportional to trainingset size.
This supports the claim that, for On-line Back-propagation. learning time
depends only on number of input vector presentations, and is independent of
the size of the training set from which they are being drawn. Unfortunately
the learning time increases greatly for the largest problem (R6). This is

17

true for both learning rates attempted. and while this increase has not been
explained. it is an example of the instability inherent in this algorithm. The
learning times for the On-line trials with @ = 0.1 are about ten times the
learning times for the trials with a = 1.0. This is an indication that the
large increase on R6 was not due to a learning rate that was too large.
Also. this data emphasizes the dependence of the performance of On-line
Back-propagation on a. a = 10.0 was tried but this learning rate was too
high and resulted in oscillations and instability.

All that can be said in terms of a comparison of On-line Back-propagation
and the Polak-Ribiere method from this data is that they appear to be in
the same ballpark. Trials with larger problems must be made to make a
more conclusive comparison of efficiency. The incremental leaning proce-
dure appears to speed up Polak-Ribiere considerably. The other surprising
result is that a network with only 10 hidden units was sufficient to solve
this problem. indicating that these letters can be encoded by a compact set
of features.

15 Conplusions

Describing the computational task of learning in feedforward neural net-
works as an optimization problem allows exploitation of the.wealth of math-
ematical programming algorithms that have been developed over the years.
We have found that the Polak-Ribiere algorithm offers superior convergence
properties and significant speedup over the Batch Back-propagation algo-
rithm. In addition. this algorithm is well-suited to parallel implementation
on massively parallel computers such as the Connection Machine. Finally.
incremental learning is a way to increase the efficiency of optimization tech-
niques when applied to large real-world learning problems such as that of
handwritten character recognition.

Acknowledgments '
This work was supported by the Joint Services Educational Program grant
#482427-25304.

References

{Avriel. 1976} Mordecai Avriel. Nonlinear Programming. Analysis and
Methods. Prentice-Hall. Inc.. Englewood Cliffs. New Jersey. 1976.

{Becker. 1989} Sue Becker and Yan Le Cun. Improving the Convergence of
Back-Propagation Learning with Second Order Methods. In Proceed-
ings of the 1988 Connectionist Models Summer School. pages 29-37.
Morgan Kaufmann, San Mateo Calif.. 1989.

{Fahlman, 1989} Scott E. Fahlman. Faster Learning Variations on Back-
Propagation: An Empirical Study. In Proceedings of the 1988 Con-
nectionist Models Summer School. pages 38-31. Morgan Kaufmann.
San Mateo Calif., 1989.

{Hillis, 1986} William D. Hillis. The Connection Machine. MIT Press,
Cambridge, Mass, 1986.

{Hinton, 1986} G. E. Hinton. Learning Distributed Representations of
Concepts. In Proceedings of the Cognitive Science Society. pages 1-
12, Erlbaum, 1986.

{Le Cun, 1986} Yan Le Cun. HLM: A Multilayer Learning Network. In
Proceedings of the 1986 Connectionist Models Summer School, pages
169-177, Carnegie-Mellon University, Pittsburgh, Penn., 1986.

{Luenberger. 1986} David G. Luenberger. Linear and Nonlinear Program-
ming. Addison-Wesley Co.. Reading, Mass. 1986.

{Powell, 1977} M. J. D. Powell. "Restart Procedures for the Conjugate
Gradient Method”, Mathematical Programming 12 (1977) 241-254

{Rumelhart, 1986} David E Rumelhart. Geoffrey E. Hinton. and R. J.
Williams. Learning Internal Representations by Error Propagation.
In Parallel Distributed Processing: Ezplorations in the Microstruc-
ture of Cognition. Vol 1: Foundations, pages 318-362, MIT Press.
Cambridge, Mass., 1986

19

	Copyright notice1989
	ERL-89-1

