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Abstract
The choice of an optimal action in a Decision-Making problem involving fuzzy utilities has
béen approached in previous studies. This choice reduces, in most of them, to model the
fuzzy utilities and the expected fuzzy utility (that is usually considered as a fuzzy number),
and to select a technique for ranking fuzzy numbers that fits well the situation. In this
paper, we incorporate a new element to the Decision problem above: the sample information
supplied by a random experiment associated with it. This new element, along with the use
of fuzzy random variables (Puri and Ralescu) to model fuzzy utilities, and a fuzzy preference
relation stated by Kolodziejczyk, will allow us first to extend appropriately in the Bayesian
framework the concept of Expected Value of Sample Information (or gain in expected fuzzy
utility due to the knowledge of the sample information). On the basis of this concept, we
will then establish a criterion to compare random experiments associated with the problem,
and analyze some interesting properties confirming its suitability. An example will
illustrate the application of the suggested procedure. Finally, it will be contrasted with the

"pattern criterion”, based on statistical sufficiency and introduced by Blackwell.

* Visiting from the Department of Mathematics, University of Oviedo, 33071 Oviedo, SPAIN.



1. INTRODUCTION

Consider two statistical experiments in which two random Qariables or vectors are to be
observed on the same population, so that their distributions depend on the same unknown state
of nature or parameter value. The idea of comparing such experiments was suggested by
Bohnenblust, Shapley and Sherman in a private communication and their basic results were
collected by Blackwell [3]. The Bohnenblust et al. procedure of comparison was formulated in a
Decision-Making context, whereas Blackwell proposed a method that was based on statistical
sufficiency, in which the purpose was to get as much probabilistic information about the state or
parameter as possible, without having decisions in mind. Blackwell [3] proved that both methods
are equivalent. The comparison of experiments was developed into a theory by Blackwell [3], [4]
and other authors established criteria to compare experiments and connected them with
Blackwell's sufficiency criterion (see, for instance, papers referenced in Lehmann, [19D.

The aim of this paper is to introduce a method to compare experiments in Decision-Making
problems in a Bayesian framework, when utilities (or losses) cannot be assessed in terms of
numerical values, but can be described by means of "fuzzy values”. The traditional utility
assessment procedures usually involve acceptance of some conditions or axioms for the
preference relations, in order to guarantee the existence of a numerical utility function (axiomatic
approach to the Utility Theory). As remarked in previous papers (see, for instance, Jain [17],
Watson et al. [28], Adamo [1], Freeling [10], Orlovsky [23], Dubois and Prade [8], Whalen
[29], and Kolodziejczyk [18]), the necessity for assessing utilities in terms of numerical values
may be, in practice, too restrictive, whereas the use of fuzzy sets to describe utilities is often
" more realistic.

To justify this assertion we now examine an example that has been taken from an
introductory text of Statistics [30], with some modifications.

Example: Suppose a neurologist has to classify his most serious patients as requiring
exploratory brain surgery (action a,) or not (action a,). From past autopsies, it has been found

that 60 % of the examined people needed the operation, while 40 % did not.
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The utilities (intended in this example as opposite to losses) of right classifications are null.
The utilities of a wrong classification are obvious: an unnecessary operation means resources are
wasted and the patient may be hurt. Yet the other utility may be worse: if a patient requiring
surgery does not get it, the time lost until clear symptoms appear may be crucial.

Assume that the neurologist cax.l base his decision on two different scores, X and Y, each
one of them is obtained from combination of several tests. Past experiences have shown that X
is normally distributed with variance equal to 64 and mean equal to 120 for those who require
surgery and 100 for those who do not, and Y is normally distributed with variance equal to 81
and mean equal to 120 for those who require surgery and 100 for those who do not.

The question we are now interested in is the following: what is the "most convenient" score
the neurologist can base his decision on?.

In [30], without considering the comparison of experiments, the preceding situation, is
regarded as a Decision problem in a Bayesian context, with state space © = {0, 0,} (8, = the
patient requires surgery, 6, = the patient does not require surgery), action space A = {a,, a,},
prior distribution &, such that §(8,) = .6, §(6,) = .4, and utility function u(6;,3,) = u(ez,ag =
0, u(8,,a5) = 5u(0,,a,), with u(ez,al) <0.

However, the preceding assessment of utilities seems to be extremely precise for the nature
of the actions and states in the problem. Thus, the following assessment could express decision
maker's (neurologist) "preferences” better: u(6,,a;) = u(6,,a,) = 0, u(6,,3,) = «inconvenient»,
1(8,,3;) = «dangerous», where u(6,,a,) and #(6,,a,) could be described by means of some
adequate fuzzy sets as we will see later.

We are next going to formalize these kinds of problems, and extend the notion of Expected
Value of Sample Information, introduced by Raiffa and Schlaifer [26], and exhaust- ively studied
by Garcfa-Carrasco [11]. On the basis of this value, we will establish a criterion to compare
experiments, whose suitability will be then analyzed. The above example will be considered
again to select the "most convenient” score for the neurologist, according to the suggested

method. Finally, as it is usual in most of these studies, we will examine the implica- tions of the



sufficiency comparison in terms of the new criterion.

2. PRELIMINARY CONCEPTS AND MODELS

In traditional Decision-Making problems, probabilities are numerical representations of the
beliefs and the current state of information of the decision maker, whereas utilities are numerical
representations of his preferences. Thus, in these problems the decision maker must be able to
quantify the relative value of any situation that may arise. In a Bayesian context, the utility
function is formalized as follows (cf., DeGroot [6]). Let © and A denote the state and action
spaces of the Decision problem, and let § be the prior distribution on a measurable space
defined on ®, say (©,C). Then, a utility function is a real-valued function u on © x A (where
u(9,a) is the utility assessed to the consequence of taking action a when @ is the true state of
nature), such that _

i) for each action a € A, u(.,a) is a random variable on (©,C), having a finite expectation
with respect to £ denoted by E[u(alE)].

ii) a 1is preferred or ind:f'erent to a'(depending on decision maker's preferences) if and only
if E[u(alg)] 2 Efu(a'lE)].

Following this idea, We are now going to formalize the notion of fuzzy utility function by
using the concepts of fuzzy random variable and the associated expected value, as defined by
Puri and Ralescu, [24, 25] (see, also Negoita and Ralescu [21], for a review of the main results).

Let (©,C,8) be a probability space and let F{R) denote the collection of all fuzzy subsets
‘V of R, characterized by a membership function Ky : R - [0,1], with the following properties:

(1) supp ¥=support of ¥'=closure of {@we RIpq ®)>0} is compact (i.e., closed and

bounded).

(2) Ly(Y) =o-levelsetof ¥V={me R pef®)2a} isclosed foreach 0 <o < 1.

(3) Li(Y)=modalsetof ¥={0e Rl pgw)=1)}=0.

Definition 2.1. A (one-dimensional) fuzzy random variable is a function v: ® — FR),
such that { (6,0) | ® € L(6)) } € C x By, forall a e [0,1],where By is the Borel o-field on
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R. (In other words, the random set L («(.)), defined on ©, is measurable for each 0 <o < 1).

Remark 2.1: Fuzzy random variables (FRV) generalize random variables (by replacing the
singleton {#(0)} by the a-sets Ly(«(0)),0<a<1,and R by F{®R)), and random sets (by
replacing the set #(0) by the a-sets Ly (%0)),0<a<1,and X(R) = {non-empty compact
subsets of R} by F,(R)). According to the definition of F«R), condition (1) has been imposed
to ensure that the variable "values" are "bounded" in some sense, (2) is a measurability condition
for the membership functions describing the fuzzy variable values, and (3) guarantees that all
levels of each variable "value" are non-empty.

The expected value of a fuzzy random variable is defined by

Definition 2.2. Let v: ® - F(R) be a simple FRYV, that is, a FRV taking on fuzzy
values g€ F,(R) on Cj€ C, j=1,..k, respectively. This variable can be written by

k
. 2;1 ke,
(where xc = indicator function of C). Then, the expected value of v, with respect to the
probability measure & on (©.C), is the fuzzy set E(ul€) =_[g «8) d£(6) € F(R) given by
E(dE) = g % &(C)

with 7;§(C;) = fuzzy product of v by the constant real value &(C)), and Z = fuzzy addition
(these fuzzy operations are based on the extension principle, [32]).

For a more general FRYV, 1, it is possible to take a sequence of simple FRV, #,, such that

lim deo(#,(6),%(6)) =0, for almost all @ € © (where deo(%,(6),40)) = (S):p AL (% (0),L o ((6))
asl

n—eo

is a metric on F(R) and dy is the Hausdorff distance defined on the set of all non-empty compact

subsets of R, thatis, dg(Q,Q") =max { sup inf lw-w, sﬁp inf lw-®'l}). Then, the
0eQ n'eQ 0'e Qowe Q

expected value of 7z, with respect to the probability measure & on (®,C), is the unique fuzzy set

£(ulE) = Jo u6) d £(0) € FAR) such that lim duo(B(%JE),Z(0iE)) =0.
n—oo

Remark 2.2: A rigourous and detailed justification of the definition of the expected value
above, can be found in papers of Puri and Ralescu, ([24, 25]), and the book of Negoita and

Ralescu, [21]. In the original paper (Puri and Ralescu, [25]), the expected value of a FRV is
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introduced in a different way, as the unique fuzzy set such that L (Z(£)) = Aumann integral
([2]) of the random set Ly(«(.)) with respectto &, forall 0 < a < 1, but the final definition is |
equivalent to the last one and more complex to describe.

Remark 2.3: It should be emphasized that, whenever the probability space (©,C,£), is
non-atomic (that is, for each C e C such that £(C) > 0, there existsa C' € C such that Co> C'
and §(C) > §(C") > 0) and v is integrably bounded (that is, there exists h : © - R, integrable
with respect to &, suchthat sup llwll Sh(8), forall 0 <o < 1)), then E(E) exists and is a
Sfuzzy number (intended as a?:m convex fuzzy set).

Remark 2.4: It is worth also pointing out that, in practice, the computation of E(4E) for
non-simple FRYV, obtained from a limiting process (in d..), becomes usually complicated.

To extend the notion of utility function to fuzzy utility function, we additionally need to
consider a third element: the comparison between expected values. As these expected values will
be fuzzy numbers, that comparison has to be a ranking of fuzzy numbers. Several procedures
have been proposed in the literature of fuzzy numbers. Kolodziejczyk [18] analyzed different _
fuzzy preference relations (following Orlovsky ideas, [23]) satisfying some properties that
confirm their suitability to rank fuzzy numbers. Some of them were suggested so that the
calculations in the set of fuzzy numbers, with respect to the fuzzy addition and product by a -
constant real number, could be performed in a manner analogous to the operations on real
numbers (and, consequently, so that the calculations through the expected value for a FRV could
be performed in an analogous way as for random variables, what is very convenient and
plausible for our purposes). Two of these preference relations are defined as follows:

Let Ve F,(R) be a fuzzy number. Let 9L and 9° denote the fuzzy sets of R with
membership functions

uq}(m) ) ! K f0) for @<z

i 1 for o>z

@ ;fpu,l}m) for w2z
K pl@)=:
q))

] 1 for o<z



where ze R is such that pqfz) = 1.
Definition 2.3. Let U, ¥ € F,R), be two fuzzy numbers. The following values represent
"degrees of truth for the expression « U is not higher than ¥/»"

d(‘uLv‘l}',"uL) + d(‘ZlPV"l)’,‘UP)
acd M + a@l Jh

R*(U,9) =

dtvF ay + ddP ) + dunvo)

R (4 W) =
dd",h + a9 + 2 dun0)

(where d = Hamming distance between fuzzy sets : d(‘Ll;'l/) = I@ | ng(z) — paf2)l dz; v =
extended maximum of fuzzy sets : pepq(z) = sup [min (Lefx).uqy)}], forall ze BR; N=
intersection of fuzzy sets : lLgj~q(z) = min [umq,(y)}; and 0='especial fuzzy set assigning
membership function equal to 1 to the value 0, and equal to 0 otherwise). In addition,
® U is said to be preferred or indi'ﬁerent to v, denoted by U2* V(or U2° 1),
whenever R*(U,7%) SR¥(¥,0) =1 -R*(U,49) (respectively, RO(U, N SR°(V, W) =1 -
R°(U,1)), that is, whenever R*(1,9) .5 (respectively, R°(1,%) < .5).
® U is said to be indifferent to %, denoted by U ~* Y(or U ~° 1), whenever R*(U,Y) =
R*(,U) (respectively, R°(U, ) = R°(¥,1)), that is, whenever R*("LI,‘V) =.5 (respect-
ively, R°(U,9) = .5).
Remark 2.5: Kolodziejczyk [18], proved that if 7, U, ¥, We F(R) are four fuzzy numbers
- and R¥(Z,0) <.5 (i.e.,, 72* U), and R*(VM) <.5 (i.e., V2* W), then R¥(THV,U+W) < .5
(.e., +V2* U+W), with + = fuzzy adition. On the other hand, if A is a real constant, A >0,
R*(U,%) = R*AUAY) (ie., U2* V iff AU2* A1), and R*(U+(-U),0) = .5 (i.e., U+(-U)
~* 0). Consequently, if R*(U,%) <.5 (i.e., U2* 1), then R*(U- ¥,0) £.5 (i.e., U - V2* 0).
Analogous results are true for R°. In general, any suitable comparison satisfying these
properties would be useful for our purposes (that is, the selection of Kolodziejczyk indices is just
a possible option).
Remark 2.6: Kolodziejczyk [18], discussed the advantage;s of using R® instead of R*. Thus,

although both of them lead to the same preference relation, (since obviously, R*(1,9) £ 5if
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and only if R°(7,7) < .5) the index R* differentiates strongly close fuzzy numbers, whereas R°
is less susceptible. In coherence with this remark, when only a preference relation is required we
hereafter adopt coefficient R*, that is slightly easier to compute, but when we need to specify the
degree of truth of the assertion « U is not higher than %», we will take coefficient R°.

Remark 2.7: Obviously, the comparison procedure in Definition 2.3 can only be manageable
when the set of fuzzy numbers to be compared is finite. This fact motivates us to assume some
constraints (usually irrelevant in practice) on the action space of the Decision problems we will
consider next.

We can now model the fuzzy utility function as follows:

Let © and A be the state and action spaces of the Decision problem, and let & be the prior
distribution on the measurable space (®,C). Now,

Definition 2.4. A fuzzy utility function is a fuzzy set-valued function zon ® x A such that

1) for each action a € A, «(.,a) is a FRV on (©,C), integrable bounded, and whose expected
value with respect to § is a fuzzy number denoted by E{u(alt)]. .

ii) a is preferred or indifferent to a' (according to the decision maker preferences) if and only
if Eu(alf)]2* Eu(2'lE)] (thatis, E[u(al€)]2° Eu(a'lE))).

Remark 2 8: In accordance with Remark 2.1, to assume that the fuzzy utility function is a
FRYV, for each action, implies that the utility function is supposed to be "bounded" in some
sense. This assumption is not an important constraint, since in many axiomatic developments of
the traditional utility theory, the utility function must be bounded (cf., DeGroot [6]).

Remark 2 9: A further constraint, we will assume from now on, is that the action space, A,
is finite, so that the selection of the optimal action is possible. In most practical applications the
action space is finite, thus such an assumption is not in fact restrictive.

Remark 2.10: It is interesting to emphasize that when the fuzzy utility function is such
that «{(.,a) is a simple FRV for each action a, then the definition of the expected utility coincides
with that of Freeling [10]. However, Definition 2.4 does not require that u(0,a) be fuzzy

numbers.



For thé sake of practical fuzzy utilities assessments, it is useful to extend a well-known result
in the non-fuzzy case. This result indicates that if a fuzzy utility function exists, then certain
linear transformations of this function will also be utility functions. Thus,

Theorem 2.1. Let u be a fuzzy utility function on ® x A. Then, the fuzzy set-valued func-
tionon ©xA defined by «(0,a) = a u(0,a) + B (where ot and P are real constants, o > 0) is
also a fuzzy utility function.

Proof. Indeed, »(.,a) = & «(s,a) + B is a FRV for each action ae A.If a, a' € A, we can
then verify that R*(Z[«(al§)], E[«(a'l§)]) = R*(E[u(al€)], [ u(a'lE)]), due to the properties of the
Hamming distance and the operations between fuzzy sets. Consequently, conditions i) and ii) in
Definition 2.4 are both satisfied. |

Remark 2.11: On the basis of the preceding result, we could arbitrarily constraint, without

loss of generality, the support of 1(6,a) to be contained in a particular bounded real interval, say
[0,1] or [-1,0].

3. THE EXPECTED VALUE OF SAMPLE INFORMATION

Let ® and A = {a,...,ay) be the state and action spaces of the Decision problem,
respectively, and » be a fuzzy utility function on © x A. Let us also assume that the decision
maker has an estimate of the prior distribution § on the measurable space (®,C). For any action
a € A, the fuzzy number E[u(alf)] will be called the prior expected fuzzy utility of a.In
accordance with condition ii) in Definition 2.4, the existence of a fuzzy utility function entails the
acceptance of the Decision-Making principle based on the "maximization" of expected fuzzy
utility. In this way, the Bayes principle of choice is now extended as follows:

Definition 3.1. An action ay* e A is called optimal prior action if it maximizes the prior
expected fuzzy utility, that is, E[u(ag*IE)] 2* F{u(a;l)], i=1,....N. (Obviously, the criterion based
on 2° would be equivalent to that using >*),

Generally, to increase the "highest" expected fuzzy uﬁ]ity in a Decision problem the decision
maker takes advantage of the fact that additional information may reduce his uncertainty about the

state in ©. Thus, the decision maker usually try to get information by performing .a random



10

e;(pen'ment whose distribution depends on the state in ©.

Let X be a random experiment, associated with the observation of a random variable (or
vector) in a population, and characterized by the probability space (X,Bx,Py), 0 € ©, where the
set of variable (or' vector) values, X, is a set in R (or in a Euclidean space), By is the smallest
Borel o-field on X and Py is a probability measure on (X,Byx), so that © is the state
governing the experimental distribution. If the information obtained by performing of X is x €
X, then the decision maker can use it to revise the distribution on- © in light of the experimental
information using Bayes' Theorem. This revision leads to the posterior distribution &, on
(©,0), characterized by the density function (with respect to a dominating measure on C) h,(6)
= h(B)fg(x)/f(x) (Where h is the density function associated with the prior distribution & with
respect to the same dominating measure on C; fy is the density function associated with the
distribution Py with respect to a dominating measure on By; and f is the density function
associated with the marginal probability measure P with respect to the same dominating méasure
on By, that is, f(x) is given by the Lebesgue-Stieltjes intégral I e fo(x) d &(6), for all x e X.
The fuzzy number ZE[«(al€,)] will be called the posterior expected fuzzy utility of the action a.
The application of the Decision-Making principle in Definition 3.1 leads us to

Definition 3.2. An action a,* € A, is called optimal posterior action given x, if it maximizes
the posterior expected fuzzy utility given x, that is, E[u(a,*IE,)] 2* E[u(a;l€,)], i=1,...N.
(Obviously, the criterion based on 2° is equivalent to that using >*). '

Remark 3.1: Theoretically, the set X of variable (or vector) values in the experiment X is
not required to be finite to develop the present study. Thus, when X is not finite it may be
possible to determine in a generic way a,* for each x € X (see, for instance, the example in
Section 5). If this generic determination is not easy to carry out, the search of optimum posterior
actions becomes in the infinite case unmanageable.

The purpose of the use of sample information is to get a "gain" in expected fuzzy utility on
the average. To "quantify" this gain, we can take into account that the "highest" expected fuzzy

utility for the decision maker, under the prior information, is equal to Hu(ag*I€)]. On the other
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hand, if the decision maker obtains the sample information x in the performance of X =
(X,Bx,Pg), © € ©, his "highest" expected fuzzy utility would be equal to E[u(ay*IE,)]. This,
his average "highest" expected fuzzy utility, under sample information from X, could be
measured by the fuzzy number [y F{u(a,*£,)] d P(x).

Then, the average worth of the sample information from X could be measured, as in the non-
fuzzy case, through the "difference” between the "highest" expected fuzzy utility, under sample
information from X and the "highest" expected fuzzy utility, under prior information. Thus,

Definition 3.3. The fuzzy set given by

UX) = Iy Hula*E,)] dP(x) - Eu(agHE)]
is called Expected Value of Sample Information (EVSI) associated with X in the Decision
problem.

Remark 3.2: Fuzzy operations (Dubois and Prade [7, 9]) guarantee that the EVSI could be

alternatively computed as follows:
N
UX) = 21 HlulaEy )] PX(2)) - Elu(ag*E)]

where X(a;)={ xe Xla,*=2;} € B, and EX(ai) being the posterior distribution on (©,C),
characterized by the density function (with respect to the dominating measure on C) hx(a;)(6) =
h(8)Po(X(&))/P(X(2)) (with Pg(X(ap) is given by the Lebesgue-Stieltjes integral [z d Po(x),
and P(X(a;)) is given by the Lebesgue-Stieltjes integral IX(ai) d P(x)). Thus, in this alternative
computation, the EVSI can be regarded as the expected value of a simple FRV.

We are next going to define the criterion to compare experiments based on EVSI. The
analysis of some properties of this criterion will guarantee the suitability of the model and

ranking of numbers involved in it.

4. CRITERION TO COMPARE EXPERIMENTS. MAIN PROPERTIES
Let ® and A = (a,,...,ay} be the state and action spaces of the Decision problem,
respectively, and u be a fuzzy utility function on ® x A, and assume that the decision maker

assess the prior distributiont € on the measurable space (©,C).
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Let X = (X,Bx.Pg), 0 € ©,and Y = (Y,By,Qp), 0 € O, be two statistical experiments in
which two random variables or vectors are to be observed on the same population.

Definition 4.1. We say that X is ar least as informative as Y in the Decision problem,
written X 2UY, if and only if «(X) 2* U(Y). We say that X is as informative as Y in the
Decision problem, written X ~4Y, if and only if X 2UY and Y 2UX, that is, UX) ~* U(Y).
R°(U(X), U(Y)) is the degree of truth for the assertion « U(X) is not higher than U(Y)».

The preceding fuzzy preference relation between two statistical experiments satisfies some
natural properﬁes guaranteeing its suitability and that of the involved concepts. We are now
going to develop a study similar to that in Lindley, [20] (for Shannon's amount of information).

First of all we verify that provided the distribution of a statistical experiment varies with 0,
performing that experiment is at least as informative as not performing it, on the average. Thus,

Theorem 4.1. Let X = (X,Bx,Pg), 6 € ©, be a statistical experiment whose distribution
varies with 0. Then U(X) 2* 0, whatever the prior distribution on ® may be.

Let N = (N,By\,Qq), 0 € O, be a statistical experiment whose distribution does. not depend
on O (null experiment). Then U(N) ~* 0, whatever the prior distribution on © may be.

Proof. Indeed, fof each x € X, we have that E[u(a,*IE,)] 2* Eu(ag*IE,)]. Consequently,
and due to the properties of the R* index, we can conclude that

Jx Hluta 8] dP(x) 2* [y Hulag*E] dP(x) = Hu(ag*E)]
whence, according to Remark 2.5, we obtain R*(1(X),0) < 5.

On the other hand, for each n € N, we have that &, and & coincide, and hence a,* and
ag* are indifferent for all ne N. Therefore, R*(U(N),0) =.5. Q

Suppose that each observation s from a statistical experiment S = (S,Bs,Pg), 0 € ©,
consists of a pair of observations (x,y), x € X,y € Y. Consider the experiments, X =
(X,Bx,Ppl), 6 € ©, and Y = (Y,By,Pg2), 0 € ©, where By and By are the Borel 6-field
over X and Y, induced from Bg by the projections g;(x,y) =x and gy(x.y) =y, respectively,
and Pyl and Pg? are the probability measures on By and By, respectively, from Pg. Then,

the experiment S is said to be the sum of X and Y, written S=X«xY.
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We are next verifying that performing two statistical experiments is at least as informative as
performing only one of them.

Theorem 4.2.Let S=XxY. Then S 2UX, S >UY, whatever the prior distribution on
© may be.

Proof. Indeed, to prove this result we first discuss the definition of the average EVSI
associated with the experiment Y after X has been performed and x observed. This value may
be quantified as follows: given x & X, we first consider the experiment Y, = (Y,By,Pe(.Ix)), 6
€ ©, and the "prior” distribution &, on ©. From this prior distribution, the posterior distribu-
tion given ye Y would be §(x’y), whence the EVSI associated with Yy for the prior distribu-
tion &, is

UYx) = Ly Eludag 1B )] d PAYIX) — ElalaHIE]
(where the density characterizing P2(.lx) with respéct to a dominating measure on By is given
by the Lebesgue-Stieltjes integral f2(ylx) = Je fo2(ylx) d £x(8), with fg2(ylx) being the density
characterizing Pg2(.Ix) with respect to the same measure). Consequently, the average EVSI
associated with Y after X has been performed is given by U(YIX) = _Jx €(Y,Ix) d P1(x),
and due to properties of fuzzy operatim}s (Dubois and Prade, [7, 9)]),
UYIX) = UX x Y)-— UX) = US) — uX)

Therefore, as in virtue of Theorem 4.1 U(Y,Ix) 2* 0 forall x € X, then U(YIX) >* 0, and
according to Remark 2.5, we obtain R*(U(S),U(X)) <.5. .

Analogously, it can be shown that R*(2(S),u(Y)) < .5. Q

As an immediate cbnsequence from the last result, we deduce that the greater the size of a
random sample from a statistical experiment, the more informative.

Corollary 4.1. Let X(M) = (Xm,Bym Pg™), 0 € ©, be a random sample of size m from the

(m times)
statistical experiment X = (X,Bx,Pg), 0 € © (thatis, X(M) = X x X x ..... x X). Then, X(m+1)

2UX(m), for all m € M, whatever the prior distribution on © may be. Q
The following result formalizes the fact that when the experiment Y cannot add probabilistic

information about 6 to what is contained in X (that is, Pg2(sIx) does not depend on 9), it is
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indifferent performing both experiments than only the last one.

Theorem 4.3. If Py2(.ix) does not depend on 6,and S =XxY, then S ~UX,
whatever the prior distribution on ® may be.

Proof. Indeed, under the assumed condition and following arguments similar to those in the
proof of Theorem 4.1, we obtain that U(YIX) ~* 0, so that R*(2(S),u(X))=.5. Q

Two statistical experiments X = (X,Bx,Pg!), 0 € ©, and Y = (Y, By,Pg2), 0 € ©, are said
to be independent experiments if the probability measure Pqy associated with X x Y is the
product of the probability measures Pg! and Pg2, associated with X and Y, respectively. The
property below indicates that the fuzzy preference relation between two statistical experimenys Y
and Z is preserved when each of them is sumed to a statistical experiment X independent of
both, Y and Z.
 Theorem 4.4.Let X,Y,and Z be three statistical experiments, whose distributions
dependon 0 € ©.If Y 2UZ, for all prior distribution on ‘9, and X is independent of both, Y
and Z, then Xx Y 2U X x Z, whatever the prior distribution on © may be.

Proof. Indeed,

UX x Y) = UYIX) + UX) and UX x Z) = UZIX) + UX)

As X and Y are indepe;ldent experiments, the experiments Y, = (Y, By,Pg2(.Ix)), 0 € ©,
and Y = (Y,By,Pg?), 0 € ©, are equivalent, since Pg2(.Ix) does not depend on x. Analogously,
the experiments Z, = (Z,82,Pg3(.Ix)), 0 € ©, and Z = (Z,B;,P¢%), 0 € O, are equivalent.

Consequently, U(Y,Ix) = EVSI associated with Y for the prior distribution E,, and
U(Z,Ix) = EVSI associated with Z for the prior distribution &, so that under the assumptions
in this theorem, U(YIx) 2* U(Z,Ix), whence U(YIX)2* U(ZIX), and hence UX x Y) =*
UX x Z). Q

In the following properties we discuss the effects of grouping of experimental observations
on the EVSI.

Thus, the grouping of experimental data through a partition of the set of variable (or vector)

values, entails a loss of "worth of information", as we formalize in the next result.
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Theorem 4.5. Let X = (X,Bx,Pg), 0 € O. Let X' = (X',Bx",Pg), 0 € ©, be a new
statistical experiment where X'= {B;, j € J} (with B; e Byx), By is the smallest Borel o-field
on X', and Po(B)) is given by the Lebesgue-Stieltjes integral IBj dPg(x),forall 6e ©,je J.
Then X 2UX', whatever the prior distribution on © may be.

Proof. Indeed, for all x € B;, we have that E[u(a,*IE,)] 2* £[u(aBj*I§x)]. Consequently,
and due to the properties of the R* index, and those of fuzzy operations, we can conclude that

uX) = Iy Hula1E,)] d Px) - Hlulag*E)] 2* Iy Fulap;ME] d P(x) — 2 Du(ao*lé)] = uX")

Finally, we now analyze the effects of grouping of sampling information from a statistical
experiment when this grouping is due to the use of a staristic. The result below indicates that
given a random sample -X(M) = (XM, Bym Py™), O € ©, any statistic from it, T(X(M), (that is, a
Borel-measurable function T from Xm to a subset in a Euclidean space) entails a reduction of
the original random sample, involving a loss of "worth of information" about the true state of
nature. In particular, if the statistic is a sufficient statistic (that is, the conditional distribution of
X(m) given T(X(M)) = t, does not depend on 6, for almost all t € T(Xm)), it exhausts all the
“worth of information" about the true state that is contained in the original sample X(m),

Theorem 4.6. Let X(M) = (Xm Bym Pgm), 6 € ©, be a random sample of size m from the
statistical experiment X and let T(X(M) be a statistic based on that sample. Then X(m) >U
T(X(m}), whatever the prior distribution on © may be.

In particular, if T(X(M)) is a sufficient statistic, then X(m) ~UT(X(m)), whatever the prior
distribution on ® may be.

Proof. Indeed, u(X(m)) >* ﬂ(T(X("‘))), whatever the prior distribution on © may be, in
virtue of Theorem 4.5 and due to the fact that T(X(M)) determines a partition on Xm (each class
of this partition enclosing sample data mapping by T into the same statistic value).

On the other hand, if T(X(™)) is a sufficient statistic, for each te T(Xm), we have that the
posterior distributions &, and &,m coincide, for all xm e Xm such that T(xm) = t, and hence
the corresponding a;* and a,m* are indifferent. Therefore,

UXM) = fym Fu(a,m™IE,m)] d P(xm) — E{u(agHlE)] ~*
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~ Jxm E{utaE,m)] dPOem) - Hu(agE)] = uTXm)) O

We are next going to illustrate the application of the criterion studied in this section.

5. ILLUSTRATIVE EXAMPLE
We will now examine the application of the criterion above suggested by considering the
example illustrating the motivation for the present study in the Introduction of this paper.
Example: As we commented in the presentation of the example, the assessment of utilities in
that Decision problem seemed to be very precise, because of the nature of the actions and states
in the problem. Thus, the following assessment would express better the decision maker
(neurologist) "preferences”: u(6,,a;) = u(0,,a5) =0, u(6,,a;) = «inconvenient», u(0,,a,) =
«dangerous», \;vhere u(01,3) and u(6,,a;) could be described by means of the fuzzy sets
characterized, for instance, by the membership functions in Figure 1.

H«dangerous» H«inconvenient»
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$
&
&
$
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&
$
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&
&
N
&
N
§&
NI
$
N
&
S
-1 -.75 -5 -~ .25 0

Fig. 1. Membership functions of the fuzzy utilities "inconvenient"
( ~) and "dangerous” (ss=)

The question we were interested in was the following: what is the "most convenient" score

the neurologist can base his decision on, X or Y?. .
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On the basis of the information from X we can revise the prior distribution on ® to obtain
the posterior ones. Then, by computing ZE[u(alf,)] for each ae A and x e X =R, we
conclude that it can be possible to determine a,* in a generic way for each x € R, so that a *
=a) for x2110-3.2log 6.5, ay* = a, otherwise. Consequently, U(X) = .1234 (0,,3,) +
0136 u(0;,a7) — .4 u(0,,a;). '

In the same wéy, on the basis of the information from Y we can revise the prior distribution
on © to obtain the posterior ones. Then, by computing T.[u(alﬁy)] for each ae A and ye Y
=R, we conclude that it can be possible to determine a,* in a generic way for each y € R, so
that a,* =a; for y2110-4.11log 6.5, ay* = ay otherwise. Consequently, 7u(Y) = .1575
1(02,2;) + .0596 u(0,,2,) — .4 u(6,,2,).

Therefore, the degree of truth of the proposition «EVSI of X is not higher than EVSI of Y»
is equal to R°(U(X),U(Y)) = .4811, so that X is slightly more informative than Y.

6. CONNECTIONS WITH SUFFICIENCY CRITERION
TO COMPARE EXPERIMENTS

The criterion presented in this paper establish a complete preordering among all the statistical
experiments associated with the same Decision problem, since under the assumption of a
Bayesian framework the EVSI is well-defined for all the experiments.

On the contrary, the well-known criterion of comparing experiments based on Blackwell's
sufficiency [3, 4] only determines a partial preordering on the set of all statistical experiments
associated with the same population. As we have previously remarked, the purpose of this
criterion is to get as much probabilistic information about the state or parameter as possible,
without having decisions in mind. Thus, .

Let X =(X,Bx,Pg), 0 € ©,and Y = (Y,By,Qq), 0 € ©, be two statistical experiments in
which two random variables or vectors are to be observed on the same population.

Definition 6.1. We say that X is sufficient for Y, written X 25V, if and only if there
exists a nonnegative function h on X x Y, so that the density function associated with Qp with

respect 10 a dominating measure vV on By x By is given by
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£6(y) = Jx h(x,y) f3(x) d v(x), for all 8 € ©
where
[y hxy)dvy) =1, forall x e X

and h is integrable with respect to x (fg(x) being the density function associated with Py with
“respect to V). Since the function h (called stochastic n'ansfo;'maﬁon) does not depend on 6, the

above sﬁfﬁciency condition indicates intuitively that an outcome from Y could be generated

from an observation on X and an auxiliary randomization according to h. Consequently, to

observe Y does not add any information about © to what is contained in X.

By means of the next result we verify that, wheﬁever the comparison through sufficiency is
applicable the preference relation in Definition 4.1 and that in Definition 6.1 are coherent,
(leading to the same conclusion) although the first one is clearly the most widely applicable (thus,
for instance, X and Y in Section 5 are classical examples of non-comparable experiments via
sufficiency that are comparable through the preference relation herein proposed). This property
means a new guarantee for the suitability of the fuzzy preference relation suggested in this paper.

Theorem 6.1. Let X = (X,Bx,Pg), 0 € ©, and Y = (Y,By,Qp), 0 € ©, be two statistical
experiments in which two random variables or vectors are to be observed on the same
population. If X2>5Y, then X 2UY, whatever the action spa.ce, A, the fuzzy utility function on
©x A, and the prior distributiont £ on (©,C), may be.

Proof. Indeed, H{u(a,*IE,)] 2* [ u(ay*IE,)]. Consequently, and due to the properties of the
R* index, those of fuzzy operations, and those of the stochastic transformation h, if Q is the
probability measure associated with h we cah conclude that -

uX) = fx Eula,ME,)] d Px) - Hu(ag*E)] =
= Iy Ix HuaME)1d P(x) d Qy/x) — Flu(ag*iE)] =+
2* fy Ix Hutay*E,)1d P(x) d Q(yfx) — Elu(ag*iE)] =
= Iy Flu(a, €)1 d Q) - Hulag®] = wY). O

7. CONCLUDING REMARKS

The study in this paper could be immediately extended to the case in which the prior
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distribution on the state space was fuzzy. Thus, in order to be able to express the prior available
information (non-sample information) in probabilistic terms, most (although not all) Bayesians
follow, if necessary, the sujective interpretation of probabilities. The description of these
probabilities by means of imprecise propositions (such as, « likely », « improbable », « very
likely », and so on), is often more realistic than the numerical one. The Decision-Making
problem with fuzzy probabilities and fuzzy utilities, has been examined in previous papers (see,
for instance, Freeling [10], Dubois and Prade [8]). We now propose to develop a study similar
to the present one by modeling fuzzy utilities through FRV, and using the arithmetic operations
on fuzzy probabilities in Jain and Agogino [16].

Fianlly, another immediate extension to be carried out , would be that assuming the presence
of fuzziness in sample information, following the ideas in Okuda et al. [22], Zadeh [33], Tanaka
et al. [27], Gil [12, 13, 14], Gil et al. [15]. |
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