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Abstract

The choice of an optimal action in a Decision-Making problem involving fuzzy utilities has

been approached in previous studies. This choice reduces, in most of them, to model the

fuzzy utilities and the expected fuzzy utility (that is usually considered as a fuzzy number),

and to select a technique for ranking fuzzy numbers that fits well the situation. In this

paper, we incorporate a new element to the Decision problem above: the sample information

supplied by a random experiment associated with it This new element, along with the use

of fuzzy random variables (Puri and Ralescu) to model fuzzy utilities, and a fuzzy preference

relation stated by Kolodziejczyk, will allow us first to extend appropriately in the Bayesian

framework the concept of Expected Value of Sample Information (or gain in expected fuzzy

utility due to the knowledge of the sample information). On the basis of this concept, we

will then establish a criterion to compare random experiments associated with the problem,

and analyze some interesting properties confirming its suitability. An example will

illustrate the application of the suggested procedure. Finally, it will be contrasted with the

"pattern criterion", based on statistical sufficiency and introduced by Blackwell.
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1. Introduction

Consider two statistical experiments in which two random variables or vectors are to be

observed on the same population, so that their distributions depend on the same unknown state

of nature or parameter value. The idea of comparing such experiments was suggested by

Bohnenblust, Shapley and Sherman in a private communication and their basic results were

collected by Blackwell [3]. The Bohnenblust et al. procedure of comparison was formulated in a

Decision-Making context, whereas Blackwell proposed a methodthatwas based on statistical

sufficiency, in which the purpose was to getasmuch probabilistic information about the state or

parameter aspossible, without having decisions inmind. Blackwell [3] proved that bothmethods

are equivalent Thecomparison of experiments was developed into atheory by Blackwell [3], [4]

and other authors established criteria to compare experiments and connected them with

BlackwelTs sufficiency criterion (see, for instance, papers referenced in Lehmann, [19]).

The aim of this paper is to introduce amethod tocompare experiments in Decision-Making

problems in a Bayesian framework, when utilities (or losses) cannot be assessed in terms of

numerical values, but can be described by means of "fuzzy values". The traditional utility

assessment procedures usually involve acceptance of some conditions,or axioms for the

preference relations, inorder to guarantee the existence of anumerical utility function (axiomatic

approach to theUtility Theory). As remarked in previous papers (see, for instance, Jain [17],

Watson et al. [28], Adamo [1], Freeling [10], Orlovsky [23], Dubois and Prade [8], Whalen

[29], and Kolodziejczyk [18]), the necessity for assessing utilities in terms of numerical values

may be, in practice, too restrictive, whereas the use of fuzzy sets to describe utilities is often

more realistic.

To justify this assertion we now examine an example that has been taken from an

introductorytext of Statistics [30], with some modifications.

Example: Suppose a neurologist has to classify his most serious patients as requiring

exploratory brain surgery (action ax) ornot(action a^). From past autopsies, it has been found

that 60 % of theexamined people needed theoperation, while 40 %did not



The utilities (intended in thisexample asopposite to losses) of right classifications are null

Theutilities of awrong classification are obvious: an unnecessary operation means resources are

wasted and the patient may be hurt. Yet the other utility may be worse: if a patient requiring

surgery does notgetit, thetimelostuntil clear symptoms appear maybecrucial

Assume that the neurologist can basehis decision on two different scores, X and Y, each

oneof themis obtained from combination of several tests. Past experiences have shown that X

is normally distributed with variance equal to 64 and mean equal to 120 for those who require

surgery and 100 for those whodonot, and Y is normally distributed withvariance equal to 81

and meanequal to 120for thosewho require surgery and 100 for those who do not

The question we are now interested in is the following: what is the "most convenient" score

the neurologist can base his decision on?.

In [30], without considering the comparison of experiments, the preceding situation, is

regarded as aDecision problem in aBayesian context, with state space 0 = {9X, 92) (9X =the

patient requires surgery, 02 =the patient does not require surgery), action space A = {ax, a2},

prior distribution £, such that §(&{) =.6, $(82) =.4, and utility function u(91,a1) =u(92,a2) =

0, u(9!,a2) = 5u(92,ax), with u(92,ax) <0.

However, the preceding assessment of utilities seems to be extremely precise for the nature

of theactions and states in theproblem. Thus, the following assessment could express decision

maker's (neurologist) "preferences" better: i^O^aj) =11(^2) =0, tt(92,aj) =«inconvenient»,

uiQi,2L2) = «dangerous», where «(9!,a2) and a(92,aj) could be described by means of some

adequate fuzzy sets as we will see later.

We are next going to formalize these kinds of problems, and extend the notion ofExpected

Value of Sample Information, introduced by Raiffa and Schlaifer [26], and exhaust- ively studied

by Garcfa-Carrasco [11]. On the basis of this value, we will establish a criterion to compare

experiments, whose suitability will be then analyzed. The above example will be considered

again to select the "most convenient" score for the neurologist, according to the suggested

method. Finally, asit is usual in most of these studies, we will examine the implica- tions of the



sufficiency comparison in terms of the new criterion.

2. Preliminary concepts and models

In traditional Decision-Makingproblems, probabilities are numerical representations of the

beliefs and the current state of information of the decision maker, whereas utilities are numerical

representations of his preferences. Thus, in these problems the decision maker must be able to

quantify the relative value of any situation that may arise. In a Bayesian context, the utility

function is formalized as follows (cf., DeGroot [6]). Let 0 and A denote the state and action

spaces of the Decision problem, and let % be the prior distribution on a measurable space

defined on 0,say (0,C).Then, a utilityfunction is areal-valued function u on 0x A (where

u(9,a) is the utilityassessed to theconsequence of taking action a when 9 is the true state of

nature), such that

i) for each action ae A, u(«,a) isarandom variable on (0,C), having a finite expectation

withrespect to § denoted by E[u(al§)].

ii)a ispreferred orindifferent to a' (depending on decision maker's preferences) if and only

if E[u(al$)] ;> E[u(a^)].

Following this idea, weare now going to formalize the notion of fuzzy utility function by

using the concepts of fuzzy random variable and the associated expected value, as defined by

Puri and Ralescu, [24,25] (see, also Negoita and Ralescu [21], for areview of the main results).

Let (0,C4) be aprobability space and let ^(K) denote the collection of all fuzzy subsets

V of K, characterized by^membership function n<j/: IE) -♦ [0,1], with the following properties:

(1) supp V=support of ^= closure of {oa € mI^oo) >0 } is compact (i.e., closed and

bounded).

(2) LaW =a-level set of ^={0)6 ©I m<G))£a} is closed for each 0£oc<l.

(3) LiO^ modal setof ^={coe ®l m(<D)°l }*0.

Definition 2.1. A (one-dimensional) fuzzy random variable isa function v: 0 -* 7J^\

such that {(9,©) Ico g La(z<9))} e Cx%, for all a g [0,l],where % is the Borel a-field on



IS. (In other words, therandom setLa(i<.)), defined on 0, is measurable foreach 0 < a £ 1).

Remark 2.1: Fuzzy random variables (FRV) generalize random variables (by replacing the

singleton (t(9)} by the a-sets La(i(9)), 0£ a £ 1, and R by J^K)), and random sets (by

replacing the set z<0) by the a-sets La(i<9)), 0 £ a £ 1, and 3JIS) = {non-empty compact

subsets of K} by J^)). According tothe definition of J^), condition (1) has been imposed

toensure that the variable "values" are "bounded" insome sense, (2) is a measurability condition

for the membership functions describing the fuzzy variable values, and (3) guarantees that all

levels of eachvariable "value" arenon-empty.

Theexpected value of a fuzzy random variable is defined by

Definition 2.2. Let v: 0 -> ^K) be a simple FRV, that is, a FRV taking on fuzzy

values zje 50W on Cj€ C,j=l,...jc, respectively. This variable can be written by

(where %C = indicator function of C). Then, the expected value of v, with respect to the

probability measure £ on (0,C), is the fuzzy set *E(^) =]# z<9) d£(9) e ^K) given by

j=i J J

with «j£(Cj)= fuzzy product of tj by the constant real value £(Cj), and X =fuzzy addition
(these fuzzy operations are based on theextension principle, [32]).

For amore general FRV, v, it is possible to take a sequence of simple FRV, vn, such that

lim dcoK(9),i<9)) =0, for almost all 9 e 0 (where deo(ii1(9),i(9)) = sup dH(La(zi1(9),La(t<9))
n-**° 0<a<si

isametric on J^R) and dH isthe Hausdorff distance defined on the set of all non-empty compact

subsets of U, that is, dH(Q,Q*) =max { sup inf Ico-co'l, sup inf Icd-co'IJ). Then, the

expected value of v, with respect to the probability measure £ on (0,C), is theunique fuzzy set

HA) =Je <*) d5(9) e J^) such that lim doo(£(^).£(*©) =0.

Remark 2.2: A rigourous and detailed justification of the definition of the expected value

above, can be found in papers of Puri and Ralescu, ([24, 25]), and the book of Negoita and

Ralescu, [21]. In the original paper (Puri and Ralescu, [25]), the expected value of a FRV is



introduced in a different way, as the unique fuzzy set such that La(£(d§)) = Aumann integral

([2]) of the random set La(i<.)) with respect to 5, for all 0 £ a < 1, but the final definition is

equivalent to the lastone andmorecomplexto describe.

Remark 2.3: It should be emphasized that, whenever the probability space (0,C,5), is

non-atomic (that is, for each CeC suchthat 5(C)>0, there exists aCeC such that C => C

and 5(C) >5(C) >0) and v is integrably bounded (that is, there exists h: 0 -»K, integrable

with respect to 5, such that sup llcoll £ h(9), for all 0 <a <1)), then £(d5) exists and is a
(dgI^WG))

fuzzy number (intended asanormalized convex fuzzy set).

Remark 2.4: It is worth also pointing outthat, in practice, thecomputation of £(©15) for

non-simple FRV, obtained from alimiting process (in doo), becomes usually complicated.

To extend the notion of utility function to fuzzy utility function, we additionally need to

consider athird element: the comparison between expected values. As these expected values will

be fuzzy numbers, that comparison has tobearanking of fuzzy numbers. Several procedures

have been proposed in the literature of fuzzy numbers. Kolodziejczyk [18] analyzed different

fuzzy preference relations (following Orlovsky ideas, [23]) satisfying some properties that

confirm their suitability to rank fuzzy numbers. Some of them were suggested so that the

calculations in the set of fuzzy numbers, with respect to the fuzzy addition and product by a

constant real number, could be performed in a manner analogous to the operations on real

numbers (and, consequently, sothat the calculations through the expected value for aFRVcould

be performed in an analogous way as for random variables, what is very convenient and

plausible for ourpurposes). Two of these preference relations are defined as follows:

Let V e ?0(\ft) be a fuzzy number. Let <&< and 1* denote the fuzzy sets of (S with

membership functions

I \iAg>) for cd^z
\i t(G»= i V
V j 1 for co>z

I \in((ti) for co>z
M. p«o)= j V

V 1 for ©<z



where z e (HI is such that M-iX2) = L

Definition 2.3. Let ft, O' e J0(lni), be two fuzzy numbers. The following values represent

"degrees of truthfor the expression « ft is nothigherthan W

R*<W* =*t/W*,«h +̂ ftW.ft*)

R0(ft,l4 =

d(^V) +d(wV)

d(ftLv1^,ftL) +d(ftPv?^,ftP) +d(ftT>V,0)
d(ftL,1^) +d(ftV) +2d(ft™<0)

(where d=Hamming distance between fuzzy sets : d(ft,^ = J(a IM"£/(z) - |X*|Xz)l dz; v =

extended maximum of fuzzy sets: |J.ftv<jXz)= sup [min {H^xXmXyM.forall ze R; n =
xvy=z

intersection offuzzy sets: M-^^z) = min {ji^xXn^y)}; and 0=especial fuzzy setassigning

membership function equalto 1 to thevalue 0, andequal to 0 otherwise). In addition,

• ft is said to be preferred or indifferent to V, denoted by ft >* T(or u>°i/),

whenever R*(%V) <> R*(1/,ft) = 1- R*(ft,l4 (respectively, R°(ft,^ <, R°(<Kft) = 1 -

R°(ft,l4), that is,whenever R*(ft,l4 £ .5 (respectively, R°(ft,l4 £ .5).

• ft is saidto be indifferent to V, denoted by ft ~* ^(or ft ~° V), whenever R*(ft,l4 =

R*CKft) (respectively, R°(ft,l4 = R°CKft)), that is,whenever R*(ft,^ = .5 (respect

ively, R°(ft,l4 = .5).

Remark 2.5: Kolodziejczyk [18], proved that if %ft, V, We ?<$$) arefour fuzzy numbers

and R*(T,ft) £ .5 (i.e., T£* ft), and R*(1//W$ ^ .5 (i.e., <V>* W), then R*(<r+<l/,U+<H>) £ .5

(i.e., CR-1^* ft+'W), with + = fuzzy adition. Ontheother hand, if A. is a real constant, X> 0,

R*(ft,l4 = R*(X,ft,A,l4 (i.e., ft £* ^ iff kft 2>* X,^, and R*(ft+(-ft),o) = .5 (i.e., ft+(-ft)

~* 0). Consequently, if R*(ft,<^ £ .5 (i.e., ft £* ^, then R*(ft- V,0) £ .5 (i.e., ft - V>* 0).

Analogous results are true for R°. In general, any suitable comparison satisfying these

properties would beuseful for ourpurposes (that is, the selection ofKolodziejczyk indices isjust

a possible option).

Remark 2.6: Kolodziejczyk [18], discussed theadvantages of using R° instead of R*. Thus,

although both of them lead to the same preference relation, (since obviously, R*(ft,1^) < .5if
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and only if R°(ft>'P) £ .5) the index R* differentiates strongly close fuzzy numbers, whereas R°

is less susceptible. In coherence with this remark, when only apreference relation is required we

hereafter adopt coefficient R*, that is slightly easier tocompute, but when weneed to specify the

degree of truth of the assertion « ft is nothigher than 1A>, we will takecoefficient R°.

Remark 2.7: Obviously, thecomparison procedure inDefinition 2.3 can onlybemanageable

when the set of fuzzy numbers to be compared is finite. This fact motivatesus to assume some

constraints (usually irrelevant in practice) onthe action space of the Decision problems we will

consider next

We cannow model the fuzzy utility function as follows:

Let 0 and A bethe state and action spaces of the Decision problem, and let 5 be the prior

distribution on the measurable space (0,C). Now,

Definition 2.4.Afuzzy utility function is a fuzzy set-valued function »on 0 xA such that

i) for each action ae A, u(.,a) is aFRV on (0,C), integrable bounded, and whose expected

value with respect to 5 is a fuzzy number denoted by £[u(al5)].

ii) a ispreferred orindifferent to a' (according to the decision maker preferences) if and only

if £Mal5)]£* EMa'15)] (that is, £[u(al5)]^0 EMa'̂ )]).

Remark 2.8: In accordance with Remark 2.1, to assume that the fuzzy utility function is a

FRV, for each action, implies that the utility function is supposed to be "bounded" in some

sense. This assumption isnot an important constraint, since inmany axiomatic developments of

the traditional utility theory, the utility function must bebounded (cf., DeGroot [6]).

Remark 2.9: A further constraint, wewill assume from now on, is that the action space, A,

is finite, so that the selection of the optimal action ispossible. In most practical applications the

action space is finite, thussuch an assumption is notin fact restrictive.

Remark 2.1Q: It is interesting to emphasize that when the fuzzy utility function is such

that «(.,a) is asimple FRV for each action a, then the definition of the expected utility coincides

with that of Freeling [10]. However, Definition 2.4 does not require that u(0,a) be fuzzy

numbers.



For the sake ofpractical fuzzy utilities assessments, it is useful to extend a well-known result

in the non-fuzzy case. This result indicates that if a fuzzy utility function exists, then certain

linear transformations of this function will also beutility functions. Thus,

Theorem 2.1. Let u bea fuzzy utility function on0 xA.Then, thefuzzy set-valued func

tion on 0 xA defined by «<0,a) = a «(8,a) + p (where a and P are real constants, a > 0) is

also a fuzzy utility function.

Proof. Indeed, i(.,a) = a u(.,a) + p is a FRVfor each action a e A. If a, a' e A, we can

then verify that R*(^t(alg)]/E[4a'lg)];« R*(£[u(al5)],£[tt(a,l5)]), due to the properties of the

Harriming distance and the operations between fuzzy sets. Consequently, conditions i) and ii) in

Definition 2.4 are both satisfied. •

Remark 2.11: Onthe basis of the preceding result, wecould arbitrarily constraint, without

loss ofgenerality, the support of «(0,a) to be contained inaparticular bounded real interval, say

[0,1] or [-1,0].

3. The expected value of sample information

Let 0 and A = {a1,..i,aN} be the state and action spaces of the Decision problem,

respectively, and u be a fuzzy utility function on 0 xA. Let us also assume that the decision

maker has an estimate ofthe prior distribution 5 on the measurable space (0,C). For any action

a e A, the fuzzy number £[o(al5)] will be called the prior expectedfiizzy utility of a. In

accordance with condition ii)inDefinition 2.4, the existence ofa fuzzy utility function entails the

acceptance of the Decision-Making principle based on the "maximization" of expected fuzzy

utility. In thisway, theBayes principle of choice is nowextended as follows:

Definition 3.1. An action ao* e Aiscalled optimal prior action if it maximizes the prior

expected fuzzy utility, that is, ^u(^q%)] Z* EMa^)], i=l,...,N. (Obviously, the criterion based

on >°would be equivalent tothat using >*).

Generally, toincrease the "highest" expected fuzzy utility inaDecision problem the decision

maker takes advantage ofthe fact that additional information may reduce his uncertainty about the

state in 0. Thus, thedecision maker usually try to get information byperforming a random
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experiment whose distributiondepends on the statein 0.

Let X be a random experiment, associated with the observation of a random variable (or

vector) in a population, andcharacterized by theprobability space (X,%JPe), 9 e 0, where the

set of variable (or vector) values, X, is a set in R (or in aEuclidean space), % is the smallest

Borel G-field on X and Pe is a probability measure on (X,0X), so that 9 is the state

governing theexperimental distribution. If theinformation obtained by performing of X is x e

X, then thedecision maker can useit torevise thedistribution on 0 in light of theexperimental

information using Bayes' Theorem. This revision leads to the posterior distribution 5x on

(0,C), characterized bythe density function (with respect toadominating measure on C) hx(9)

=h(9)fe(x)/f(x) (where h is the density function associated with the prior distribution 5 with

respect to the same dominating measure on C; fe is the density function associated with the

distribution Pe with respect to a dominating measure on %; and f is the density function

associated with the marginal probability measure P with respect to the same dominating measure

on %, that is, f(x) is given by the Lebesgue-Stieltjes integral Je fe(x) d5(9), for all xe X.

The fuzzy number £[u(al5x)] will becalled the posterior expectedfiizzy utility of the action a.

The application oftheDecision-Making principle inDefinition 3.1 leads us to

Definition 3.2. An action ax* e A, is called optimalposterior action given x, if it maximizes

the posterior expected fuzzy utility given x, that is, £[u(ax*l5x)] £* Z^a^)], i=l,...,N.

(Obviously, the criterion based on £° is equivalent to that using >*).

Remark 3.1: Theoretically, theset X of variable (or vector) values in theexperiment X is

notrequired to be finite to develop the present study. Thus, when X is not finite it maybe

possible to determine in a generic way a^ for each x e X (see, for instance, the example in

Section 5). If this generic determination is noteasy tocarry out, the search of optimum posterior

actions becomes in theinfinite case unmanageable.

The purpose of theuse of sample information is to get a "gain" in expected fuzzy utility on

the average. To "quantify" this gain, wecan take into account that the "highest" expected fuzzy

utility for the decision maker, under the prior information, is equal to £[u(ao*l5)]. On the other
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hand, if the decision maker obtains the sample information x in the performance of X =

(X,0x,Pe), 9 e 0, his "highest" expected fuzzy utility would be equal to £[u(ax*l5x)]. Thus,

his average "highest" expected fuzzy utility, under sample information from X, could be

measured by the fuzzy number J^ EMa,*^)] dP(x).
Then, the averageworth ofthe sample information from X could be measured, as in the non-

fuzzy, case, through the"difference" between the"highest" expected fuzzy utility, under sample

information from X and the "highest" expected fuzzy utility, under prior information. Thus,

Definition 3.3. The fuzzy set given by

*J(X) =Jx 2t«(ax*l5x)] dP(x) - 2Wao*l5)]

is called Expected Value of Sample Information (EVSI) associated with X in the Decision

problem.

Remark 3.2: Fuzzy operations (Dubois andPrade [7,9]) guarantee that the EVSI could be

alternativelycomputed as follows:

N

«» =£ sKa^O] P(X(a.)) - 2«a0*l5)]
i=l v r

where X(aj) ={x e XI ax* =aj} e %, and 5x(ai) being me posterior distribution on (0,C),

characterized by the density function (with respect to the dominating measure on C) hx(ai)(9) =

h(9)Pe(X(ai))/P(X(ai)) (with Pe(X(ai)) is given by the Lebesgue-Stieltjes integral JX(ai) dPe00»
and P(X(ai)) is given by the Lebesgue-Stieltjes integral jX(&)d POO)- Thus*m *« alternative
computation, the EVSI canbe regarded astheexpected valueof a simpleFRV.

We are next going to define the criterion to compare experiments based on EVSI. The

analysis of some properties of this criterion will guarantee the suitability of the model and

ranking of numbers involved in it

4. Criterion to compare experiments, main properties

Let 0 and A = {a1,...,aN} be the state and action spaces of the Decision problem,

respectively, and u be a fuzzy utility function on 0 xA, and assume that the decision maker

assess the prior distributiont 5 on the measurable space (0,C).
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Let X =(X,%JPe), 9 e 0, and Y =(Y,£v,Qe), 9 e 0, be two statistical experiments in

which two randomvariables orvectorsare to be observed on the samepopulation.

Definition 4.1. We say that X is at least as informative as Y in the Decision problem,

written X £« Y, if andonly if <U(X) £* tt(Y). We say that X is as informative as Y in the

Decision problem, written X ~« Y, if andonly if X £« Y and Y £« X, that is, *Z(X) ~* W(Y).

R°(^i(X),'U(Y)) is the degree oftruthforthe assertion « tt(X) isnot higher than tl(Y)».

The preceding fuzzy preferencerelation between two statistical experiments satisfies some

natural properties guaranteeing its suitability and that of the involved concepts. We are now

goingto develop a study similar to thatin lindley, [20] (for Shannon's amountof information).

First of all we verify that providedthe distribution of a statistical experimentvaries with 9,

performing thatexperiment is at least asinformative asnot performing it, on the average. Thus,

Theorem 4.1. Let X = (X,£x,Pe), 9 e 0, be a statistical experiment whose distribution

varieswith 9. Then U(X) £* 0,whateverthe prior distribution on 0 may be.

Let N = (N,%,Qb), 9 e 0, be a statistical experiment whosedistribution does not depend

on 9 (null experiment). Then U(H) ~* 0, whatever the prior distribution on © may be.

Proof. Indeed, for each x e X, we have that 2t«(ax*l5x)] >* 2t«(a0*l5x)]. Consequently,

and due to the propertiesof the R* index, we can conclude that

Jx EMa^)] dP(x) £* Jx2t«(a<)*l5x)] dP(x) =EMao*©]
whence, according to Remark 2.5, we obtain R*(£Z(X),0) £ .5.

On the other hand, for each n e N, we have that 5n ^d 5 coincide, and hence a„* and

ao* aremdifferentforall ne N. Therefore, R*(*Z(N),0) = .5. •

Suppose that each observation s from a statistical experiment S = (S,#s,Pe), 9 6 0,

consists of a pair of observations (x,y), x e X, y e Y. Consider the experiments, X =

(X^Pe1), 9 e 0, and Y = (Y,0Y»Pe2)» 9 e 0, where % and (% are the Borel a-field

over X andY, inducedfrom <B$ by the projections gi(x,y) =x and g2(x,y) = y, respectively,

and Pe1 and Pe2 are the probability measures on $x ^d ®Y» respectively, from Pe. Then,

the experiment S is said to be the sum of X and Y, written S = X x Y.
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We are nextverifyingthat performing two statistical experiments is at least asinformative as

performing only one of them.

Theorem 4.2.Let S = X xY. Then S £« X, S £« Y, whatever the prior distribution on

0 maybe.

Proof. Indeed, to prove this result we first discuss the definition of the average EVSI

associated with the experiment Y after X has been performed and x observed. This value may

bequantified as follows: given x e X,we first consider the experiment Yx=(Y,(Bv,Pe2(Jx)), 9

e 0, and the "prior" distribution 5X on 0. From this prior distribution, the posterior distribu

tion given y€ Y would be 5(x,y)» whence the EVSI associated with Yx for the prior distribu

tion 5x is

KYJx) =JY K^fl^)] dP2(ylx) - SMa**^)]
(where the density characterizing P2(.lx) with respect toadominating measure on &y isgiven

by the Lebesgue-Stieltjes integral f2(ylx) =Je fe2(ylx) d5X(9), with fe2(ylx) being the density
characterizing Pe2(.lx) with respect to the same measure). Consequently, the average EVSI

associated with Y after X has been performed is given by £Z(YIX)= Jx */(Yxlx) dP*(x),

anddue to properties of fuzzy operations (Dubois andPrade, [7,9]),

*Z(YIX) = <U(X xY)- U(X) = U(S) - U(X)

Therefore, asin virtue of Theorem 4.1 tt(Yxlx) £* 0 for all x e X, then U(Y\X) £* 0, and

according to Remark 2.5, we obtain R*(a(S),a(X)) £ .5. .

Analogously, it can be shown that R*(#(S),tt(Y)) € .5. •

As an immediate consequence from the last result, we deduce that the greater the sizeof a

random sample from a statistical experiment, themoreinformative.

Corollary 4.1. Let X(m) =(Xm,0xm,Pe«i), 9€ 0, bearandom sample of size m from the
(m times)

statistical experiment X =(X,<Bx,Pe), 9 e 0 (that is, X(m> = X x X x x X). Then, X(m+1)

>11 x(m), for all me M, whatever the prior distribution on 0 may be. •

The following result formalizes the fact that when the experiment Y cannot add probabilistic

information about 9 to what is contained in X (that is, Pe2(Jx) does notdepend on 9), it is
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indifferent performing both experiments thanonly the lastone.

Theorem 4.3. If P02(Jx) does not depend on 9, and S = X x Y, then S -^ X,

whateverthe priordistributionon 0 maybe.

Proof. Indeed, under the assumed condition and following arguments similar to those in the

proof of Theorem 4.1, we obtain that *i(YIX)~*0, so that R*(ft(S),£Z(X)) = .5. Q

Two statistical experiments X = (X^Pe1), 9 e 0, and Y = (Y,0y,Pe2), 9 e 0, are said

to be independent experiments if the probability measure Pe associated with XxY is the

product of the probability measures Pe1 and Pe2, associated with X and Y, respectively. The

property belowindicates thatthe fuzzy preference relation between two statistical experiments Y

and Z is preserved wheneach of themis sumed to a statistical experiment X independent of

both, Y and Z.

Theorem 4.4. Let X, Y, and Z be three statistical experiments, whose distributions

depend on 9 e 0. If Y >^Z, for all prior distribution on 0, and X is independent of both, Y

and Z, then X xY £° X x Z, whatever the prior distribution on 0 maybe.

Proof. Indeed,

11(X x Y) = *i(YIX)+ U(X) and Zl(X x Z) = «Z/(ZIX) + <u(X)

As X and Y are independent experiments, the experiments Yx =(Y,®y,Pe2(.lx)), 9 € 0,

and Y =(Y,«Y,Pe2), 9 e 0, are equivalent, since Pe2(.lx) does notdepend on x. Analogously,

the experiments 2^ = (Z,®z,Pe3(.lx)), 9 e 0, and Z = (Z,<5z,Pe3), 9 € 0, are equivalent.

Consequently, ft(Yxlx) = EVSI associated with Y for the prior distribution 5x» and

iKZ^x) =EVSI associated with Z for the prior distribution 5X» so that under the assumptions

in this theorem, tt(Yxlx) >* *Z(Zxlx), whence SZ(YIX) 2>* a(ZIX), and hence <U(X x Y) >*

<U(X x Z). •

In the following properties we discuss the effects of grouping ofexperimental observations

on the EVSI.

Thus, the groupingof experimental data throughapartition of the set of variable(or vector)

values, entails a loss of "worth of information", as we formalize in the next result.
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Theorem 4.5. Let X = (X,<Bx,Pe), 9 e 0. Let X' = (X*,0x'»Pe)« 9 g 0, be a new

statistical experiment where X* = {Bj, j e J} (with Bj e %), (%. is the smallest Borel a-field

on X', and Pe(Bj) is given by the Lebesgue-Stieltjes integral JBj dPe(x), for all 9e 0, je J.
Then X>w X\ whatever theprior distribution on © maybe.

Proof. Indeed, for all x e Bjf we have that £[«(ax*l5x)] £* £[«(aBj*l5x)]. Consequently,

and due to theproperties of the R* index, andthose of fuzzy operations, we can conclude that

U(X) =JxzMa/15^] dP(x) - 2Mao*l5)] £* Jx 2WaBj*l5x)] dP(x) - E[«(ao*l5)] = *z(X')
•

Finally, we now analyze the effectsof grouping of sampling information from a statistical

experiment when this grouping is due to the use of a statistic. The result below indicates that

given a random sample X(m) = (Xm,%m,P9m), 9€ 0, any statistic from it, T(X(m)), (that is, a

Borel-measurable function T from Xm to a subset in a Euclidean space) entails a reduction of

the original random sample, involving a loss of "worth of information" about the true state of

nature. In particular, if the statistic is a sufficient statistic (that is, the conditional distribution of

X(m) given T(X(m)) = t, does not depend on 9, for almost all t e T(Xm)), it exhausts all the

"worth of information" about the true state that iscontained in theoriginal sample X(m).

Theorem 4.6. Let X(m) =(Xm,%m,Pem), 9e 0, bea random sample of size m from the

statistical experiment X and let T(X(m)) be a statistic based on that sample. Then X(m) ^

T(X(m)), whatever the prior distribution on 0 maybe.

Inparticular, if T(X(m)) is a sufficient statistic, then X(m)~^T(X(m)), whatever the prior

distributionon © maybe.

Proof. Indeed, f/(X(m)) £* <Zi(T(X(m))), whatever the prior distribution on 0 may be, in

virtue of Theorem 4.5 anddueto thefact that T(X(m)) determines a partition on Xm (each class

of thispartition enclosing sample datamapping by T into the samestatistic value).

On theotherhand, if T(X(m)) is a sufficient statistic, foreach t e T(Xm), we havethat the

posterior distributions 5t and 5xm coincide, for all xm € Xm suchthat T(xm) = t, and hence

thecorresponding at* and axm* are indifferent Therefore,

a(X(ni)) =Jxm £[u(axm*l5xm)] dP(x™) - £[tt(ao*l5)] ~*
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~* Jxm £[tt(at*!5xm)] dP(x«9 - 2ti<ao*l5)] = W(T(X(m))) Q

We are next going to illustrate the applicationof the criterion studied in this section.

5. ILLUSTRATIVE EXAMPLE

We will now examine the applicationof the criterion above suggested by considering the

example illustrating themotivation for thepresent study in theIntroduction of thispaper.

Example: As we commented in the presentation of the example, the assessment of utilities in

that Decisionproblemseemed to be very precise, because of the natureof the actions and states

in the problem. Thus, the following assessment would express better the decision maker

(neurologist) "preferences": u^^) = u(92,a2) = 0, u^a^ = «inconvenient», «(91,a2) =

«dangerous», where u^a^) and u^a^ could be described by means of the fuzzy sets

characterized, for instance, by the membership functions in Figure 1.

M-«dangerous» M«inconvenient»

-1

£3C*B&0ei8*9i0*BCiBiK

-.75 -.5 -.25

Fig. 1. Membership functions of the fuzzy utilities "inconvenient"

( x««0 and "dangerous" (ssss)

The question we were interested in was the following: what is the "most convenient" score

the neurologist can base his decision on, X or Y?.
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Onthebasis of theinformation from X wecanrevise thepriordistribution on © to obtain

the posterior ones. Then, by computing £[u(al5x)] for each a e A and x e X = ft, we

conclude that it can be possible todetermine a^ ina generic way for each x e ft, sothat ax*

= ax for x £ 110 - 3.2 log 6.5, ax* = a2 otherwise. Consequently, <U(X) = .1234 u@2>zi) +

.0136 itdly2L2) - .4 tt^aj).

In thesame way, on thebasis of the information from Y wecanrevise thepriordistribution

on © to obtain the posterior ones. Then, by computing £f«(al5y)] for each ae A and ye Y

=ft, we conclude that itcan be possible to determine ay* in ageneric way for each ye ft, so

that ay* =ax for y£ 110 - 4.1 log 6.5, ay* =a2 otherwise. Consequently, <U(Y) = .1575

462^) + .0596 u(9lfa2) - .4 u^a^.

Therefore, thedegree of truth of theproposition «EVSI of Xis nothigher thanEVSI of Y»

isequal to R°(SZ(X),a(Y)) = .4811,sothat X is slightly more informative than Y.

6. Connections with sufficiency criterion
to compare experiments

Thecriterion presented in this paper establish a complete preordering among all thestatistical

experiments associated with the same Decision problem, since under the assumption of a

Bayesian framework theEVSI is well-defined forall theexperiments.

On the contrary, the well-known criterion of comparing experiments based on Blackwell's

sufficiency [3,4] only determines a partial preordering on thesetof all statistical experiments

associated with the same population. As we have previously remarked, the purpose of this

criterion is to getas much probabilistic information about the state or parameter as possible,

without having decisions in mind. Thus,

Let X = (X,%,Pe),9 e ©, and Y= (Y,0v,Qe), 9 e ©, be two statistical experiments in

which two random variables orvectors aretobeobserved on thesame population.

Definition 6.1. We say that X is sufficientfor Y, written X ^ Y, if and only if there

exists a nonnegative function h on XxY, sothat the density function associated with Qq with

respect to a dominating measure v on % x«y is givenby
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ge(y) =Jx h(x,y) fe(x) dv(x), for aU 9e ©
where

JYh(x,y)dv(y) =l,forall xe X

and h is integrable with respect to x (f^(x) being the density function associated with Pe with

respect to v). Since thefunction h (called stochastic transformation) doesnot depend on 9, the

above sufficiency condition indicates intuitively that an outcome from Y could be generated

from an observation on X and an auxiliary randomization according to h. Consequentiy, to

observe Y does not add any information about 9 to what is contained in X.

Bymeans of thenextresult weverify that, whenever thecomparison through sufficiency is

applicable the preference relation in Definition 4.1 and that in Definition 6.1 are coherent,

(leading to the same conclusion) although the first one isclearly themost widely applicable (thus,

forinstance, X and Y in Section 5 are classical examples of non-comparable experiments via

sufficiency that are comparable through the preference relation herein proposed). This property

means a newguarantee for the suitability of thefuzzy preference relation suggested in thispaper.

Theorem 6.1. Let X = (X,%,Pe), 9 e ©, and Y = (Y,0y,Q9), 9 e ©, be two statistical

experiments in which two random variables or vectors are to be observed on the same

population. If X^ Y, then X>** Y, whatever the action space, A, the fuzzy utility function on

©xA, and the priordistributiont 5 on (©,C), maybe.

Proof. Indeed, £[u(ax*l5x)] £* £[u(ay*l5x)]. Consequentiy, and due to the properties ofthe

R* index, those of fuzzy operations, andthose of the stochastic transformation h, if Q is the

probability measure associated with h we can conclude that •

U(X) =Jx 2t«(ax*l5x)] dP(x)- £Mao*l5)] =

=Jyix 2«ax*l5x)] dP(x) dQ(y/x) - <%u^o%)] ^*
£* JyJx £May*!5x)] dP(x) dQ(y/x) - £Mao*l5)] =

=JY £May*l5y)] dQ(y) - £[«(ao*l5)} =*/(Y). •

7. Concluding remarks

The study in this paper could be immediately extended to the case in which the prior
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distribution on the state space was fuzzy. Thus, in order tobe able toexpress the prior available

information (non-sample information) in probabilistic terms, most (although not all) Bayesians

follow, if necessary, the sujective interpretation of probabilities. The description of these

probabilities bymeans of imprecise propositions (such as, « likely », « improbable », « very

likely », and so on), is often more realistic than the numerical one. The Decision-Making

problem with fuzzy probabilities and fuzzy utilities, has been examined inprevious papers (see,

for instance, Freeling [10], Dubois and Prade [8]). Wenow propose to develop astudy similar

to the present one bymodeling fuzzy utilities through FRV, and using the arithmetic operations

on fuzzy probabilities in Jain andAgogino [16].

Fianlly, another immediate extension to be carried out,would be that assuming the presence

of fuzziness in sample information, following the ideas inOkuda etal. [22], Zadeh [33], Tanaka

et al. [27], Gil [12,13,14], Gil et al. [15].
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