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Abstract

In this paper, we first consider a Bayesian frame
work and model the "utility function" in terms
of fuzzy random variables. On the basis of this
model,wedefine the "prior (fuzzy) expected util
ity" associated with each action, and the cor
responding "posterior (fuzzy) expected utility
given sample information from a random exper
iment" . The aim of this paper is to analyze how
sample information can affect the expected util
ity. In this way, by using some fuzzy preference
relations, we conclude that sample information
allows a decision maker to increase the expected
utility on the average. The upper bound on the
value of the expected utility is when the decision
maker has perfect information. Applications of
this work to the field of artificial intelligence are
presented through two examples.

Keywords: fuzzy preference relation; fuzzy
utility function; perfect information; sample in
formation.

1 Introduction

In traditional decision-making problems, proba
bilities are numerical representations of the be
liefs and the current state of information of the
decision maker, whereas utilities are regarded
as numerical representations of his preferences.
Thus, in these problems the decision maker must

'Visiting from the Department of Mathematics, Uni
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be able to quantify the relative value of any sit
uation that may arise.

In a Bayesian context, the utility function is
formalized as follows (cf., [4]). Let 6 and A de
note the state and action spaces of the Decision
problem, and let £ be the prior distribution on
a measurable space defined on 0. Then, a util
ity function is a real-valued function u on 0 x A
such that

• for each action a € A, ti(., a) is a random
variable on the measurable space defined on
0, having a finite expectation with respect
to x denoted by £[u(a|x)].

• a is preferred or indifferent to a! (depending
on decision maker's preferences) if and only
XE[u{a\x)]>E[u{a'\x)].

The utility assessment procedures usually in
volve the acceptance of some conditions or ax
ioms for the preference relations, in order to
guarantee the existence of a numerical utility
function (axiomatic approach to the Utility The
ory). As remarked in previous papers (see, for in-
stance, [1], [6], [8], [11], [12], [14], [17], [19], [20],
and [21], the necessity for assessing utilities in
terms of numerical values may be, in practice,
too restrictive, whereas the use of fuzzy sets to
describe utilities is often more realistic. Follow

ing the ideas of traditional decision analysis, we
are going to formalize the notion of fuzzy utility
function by using the concepts of fuzzy random
variable and the associated expected value, as
defined in [15]. On the basis of this notion, we



will then establish a principle ofchoice among ac
tions, in which the optimum action is that which
provides the decision maker with the (prior or
posterior) "highest expected utility". Since the
expected utility is in this case a fuzzy number,
its highest value will be determined by consid
ering a suitable fuzzy preference relation based
on a ranking of fuzzy numbers satisfying some
desirable properties. The main contribution of
this paper is the analysis of the average worth of
sample information (from a random experiment
whose distribution depends on the state in 0)
and worth of perfect information about the state
in 0 (which is seldom available in practice), for
the decision maker. This enables the decision

maker to conclude whether or not to perform the
experiment. This comparison will also be devel
oped through the same preference relation, and
the analysis will be completed with an illustra
tive example, in which a particular fuzzy prefer
ence relation introduced by Kolodziejczyk [12] is
considered.

The issue of worth of sample information is
ubiquitous in the field of artificial intelligence.
To motivate the usefulness of these concepts
to any decision analysis problem we will now
present two examples, one in the field of image
processing and the other in medical diagnosis.

First let us consider a quality control vision
system which separates acceptable components
from those with defects. For the sake of simplic
ity let us assume that the state space consists of
two states - "acceptable" and "defective" compo
nents. The prior probability distribution on the
states is available and the action space consists
of two states - "accept" and "reject". Suppose
the manufacturing cost of the component being
inspected is z units and the cost associated with
the time required (t) to inspect a component is
CT(t). If a good component is rejected, then
the loss is x units + "cost associated with late
delivery" + CT(t). On the other hand, if a bad
component is accepted and delivered to the cus
tomer, then the cost is equal to replacement cost
(= x units) + "loss of reputation" + CT(t). The
imprecise utilities (intended as the opposite of
losses) for these two cases are clearly fuzzy be-
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Figure 1: Membership functions of the Fuzzy
Utilities "dangerous" and 'Inconvenient"

cause of the second term in the loss function.

In a typical quality control vision system there
is an abundance of information, such as the gray
level of each pixel of the image. Processing of
all the information is usually very expensive and
time consuming, therefore one may wish to de
sign several procedures, Pi,...,Pn> such that
procedure Pi is the least accurate (w.r.t. prob
ability of correct prediction) and procedure in
takes input from Pt'-i and predicts more accu
rately than P|_i. Thus, if an accurate result
is desired, then several procedures must be exe
cuted in sequence which is time consuming. The
objective of this system is to maximize the utility
(or minimize the loss) and since the time to in
spect is also a parameter in the utility function,
the worth of sample information may be used to
determine when the information available is suf-

fucient to make a "good" decision. That is, the
worth of samnple information may be used as a
stopping criterion for the vision algorithm.

On the other hand, in decision-making liter
ature we can often find examples involving sta
tistical decision problems in which utilities are
quantified in terms of exact values but it would
be more natural to quantify them in terms of
fuzzy values. The following example have been
taken from [22], an introductory text of statis
tics: suppose a neurologist has to classify his
most serious patients as requiring exploratory
brain surgery (action a\) or not (action 02).



From past autopsies, it has been found that 60%
of the examined people needed the operation,
while 40% did not. The utilities (intended as the
opposite of losses) of right classificationsare null.
The utilities of a wrong classification are obvi
ous: an unnecessary operation means resources
are wasted and the patient may be hurt. The
other utility maybe worse: if a patient requiring
surgery does not get it, the time lost until clear
symptoms appear may be crucial. In Wonnacott
and Wonnacott [22], the preceding problem is
regarded as a decision problem with state space
0 = {0i,#2}(#1 = the patient requires surgery,
02 = the patient does not require surgery), ac
tion space A = {01,02}, and utility function
«(0i,ai) = ti(02,a2) = 0, u(0i,a2) = 5w(02,ai),
with «(02, ai) < 0. However, the preceding as
sessment of utilities seems to be extremely pre
cise, due to the nature of the actions and states
in the problem. Thus, the following assessment
could express better the decision maker (neurol
ogist) "preferences": tf(0i,ai) = J/(02,a2) = 0,
U(02iai) = "inconvenient", li(9lia2) = "dan
gerous", where W(0i,a2) and tf(02,ai) are de
scribed by means of the fuzzy sets characterized
by the membership functions in Figure 1. The
interest for incorporating sample information in
this caseis obvious: if the neurologist has to clas
sify a serious patient as requiring or not requiring
brain surgery, then he could either base his de
cision on the prior information or as is common
in practice, try to get information regarding that
patient before making a decision.

2 Preliminary Concepts

The following notation will be used throughout
the paper. (0, C,£) is a probabilityspaceassoci
ated with the state space 0, A = {ai,...,a^} is
the set of all possible actions, and ^b(3ft) denote
the collection of all fuzzy subsets V of 3ft, charac
terized by a membership function \iy : 3ft -* [0,1]
satisfying the following properties:

(1) supp V = closure of {w € 3ft | Pv(w) > 0}
is compact (i.e., closed and bounded).

(2) La(V) = a-level set of V = {w € 3ft |

t*?(w) > <*} i» closed for each 0 < a < 1.

(3) Li(V) = modal set of V = {w 6 3ft |
Ptlw) = 1} + 0,

Definition 2.1 A (one-dimensional) fuzzy
random variable (FRV) is a function V : 0 -»•
^o(£), such that {(0,io) I w € La{V{9))} €
C x Bg, where B» is the Borel a-field on 3ft.
(In other words, the random set La(V(.)}, de
fined on 0, is measurable for each 0 < a < 1).

FRVs generalize both, random variables and
random sets.

Definition 2.2 Let V : 0 -• ^0(3ft) be
a (simple) FRV taking on the (fuzzy) values
Vi,...,Vk €^o0ft) on Ci,...,C* € C, respec
tively (where UjLi C,- = 0, and d \JCj = 0 for
i £ j). Then, the expected value of V with
respect to the probability measure £ on (0, C) is
the fuzzy set E(V\£) = /e V(0) #(0) € ^o(Sft)
given by

EMZ) = £ Vi i{C$) (1)

For a more general FRV, the definition of its
expected value can be found in [15]. However,
in practice simple FRV are usually sufficient to
model imprecise utilities.

Remark 2.1 In the original paper of Puri and
Ralescu [15], the expected value of a FRV is in
troduced in a different manner - as a generaliza
tion of the Aumann integral of a random set [2].
Even though their final definition more complex
it is equivalent to Definition 2.2. Thus, E(V\£) is
defined as the unique fuzzy set with the property
La(E(V\£)) = Aumann integral of the random
set MV(.)), for all 0 < a < 1.

Finally, to extend the notion of utility func
tion to fuzzy utility function we need to consider
a third element: comparison of expected values.
Since the expected values are fuzzy numbers, the
comparisonoperation reduces to ranking offuzzy
numbers. Several procedures for ranking have
been proposed in the literature of fuzzy num
bers. Some of them were introduced so that the



calculations in the set of fuzzy numbers, with re
spect to the fuzzy addition and product by a pos
itive real number, could be performed in a man
ner analogous to the operations on real numbers
(and, consequently, the calculations through the
expected value for a FRV could be performed
in an analogous way as for random variables).
More precisely, we can consider any suitable
ranking of fuzzy numbers (generically denoted
by y) such that if U, V, W, and f are four fuzzy
numbers such that U y V and W y f, then
U-rW>: V+ f (where + = fuzzy addition),
and X.U y \.V (where A. means the product by
a positive scalar A). On the other hand, >^ must
also satisfy U + (-U) y 0 and 0 y U + (-U)
(where 0 is the especial number assigning mem
bership function equal to 1 to the value 0 and
equal to 0 otherwise, and (—U) is the opposite
to U). Since the purpose of this paper is not to
discuss the best method for ranking fuzzy num
bers, we will choose a ranking method from [12]
which satisfies the preceding properties (Defini
tion 2.3). The choice is only for the sake of per
forming computations in the illustrative example
in Section 6, and is not a basic requirement for
any of the subsequent analysis.

_ Let V € ?To(ft) be a fuzzy number, > V and <
V denote the fuzzy sets of9?, "more than or equal
to V" and "less than or equal to V", respectively,
that is

/iyr(tu) if w < z
1 if w > z

/iy-(iy) if w > z
1 if w < z

Definition 2.3 Let U, V € Fq(&) be two fuzzy
numbers. The coefficient

R(U, V) = ^1 + ^2 + d$
d4 + d5 + 2d3 (2)

(d1 = &{>U V >V,>U),d2 = d(<U v < v,
< U),d3 = d(U n V,Q), d4 = d(> U,> V),
^5 = d(< U,< V), where d = Hamming dis
tance between fuzzy sets, \J = extended maxi
mum of fuzzy sets, and f] = intersection of fuzzy

i -

.9 1

Figure 2: Areas in the second expression for
Kolodiejczyk coefficient in Eq. (2)

sets) represents the degree of truth for the
assertion UU is not higher than V" and

(1) U is said to be preferred or indiffer
ent to V, denoted U yV, whenever R(U, V) <
R(V,U) = 1 - R(U,V) (that is, whenever
R{U, V) < .5;.

(2) U is said to be indifferent to V, denoted
U ~ V, whenever R(U,V) = R(V,U) (that is,
whenever R(U, V) = .5j.

The preceding coefficient R could be alterna
tively expressed as follows:

R(U,V) =
5*i + S3 + S4

51+52 + 2S3 + 2S4 + 2S5

where Si = areas where V "dominates" U, S2 =
areas where U "dominates" V, S3 = areas where
U and V are "indifferent", £4 = areas where the
greatest value of U is lower than the smallest
value of V at the same level of membership, and
55 = areas where the greatest value of V is lower
than the smallest value of U at the same level of

membership. Figure 2 explains the meaning of
the areas considered in the alternative expres
sion, and illustrates the application of coefficient
R. Here R(U, V) = .9, and hence V is preferred
to U. Several examples illustrating the behav
ior of R and an analysis of its properties may be
found in [12].



Modeling the Fuzzy Utility
Function

Definition 3.1 A fuzzy utility function is a
fuzzy set-valued function U on 0 x A such that

i) for each action a £ A, U(., a) is a FRV on
(0,C), integrable bounded, and whose expected
value with respect to £ is a fuzzy number denoted
by E[U(a\S)].

ii) a is preferred or indifferent to a' (according
to the decision maker preferences) if and only if
J$/(a|0] h %(a'K)].

The assessment of fuzzy utilities has been dis
cussed in previous studies (see, for instance, [6]).

Remark 3.1 Conditions (1), (2) and (3) in
the definition of a FRV and the assumption that
the fuzzy utility function is integrable bounded
(see [15]) have been imposed to guarantee that
the expected value (expected utility) exists and
is a fuzzy number (intended as a normalized con
vex fuzzy set).

Remark 3.2 Definition 3.1 is very similar to
other definitions previously considered (see, for
instance [8]), but the present one is slightly more
general (since it does not require the utility value
to be fuzzy numbers) and is introduced by fol
lowing the ideas in the traditional case.

The next result indicates that if a fuzzy utility
function exists, then certain linear transforma
tions of this function will also be utility func
tions. This property is analogous to a well-
known result in the non-fuzzy case. Thus,

Theorem 3.1 Let U be a fuzzy utility function
on 0 x A. Then, the fuzzy set-valued function on
0 x A denned by V{0, a) = a U{0,a) + /? (where
a > 0 and /? are real constants) is also a fuzzy
utility function.
Proof: Indeed, V(., a) = a U(., a) + /? is a FRV
for each action a € A. Due to the properties of
the rankings of fuzzy numbers we have consid
ered, conditions i) and ii) in Definition 3.1 are
both satisfied. A

The preceding result will allow us to arbitrar
ily constrain supp 2/(0, a) to be contained in a
particular real interval (say [0,1]), without loss
of generality.

4 Modeling the Principle of
Choice Without and With

Experimentation

For any action a € A, the fuzzy number
E[U(a\£)] will be called the prior expected utility
of a. In accordance with condition ii) in Defini
tion 3.1, the existence of a fuzzy utility function
entails the acceptance of the decision-making cri
terion based on the "maximization" of expected
utility. The Bayes principle of choice may now
be extended as follows:

Definition 4.1 An action a* € A is called op
timal prior action if E[U(a*\Z)] y E[tf(a;|f)],
t = l,...,J\T.

Generally, to increase the "highest" expected
utility in a decision problem the decision maker
takes advantage of the fact that additional in
formation may reduce his uncertainty about the
state in 0. In the extreme case, if he were able
to get "perfect" information about this state, the
problem of decision-making under uncertainty
would become a problem of decision-making un
der certainty. Thus, if the decision maker knows
for certain that the state of nature is 0 = 0', then
the optimal action is the action a{9') € A such
that U{0', a(0')) y U(0',at), i = 1,..., N. Nev
ertheless, perfect information is seldom available,
and the decision maker must try to get informa
tion by performing a random experiment whose
distribution depends on the state in 0.

Let X be a random experiment, characterized
by a probability space (Xt Bx, P$), 0 € 0, where
X is a set in a Euclidean space (in most cases &),
Bx is the smallest Borel cr-field on X and P$
is a probability measure on (X,Bx), so that 0
is the state governing the experimental distribu
tion. If the information obtained by performing



experiment X is x € X, then using Bayes' the
orem the decision maker can use it to revise the
distribution on 0 in light of the experimental in
formation. This revision leads to the posterior
distribution &. on (0, C), and the fuzzy number
E[U(a\Zx)] will be called the posterior expected
utility of the action a. The application of the
decision-making criterion in Definition 4.1 allows
us now to define the following:

Definition 4.2 An action a* £ A, is called
optimal posterior action given x, if
*M«CIM] fc E{U{<H\U)li = 1,....N.

We are now going to formalize an intuitive
fact: the use of sample information entails a
"gain" in expected utility on the average. Ob
viously, this gain will be bounded above by the
"gain" in expected utility due to the use of per
fect information.

5 Influences of Perfect and

Sample Information on Ex
pected Utility

Using the criterion in Definition 4.1, the "high
est" expected utility for the decision maker, un
der prior information, is equal to E[U(a*\£)]. If
perfect information is available, and a(0') £ A
is optimal under perfect information 0 = 0',
then the utility is given by U(0t,a(0f)). Con
sequently, the value of this information when
0 = 0f could be measured by means of the
fuzzy substraction W(0',a(0')) - U(0',a*), and
hence the Expected Value of Perfect Information
would be equal to the fuzzy number EVPI =
/0 */(*', a(0')) d£(0') - E[U(a*\t)]. If the deci
sion maker obtains sample information x by per
forming X = (XtBx,P9)j0 € 0, the "highest"
expected utility would be equal to E[U(al\£x)].
Thus, the Expected Value of Sample Information
from X, could be measured by the fuzzy number
EVSI(X) = fx E[U{a%\^)] dP(x) - E[U(a*\t)}
(where P(x) is the marginal probability measure
on (X,Bx), obtained from P$(x) and£(0) by ap
plying the generalized Total Probability Rule).

We are now going to compare the three situa
tions above in terms of the considered preference
relations.

Theorem 5.1 Regardless of the prior distribu
tion on {, EVPI y EVSI(X) y 0, whatever
the random experiment X may be.
Proof: Indeed, for all * € X, we have

^U(8',a(O>))d(x(0') y E[t/(aj|&)] >

By virtue of the properties of y with respect
to addition of fuzzy numbers and product by a
positive constant, we conclude that

jxjQU{&,a{0'))dUO')*P{x)h

j^p/tefe)] dP(s) >:

jx E[U(a*\ts)] dP(x) =EMa*\£)] A

Remark 5.1 When the selection of a* is possi
blefor all x € X, fuzzy operations [5,7] guarantee
that the EVSI could be alternatively computed
as follows:

EVSI(X) = ££[W(a,|&r(oi))]P(*(«,))

where X(at) = {x € X\a% =. a,} £ Bx. In this
alternative computation scheme, EVSI(X) can
be regarded as the expected value of a simple
FRV.

6 Illustrative example

We will now examine the neurologist example
from the introduction section to illustrate re
sults in Theorem 5.1. If the neurologist has
to classify a serious patient with no information
other than the prior information, then he can ob
tain that E[U{ax\x)] = .4U(02,ai),E[U(a2\t)] =



6U{0i,a2), so that i^£[tf(ai|0],£|&/(a2|0]) =
0, and hence a\ is preferred to a2. Thus,
Ep(a'M = £[W(a,|0].

Suppose that the neurologist tries to make his
decision on the basis of the information supplied
by a combined score X obtained from several
tests. Past experiences have shown that X is
normally distributed with variance equal to 64
and mean equal to 120 for those who require
surgery and 100 for those who do not. On the
basis of the information from X we can revise
the prior distribution on 0 to obtain the poste
rior ones. Then, by computing E[U(a\^x)] for
each a € A and x € X = 9£, we conclude
that it may be possible to determine a* in a
generic way for each x € X. In this example
aj = ai for x > 110 - 3.2 log6.5,a% = a2 other
wise. Consequently, EVPI = -AU(02,ax), and
EVSI(X) = .1234 U{02, ax) + .0136 U{0X, °2) -
4 U{02,ax), whence R(EVSI(X),EVPI) =
0, and R(EVSI(X), 0) = .2973, that is, the
EVSI(X) is not higher than the EVPI and
EVSI(X) is non-negative with a high degree of
truth (.7027).

7 Concluding Remarks

The study in this paper can be immediately
extended to the case in which the prior dis
tribution on the state space is fuzzy. In or
der to express the prior available information
(non-sample information) in probabilistic terms,
most (although not all) Bayesians follow, if nec
essary, the subjective interpretation of proba
bilities. The description of these probabilities
by means of imprecise propositions (such as,
"likely", "improbable", "very likely", and so on),
is often more realistic than the numerical one.
The decision-making problem with fuzzy proba
bilities and fuzzy utilities, has been examined in
previous papers (see, for instance, [8], [6]). We
now propose to develop a study similar to the
present one by modeling fuzzy utilities through
FRV, and using the arithmetic operations on
fuzzy probabilities in [10]. Another immediate
extension would be one in which it is assumed

that fuzziness is present in sample information,
along the lines of [9], [18], and [25].

Results in Section 5 suggest a more exhaus
tive analysis of the worth of sample informa
tion in decision-making problems with fuzzy util
ities. Thus, it would be interesting to analyze
the extended Expected Value of Sample Infor
mation in those problems, and to employ this
fuzzy value to compare experiments and select
one which provides the decision maker with the
highest extended EVSI. Comparison of experi
ments is a well established statistical theory de
veloped by Blackwell. He introduced a crite
rion, [3], basedon statistical sufficiency, in which
the purpose is to get sample information contain
ing as much probabilistic information as possible
regarding the state (without making reference to
a decision-making context). It is a usual prac
tice in this type of study to check the suitability
of new criteria by examining their implications
with Blackwell's. Thus, it would be also use
ful to analyze the connections of Blackwell's suf
ficiency criterion with the criterion to compare
experiments based on the extended EVSI.
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