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ON THE RATE OF CONVERGENCE OF TWO MINIMAX ALGORITHMS^

E. J. Wiest^ and E. Polak^

Abstract. We show that the sequences of function values constructed by two versions of a
minimax algorithm converge linearly to the minimum values. Both versions use the Pironneau-Polak-
Pshenichnyi search direction subprocedure; the first uses an exact line search to determine step size,
while the second one uses an Armijo-type step size rule. The proofs depend on a second-order
sufficiency condition, but not on strict complementary slackness. Minimax problems in which each
function appearing in the max is a composition of a twice continuously differentiable function with a
linear function typically do not satisfy second-ordo" sufficiency conditions. Nevatheless, we show that,
on such minimax problems, the two algorithms do converge linearly when the outer functions are con
vex and strict complementary slackness holds at solutions.

Key Words. Minimax, nonsmooth optimization, composite nondiffo'entiable optimization, linear con-
vOTgence.

^Theresearch lepoited herein was sponsored in pan by theNational Science Foundaticm giantECS-8713334, the AirForce
Office ci Scientific Research contract AFOSR-86-0! 16 and the State ci Gtlifomia MICRO Program giant 532410-19900.

^Giaduate student. Department d Electrical Engineering andComputer Sciences and the Electronics Research Laboratory,
Univenity of California, Berkeley, CA 94720, U.S.A.

^Professor, Department of Electrical Engineering and Computer Sciences andtheElectronics Research Laboratory, Universi
ty of Califomia, Berkeley, CA 94720, U.S.A.



1. Introduction

Most minimax algorithms have been shown to converge locally or globally under various condi

tions. Howeva", the literature dealing with their rate of convergence is rather fragmentary (see, e.g.,

Refs. 1-9). hi this paper, we establish the rate of convergence of two versions of a minimax algorithm

which was first pressed by Pironneau and Polak (Ref. 10) as a subprocedure in an implementation of

the Huard method of centers^ (Ref. 11), and, later, independently, by Pshenichnyi (Ref. 1), who calls it

the methodof linearizations. (See Ref. 13 for extensions to semi-infinite minimax problems.)

We are concerned with algorithms for solvingminimax problems of the form

min maxZ-'Cx), (la)
X 6 R» y 6 B

where k ) andeach-»IR is continuously differentiable.

We wiU briefly review the literature dealing with the rate of convergence of first-order minimax

algorithms for solvingproblem (la). For this, we need to define the function y.-lR" IR by

V(x) = inax/^(x:). (lb)
jett

First, since problem (la) can be transcribed into the equivalent constrained form

min{ w I/'(x) (2)

it can also be solved by first-(H:der nonlinear programming algorithms.^ For example, it can be solved

by the Pironneau-Polak method of centers (Ref. 10) which, as shown by Chaney (Ref. 14), converges

linearly on (2) whenever a strengthened second-order sufficiency condition is satisfied.

Subgradient and bundle methods designed for the more general problem of minimizing locally

Lipschitz functions can be used for minimizing the function \y(*). In Polyak (Ref. 2) and Shor (Ref. 3),

we find i^oofs that several subgradient methods converge linearly when \);(-) is strongly convex. In

Ref. 4, Kiwiel has proved that a bundle algorithm for constrained minimax optimization converges

^ One of the definitions of the "center^ of a set desciibed by inequalities, given by Huaid (Ref. 11), is in teims of a
minimax subproblem of the foim (la). Consequently, every implementation of the Huardmethod centers (e.g. - Refs. 10, 12)
incorporates a minimax algorithm asa subproc^ure. This fact was not widely recognized, and some ofthese imbedded minimax
algorithms were later rediscovered indqrendently.

^ The transcripticn of (la) into (2) is not recommended, because nonlinear prograrruning algorithms converge more slowly
on (2) than minimax algorithms designed specifically for (la).



linearly.

Next, th^ are several algorithms which designed q)ecifically for solvingminimaxproblems

of the form (la). One of the oldest is that of Demyanov (Refs. IS, 16), which computes 5-

approximations to the minimum value of \|/(*) with 5 > 0. It computes search directions by solving a

linear program defined by the linearizations of the S-active fimctions /''(•) (c.f., the Zoutendijk method

of feasible directions (Ref. 17)), and employs an Armijo-like step size rule. It was shown by Pevny

(Ref. S) that, when ty(-) is strongly convex, the Demyanov algorithm converges linearly in fimction

value.^ Madsen et al (Ref. 6) propose a trust region algorithm for the linearly constrained minimax

problem in which a linear program is solved at eachiteration. When the solution x of (la) is a "vertex"

solution (also called a Chebyshev point or a Hoar point)^ the algorithm in Ref. 6 convokes quadrati-

cally. Howeva, whenx is not a vertex solution, the rate of convergence of this algorithm is unknown.

The minimax algorithms which we will discuss in this papa* belong to a fEunily conforming to the

following algorithm model, which uses the Pironneau-Polak-Pshenichnyi (PPP) search direction subpro-

cedure O^efs. 1, 10):

PPP Algorithm Model

Step 1: Given x/, compute the search direction,

^ arg min max/^(x^+ (V/'(Xi),/i)+. (3)

Step 2: Compute the step size Xf.

Step 3: Set Xf+i = x,- + replace i by / + 1 and go to Step 1. •

Algorithms in this family are specified by the quantities /,• e y > 0, and a rule for computing

the step size X,-. Thus, in Ref. 1, we find a minimax algorithm in the PPP family with

[j e p \f\xi) ^ ^(Xf) - 6 ) (with 5 > 0), y = 1, and the constant step size Ti^K. It is shown in

Ref. 1 that the resulting algorithm converges lineariy, provided the initial point is sufficiently close to x.

The proof assumes that X is sufficiently small, and that strict complementary slackness, affine indepen-

^Pevnyi also shows that, if thefunctions fail to bestrongly convex butareconvex with bounded level sets, convergence to a
S^timal value is arithmetic.
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dence of the gradients of the active functions and second-order sufficiency conditions hold at x. It is

also shown in Ref. 1 that, ifX=landxisa "vmex" solution, then the local algorithm converges qua-

dratically.

In Ref. 1, we also find a PPP minimax algorithm which uses the step size rule

= max{2-*l\i/(x, + 2-*/ij)-\|f(*i)^2'^alAil^), ae 0/4,1), (4)

where IN is the set of all nonnegative integers. It was shown in Ref. 7 that, if (la) has a "vertex" solu

tion X, then the step size in the above algorithm eventually becomes unity. It therefore follows from

Ref. 1, that if a sequence constructed by the PPP algorithm using (4), converges to a "vertex"

solution X, then it converges quadratically.

In Ref. 8, /,• = 7 > 0 for ally € ^ andan Armijo step size rule (Ref. 19)similar to (4) is used,

while, in Ref. 9, /,• = R, 7 = 1 for all y € ^ and an exact minimizing line search is used to determine

step size. It was shown in these papers that both of these PPP methods converge linearly under the

assumption that the functions/-'O) are strongly convex.^

In Sections 3 and 4 of this paper, we show that the PPP algorithms, considered in Refs. 8 and 9,

converge linearly under a slightly strengthened form of the standard second-order sufficiency condition.

This condition is considerably weaker than the strong convexity assumption used in Refs. 8,9. Further

more, unlike in Ref.l, we assume neither strict complementary slackness nor affine indq)endenceof the

gradients of the active functions.

In Section 5, we consider the composite minimax problem,

min max g \Ax) , (5)
X6 R" > 6 B

in which each continuously differentiable function g^: Ir'*' R is composed with a different linear

function Aj: R" —> r'̂ '. Minimax problems of this form arise in the design of feedback compensators

and of discrete time optimal controls. We show that, despite the fact that the solution set is generally

obtain linear convetgence in the case that the solution set is an affine set (Ref. 8). strict complementaiy slackness was
assumed in addition.
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nonunique/ the PPP algaithm described in Ref. 8 converges linearly, und^ somewhat more stringent

assumptions than for the general case.

2. The PPP Minimax Algorithm with Exact Line Search

In this section, we will consider the algorithm which results when the step size Xj in the Algo

rithm Model is computed by exact minimization along the search direction. To simplify notation, we

define

Ix) k fi{x) + \h\^ . (6)

Algorithm 2.1 (PPP-ELS): (see Algorithm 5.2 and Corollary 5.1 in Ref. 13)

Data: xq e R"; y > 0.

Step 0: Set i = 0.

Step 1: Compute thesearch di^ection^

h(xi) = arg min max Ixd - V(**). rj)

Step 2: Compute the minimizing step size, X,- = arg min \|/(xj + Xit(xi)).
Xe R

Step 3: Set = Xi + X{/t(Xj), replace i by i + 1 and go to Stq) 1. •

Let the standard unit simplex be denoted by 2^ 4 ( p. € R'' Ip/^ 0 , e 1 }•

the search direction finding problem (7) can be transformed as follows:

0(x) = min fmax Ix) - \y(x) 1
AeA" J

= mm

A€ a"

max 2 p/ (KA Ix) - v(x)
/eg

(8)

Next, by an extenrion to von Neumann's Minimax Theorem ^ef. 13), the max and min in (8) can be

interchanged, and hence we obtain that

fact, the solution set must contain a translation the intenection ofthe nuU spaces ofthe matrices Aj.
^ For theconvenience of theproofs to follow, we subtract theterm \{r(x^ from theminimand in (4), so as to make thevalue

6(;i^ of the search directionfinding problemless than or equal to zero. This has no effect on the resultingsearch direction.



GOc) = max min 2 IJc) - vOc)
|i e 5^ A6 R"y6 jj

= max min 2 (/'(*) + W'(*)» . /m
|1 e 2^ A6 R"y6 £

The solution |li of (9) is not always unique, and hence we define the solution set

(10a)U{x) 4 arg max
i»e %,

min £ {fKx) + (V/>(x). h>- \f{x) ) +
A€ R" ye £

By solving the inner minimization problem in (10a), we see that C/(x) is the solution set to a positive

semi-definite quadratic program,

C/(x) = arg mw 2 P'(/'(*)" V(*))" Z P'V/>(x)I^. (10b)

Several methods exist for solving such probl^s (see, for example, Refs. 21-23).

As a consequence of the extended von Neumann Minimax Theorem, for any p € f/(x),

2 P' ^(Jc) Ix) ^ max Yi P^ <!>'(''(*)' *)
/6g

ss min max Y P' ' *)
A6R"|lc5^y6£

= max min 2 P^ 4>'(^ ' •*)
2i,A6 R"y6g

=,•^, .2 (11)A€ ^ ft

Hence, any multiplier vector p e U(x) yields the solution,

hix) s arg min £ p' W Ix) /io^
AgR-^s^ ^ ^

to the search direction finding problem (7) (for x = x^, which is unique since the function

max y6 g Ix) is strictly convex.

Next we recall the following necessary (^timality condition for problem (1) (see Ref. 13).

Theorem 2.1: (Ref. 13) T^x e R" is a solution to problem (1), then there exists a vector of multipliers

)1 s 2^ such that



ZW(5) = 0, (13a)
/6 £

= 0. (13b)
/6 £

When the functions /-^(O are convex, equations (13a, 13b) are also a sufficient condition for optimality.

We denote the minimum value for problem (1) by \|f = min ^nd the set of minimizers by

G ^ arg min , ^jr. V(x) . For any xg 8, the set of multiplier vectors ji e Lp which satisfy equations

(13a, 13b) together with x is exactly U(^.

Theorem 2.2: (Ref. 13) Suppose that the Junctions f^{-) in problem (1) have continuous derivatives.

If Xis an accumulation point of a sequence {jq constructed by Algorithm 2.2, then x satins the

optimalitycondition (13a, 13b). •

3. Rate of Convergence of the PPP-ELS Algorithm

We now proceed to prove that the sequence of values, {\jr(Xi) )^, ccmstnicted by Algorithm 2.1

converges linearly to the minimum value under weaker assumptions than those used in Refs. 8 and 9.

Our proof draws on ideas which appeared in the proofs of linear convergence of the Pironneau-Polak

algorithm for inequality-constrained minimization in Refs. 10 and 14. We make the following assump

tions.

Hypothesis 3.1: We will assume that

(!) thefunctions f^(:) are twice continuously differentiable,

(11) there exists T g TR such that the set S = {* € R" I\|/(x) ^T) is boundedand such that there is

a singlepoint xg S whichsatisfies the necessary conditions (13a, 13b),

(iii)/orsome Af' < «>, allx € R" and allJ g p, lF'(x)l2 < Af' • •

For any stationary point x, we define the set of indices of the functions active at x by

^ [JG p\B]iG U(^ . (15)



Hypothesis 3J.: Let x be as definedin Hypothesis 3.1, let B denote the subspace spanned by the vectors

{ ) /.. ond let denote the orthogonal complement of B. We will assume that there exists

m' > 0 such that, for all jx € C/^c),

1/6 £

lb ^ h^ B^ . (16)

Remark: Hypothesis 3.2 and equations (13a, 13b) togeth^ constitute a variation on the standard

second-ordCT sufficiency conditions for x to be a local minimizer of >|r(*) (Ref. 18). Note that, while

(16) must hold for all multiplier vectras in the subspace B^ over which the inequality must hold

may be quite small, because all of the multipliervectors in f/(x) are used to determine the set /(x). •

The proof of linear convergence requires sev^al technical lemmas involving the following quanti

ties. With Xas in Hypothesis 3.1 (ii) and R as in Hypothesis 3.2, let /* : R" R" denote the projec

tion operator with range equal toB, andlet be theprojection operator with range equal to B^. Let

m = min{ m'.y ) . (17a)

For anyy e R" and n e Zp, we define

J?(y.H) & + 07b)

The function /?(♦,•) is continuous, and, by Hypothesis 3.2, for any ii e UCt), RiO,{j) is negative definite

on the subspace B*".

We will use the notation Z{ Z to indicate the convergence of the sequence { z,- c R" to the

set ZcR", i.e., the fact that lim ,• _>«minyez^'i~y^ =0. The following two results are established

in the Appendix.

Lemma 3.1: If Hypotheses 3.1 and 32 hold, and x is defined as in Hypothesis 3.1, then there exists

K>0 such that

lim sup < K . ..g.
y-»o lyl IFyl (18)



Lemma 3^: IfHypotheses 3.1 and 32 hold, and x is definedas in Hypothesis 3.1, then

lim = 0. (19)

v(*)-v •

We now relate the potential decrease in the function v(') at x to the decrease predicted by 6(x).

Lemma 3J: IfHypotheses 3.1 and 32 hold, then

6(x) ^ m
^ T" (20)

Proof: Referring to (9) and (10), we see that For any pC e U(x),

0(x) = min £ Ix) - v(*) . /21)
A6lR"/6is ^ ^

Let s{x) ^ ml y. By the definition of m above, sQc) < 1. Substituting h = s(x)(x-x) in (21) and

using the definition of V(-1 •) in (2), weobtain that

e(x) ^ 2 -x)\x)- \jr(x)
jSB.

jelf'oc) -w)+<v/V).j(*)(* -*))+ iiisQcji^ e-

ŝ(x) 12W\x) +(2 -x)+ Vimix - xl^ - v(x)l, (22)
(/S£ /6£ J

since s(x) € (0,1) and f\x)^y]i(x). Adding and subtracting the tmn

= E
yea

U-5.M i(l -i)'Lvi!f'Cc +(l - i)(.x-x))dt (x - to the right hand side of (22), we find that
je B.

msJ(*)[2W\x) +{S 5-i>+ Ct -2, fj id - t) z +(1 - 'KX -%)di
1/6 2 >6fi (.yea

-\|f(x) +U-x./?(x -x,p)(x -x)^ (23)
The first three terms in the right hand side of (23) constitute the second-order Taylor expansion of

-8-
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e(x) :S (5& - v(x) + Cc - x./?(x - x.jD(x -

Ĵ(x)|v6) -v(*) +<x-X^(x -X,p)(x -x)|".
Dividing both sides of (24) by \{f(x) - Xjf, we get

e(x)

Y(x) - v6)
^ J(x)

^ ^(x-xJg(x-x.II)(x-^)
\|/(x) - \|/^

By Lemma 3.1,

tosup max
x-»s lx-xIIP(x-x)l

and, by Lemma 3.2,

Ix-xl IP(x-x)l ^
hm sup ^^ = 0 .

*-♦* \|;(x)-Y

Since the set-valued mtq) U(x) is upper semicontinuous, r(x) is lowersemicontinuous and

lim inf j(x) ^ — .
y

(24)

(25)

(26)

(27)

(28)

Taking the lim sup of (25) as x -> x and using (26), (27) and (28) yields (20). •

We combine Lemma 3.3 with a relation between the decrease predicted by 8(x) and the actual decrease

obtained at x in the direction h(x) using an exact line search. Let

M ^ max{ M\y) . (29)

Lemma 3.4: If Hypotheses 3.1 and 32 hold, then

V(x + Xh(x)) ~ V ^ , mm( m ,y }
lim sup mm ^ ^ ^1 ) ' \

XeiR max{Af,Y)
*->X \|/(jc) - \j/

-9-
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Proof: Since by Hypothesis 3.1(ii), x is the only point in S satisfying the necessary condition for

optimality (13a, 13b), it follows that \|;(^ =$ ¥(-^) >$ for all x g S\x. Since 6(x) is zero ifand

only if the necessary conditions (13a, 13b) are met at x, 6(x) < 0 f(ffall x € S

The second derivative bound of Hypothesis 3.1(iii) implies that for each/C),

f^(y + z)-f^(y) - (V/''(y), z) ^ , V y,z e R". (31)

Thus, for anyXe (0,1)andx e S \x,

min \y(x+ Xh(x)) - \;f(x) ^ v(x + 7Ji(x)) - v(x)
X € ]R

^ maxf\x) - v(*)+ <V/>(x),XA(x))+ 'AM\'kh(x)f ,
/6 2

SXf nm/'(x) - vW +W^(x).A(*)>+ 1, (32)

Setting X = y IM and using thedefinition of M,

min \|/(x +XA(x)) - \jf(x) ^ max /'(x) - \y(*) +<V/-'(x),/i(x))+ Wi lh(x)i^ j =X0(x). (33)

Since 6(x) < 0 for all x ^ x,

(34)
XeIR e(x) M ^ ^

Applying inequality (34) and Lemma 3.3 to the left hand side of (30), we obtain

limsapmin =liinsupmin SiiL.
^ XeVL , ^ A. „ XeR 0(x) a.*-»X \(r(x) - \y X-»X ' \|f(x) - \jf

Z0X X0X

:S lim sup ——
Af . /s

* * VOO - V
x#z

M

- m

i2. - _ min( m*,y}
~ M " max{ M'.y} " (35)
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The second step holds because 60c) < 0 and \|/0c) > Adding 1 to both sides yields thedesired result

•

Theorem 3^: IfHypotheses 3.1 and 32 hold andAlgorithm 2.1 generates a sequence { Xi )^, starting

from a point S, then (a) Xi ->x as i -¥ oo, and (b) either the sequence terminates in a finite

number of steps at x or

•• V ^ , min( m'.Y)
lim sup ^1 ; • ' \ . (30)

/V max{3f,Y)
Wd - V

Proof: (a)The sequence {x,- lies in thecompact set S, and hence it converges to the set of its accu

mulation points. By Theorem 2.2, each accumulation point must satisfy the necessary cmiditions (13a,

13b). Since, by Hypothesis 3.1(ii),only x e S satisfies (13a, 13b), the sequence converges to x.

(b) Follows from (a) and Lemma 3.5. •

Following Luenberger ^ef. 26), we refw to the quantity lim sup(v(^w) - VV(V('i) - V) as the
i

convergence ratio of the sequence { v(Xi) }^. The right-hand side of inequality (36) bounds the con

vergence ratio of any sequence constructed by the PPP-ELS Algorithm in solving any problem in the

class defined by Hypotheses 3.1 and 3.2.

Remark 3.1: The functions <!/(• I *)* could have been defined in (6) using diff^nt values of y* say ij.

This would have had two effects. I^t, the search direction finding problem would have been consider

ably more difficult to solve. Second, the convergence ratio bound in the right-hand side of inequality

(36) could turn out to be larger; certainly it would not be smaller. However, if individual bounds on

the IF(x)l are assumed, one may be able to establish low^ bounds when using different Y/* •

Remark 3.2: From the definition of m and M in (17a) and (29), the ratio mIM q)pearing in the con

vergence ratio bound is independent of Yprovided that y € [m'M^ Howevw, for y outside this range,

m/M is smaller and the convergence ratio bound is greater. The following example shows that this

dependence of the convergence ratio bound on y is not an artifact of our proof technique, but that it

reflects the dependence of the actual convergence ratios on y. We applied the PPP-Armijo Algorithm

-11-



(see Section 4) to the problem of minimizing the maximum of f\x) 4 -6*0 +4(xo +x?) and

f\x) = xo + Vi(jco + ^ using a variety of values for y. For this problem to' = 2 and Af' = 8. We

started the algorithm from the point (1,1), and used ye { ). Figure 1

displays both the convergence ratio bounds computed from the right-hand side of (38) and the conver

gence ratios which were observed. •

4. Rate of Convergence of the PPP-Armijo Algorithm

The step size rule used in Algorithm 2.1 calls for the exact minimization of a frmction of a single

variable. In practice, we use a step size rule which can be executed in a finite number of steps. A suit

able replacement for Step 2 in Algorithm 2.1 is the following generalization (Ref. 13) of the Armijo

rule for differentiable functions (Ref. 19),

Step 2': Compute the st^ size,

Xi = max (P* I y^ixi + - \y(Xi) - aP*e(Xf) ^ 0) . (37)

with fixed parameters a.p e (0,1). We will call the resulting algorithm the PPP-Armijo algorithm.

The convergence result. Theorem 2.2, holds for the PPP-Armijo algorithm (Ref. 13). We show that a

rate of conv^gence result very similar to Theorem 3.2 holds as well.

Theorem 4.1: If Hypotheses 3.1 and 32 hold and the PPP-Armijo algorithm generates a sequence

{ Xi )^, starting from a point xqS S, then (a) Xi -¥x, as i and (b) either the sequence temtinates

in a finite number of steps at x or

os)
»-»"» , . max! Ai ,Y J

\|f(Xi) - V

Proof: (a) The sequence ( x,- is contained in the compact set 5, and hence it converges to the set

of its accumulation points. Referring to Ref. 13 and using the frict that the functions/^(O are continu

ously differentiable, we conclude that any accumulation point must satisfy the necessary conditions

(13a, 13b). Since the only point in S satisfying these conditions is x, the sequence must converge to x.

(b) We obtain a bound on the decrease in y^(-) obtained at each iteration, assuming that the sequence

does not terminate in a finite number of steps at x. The second derivative bounds again imply relation

-12-



(31), and so, for all x € N and

\|/(jCi + p%) - \if(Xi) = max/^(xi + p*/ii)-v(xO
ye £

S max /Oa) + {V/Cci), P*W - \KXi) +
je E

^ P* fmax f(xO +(V/Cxi), /if) - \ff(x/) +V^p* , (39)
1/6 B J

because P* ^ 1 and/(x) ^ v(x). Therefore, if p* ^ min I My

VCxi +p*/ii) - v(Xi) ^ P* jmax/(xi) + /»,) -

= P*e(xi) <ap*e(rO<0. (40)

It follows firom (37) that Xj ^ Py / M and hence that

V(*ffi) -Wd ^^ 6(*i) •

Combining inequality (41) with Lemma 3.3 yields the desired result •

5. Rate of Convergence of the PPP Algorithms on CompositeMinimax Problems

Next we will establish the rate of convergence of the PPP-ELS and PPP-Armijo algorithms on a

class of composite minimax problems of the form

min max g^(Ax) , (42)

whCTe g^: r'' -> R is continuously diffia^ntiable and Ay is an x /i real matrix. We note that (42) is a

problem of the form (la), with the functions /'(•) defined by /-^ = g•'•Ay. Inconformity with the previ

ous sections, we will use the notation \(f(x) = max g '(Ay*). We note that when the null spaces of the
JBE

matrices Ay have a nontrivial intersectitm, which we will call their common null spaccy problem (42)

does not have a unique minimum and therefore does not satisfy Hypothesis 3.1(ii). In this case, prob

lem (42) may also fail to satisfy the convexity requirement of Hypothesis 3.2. To see this, note that for

problem (42), the second derivative of the Lagrangian at a minimizer* has the form,

Y.i^yViAja(AplAj. (43)

-13-



where G'O) denotes the second derivative matrix of g\'). Continuing to denote by B the subspace

q)anned by thevectors { V/-'^)} , we find that the second derivative matrix will only be positive
>6 y<x)

5em{-definite on the subspace B^. However, we have observed in computational e?q)eriments that linear

convergence of the values {\y(xi) constructed by PPP-ELS and PPP-Armijo is not lost in this cir

cumstance. In this section we will d^ve a bound on the rate of convergence of PPP-ELS and the

PPP-Armijo algorithms und^ the assumption that the Lagtangian Hessian is positive definite only on

the orthogonal complement of the common null spaceof the matrices Aj.

By analogy with nonlinear programming, we shall say that strict complementary slackness holds

at a solution x of (la) (or (42)) if, for every multiplier vector jl satisfying (13a, 13b) with x,

jl'> 0 if and only if = \|/(x). (14)

When strict complementary slackness holds at a minimizer x, the multiplier vector jl satisfying (13a,

13b) withX is unique and hence7(1) = [j^ p. l/^(3c) = V(Jc) ) .

Proposition 5.1: Suppose that the functions g\'), are strictly convex and that strict complementary

slackness holds for every xe 8. Then, (a) there isa unique ^ such that l/(x) = []i} for all xe 8,

and (b) the setO ^ 7(x) isindependent bfxfor all xe 8.

Proof: We show (b) first Suppose that ^ Ufy for some x € 8, and that tti Ms- Let r and Jo

be defined by

t 4 min{ Mi/(ri-|Li4)lM{>M4)>0. (44a)
Job. ^ '

jo ^ arg min{ p/j / ( Mi - m4 ) ' Mi > )• (44b)
yee ^ '

Then |X, = |Xi ^ r(P2 - M>i) ^ ^ satisfies (13a, 13b) with x, and hence p, € U(^. By construction,

^ - 0. Hence, it follows from the strict complementary slackness assumption that /-'(x) < \|/(^.

However, pj** > 0, and hence, again by strict complementary slackness,/(x) = contradiction

shows that C/(x) is a singleton for each x € 8.
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Suppose that ji e 7(xO but for distinct points x', x" e G. Then g '̂(Ay^x") <vC^O- L®t

+ Then x, eS for all te[0,l], and» by the convexity of g\\

g\Aj^ <v(x") =v(Xt) for all t € (0,1). It follows from (i) above that U(^ ={ji,), a singleton,

and from (13b) that = 0 for all / e (0,1). Now, by the Maximum Theorem in Ref. 20, U{') is an

upp» semicontinuous set-valued map. Since C/(xO = {ft' }* a singleton, !/(•) is continuous at x'.

Hence p, -> jl' as / ^ 1, which implies that p' = 0. Since ji e this contradicts our strict com

plementary slackness assumption, and we conclude that (b) holds.

Now we prove (a). Suppose that x', x" e 8. From (b), g +r(J" - 5^)) is constant for all

t 6 [0,1] and all j e X Since each g'(•) is strictly convex, we conclude that A/^ - 5") = 0 for each

j e /. Tharefore, for all y€ 7, AjVg '(Ajx^ = AjVg ^(Ajx") and hence any p satisfying (13a, 13b)

with^ satisfies (13a, 13b)withx '̂. This and the fact that U(G) is a singleton imply (a). •

Proposition 5.2: There exists a neighborhood, W, of 0 such that, for all xg W, \il = 0for all

p € andj d J(^,

Proof: (a) Since h(x) is the solution of the primal problem (6), it satisfies the optimality conditions

(13a, 13b) with the functions /^O replaced by ((/(• Ix). Every p e U(x) satisfies equations (13a, 13b)

together with /t(x), and hence the second of those equations yields

2m/Uaoc) I*) - xKx) - ew] =0. (45)
JGB.

By Proposition 5.5 in Ref. 13, A(x) = 0 and 0(3^ = 0 for every x e G. Since both functions are con

tinuous, A(x) -» 0 and 0(x) 0 as x 8. Therefore, <l/(A(x) Ix) ^ g•'(A^ as x -»xg Gfor all j,

implying that

^{hipc) Ix) - \\fix) - 0(x) < 0 (46)

for every j d 7(x) in some neighborhood, W, of8. It follows firom (45) and (46) that, for all x g W,

p' = 0 for ally d 7^^ for all p g U(x).
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We now proceed to show that the PPP-ELS and PPP-Aimijo algorithms converge linearly on

some problems of the form (42) which do not satisfy the assumptions of Theorem 3^. Letting

ji <... <jb be the indices constituting /, with J defined as in Proposition S.l, we define

aF 4 . Firstwe will show that the tail of a sequence {jc,* generated either by PPP-ELS

or by PPP-Armijo is contained in a translaticm of the range of We will then show that the sequence

corresponds to that constructed by the corresponding PPP algorithm on the following restriction of prob

lem (42) to a translation of the range of

min + Zy) , (47)

where a ^ rank{ ^), and Z is a matrix, the columns of which form an orthonormal basis for

Range(^. Finally, we will show that the restricted problem (47) satisfies the assumptions ofTheorem

^2. We will use the notation a^[X] to denote the minimumpositive eigenvalue of any symmetric, posi

tive semi-definite matrix X.

Theorem 5.1: Suppose that

(i) the Junctions g^O) are twice continuously differentiable,

(ii) there exist constants 0 < T :SL' such that, for all J e p,

V\h^ < (/i.G'(z)A)^ V \h\^ , M h,ze , (48a)

(Hi) strict complementary slackness holds atall xe 8/

(iv) Let l^t and L>L* be such that

S < Y< ^AjAfl , (48b)

where fiis the sole member ofC/(8). Under these assumptions:

(a) For any xe G,

^The assumption ofstrict complementary slackness is necessary only if the matrices Aj have different null spaces. For ex
ample. thelinear convergence result holds without this assumption if thematrices Ajareidentical
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\l/(x + X/l(jc)) - Vlim sup mm ^^ ^ •
x-»5 x|/(x)-v • ^ nm IZ'Aj;4jfcZI (48c)

X6 x+Rafige(Zi
A

X^X

^ PPP'ELS Algorithm constructs a sequence (xj^ in solving problem (42), then, the sequence

converges to xfor somex e and either the sequence terminates in a finite number of steps at x or

lim sup ^ 1 - 7 \^aTa ^ • v48a)
*""" ¥(*»)-V rml^^AfcAfcZl

Proof: (a) To prove this part, we will (i) show that it is sufficient considor the restriction of problem

(42) to an affine space, (ii) verify that Hypotheses 3.1 and 3.2 hold for the restricted problem, and (iii)

apply Lenuna 3.4.

It follows finm Proposition S.2, that there exists a neighborhood Gsuch that |i/ » 0 for all

j and \IG t/(WO. and from (12), that h(x) = £/«£AjVg^(Ajxd for any p e U(x). Hence, for

aUxe W,

h(x) e RangeO^) =Range(Z). ("^9)

by the definition of Z above. Let us fix x € G, and suppose that xe W. Ifx€x + Range(^, then

x + Xh{x) e X+ Range(Z). This suggests that we consider the restriction of problem (42) to

Range{Z), viz.,

min vXy) . (50a)
y 6 R"

where

so that >^/y) = maxyg g/^), with /iO*) Zy). The search diiection d(^ constructed by the

PPP-ELS algorithm at a point y € R" for problem (50) is given by
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d(y) ^ arg min max g\A.{x + Zy)) + (Z'AjVg \Ajix + Zy)),<ft+

= arg min max gKAjix + Zy)) + <AjVg ^i^Ajix + Zy)),2ift+ ViylZdl^
d6 IR"

= arg min max ((/(Zci Ix + Z>), (51)

since ZFZ^Ia and ^{Ji\x) k g^(A/c) +UjVg <'(x),M+By (49), /i^c +Zy) e ^ange(Z).

Hence, referring to (51), we see that

h(^ + Zy) = aig min max ^{h Ix + Zy)
h € Jtangt(^ / € £

= Zd(y). (52)

Also, for y such that x + Zye W,

arg min w( x + Z(y + Xd(y)) ) = arg min v( x + Zy + XZi(y) )
X€ R Xe R

= arg min \ir(x + Zy + Xh(x + Zy) ) . (53)
Xe R

We conclude from (52) and (53) that

V(x + XA(x)) - V + Z(y + XJ(y)) - vIrni sup mm —*• = lim sup mm ^^.
V(x)-\? y-^y vOc + Zy)-v (53b)

Xe X+JlangeCS) y^y

x*x

Hence, provided problem (50) satisfies Hypothesis 3.1 and Hypothesis 3.2, we can establish (48c) by

applying Lemma 3.4 to problem (50) to obtain an upper bound on the right hand side of (53b).

We now verify that Hypothesis 3.1 is satisfied by problem (50). (i) The functions g '(A/x + Zy))

are twice continuously differentiable in y by assumption (i) of this theorem.

(ii) Let Sr = {y € R.® I + Zy) :S T), with T>v(S). Since the fimctions g^0) are uni

formly convex by assumption (ii) ofthis theorem, the set AZSr isbounded. Since Range(Z) =Ranged)

andNu//(Z)= { 0 ), JVu//(AZ) = { 0 ).'Hence 5^ is bounded.

^Suppose thatAZy « 0. Since NtdUfi) Rangt(A^ - ( 0 },Z> - 0. ButthenMi{;(Z) > ( 0 } implies thatyO.
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Showing that only one point in Sr satisfies the necessary conditions for optimality (13a, 13b) for

problem (50) is slightly involved. Let denote the minimizing set for problem (50). If x + Zy € G,

then y€ 8^ and hence 8^. 3 Since x6 8, 0€ G^ Now suppose that there is a

y'e Gr such that x+Zy' ^ 8. ITiot +ZyO >yOc +ZO), which contradicts the assumption that

y' 6 8^ Therefore, Gr = Z'(8- ^ ^

Now consido* the set of multipliers.

A -U/y) a

I £ M/z'AjVg>(A/x + Zy)) = 0
jen

tie 2^1
I 2 ti!(g'(A/jc + Zy)) - vde + Zy)) = 0
1/6 £

(54)

which, together with y, satisfy the the optimality conditions (13a, 13b), when the functions functions

/'(O are replaced by the functions /((•)• For any ye G„ we have x + ^€ G, and hence

g•'(A/x + 25)) < V(x + 250 for all j 4 7. Consequently, = 0 for all y^ 7 and for any jl e f7r(>0. and

th^efore

2 P'AjVg ^(Ay$ +Zy)) e Ranged) =Range{Z) . (55)
/e B

For any pc e I7,(y), it follows firom (54) that 2 ye^P' ^AjVg + Zy)) = 0 , hence, making use of

(55), we conclude that 2 >e e P' ^(A/pr + ^) = 0. Hence, p together with x + ^ satisfy the

necessary conditions (13a, 13b) for the original problem (42). Thus, U^Gr) c f/(x+ ZG^), and hence

A. ^ A

t^AGr) = { P ). where p is the only memb^ of G(G).

Suppose that yi,y2 € 5^ satisfy the optimality conditions (13a, 13b) for problem (50). Since

\|fAZy) is convex in y, these necessary conditions are sufficient for optimality, and, furthermore, the

entire line segment between yi and y2, lyi,3^, lies in 8,. Since 17y(|yi,y2l) = {p ) and p' >0 for all

ye 7,g^(A,<x +Zy)) = \jf(x +Zy) =\jr for all y€ [yi,y2] and all y€ 7. Because the functions g'(•) are
A A

Strictly convex, it follows that AJZyi = AjZy2 for all j e /, and hence that yi-yz^ Null(AZ). As
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mentioned above, Null(AZ) = ( 0 }, implying that yi = y2* Th^fore, the necessary conditions are

satisfied at a unique point y € and Hypothesis 3.1(ii) holds.

(iii) It follows firom Assumption (ii) of this theorem that for all ye "R",

IFj(y)i ^ Lmax i^AjAjZI, where F((-) denotes the second derivative matrix offU:).

Now we v«ify that Hypothesis 3.2 holds. Letting 2[X] denote the minimum eigenvalue value of

any real symmetric matrix X, we obtain that

S 2 v/(P(AjCi+^) = a 2
/e £

^ /e
fee.

= /<T+
fee.

since the columns of Zspan Range(^ =Null(^ and NullQ^ ^̂ ^ =N«//(A).

Assumption (iv) of this theorem ensures that

la* Z ffAjA,
/6 fi

<Y<Lmax IZ^AJAJZ^

(56)

(57)

Letting the left-hand and right-hand sides of the double inequality (57) correspond to m and M respec

tively, we can £q[)ply Lemma 3.4 to problem (50) to obtain

limsupmin +
y_»5 \;/(x + Zy)-\{f
y^y

L max ^Z^AlA|̂
ke z

(58)

which, combined with (53b), gives part (a).

To show (b), we first show that x as i oo for some xe 6, and then apply part (a) of this

theorem. Let ^ ^ [Af,...,Aj]. From (12), every A,-, constructed by the PPP-ELS algorithm, is ofthe

form Xy ee ^ sequence {x,- is contained in the closed and convex set
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Q ^ + Range(^) ) '^ {x e R" Iv(x) ^ )• Suppose that |2 is unbounded. Then, since Q

is convex, there exists a nonzero u e Rangdi^)^ such that, with x, = xo + tn, v(X|) ^ \j/(xo) for aU

t ^ 0. IfAj^u ^ 0 for some Jq e £, then the uniform convexity of g'(Ot which follows from assumption

(ii) of this theorem, implies that lim, «, \ir(X|) = + oo. Since this contradicts our assumption that

^ V(*b)* we must have that Au = 0. Hmce u e Range{A^)f^Null(A) = {0 ), which contradicts

the assumption that « ^ 0. Therefore, the set (2 is bounded, and hence compact. Consequwitly, the

sequence {x,- must have an accumulation point, x. From Corollary 5.1 andProposition 5.5 in Ref.

13, any accumulation point x of a sequence generated by the PPP-ELS algorithm must satisfy the first-

ord^ necessary conditions for optimality (13a, 13b). Since \y(') is convex, this implies that x e G.

A

Since Q is compact, it follows that -> G as i -» <».

Since x^ -» S as i —» «>, there exists I'o e N such that Xi€ W for all i> I'o. Hence,

{Xj )r- +RangeO^) =xi„ +Range(Z). Since the functions g\-) are uniformly convex,

Gn (x^o +Rangei^) is a singleton. Hence, the sequence {x; )Zo converges to

X=S Xijj +Ranged).

Inequality (48d) follows directly from convergence of the sequence to x and part (a). •

The corresponding result for the PPP-Armijo algorithm can be obtained by following the steps

used in Section 4 and above.

Theorem 5.2: Suppose that the assumptions of Theorem 5.1 hold.

(a) For any x e 8,

v(x)-\f ~ maxlZ^A£4fcZI (59a)
z € X+ SaRj«(Z)

lim sup min ^(^))—ilL ^1_apy
XeR A

(b) If the PPP-Armijo algorithm constructs a sequence (jq)^ in solving problem (42). then, the

sequence converges to xfor some x e 8, and either the sequence terminates in afinite number ofsteps
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at X or

lim sup S 1- op-T- ,^.r. ^ • (59b)

6. Conclusion

We have shown that sequences { v(jc^ generated by two PPP minimax algorithms converge

linearly to the minimum value under weaker conditions than those assumed in previous analyses of the

rate of convergence of PPP algorithms (Refs. 1, 7-9). Although composite minimax problems which

have nonunique, nonisolated minimizers, do not satisfy the second-order sufficiency conditions that we

had to assume to establish linear convegence on general minimax problems, we were able to show that

these PPP algorithms convege linearly on these problems provided that strong convexity and strict

complementary slackness conditions are satisfied.

PPP algorithms can be genoalized in a straightforward way to solve semi-infinite composite

minimax problems (Ref.13) which arise in control system design,

(60)a e R" / ® a yy6'jf

where the sets Yj c are compact, and the functions ^ x r'^ R, ye n and are con

tinuous. As before, each Ay is an /y x n matrix. Under assumptions analogous to those of Theorem S.l,

it can be shown that the semi-infinite versions of the PPP algorithms, considered in this paper, also con

verge linearly (see Ref. 8).

7. Appendix

Proof of Lemma 3.1; For any y e R", y = Py + P^. Hence, since /?(*,•) is continuous and is

negative definite forany(I € by Hypothesis 3.2,

(y,R(y,ti)y)= (fy + P*yy?(y.H)(Py + Pb'))

= V^y?(y.lt)Pb'>+ Vy^Cy.tiXP)' + 2Pb')>

-22-



< + 2Pb')>. (61a)

for |i near and y small. Using the Schwarz inequality and the fact that IFy + 2P^I ^ 2lyl,

<y,/?(y,|i)y)< K(y,ji)l IPyl VPy +

^ 2K(y,M.)l IPyl lyl

^ 3 max l/?(O.^I l/^l lyl, (61b)
J16 uCx)

for |i near t/(jc) and y small, since !/?(•,•)! is continuous. •

Proof of Lemma 3.2: UsingTaylor*s Theorem, we obtain that for any x e R",

\|f(x) - ^ max f\x) - ^6)

=max/^Cx) +<,V/^(jc),x -x)+ U-x, [f J(1 - s)F^(^ +s(x -x))ds](x - x) )- v(*) • (62)

Since= \if(x) forally e /(^, it follows from Hypothesis 3.1(iii) that

\|r(x) - \j/(x) ^max <^f^(^),x -x)+ U-x, [[ J(1 - s)P(^ +j(x -x))dy](x - x) >
>6 7(5)

^ max <,V/^(x),x - x>- M\x - xf . (63)
ye /(h

Since - x))= 0 for allj e /^c) and h=Ph + P*h for any k e R",

max ^V/^(j^,x-5^= max P(x-x)). (64)
JeJC^ y6 7(*)

We will to show that there exists an i] > 0 such that

max <V/^(x),P(x - x)) ^ 'nBP(x - x)l. (65)
JeJCti

Suppose not Then, there exists a nonzero « e B such that max <V/^(x),ir)^ 0 . Since i7(x) is
ye 7(x)

convex, there exists a jl € U(x) such that ji' > 0 for ally € 7(x). By (13b), ft' = 0 for j d 7(?). There

fore, by (13a),
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2 ^2>=«).«>= 0 . (66)

Equation (6Q states that a convex combination of the nonpositive numb^, { , with
76 Jw

nonzero coefficirats, {is zcto. Hence <^f^C^,u)=0 for all j e J(^. But then
Je 7®

UG Bf^B^ s ( 0 ), contradicting the assumption that u ^ 0. Hence, let ii > 0 be such that (6S) holds.

Substituting (64) into (65) and (65) into (63) yields

V(x) - V(?) ^ T^IPC* - x)l - Mix - xl^ . (67)

for Xin some neighborhood of x.

Now we derive another lower bound on \|f(x) - Forany jl e £/(x), using Taylor's Theorem

and the fact that 2 7s ^ = 0,

V(x)-v^^ 2
7e«

=<>!-x.[f5(l-j)2 +J(x -5))dj (x -x)>

=v^*-x).[j J(1 -sy-Zi^f^+sOc-xDds
I ®̂

+VOt -^. [f J(1 -i) 2&F>Cc +sOc-x))ds
I

Making use of Hypothesis 3.1(iii) and Hypothesis 3.2, (68) leads to

P'(x-x)>

(2f>iOt-5)+ /•(*-?))>• (68)

\|r(x)-\|((3c)2 V4mlP^-x)P-ViMU'(x-x)l l2P»(x - x)+/"(x - x)l

2 i4ml/^x-x)l^-MWCx-jc)l U-xl . (69)

for Xin a neighborhood of x.

Combining (67) with (69) anddividing by iF(x - ^ilx - xl yields
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yyjx) -
> max'

\P{x - x)\lx -x\ Ix - JCl IP(x -
(70)

for X in a neighborhood of x. Using the fact that Ixl ^ IJ®xl + If^xl, and defining

r(x) = IP(x -%\ / IP*(x - , we obtain that

^ max. -73^^-M.—24--"(7^+ 4- <")rixr+r(x) |^_5| nx) JIP(x-x)Hx-xl

We use (71) to show that

lim inf —— = <» , (72)
x-»x IP(x-x)Hx-xl

which is equivalent to (19). Thus, given any integer fc > 0, there exists a real number r > 0 such that

the first term in the max in (71) is greater than k if r{x) < r. For x such that r(x) > '"t the second term

term in the max is greater than q/lx - xl - Af(l/r + 1). Hence, there exists a neighborhood, Wjt, of x

such that the max in (71) exceeds jb for all x e and, th^efore, (19) holds. •
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