Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



ON THE RATE OF CONVERGENCE OF
TWO MINIMAX ALGORITHMS

by

E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M89/111

15 August 1989



ON THE RATE OF CONVERGENCE OF
TWO MINIMAX ALGORITHMS

by

E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M89/111

15 August 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



ON THE RATE OF CONVERGENCE OF
TWO MINIMAX ALGORITHMS

by
E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M89/111

15 August 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



ON THE RATE OF CONVERGENCE OF TWO MINIMAX ALGORITHMS!
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Abstract. We show that the sequences of function values constructed by two versions of a
minimax algorithm converge linearly to the minimum values. Both versions use the Pironneau-Polak-
Pshenichnyi search direction subprocedure; the first uses an exact line search to determine step size,
while the second one uses an Armijo-type step size rule. The proofs depend on a second-order
sufficiency condition, but not on strict complementary slackness. Minimax problems in which each
function appearing in the max is a composition of a twice continuously differentiable function with a
linear function typically do not satisfy second-order sufficiency conditions. Nevertheless, we show that,
on such minimax problems, the two algorithms do converge linearly when the outer functions are con-
vex and strict complementary slackness holds at solutions.
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1. Introduction

Most minimax algorithms have been shown to converge locally or globally under various condi-
tions. However, the literature dealing with their rate of convergence is rather fragmentary (see, e.g.,
Refs. 1-9). In this paper, we establish the rate of convergence of two versions of a minimax algorithm
which was first proposed by Pironneau and Polak (Ref. 10) as a subprocedure in an implementation of
the Huard method of centers! (Ref. 11), and, later, independently, by Pshenichnyi (Ref. 1), who calls it

the method of linearizations. (See Ref. 13 for extensions to semi-infinite minimax problems.)

We are concerned with algorithms for solving minimax problems of the form

min max f/(x), (1a)
zeR*jeR

where p4 { 1,2,...,p } and each f/:R* — R is continuously differentiable.

We will briefly review the literature dealing with the rate of convergence of first-order minimax

algorithms for solving problem (1a). For this, we need to define the function y:R* — IR by

¥(x) = max f . (1b)

First, since problem (1a) can be transcribed into the equivalent constrained form
min{ wifix)-w<0,jep), @

it can also be solved by first-order nonlinear programming algorithms.? For example, it can be solved
by the Pironneau-Polak method of centers (Ref. 10) which, as shown by Chaney (Ref. 14), converges

linearly on (2) whenever a strengthened second-order sufficiency condition is satisfied.

Subgradient and bundle methods designed for the more general problem of minimizing locally
Lipschitz functions can be used for mini'miz‘ing the function y(-). In Polyak (Ref. 2) and Shor (Ref. 3),
we find proofs that several subgradient methods converge linearly when y(-) is strongly convex. In

Ref. 4, Kiwiel has proved that a bundle algorithm for constrained minimax optimization converges

1 One of the definitions of the "center” of a set described by inequalities, given by Huard (Ref. 11), is in terms of a
minimax subproblem of the form (1a). Consequently, every implementation of the Huard method of centers (e.g. - Refs. 10, 12)
incorporates a minimax algorithm as a subprocedure. This fact was not widely recognized, and some of these imbedded minimax
algorithms were later rediscovered independently.

2 The transcription of (1a) into (2) is not recommended, because nonlinear programming algorithms converge more slowly
on (2) than minimax algorithms designed specifically for (1a).



linearly.

Next, there are several algorithms which were designed specifically for solving minimax problems
of the form (la). One of the oldest is that of Demyanov (Refs. 15, 16), which computes &-
approximations to the minimum value of () with 8 > 0. It computes search directions by solving a
linear program defined by the linearizations of the 3-active functions f () (c.f., the Zoutendijk method
of feasible directions (Ref. 17)), and employs an Armijo-like step size rule. It was shown by Pevny
(Ref. 5) that, when W(°) is strongly convex, the Demyanov algorithm converges linearly in function
value.> Madsen et al (Ref. 6) propose a trust region algorithm for the linearly constrained minimax
problem in which a linear program is solved at each iteration. When the solution % of (1a) is a "vertex"
solution (also called a Chebyshev point or a Haar point), the algorithm in Ref. 6 converges quadrati-
cally. However, when % is not a vertex solution, the rate of convergence of this algorithm is unknown.

The minimax algorithms which we will discuss in this paper belong to a family conforming to the
following algorithm model, which uses the Pironneau-Polak-Pshenichnyi (PPP) search direction subpro-
cedure (Refs. 1, 10):

PPP Algorithm Model

Step 1: Given x;, compute the search direction,

h; & arg min max Fix) + (VFix), i+ aylhi® 3)

heR*JE€L;
Step 2 Compute the step size A;.
Step 3: Set x4 = x; + Ay, replace i by i + 1 and go to Step 1. | |
Algorithms in this family are specified by the quantities /; < p, ¥> 0, and a rule for computing
the step size A, Thus, in Ref. 1, we find a minimax algorithm in the PPP family with
;A (jeplfix) 2y(x)—38) (with §>0), Y=1, and the constant step size A=A. It is shown in
Ref. 1 that the resulting algorithm converges linearly, provided the initial point is sufficiently close to 2.

The proof assumes that A is sufficiently small, and that strict complementary slackness, affine indepen-

3Pevnyi also shows that, if the functions fail to be strongly convex but are convex with bounded level sets, convergence to a
5-optimal value is arithmetic.



dence of the gradients of the active functions and second-order sufﬁcienc& conditions hold at X. It is
also shown in Ref. 1 that, if A = 1 and X is a "vertex" solution, then the local algorithm converges qua-
dratically.

In Ref. 1, we also find a PPP minimax algorithm which uses the step size rule

A= ;l:sa%{ 2% | y(x; + 270) - wix) < %ok ), o e (4)1), @

where IN is the set of all nonnegative integers. It was shown in Ref. 7 that, if (1a) has a "vertex” solu-
tion %, then the step size in the above algorithm eventually becomes unity. It therefore follows from
Ref. 1, that if a sequence {x;}io, constructed by the PPP algorithm using (4), converges to a "vertex"
solution %, then it converges quadratically.

In Ref. 8,1; = p,y>0forall j € p and an Armijo step size rule (Ref. 19) similar to (4) is used,
while, in Ref. 9, J; = p, Y= 1 for all j € p and an exact minimizing line search is used to determine
step size. It was shown in these papers that both of these PPP methods converge linearly under the
assumption that the functions f/(-) are strongly convex.*

In Sections 3 and 4 of this paper, we show that the PPP algorithms, considered in Refs. 8 and 9,
converge linearly under a slightly strengthened form of the standard second-order sufficiency condition.
This condition is considerably weaker than the strong convexity assumption used in Refs. 8, 9. Further-
more, unlike in Ref.1, we assume neither strict complementary slackness nor affine independence of the
gradients of the active functions.

In Section 5, we consider the composite minimax problem,

min, max g (A7) , )

in which each continuously differentiable function g/ : R/ Ris composed with a different linear
function 4; : R* —» R’ Minimax problems of this form arise in the design of feedback compensators

and of discrete time optimal controls. We show that, despite the fact that the solution set is generally

“To obtain linear convergence in the case that the solution set is an affine set (Ref. 8), strict complementary slackness was
assumed in addition.
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nonunique,’ the PPP algorithm described in Ref. 8 converges linearly, under somewhat more stringent

assumptions than for the general case.

2, The PPP Minimax Algorithm with Exact Line Search

In this section, we will consider the algorithm which results when the step size A; in the Algo-
rithm Model is computed by exact minimization along the search direction. To simplify notation, we

define
Fr1x) B Fix)+ F i), W+ Yoy i ©)
Algorithm 2.1 (PPP-ELS): (see Algorithm 5.2 and Corollary 5.1 in Ref. 13)
Data: x€ R v>0.
Step 0: Seti=0.
Step 1:  Compute the search direction®,
h(x) & arg min max ¢/(h | x) - w(x). )
AeRPJER
Step 2: Compute the minimizing step size, A; = arg m w(x; + Ah(x) .
Step 3: Set x4 = x;+ Ah(x), replace i by i + 1 and go to Step 1. ]

Let the standard unit simplex be denoted by X, & {pe RPIW 20,3 ;c,¥ =1). Then

the search direction finding problem (7) can be transformed as follows:
8(x) 2 min [max ¥(h1 ) -\p(x)]
herm Liep

< min [max zw«hlx)—w)]. ®

heR* | RE :; je 2
Next, by an extension to von Neumann’s Minimax Theorem (Ref. 13), the max and min in (8) can be

interchanged, and hence we obtain that

5In fact, the solution set must contain a translation of the intersection of the null spaces of the matrices Az

6 For the convenience of the proofs to follow, we subtract the term y(x;) from the minimand in (4), so as to make the value
8(x,) of the search direction finding problem less than or equal to zero. This has no effect on the resulting search direction.



8(x) = max min Y W o(h 1) -y

re heR"jap

= max min 3 W (@) + V@, h)-yi)) + Kl ©)

pe X, heR"jep

The solution p of (9) is not always unique, and hence we define the solution set

U) & arg max |\ min 3 1 () + O/, )=y + YofP | (108)

’lem'jeg

By solving the inner minimization problem in (10a), we see that U(x) is the solution set to a positive

semi-definite quadratic program,
U@ =arg max 3 W (Fi9 - w) - %l T W VPR . (100)
ned,jep jier

Several methods exist for solving such problems (see, for example, Refs. 21-25).

As a consequence of the extended von Neumann Minimax Theorem, for any [T € U(x),

T F o 1ns ,{'éaép T W hx) 1 %)

jep jep

= min max Y, W ¢/(h1x)

heR*BEL g,

= max min PIRTRZ(ABS)

"exphen"jeg

= min ¥ F¢*lx). (11)

hem’jeg

Hence, any multiplier vector [T € U(x) yields the solution,

h(x) = arg min Y, I ¢/(h 1 x) (12)

hem“jeg

to the search direction finding problem (7) (for x =x;), which is unique since the function

max ;¢ , ¢/( | x) is strictly convex.
Next we recall the following necessary optimality condition for problem (1) (see Ref. 13).

Theorem 2.1: (Ref. 13) If X € R" is a solution to problem (1), then there exists a vector of multipliers

il € I, such that
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T¥Vr® =0, (13a)

jep

> RF® - v@ = 0. (13b)

jep
|
When the functions f/(-) are convex, equations (13a, 13b) are also a sufficient condition for optimality.
We denote the minimum value for problem (1) by \Tl 4 min re me V() and the set of minimizers by
G A arg min _ _ . Y(x) . For any e 6, the set of multiplier vectors fl € I, which satisfy equations
(13a, 13b) together with % is exactly UQR).
Theorem 2.2: (Ref. 13) Suppose that the functions f(-) in problem (1) have continuous derivatives.

If X is an accumulation point of a sequence { x; Y=o constructed by Algorithm 2.1, then X satisfies the

optimality condition (13a, 13b). |

3. Rate of Convergence of the PPP-ELS Algorithm

We now proceed to prove that the sequence of values, { y(x;) }Zo, constructed by Algorithm 2.1
converges linearly to the minimum value under weaker assumptions than those used in Refs. 8 and 9.
Our proof draws on ideas which appeared in the proofs of linear convergence of the Pironneau-Polak
algorithm for inequality-constrained minimization in Refs. 10 and 14. We make the following assump-

tions.

Hypothesis 3.1: We will assume that
() the functions f () are twice continuously differentiable,

(ii) there exists T € R such that the set S A (xe R* | y(x) < T} is bounded and such that there is

a single point X € S which satisfies the necessary conditions (13a, 13b),

(iii) for some M’ <o ,all x€ R*and all j € p, WL <M’ . [
For any stationary point %, we define the set of indices of the functions active at X by

JG 8 (jeplTpelU®:W>0}. @15)



Hypothesis 3.2: Let X be as defined in Hypothesis 3.1, let B denote the subspace spanned by the vectors

(VFi®)) o and let B* denote the orthogonal complement of B. We will assume that there exists
je

m’ > 0 such that, for all i € UQ),

mhP < &, LZ v F’G)]h) V he B*. (16)
ep -
Remark: Hypothesis 3.2 and equations (13a, 13b) together constitute a variation on the standard
second-order sufficiency conditions for % to be a local minimizer of y(-) (Ref. 18). Note that, while
(16) must hold for all multiplier vectors in U(X), the subspace B* over which the inequality must hold
may be quite small, because all of the mulitiplier vectors in U(?) are used to determine the set JG). =
The proof of linear convergence requires several technical lemmas involving the following quanti-
ties. With % as in Hypothesis 3.1 (ii) and B as in Hypothesis 3.2, let P : R" — R" denote the projec-
tion operator with range equal to B, and let P* be the projection operator with range equal to B*. Let
A

m £ min{ m',y}. (17a)

For any y € R" and u € X, we define
1 .
RO 8 ¥mI-|o1-9F o FG+ (- s)yds. (17b)

The function R(-,”) is continuous, and, by Hypothesis 3.2, for any fi € UQR), R(0,{l) is negative definite
on the subspace B+,

We will use the notation z; — Z to indicate the convergence of the sequence { z; }zo € R" to the
set Z< R", i.e., the fact that lim ; , , min , . z Iz;— y1 = 0. The following two results are established

in the Appendix.

Lemma 3.1: If Hypotheses 3.1 and 3.2 hold, and % is defined as in Hypothesis 3.1, then there exists
K > 0 such that

. PRGN
lim sep < riep <X (18)
ro UG
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Lemma 3.2: If Hypotheses 3.1 and 3.2 hold, and % is defined as in Hypothesis 3.1, then

lim Ix-% lP(x: £3) ) =0. 19)
xo% V(x) -y u

We now relate the potential decrease in the function y(-) at x to the decrease predicted by 6(x).

Lemma 3.3: If Hypotheses 3.1 and 3.2 hold, then
— 0)

Proof: Referring to (9) and (10), we see that For any [T € U(x),

6(x) = min Y, FY(hIx) - wix). 1)

hen’jez

Let s(x) A my v. By the definition of m above, s(x) < 1. Substituting 4 = s(x)(:?:— x) in (21) and
using the definition of ¢/(- | -) in (2), we obtain that
0 S X FH(sGE -2 10 - y)
iep
=2 ﬁ"b’(x) = Yx) + Vf (), 5(x)G - 2+ Yays(x)? B - xlz]

jiep

jep .

< s(x) {2‘, Ef @)+ 3 EVF i) 3 - 2+ VomB — xi - \v(x)} , @)
ap
since s(x) e (0,1) and fix) S wyR). Adding and  subtracting the  term

jep

-3, [j f,(l - )T WFG+(1 - (x- 'i))dt](x - 2)) to the right hand side of (22), we find that

jep jep

8() S sx} X Ff 1) + A T VA 2 - 0+ k- %, [j’ o1 = ) T EFG + (1 - )x - 2))&](;: -
€p

- y(x) + & - 3.R(x - % E)(x ~- 'JE))} (23)

The first three terms in the right hand side of (23) constitute the second-order Taylor expansion of



Z jep |-—'!f j@)- Hence,

0@ < S0} S - o) + = 2R - B - ?o}
€p
< s(x){\p(i) - y(x) + &~ ZR(x — X, M) (x - ?c))} . (24)

Dividing both sides of (24) by y(x) — ¥, we get

8@ o1+ EoBRE-ZMeoIN @5)
yx) - y® ¥ - Y@
By Lemma 3.1,
lim sup max (x - va(x - x.ll)(x — x» <K , (26)
xo3 eV SIPR -
and, by Lemma 3.2,
lim sup ke IP(x: N _ 0. @7
= Y-y
Since the set-valued map U(x) is upper semicontinuous, s(x) is lower semicontinuous and
lim inf s(x) = 2 . (28)
23 ¥
Taking the lim sup of (25) as x — % and using (26), (27) and (28) yields (20). [ |

We combine Lemma 3.3 with a relation between the decrease predicted by 6(x) and the actual decrease

obtained at x in the direction A(x) using an exact line search. Let

M A max{M,y). (29)
Lemma 3.4: If Hypotheses 3.1 and 32 hold, then

Y+ M) - _ min(m'y)

lim sup min max(My) (30)

-3 MR -

A
X®”X
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Proof: Since by Hypothesis 3.1(ii), X is the only point in S satisfying the necessary condition for

optimality (13a, 13b), it follows that w@®) = ¥ and y(x) > ¥ for all x € S\%. Since 6(x) is zero if and

only if the necessary conditions (13a, 13b) are met at x, 6(x) < 0 forall x € S\7%.

The second derivative bound of Hypothesis 3.1(iii) implies that for each ("),

Fio+2)-f10) - VfiG), » < ML, V¥ y,z€ R,

Thus, for any A € (0,1) and x e S\%,

Jmin (x + M(x) - i) < wix + () - )

< max F7G) = W) + (Vi) Ah(e)+ BMIROP

< X[ max Fi) = wx) + VFR), hx)+ BAMIAR)I2 ]

Setting A = ¥/ M and using the definition of M,

i, WOe + M) - (o) < R max £10s) = WG) + O An) ha+ Y TGP | = TG

Since 8(x) < O for all x # %,

min G+ MG) -6 Sy Y

reR 6(x)

M

Applying inequality (34) and Lemma 3.3 to the left hand side of (30), we obtain

Y(x + Mi(x)) — w(x)

lim sup min
2% AeR “K?)._{;

-
xXnx

— 1im sup mip YEFMO) ~ v _6G)
WP R 8(x) -
x—)‘x V(x)_v
S';L-hnlsup'-gﬁgL::
X=X \v(x)_\v
L|=m
s
__m __ min(my)

-10-
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The second step holds because 8(x) < 0 and y(x) > @ Adding 1 to both sides yields the desired result.

|
Theorem 3.2: If Hypotheses 3.1 and 3.2 hold and Algorithm 2.1 generates a sequence { x; }Zo. starting

from a point xg € S, then (a) x; =% as i — oo, and (b) either the sequence terminates in a finite

number of steps at % or
I ,
yix) -y

Proof: (a) The sequence { x; }2o lies in the compact set S, and hence it converges to the set of its accu-

mulation points. By Theorem 2.2, each accumulation point must satisfy the necessary conditions (13a,
13b). Since, by Hypothesis 3.1(ii), only % € S satisfies (13a, 13b), the sequence converges to .

(b) Follows from (a) and Lemma 3.5. u

Following Luenberger (Ref. 26), we refer to the quantity im sup (y(xi) - WIy(x) — V) as the

convergence ratio of the sequence { W(x;) }=o. The right-hand side of inequality (36) bounds the con-
vergence ratio of any sequence constructed by the PPP-ELS Algorithm in solving any problem in the
class defined by Hypotheses 3.1 and 3.2.

Remark 3.1: The functions ¢/(- | -), could have been defined in (6) using different values of v, say ¥;.
This would have had two effects. First, the search direction finding problem would have been consider-
ably more difficult to solve. Second, the convergence ratio bound in the right-hand side of inequality
(36) could turn out to be larger; certainly it would not be smaller. However, if individual bounds on

the 1F(x)1 are assumed, one may be able to establish lower bounds when using different ;. |

Remark 3.2: From the definition of m and M in (17a) and (29), the ratio m/M appearing in the con-
vergence ratio bound is independent of vy provided that y e [m",M’). However, for y outside this range,
m/M is smaller and the convergence ra.tio bound is greater. The following example shows that this
dependence of the convergence ratio bound on ¥y is not an artifact of our proof technique, but that it

reflects the dependence of the actual convergence ratios on y. We applied the PPP-Armijo Algorithm

-11-



(see Section 4) to the problem of minimizing the maximum of f'(x) & —6xo+ 4(f+x]) and
%) & xo+%(3+ ) using a variety of values for v. For this problem m’ =2 and M’ =8. We
started the algorithm from the point (1,1), and used ye {23,22,27,2°2!,22,24,25,2% ). Figure 1
displays both the convergence ratio bounds computed from the right-hand side of (38) and the conver-
gence ratios which were observed. ]
4. Rate of Convergence of the PPP-Armijo Algorithm

The step size rule used in Algorithm 2.1 calls for the exact minimization of a function of a single
variable. In practice, we use a step size rule which can be executed in a finite number of steps. A suit-
able replacement for Step 2 in Algorithm 2.1 is the following generalization (Ref. 13) of the Armijo

rule for differentiable functions (Ref. 19),

Step 2’ Compute the step size,

ho= max (B*1 wix + B'h) - wix) — af'8(x) < 0}, 37

with fixed parameters o, € (0,1). We will call the resulting algorithm the PPP-Armijo algorithm.
The convergence result, Theorem 2.2, holds for the PPP-Armijo algorithm (Ref. 13). We show that a
rate of convergence result very similar to Theorem 3.2 holds as well.

Theorem 4.1: If Hypotheses 3.1 and 32 hold and the PPP-Armijo algorithm generates a sequence
{ x; Y=o, starting from a point xy € S, then (a) x; > %, as i — o, and (b) either the sequence terminates

in a finite number of steps at % or

lign_’sgp Y(xii1) -:v <1-of ::;:![ ;;',xy}} . 38)
wx) -y '

Proof: (a) The sequence { x; }2o is contained in the compact set S, and hence it converges to the set
“of its accumulation points. Referring to Ref. 13 and using the fact that the functions f/(-) are continu-

ously differentiable, we conclude that any accumulation point must satisfy the necessary conditions

(13a, 13b). Since the only point in S satisfying these conditions is %, the sequence must converge to .

(b) We obtain a bound on the decrease in y(-) obtained at each iteration, assuming that the sequence
does not terminate in a finite number of steps at *. The second derivative bounds again imply relation

-12.



(31),and so, forallie Nand k20,
Wi+ Bh) - yx) = max f(x + B*h) - wx)
< max o) + V), B — wix) + eMBHht?
< B ( max ) + Opi, ) - WG + Bt ) . 39
because B* < 1 and f(x) < w(x). Therefore, if B* < min ;o ¥/ M,
We+ B%) = y0) < B [max fes) + WPGe), - v + vt
= B*e(x) <op*e(x)<0. (40)

It follows from (37) that A; = By/ M and hence that

W) - v < S 0. G)
Combining inequality (41) with Lemma 3.3 yields the desired resuit. |

5. Rate of Convergence of the PPP Algorithms on Composite Minimax Problems

Next we will establish the rate of convergence of the PPP-ELS and PPP-Amnijo algorithms on a

class of composite minimax problems of the form

min max g /(4%) ,
zeR"ie‘ng ( ’x) “2)

where g/ : ]R" — R is continuously differentiable and A; is an [; X n real matrix. We note that (42) is a
problem of the form (1), with the functions f/(-) defined by f/ & g/eA;. In conformity with the previ-

ous sections, we will use the notation y(x) = max g i(A}x). We note that when the null spaces of the
iee

matrices A; have a nontrivial intersection, which we will call their common null space, problem (42)
does not have a unique minimum and therefore does not satisfy Hypothesis 3.1(ii). In this case, prob-

lem (42) may also fail to satisfy the convexity requirement of Hypothesis 3.2. To see this, note that for

problem (42), the second derivative of the Lagrangian at a minimizer % has the form,

X je o AJG(AR4; , “3)

13-



where G/(-) denotes the second derivative matrix of 2/(). Continuing to denote by B the subspace
spanned by the vectors { Vf/() } o we find that the second derivative matrix will only be positive
je

semi-definite on the subspace B*. However, we have observed in computational experiments that linear
convergence of the values { y(x) }i2o constructed by PPP-ELS and PPP-Armijo is not lost in this cir-
cumstance. In this section we will derive a bound on the rate of convergence of PPP-ELS and the
PPP-Amijo algorithms under the assumption that the Lagrangian Hessian is positive definite only on

the orthogonal complement of the common null space of the matrices A;.
By analogy with nonlinear programming, we shall say that strict complementary slackness holds

at a solution ¥ of (1a) (or (42)) if, for every multiplier vector {i satisfying (13a, 13b) with %,

> 0 if and only if f/() = ¥() . (14)
When strict complementary slackness holds at a minimizer %, the multiplier vector {i satisfying (13a,
13b) with % is unique and hence J&@) = (je 2 1fi®) =vyQR) } .
Proposition 5.1: Suppose that the functions g’("), are strictly convex and that strict complementary
slackness holds for every % € G. Then, (a).there is a unique fi such that UR) = (i} for all 2 € G,

and (b) the set’T & JQ) is independent of % for all % € G.

Proof: We show (b) first. Suppose that w1, € UQ) for some % € G, and that M # My Let £ and jp

be defined by
tém[u{/(ﬁ-ﬁ)lubuébo- . (44a)
joéargjrgir;[u’i/(m-u&)lubué}. (44b)

Then p, & p; + ez — 1) € Z, satisfies (13a, 13b) with %, and hence p, € UQ). By construction,
u£° = 0. Hence, it follows from the strict complementary slackness assumption that f/(X) < y(%).
However, u{"‘ > 0, and hence, again by strict complementary slackness, #(X) = y®). This contradiction

shows that UQ) is a singleton for each % € G.
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Suppose that j, € J&) but j,¢J(X”) for distinct points X', ¥’ € G. Then gj'(Ajl'JE") <y@”). Let
%A &+1-0%. Then %eG for al te (0,1, and, by the convexity of gj'(-),
g M43 < y®) = y®) for all r & (0,1). It follows from (i) above that UG) = (1, }, a singleton,
and from (13b) that u{‘ = 0 for all '€ (0,1). Now, by the Maximum Theorem in Ref. 20, U(:) is an
upper semicontinuous set-valued map. Since U®) = (fi’ }, a singleton, U(") is continuous at ¥’
Ardy

Hence p, — fi’ as ¢ — 1, which implies that fi’ ! = 0. Since j; € J®), this contradicts our strict com-

plementary slackness assumption, and we conclude that (b) holds.

Now we prove (2). Suppose that ¥, ¥’ € G. From (b), g JAQ® + 1@’ - X)) is constant for all
te [0,1] and all j € J. Since each g () is strictly convex, we conclude that A(¥’ - %”) = O for each
je. Therefore, for all je 7, AlVgi(AR) = AJVg/AR") and hence any {i satisfying (13a, 13b)
with ¥ satisfies (13a, 13b) with ¥”. This and the fact that U(G) is a singleton imply (a). =
Proposition 5.2: There exists a neighborhood, W, of G such that, forall xe W, W = 0 for all
ke UG andj ¢ JG),

Proof: (a) Since h(x) is the solution of the primal problem (6), it satisfies the optimality conditions

(13a, 13b) with the functions f(:) replaced by ¢/(- 1 x). Every pu € U(x) satisfies equations (13a, 13b)

together with A(x), and hence the second of those equations yields
jz w [¢f(h(x) 1%) -y - G(X)] =0. (45)
€p

By Proposition 5.5 in Ref. 13, 4(%) = 0 and 6(%) = 0 for every %€ G. Since both functions are con-
tinuous, A(x) — 0 and 6(x) — 0 as x — G. Therefore, ¢/(h(x) | ) - g/(AR) as x > % € G for all j,
implying that

Y(h(x) | x) - w(x) - 6(x) < 0 46)
for every j ¢ J(x) in some neighborhood, W, of G. It follows from (45) and (46) that, for all x e W,

W =0 for all j ¢ J&) for all p € U).
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We now proceed to show that the PPP-ELS and PPP-Armijo algorithms converge linearly on

some problems of the form (42) which do not satisfy the assumptions of Theorem 3.2. Letting
ji<..<j, be the indices constituting J, with J defined as in Proposition 5.1, we define
ar A [A]....AT] . First we will show that the tail of a sequence { x; }Zo generated either by PPP-ELS
or by PPP-Armijo is contained in a translation of the range of AT, We will then show that the sequence
corresponds to that constructed by the corresponding PPP algorithm on the following restriction of prob-

lem (42) to a translation of the range of Y

’:ﬁ:‘ yx+2y), @

where a 2 rank(ﬁr ), and Z is a matrix, the columns of which form an orthonormal basis for

Range(ﬁ’). Finally, we will show that the restricted problem (47) satisfies the assumptions of Theorem
3.2. We will use the notation ¢*[X] to denote the minimum positive eigenvalue qf any symmetric, posi-
tive semi-definite matrix X.

Theorem 5.1: Suppose that

(i) the functions g /(-) are twice continuously differentiable,

(ii) there exist constants 0 < I’ < L’ such that, for all j € p,

PR < W GONSL W2, ¥ hze RV, (482)

(iii) strict complementary slackness holds at all Xe 8,7
(iv)Let 1< I and L 2 L’ be such that

o' Y, WATA) < v < Lmax IZTATA DL (48b)
jep €

where {i is the sole member of U(G). Under these assumptions:

(a) For any% € G,

"The assumption of strict complementary slackness is necessary only if the matrices A; have different null spaces. For ex-
ample, the linear convergence result holds without this assumption if the matrices A; are identical
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| S'X e WATA)

Yo+ ME) =

lim sup min
€

- T :
.3 MR v - § L Lnea:lZTA,‘AkZI (48c)
xe;+Rmym
xw%

(b) If the PPP-ELS Algorithm constructs a sequence (x;}2o in solving problem (42), then, the sequence

converges to % for some % € &. and either the sequence terminates in a finite number of steps at Xor

Y(xi) — ¥ <1-L 'Y e YATA]

lim sup — =
vy -§ L pmiZaaa

i=00

480

Proof: (a) To prove this part, we will (i) show that it is sufficient consider the restriction of problem
(42) to an affine space, (ii) verify that Hypotheses 3.1 and 3.2 hold for the restricted problem, and (iii)
apply Lemma 3.4.

It follows from Proposition 5.2, that there exists a neighborhood W o G such that W = 0 for all
j& 7Y and pe UW), and from (12), that h(x) = Y jap W ATVgi(Ax) for any p € U(x). Hence, for
alxe W,

h(x) € Range(AT) = Range(2) (49)

by the definition of Z above. Let us fix % € G, and suppose that x € W. If x € X + Range(Z), then

x+Ah(x) € X+ Range(Z). This suggests that we consider the restriction of problem (42) to

Range(2), viz.,

min, v ) . (0a)
where

v,0) A yG+2y), (50b)

so that y,(y) = max; ¢ , f{(y), with fi(y) & f/G + Zy). The search direction d(y) constructed by the

PPP-ELS algorithm at a point y € IR® for problem (50) is given by
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do) & arg min max g /(Afx + Zy) + ZTATVE V(Af(x + Zy)) v+ YodV?
de e

= arg min max g iALx + Zy)) + ATV (A lx + Zy)). Zdy+ YeriZdV®
de R J€

= arg min max ¢/(Zd | x + Zy) , (51)
deme jse

since ZTZ=1, and ¢i(hlx) & gi(Ap) + ATV /x)A+ Yeyihi2. By (49), hG + Zy) € Range(2).
Hence, referring to (51), we see that
hG + Zy) = arg he?;nx‘m %a: ¥ | x + Zy)

=Zd(y) . (52)
Also, for y such that 2 + Zy € W,
arg min y( %+ Z(y + Ad(y)) ) = arg min y(X + Zy + AZd(y) )
Ae R Ae R
=argm\y(3+2y+lh(i+2y)). (53)
We conclude from (52) and (53) that

y(x + Mi(x) = § . Y&+ Z(y + M) — @

lim sup min — = limsup’fmn - .
0z MRy -§ -5 MR yG+zy)-§ (53b)
z e X+ Range(Z) y»3
xaX

Hence, provided problem (50) satisfies Hypothesis 3.1 and Hypothesis 3.2, we can establish (48c) by
applying Lemma 3.4 to problem (50) to obtain an upper bound on the right hand side of (53b).

We now verify that Hypothesis 3.1 is satisfied by problem (50). (i) The functions g {A;& + Zy))
are twice continuously differentiable in y by assumption (i) of this theorem.

(ii) Let S, A ye ReIyx+2Zy)<T}, with T> \y(a). Since the functions g/(-) are uni-
formly convex by assumption (ii) of this theorem, the set AZS, is bounded. Since Range(Z) = Range(AT)

and Null(Z) = { 0 }, Null(Z) = { 0 }.% Hence S, is bounded.

3Suppose that AZy = 0. Since Null(A) " Range(AT) = 0}, Zy = 0. But then NuliZ) = { 0 } implies that y = 0.

18-



Showing that only one point in S, satisfies the necessary conditions for optimality (13a, 13b) for
problem (50) is slightly involved. Let &, deriote the minimizing set for problem (50). If %+ Zy € G,
then y € G, and hence 8,> Z7(G-% N §,. Since € G, O e G. Now suppose that there is a
y' € G, such that 2+ Zy’ ¢ G. Then yG + Zy) > y(& + Z0), which contradicts the assumption that
y € G, Therefore, 6, =Z'G-% N S,

Now consider the set of multipliers,

| 3 W 24V A6 + 2y =0

U() & jne s 4

JER
| .
| 3 W AR+ 2) - vG+ D) =0

jep

which, together with y, satisfy the the optimality conditions (13a, 13b), when the functions functions
f() are replaced by the functions fi(). For any ye a,, we have %+ Zye ?}. and hence
g/AG + Z3)) < Y& + Zy) for all j ¢ J. Consequently, F¥ = 0 for all j & %} and for any i € U,(3), and

therefore

3 EATVg (AG + 2y)) € Range(AT) = Range(Z) . (55)
JER

For any [l € U,(3), it follows from (54) that ¥ j < , IF ZTA]Vg /(A;(x + Zy)) = 0 , hence, making use of
(55), we conclude that ¥ ;¢ , ¥ ATVg {AG + Z5)) = 0. Hence, [T together with X + Zy satisfy the
necessary conditions (13a, 13b) for the original problem (42). Thus, U/G,) < UG+ ZG,), and hence
UG, = { fi }, where {i is the only membef of UG).

Suppose that y,,y, € S, satisfy the optimality conditions (13a, 13b) for problem (50). Since

y{Zy) is convex in y, these necessary conditions are sufficient for optimality, and, furthermore, the
entire line segment between y; and y,, [y;,).], lies in &,. Since UAly;,y2]) = { i) and { > O for all
jelg AG+Zy) =yG+ Zy) = v for all y € [y,,y,] and all j € J. Because the functions g /() are

strictly convex, it follows that AZy, = AZy, for all j e A.I. and hence that y; — y, € Null(ﬁZ). As
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mentioned above, Nadl@Z) = (0}, implying that y, = y,. Therefore, the necessary conditions are
satisfied at a unique point 9 € §, and Hypothesis 3.1(ii) holds.

(iii) It follows from Assumption (ii) of this theorem that for all ye R
IFi(y)I < Lmax ; o , IZ"ATAZ1, where Fi(") denotes the second derivative matrix of £/(").

Now we verify that Hypothesis 3.2 holds. Letting g[X] denote the minimum eigenvalue value of

any real symmetric matrix X, we obtain that
QL}EE ¥ GG+ Z)‘»))] = SZLZE ¥ Z7AJGALG + 29))A,-Z]
21 Q;Lg,z f ZTATAZ
=lo* LEZ 1] AjTAJ] , (56)

since the columns of Z span Range(AT) = Null(Ay* and Null(S ; . , (VATA) = Nulld).

Assumption (iv) of this theorem ensures that
I c*Lz ] A,TA,-] <y<Lmax ¢, IZ7ATAZL . ‘ 7
ep

Letting the left-hand and right-hand sides of the double inequality (57) correspond to m and M respec-

tively, we can apply Lemma 3.4 to problem (50) to obtain

. YG+ Z(y + Ad() -
y-5 Y&+ 2Zy) - §

_ _Z_ °+[Eje gﬁlA}‘Al']
L max IZ7AIAZ1

ke p

<1 (58)

which, combined with (53b), gives part (a).

To show (b), we first show that x; = X as i — o for some X € 6, and then apply part (a) of this
theorem. Let AT 4 [A],...,AT). From (12), every h; constructed by the PPP-ELS algorithm, is of the

form 3. ., Alz;, with z; € RY, Thus, }he sequence { x; }2o is contained in the closed and convex set
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Q & (=xo+Range(AD ) N {xe R y(x) < y(xg) }. Suppose that Q is unbounded. Then, since Q
is convex, there exists a nonzero u € Range(A"), such that, with x, & xo + tu, y(x) < y(xo) for all
t20. If A;u # 0 for some jo € p, then the uniform convexity of g /(-), which follows from assumption
(i) of this theorem, implies that lim, _, . W(x) = +co. Since this contradicts our assumption that
W(x) < y(xo), we must have that Au = 0. Hence u € Range(AT)"Null(A) = { 0}, which contradicts
the assumption that u # 0. Therefore, the set Q is bounded, and hence compact. Consequently, the
sequence { x; }=o must have an accumulation point, %. From Corollary 5.1 and Proposition 5.5 in Ref.

13, any accumulation point X of a sequence generated by the PPP-ELS algorithm must satisfy the first-
order necessary conditions for optimality (13a, 13b). Since y(-) is convex, this implies that el
Since Q is compact, it follows that x; — Gasi— oo,

Since x,-—)& as i — oo, there exists i€ N such that x;€ W for all i>i, Hence,
{(x )=y S Xy + Range(AD) = x;,+ Range(Z). Since the functions g i) are uniformly convex,
Gn iy + Range(ﬁ’) is a singleton. Hence, the sequence {x;)zo converges to
2=G6n Xy + Range(AD).

Inequality (48d) follows directly from convergence of the sequence to % and part (a). |

The corresponding result for the PPP-Armijo algorithm can be obtained by following the steps
used in Section 4 and above.

Theorem 5.2: Suppose that the assumptions of Theorem 5.1 hold.

(a) For any Xe &.

Y+ M) - o oY je o ¥AJA)

lim sup min

3 MR oy -9 L max iZ’ajan - (59a)
x € %+ Range(?)
xa%

(b) If the PPP-Armijo algorithm constructs a sequence {x;}zo in solving problem (42), then, the

A
sequence converges to % for some % € G, and either the sequence terminates in a finite number of steps
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6. Conclusion

We have shown that sequences { y(x) JZo generated by two PPP minimax algorithms converge
linearly to the minimum value under weaker conditions than those assumed in previous analyses of the
rate of convergence of PPP algorithms (Refs. 1, 7-9). Although composite minimax problems which
have nonunique, nonisolated minimizers, do not satisfy the second-order sufficiency conditions that we
had to assume to establish linear convergence on general minimax problems, we were able to show that
these PPP algorithms converge linearly on these problems provided that strong convexity and strict

complementary slackness conditions are satisfied.
PPP algorithms can be generalized in a straightforward way to solve semi-infinite composite

minimax problems (Ref.13) which arise in control system design,

R T YR @

where the sets ¥; € R” are compact, and the functions ¢/ : RY x RY —» R, j € p and V;¢/(-,-) are con-
tinuous. As before, each A; is an /; X n matrix. Under assumptions analogous to those of Theorem 5.1,
it can be shown that the semi-infinite versions of the PPP algorithms, considered in this paper, also con-

verge linearly (see Ref, 8).

7. Appendix

Proof of Lemma 3.1: For any y € R", y = Py + Pty, Hence, since R(:,) is continuous and R(0,{}) is

negative definite for any i € UQX) by Hypothesis 3.2,

O.ROMWYY = Py + Pry,RO.W)(Py + Py))
= PYy.RGPY+ Py RGPy + 2Py))
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< (Py.RO,W)(Py + 2P4y)), (61a)
for . near UG) and y small. Using the Schwarz inequality and the fact that IPy + 2Pyl < 2y,

.R@WNS IR, 1Py1 1Py + 2Pyl
< 2IR(y, Wl 1Pyl Iyl

<3 max IRQO.DI P, (61b)
pe UR
for i near U(X) and y small, since IR(-,")l is continuous. |

Proof of Lemma 3.2: Using Taylor’s Theorem, we obtain that for any x € R",

V() - Y() 2 max fi(x) - y®
jeIi®

= maxfiG) + (VfI@x -3+ -1, [[ ol = PG + stx - i))ds](x - v® . (62)
jiel®

Since f/X) = y(@® for all j € J(), it follows from Hypothesis 3.1(jii) that

V() - yG) 2 max{Vf/@x -3+ & -3, [[ oll = PG + s(x 32))ds](x -3

jiel®

2 max {(Vf/®).x - 2)- Mix - 3% . (63)
iel®

Since (Vf/(),P*(x — ¥} = O for all j € J&) and h = Ph + P*h for any h € R",

max (Vfi®.x-D= max (Vfi®, Px - 3. (64)
ie® jieI®

We will to show that there exists an 1} > 0 such that

max (Vfi®).P(x- %) 2P -3)I. (65)
jel®

Suppose not. Then, there exists a nonzero ¥ € B such that max s (Vf/®), %)< 0. Since UR) is
je Jx

convex, there exists a fi € UQ) such that {¥ > 0 for all j € J®). By (13b), ¥ = O for j & J®). There-
fore, by (13a),
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T M@= I ¥vriG).u)=0a)=0, (66)

jeJ@ AN 4

Equation (66) states that a convex combination of the nonpositive numbers, { (Vf/().7))} < 10 with
i

nonzero coefficients, { {¥' ) is zero. Hence (Vf/(®),@)=0 for all je JG). But then
je

FoY
e BNB* = { 0}, contradicting the assumption that ¥ # 0. Hence, let | > 0 be such that (65) holds.

Substituting (64) into (65) and (65) into (63) yields
y(x) - y&) 2 N1P(x - D)1 - Mix - 52, 67
for x in some neighborhood of .
Now we derive another lower bound on y(x) — y(x). For any {1 € UQ), using Taylor’s Theorem

and the fact that ¥, ;. , ¥ V) = 0,

V@ -y® 2 3 ) - v@)

jep

=<x-‘£.[jf,(1—s)zi‘t’ﬁ(iu(x-'i))ds](x—i»

jep’

=w<x-3>.[j;u-s>>:rerfa+s<x-e>>as]mx-z»

jep

+(P(x—'i).[I¢l,(l -9) T PG+ S(x-’i))d-v]( PHx -3+ Px-DN. (68)

jep
Making use of Hypothesis 3.1(iii) and Hypothesis 3.2, (68) leads to
V(&) — y(@) 2 %mlPHx - D — BMIP(x - X)) RPY(x - %) + P(x - %)l
2 YmlPY(x - DR - MIPx -1 k- , (69)
for x in a neighborhood of .

Combining (67) with (69) and dividing by IP(x — X)lix — X1 yields



Y@-v® YomlP4(x — 2P Y. Y x-xl 70)

Pix-Dlc-3 Pa-Dik-3 =~ k-8 Pa-3I

for x in a neighborhood of % Using the fact that Id <IPx+ IPxl, and defining

r(x) = IP(x — )1 / IP*(x — D)1 , we obtain that

Q-¥0) > m__ o, =D M= + 1}, 71
1P(x - D)llx - 31 max{r(x)2+r(x) " k- Ga*? m

We use (71) to show that

lim inf ‘I’(x)—\l’@ =oo, (72)

x-% Px-DIk-3

which is equivalent to (19). Thus, given any integer k > O, there exists a real number r > 0 such that

the first term in the max in (71) is greater than k if 7(x) < r. For x such that r(x) > r, the second term

term in the max is greater than W/ix — ¥ — M(l/r + 1). Hence, there exists a neighborhood, W, of %

such that the max in (71) exceeds & for all x € W, and, therefore, (19) holds. | |
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