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RATE PRESERVING DISCRETIZATION STRATEGIES

FOR SEMI-INFINITE PROGRAMMING AND OPTIMAL CONTROL*

** **

E. Polak and L. He

ABSTRACT

Neither semi-infinite programming nor optimal control problems can be solved without discretiza

tion: i.e., decomposition of the original problems into an infinite sequence of finite dimensional, finitely

described optimization problems. We present three sets of discretization refinement rules: (i) for

unconstrained semi-infinite minimax problems, (ii) for constrained semi-infinite problems, and (iii) for

unconstrained optimal control problems. These rules are built into a master algorithm which calls cer

tain linearly converging algorithms for finite dimensional, finitely described optimization problems. The

discretization refinement rules ensure that the sequences constructed by the overall scheme converge to

a solution of the original problem with the same rate constant as applies for the finite dimensional,

finitely described approximations. Hence the resulting scheme is more efficient than fixed discretiza

tion.
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1. INTRODUCTION

The numerical solution of a semi-infinite optimization or optimal control problem always involves

some form of discretization which decomposes the original optimization problem, P, into an infinite

sequence of finite dimensional, finitely described optimization problems, P,, ^ = 1,2,3,..., which

approximate P more and more closely and which are therefore of increasing computational complexity1.

There is considerable empirical evidence to suggest that the computationally most efficient approach is

to increase discretization gradually, using a process which constructs iterates that approach a stationary

point for a problem Pq until some test is satisfied and then carry over the last iterate as a starting point

for problem P^, until the value of q is increased to some preassigned maximum value ?*, rather than

to solve Pf* directly. The heuristic explanation of the success of this approach is that far from a solu

tion, coarse discretization does not appear to interfere with progress towards a solution, while resulting

in considerable computational savings per iteration over fine discretization.

There are two basic approaches to the construction of discretization refinements tests. The first is

based on the concept of diagonalization (see [Dan.l, He.l]) which can be used under minimal con

sistency conditions. For example, suppose there is a family of continuous, negative-valued functions

{ 9,(0 } such that if x, is optimal for P,, then 89(x,) =0, and suppose that there is a continuous func

tion 0(-) such that (i) 8,(x) -> 8(x) as q -> °o, uniformly in x (in a bounded set), and (ii) if x is a solu

tion to P, then 8(x) =0. Then a diagonalization scheme would consist of computing points xq such that

Qq(xq) £ - \lq. The main disadvantage of a diagonalization approach is that all the convergence state

ments are in terms of the points xq only (discarding the intermediate points constructed on the way to

xq\ e.g., "all the accumulation points of the sequence {xq )q^Q are stationary points for the problem

P". The second approach is more subtle: it starts with a conceptual algorithm for solving P (see [Kle.l,

Fol.1]) and uses the problems P,, in the construction of an implementation of this algorithm. It requires

stronger consistency conditions than diagonalization; these, fortunately, are frequently satisfied in prac

tice. In return, it yields the considerable advantage that all the convergence statements are in terms of

1By this we mean that one iteration ofaparticular algorithm on problem P j is more costly than one iteration ofthe same
algorithm on problem P .



the entire sequence constructed by the algorithm, e.g, "all the accumulation points of the entire

sequence { xx }°°$ constructed by the implementation are stationary points for the problem P". In

[Kle.l, Pol.l] we find an abstract theory for the construction of implementable algorithms. As a partic

ular application, we find in [Kle.l] an implementation of the method of steepest descent for solving

continuous optimal control problems. In [Dun.l] this theory was used to implement a conditional gra

dient method for optimal control problems with ODE dynamics.

The discretization adjustment tests described in [Kle.l, Pol.l] are very basic: they make no use of

optimality functions or rate of convergence properties of the conceptual algorithm. In this paper, we

present three master discretization algorithms which differ from those based on the theory in [Kle.l,

Pol.l] in two respects: (i) they use tests, based on optimality functions and a measure of the accuracy

with which the discretized problems approximate the original problem, for increasing discretization, and

(ii) unlike master algorithms basedon the theory in [Kle.l, Pol.l], they demonstrably preserve the con

vergence rate constants of the conceptual algorithms that they implement The reason for their

superiority can be seen, as- follows. First-order algorithms are characterized by a rate constant,

H € (0,1), which appears in formulas of the form eM £T|e;. The rate constant of first-order algo

rithms, applicable to discretized problems Pv depends basic constants such as bounds on second order

derivatives and the John multiplier associated with the cost function. An examination of particular

examples of discretized problems P, shows that the entire family { Pq } shares the same values of these

constants which are inherited from the original problem P. Hence a particular first-order algorithm con

verges with the same rate constant on every member of the family { Pq }. Now suppose that a master

discretization algorithm (say M) which calls a particular first-order algorithm (say A) as a subroutine, is

linearly converging on P, with the same rate constant as A has on the problems Pq. Then, given an ini

tial point Xo, k iterations of M on P, yield an end point xj1 and discretization parameter q*, while k

iterations of A on the problem P^ yield an end point x*. Because of the same rate of convergence, we

can expect that x}1 and x* are equally good approximations to a solution of P. However, the total com

puting time used to produce x*1 must be less because the early iterations of A, as called by M, face

coarser discretizations than those encountered by A in solving Pq directly. Hence themaster discretiza-



tion algorithm is more efficient than a fixed discretization scheme.

In Section 2, we present a master discretization algorithm, to be used in conjunction with the

Pironneau-Polak-Pshenichnyi (PPP) minimax algorithm [Pir.l, Pol.3, Psh.l] for solving unconstrained

semi-infinite minimax problems. Its rate of convergence constant is shown to be the same as that of the

PPP algorithm, established in [Pir.l, Pol.3]. In Section 3, we present a master discretization algorithm,

to be used in conjunction with the Polak-He unified steerable phase I - phase II method of feasible

directions (USFD)2 [Pol.4], for solving constrained semi-infinite optimization problems, its rate of con

vergence constant is shown to be the same as that of USFD. Finally, in Section 4, we present a master

discretization algorithm, to be used in conjunction with the Armijo gradient method [Arm.l], for solv

ing unconstrained optimal control problems. Its rate of convergence constant is shown to be the same

as that of the Armijo method on composite function problems.3

We use standard notation: thus L£[0,7] denotes the space of equivalence classes of essentially

bounded, measurable functions from [0,7] into Rm, LgiOJ] denotes the space of equivalence classes of

square integrable functions from [0,7] into Rm, and M , (v) denote the Euclidean norm and scalar pro

duct, respectively, in R". Far Ae R"**1, L4I £maxw „ilAxl, for k,v e L£[0,7], lull £JJlu(t)l2dt,

to,v)2£ Jo<*<(/).v(0><*/, for ueZ£[0,7], lulM£ess sup,6 [0tTl lu(0L for Ue VF*[0,T\t lt/«2 =

JJ lU(t)l2dty and for Ue Lr"[0,7], It/!.. £ess sup,6 m.^ltfCOI.

2. MINIMAX PROBLEMS

We begin with minimax problems of the form

MMP : min y(x) ,2 la\
xelR* v*.«y

where

This algorithm is the only phase I - phase II method of feasible directions thatwe were able to implement in such a way
thatoncea feasible point for a problem P was found, terminating phase I on P , the algorithm remained in phase II forthis and
all the following problems Pf.

3Discrete optimal control problems have cost functions of the form/fa) » gftffi.u.xj), and the Hessian of/(•) is only posi
tive semi-definite, at best. Hence "standard" rate of convergence theory (see [Lue.1, Pol.l]) leads to the conclusion that the Armijo
method converges on these problems sublinearly. The results, for linear dynamics, in [PoLS], to be extended in this paper, show
that this is not so.



\|f(x) £ max max <j/(x,yy) , (2 lb\

where I £ { 1,2,...,/}, <y ; Rn x Rp' -» R and Yy is acompact subset of RPy. We will assume that

the functions ((/(*,*) and their gradients V^O,-) are Lipschitz continuous. Since the exact calculation of

the global maxima of <(/(-,-) over the compact set Y, is not a numerically implementable operation,

numerical methods for solving Problem (2.1a) must discretize the compact sets Yy-. Hence, we introduce

a family of approximating problems, parametrized by the discretization parameter q e IN:

MMP, ; min \j/,(x) , (22a)

where

V?(x) £max max Vq(x,yj) , (2 2b)

and the functions 4^0.') are constructed by linear interpolation of the <J/(v) over a "triangulated" ( uni

form ) grid in the sets Yj. Thus, for example, when ^ = [0,1] c R, we divide this interval into q

subintervals, and then we define tyq(x,y) to be linear on each interval, so that

Vq(x,y) = X^(x,Uq) +(1 - XW(x,(i + \)lq) for y =XUq +(1 - X)(i + \)lq and Xe [0,1] and

i =0,1,2 q - 1. When Yj = [0,1] x [0,1] c R2, we first break up the plane into small squares,

with sides of length IIq, and each square is then divided into two triangles, using parallel diagonals.

The function <t/q(x,y) is then defined as a continuous linear interpolation of tf(x,y) on this triangulated

grid. We note that when defined in this manner, the evaluation of yq(x) is a finite process.

The master adaptive discretization algorithm that we will shortly introduce, calls the Pironneau-

Polak-Pshenichnyi (PPP) minimax algorithm [Pir.l, Pol.2, Psh.l] as a subroutine. This algorithm com

putes search directions by evaluating an optimality function. Hence, proceeding as in [Pol.2], we define

6(*)» %(x) to be the optimality functions for problems MMP and problem MMP?, respectively, as fol

lows:

G(x)£ min max max ( ^/(x.yj) +WMx,yj),h)+ Whf- y(x) } . r23a^

9,(x) A mm max max {Vq{x.y,) +(V^(x,yy),M+ xMhl2 - yjx) }. (2 3W



When the functions <J)j(',-) are defined by linear interpolation on a triangulated grid, (2.3b) is an ordi

nary quadratic programming problem which can be solved finitely using standard quadratic program

ming subroutines.

Let hthq:H.n -» R be search direction functions defined by

h(x) 4 arg min max max { ty(x,y.) + (Vx<J>'(x,V/),/i>+ VAhl2 - y(x) } , n i>c\
AeR" /'el >/6Yy V '

hq(x) &arg min max max {<|>j(x,vy) +WxWq(x,yj),h)+ lAlhl2 - yq(x) } . n 3^
A€ R" Je I yj6 Yy *

The PPP minimax algorithms for solving MMP and MMP,, useone of theabove search direction func

tions (as appropriate) and an Armijo type step size rule, which requires two parameters a, (3 e (0,1).

Thus, the conceptual PPP algorithm, for solving MMP, described in [Pol.2], constructs iterates accord

ing to the rule

xm =Xi + Xih(xd, (2.3e)

where

Xt = max{ P* Ik e N , v(x,- + pfyx,)) - y(xd £ ap*9(x<) } , (2.3Q

while the implementable PPP algorithm, for solving MMP,, described- in [Pir.l, Pol.2, Psh.l]), con

structs iterates according to (2.3e), (2.3f), with *(•), V(), and 9() replaced by h£)% \|f,(), and 9,(0,

respectively.

No matter how the approximating functions «J>j(-,) are constructed, we will require that the func

tions 4>j(',0 together with the functions <{/(•,•) satisfy the following assumption4:

Assumption 2.1:

(i) There exist constants 0<K"<<*>andT>0 such that for all x e Rn and all q e N,

•V(*) - V,(*) I^ W • (2.4a)

(ii) For any x € R", yy € Yy, and j e 1,

4This assumption is satisfied, with t • 1, by the two examples we gave using a uniform discretization grid, when the func
tions <X(x.-) are at least Lipschitz continuous. When the functions Vyj>/(x.-) are Lipschitz continuous, then our assumption is
satisfied with t - 2.



Jim ^(/.yj) =(j/(x,yy) , Jim V^(x'.yy) =V,«j/(x,yy)
X -*X tf -* X

q —* "» q —» «o

Lemma 2.1: (i) For any x € R",

9(x) = - min{ $°+ Vil^l2 I<$?£f e G(x)} ,

9^x) = - min{ $° + ^l2 I(J?,®7 6 Gq(x) } ,

where

G(x) £ co« u vj
/e I yy6 Y,

y(x) - V(x,yy)

b V^fcy/) J

V«C*) - ^fr^y)
G,(x) £ co -^ ^j

/Yi ,/Ty, I V*^)

(2.4b)

•

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(ii) For any x e R", 9(x) = 0 if and only if 0 e 9\|/(x)5, and 9?(x) = 0 if and only if 0 e dyq(x), i.e.,

the zeros of these functions are the stationary points of the corresponding problems.

(iii) Suppose that Assumption 2.1 holds. Then, for any x e R",

lim 0,(x0 = 9(x)
X -» X

Proof: Both (i) and (ii) were established in [Pol.2].

(iii) Since the sets Yy- are compact, it follows from Assumption 2.1(ii) and (2.5c-d) that

lim G,(xO = G(x).
X -* X

(2.6)

(2.7)

Hence, (2.6) follows from (2.7) and the 4efinitions (2.5a-b). •

We can now state a master adaptive discretization algorithm which calls the PPP minimax algo

rithm as a subroutine, for solving the problem MMP.

We denote the Clarke generalized gradient [Cla.l] of a locally Lipschitz function/.IR" -» R at x e R" by 3/(x).



Adaptive Discretization Algorithm 2.1 (for MMP):

Data: Xn e Rn , q_x e IN, a e (0,1), P € (0,1), D > 0 and a > 1.

Step 0: Set i = 0.

Step 1: Computer q{ € IN, 9,- = 9,.(x,), and hi =hq{(xj) such that qt *> ^M and

Z>/<tf £ [-e^wr . (2.8)

Step 2: Computer the step size A*:

h =max{ p* Ike IN , \^(x,- +$khd - ^.(x^ £ ap*9,-} . (2.9)

Step 3: Set xM = x, + X,/t,-, replace i by i + 1, and go to Step 1. •

Remark 2.1 : It follows from Lemma 2.1(iii) whenever 9(Xj) * 0, Step 1 of Algorithm 2.1 yields a

finite discretization parameter qv. For simplicity, in the rest of this section, we assume that Algorithm

2.1 does not produce an iterate x,- such that 9(x<) = 0, so that the resulting value of qi% in Step 1, is

finite. •

Lemma 2.2 : Suppose that y(-) is bounded from below and that the sequence of iterates { x; }***> o and

corresponding sequence of discretization parameters { ?,- }T-o were constructed by Algorithm 2.1.

Then qt -» » as i -» <*».

Proof: For i e IN, let qh Qh hi and X,- be defined as in Algorithm 2.1, and suppose that qt -> <» as

i -» oo does not hold. Then, since { qt }H» o is a nondecreasing sequence of integers, it follows that

there exist i0,q e N, such that for all i > to, q{ - q, and hence, in conjunction with (2.8), that there

exists an e >0, such that fy £ - e for all i *> to. Making use of (2.9) and the assumption that \|/0 is

bounded from below, we conclude that \}fA(-) is also bounded from below. Hence we obtain that

- °°< S IvJLxm) - V&d] ^ S a^A- Referring to (2.5b), we see that if

<!$&d =arg min{ $° +Kit? I£°,S) e Gq.(xd }, then h{ =-^-. Hence 1/tf2 <-29,- and - 9, >e for

i "> i*o, we deduce that lh}2 <, 292/£ for all i S i^. Hence for any j > i "> i0,



Ix;-x,l < Elx^-x*l < ZXk\hkl < i(2/e)1/2Xt(-e^. (2.10)
* = i k = i * = i

Therefore, { xf }£o is a Cauchy sequence in Rn, and hence it follows from Theorem 5.2b and Corollary

5.1 in [Pol.2] (which show that any accumulation point x*. of {x,- }£o, constructed by the PPP algo

rithm, satisfies 9A(x*) = 0) that QJxd -» 0, contradicting the construction in (2.8). _
q q •

Theorem 2.1 : Suppose that Assumption 2.1 holds, that y() is bounded from below, that the second

derivatives dtyfayftdx2 exist for all qe N, and that there exists an Me [1,«) such that for all

x e Rn, z e Rn,; € 1 and q e IN,

b,d^y,)z)ZMlzl2 , VyyG Yj. (2.11)

Then any accumulation point x of the sequence of iterates { x,- }f-o. generated by Algorithm 2.1,

satisfies 9(x) = 0.

Proof: First, we obtain a bound on the decrease in \|/() at the i-th iteration. Using (2.11), we obtain

that

VqfXi + Xhd - \^(Xf) = max max {Vqi(xt+Xhhyj) - yq{xd } - - -
/6I >y 6 Y

*"^ "S? {<4fc'.y/) - VF,fxd +WxVq/iXi,yj),Xhi)+ lMflXhil2 )• (2.12)

In view of (2.3b) and the fact that ^.(x^j) - yqfxd <0 and that M"> 1, we find that for all

X e [0,1/Af],

¥,,.(*,• + W - ¥,.&) * Wf^W . (2.13)

Therefore (2.9) is satisfied with A* £ p/A/, and thus

Y^fctf) - Vqfxd Z aXfii £ a®Qi/M . (2.14)

Hence, it follows from the Assumption 2.1(i) that

YC*h) - Yfa) ^ ap9yAf + 2Bq] . (2.15)



Next, since 9; £ -Dv<J/(qJ)Va, we have that

V(*w) -**)«- -ggl[I - apD,^iyg] • (2.16)

Since a > 1 and since by Lemma 2.2, qt -> «> as i -» *>, there exists an io e IN such that for all i £ j"o.

tK^-tKtfS-^Jg—. (2.17)

Hence,

^O-^^-f.^gj. (2.18)

Because y(-) is bounded from below, the left hand side of the above inequality is bounded from below,

which leads to the conclusion that ST- 0 V(qDVa < °°- Consequently, 2Ja 0 MfaD <°°- Next» return"

ing to (2.15), we conclude that

Y(**i)-Y(*o)£- £ ap(-9*)/M+ £ 2*7^. (2.19)
*«o' *-o

Since both y(x*n) - #o) and 2- o2^1 a16 bounded, it follows that 2 (~9*) <°° • ^Q desired
* = 6

result now follows from Lemma 2.1(iii). •

Theorem 23 : Suppose that Assumption 2.1 holds, that the second derivatives dV(x,yy)/dx2,

32(^(x,>/)/3x2 exist for all q e IN, and that there exist constants 0<m<l<M<~, such that for all

xe R", ze R"andy e 1,

m\zl2 <> <^,d^^j)z)< Mlzl2 , for all yt eYy ,qeN, (2.20a)

.^y^teMlzl2 , for all y, e Y,. (2.20b)mlzl2 £<z, a\ z>^ Mkl2 . for all y e Y,

Then any sequence { x,- }~- o» generated by Algorithm 2.1, converges to the unique solution x of prob

lem MMP, and

10



jr-V(XM)-V@) ^ , a ... „_
hm £ 1 - ccpm/M . (2.21)

Proof: It follows from (2.20a), (2.20b) that the functions yq(') q e N, y(-) are strongly convex, and

hence that they have unique minimizers. For any q e IN, let xq be the unique solution of the problem

MMP?. First, we deduce from Assumption 2.1(i) that

tyqGq) ~ Y<*)l * W . (2.22)

Next, referring to [Pol.3], [Pol.5], we see that for all x € R" and q e IN,

m[yq(x) - \|̂ (x,)] <L - 9,(x) <> M[\vq(x) - yqGcq)] . (2.23)

Combining (2.14) and (2.23), we get

aRmY^fcrt) " Y,,.(*i) <S ^-iVqfa) ~%{xd] - (2.24)

Adding yqj$q) to both sides in (2.24) and rearranging terms, we obtain that

Y^fru) " Yf&> ^ [1" afrntmVifrd - yA>1 • <2'25>

It now follows from (2.22) and Assumption 2.1(i) that

Y(*m) - Y<2) * [1 " aPm/M][v(Xi) - y(x)] + 4K/q] . (2.26)

Next, making use of Assumption 2.1(i), (2.22), (2.23) and the fact that-9,- £ Dy<J/(q])Va, we obtain that

MY(*i)-Y<*)] ^ Mbfifti-yfG^-TMKIql

£ -Qi-2MK/q]

2> DVa/(qJ)Va - 2MK/q] (2.27)

Since a > 1 and since by Lemma 2.2 qt -» «> as i -» «>, we conclude that there exists in such that for

all / > i0>

Mty^ - \j/£)] ;> Dlto/[2(^1/C] • (2-28)

It now follows from (2.26) and (228) that

11



**«) -i& S[1 -5jjfi +-^Jp__][Vte) -vft] , for« S:,0 . (2.29)

Therefore, (2.21) follows from (2.29) and the fact that by Theorem 2.1, qk -» oo as i -> oo. Since

\\f(xD -> \|/(x) and x is the uniqueminimizer of \j/(-), {x,-}"» o must converge to x. •

For comparison, referring to [Pol.3], we find the following result for the conceptual PPP minimax

algorithm:

Theorem 2.4 6: Suppose that the second derivatives 3V(x,yy)/9x2 exist and that there exist constants

0<m<l<M<<», such that for all x e R", z e Rn and j e I, (2.20b) is satisfied. Then any

sequence { x,- }?a 0, generated by the PPP minimax algorithm defined, by (2.3e), (2.3f), converges to the

unique solution x of problem MMP, and (2.21) holds. •

We thus see that our Adaptive Discretization Algorithm 2.1 converges with exactly the same

linear rate constant as the PPP minimax algorithm, whether applied to MMP or to any MMP,. This

leads us to the following observation as to the relative efficiency of our Adaptive Discretization Algo

rithm, under the assumptions in Theorem 2.4. Suppose that we are given an initial point xq (sufficiently

close to x, the solution of MMP), and that we perform k iterations, ending with a point xk and discreti

zation parameter qh If, instead, we perform k iterations on the problem MMPV ending at a point x'k>

we cannot expect to have \j/(x/*) < \|/(x*). However, the total computing time used on solving MMPg/t

must be longer, because the early iterations of Algorithm 2.1 use a coarser discretization. Hence Algo

rithm 2.1 is more efficient than a fixed discretization scheme.

3. CONSTRAINED SEMI-INFINITE OPTIMIZATION PROBLEMS

We will now consider constrained semi-infinite optimization problems of the form

CSP ; min( v°(x) IV(*) ^ 0, ; 6 I , x € R" } , (3.1a)

where 1 £ [1,2 /}, and, with L £{0,1,2,...,/},

It should be obvious that, under analogous assumptions, the conclusions of Theorem 2.4 remain valid for the implement-
able PPPminimax algorithm which can be used to solve MMP ,

12



V'(x) =max <t/(x,yy), Vj e L, (3 lb)

where ty:lRn x R^ -» R and Yy is acompact set in RP;'. We will assume that the functions <y(-.-) and

their gradients V,<|/(-.-) are Lipschitz continuous.

Using the interpolation techniques mentioned in the preceding section, we can construct a family

of approximating problems, parametrized by the discretization parameter q e N:

CSP, : min{ \|/°(x) I\|>j(x) <; 0,; e 1 , x e R* } , (3.2a)

where

YJ(*) =mx <|/,(x,yy), V;eL. {32b)

In [Pol.4] we find a unified steerable phase I - phase n method of feasible directions which uses a

steering parameter y > 0. We will refer to this algorithm as the USFD algorithm. The steering param

eter controls the speed with which infeasible iterates approach the feasible set When this parameter is

greater than a certain value, the algorithm in [Pol.4] constructs a feasible point in a finite number of

iterations. We will call this algorithm as a subroutine from the master adaptive discretization algo

rithm that we will describe shortly. For the original problem CSP, the algorithm in [Pol.4] requires the

following functions:

y(x) £ maxV(x), (33a)

V+(x) £ max{ 0,\|/(x) } , (3.3b)

Ft(x) £ max{ V(x) - v°(z) - wM.Vto - Y+(*) J. (3.3c)

0(x) d min max{ max {$°(x,y0) +{Vrf(x,y0),h)+ Klhl2 - y°(x) - 7Y+00 ).
A6 IRn >0e Y0

max max {^(x,yj) +{VMx,yj),h)+ Whl2 - y+(x) } }, (3 3d)

h(x) 4 arg min max{ max {4>0(x.y0) +Wxf(x,yo),h)+ fcl/zl2 - \|/°(x) -yy+(x) }
k e 1R" >o6 Yo

max max {V(x,yj) +<V^(x,yy),A)+ KM2 - V+(x) } } . (33e)
j e I y, € Yt * \j.jm)

For the problems CSP?, the algorithm in [Pol.4] uses corresponding quantities, y,(-), \^(-), /^(x),
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0,(x) and hq(x), resulting from the replacement of <j/(-.-), V^O,-), VO). Y(') and V+0) Dv ♦£(•»•)»

VxVq('.'\ Y*(0. Y*0 and \j^(x) in (3.3a-e), respectively.

In addition to the steering parameter y, the USFD algorithm in [Pol.4] uses two Armijo step size

parameters: a, P e (0,1). In solving CSP, this algorithm constructs iterates according to the rule

xm = Xi + Xih(xd, (33t)

where

Xi =max{ p* I* g N , FXf(x,- +pfyx,) - F^fc) <; ap*e(x<) } (3.3g)

For solving CSP, one makes the obvious substitutions in the above rule.

We will assume that the following relationship between the functions defining the problems CSP,

and problem CSP:

Assumption 3.1 : (i) There exist constant 0<£<ooandx>0 such that for all xe RR and all

qe IN,

IYV) - V?(*) I^ Klf • (3.4a)

lY(*)-Y*(*)l*K7<iT. - ... (3.4b)

(ii) For anyx € R", yt e Yy andj € L,

nmjfar.yj) =V(x,yj) , UmV^.yj) =VMx.yj).

Lemma 3.1: (i) For any x 6 R",

0(x) = - min{ 4°+ XAI%12 I ft°.Or e G(x)} ,

0,(x) =- min{ %° + V4K;I2 I(ff.tf e G,(x) } ,

where

G(x)£co<
>o6 Yo

Y°W~<|>0(x,yo) +W+W

J jel y}6Yj

14

\|/(x) - (j/(x,yy)

. V^(x,yy) J

(3.5a)

(3.5b)

(3.5c)



G,(x) £ co«
V?(*) " 4>?C*.?b) +W«+(*)

yo6Y0 I v*9 WW J y6, ,.6 y,

Vq(x) - Vq(x,yj)

L V^(x,yy) j (3.5d)

(ii) For any x € RB, 0(x) = 0 if and only if either y(x) < 0 and 0 e dFx(x) (i.e., x satisfies the first

order optimality condition for problem (3.1a)), or y(x) > 0 and 0 e dy(x), (i.e., x satisfies the first order

optimality condition for the problem minx RB \|/(x)).

(iii) Suppose that Assumption 3.1 holds. Then, for any x e Rn,

lim 9,(x0 = 9(x)
X ->x (3.6)

Proof : (i) The relations (3.5a), (3.5b) were established in [Pol.4] using the von Neuman's minimax

Theorem.

(ii) This part can be deduced from Propositions 5.4 and 5.5 in [Pol.2].

(iii) Since Yy- are compact sets, it follows from Assumption 3.1(ii) and (3.5c-d) that

lim G,(xO = G(x).
x" -*x (3.7)

Hence, (3.6) follows from (3.7) and (3.5a-b). •

We are now ready to state an adaptive discretization scheme, based on the USFD algorithm in

[Pol.4], for solving the problem CSP.

Adaptive Discretization Algorithm 3.1 (for CSP):

Data: xo 6 R" , q^ e N.oe (0,1), p e (0,1), y> 0, D > 0 and a > 1.

Step 0: Set / = 0.

Step 1: Compute qt € N, 6,- = 9^(x,), and h{ = hqfxd such that qt £ ?M and

D/qf <£ [-9q(xd]a (3.8)

Step 2: Compute the step size Xi:
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Xi = max{ p* \ke IN , F,.,,.(xt +p*/tx) - Fs.f|fc) ^ otp*e,} . (3.9)

Step 3: Set xM = x,- + Xfc, replace i by i + 1, and go to Step 1. •

Remark 3.1 : It follows from Lemma 3.1(ii-iii) that whenever G(xj) * 0, Step 1 of Algorithm 3.1

yields a finite discretization parameter qr For simplicity, in the rest of this section, we assume that

Algorithm 3.1 does not produce an iterate xt such that 0(x,) = 0, so that the resulting value of qi% in

Step 1, is finite. •

Lemma 3.2 : Suppose that \y°Q is bounded from below and that the sequence of iterates {x, }~= o

and the corresponding sequence of discretization parameters { qt }T= o were constructed by Algorithm

3.1. Then qt —» «» as i -» <».

Proof: Suppose that qt -» «> as i -»«> does not hold. Then, since { qt }f=o is a nondecreasing

sequence of integers, it follows that there exists an i0, q e N, such that forall i > /0, <?,- = 5, and hence,

in view of (3.8) that there exists an e > 0 such that 9,- £ - e for all i £ in- It now follows from the pro

perties of the algorithm defined by (3.3f), (3.3g) (see [Pol.4]), that there are two possibilities: either

Y*(*i) > 0 for all i > /0. or there exists an ix £ in such that ^(Xj) < 0 for all / ^ ix. In the former case,
i q

Y,(*«+i) - Vjxd ^ ccXA for all i £ in. In the latter case, y°(xw)- ^(x^) £ c&A. Making use of the
19 q q

(3.4a) and the assumption that y°(-) is bounded from below, we conclude that v°Q is also bounded
q

from below. Hence we obtain that either - ~ < jy, ^ [\j^(xw) - yA(xj)] <J?- io aXA, or that

- oo <JJ°_, [yJ(**h) ~ N£(*i)] ^ ZT- i, °&A- In either event, we are led to the conclusion that
q q t>

S"- «'o °^®i >- °°. Since l^l2 ^ 2(- 9,), we conclude, applying the reasoning used in proving Lemma

2.2, that {^ }£o is a Cauchy sequence in R*. Since by Lemma 3.2 in [Pol.4] (for algorithm (3.3f),

(3.3g)), any accumulation point x* of {x,- )to satisfies 0A(x*) = 0, it follows that QJxd -> 0, which

contradicts ourassumption. Therefore fim 9,- = 0. It now follows from (3.8) and the fact that q> £ <?M
i -» oo

that qt —» oo as i —» oo. •

Theorem 3.1 : Suppose that Assumption 3.1 holds, that >j/°(-) is bounded from below, and that there

existsa constant M € [1,oo) such that for all x e Rn, z e R",; e L and q e IN,

16



<z, f?'z)< Mlzl2 , for yj e Yy-. (3.10)

Then any accumulation point x of the sequence of iterates {x,- )r=o. generated by Algorithm 3.1,

satisfies 9(x) = 0.

Proof: It follows from the definitions of Ftq(-) and F,(), and Assumption 3.1(i) that

^xrfCx) ~ Fi(x)\ £ (2 + i)Klqx , for all x e Rw , z e Rn , q e N . (3.11)

Next, we observe the i-th iteration of Algorithm 3.1 consists of one iteration of the PPP minimax algo

rithm on the problem minx6 R„ F^fx) starting with x,-. Hence, replacing \|^.(), Y(0 by FX{tqf;\ Fx.('),

we conclude from the proofof Theorem 2.1 that there exists an z0 such that for all i > /0,

FxfxM) -FX((xd <> ap9/M+2(2+y)K/q] <-^^q . (3.12)

Itnow follows from the definition ofFX{(-), (3.3c), that for all i £ i0,

Y*Wi) -Y°fo) "7Y+(*i) <-OP9./M +(4 +2y)Klq! <; -^Za <0. (3.13a)

Y(**i)"Y+(*i) * o^VM-f (4 +2i)K/q] <; - "^q <0. * (3.l3b)

We must consider two cases.

Case (i): There exists an integer ix > in such that yfo) £ 0. It then follows from (3.13b) that

V(Xj) £ 0 for all i £ ij and from (3.13a) that

Y*Wi) ~Y°W> *-opO/M +(4 +2Y)^? <, -^Za . for all i£ij . (3.14)

Hence, by the same reasoning used in the proof of Theorem 2.1, we conclude that £* a,- 9* >- oo ,

which leads to the desired result

Case (ii): v(x,) >0 for all i > in. It then follows from (3.13b) that for all i > /0,

y(xM) - y(xd £-ope/AT+(4 +2y)Klql <. -^L . (3.15)
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Since \p(Xj) > 0 of all z £ /0, the reasoning used in the proof of Theorem 2.1 leads to the conclusion that

oo

2 9* >- °° . Hence the desired result follows from Lemma 3.1(iii).
*-«o •

To establish the linear convergence of Algorithm 3.1, we need following assumption and results

which we borrow from [Pol.4].

Assumption 3.2 : (i) There exist 0<m£l<A/<oo such that for all x e R", z e R" and j e L,

mlzl2 £(z, 'a 2^Mlz|2 ' for ^ yJ € Y> ' q6 N ' (3*16a)

mlzl2 <<z, ^fj)z)^ Mlzl2 , for all yy eY;. (3.16b)
OXr

(ii) The set { x I \p(x) < 0 } is not empty. •

Lemma 33 : (Lemma 4.2, Lemma 4.3 in [Pol.4]): Suppose that Assumption 3.2 holds. Then

(i) Problem (3.1a) has a unique solution, x.

(ii) x is the unique zero of O(-).

(iii) Letu° £ min{ ^° I\i e I(x) } and p? £ max{ \i° Ip. e L(x)}, where .

L£)4{n =(nV....n')IOe E M^M*). E mV<S»0, £ M> =1.M> £0). (3.17a)
/'» 0 ;»1 /»0

Then 0 <u° «S p? £ 1.

(iv) For all x e R",

pV(*) - V°(x)] <; (1 - p°)V+(*) , (3.17g

Theorem 3.2 : Suppose that Assumptions 3.1 and 3.2 hold. Then any sequence of iterates { x, }f0 o.

generated by Algorithm 3.1, converges to x, and there exists an integer i0 such that either

(i) \jr(Xi) £ 0 for all i £ *0 and

MY*Wi)-Y°6) ^ x.^,^ (318a)
*"*~ V°W>-Y°<*>
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or (ii) \|/(xj) > 0 for all i £ i0 and

Em¥YT <S 1- y£a$mlM , (3.18b)

where ia° is defined in Lemma 3.3 (iii).

Proof: Let x^, x, be the unique solutions of min^ R„ F^(xO and rnin^, RB Fx(xO, respectively.

First we show that both {x,- }r» o and {xX( }~= o converge to x. It follows from (3.13b), that

Y+(*fri) ^ Y+fo) wnen ' is sufficiendy large. Since \|/(-) has bounded level sets, the sequence { x,- }~= o.

constructed by Algorithm 3.1, is bounded. It therefore follows from Lemma 3.3 (i-ii) and Theorem 3.1

that xi -> x as i -> oo. Hence, making use of the fact that Fx.(x,p < Fx.(xi) =0, we deduce that

{%. )?mo is bounded, and that, because Fx(x) is continuous in (x.xO, any accumulation point x of

{%,)?- o. roust satisfy F^(x) £ 0, which implies that x =x. Therefore, %. -> x as i -> oo.
' X '

Now the i-th iteration of Algorithm 3.1, consists of one iteration of the PPP minimax algorithm

on minxe RW F^(x), starting with x,-. Therefore, replacing y,£), Y0. xq( and x by F^Q, Fx.(-), *«..<.

and xz„ respectively, in the proof-for Theorem 2.1, we conclude that there exists an integer ix such that

for all i £ ilt

F*f**> - Fxfa) * [1 - vJIF^x.) - F^] , (3.19a)

where

„ A «Pm 8(2 + j)KM n
Vi= m "Di/g(^yq>0- (3'19b)

Since FX/(x») =0, we get

F^x^^v/"^. (3.20)

Now, since %is the minimizer ofFX{(-), there exists amultiplier ji,- =(£?,£} #) such that
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0 e 2 ffiV&,) • (3.21a)
ja 0

/

ffiWU.) - yV.) - 7Y+te)] + Z ffitV^,) - Y+(*i)l =^.(Xx.) . (3.21b)

EH{=1, $ > O.forye L. (3.21c)
/ = o

Since both sequences {x,-}"- oand (x*f JH* oconverge to x, any accumulation point of {ji,- }fo ois in

L(x). Hence

U° £ Umff? ^ fimji? £ p°. (3.22)

Let Fi() be defined by

F,<x) =0?KY°(*) - Y°&) " 7Y+(Xi)] + Z filtVCr) - Y+&)]. (3.23)
y=l

It follows from (3.21a)-(3.21c) that 0 6 dFt<%J. Since F,{-) is stricUy convex, %.. must be its unique

minimizer. Hence, making use of (3.21c) and the fact that F,<xXj) =FX((x^ and that y(x) £ 0, we

obtain that

FjcJ <i Ffo <> ff[(y°(Jc) - y°(Xi)] - [1 +(7- l)P?]Y+&) • (3.24)

Combining (3.20) and (3.24), and rearranging terms, we get

VW) - Y°6) * (1 - flfoMVW - Y°6)] + [Y - (l+(y-l)ji?)Vi]Y+&) , (3.25a)

y(xm) <; A\[y°(x) - y0(x,)l + [1 - (l + (y- VffiMvM*. (?-25b)

By Lemma 3.3, 4- -> oo as i -> *>. Hence, we deduce from (3.19b) that

.Km v, - •«£ . (3.26)

Now, it was shown in the proof of Theorem 3.1 that there exists an integer in > ix such that either (i)

y(Xi) £ 0 for all / ^ io or (ii) y(xi) > 0 for all i £ in. In the former case, (3.18a) follows from (3.22),

(3.25a), (3.26) and the fact that y+(Xj) = 0 for 1£ in. In the latter case, we obtain from (3.25b) and

(3.17b) that
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Xfort) * l$Vid - P°)/P° + 1- (1 +(y- l)©v,]Y+(*i)

= [l +(0?/p0-l--»l?)vjy(xi). (3.27)

Hence, (3.18b) follows from (3.22), (3.26) and (3.27). •

For comparison, we reproduce the rate of convergence theorem for the USFD algorithm described

in [Pol.4]:

Theorem 33 : Suppose that the relevant part of Assumption 3.2 holds. Then any sequence of iterates

{Xi}"- o» generated by the USFD algorithm, converges to x, and there exists an integer in such that

either

(i) y(xi) < 0 for all {^ i0 and

EVW)-Vft si-U°«Pm/M. (3.28a)
*- Vto-VG)

or (ii) y(xj) > 0 for all z £ i0 and

fim-^^ <J 1-m°aPm/M , (3.28b)

where u° is defined in Lemma 3.3 (iii). •

Thus we see that Algorithm 3.1 has the same rate of convergence as the USFD algorithm and

hence, by the same arguments used at the end of Section 2, we conclude that using adaptive discretiza

tion in the form of Algorithm 3.1 should result in savings in computing time over the use of the USFD

algorithm on a single high precision approximation to the original problem.

4. OPTIMAL CONTROL PROBLEMS

Finally we turn to unconstrained optimal control problems of the form

0CP: «?S?-)C(") = ***»• C*.la)

where $:RB -» R, G(co) ^L?[0,7]^{ uImax,6 [ntTi\u(t)l < a> }, T is a given time period, and

x:G(oo) -» RB is defined by x\u) k x(T,u,Xn), with x(\u,x0) the solution of the differential equation:
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i(0 =/W/).«<fl.O. t e [0.71 , x(0) = xo . (4.1b)

where xo is a given vector in R". In this section, the LgiO.T] topology will be used on GO90) and its

subspaces, unless we stated otherwise. We will assume that functions g:TRn -> R and

/:Rn x Rm x [0,7] -» R" have the following properties:

Assumption 4.1 : (i) The function g(-) and its gradient Vg(-) are locally Lipschitz continuous.

(ii) The function /(•,•••) and its partial derivatives f ' ' and * ' ' are locally Lipschitz con-
dx du

tinuous.

(iii) for every co > 0, there exists a constant ^(co) such that for all x e R\

u e [ u' e Rm I lu'l £ a> } and te [0,7],

Wx.u,t)l <, ^((D)[lxl +1] . (4.JJ

Lemma 4.1: ([Kle.l]) Suppose that Assumption 4.1 is satisfied. Then

(i) The differential equation.(4.lb) has a unique solution for every u e G(<»).

(ii) The functions xQ and c(-) are continuously Frechet differentiable on G(oo). •

Since the functions x\-) and c(-) are continuously Frechet differentiable on G0°), there exist con-

dxtinuous functions, a "jacobian" -r- :G(oo) -» G(oo)n and a "gradient" Vc:G(oo) -> G(oo), such that
du

T

lx\u +du) -m-) ^&(t)W)dtl
lim

Sue G(o») I5ul2

r

•-0,

lim
Sue C(oo)
ISulj^O

\c(u + 8«)--du)- UVc(u)(t)MQ)dt\
= 0

lbul2

(4.3a)

(4.3b)

Lemma 4.2 : ([Kle.l]) Suppose that Assumption 4.1 is satisfied. Then

(i) for every u e G(«) and t e [0,7],

JSa<0 =*„(r.o qw."(').<) _ (4.4a)
du du
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Vc(u)(l) = Si©
du

where 4>u(tf) is the state transition matrix for the linear differential equation

W.Wy^ on, 6(0.7!. (4.4c)

(ii) for any © > 0, there exists a K2(.(ii) such that for all u.Su e G(co),

K(tt)l <; *2(cd) . I^|pl- **2(<o) . IVc(u)L ^*2(g>) . (4-4d)
K(tt + 8«) - x(m)I £ K2(®)toul2 , (4.4e)

r

lx(u +8u) - x(k) - J[-^^-(0]5tt(/)AI £K2(u)lMl. (4.4f)

As a first step towards the numerical solution of the infinite dimensional problem OCP, we define

a sequence of finite dimensional subspaces G,0>°) of G(«>), q e N. Thus, for any q e N, let A,^ 772*

and, for any co e (O.oo) let Gq((o) 4 G(co) ^ {u\u(t) = ul e Rm

for / e \j\,(j+l)Aq), j - 0,1 2* - 1 }. Next, for any q e IN, and any u e G,(co), let xq{u) be an

approximation to x\u)t obtained by solving the differential equation (4;lb)-by means- of a numerical

method, such as the Euler-Cauchy method, the Modified Euler method, the Runge-Kutta method, etc.

We can now define a family of finite dimensional approximating problems, parametrized by the discreti

zation parameter q e N:

OCP- : min cJu). (A *\

where c^u k gQTq(u)). We will assume thatxq() approximates x\u) in the following sense.

Assumption 4.2 : (i) For every co > 0, there exist constants ^3(co), te (0,oo) such that for any

qe N,

Ix(m) - xq(u)\ £ KdnWf , for all u e G?(co). (4.6a)

_ dx~„(u)
(ii) x,(-) is continuously Frechet differentiable on G,(oo). We will denote its "jacobian" by —%—(t).

du

V^Cc(u)) , (4.4b)
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(iii) For any co, eg (O.oo), there exists a q e N such that for all <? > q and u e G^co),

i5«-aaLS,. (4.6b)
du du

(iv) For any co > 0, there exists K4((o) 6 (O.oo) such that for all q e IN and all u, 8u e G,(co),

lx9(tt + 8k) - xq(u)l < K4 (©)l8ttl2 , (4.6c)

lx,(u +8k) - xq(u) - f[—|^(0]8«(0^l <K4(G))\Ml. (4.6d)

Remark 4.1: Referring to [Kle.l], we see that when the Euler-Cauchy method is used to define xq(u),

Assumption 4.2 is satisfied with x = 1. It is easy to show that when the Modified Euler method or

Runge-Kutta method are used to define xq(u), Assumption 4.2 is satisfied with x = 3 and x = 5, respec

tively. •

Lemma 43 : Suppose that Assumptions 4.1 and 4.2 are satisfied. Then

(i) The function cqQ) is continuously Frechet differentiable on Gq(<*=), and for any u e Gq(oo) and

f'e [0,7],

_ V '
XqW>((
du

(ii) For any oo >0, there exists a K5((o) e (0,°o) such that for q: e N and all ue G9(co),

Vc,(«)(0 = (0 V*(x,(k)).< (4.7a)

\c(u) - c,(k)I <; KS(®)/(F)X . (4.7b)

Proof: Part (i) follows from the Assumption 4.2(H), (4.6c) and the local Lipschitz continuity of Vg(-).

The inequality (4.7b) follows from Assumption 4.2(i), (4.4d) and the local Lipschitz continuity of £»(•)••

Since G,(oo) is isomorphic to R2*, each problem OCP,, defined by (4.5), can be solved by the

Armijo gradient method [Arm.l] which uses two parameters a, p 6 (0,1) and which, for OCP, con

structs iterates according to the rule:

uM = Ui - Xi*7cq(ud , (4.8a)

with
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Xt =max{ P* Ik e N . cq(Ui - P*Vc9(u,)) - cq(Ui) < - a$kWcq(ud)\l } . (4.8b)

We can now state an adaptive discretization scheme, based on the Armijo gradient method (4.8a),

(4.8b), for solving the problem OCP.

Adaptive Discretization Algorithm 4.1 (for OCP)

Data: kq e GqJoo), q_x e IN, a e (0,1), Pe (0,1), D > 0 and a > 1.

Step 0: Set i = 0.

Step 1: Compute qt 6 IN, hi =- Vc, («,-), and 8,- =-IVc^k,)!2, such that qt £ <7,_i and

D/(2q,)x <> [-8J° . (4.9a)

Step 2: Compute the step size X,-:

Xi =max{ p* Ik€ IN , cqfjii +P*A,) - cq.(ud < a$% } . (4.9b)

Step 3: Set uM = k,- + X,/t,-, replace i by i + 1, and go to Step 1. •

Remark 42 : It follows from Assumption 4.2(iii), (4.4b) and (4.7a), that whenever Vc(k,) * 0 (i.e., k,-

does not satisfy a first order optimality condition for the problem OCP),"Step 1 of Algorithm 4.1 yields

a finite qt. For simplicity, in the rest of this section, we will assume that Algorithm 4.1 does not con

struct a ^ such that Vc(«,) = 0, for any finite i. •

Lemma 4.4 : Suppose that Assumption 4.1 is satisfied, that g(-) is bounded from below, and that the

sequence of controls { «;}". 0 and the corresponding sequence of discretization parameters { qi }"a o

are constructed by Algorithm 4.1. Then qt -» oo as i -» «».

Proof: Suppose that qt -> oo as i -> <» does not hold. Then, using the same reasoning as in the proof

of Lemma 2.2 and the fact that lhtl2 = -9,-, we conclude that there exist i0 and 5 € IN such that <?, = q

for all i £ i0, and that { u: }"»o is a Cauchy sequence in £^[0,7]. Consequendy, since k,- e G^oo),
q

which is a finite dimensional space, { k,- )r= o is bounded in the Lw norm, and hence it converges also in

this norm. Since for any L„ accumulation point k, of a sequence { u{ )Zo constructed by the Armijo

gradient method (4.8a), (4.8b) in the finite dimensional space, G^O*), Vc„(k) s 0 (see [Arm.l]),
q q
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0A("i) - - IVcA(K,)li -» 0, which contradicts the test (4.9a). Thus we must have that qt -> oo as i -» «»
q q

Theorem 4.1 : Suppose that Assumptions 4.1 and 4.2 are satisfied, that g(-) is twice continuously

differentiable and bounded from below, and that there exists a constant Mg e (0,oo) such that for all

x e R\ z e Rn,

<*,i%j®-z)ZM8lzl2. (4.10)

Then any La accumulation point u e G(oo) of an LM bounded sequence of controls { Ui }~o o» generated

by Algorithm 4.1, satisfies Vc(k) = 0.

Proof : Since IkjL is bounded and, by Lemma 4.3, qt -> «• as i -» oo, it follows from Assumptions

4.1 and 4.2, and Lemmas 4.2 and 4.3 that there exists an co > 0 such that for all z £ 0 and X e [0,1],

Ik,L <, go , l/i.L £ co , (4.11a)

dx^Ui + XAj)
Ix^k,- + XhDl £ co , I r 1.. £ co , Ix(k,- +Xhfl £ co (4.11b)

Making use of (4.10), (4.7a), (4.6c-d) and the fact that hi = - Vc?.(k.) and that 8,- =-lh}\, we obtain

that for all Xe [0,1], * "

cq(ui + Ihi) - cq(Mi) = g&q{ui + Xhd) - g(^qfud)

M*Wg&qjLufi.&^Ui +XA.) - xq((ud))+ -j-*xqi(Ui +Xhd- xqfudl2

T, dxq(ud m
*WgQcq((ud),\-37-(0 ^.<0 dt) +tf4((o) IVgQcqi(ud) HXhill +-^(K4«o) IXhM2

= XO,- - X2[K4((0)lVg(xqi(Ui))l +MgKlMnWi. (4.12)

Since xqfui) is bounded and Vg(-) is continuous, there exists a AT6((o) e (1,00) such that

cq(Ui + Xhi) - cq(ud £ (X - X2/^©))^ = otXet- + X(l - a - K6((£>)X)Qit V Xe [0,1]. (4.13)

Hence (4.9b) is satisfied with Xt- £ (1 - a)P/^T6(oo), and thus

Sfa+i) - cqfitd * aXj9,- £ a(l - a)pe^6(co). (4.14)
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It therefore follows from (4.11a) and (4.7b) that

c(uM) - c(ud £ a(l - a)P9,//i:6(a)) +2*r5(co)/(2*')T. (4.15)

Resorting to the reasoning used in the proofof Theorem 2.1, with \j/(), x,-, qh M and K replaced by c(-),

k,-, 2* K6(<o)I(l - a) and Ks((0)t we can show that 2£_ 09* >- oo. Hence 0f- -> 0 as i -> oo. Now, for

all / € IN,

IVc(k)I2 <; IVc(k) - Vc(Ki)l2 +Wc(ud - Vc,.(k,)I2 +IVc,.(Kt)l2

£ IVc(k) - Vc(Kf)l2 +I* WcQid - Vcf .(iOL +(- Qdm (4.16)

Consequendy, the desired result follows from the continuity of Vc(-), (4.7b) and the fact that 9,- -» 0

and ^,- —» oo as i —> oo. B

Lemma 43 : Suppose that Assumptions 4.1 and 4.2 hold and that there exist 0 <mg < Mg < oo and

0<me<Me<oo such that for all x e R" , z € R" and k e G(oo),

m,

m,

}zl2Z(z,'¥^z)ZMglzl2,

Jzl2 £ {z , « I
3x(k)

dK
(0

dK (0 df >Z> £MJzl2

Then for any oo > 0 and 8 e (0,/ne), there exists a q such that for any q > q and u e Gq((o),

(mc-e)lzl2^(z ,«
.

3x-(k)

dK
(0

3xff(K)

dK
(0 <z7 •z)^(Mc + e)lzl2,

(wc - e)IV5(x,(K))l2 £ IVc,(k)I1 * (A/c + e)IV^(x;(k))D2 ,

(4.17a)

(4.17b)

(4.18a)

(4.18b)

(4.18c)

where x is the unique minimizer of #(•).

Proof: Inequality (4.18a) follows direcdy from (4.4d), (4.17b) and Assumption 4.2 (iii), while (4.18b)

follows from (4.7a) and (4.18a). Making use of (4.18b) and the fact that for all x e Rn,
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-r-IVgWB2 £g(x) -g&)< ^-IV^x)!2 ,
2M8

we get (4.18c).

Remark 43 : The matrix

2m,
(4.19)

h.
mu)

du
(0

dx\u)
du

(0 <ir is the controllability Gramian of the linearization

of the system (4.1b). When the dynamical system (4.1b) is linear, the inequality (4.17b) holds if and

only if (4.1b) is completely controllable on [0,7]. When the dynamical system (4.1b) is nonlinear, con

dition (4.17b) is a sufficient condition for the complete controllability of the system (4.1b) on [0,7] (see

[Sas.l]). •

Theorem 4.2 : Suppose that Assumptions 4.1 and 4.2 are satisfied and that there exist

0 < mg < Mg < oo and 0 < mc < Mc < oo such that MgMc £ 2 and (4.17a), (4.17b) hold. Let x be the

unique mimmizer of #(-). If a sequence of controls { ut }r=o» generated by Algorithm 4.1, is bounded

in the LM norm, then

(i) Urn VgQcqt(Ui)) = 0

(ii) lim c(ud = g(x),

(iii) fin" i^tllZi^ *!_iO^OaPm^

(iv) The sequence {xq{juj) JH- 0converges R-linearly to x.

(4.20a)

(4.20b)

(4.20c)

(v) There exists a k € G(«>) such that Vc(k) = 0 and the sequence { Ik* - kL }£o converges R-

linearly to 0.

Proof : Since the sequence { ut }£o is L„ bounded, there exists an co > 0 such that (4.11a), (4.11b)

hold. Hence, making use of Lemmas 4.4, and 4.5, we conclude that for every e e (0,mc), there exists

an i8 such that for all i £ ie, (4.18a) - (4.18c) hold for q = qt and all ue G?((co).

(i) By Theorem 4.1, lVcq{Ui)l2 -> 0 as i -» oo. Hence, it follows from (4.18b) that Vg(x^(K,)) -> 0 as

i -> oo.
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(ii) (4.20) follows from (4.7b), (4.18c) and the fact that IVc-.(«,-)B2 -> 0 and qiE -» oo as i -> oo.

(iii) First we will obtain a bound on the step size X,-. Making use of (4.6d), (4.18a) and the fact that

T

^80^q{(ud) and that (v.A2^ BAB {v,Av) for all symmetric, positive definitehit) = -
dxJud

du •(f)

matrices A and vectors v, we obtain that for all i £ L and X 6 [0,1],

lxq(Ui + TJiD - x,qfudl <> Ij

= X <V*C^W».

dxq((Ui)
it)

du

dxqfUi)
"17"0)

Xht{t)dtl + K4((0)\\Xhi\l

dxJud

du
<t) dt

1/2

Vg(xqlUi))) + X2K4«o)lhill

1/2

<SX (Me + z){Vg{xqi(ud),
dxq{(ud

du
(0

dxAu-)

du
•(0 dt V5(x..(k^ + X2K4(a>mil

£ [(Me + e)1/z + IdC^omMW^ • (4.21)

Next, we deduce from (4.17a), (4.6d), (4.7a), (4.21) and the fact that ht - - Vcq.(ud, that for all

Xe[0,l], . .

cq(ui +)Jid- cq(Ui) =g%fm +Xhd) - g&q((ud)

Ma
~ (,. \|2*Wg&q^.&qjiUi +Ud~ Xq((ud))+ -f*Xq{.Ui +Xhd ~J^GO*

M„<- Xihill +X2K4(p)WgQcq{(ud)llhill +-^-X2((MC +e)1/2 +XK^hte^hM (4.22)

Since M,J2 -> 0 and Wg(xq{ui)l -» 0 as i -> «», it follows from (4.22) that there exists i'e £ ie such that

for i ^ z'eand X 6 [0,1],

cq((Ui +Ud - cq((ud £ - XIA.ll +Mg(Me +2e)X2B/illl/2

= X9,- - Mg(Mc + 2£)X29f/2 . (4.23)

Hence, (4.9b) is satisfied with X,- > 2(1 - 6)§l[Mg{Me + 2e)] for all i £ i'e, and thus

^.(«£+1) - cq{(ud <; aXfii < 2a(l - a)P9/[M,(Mc + 2e)] . V *;> fe .
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Combining (4.24) and (4.18c), and rearranging terms, we obtain that for all i: £ i't

^ 4(1 - a)a$mB(me - e) .cq^) - gft <. [1 - Afs(^+2e) ][c«iUi) ~8®] ^

Hence it follows from (4.7b) that for i £ /'e,

yv 4(1 ~ a)ap/n„(me - z) . ff.,
c(k*i) - S<*) * [1 M(Me +2e) ][c(M|)" 8®] +KsfaW? • <4^

Finally, making use of (4.7b), (4.18c) and the fact that - 8,- £ D1'0/^*1)*)1'0. we obtain that for i 2: i'e,

2Mg(Mc +z)[c(ud - g$)] * 2Mg(Mc +z)[cqi(ud - g$)] - 2Mg(Mc +z)K5((a)/(2qi)x

2: - 9f - 2Mg(Me +e)tf5(a))/(2q')x

>DVaK(2q')x)Va - 2Mg{Mc + e)tf5(co)/(2?,*)t. (4.27)

Since a > 1 and, by Lemma 4.3, qt -> oo as i -> oo, we claim that there exists i"e £ i't such that for

AM^Mud-g®] 2> |i>1/ff/((2^1/0 . (4.28)

Thus, (4.20c) follows from (4.26), (4.28) and the arbitrary choice of e in (0,mc).

(iv) Note that

Ix^ - xl2 <£{&JM) - g&>] =Mcqfud - g&]. (4.29)

This, together with (4.25), leads to the desired result

(v) Making use of (4.11b), (4.19), (4.25) and the fact that X,- <> 1, we obtain that for i 2> i'e,

Ikw - K.L = XjlAjL

dxq(ub

<2coM^^(Ki))-f(x)]
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^ wr , * /s,„ 4(1 - a)opm,,(mc - e) ,.f

a ,. 4(1 - a)aBm.(mL - e)

Illy - KjL < £ iKj^i - UkK
it s i

<*TxaMg[cqf{ui>)- gG®^*-«•',

*««

<2oWf[c,r (i^ - s&W"fyl -1!)

(4.30)

(4.31)

Therefore { k,- }£o is a Cauchy sequence in L£[0,7]. Since I£[0,7] is a complete space in the L„

norm, there exists a k € L£[0,7] such that k,- -» k as / -» oo in L„ norm. Let./ go to oo in (4.31), then

for all i > i't

Ik - K.L <2ooA/,[c,, (Kfe) - gGtotf" '7(1 - Tl) (4.32)

Thus, { Ik - k,L )T-o converges to 0 R-linearly. Finally, by Theorem 4.1, Vc(k) = 0. •

For comparison, we presenr a rate of convergence result for the Armijo algorithm"(4.8a), (4.8b) as

applied to composite functions. The proofof this theorem follows by generalization of the Armijo algo

rithm rate of convergence theorem for affine-composite functions presented in [Pol.5]:

Theorem 4.3 : Consider the problem

min«e »"<*")• (4.33a)

where c(u) 4 g(x(K)), with g.-JR" ->R a twice continuously differentiable function satisfying (4.17a),

with 0 < mg £ Mg < oo, and x:JRN -> IR" isa Lipschitz continuously differentiable function such that for

some 0 < mc ^ Mc < oo

mJzl2<S<z, dxTu)
du

dxXu)
du

z)£Mclzl2> Vzer,«6R" (4.33b)

Suppose that M<Mg £ 2, that x is the unique minimizer of #(•), and that { k,- }~o is a sequence

constructed by the Armijo method in solving the problem (4.33a). Then
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(0 Jim Vs(xTk,)) =0 . (4#34a)

(ii) lim c(Kf) = g&), (4.34b)

(m) ^c(K,1)-^)^_4(l-a)aP^c

(iv) The sequence { x(kj) }?a 0 converges R-linearly to x.

(v) There exists aaeR" such that Vc(k) =0 and the sequence { lu, - kI }£o converges R-linearly to

0. •

Again we see that the use of adaptive discretization is preferable to fixed discretization.

5. CONCLUSIONS

There is an accumulation of empirical evidence to support the claim that, in skillful hands, adap

tive discretization schemes can produce considerable computational savings in the solution of optimiza

tion problems which mustbe discretized. However, prior to the work presented in this paper, there was

no automatic discretization scheme whose computational savings could* be predicted on the basis of

analysis and whose overall rate of convergence could be established. We expect that the discretization

techniques presented in this paper will prove to be of practical importance in engineering design and

optimal control.
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