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ABSTRACT

Neither semi-infinite programming nor optimal control problems can be solved without discretiza-
tion: i.e., decomposition of the original problems into an infinite sequence of finite dimensional, finitely
described optimization problems. We present three sets of discretization refinement rules: (i) for
unconstrained semi-infinite minimax problems, (ii) for constrained semi-infinite problems, and (iii) for
unconstrained optimal control problems. These rules are built into a master algorithm which calls cer-
tain linearly converging algorithms for finite dimensional, finitely described optimization problems. The
discretization refinement rules ensure that the sequences constructed by the overall scheme converge to
a solution of the orig_inal pr;zblem with the same rate constant as applies for the finite dimensional,
ﬁnit‘ely described approximations: Hence the resulting scheme is more_efﬁ_cient than fixed discretiza-

tion.
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1. INTRODUCTION

The numerical solution of a semi-infinite optimization or optimal control problem always involves
some form of discretization which decomposes the original optimization problem, P, into an infinite
sequence of finite dimensional, finitely described optimization problems, P, ¢ =1,2,3,..., which
approximate P more and more closely and which are therefore of increasing computational complexity!.
There is considerable empirical evidence to suggest that the computationally most efficient approach is
to increase discretization gradually, using a process which constructs iterates that approach a stationary
point for a problem P, until some test is satisfied and then carry over the last iterate as a starting point
for problem P,,,, until the value of g is increased to some preassigned maximum value g*, rather than
to solve P directly. The heuristic explanation of the success of this approach is that far from a solu-
tion, coarse discretization does not appear to interfere with progress towards a solution, while resulting

in considerable computational savings per iteration over fine discretization.

There are two basic approaches to the construction of discretization refinements tests. The first is
based on the concept of diagonalization (see [Dan.l, He.1]) which can be used under minimal con-
sistency conditions. For example, suppose there is a family of continuous, negauve-valued functions
{ 84() } such that if X Xq is opumal for P,, then eq(iq) 0, and suppose that there is a continuous func-
tion 6(-) such that (i) 6,(x) » 6(x) as g — oo, uniformly in x (in a bounded set), and (ii) if X is a solu-
tion to P, then 6(%) = 0. Then a diagonalization scheme would consist of computing points x, such that
,(x) 2 - 1/g. The main disadvantage of a diagonalization approach is that all the convergence state-
ments are in terms of the points x, only (discarding the intermediate points constructed on the way to
Xg), €.g., "all the accumulation points of the sequence { x, )g=q, are stationary points for the problem
P". The second approach is more subtle: it starts with a conceptual algorithm for solving P (see [Kle.1,
Pol.1]) and uses the problems P, in the construction of an implementation of this algorithm. It requires
stronger consistency conditions than diagonalization; these, fortunately, are frequently satisfied in prac-

tice. In return, it yields the considerable advantage that all the convergence statements are in terms of

! By this we mean that one iteration of a particular algorithm on problem P o+1 is more costly than one iteration of the same
algorithm on problem P,



the entire sequence constructed by the algorithm, e.g, "all the accumulation points of the entire
sequence ( x; }=o constructed by the implementation are stationary points for the problem P". In
[Kle.1, Pol.1] we find an abstract theory for the construction of implementable algorithms. As a partic-
ular application, we find in [Kle.1] an implementation of the method of steepest descent for solving
continuous optimal control problems. In [Dun.1] this theory was used to implement a conditional gra-

dient method for optimal control problems with ODE dynamics.

The discretization adjustment tests described in [Kle.1, Pol.1] are very basic: they make no use of
optimality functions or rate of convergence properties of the conceptual algorithm. In this paper, we
present three master discretization algorithms which differ from those based on the theory in [Kle.1,
Pol.1] in two respects: (i) they use tests, based on optimality functions and a measure of the accuracy
with which the discretized problems approximate the original problem, for increasing discretization, and
(ii) unlike master algorithms based on the theory in [Kle.1, Pol.1], they demonstrably preserve the con-
vergence rate constants of the conceptual algorithms that they implement. The reason for their
superiority can be seen, as. follows. First-order algorithms are characterized by a rate constant,
n € (0,1), which appears in formulas of the form e;,; < ne; The rate constant of first-order algo-
rithms, applicable to discretized problems P,, depends basic constants sich as bounds on second order
derivatives and the John multiplier associated with the cost function. An examination of particular
examplés of discretized problems P, shows that the entire family { P, } shares the same values of these
constants which are inherited from the original problem P. Hence a particular first-order algorithm con-
verges with the same rate constant on every member of the family { P, }. Now suppose that a master
discretization algorithm (say M) which calls a particular first-order algorithm (say A) as a subroutine, is
linearly converging on P, with the same rate constant as A has on the problems P,. Then, given an ini-
tial point xo, k iterations of M on P, yield an end point x}' and discretization parameter g, while k
iterations of A on the problem P,, yield an end point x{. Because of the same rate of convergence, we
can expect that x}! and xf are equally good approximations to a solution of P. However, the total com-
puting time used to produce x}! must be less because the early iterations of A, as called by M, face

coarser discretizations than those encountered by A in solving P, directly. Hence the master discretiza-



tion algorithm is more efficient than a fixed discretization scheme.

In Section 2, we present a master discretization algorithm, to be used in conjunction with the
Pironneau-Polak-Pshenichnyi (PPP) minimax algorithm [Pir.1, Pol.3, Psh.1] for solving unconstrained
semi-infinite minimax problems. Its rate of convergence constant is shown to be the same as that of the
PPP algorithm, established in [Pir.1, Pol.3]. In Section 3, we present a master discretization algorithm,
to be used in conjunction with the Polak-He unified steerable phase I - phase II method of feasible
directions (USFD)? [Pol.4], for solving constrained semi-infinite optimization problems. its rate of con-
vergence constant is shown to be the same as that of USFD. Finally, in Section 4, we present a master
discretization algorithm, to be used in conjunction with the Armijo gradient method [Arm.1], for solv-
ing unconstrained optimal control problems. Its rate of convergence constant is shown to be the same
as that of the Armijo method on composite function problems.>

We use standard notation: thus L2[0,T] denotes the space of equivalence classes of essentially
bounded, measurable functions from [0,7] into R™, L$[0,T] denotes the space of equivalence classes of
square integrable functions from tO,TJ into R™, and I, {,-)Ydenote the Euclidean norm and scalar pro-
duct, respectively, in ‘R". For Ae mm; 141 2 maxyy .. ;14x], for u,v € LF(0,T], 1l a j T b)),
w2 8 [T w@),vivde, for ue L7071, Wl.Bess supepo,n @I, for Ue LF0,T), WHE

| § W(@)ds, and for U € L*[0,T], W1, 4 ess sup, ¢ o, plUGL.

2. MINIMAX PROBLEMS

We begin with minimax problems of the form

MMP : min y(x)

xe R"*

(2.1a)

where

2 This algorithm is the only phase I - phase II method of feasible directions that we were able to implement in such a way
that once a feasible point for a problem qu was found, terminating phase I on P, , the algorithm remained in phase II for this and
o

all the following problems P,

3 Discrete optimal control problems have cost functions of the form fiu) = g(x(N,x,x,), and the Hessian of A-) is only posi-
tive semi-definite, at best. Hence "standard” rate of convergence theory (see [Lue.1, Pol.1]) leads to the conclusion that the Amijo

method converges on these problems sublinearly. The results, for linear dynamics, in [PoLS5], to be extended in this paper, show
that this is not so.



y(x) & max y:neaw;{j ¥ix.y) . (2.1b)

where 1 4 (1,2,.,/), ¢ : R*xR” - R and Y; is a compact subset of R”, We will assume that
the functions ¢/(-,-) and their gradients V,¢/(:,-) are Lipschitz continuous. Since the exact calculation of
the global maxima of ¢/(-,") over the compact set Y; is not a numerically implementable operation,
numerical methods for solving Problem (2.1a) must discretize the compact sets Y;. Hence, we introduce

a family of approximating problems, parametrized by the discretization parameter ¢ € IN:

MMP, : min y,(x) , (2.2a)
xe R®
where
A )
Y %) 2 Tg ’?La:‘t{] e,y (2.2b)

and the functions ¢{',(- ,*) are constructed by linear interpolation of the ¢/(-,-) over a "triangulated” ( uni-
form ) grid in the sets Y;. Thus, for example, when Y; = [0,1] € R, we divide this interval into ¢
subintervals, and then we define ¢/(xy) to be linear on each interval, so that
x.y) = MY(x.ilg) + (1 - Mi(x, (i + 1)/q) for y=Ailg+ (1 -NGi+1¥qg and Ae [0,1] and
i=0,1,2,.,9-1. WhenY; =.[0,l] x [0,1] € R?, we first break up- lhe. plane inu; small squares,
with sides of length 1/g, and each square is then divided into two triangles, using parallel diagonals.
The function ¢ (x,y) is then defined as a continuous linear interpolation of ¢/(x,y) on this triangulated

_ grid. We note that when defined in this manner, the evaluation of Y,(x) is a finite process.

The master adaptive discretization algorithm that we will shortly introduce, calls the Pironneau-
Polak-Pshenichnyi (PPP) minimax algorithm [Pir.1, Pol.2, Psh.1] as a subroutine. This algorithm com-
putes search directions by evaluating an optimality function. Hence, proceeding as in [Pol.2], we define

8(x), 6,(x) to be the optimality functions for problems MMP and problem MMP,, respectively, as fol-

lows:
A o
6@ 4 m min max may max ( ¢/(x.y) + (V¢/(x.y). i+ YlhP - y(x) ) , 2.33)
0,(n) 4 hrglg. max ’:neax ( O4x.3) + (Vodii(x,y) v+ Yl -y (x) ) . (2.3b)



When the functions ¢f,(-.-) are defined by linear interpolation on a triangulated grid, (2.3b) is an ordi-
nary quadratic programming problem which can be solved finitely using standard quadratic program-

ming subroutines.

Let h,hy:R" — R be search direction functions defined by

h(x) & arg min max max { ¢(x,y) + Vut/i(x,y) . B+ IR - y(x) } , (2.3¢c)
heR* jel ;€ Yl

hy(x) 8 arg hriligu max ,,'.]La’v{j { 04, 3) + (Vobii(x.y), B+ Yl -y () } . (2.3d)

The PPP minimax algorithms for solving MMP and MMP,, use one of the above search direction func-
tions (as appropriate) and an Armijo type step size rule, which requires two parameters o, § € (0,1).

Thus, the conceptual PPP algorithm, for solving MMP, described in [Pol.2], constructs iterates accord-

ing to the rule

Xy = X + Mh(x), ' (2.3e)
where

A = max{ BE 1k e N, y(x + Bh()) — w(x) < 0B0(x) ) . @39

while the implementable PPP algorithm, for solving MMP,, describéd- in {Pir.1, Pok2, Psh.1]), con-
structs iterates according to (2.3e), (2.3f), with A(-), y(-), and () replaced by ("), y,(-). and 6,(),
respectively.

No matter how the approximating functions ¢{',(- ,*) are constructed, we will require that the func-
tions ¢}(*,*) together with the functions ¢/(-,) satisfy the following assumption®:
Assumption 2.1 :

(i) There exist constants 0 < K < oo and T > 0 such that for all x € R* and all ¢ € IN,
I w(x) - y,(x) | <K/q°. (2.4a)

(i) Foranyxe R%y;€ Y,andje |,

4 This assumption is satisfied, with t = 1, by the two examples we gave using a uniform discretization grid, when the func-
tions ¢i(x,") are at least Lipschitz continuous. When the functions V,0/(x,") are Lipschitz continuous, then our assumption is
satisfied with ¢ = 2,



Jim 0,0.y) = ¢ty) . lim Vioulx'y) = Vit

(2.4b)
q =0 q oo ]
Lemma 2.1: (i) Forany x € R"
0(x) = — min( &%+ REPIE%E € Gi) ) . (2.52)
0,(x) =— min{ &° + KIEP 1 E%E) € G(x) ) , (2.5b)
where
o & [\v(x) - ¢f(x.y,-)] .
x)2co Le)l y;%)\’; V) , (2.5¢)
V) - %(x.y,)]
A .
GMM2coiU U [ V.00 (2.5d)

jel yle YI

(ii) For any x € R", 6(x) = 0 if and only if 0 € dy(x)°, and 0,(x) = 0 if and only if 0 € dy,(x), ie.,

the zeros of these functions afe the stationary points of the corresponding problems.

(iif) Suppose that Assumption 2.1 holds. Then, for any x € ]R",

Jim 8,2) = 603) .

(2.6)
g
Proof : Both (i) and (ii) were established in [Pol.2].
(iii) Since the sets Y; are compact, it follows from Assumption 2.1(ii) and (2.5¢c-d) that
Jm.Gi) = 6@ @7
g
Hence, (2.6) follows from (2.7) and the definitions (2.5a-b). . u

We can now state a master adaptive discretization algorithm which calls the PPP minimax algo-

rithm as a subroutine, for solving the problem MMP.

5 We denote the Clarke generalized gradient [Cla.1] of a locally Lipschitz function f:IR® — R at x € IR® by af(x).



Adaptive Discretization Algorithm 2.1 (for MMP):
Data: xeR',9g,e Nae (0,1),Be (0,1),D>0ando> 1.
Step 0: Seti=0.

Step 1:  Computer ¢; € IN, 6; = 6,(x;), and k; = h,(x) such that ¢; > ¢;; and
Digi < [-8,(x)1°. (2.8)

Step 2: Computer the step size A; :

M=max(BFlke N, y,(x + B*h) — y,(x) < of'e; ). (2.9)

Step 3: Set x4y = x; + Ahy, replace i by i + 1, and go to Step 1. | |
Remark 2.1 : It follows from Lemma 2.1(iii) whenever 6(x;) # 0, Step 1 of Algorithm 2.1 yields a
finite discretization parameter ¢;. For simplicity, in the rest of this section, we assume that Algorithm
2.1 does not produce an iterate x; such that 6(x;) = 0, so that the resulting value of g;, in Step 1, is
finite. ) |
Lemma 2.2 : Suppose that y(-) is bounded ﬁom below and that the sequence of iterat_es {x; )}i=0and
corresponding sequence of discx.'etimtion parameters { q; )= o were constructed by Algorithm 2.1.
Then ¢; > w0 asi — oo,

Proof: For ie NN, let g;, 6;, h; and A; be defined as in Algorithm 2.1, and sﬁppose that g; — oo as
i = oo does not hold. Then, since { ¢; }i°.o is a nondecreasing sequence of integers, it follows that
there exist iy,§ € N, such that for all i 2 iy, ¢; = §, and hence, in conjunction with (2.8), that there
exists an € > 0, such that ©; < — ¢ for all i > i, Making use of (2.9) and the assumption that y(-) is

bounded from below, we conclude that y (-) is also bounded from below. Hence we obtain that
3 :

—o< ¥ W) - v < Y oAs; Referring to (2.5b), we see that if
i=iy 9 q imig

(€2.E) = arg min{ E% + KIER | (£0,8) e G,(x) ), then h; = -£,. Hence Ihf?><-20; and - §;2 ¢ for

i 2 ip, we deduce that I < 26%¢ for all i > ip. Hence for any j > i 2 iy,



i} —~1 0o
b-xl € Yl —xl < ’f_‘, Mid < 3 (26)Y2 M- 6 . (2.10)
k=i k=i k=i

Therefore, { x; }io is a Cauchy sequence in IR", and hence it follows from Theorem 5.2b and Corollary

5.1 in [Pol.2] (which show that any accumulation point x*, of { x; }29, constructed by the PPP algo-

rithm, satisfies 6_(x*) = 0) that 0_(x) — 0, contradicting the construction in (2.8). -
q q

Theorem 2.1 : Suppose that Assumption 2.1 holds, that y(-) is bounded from below, that the second
derivatives 9%/(x,y)/dx> exist for all ¢ € IN, and that there exists an M € [1,o0) such that for all

xe R ze R, jelandge NN,

32%(x B/ ])

=32

DS M, v €Y. 2.11)
Then any accumulation point ¥ of the sequence of iterates { x; }i°. o, generated by Algorithm 2.1,

satisfies 6(%) = 0.

Proof: First, we obtain a bound on the decrease in (-) at the i-th iteration. Using (2.11), we obtain
that '

Vg 0i + M) = g (x) = max g { O &xeM,y) — Wo(x) ) -

< max may (00003 = o () + (Vo (0.3 M+ VaMIARN® ). 2.12)

In view of (2.3b) and the fact that ¢{','_(x,-,y,-) =~ Yo (x) <0 and that M 21, we find that for all

A e [0,1/M],

Yoilxi + M) — o (x) < A8, (x) . (2.13)
Therefore (2.9) is satisfied with A; > B/M, and thus

WoXe) = Wg(x) < a®; < af6/M . (2.14)
Hence, it follows from the Assumption 2.1(i) that

Y(xi) - W(x) < ofl6/M + 2Kig; . (2.15)



Next, since 6; < .-D"°/(q})“°, we have that

aBD"" KM
M(q;_t_)l/c - aBDllc(q‘!)(c-l)lc] .

Vi) - y(x) < - (2.16)

Since ¢ > 1 and since by Lemma 2.2, ¢; = o as i — oo, there exists an iy € N such that for all i 2 i,

lie

W) - W) < - 2;@‘,)1,‘, : 2.17)
Hence,
i /e
Y(x) - yix) < -k}_:,‘_o MG (2.18)

Because y(-) is bounded from below, the left hand side of the above inequality is bounded from below,
which leads to the conclusion that 35 o 1/(gD)"® < . Consequently, 35 _ o 1/(gP) < . Next, return-

ing to (2.15), we conclude that

Y(xi1) — Ylxo) < - k}':o of(=0/M + kﬁ}o 2Kigk . 2.19)

Since both y(x;1) — ¥(xo) and Zi, o 2K/q} are bounded, it follows that Y, (-6 <o . The desired
- k=0

result now follows from Lemma 2.1(iii). |

Theorem 23 : Suppose that Assumption 2.1 holds, that the second derivatives 0%¢/(x,y)/0x7,
9%¢j(x.y)/ax® exist for all ¢ € IN, and that there exist constants 0 <m < 1 < M < oo, such that for all

xe R ze R"andje |,

% (x.y)

mizli? < ¢z, F ASMIP , forally;e Y;,qe N, (2.20a)
*Y(x.y;
mizl? < e.%as MR, forallyje Y. (2.20b)

Then any sequence { x; }. o, generated by Algorithm 2.1, converges to the unique solution X of prob-

lem MMP, and

10



T Y(xi1) - Y()

, < 1-ofmM . 2.21)
= yix) - y&)

Proof: It follows from (2.20a), (2.20b) that the functions y,(-) ¢ € N, (') are strongly convex, and

hence that they have unique minimizers. For any g € NN, let 'JEq be the unique solution of the problem

MMP,. First, we deduce from Assumption 2.1(i) that

(%) - v < Kig®. 2.22)
Next, referring to [Pol.3], [Pol.5], we see that for all x € R*and g € NN,

mly,(x) — Y,G)1 € - 0,0 < My, (x) - y,&)] . (2.23)
Combining (2.14) and (2.23), we get

Vo) = Wo) < Sy 60—y @24)

Adding y,(x,) to both sides in (2.24) and rearranging terms, we obtain that

Wq;(xii»l) = Y x.,) < [1 - oBm/M][y, (x) — Yo @, . o (2.25)
It now follows from (2.22) and Assumption 2.1(i) that
Yxr) = YG) < (1 - ofmMIly(x) - Y@ + 4Kig] . (2.26)
Next, making use of Assumption 2.1(i), (2.22), (2.23) and the fact that —8; = D'/(gF)""®, we obtain that
MIy() - y®] 2 Mly,(x) - YG,)] - 2MKIg]
2 -0;-2MKlq}
> DVSi(gD)Vo — IMKigF (2.27)

Since ¢ > 1 and since by Lemma 2.2 ¢; — « as i — o, we conclude that there exists iy such that for

all i 2 i,
My(x) - w®)] = DY/[2(gD)" ] . (2.28)
It now follows from (2.26) and (2.28) that

11



Wo) -y®) s 1-2Bm  __8KM s w@®1. forizip. 2.29)

M Dllc(q;-)(o-l)/c

Therefore, (2.21) follows from (2.29) and the fact that by Theorem 2.1, g¢; = oo as i — oo. Since
W(x) — Y(x) and X is the unique minimizer of y(-), { x; }7". o must converge to %. ]
For comparison, referring to [Pol.3], we find the following result for the conceptual PPP minimax

algorithm:

Theorem 2.4 °: Suppose that the second derivatives 9%/(x,y)/0x exist and that there exist constants
0<m<1<M<oo, such that for all xe R", ze R" and je 1, (2.20b) is satisfied. Then any
sequence ( x; }. o, generated by the PPP minimax algorithm defined, by (2.3¢), (2.3f), converges to the
unique solution % of problem MMP, and (2.21) holds. n

We thus see that our Adaptive Discretization Algorithm 2.1 converges with exactly the same
linear rate constant as the PPP minimax algorithm, whether applied to MMP or to any MMP,. This

leads us to the following observation as to the relative efficiency of our Adaptive Discretization Algo-

rithm, under the assumptions m Theorem 2.4. Suppose that we are given an initial point x, (sufficiently
vclose to %, the solution of MMP), and that we perform k iterations, ending with a point x; and discreti-
zation parameter q,. If, instead, we perform k iterations on the problem MMP, , ending at a point x’,
we cannot expect to have y(x’p) ‘< Y(x). However, the total computing time used on solving MMP,,

must be longer, because the early iterations of Algorithm 2.1 use a coarser discretization. Hence Algo-

rithm 2.1 is more efficient than a fixed discretization scheme.

3. CONSTRAINED SEMI-INFINITE OPTIMIZATION PROBLEMS
We will now consider constrained semi-infinite optimization problems of the form
CSP : min{ y°(x) 1 y¥(x)<0,jel,xe R" }, (3.1a)

wherel 4 {1,2,..,/),and, with L 4(0,1,2,...,1},

-6 It should be obvious that, under analogous assumptions, the conclusions of Theorem 2.4 remain valid for the implement-
able PPP minimax algorithm which can be used to solve MMP,.

12



Wix) = fnax. ¢¥(x,y), VjeL, (3.1b)

where ¢/:R" x R” — R and Y; is a compact set in R”, We will assume that the functions ¢/(:,) and

their gradients V,¢/(-,-) are Lipschitz continuous.

Using the interpolation techniques mentioned in the preceding section, we can construct a family

of approximating problems, parametrized by the discretization parameter ¢ € IN:

CSP, : min{ Wi®) | ¥j(x)<0,jel,xe R"* }, (3.2a)
where
W) = rﬂa"('; ¥x.y), ¥jeL, (3.2)

In [Pol.4] we find a unified steerable phase I - phase II method of feasible directions which uses a
steering parameter Y > 0. We will refer to this algorithm as the USFD algorithm. The steering param;
eter controls the speed with which infeasible iterates apbmach the feasible set. When this parameter is
greater than a certain value, the algorithm in [Pol.4] constructs a feasible point in a finite number of
iterations. We will call this algorithm as a subroutine from the master adaptive discretization algo-
rithm that we will describe shortly. For the original problem CSP, the algorithm in [Pol4] requires the

following functions:

v 4 max V() (3.3a)
V() 2 max(0,y(x) ), (3.3b)
Fix) 2 max{ v°() - ') - W.2). W) - v.(2) }, (3.30)
6(x) 4 min max( max { $%x.yp) + (V,0°x,y0), A+ WA — yOx) — W, () ),
he R® Y€ Yy
l}‘l‘?f ylj'léa)‘('l { (i)'(x .yj) + (Vx¢i(x :J’j)nh)+ WA - v.(® 1} ), (3.3d)
h(x) & arg min - max( max ( 8%t 30) + (V8%Cx. o) -+ IR — (o) — 1y, (x) )
aR* b€ To
max y;l}sm‘:{j ( ¢/G.3) + (Va/(x,3), B+ BIAR ~ y,(x) ) ) . (3.3¢)

For the problems CSP,, the algorithm in [Pol.4] uses corresponding quantities, Yo()s Wai(), Frg(x),

13



0,(x) and h,(x), resulting from the replacement of ¢/(,"), V.#/.*), W(), w(-) and y,() by (.,
Va0 W), Wo(*) and y(x) in (3.3a-¢), respectively.
In addition to the steering parameter v, the USFD algorithm in [Pol.4] uses two Armijo step size

parameters: o, B € (0,1). In solving CSP, this algorithm constructs iterates according to the rule

X = % + Mh(x), (3.3)
where
M =max( B¥lke N, Fo(x + Bth(x) - F,(x) S af*0(x) } . (3.3g)

For solving CSP, one makes the obvious substitutions in the above rule.

We will assume that the following relationship between the functions defining the problems CSP,

and problem CSP:

Assumption 3.1 : (i) There exist constant 0 < K < and T > 0 such that for all x € R” and all

ge NN,
I yo(x) - \ﬂ(x) I<Kiq®. (3.4a)
ly) - y,®) | SKig®. . S . (3.4b)

(i) Foranyxe R", y;€ Y;andje L,

Jim 00 \y) = Wory) . Jim Ve y) = Ve,

(3.4c)
L q = oo [}
Lemma 3.1: (i) Forany x € R",
0(x) = — min{ E° + LR (&8 e Gk) ), (3.5a)
8,() = - min{ &+ BEP I8 e G ), (3.5b)
where
G & Vo) - 0%x.y0) + m(x)] [w(x) - a(x.y,)] s
SOl = V:0°(x0) e ,j%’,,j vy ) @-5¢)
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G,(x) B¢o U

Yo € Yo

DU (3.5d)

U
jel yje Yj

Wox) — 630x.y0) + w.,+(x)]
qu’o(x,}' 0)

[Wq(x) - % xryj)]
Vx%(xoyj)

(ii) For any x € IR", 6(x) = 0 if and only if either y(x) < 0 and 0 € dF(x) (i.e., x satisfies the first
order optimality condition for problem (3.1a)), or y(x) > 0 and 0 € dy(x), (i.e., x satisfies the first order

optimality condition for the problem min__ p. W(x)).
(iii) Suppose that Assumption 3.1 holds. Then, for any x € R",

im 0,() = 6() .

g

(3.6)
Proof : (i) The relations (3.5a), (3.5b) were established in [Pol.4] using the von Neuman’s minimax
Theorem.

(ii) This part can be deduced from Propositions 5.4 and 5.5 in [Pol.2).

(iii) Since Y; are compact sets, it follows from Assumption 3.1(ii) and (3.5¢-d) that

Jlim G,(¥) = G .

g

X))

Hence, (3.6) follows from (3.7) and (3.5a-b). |

We are now ready to state an adaptive discretization scheme, based on the USFD algorithni in

[Pol 4], for solving the problem CSP.

Adaptive Discretization Algorithm 3.1 (for CSP):

Data: xeR", g,eNae (0l1),pe 0,1),y>0,D>0and 6> 1.
Step 0: Seti=0.

Step 1:  Compute ¢; € I, 6; = 8,(x;), and &; = h,(x) such that g; > g, and
Digi < [-0,(x)]° (3.8)

Step 2:  Compute the step size A; :

15



M=max(B*lke N, Fy o(x +B*h) - Fy o(x) < af'®; ). (39)

Step 3: Set x4 = x; + Ahy, replace i by i + 1, and go to Step 1. u
Remark 3.1 : It follows from Lemma 3.1(ii-iii) that whenever 6(x) # 0, Step 1 of Algorithm 3.1
yields a finite discretization parameter ¢;. For simplicity, in the rest of this section, we assume that
Algorithm 3.1 does not produce an iterate x; such that 8(x;) = 0, so that the resulting value of g;, in
Step 1, is finite. ]
Lemma 3.2 : Suppose that y°() is bounded from below and that the sequence of iterates { x; )i o
and the corresponding sequence of discretization parameters { ¢; }7. o were constructed by Algorithm

3.1. Then q; & oo as i = oo,
Proof: Suppose that g; — eo as i — o does not hold. Then, since { ¢; }i’-o is a nondecreasing

sequence of integers, it follows that there exists an ig, ¢ € N, such that for all i > i, ¢; = ¢, and hence,
in view of (3.8) that there exists an € > 0 such that 6; < — ¢ for all i > ip. It now follows from the pro-
perties of the algorithm defined by (3.3f), (3.3g) (see [Pol4]), that there are two possibilities: either
\ya(x,-) > 0 for all i 2 i, or there exists an i; = iy such that \ya(x,-) <0 for all { 2. In the former case,
¥, i) ~ () < 01, for all i 2 o In the later case, W) - \pg(;c;) < 0A8; Making use of the
(3.4a) and the assumption that y°(-) is bounded from below, we conclude that \yg(-) is also bounded
from below. Hence we obtain that either — oo < Y5, i [qla(xm) - \ya(x‘-)] <Y io oA0;, or that
-~ < YT, i [\yg(xm) - wg(x;)] <3y i oA0;. In either event, we are led to ‘the conclusion that
pI i oh;0; > — . Since Ih# < 2(- 9;), we conclude, applying the reasoning used in proving Lemma
22, that { x; }Zo is a Cauchy sequence in IR". Since by Lemma 3.2 in [Pol.4] (for algorithm (3.3f),

(3.3g)), any accumulation point x* of { x; }&, satisfies 0,(x*) = 0, it follows that 6,(x;) — 0, which
, q q
contradicts our assumption. Therefore lim 8; = 0. It now follows from (3.8) and the fact that ¢; = ¢,
[

that g; > c0 as i — oo, |

Theorem 3.1 : Suppose that Assumption 3.1 holds, that y%(-) is bounded from below, and that there

exists a constant M € [1,e0) such that forallx € R*,ze€ R* je Landge NN,
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O*p(x.y)

™ AS M, fory e Y;. (3.10)

@,

Then any accumulation point X of the sequence of iterates { x; )7 o, generated by Algorithm 3.1,
satisfies 6(%) = 0.
Proof: It follows from the definitions of F, () and F,(), and Assumption 3.1(i) that

Fog0) = F,0)l < @Q+Y)K/g*, foralxe R*,ze R",qe N. (3.11)

Next, we observe the i-th iteration of Algorithm 3.1 consists of one iteration of the PPP minimax algo-
rithm on the problem minx e R" F,.,,,’,(x) starting with x;, Hence, replacing "’1.-(')' y(*) by F,‘,q‘(-), F,‘,(-),

we conclude from the proof of Theorem 2.1 that there exists an iy such that for all i > iy,

DIIO'
Fulhius) — Fa@®) < oB8JM +2Q2 + YKIgF < — Z—:I‘iq—,,, . G.12)

It now follows from the definition of F(), (3.3c), that for all i 2 i,

. 1/ )
Yo0t) - W) — W) S - aBOJM + (4 + 20KIg] < - ?74% <o, (3.138)
Vo 3
Yltin) = Wa(x) S OBO/M + (4 + 2Y)Kig} < - 2:‘4@31,, <0 (3.13b)

We must consider two cases.

Case (i): There exists an integer i; > i such that y(x;) < 0. It then follows from (3.13b) that

y(x;) < 0 for all { 2 i and from (3.13a) that

aE Dlld'

‘vo(xi-l-l) - \I’o(xt) s - aBei/ M + (4 + ZY)K/qf s - 2M( q})llo

, forall i 2, . 3.14)

Hence, by the same reasoning used in the proof of Theorem 2.1, we conclude that 35 i{ 0> =0

which leads to the desired resuit.

Case (ii): w(x;) >0 for all i > iy It then follows from (3.13b) that for all i > ig,

/o
Y0xin) = W(x) S — OB/M + (4 + 29KIg} < - ?Z%W : (3.15)
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Since y(x;) > 0 of all i 2 iy, the reasoning used in the proof of Theorem 2.1 leads to the conclusion that

Y, 6 >—oco. Hence the desired result follows from Lemma 3.1(iii).
k=i |

To establish the linear convergence of Algorithm 3.1, we need following assumption and results

which we borrow from [Pol.4].

Assumption 3.2: (i) Thereexist0<m<1<M<eosuchthatforallxe R*,ze R*andje L,

mizP < (2 Flxy)
'3

X2
*W(x.y)
ox?

AS Mz, forallyeY;,qge N, (3.16a)

mizl < (z, DS M, forall y; € Y;. (3.16b)

(i) Theset { x| y(x) < 0 } is not empty. u
Lemma 3.3 : (Lemma 4.2, Lemma 4.3 in [Pol.4]) : Suppose that Assumption 3.2 holds. Then

(i) Problem (3.1a) has a unique solution, X.

(ii) % is the unique zero of 6(").

(i) Letp’ 8min(p’ipe L®) ) andp1° A max{ p®lp e LR) ), where

LHA (u=0p..uhl0e ;Zl:o Waw@), §'J HYR) =0, ﬁ W=1¢ 20}.  (3.17)

j=1 j=0
ThenO<p’<spms< 1.

(iv) Forall x e R",
FV°® - v'@)l < (1 - B | G175

Theorem 3.2 : Suppose that Assumptions 3.1 and 3.2 hold. Then any sequence of iterates { x; }7 o
generated by Algorithm 3.1, converges to %, and there exists an integer i, such that either
@ wx)<O0foralli=igand

E ‘l’o(xi-l-l) - ‘[’o&) <
= ) - vR)

1 - plafm/M . (3.18a)
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or (ii) w(x) >0 forall i 2 iy and

ey \V(xk-l) — a0,
n!-l»mw_\v(x;) <1-ywopm/M , (3.18b)

where w0 is defined in Lemma 3.3 (ii).
Proof: Let X, X, be the unique solutions of min, _ . Fu () and min, _ . F;(x), respectively.

First we show that both { x; }i.o and {3,‘ }Ji=o converge to X. It follows from (3.13b), that

Y.(xi1) < W,(x) when i is sufficiently large. Since y(-) has bounded level sets, the sequence { x; }- o,

constructed by Algorithm 3.1, is bounded. It therefore follows from Lemma 3.3 (i-ii) and Theorem 3.1

that x; = X as i - o, Hence, making use of the fact that F,‘.(JE,‘) < F,.,(x;) =0, we deduce that
(%, )= o is bounded, and that, because F,(x) is continuous in (r,x), any accumulation point £ of
( %, )7 o, must satisfy F;(i) < 0, which implies that ¥ = %. Therefore, X, — X as { — co.
Now the i-th iteration of Algorithm 3.1, consists of one iteration of the PPP minimax algorithm
on min__ o, F, (), starting. with x;. Therefore, replacing (), W(), %, and X by F, o (), Fy(), % .
and 2,‘, respectively, in the proof-for Theorem 2.1, we conclude that there exists an integer #; such that
foralli 2i,
Foltin) = FGa) < [1=ViIF, ) - F,G)1 (3.19)

where

offm 8(2 + VKM
Vi8S~ Diagyene >0 (3.19b)

Since Fy(x) =0, we get
Fy(n) SVF,R) . (3.20)

Now, since % is the minimizer of F, (), there exists a multiplier {i; = @, {i},...,{I) such that
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Oe Z". RV G, ) | (3.21a)

j=0
‘ . .
VG - v - Wbl + 3 EIVGL) - vl = Fr &) (3.21b)
j=1
t =1, {#=20,forjelL. (3.21c)
P

i
Since both sequences { x; )7 o and ( %, )i o converge o %, any accumulation point of ( {I; }. ¢ is in

L®). Hence

W< imfl < imil? < . (3.22)
Let () be defined by
g ! PR
Fit) = B0 = v - el + 3, B — vl (3.23)
J =

It follows from (3.21a)-(3.21c) that 0 € 3F&,). Since F{’) is strictly convex, %, must be its unique
minimizer. Hence, making use of (3.21c) and the fact that 1?‘6,') = Fy%;) and that W) <0, we

obtain that

F,G) < F® < MG - vl - 11+ (- Difly,(x) . (.29

Combining (3.20) and (3.24), and rearranging terms, we get

Vo) - 00 < (1 - ANV - WP + [y - (+-DADVAVL(x) (3.252)
Y(xe) S ANVIVI® - vO)) + [1 - (1 + (v - DEDVIV.(x) . (3.25b)

By Lemma 3.3, ¢; - oo as i — . Hence, we deduce from (3.19b) that

lim v; = 2Bm (3.26)
i=>oo M

Now, it was shown in the proof of Theorem 3.1 that there exists an integer ip > {; such that either (i)
y(x) < Oforall i 2 or (ii) w(x) > O for all i > i,. In the former case, (3.18a) follows from (3.22),
(3.25a), (3.26) and the fact that y,(x) = O for i 2i,. In the latter case, we obtain from (3.25b) and
(3.17b) that
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W) < (1 - PR + 1 - (1 + (= DADViy.(x)

= [1+ @I - 1 - vz . (327
Hence, (3.18b) follows from (3.22), (3.26) and (3.27). m

For comparison, we reproduce the rate of convergence theorem for the USFD algorithm described
in [Pol.4]:
Theorem 3.3 : Suppose that the relevant part of Assumption 3.2 holds. Then any sequence of iterates
{ x; }¥'= 0, generated by the USFD algorithm, converges to %, and there exists an integer ip such that
either
() wy(x)<Oforallizizand

m ‘Vo(xiﬂ) - ‘Vo® <

, 1 - uPoBmM . (3.282)
= yx) - IR

or (ii) \y(x,-)>0foralli2i9and

=— Y(Xi1)

AL 1_ 0,
,-li,m., v Sl-yw aBm/M. . o - (3.28b)
where uf is defined in Lemma 3.3 (ii). [ ]

Thus we see that Algorithm 3.1 has the same rate of convergence as the USFD algorithm and
hence, by the same arguments used at the end of Section 2, we conclude that using adaptive discretiza-
tion in the form of Algorithm 3.1 should result in savings in computing time over the use of the USFD

algorithm on a single high precision approximation to the original problem.

4. OPTIMAL CONTROL PROBLEMS

Finally we turn to unconstrained optimal control problems of the form

OCP : . 2“2('.., c() = g(xXu)), (4.1a)

where g:R" - R, G(w) 8 LF0,71N{ ulmax,e ol <@}, T is a given time period, and

%:G(e0) — R" is defined by Fu) & X(T,u,x,), with x(*,u,xo) the solution of the differential equation:

21



X0 =fx(O.u@®.0), te[0,T], x0)=x, (4.1b)

where xg is a given vector in R". In this section, the L5'[0,T] topology will be used on G(e) and its
subspaces, unless we stated otherwise. We will assume that functions g:R"—> R and

[ R*x R™ x [0,T] - R" have the following properties:

Assumption 4.1 : (i) The function g(-) and its gradient Vg(-) are locally Lipschitz continuous.

(ii) The function f-,-,”) and its partial derivatives af('a;") and aﬂ.a’u"') are locally Lipschitz con-
tinuous.

(iii) for every ©>0, there exists a constant K;(®w) such that for all xe R"

ue (e R*IW1<o }and te [0,T],
x,u,)l £ K (w)[bd +1]. (4@
Lemma 4.1 : ((Kle.1]) Suppose that Assumption 4.1 is satisfied. Then
(i) The differential equation.(4.1b) has a unique solution for every u € G(eo).
(i) “The functions X{) and c(-) are continuously Frechet differentiable on G(co). ’ [ |
Since the functions ¥{-) ami ¢(-) are continuously Frechet differenu:able- 6n G(oo),h there exist con-

tinuous functions, a "jacobian” -g%. :G(e0) = G(oo)" and a "gradient" V¢ :G(es) = G(e=), such that

T
B + 8u) — ) — £ aj;?(t)Su(t)dtl

. _ (4.3a)
2o W -
T
le(u + Su) — cu) — £ (Ve()(®) , Su(r)del
lim ; -0 (4.3b)
8u e Gleo) lﬁulz ) ’
l&dz -0

Lemma 4.2 : ([Kle.1]) Suppose that Assumption 4.1 is satisfied. Then

(i) for every u € G(s) and ¢t € [0,T],

B ) = o7, LoDt D (4.42)
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T
Ve(u)() = [aﬂg‘:—‘l(r)] VW) . | (4.4b)

where @,(¢,7) is the state transition matrix for the linear differential equation

5y = L& "gl'“(‘)") ¥ onte [0,T]. (@.4c)

(ii) for any ® > O, there exists a K5(w) such that for all u,3u € G(w),

W)l < Ky0) , 1% L SK@) . Vel < Ky©) | (4.4d)

Be(u + Su) — Tu)l < Kx(0)idul, , 4.4e)
L a

Be(u + du) — X(u) - 1[ [%(t)]Su(t)dtl < Kx(w)5ull? . 4.40)

|

As a first step towards the numerical solution of the infinite dimensional problem OCP, we define
a sequence of finite dimensional subspaces G (=) of G(-2), ¢ € N. Thus, for any ¢ € N, let A, A 1729
and, for any e (0,%) let G w) 2 G N {ulul) =ide R"
for t € [jAg,(+1)A) , j=0,1,..,27 =1 ). Next, for any g € N, and any u € G (), let X (x) be an
approximation to X{u), obtained by solving the differential equation (4:1b)-by means- of a numerical
method, such as the Euler-Cauchy method, the Modified Euler method, the Runge-Kutta method, etc.
We can now define a family of finite dimensional approximating problems, parametrized by the discreti-

zation parameter ¢ € N:

OCP,: min c/(u). ‘ @.5)

ue Gq(ao)

where co(u 8 g(%,(u)). We will assume that ¥;(*) approximates ¥(x) in the following sense.

Assumption 4.2 : (i) For every o > 0, there exist constants K3(w), T € (0,%0) such that for any

ge N,

| x(u) — F,(u)l < K3(@)/(29°, forall ue Gy w). 4.6a)

ox,(u
(i) Xg() is continuously Frechet differentiable on G,(==). We will denote its "jacobian” by -%)(t).
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(iii) For any @, £ € (0,c0), there exists a § € IN such that for all ¢ = ¢ and u € G, (),

axq(u) af(ll!' <e ’ (4-6b)
“ou ou - ' ‘

(iv) For any o > 0, there exists K4() € (0,) such that for all g € N and all 4, u € G, (),

I, (u + 8u) — T} < Ky ()iSuly , (4.60)
T o=

B+ 8 - 3 - [ F ) @.6d)

a

Remark 4.1 : Referring to [Kle.1], we see that when the Euler-Cauchy method is used to define X, (i),
Assumption 4.2 is satisfied with T = 1. It is easy to show that when the Modified Euler method or
Runge-Kutta method are used to define X (1), Assumption 4.2 is satisfied with T = 3 and T = 5, respec-

tively. n
Lemma 4.3 : Suppose that Assumptions 4.1 and 4.2 are satisfied. Then

(i) The function c,(-) is continuously Frechet differentiable on G,(c), and for any u € G, (=) and

te [0,7),

Ve (0)(@) = [ %) (x)] VeGE®) . - 4.72)
(ij) For any @ > 0, there exists a Ks(®) € (0,%0) such that forg e Nand all u € G (w),

le(u) — c ()l < Ks(@)/(27)° . 4.7v)
Proof : Part (i) follows from the Assumption 4.2(ii), (4.6c) and the local Lipschitz continuity of Vg(-).
The inequality (4.7b) follows from Assumption 4.2(i), (4.4d) and the local Lipschitz continuity of g(-).m

Since G,(c°) is isomorphic to R¥, each problem OCP,, defined by (4.5), can be solved by the
Armijo gradient method [Arm.1] which uses two parameters o, B € (0,1) and which, for OCP, con-

structs iterates according to the rule:
Uy = u; — AVey(u) | (4.82)

with
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M=max{pflke N, cqu; - B"ch(u,-)) - c (u) £ — aB"lch,(u,))l% }. (4.8b)
We can now state an adaptive discretization scheme, based on the Armijo gradient method (4.8a),
(4.8b), for solving the problem OCP.
Adaptive Discretization Algorithm 4.1 (for OCP)
Data: Uy € G‘,_l(oo), g€ Nae (0,1),pe (0,1),D>0and o > 1.
Step 0: Seti=0.

Step 1:  Compute ¢; € IN, k; = - Ve, (u;), and 8; = —1Vc, ()13, such that ¢; > g and
DI2M < [-8]°. (4.92)

Step 2:  Compute the step size A; :

A =max( Bl ke N, co(u + B*h) — c,(u) < af’e; ) . (4.9b)

Step 3: Set uyyy = u; + My, replace i by i + 1, and go to Step 1. [ ]

Remark 4.2 : It follows from Assumption 4.2(iii), (4.4b) and (4.7a), that whenever Ve(x;) # 0 (i.e., u;
does not satisfy a first order optirhality condition for the problem OCP), Step 1 of Algorithm 4.1 yields
a finite ¢;. For simplicity, in the rest of this section, we will assume that Algorithm 4.1 does not con-
struct a u; such that Ve(y;) = 0, for any finite i. |
Lemma 4.4 : Suppose that Assumption 4.1 is satisfied, that g(-) is bounded from below, and that the
sequence of controls { u; };. o and the corresponding sequence of discretization parameters { ¢; }i’. o
are constructed by Algorithm 4.1, Then q; & o0 as i — oo,

Proof : Suppose that ¢; — oo as i — oo does not hold. Then, using the same reasoning as in the proof
of Lemma 2.2 and the fact that W42 = —8;, we conclude that there exist ip and § € NN such that ¢; = ¢

for all i 2 iy, and that { u; }7°. o is a Cauchy sequence in L5[0,7]. Consequently, since ; € G (),
: q

which is a finite dimensional space, { ; }i". o is bounded in the L., norm, and hence it converges also in

this norm. Since for any L., accumulation point %, of a sequence { ; }2o constructed by the Armijo

gradient method (4.8a), (4.8b) in the finite dimensional space, G (), Vc (%) =0 (see [Arm.1]),
q q
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8, (1) = — IVc ()} — 0, which contradicts the test (4.92). Thus we must have that g; — e as i — o3
q q

Theorem 4.1 : Suppose that Assumptions 4.1 and 4.2 are satisfied, that g(-) is twice continuously
differentiable and bounded from below, and that there exists a constant M, € (0,o<) such that for all

xe R* ze R",

az
e, T8 < M. (4.10)

Then any L, accumulation point 4 € G(es) of an L., bounded sequence of controls { &; }7. o, generated
by Algorithm 4.1, satisfies Vc(%) = 0.

Proof : Since liyl. is bounded and, by Lemma 4.3, ¢; & « as i — oo, it follows from Assumptions

4.1 and 4.2, and Lemmas 4.2 and 4.3 that there exists an ® > 0 such that for all i =2 0 and A € [0,1],

hl.<0, Whl.<0, (4.11a)

0%, (u; + M)

F+MlSo, ——=——IL<o, Wu+MI<o. @.11)

Making use of (4.10), (4.7a), (4.6¢c-d) and th_e fact that h; = — Vc.,'_(u.-) and that 8; = —IA;13, we obtain

that for all A € [0,1], - -
cq(; + M) — c () = g5 (u; + M) — 8(%, (1)

M
S (Vg0E, (D), Gy + M) — Ty )+ SEIE (i + Ak - F, )P

T ar ) ", \
< Vg, ), :[ —— () M) dt) + Ko@) 1 Vg ad) 11 M B+ —E (K() )

= A0; - MK (@IV(E, ) + MKX@)2]6; . @12)

Since X, (u) is bounded and Vg(°) is continuous, there exists a K¢(w) € (1,%0) such that
Cqltti + M) — co(u) S (A — A2Ke(0))0; = oAd; + M1 — o — Ks(w)A);, ¥ A e [0,1]. 4.13)
Hence (4.9b) is satisfied with A; 2 (1 — a)B/Ks(w), and thus

Callin)) = o) < 0AB; < 0(1 — C)BOIK (W) . 4.14)
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It therefore follows from (4.11a) and (4.7b) that

(1) — c(u) < a1 — WPO/K () + 2K5(0)/ (2% . 4.15)
Resorting to the reasoning used in the proof of Theorem 2.1, with (), x;, ¢;, M and X replaced by c(-),
u;, 2%, Kg(@)/(1 - ) and Ks(), we can show that 3°=_ 6, > — oo, Hence 6; — 0 as i — o, Now, for
allie N,

Vel < IVe(i) — Ve@h, + 1Ve(u) — Ve  (ul; + Ve, (u)l,

< V(@) - Vo)l + T WVe(u) - Ve, ()l + (- 8)"2 . (4.16)

Consequently, the desired result follows from the continuity of Vc(-), (4.7b) and the fact that 9; — 0
and g; > o asi — oo, | |

Lemma 4.5 : Suppose that Assumptions 4.1 and 4.2 hold and that there exist 0 <my < M, < and

0<m, <M, <cosuchthat forallxe R*, ze R"and u € G(x),

mylzl? < ( z.%i(zﬁz ) S M,LP, .173)
miR <z, l[[@l(z)] [—fﬂ—(z)l dt b2y < M2 . T ‘ @.17b)

Then for any ® >0 and ¢ € (0,m,), there exists a § such that for any ¢ > gand u € G (@),

(m, - Ol < z , 1[ [ax"(") « )“ "f‘ L \z)] dt t2)S (M, + )P | (4.18a)

(m, — NVgF ()P < Ve W)l < (M, + e)iVg(T ()2, (4.18b)
1 1

ms M. +¢) lVCq(u)l% < Cq(u) - g(i) < —2m8 m—¢) |ch(u)|% . (4.18¢c)

where % is the unique minimizer of g().

Proof : Inequality (4.18a) follows directly from (4.4d), (4.17b) and Assumption 4.2 (iii), while (4.18b)

follows from (4.7a) and (4.18a). Making use of (4.18b) and the fact that for all x € R”,
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T VS < 8) = 80) < 3 105000 - @.19)
we get (4.18c). |

T T
Remark 4.3 : The matrix g Ii’%?l(t)] [%Q(t)l dt is the controllability Gramian of the linearization

of the system (4.1b). When the dynamical system (4.1b) is linear, the inequality (4.17b) holds if and
only if (4.1b) is completely controllable on [0,T]. When the dynamical system (4.1b) is nonlinear, con-
dition (4.17b) is a sufficient condition for the complete controllability of the system (4.1b) on [0,7] (see
[Sas.1]). ' ]
Theorem 4.2 : Suppose that Assumptions 4.1 and 4.2 are satisfied and that there exist

0<my<My<oo and 0 <m, <M, <eco such that MM, >2 and (4.17a), (4.17b) hold. Let % be the
unique minimizer of g(-). If a sequence of controls { u; }7- o, generated by Algorithm 4.1, is bounded

in the L. norm, then
@ ‘lﬂ Ve ) =0. - (4.20a)
@ lim o) = g&), o (4.20b)

i ) —¢@) | 41— o)aPmgm,

(iii) 1 i
2 e(u) - g3 M-

(4.20c)

(iv) The sequence ( X (u) )i’ o converges R-linearly to %.
(v) There exists a i € G(eo) such that Vc(@) =0 and the sequence { ly; — %l }2o converges R-
linearly to 0.

Proof :  Since the sequence { ; )2, is L., bounded, there exists an ® > 0 such that (4.11a), (4.11b)
hold. Hence, making use of Lemmas 4.4, and 4.5, we conclude that for every € € (0,m,), there exists

an i, such that for all i 2 i,, (4.18a) - (4.18¢c) hold for ¢ = ¢; and all u € Gy ().

(i) By Theorem 4.1, IV, (u)l; — 0 as i — o. Hence, it follows from (4.18b) that Vg(%, (u)) — 0 as

i~ oo,
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(i) (4.20) follows from (4.7b), (4.18¢) and the fact that Ich‘,(ui)ﬂz =0 and g; > e asi — oo,

(iii)  First we will obtain a bound on the step size A;, Making use of (4.6d), (4.18a) and the fact that

ox, ()

ht) = - [ ;u (t)l Vg(f,,',(u,-)) and that v,A%)< 1Al v,Av) for all symmetric, positive definite

matrices A and vectors v, we obtain that for all i 2 i; and A € [0,1],

&, (u; + Ah) - X, (| W 2
2t + A — Ty (uh < I{ —— O M) + Ky(@hi
- 12
7 [ ax, ) xw |
= M| Ve, [ {[ =—® [ = (r)] d:] Ve + NK(o)h
7| ax,(w) axw) | "
< A|(M, + eXVe(T, (u), £ =—0 =—() | dt | Ve ) + NK(@)h
< [(M, + &)'? + MK (@) IAR, . .21)

Next, we deduce from (4.17a), (4.6d), (4.7a), (4.21) and the fact that h; = - Ve, (), that for all

x € [otl]’ - -

Cqli + M) — cq(u)) = g(% (u; + M) — 8(%, (u)

M,

S Vg, ). (% s + M) — Fy i+ =

L%, (u; + Ah) — X, ()
< — MA + A2Ky()IV g (E, (w3 + %V«MC + €)% + MKy (0)In) k3 . 4.22)

Since a1, — 0 and IVg(x, ()l = 0 as i — o, it follows from (4.22) that there exists i’¢ = i¢ such that
fori>i’;and A € [0,1],
Cq (it + M) = co () < — MIB + MM, + 2e)A%ih)Y2
= A8; — My(M, + 2e)A%042 . (4.23)
Hence, (4.9b) is satisfied with A; > 2(1 — a)B/[M (M, + 2¢)] for all i 2 i’,, and thus

Cq i) = () < 0AD; < 201 — OPOJMM, +26)) , ¥ i2F,. (4.24)
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Combining (4.24) and (4.18c), and rearranging terms, we obtain that for all i 2 i’,

41 - o)ofmy(m. - €)

Co(tin) — @ < 1 - M+ 22) 1lcg,(u;) — g (4.25)
Hence it follows from (4.7b) that for i 2 %,
) ~ Gy < [1 - 2L ZOBMme =€) N + 2K 2T (4.26)

MM, + 2¢)
Finally, making use of (4.7b), (4.18c) and the fact that — 6; > DY9/((2*))V9, we obtain that for i 2 i’,,

2M (M. + e)lc(u) — g@] 2 2M M, + €)lc, () — 8R)] — 2My (M, + E)K5(@)/(2™)*
2 - 6; — 2M (M, + e)Ks(@)/(2")
= DVO(2MT)VO — M, (M, + e)Ks(@)/ (27" . 4.27)
Since ¢ > 1 and, by Lemma 4.3, ¢; — oo as i — oo, we claim that there exists i”; = i, such that for

. 1Y
i2i",

MM Lcw) - gB)] = S DVHETY . . @.28)

Thus, (4.20c) follows from (4.26), (4.28) and the arbitrary choice of € in (0,m,).

(iv) Note that
17, ) - 3 < (307, ) ~ 2N = (e ) ~ 51 “29)
8 8

This, together with (4.25), leads to the desired result.
(v) Making use of (4.11b), (4.19), (4.25) and the fact that A; < 1, we obtain that for i > Ve,

Wi = udee = Mla,

0%, ()

< M——LIVg(F, )l

< 20M (g%, (1)) — 8®)]

30



4(1 — oyoPmy(m. — €) -,

L) — - 4.30
< 20M(c,, (w,) ~ s®N0 W01, + 22) (4.30)
4(1 — 0)afmy(m, — ) .
A _ 8 ’
Letn &l MM, + 2) ]. Then, forall j>i 2 i,
1l
Iu,- - u;l,. < Z lu)ﬂ.l - u;,l..
k=i
S zmMg[que(ui'e) - g@]kz.‘nk- i'e
< 20Mjlcq, (4 - g®m' U1 -m) . (4.31)

Therefore { u; }Zo is a Cauchy sequence in L2[0,7]. Since L7[0,T] is a complete space in the L.,

norm, there exists a # € L70,7] such that u; —» % as i — oo in L. norm. Let j go to oo in (4.31), then

foralli2 /',
I - ud, < 20Mlc,, (1) - g®M' N1 - 7). 4.32)
e
Thus, { I — u;l.. } o-converges to 0 R-linearly. Finally, by Theorem 4.1, Vc(®) = 0. [

For comparison, we present a rate of convergence result for the Arinijo algorithm™(4.8a), (4.8b) as
applied to composite functions. The proof of this theorem follows by generalization of the Armijo algo-

rithm rate of convergence theorem for affine-composite functions presented in [Pol.5]:

Theorem 4.3 : Consider the problem
min, _ o~ c(u), (4.33a)

where c(u) A g(x(w)), with g:R" — R a twice continuously differentiable function satisfying (4.17a),

with 0 < m, < M, < oo, and %:IRY — R" is a Lipschitz continuously differentiable function such that for

some 0 <m, S M, <o
mcnzlzsa,[-%] [%l ] ASMMEP, ¥V ze R" ue RY. (4.33b)

Suppose that MM, > 2, that % is the unique minimizer of g(), and that { u; }£o is a sequence

constructed by the Armijo method in solving the problem (4.33a). Then
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@ lim Vg(Hw) =0. ' (4.34a)

()  lim c(u) = 8(). (4.34b)

i Se) ~g® | 41~ o)aPmym,

(i) 1
2 c(u) - g(R) MM,

(4.34¢c)

(iv) The sequence { X(u) ). o converges R-linearly to .

(v) There exists a 4 € RY such that Vc(%) = 0 and the sequence { ly; — %l }Zo converges R-linearly to

0. |

Again we see that the use of adaptive discretization is preferable to fixed discretization.

- 5. CONCLUSIONS

There is an accumulation of empirical evidence to support the claim that, in skillful hands, adap-
tive discretization schemes can produce considerable computational savings in the solution of optimiza-
tion problems which must be discretized. However, prior to the work presented in this paper, there was
no automatic discretization scheme whose computational savings could be "predicted ‘on the basis "of
analysis and whose overall rate of convergence could be established. We expect that the discretization
techniques presented in this paper will prove to be of practical importance in engineering design and

optimal control.
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