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Global Optimization: A Naive Approach f

Leon. O. Chua $

This note proposes a unified approach for finding the global optimum of a continuously
differentiable function fy:Rn -> R of n real variables x = (xh x2f ' ' • , *n ) e /?", for
both constrained and unconstrained problems. This approach may be implemented either

numerically or in real time via an associated nonlinear programming circuit to be described at
the end of this note.

1. Global Optimization without Constraints

Without loss of generality we will consider only the minimization problem. Let x* be a
global minimum of (J) (x); i.e.,

x = min (|)(x) n\
xeJ?" v '

If <|> (x) has multiple local extremum points, most current deterministic optimization algorithms
will generally converge to some local minimum [1]. Our global optimization approach consists
of transforming the unconstrained optimization problem into the following nonlinear program
ming problem:

minimize (j> (x) (2)

subject to the inequality constraint

<j>(x)<<|>(x)-e (3)

where x is a local minimum; i.e., <|>(x) ><j> (x*) and £ is a small positive number chosen so
that the plane <|>(x) = 4> (x) - e in the <|> vs. x space (see Fig. (l)a) lies just below the local
minimum (J>(x). Solving the above problem by any standard nonlinear programming method
yields a new extremum point x' with the property that (J)(xO < (|>(x). If <|>(x) has a finite
t This work is supported in part by the Office of Naval Research under grant N00014-89-J-1402 and the National
Science Foundation grant MIP-8614000.
t L. O. Chua is with the University ofCalifornia at Berkeley, Berkeley, CA 94720.
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number "N" of isolated local extremum points, our approach needs only be repeated at most N
times, each time involving a "lower" local minimum. This rather naive strategy can be sum
marized as follow:

Global Minimization Strategy

Step 0 Choose a small positive number e > 0 and an initial guess x(0). t

Step 1 At the fcth recursion (k =0, 1, 2, ..., m <N), let x(k) denote the local

minimum calculated from the preceding step. Calculate

Step 2 Solve the constrained minimization problem

minimize § (x)
X£#n

subject to the inequality constraint

<Kx)<#>

If step 2 has a solution, call it x(*+1) and return to step 1 with k updated to k+l.
Otherwise, x(*J = x* is the global minimum.

Note that in general, the global minimum will be found in a significandy smaller number
"m" of recursions than the total number N of local extremum points. This is because it is
highly unlikely that step 2 would converge to the next lower local minimum. Consequently, all
"intermediate" local minima that fall between <$>(x(k)) and <J>(x(*+1)) are automatically elim
inated from future considerations.

It is important to observe that while our above strategy seems to be naive if not obvious,
it offers the following three novel features:

t In the case of the nonlinear programming circuit [3-5] to be proposed below, the initial noise voltage
on the capacitors is the analog of the initial guess.



1. The local minimum calculated from each recursion is guaranteed to be better than the

previous one; namely, <J>(x(*+1)) is less than §(x{k)) for all k. This monotone cost-
decreasing property differs from other algorithms where the next calculated local

minimum could turn out to be worse than before, or one which in fact has been previ
ously obtained.

2. As illustrated below, our strategy can be formulated into a new minimization problem
(with or without constraints) so that all previously calculated local minima are automati

cally suppressed algebraically, and not by an algorithm which compares them to the
current outcome.

3. Our strategy makes it possible to build a"neural network" [5] capable of obtaining the
global minimum in real time. In fact, the nonlinear programming circuit to be proposed
below, is our main motivation of this note.

While any standard code for solving nonlinear programming problems can be used to
implement the above global optimization strategy, it is possible to transform the above con
strained minimization problem (step 2) into the following equivalent unconstrained minimiza
tion problem by augmenting anew equation and anew "slack variable" v; namely, solve the
system ofn+l nonlinear equations in the n+l unknowns xlt x2, • • • , x , y

dxj ~0' y=i, 2, •••,« (4)

<|)^)-<J)(x)-gO;) =0 (5)

where g(y) is any continuous "positive" function ( g(y) >0) from Rl into R\ For example,
we can choose g(y) =v2 or g(y )= |y| ifdifferentiability is not essential for the numerical
algorithms.

Example

To illustrate the basic idea behind our global optimization strategy, let us minimize the
function

<$>(x)=x4-2x2 + 0.5x (6)
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which has 2 local minima at *(1) =0.9304 and i(2) =-1.0574, as shown in Fig. 1(a).
Assuming i( has been found, our goal is to find another local minimum x^ so that
<j) (x(2)) <<> (x(1)) =-0.5167. Choosing 6=0.1083, we obtain ^ =-0.625. This is
shown in Fig. 1(a) by the horizontal dash line which falls below the local minimum <|>(jc(1))
but above the next lower minimum <j>(i(2)), which in this example, is the global minimumt.
The inequality constraint

<j)(x) =x4 - 2x2 +0.5* <-0.625 (7)

defines the feasible region xb <x <xa, where xa =-0.4685 and xb =-1.4297.

Applying (4) and (5) with g(y) =v2, the next local minimum is found by solving the
system of 2 nonlinear equations:

$'(x) =4x3-4x +0.5 =0 (8)

-0.625 - x4 +2a:2 - 0.5x - y2 =0 (9)

Solving (8) and (9) by the Newton-Raphson method, we find the iteration converges to the
solution x(2> =-1.0574 for all initial guess x <-0.57735 and v * 0.

Our next recursion with *<*> =*(2) lead to divergence for all initial guesses. This is
taken as our stopping rule and an indication that the solution *(2) =-1.0574 is in fact aglo
bal minimum. The loci oftf(x) =4*3 - Ax +0.5 is plotted in Fig. 1(b) as a function of*.
Below it is aplot ofv =+W-0.625 - * (x), which shows the feasible region of* is bounded
by a symmetrical closed loop. Note that among the 3 projections through the 3 roots of
4>'(r) =0 at * =0.9304, 0.1270 and -1.0574, only the last one intersects the feasible
region, as expected.

The same result can be obtained by replacing (5) with many other equations, some possi
bly having better convergence properties. For example, we can replace (5) by (18) (to be
derived in the following section) with f;(x) =<j>^> - (J) (*); namely,

y - ^ +<>(*) +Iy +♦#> - <K*) I=0 (io)

The loci of (10) in the x-y plane is defined by (20) - (22), in view of the theorem proved in

I -nTnc^T * te ^ 'm Fig' l' We have chosen first ^ = -°'625' to«*y <Wucfag that
E ~ ? Practlce» 6 would be an arbitrarily chosen positive number, whose value is small
relaUve to thenumerical scale of (j) (x).



Section 2, and corresponds to the inverted rectangular well shown in Fig. 1(d). Again, only
(2) •x = xK ' intersects this well. Our Newton-Raphson iteration of (8) and (10) reveals a faster

convergence property comparing to that of Eqs. (8) and (9).

2. Global Optimization with Constraints

Consider next the constrained optimization problem

minimize <J)(x) (\\\
xeR" v '

subject to "p" inequality constraints

fi<*)*0, / = 1,2, ...,/, (12)

and "q" equality constraints

fi(x) =0, i =p+l,p+2, --,p+q (13)

Our global optimization strategy presented above is also applicable, mutatis mutandis, to

this problem, provided (12) and (13) are introduced as additional constraints. In this case, x(A:)
is a local minimum only if the constraints (12) are inactive, i.e., f,- (x) > 0, i = 1, 2, ••*,/?.

Just as in Section 1, we can transform the resulting nonlinear programming problem into
an equivalent unconstrained minimization problem. However, instead of using (5), which

would not satisfy the Kuhn-Tucker necessary condition [2] for the "augmented" constraint (12),
we propose the following equivalent system of (n+p+1) equations in the (n+p+l) unknowns
(*1>*2> " ' yXnty0>yl9y2, •••,)>):



wheret

a»(x) , £, 9ffW ^ '+? 9f.w
V »*=0 "*; i=p+l

g(h(y,-) + fi(x))-y,-=0,

a*;.
= o,

foWs^)-4)(x)

7 = 1, 2, • • • , n

i = 0, 1, 2,

(14)

(15)

(16)

h: /? —> 7? is any continuous strictly monotone increasing function satisfying
h(0) = 0, and

gOO = 1
0, z >0

z <0

Many choices of h(-) and g(-) are available. Two simple choices are:

Example 1. Choose h(z) = z. In this case, g(z) = —(z - |z |) and (15) becomes

yi -f/(x)+ \yt +ff(x) | =0 i = 0, 1, 2,

(17)

(18)

1

_ ,3*Example 2. Choose h(z) = z 5. Hence, g(z) =

gCtf +f/(x))-^=0,

0, z >0
3 z < q In this case, (15) becomes

i = 0, 1, 2, • • • p (19)

The proof that the system (14) - (15) is indeed equivalent to the nonlinear programming prob
lem (11) - (13) follows immediately from the following fundamental result:
Theorem

The set of points (x, vt- ) satisfying (15) is defined by the following constraints:

f;(*)>0 (20)

V/ <0

t The superscript "k" in % corresponds to the k\h recursion in the global optimization strategy in
Section 1.

(21)
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3;»fi(x) = 0 (22)

Proof. It suffices to consider 2 mutually exclusive cases:

(a).

z sh(yi) + ff(x)^0 (23)

In this case, (17) implies g(z) =0. It follows from (15) that yt =0. Hence,

y-i fj(x) =0 and h(yt) = 0. Consequendy, (23) implies f,(x) >0.
(b).

z =h(yt) + f{(x)<0 (24)

In this case, (15) and (17) imply that

h'1(Ii(yl-) +fi(x))-yi=0 (25)

which we can recast as

h(y/) + f/(x) = h(3;t.) (26)

Equation (26) implies f;(x) =0 and hence yt f£(x) =0. Now since h() is a stricdy monotone
increasing function, Eq. (17) implies that g(z) £ 0. It follows from (15) that yt £ 0. •

Assuming that the inequality constraints (12) satisfy some appropriate constraint
qualifications [2], which is impractical to check but is almost always satisfied in practical prob
lems, the preceding theorem guarantees that (14) and (17) satisfy the "generalized Kuhn-Tucker

necessary conditions" [2] for solving the nonlinear programming problem (11) - (13).

Simple 2-dimensional numerical examples have shown that the above global optimization
strategy to be quite efficient and robust. Even the non-differentiable nature of the absolute

value function in (18) did not seem to pose a problem when the Newton-Raphson method is
used to solve the several unconstrained minimization problems we have tried. This robustness

can be explained in part by the nature of our strategy where the global optimum can never

occur at the boundary of the constraint (3), and hence the non-differentiable point is never
attained during iteration. Needless to say, many more examples involving a large number of
variables and constraints must be tested before the general applicability and efficiency of our
global optimization strategy can be ascertained. Such results will be reported in a future
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publication.

For engineers unfamiliar with the theory of nonlinear programming, our global optimiza

tion strategy can be implemented by a general purpose nonlinear circuit simulation program,
such as some versions of SPICE, by simulating an associated "dc" nonlinear programming cir
cuit as described in [3]. To use this approach, one simply incorporates the inequality 3 as an

additional constraint, and updates it with (j)^ as each new local minimum is calculated. The

resulting circuit is purely resistive and can be solved any nonlinear resistive circuit simulation

program which accepts the types of nonlinear characteristics and controlled sources present in
the circuit.

Rather than simulating "N" updated "dc" nonlinear resistive circuits, an alternate "cook

book" approach is to simulate "N" dynamic nonlinear programming circuits [4] derived from

the resistive nonlinear programming circuit in [3] by connecting a parasitic capacitor across
each output voltage node and the ground. The resulting dynamic circuit can be easily proved
to be completely stable [5], and hence the transient response from any initial condition must

converge to a local equilibrium point, which coincides with a local minimum, subject to the
imposed constraints.

In carrying out the above "cookbook" approach via dc or transient circuit simulations, the
objective function <j)(x) and the inequality constraints are assumed to be specified in analytic
form, so that their partial derivatives are available either in explicit form, or may be calculated
by some built-in symbolic differentiation software, as in INSITE [6]. In practice, (J)(x) often
represents some "cost function" (e.g., power dissipation, switching speed, etc.) associated with

some circuit to be minimized, and is therefore not available in analytic form. Rather, <j)(x)
must be calculated at each iteration by first solving the circuit's nonlinear equations. In this
case, <(>(x) is defined only implicitly, and the gradient information (i.e., the partial derivatives)
needed in the nonlinear programming circuit may be obtained by numerical differentiation or
by amore efficient variational approach such as the adjacent network concept [7].

The most intriguing application ofour global optimization strategy, however, is the possi
bility of obtaining the global optimum in real time by actually building (not simulating) the
nonlinear simulating circuit, as described in [4-5] which incorporates the additional inequality
constraints (3). In this case, even the updating of this constraint can also be achieved in real

time with a high-speed sample-and-hold type controlling circuitry for automatically updating
the "threshold" voltage source associated with <^*> whenever the transient decays sufficiendy



close to a local equilibrium. Such aglobal nonlinear programming circuit should be specially
useful in applications (such as robotics) where real time global optimization is essential.

For arbitrary nonlinearities, such a VLSI circuit may not be feasible using current tech

nology. However, for large-volume applications, a dedicated VLSI circuit can now be built to

solve many standard nonlinear programming problems, (e.g., linear and quadratic program
ming problems) in real time. As new technology advances, even more general "programm
able" nonlinear programming neural networks may eventually be feasible.
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Figure Caption

Fig. 1 An example for illustrating the geometrical idea behind our global optimization
algorithms.
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