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Abstract

In this paper, we propose a new hybrid control scheme for robot
manipulators under constrained motion. This control law provides si
multaneous tracking of orthogonal position and force trajectories on a
frictionless constraint surface. It is shown how the proposed scheme
may be applied to manipulators performing constrained tasks. In the
second part of this work, the analysis is extended to consider the case
of multifingered hands. We present a control scheme which allows a
fixed point on a grasped object, to follow a prespecified desired posi
tion/force trajectory on a constraint surface. Examples are given to
illustrate the task descriptions.

1 Introduction

As more flexibilityis demanded of robot manipulators in terms of the variety
of tasks they must perform, the problem of robot control for constrained
tasks becomes a more pressing problem requiring solution. For tasks of
constrained motion, it is usually the case that neither pure force control nor
pure position control is sufficient or effective.

Constraints on robot motion may be imposed by a requirement that the
robot end effector maintain physical contact with the environment along
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some surface, as in contour following or scribing. Constraints may also arise
from the task description by considering interactions of the manipulator with
the environment, as occurs in peg-in-hole insertion or turning a crank. In
these cases, the task determines an imaginary constraint surface as discussed
in Mason [1], One may thus directly specify those directions in space which
are to be position controlled and those which are to be force controlled.
In the literature, the problem of robot control under constraint has been
studied by two main approaches. The first is to model the environment as
a mechanical impedance so as to produce compliant motion, see Kazerooni
et al. [9] and Whitney [10]. The second approach is by the use of hybrid
control schemes as discussed in Raibert and Craig [5], Vukobratovic and
Vujic [2], McClamroch and Wang [4], Mills and Goldenberg [7].

This paper describes a hybrid control scheme for robot manipulators
and grasped objects constrained to follow some constraint surface which is
rigid and frictionless. This work is divided into two main parts. Part One,
covered in sections two to four, provides the control scheme for a single
manipulator, while sections five to seven extend the concepts developed and
provides a control scheme for the case of a multifingered hand. The control
schemes which we propose achieve simultaneous, independent control ofboth
position and force of the manipulator end effector. The analysis in the first
part of this work initially parallels, but then provides a generalization to
the work of [12] and [11]. The description of the constraint space for the
task is specified by a slightly different approach and the end result is the
same. The analysis of [4] requires a trajectory specified in terms of the joint
coordinates of the manipulator and the constraint force. The specification
of a task in terms of those parameters is not obvious and the simplified
structure of the dynamic equation obtained here, is not obtained, thus the
analysis given is more involved. The second part of this work dealing with
multifingered hands is completely new, and it has not till now been covered
in the literature. The content of this paper is outlined as follows.

In Section two, the class of tasks to which our control scheme applies is
defined. This is defined by a physical (or imaginary) constraint surface for
the manipulator end-effector to follow. It is necessary that we have a perfect
model of the constraint surface. The six-dimensional tangent space of the
manipulator workspace is partitioned into two orthogonal subspaces, one of
which is velocity-controlled and the other is dually force-controlled. Since
locally this six-dimensional tangent space looks like &6, we can describe
each subspace as the range of a linear map with a corresponding set of
independent parameters.



In Section three, the dynamic equation for a single manipulator under
constrained motion is formulated in terms of the parameters described in
Section two. These parameters are used to specify the desired motion of the
end-effector on the surface. Contact between the manipulator and constraint
surface is maintained by the application of a specified force normal to the
constraint surface. A control scheme for a single manipulator is proposed,
which provides asymptotic trajectory tracking along the constraint surface
together with independent force control normal to the surface. In Section
four the decomposition which produces the task specification described in
Section two, is applied to a number of different examples in order to define
the relevant constraint space matrices for the control scheme. The simplicity
of defining our control objectives and applying the control scheme is also
illustrated by an example in Section four.

Section five is devoted to applying the previously developed concepts to
the situation of simultaneous position and force control at a point on an
object grasped by a multifingered hand. The kinematic constraints on the
object are examined and described fully, together with the corresponding
dual force relations which apply. In Section six the dynamic equations of
the total constrained system are determined, and a hybrid control scheme
for a grasped tool under constraint is proposed.

2 Description of a Constraint Surface

Of interest to us are two classes of tasks which define constraints on the

motion of a robot manipulator. The first class of tasks involve a manipula
tor constrained to move so that its end-effector remains in contact with a

physical constraint surface. The second class are those tasks which can be
modelled by the C-surface description of Mason [1]. The term end-effector
applies also to an object or tool which is rigidly attached to the gripper of
the manipulator. Our analysis covers the second class of tasks as a special
case of the first, provided the correct interpretation is made for the relevant
terms. In this section we describe a method for obtaining a decomposition
and exact description of that subspace which is to be position-controlled
versus that which is to be force-controlled by the hybrid scheme to follow.

Consider a single articulated arm of n links in contact with a rigid,
frictionless surface, for which we locally have a perfect parametric model.
Let the end-effector of the manipulator contact the surface at a point which
changes in response to manipulator motion. Denote by C& a fixed inertial
frame of reference. Fix a coordinate frame C8 to the end-effector such that



at the point of contact with the constraint surface, the z-axis is in the
direction of the inward surface normal, and the x and y axes span the tangent
space at the contact point such that x-y-z forms a right-handed coordinate
system. We use the coordinate frame Ca to define the constraints on the
manipulator end-effector. Constrained motion is generally achieved through
point contacts between the end-effector and surface, and this imposes the
requirement that the contact at the end-effector and that of the contact
point on the surface are identical in space. For point contacts the orientation
variables may be free if the manipulator has sufficient degrees of freedom,
so these must be included as part of the control variables.

In general, the orientation of a coordinate frame is specified in terms of
three local parameters of 50(3), such as Euler angles (or roll, pitch, yaw),
denote this by 7 € 3ft3. Thus if orientation of the frame Ca relative to the
base frame C& is specified by 7 6 3ft3, then the rotational velocity of the
frame Ca is u G 3ft3, where there exists some linear transformation P(if)
such that u = P(7)7« Denote the position of the origin of the frame Ca
relative to C& by x(t) £ 3ft3, then the position/orientation of the manipulator

end effector is given by X = [xT 7T]T 6 3ft6. If the translational velocity
of the frame Ca is denoted by v € 3ft3, with v = x(t), then the vector
Y = [ vT uT]T € 3ft6 specifies the velocity of Ca relative to Cj,. This
vector is related to X by a non-singular linear transformation, P, such that
Y = PX.

Suppose the end-effector is constrained to follow a physical surface. Let
the constraint surface have dimension r, where 0 < r < 6, and be parameter
ized by u = [«i,..., ur]T. Suppose there exists some function <f>: 3ftr —» 3ft6
determining the position, X, of the end-effector by the equation

x = 4>(u). (1)

We may obtain a constraint on the acceleration of the end-effector in terms
of the surface parameters u, by differentiating the above equation 1 twice to
obtain

X = Jru + STu (2)

where we define

to be the Jacobian matrix for the surface. This matrix has full column rank

r since the parameterization of the surface is minimal, and the columns of
the matrix span the tangent space of the surface at the contact point. The



position of the robot end-effector on the constraint surface may thus be
specified in terms of the parameters u. We ensure that contact between the
end-effector and the constraint surface is maintained by the application of
an appropriate contact force normal to the surface.

Let the generalized (or joint) coordinates for the manipulator be denoted
by the vector q G 3ftn. The kinematics of the manipulator determines a map
/ : 3ftn —• 3ft6 which provides a relation between the position of the end-
effector, X G 3ft6, and the joint coordinates for the manipulator q G3ftn given
by

X = /(«). (3)

Obtain a constraint equation between the acceleration of the end effector
and that of the manipulator joints by differentiating equation 3 twice, to
obtain

X = Jq + Jq, (4)

where we define

dq

to be the manipulator Jacobian. In order that we may consider the invert-
ibility of the manipulator Jacobian, J, in the analysis to follow we would
like J to be a square matrix. We thus consider a manipulator with six joints
(i.e. n = 6). Eliminating the acceleration variable X between equations 2
and 4, we may relate the joint accelerations and velocities to those of the
surface parameter, u, to obtain

Jq + Jq = JTu + jrii. (5)

If the manipulator is not in a singular configuration, then the matrix J is
invertible, and the joint acceleration vector is given by

q= J~x{Jru + jrii - jq). (6)

Now for motion along a frictionless constraint surface, the contact force
is in a direction normal to the surface. This force is to be controlled simul

taneously with velocity (or equivalently position) on the constraint surface.
Typically a physical constraint surface is five-dimensional, i.e. r = 5, so
force need only be controlled in the one-dimensional normal direction.

As mentioned previously, the tangent space of the constraint surface is
spanned by the r columns of the matrix Jr G 3ft6xr. Define a rank 6 — r



matrix B G 3ft6x(6"r) whose columns span the null space of JrT. Thus B
satisfies the relation

JrTB = 0, (7)

and Range(B) = Null space(JrT). The columns of the matrix B span the
space orthogonal to the tangent space of the constraint surface, so we say
B specifies the normal direction of the constraint surface and the applied
contact force fc is of the form

/c = BX (8)

where A G 3ft6~r. Normalize the columns of B to unit length then A G 3ft6""r
are just scaling parameters for the applied force.

By duality of the force and velocity spaces from the principle of vir
tual work, the above interpretation is in fact reasonable. The range of B,
Range(B) provides those forces (or wrenches) which are reciprocal to the
velocities (infinitesmal motions or twists) in the range of JJ'. That is, those
forces which produce no work when they act on a twist in Range(JrT) are
the set of constraint forces which cause the manipulator to maintain contact
with the environment. We will refer to the space spanned by the columns of
B as the normal direction of the constraint surface, while the space spanned
by the columns of Jr is the tangent space of the surface.

For the manipulator at any given position X G 3ft6, the tangent space
may be identified with 3ft6. Thus provided equation 7 holds, it is possible to
decompose 3ft6 into two orthogonal subspaces and it may be written as the
direct sum

3ft6 = Range(Jr) ©Range(B). (9)

This is the decomposition is the basis for determining the two constraint
subspaces, since any x G 3ft6 can be written as

x = Jrxr + Bxj , (10)

for some unique xT G 3ftr and Xf G 3ft6~r. Using this decomposition, the
Range(Jr) defines the velocity controlled subspace, while the Range(B) is
the force controlled subspace.

Constraints on the motion of the manipulator may arise from tasks other
than just those for which the end-effector must maintain contact with a phys
ical surface. In the case of constraints which arise from the mechanical and

geometric characteristics of a specified task, Mason's task description frame
work provides us with a method of partitioning the six-dimensional space



into two orthogonal subspaces, one of which is to be velocity (or position)-
controlled and the other force-controlled. Position constrained directions

are directions in which arbitrary force may be applied so force is controlled
here, while velocity is controlled tangentially to produce the desired motion.

Consider the task of manipulating a peg in a hole, where the peg fits
snugly in the hole. The motion of the peg is constrained by the hole. It can
rotate about its own axis and translate up and down along this axis (zero
contact force in these directions), but the peg has no freedom to move in
any of the other four degrees of freedom so these directions will be force
controlled.

Recall from the problem formulation that with motion constraints in ef
fect, the position/orientation, X, of the manipulator end-effector is defined
by that of a constraint frame aligned with the normal and tangential direc
tions of the constraint surface. Comparing the formulation of this section
with that of Mason [1], the Range(Jr) is the force constrained subspace 5/,
while the Range(B) is the velocity constrained subspace Sv.

3 Dynamics and Control of a Single Manipulator

Consider a six degree-of-freedom manipulator in contact with a rigid, fric-
tionless constraint surface of dimension r. Suppose contact with the envi
ronment is made at a point. The control objective is to provide a set of joint
input torques so that the manipulator follows some desired position/force
trajectory on a constraint surface specified by (ttj, A</), such that position
along the constraint surface is controlled, and a specified desired force is
exerted normal to the constraint surface.

Since the surface is frictionless, the contact force is normal to the surface,
and the dynamic equation of the constrained manipulator is given by

M{q)q + N(q,q) = r - JTJ3A (11)

where M(q) G3ft6x6 is a positive definite inertia matrix for the manipulator,
N(g, q) G 3ft6 is a vector of coriolis, gravity and frictional terms, r is the
vector of input joint torques. The matrices J G 3ft6x6 is the manipulator
Jacobian. The matrix B G3ft6x6-r specifies those directions along which the
manipulator may apply force, and A G 3ft6"*r provides the free parameters of
force.

Suppose the manipulator is not in a singular configuration, so that the
Jacobian matrix J is invertible. We may rewrite the system dynamic equa
tion in terms of the surface parameters u G 3ftr by substituting equation 6



into equation 11 above, to obtain

M(q)J-xJrU + M(q)J-x(Jru - jq) + N(q, q) = r - JTB\. (12)

Define

AT(u, q, q) ^ M{q)J-\JriL - jq) + N(q, q) G 3ft6 (13)
to be a vector of non-linear terms, and define the the matrix E by

H = J-XJT G3ft6xr (14)

then the dynamic equation for the system simplifies to the form of

M(q)Hu + jV(w, g,q) = r - JTBX. (15)

The following theorem provides position tracking, provided we have com
plete knowledge of the non-linear terms, JV(g,g), in the manipulator dy
namics. This is used as part of the feedforward component of the control
law.

Theorem 1 (Position tracking, unspecified force) Consider
a six degree-of-freedom manipulator operating in the six-dimensional posi
tion/orientation space. Suppose the tip of the manipulator is required to
move along a rigid, frictionless constraint surface described by X = <j>{u),
where this surface be parameterized by the variables u G 3ftr, for r < 6
the dimension of the constaint surface. Specify the desired trajectory of the
manipulator end effector on the surface by the parameter values Ud G 3ftr. If
the manipulator does not go through a singular configuration, the following
control law will achieve asymptotic tracking of the desired trajectory on the
constraint surface by the manipulator end effector.

r = M(q)S(ud + kver + kper) + Af(u\ q,q)+ rn (16)

where Af is defined by equation 13, H is defined by equation 14, er = u</ —u
and er = Ud —u, and rn G 3ft6 is a torque which lies in the null space of
HT. The scalars kv, kp are chosen such that the polynomial s2 + kvs + kp is
Hurwitz.

Proof: Note the matrix H is full rank, since J is non-singular and Jr has
full column rank. Thus the linear map defined by the matrix HT : 3ft6 —*• 3ftr
provides a projection from the six-dimensional space of joint coordinates



onto the r-dimensional constraint surface. Substitute the control law 16

into the system equation 15 to obtain

M(q)H(er + kver + kper) = r„ - JTBX. (17)

Then project this error equation onto the r-dimensional constraint space by
premultiplying 17 by ST to obtain

M{q){er + Mr + Vr) = ETTn - JrTBX, (18)

where we define

M{q) = HTM(q)H G3ftrXr,

a positive definite matrix.
Note that RHS of equation 18 is zero, since r„ lies in the null space

of ST, and by equation 7 the second term is also zero. By the positive
definiteness of M(q), equation 18 implies

er + kver + kper = 0 (19)

It follows that both eP,er —• 0 as t -» co, by choice of the scalars kp, kv.

In Theorem 1, the vector of joint torques rn G 3ft6 is not specified, it is
only required that this set of torques lie in the null space of HT. Note by
the proof of Theorem 1 that a torque in the null space of HT will not affect
position tracking and we have an independent choice of r„, subject to the
restriction rn GNull space (HT).

Since the null space of HT is of dimension 6 —r, it seems feasible that
rn should be determined by using the 6 —r free variables specified in the
parameter A<j G 3ft6~r, corresponding to the desired normal contact force.
This is in fact the case and the following theorem provides us with a method
of choosing the vector of input torques which will independently realize the
desired force, specified by A<j.

Theorem 2 (Force control normal to constraint surface)
Consider a six-degree of freedom manipulator constrained to move along
a rigid, frictionless surface under the conditions described in Theorem 1.
Suppose the manipulator is required to exert a specified contactforce trajec
tory fd, which lies in the subspace which is the orthogonal complement to a
space of position controlled variables - that is, conditions ( 7) - (9) hold,
then the desired contact force fd(= BXd) is uniquely specified by Xd G 3ft6~r.



Then the followng input joint torque will realize the contact force fd without
affecting position tracking.

rn =JTB(Xd +kfJ ef) GX6 (20)
where c/ = A<j —A, is the error in the force parameter and kf > 0.

Proof: Note that r„ lies in the null space of HT so it willnot affect position
tracking, also JTBXd is that torque which realizes the force fd (= BXd)'
Thus any force JTBX can be realized independently of position tracking if

Range(JTB) C Null space(HT). (21)

This condition is in fact true, since HT(JTBX) = JjBX = 0.
Now given position tracking so that equation 19 holds, we now show

that the actual contact force (specified by A) tracks the desired contact
force (specified by Aj), we substitute equation 19 into equation 17 with the
expression for rn to obtain

JTB(ef +kfJef) =Q. (22)
Since J is non-singular this implies that (e/ + kf J ef) G Null space(B).
But B G 3ft6xm has full column rank m(< 6) so the Null space(B) = 0 and
we obtain

ef +kfJef =0. (23)
Since kf > 0 it follows that A—• A<f, as J -* oo, or equivalently the actual
contact force tracks the desired force, /</.

Thus the torque rn of 20 will track the force fd, independently of position
tracking in the orthogonal subspace.

Theorem 3 (Simultaneous Position and Force Control) Consider a
six degree-of-freedom manipulator in contact with a rigid, frictionless sur
face. Suppose the manipulator end-effector is to be constrained to move
along an r-dimensional constraint surface as described in Theorem 1, while
simultaneously exerting a specified desired contact force fd = BXd normal
to the constraint surface. Specify the desired trajectory of the manipulator
end-effector on the surface by the r surface parameters, Ud G 3ftr. Then
the following control law will simultaneously provide both position and force
tracking of a desired trajectory (ud, Xd) asymptotically.

r=M(q)H(ud +kver +kper) +Af(u, g, q) +JTB(Xd -r kf Jef) (24)

10



Proof: This result follows directly from Theorems 1 and 2.

4 Examples of task descriptions

In applying the control scheme developed in the previous section, the task
specification is given by the matrices B and Jr which define the constraint
surface, together with the parameters values of u and A. We now consider a
number of different tasks, and specify the task constraint matrices for each
of these cases. Note that all other terms in the control law of theorem 3 are

dependent on the kinematics of the particular manipulator.

Example 1 : Peg-in-Hole insertion.

Gnppcr

frame

3 degrco-of-frecdom

mmiputaor

Figure 1: Peg-in-hole insertion.

Consider the task of manipulating a peg in a hole, where the peg fits
snugly in the hole. In order to keep the analysis simple we will only consider
control of the translational degrees of freedom in the task. Thus consider a
three degree-of-freedom cartesian manipulator with the gripper holding the
peg is locked in the correct orientation for insertion, so that three degrees
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of freedom are sufficient for the task. Assume no friction on the surfaces

between the peg and hole. Let the axis of the peg define the z-axis of
the constraint frame. The peg can translate up and down along this axis
(zero contact force in this direction), but the peg has no freedom to move in
directions perpendicular to this axis, i.e. in the x-y plane, so these directions
will be force controlled. The position controlled space, specified by the
parameter u, is defined by the matrix Jr satisfying X = Jru, where

Jr = [0 0 1]T.

The force-controlled space, specified by A, is defined by the matrix B, where

T

B =
10 0

0 10

The contact force is given by fc = BA, for A G 3ft2. A desired trajectory may
involve the manipulator moving the peg up and down sinusoidally along the
z-axis, while applying a unit force in the x direction. The desired trajectory
is of the form

Ht) = [i ojr
Ud(t) = zocos(t) + offset.

The kinematics for a cartesian manipulator may be simply written as

[x y z]T = [qi §2 <?3]T + constant.

Thus the matrices M(q) = J = J3 , Af(u, q,q) = 0, H = Jr and the joint
torques determined by the control law of Theorem 3 which will realize the
above trajectory, is

r = [ud + ki(itd - u) + k2(ud - u)] +

This is exactly what one would expect. Note that our control objectives can
be very simply specified in terms of the force and surface parameters, and
the control scheme is very simply formulated.

Example 2 : Polishing a sphere.
Consider the task of polishing a spherical surface using the manipulator.

In this case, the end-effector of the manipulator is constrained to move

12



on the sphere with its orientation predetermined in two dimensions by the
tangent space at the point of contact. We use Euler angles to describe the
orientation. With respect to an inertial frame fixed at the center of the
sphere, the constraint surface is given by the equation

by

" X r cos 0 sin a

y r cos 0 cos a

z

a
=

rsin$

a
= <fta,0,^).

9 0

.*. *

>city-controlled directions are defined by the

r cos 0 cos a —r sin 0 sin a 0

—rcosOsina —r sin 0 cos a 0

du

0

1

r cos 0 0

0 0

0 1 0

0 0 1

and the parameter u = (a,0,V>)- The matrix B which defines the force-
controlled directions is given by

B =

r cos0 sin a cos a/(r cos0) 0
r cos0 cosa sina/(rcos0) 0

sin0 ' 0 0

0 10

0 0 1

0 0 0

r 0 0

0 Vl + r2cos0 0

0 0 Vl + r2 cos 0

n -l

with parameter AG3ft3. Note that JjB = 0 holds.
The matrices B and Jr are defined in terms of the constraint frame,

Ca. In the global inertial frame the surface parameterization is defined
by u = (a, 0, VO, and du specifies respectively the x, y and rotational ug
directions of the constraint frame along which position is to be controlled,
while the force controlled directions correspond to the rotational ux ,u>y and
z directions of the constraint frame.

We now specify the control objective of moving around the sphere in
its x-y plane, while exerting a normal force of 2 units at the contact point
by the desired trajectory Ud = [ ct 0 0 ]T , where c is a constant and

13



Xd = [ 0 0 2 ]T. Taking into account the kinematics of the manipulator,
the control law of Theorem 3 may be applied.

Example 3 : A Scribing Task.
Consider the task of tracing out a figure 8 on a frictionless planar surface,

by using a pointed tool. The plane is a two-dimensional surface, and since
contact with the plane is made at a point, the three orientational degrees-
of-freedom are free to be specified and controlled. The general equation of
a plane is

c\x + c2y + c3z + c4 = 0.

If, for example, c2 ^ 0, then this may be written

y = ax -f bz —C4/C2 = <j>(x, z, a, 0, if))

where a = —c\/c2 and =—03/02. The matrix B specifying the force con
trolled direction is given as follows

1
B

VI + a2 + b2
[a 1 b 0 0 0]-

A G 3ft is a scaling factor.
The position controlled directions are specified by the matrix Jr given

by
' 1 0 0 0 0"

—a -6000

Jr=cty =
• • r du

0

0

10 0 0

0 10 0

0 0 0 10

0 0 0 0 1

Suppose the orientation of the tool is specified to be fixed at (a</,6d, i>d)
then a figure 8 on the plane with a desired normal force of unity, is achieved
by the desired trajectory

uu{t) = cos(u;t)/2
U2d(t) = sin(urt)
U3d(t) = Old

u4d(t) = 9d
usd(t) = fa

xd = 1,

The above specification of the task can now be used in the control law.
Other examples of task specifications can be found in [12] and [11].
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5 Extension of theory to multifingered hands

The development of the previous sections applies to a single manipulator.
Thus it can only be applied to tasks for which a tool is rigidly attached to
the end-effector with no freedom between the manipulator tip and the tool
in the end-effector. Now there are some tasks such as the scribing task of
section 4, which require fine motion of the tool. So these tasks may be best
be performed if there are extra degrees of freedom between the manipulator
and tool. This redundancy may be provided by attaching a multifingered
hand to the tip of the manipulator. In this section and the rest of the paper,
we apply the previously developed concepts to the case of an object grasped
by a multifingered hand but constrained to move along a rigid, frictionless
constraint surface. We provide an analogous control scheme for the hand
which causes the object to track the specified desired trajectory. We use
the description of the constraint surfaces provided in section two, and in the
discussion to follow, we refer to the tool as the object.

In analysing the system under consideration, we note that it consists
of three parts: the Hand, the Tool or object, and the Constraint surface.
The object makes contact with the constraint surface (at a fixed on its
surface) and this point is required to move along the constraint surface
following a prespecified trajectory. Motion of the object is achieved by
its manipulation within the hand which grasps it. The hand comprises a
set of articulated links of which we have control through actuators at the
joints. Thus the objective of the analysis to follow, is to give a precise
determination of what joint torques are required at the finger actuators to
cause the object to follow a prespecified trajectory on the constraint surface
while simultaneously exerting a specified force.

Now the object forms the link between the hand and the constraint
surface, and this provides additional kinematic constraints on the system.
We examine these more closely in the section to follow. By duality, or a
quasi-static analysis, we determine the relations between the different forces
acting on the system. Finally we bring this together to derive the dynamic
equation for the system in terms of the constraint parameters.

5.1 Kinematic Constraints on a grasped tool

For tasks involving fine motion of a grasped object along a physical sur
face, we will assume that the contact point on the object does not change.
Call this contact point p0. Let C& be a fixed inertial base frame. Fix a
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coordinate frame Ca to the object at the point pQ, aligning its z-axis with
the direction of the contact normal, and x and y axes with the tangential
direction. If the object must maintain contact with the surface during mo
tion, the point p0 on the object surface must follow the constraint surface.
The position and orientation of any coordinate frame can be specified by a
vector in 3ft6. Note that physical constraint surfaces in space are, in general,
two dimensional. But for the purpose of formulating the control problem, it
may also be necessary to consider the orientation at the contacting surface.
Thus the specification of the constraint surface used here will include the
orientation variables, and will be of dimension r.

For a constraint surface of dimension r, we use the variable u G 3ftr to
parameterize the surface. Let the function <f> : 3ftr —• 3ft6 determine the
position/orientation of the frame Ca relative to the base frame C\, by the
equation

Xa = <f>(u) (25)

where Xa G 3ft6 and u G 3ftr.
The condition of contact between the point p0 on the object and con

straint surface determines the origin of the frame Ca must follow this surface
(j>{u). The dimension, r, of the constraint surface is defined depending on
the type of contact which occurs between the object and physical surface.
We consider two cases.

• If the contact point on the object is at a differentaibly smooth point of
the object surface, the contact normal on the object surface is aligned
with that on the constraint surface and their tangent spaces are iden
tical. The orientation of the object is thus predetermined, and a com
plete specification of the object position and orientation may be pro
vided by two free variables (for a soft finger contact type), or three
variables (for a frictional point contact). So in this case, r = 2 or 3.

• If the contact point on the object surface is at a point of singularity,
such as at the tip of a pencil, then the orientation of the object is free
to vary and the set of parameters u must include the three parameters
of orientation of the object. In this case, five variables are required
to completely specify the position/orientation of the constraint frame,
and the value of r is 5.

Let us now consider the kinematic constraint on the grasped object. Fix
a coordinate frame C0 to the object at its centre of mass. Let the position
of the frame C0 relative to the base frame be given by x0 G 3ft3. Specify
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Figure 2: Object constrained to follow a surface by a hand.
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its orientation by R0(t) G 50(3), with Euler angles 70 G 3ft3. Suppose the
position of the point, p0, relative to the object frame C0 is specified by the
vector c0 G 3ft3, then the position of frame Ca relative to the base frame is
given by the expression x0(t) + R0(t)c0. Let the translational variable of
the vector Xa in equation 25 be denoted by Xap, and its orientation variable
bedenoted by Xao, then we may write Xa = [Xjp XST0]T. The condition of
contact between the point p0 on the object and constraint surface is given
by the equation

Xap = x0{t) + R0(t)cc (26)

The expression relating the surface parameter u G 3ftr to the position and
orientation of the object, is given as follows

4>(U) =
x0(t) + R0(t)c0

7o + constant
(27)

Define the object velocity by V = [v0T (jj0T]Ty where v0 = x0(t) and
u0 = 70 or u0 x R0 = R0 . Also note that there exists a matrix P\()
such that w0 = Pi(70)7 = P\(Xao)Xao. Thus for X0 = [x% 7j]T there exist
some matrix P satisfying Y = PX0 . Differentiate equation 27 to obtain
the following constraint equation between u and Y,

Jrii = UY

where we define

U & I -{R0(t)c0)x
0 I

G3ft6x< and Jr =
d£
du

G 3ft6xi

(28)

Note that U is a non-singular square matrix.

We now consider contact between the robot hand and the object. Con
sider a hand of m fingers, each finger making contact with the object through
point contacts. Fix a coordinate frame C/t- at the contact point of finger i on
the object. Let its orientation relative to the object frame C0 be specified
by Ri(t) G 50(3). Let these m contact points have coordinates c\... cm
respectively relative to the object frame C0. The velocity Vi of the contact
point i, is given in terms of the object velocity Y by

Vi = Ui Vo

W0
for i = 1.

18
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where £/,==[/ —(Ri(t)c{)x ]. Stacking these contact velocities we obtain
the following matrix equation.

Vi Ur

Y = GTY (30)

Ur

where G = [Uj" ... U%] G 3ft6x3rn is the Grasp matrix. At each contact
point between a fingertip and the object, a friction cone is defined for the
finger. Define the friction cone, FC, for the hand to be the cartesian product
of all individual friction cones at the contact points. We say that a grasp is
force closure if G maps FC onto 3ft6. See [13] and [14].

Each finger is a manipulator with a specific forward kinematic map.
Suppose finger i has nt- joints, with generalized coordinates denoted by qi G
3ftn**. For each finger i we can define a Jacobian matrix J,- G 3ft3xn«. This
matrix relates the joint velocities (<jf G 3ftn«) to the translational velocity of
the fingertip (v,- G 3ft3). Since finger i maintains contact with the object at
the point c,- , it follows that its fingertip velocity is equal to »,-, defined in
equation 29. Thus

Vi = Jiqi, for i = 1.. .m, (31)

and substituting each of these m equations into equation 30, we obtain an
expression relating the joint velocities to the object velocity, of the form

Jq = GTY (32)

where J = Block diag[Ji ... Jm] G 3ft3mXmn< and q - [qf ... g£]T. We
will use fingers of three joints each (i.e. n,- = 3) so that each finger Jacobian
is a square matrix.

5.2 System Force Relations

Force relations exist which are dual to the velocity relations defined in
the previous section. We specify these relation in this section, using the
following notation. Let fc G 3ft2m be the vector of forces applied to the
object by the m fingers of the hand at their respective contact points. Let

TXT= [n T G 3ft2m, where r,- is the vector of input torques at the
joints of finger i. Denote by F0 G 3ft6 the resultant force/moment at the
object centre of mass due to the application of forces on its surface. Denote
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the contact force between the object and constraint surface by fQ G 3ft6. The
following force relations may be obtained by duality.

Contact between Hand and Object

Velocity
Space

Force/Torque
Space

Hand
Hand-Object

Contact
Object

Figure 3: Velocity/Force Duality relations between the Object and Hand.

• The set of torques r G 3ft2m, at the finger joints which produce the set
of contact forces fc G 3ft2m is given by

= JTfc (33)

• The resultant force/moment at the object centre of mass, F0 G 3ft6,
due to the contact forces fc G3ft2n* is given by

F0 = Gfc (34)

Contact between Constraint surface and Object

• The force f0 G 3ft6 at the contact point between the object and con
straint surface will produce a force/moment, F0 G 3ft6, at the object
centre of mass given by

Fo = UTf0 (35)

• Since the constraint surface is frictionless the constraint force f0 is
normal to the constraint surface, and we can write

fo - BX (36)

where B G3ft6x(6"r) for JjB = 0 and XG3ft6"r, as described in section
two.
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Figure 4: Velocity/Force Duality between the Object and Constraint surface.

Combining equations 35 and 36 the resultant force/moment at the object
centre of mass due to the application of a constraint force of magnitude A,
is given by

F0 = UTBX (37)

Now this force is to be produced by the application of appropriate contact
forces fc by the fingers at their respective contact points. Thus eliminating
the variable F0 between equations 34 and 37, we obtain

Gfc = U1BX, (38)

and the finger contact force which will produce a constraint force of magni
tude A is given by

fc = G+UTBX + h (39)

where // GNull space(G) is called the Internal Force (see [14]).

6 Constrained Dynamics and Hybrid Control

We may now derive the dynamic equations for the full system in terms
of the parameters of the constraint surface described in section two. The
object moves along the constraint surface in response to manipulation by
a multifingered hand. It has been shown in [13] and [14] that the dynamic
equation of the hand is of the form

M(q)q + N(q,q) = r - JTfc (40)
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where M(q) = Block diaglMfa) ... Mm(qm)] G 3ft2mx2m, and N(q,q) =
[Ni(qi>qi)T ... Nm(qm,qm)T]T, for M,(gt) G»nfXnf is the positive definite
inertia matrix for finger i, and iV,-(</;, <j,) G 3ftn*' is the corresponding vector
of coriolis and gravity terms, r G 3ft2m is the set of input joint torques with
which the actuators provide control, fc G 9ft2m is the contact force between
the hand and the object, determined by equation 39 above.

We would like to express this dynamic equation in terms of the surface
parameters (u, A). The kinematic constraint equations 28 and 32 provide a
means of achieving this. Since constraints are required on the joint acceler
ations, we differentiate each of these equations to obtain respectively

Jru + jru = UY (41)

and

Jq + jq = GTY. (42)

If no finger is in a singular configuration so that the hand Jacobian matrix is
non-singular, we may eliminate the variable Y between these two equations
to obtain the acceleration constraint equation

q = J-x[GTU-l{Jru + jrii) - jq] (43)

The dynamic equation for the full hand-object-constraint surface system is
given in terms of the constraint space parameters (w, A) as follows. Sub
stitute the expression for q given in 43 and the expression for the contact
force given in equation 39, into the hand dynamic equation 40 to obtain the
dynamic equation in the constraint parameters

M{q)J-lGTU-1Jru = r - M(q)J-l[GTV-lJru-Jq\ - N(q,q)

- JT(G+UTBX + //) (44)

Note the decoupled manner in which the constraint parameters u and A,
enter into the system dynamic equation.

The system dynamic equation is now in the general form which allows
the application of a generalized computed torque control. Note that the
equation consists of an acceleration term which appears on the left hand
side of equation 44, a set of non-linear terms in the variables q and it. Also
all torque terms which involve the forces or force parameters, lie in the
null space of a matrix HT. It is thus possible (by theorem 2) to provide
independent force control at the fingertips and on the constraint surface.
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The control objective is to provide a set of input joint torques, to the
fingers of the hand which grasps the object, so that the point p0on the object
surface maintains contact with a physicalsurface, and tracks a trajectory on
this surface while applying a specified contact force. Thus wemay specify the
desired constraint trajectory by the parameters (ud,A<j). If contact between
the object and constraint surfaces allows freedom in the orientation of the
object, such as occurs when the tip of a pencil makes contact with a surface,
then the desired orientation of the object is included in the control variable,
«G3ftr.

The control law provided below is based on the generalization of the
computed torque method of control for multifingered hands. It provides
tracking of a desired position/force trajectory on a constraint surface by a
specific point pQ on the object held by a multifingered hand, while simul
taneously maintaining fixed point contacts between the fingers of the hand
and the object, with no slipping. Note the structure of the control law in
term of the three parts of the system dynamics described above. It provides
proportional-plus-derivative feedback of the position error, integral feedback
control of the force error with an additional force term for no slip. Also there
is feedforward cancellation of all non-linear terms.

Theorem 4 (Position and Force Control at a point of a grasped object)
Consider an object grasped by a hand ofm fingers. Each finger having three
degreesoffreedom. Let a point pQ on the object beconstrained to move along
a rigid frictionless constraint surface X = <f>(u), of dimension r, having
minimal parameterization u G 3ftr ( where r = 2,3 or 5), while simulta
neously maintaining a contact force fd (determined by the parameter Xd)
normal to the constraint surface. Let the desired trajectory of the point p0
on the constraint surface is specified by Ud. Suppose no finger goes through
a singularity over the trajectory and the grasp maintains force closure over
the trajectory. Consider the following control law:

r = M(q)H(ud + kver + kper) + M(q)J-1(GTU-1Jru - jq)

+ N(q,q) + rn + JTfN (45)

where H = J-1GTU-1Jr , rn = JTG+UTB(Xd + kf f ef) , fN G
Null space(G) , kf > 0 and er = Ud - u, ef — Xd - A. Note that
rn GNull space(HT). kv, kp are chosen such that s2 + kvs + kp is Hurwitz.
This control law achieves simultaneous tracking of both the desired position
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trajectory (ud), and force trajectory (specified by Xd), and by appropriate
choice of fa, there is no slipping at the contacts between the fingers and
object.

Proof: Substitute the control law 45 into the constraint space dynamic
equation 44, to obtain

M(q)H(er +kver +kper) =JT(fi-fN) - JTG+UTB(ef+kf J' e,) (46)
Note that the matrix HT = JjU-TGJ~T which maps 3ft3m -> 3ftr is onto,
since J and U are non-singular, G is onto since the grasp is force closure,
and JJ G 3ftrx6 is onto since the parameterization is minimal. Thus let us
premultiply the above equation by HT to obtain

HTM(q)H(er + kver + kper) = 0. (47)

The right hand side is zero since HTJTG+UTB = JjB = 0 and // - fN G
Null space(G). Note that HTM(q)H is a positive definite matrix, so the
above equation implies that

er + kver + kper = 0 (48)

and er, er —* 0 by appropriate choice of kp , kv.
To show tracking of the force trajectory A<j, substitute this error equation

into equation 46 above to obtain

JTG+UTB(ef +kfjef) =JT(fj - fN) . (49)
Premultiply by GJ~T to obtain

UTB(ef + kf Jef) =0 (50)
since // - /jv € Null space(G).

Since UT is non-singular and the matrix B G 3ft6xm has full rank m so
the Null space of B is zero and we have the force error equation

*/ + kfjes = 0, (51)
which implies that e/ —* 0 also, since kf > 0. Equivalently the actual
contact force tracks the desired contact force.

As with the control schemes of [13] and [14] for multifingered hands, the
internal force /jy should be chosen so as to keep the contact forces within the
friction cones at each point of contact. It has been shown that this can be
done if the prehensility condition (see [14]) or if the force closure condition
is satisfied.
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7 Conclusion

In this paper, a new hybrid control scheme has been presented for robot
manipulators under constrained motion. This control law is based on the
computed torque method of control and provides simultaneous tracking of
orthogonal position and force trajectories for a frictionless constraint surface.
It has shown how the proposed scheme works for manipulators performing
constrained tasks. The analysis has been extended to cover the case of a
multifingered hand. The control scheme which makes a fixed point on a
grasped object to follow a prespecified desired position/force trajectory on
a constraint surface.
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