
 

 

 

 

 

 

 

 

 

Copyright © 1989, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A STABILITY RESULT

by

Shahab Sheikholeslam and Charles A. Desoer

Memorandum No. UCB/ERL M89/124

3 November 1989



A STABILITY RESULT

by

Shahab Sheikholeslam and Charles A. Desoer

Memorandum No. UCB/ERL M89/124

3 November 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A STABILITY RESULT

by

Shahab Sheikholeslam and Charles A. Desoer

Memorandum No. UCB/ERL M89/124

3 November 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A Stability Result1

A Revised Proof of M. Kelemen's stability result
(IEEE Transactions on Automatic Control, volume AC-31,

No. 8, August 1986, pp.766-768)

Shahab Sheikholeslam and Charles A. Desoer

November 3,1989
Abstract

This note is a carefulderivationofa result published by M. Kelemen,[Kel.],
whose original contribution contains a number of obscurities.

Consider a smooth control system x = f(x, u) where for each constant
input u in some set the corresponding equilibrium point q [hence /(g, u) =
0] is exponentially stable. Consider an input u : [<o>oo) -> U and the
corresponding equilibria q(t). Let x(t) be the solution corresponding to
that u(t) with x(to) as initial condition. Roughly speaking, the following
is established: if x(to) —q(to) is sufficiently small and if u(t) is sufficiently
small on [to,oo), then for some p < oo, \\x(.) —<?(.)||oo < p and x(t) remains,
for all t, in the basin of attraction of the sink q(t).

1 Stability Result

Consider the dynamical system described as follows:

x = f(x,u) (1)

where x belongs to P, an open subset of Rn and u belongs to U, an open
subset of Rm.

Definition A point qo in P is called a sink of (1) corresponding to
the constant input no in U if /(<Zo>«o) = 0 an^ ^ff[D\f{qo, «o)] < 0;
where Dif(.,.) denotes the Jacobian matrix of /(.,.) with respect to the
first variable and a[.] denotes the spectrum of a matrix.

Theorem Suppose that P C Rn is open, U C Rm is open, and
P is convex; let / : P x U —> F be a C2 function such that M =
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{(<?,«) € P X U\ q is a sink of (1) corresponding to «}, is not empty. Let
Q be an open, connected subset of Af, relatively compact in M. Let
u : [to,oo) —> C/" and g : [*o>°o) -* P be two given C1 functions such
that (q(t)yu(t)) € Q for all t > to. Let «(.) be the solution of (1) with the
u(.) defined above.

Then, for any p > 0, there exists 6\ > 0, 62 > 0, independent of *o>
for all u(.) and g(.) defined as above and such that \x(to) —<?(*o)| < ^1 and
maxt>t0 \ii(t)\ < 62 we have:
i) \x(i) - q(t)\ < p for all t > t0
ii) If in addition p is sufficientlysmall, x(t) belongs to domain of attraction
of sink q(t) with respect to input u(t) for all t > t0.

Preliminary Analysis- Step I Writing the integral formula for the
Taylor's expansion of f(x,u) about a sink q corresponding to the constant
input u weobtain(since / is C2 and P is convex):

*= / A/fe +A(a - ?), u]d\ (x - q) (2)
where for convenience we suppress the explicit dependence of x and q on t.

Since /(g, u) = 0, differentiating both sides of this equation with respect
to t gives:

djt/(g, u) = X>!/(g, u)q + Z>2/(g, it)* = 0 (3)

Solving for q in terms of u in (3), we obtain:

q= -Pi/(g, tOJ-^/fa, «)6 (4)
where wenoted that since Rea[Dif(q,u)] < 0, i?i/(g, w) is invertible.

Subtracting (4) from (2) we obtain:

x- q= f D!f[q +X(x - g), W]dA (x - g) +pi/(g, tt)]-1!^/^, «)* (5)
Adding and subtracting Dif(q, u)(x - q) from the right-hand side of (5)

gives:

x-q =£>!/(g, u){x - g) + / {Dxf[q +X(x - g), 11] - Dtf(q, u)} d\(x - q)
Jo

+ [D1f(q1u)]-1D2f(q,u)u (6)



With a slight abuse of notation we write:

A(t) := A(q(t),u(t)) := Dxf{q(t),u{t)) (7)

R(t) := R(q(t),u(t),x(t)) := f1 Pi/b(*) +A(* - *)(*),«(*)] ~^l/faW, *(*))}«**
«/o

(8)
B(t) := 5(«(t), «(<)) := [J>,/(9(i), «(*))]-,i>j/(?(<). «(*)) (9)

Using these notations we rewrite (6) as follows:

x - q = A(t)(x -q) + R{t)(x - q)+ B(t)u (10)

Using (10) we can write an implicit relation for (x - q) as follows:

(* - ff)W =*(*,*>)(* - g)(*o) +/ *(t,«) {*(*)(* - «)W +B(*)l2(s)}<fe
(11)

where $(i, Jo) is the state transition matrix of the linear system:

i = A(t)z (12)

Since (g(*),u(i)) € Q, Q is relatively compact in M, and Dxf(.,.) is
continuous(since / is C2), we note from (7) that

A(.) is bounded on [*o» oo). (13)

Since a(A(t)) = a[A(q(t), u(t))] is a continuous function of its entries,
(q(t),u(t)) € Q with Q relatively compact in M and q(t) is a sink of (1), for
all t > to, it can be shown that:

there exists a p. < 0 such that Rea(A(t)) < p. < 0 for all t > t0 (14)

From (13) and (14), it is well known [Brock., Theorem2, sec.32] that
there exists an e > 0 such that:

if \A(t)\ < e then for some k > 1 and some rj > 0 and for all t > s > to,
\$(t,s)\ < fce-"('-*). (15)

To obtain a relation between A(t) and u(t), differentiate both sides of
(7) with respect to t and use the chain rule :



A(t) = DiDtfWt), «(*M0 + J>20i/b(*). «(*)]*(*) (16)
Writing g(J) in terms of ii(t) using (4) and (9) in (16) we get:

A(t) = {-DlDlf[q(t),u(t)]B(t)+D2D1f[q(t),u(t)]}u(t)
:= D(q(t),u(t))v(t) (17)

Since (g(t),tt(t)) e Q, Q is relatively compact in M, and D{.,.) is
continuous(since / is C2), !?(.,.) is bounded on Q. Hence if we let a :=
ma.XQ\D(q,u)\, then 0 < a < oo.
Now if

maa;t>t0|£(<)| < ^ := - (18)
~" a

then |i(*)| < \D(q{t),u{t))\\u{t)\ < €and (15) is satisfied.
Step II Denote Pq = {g 6 P|(g,«) 6 <?} (i.e., Pq is the projection of

Q on P). Let Z be a compact set such that Tq C Z° C Z C P where £° :=
interior of Z. Such a Z exists because Pq is a compact subset of open set
P. Let W :=Q x Z. Since / is C2, R(.,.,.), defined in (8), is a continuous
function. Since Q is relatively compact in M, Z is compact, and R(.,.,.) is
continuous, it follows that R(.,.,.) is uniformly continuous on W.
Note that when x(t) = g(*) in (8) we obtain R(t) = 0; also q(t) £ Pq C Z.
Thus, using the uniform continuity of R(.,.,.) on W, we note that:
Given any c > 0, there exists a 6' := S'(c) > 0 such that for all * > *0,

if x(t) € Z and |s(*)- g(<)| < tf' then \R(t)\ < c. (19)

Taking norms of (11), and using (15) and (19), we conclude that:
if a) maxt>to\u(t)\ < 8'2, b) for all t > t0, x(t) e Z and c) for all t > t0,

\x(t) - q(t)\ < 6' then for all t > t0

\*(t)-q(t)\ < *e-^|-|°>|*(to)-g(<b)| +fcrc-,|('-)|5WIK*)|d«
Jt0

+ f ke-^-^c^is) - q{s)\ds (20)

Using Bellman-Gronwall inequality[Hal., ch. I, Lemma 1.6, consequence
1], we note that if the hypotheses of (20) are satisfied weobtain for all t > t0:



W*)-9«l <ke(-t^kc^t-^\x(to)-q(t0)\ +k/'e("^kc^-a)\B(s)\\u(s)\ds
(21)

Let d := distance between Pq and #Z where dZ denotes boundary of
Z. Since Pq is a proper subset of Z, d > 0.
Let b := maxQ\B(q,u)\, where £(.,.) is defined in (9). Since Q is relatively
compact in M, and B{.,.) is continuous(since / is C2 and (13) and (14)
hold), we conclude that 6 < oo.
Choose c> 0 such that -r\ + kc < 0. Choose S' := S'(c) > 0 such that (19)
is satisfied. Let S := min {£'(c), d} , and choose constants / and r such that
0</<l,0<r<l. Denote Si := ^ and £2 := rain [S'2, _iz2±^lzlM} .
Note that S > 0, #i > 0, and £2 > 0.

Lemma 1 If c, S,Si, and £2 are chosen as aboveand if x(to) and u(.) are
such that \x(t0) - g(*o)| < Si, and mflart><0|w(i)| < £2 then the hypotheses
required for (20) and (21) are satisfied.

Proof of Lemma 1 First note that maxt>t0\u(t)\ < S'2 from the defi
nition of S2. Next we will show that

\x(t) - q(t)\ < S' for all t > t0 (22)

Suppose (22) is false. Then there exists t2 G (t0,oo) such that

\x(t) - q(t)\ < S' for all t G[*o, t2) and \x(t2) - q(t2)\ = S'. (23)

Claim 1:

x(t) GZ for all * G[t0, t2]. (24)

Suppose (24) is false. Then there exists a t$ G (<o»*2) such that:

x(*) GZ for all * G[to,tz) and s(*3) G5Z. (25)

From (23) and (25) we note that:
x(t) GZ and \x(t) - q(t)\ < S' for all t G[t0,*3).
Thus, hypotheses of (21) are satisfied for all t G \to,tz) and we obtain from
(21):

W*) - q(t)\ < kSi + fc&£2( r-) = tf for all t G [*0, *s) (26)
—7/ + «C



By continuity of x(.)—g(.),and using the last inequality in (26) weobtain:
kfe) - q(t3)\ <IS < S <d which contradicts (25) in that x(t3) G dZ (i.e.,
\x(ts) —g(*3)| > d). Hence, (24) is true and Claim 1 is established.

From (23) and (24), we note that:
x[t) G Z and \x(t) - q(t)\ < S' for all t G [to,t2\.
Thus, hypotheses of (21) axe satisfied for all t G [^0^2] and (26) is true for
all t G [*o>*2]« la particular, we have |s(t2) —g(*2)| < IS < S < S' which
contradicts (23) in that |«(<2) —g(t2)| = S'. Hence, (22) is true.

Finally, to complete the proof of Lemma 1 we will show that:

x(t) GZ° for all t > t0 (27)

Suppose (27) is false. Then there exists ti G (*o> 00) such that

x(t) GZ° for all t G[*o,*i) and xfa) GdZ. (28)
From (22) and (28) wenote that the hypotheses of (21) are satisfied for all

t G [*o,*i) and (26) is true for all t G[*o,*i). Namely, \x(t)-q(t)\ < IS < S <
d for all t G [to,h). By continuity of a:(.)-g(.) weget |a;(<i)-g(<i)| < IS < d
which contradicts (28) in that x(ti) GdZ which implies \x{ti) - g(*i)| > d.
Hence, (27) is true. This completes the proof of Lemma 1.

Proof of theorem, part (i): Now given p > 0, choose c> 0, Si > 0,
S2 > 0, and 0 < / < min{l, f} so that hypotheses of Lemma 1 are satisfied.
Then, using (21) we obtain
kM - ?MI < IS < pioi a31t e [*o,oo). Hence, part (i) of the theorem is
established.

(Note: Si, S2 depend only on / and Q not on to, u(.), and g(.).)
Proofof part (ii): Ifp< £ (let r = 1and 0 < / < 1), then Si = $ < £

and we have

W*o) - q(t0)\ <I (29)
In addition, since r = 1, S2 = 0 and we get

u(t) = 0 for all t > t0 (30)

Hence, using the inequality in (21), (29), and (30) we get:

\x(t') - g(*')| < Sel-i+W-'o)

and

\x(t') - q(t')\ < S < d for all t' > t0



Hence, x{t') belongs to the domain of attraction of (q{t'),u(t')) for all
t' > to. Hence, part (ii) of the theorem is established.
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