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1. INTRODUCTION

Digital signal processing (DSP) applications differ from general purpose computation

both in the nature of the algorithms and in the target hardware. The algorithms tend to have

less decision making and use mostly simple data structures (arrays and streams). The target

hardwareis often dedicated to an applicationor a small class of applications, ratherthan being

general purpose, and often has to have low cost together with very high computation rates (to

meet hard real-time constraints). These differences create both a hindrance and an opportun

ity. The hindrance is that mainstream computer science techniques do not apply very well to

DSP. This accounts for the fact that the DSP community designs its own microprocessors,

computer languages, multiprocessor architectures, and software. The opportunity is that the

structural simplicity of the algorithms and data structures makes some traditionally very

difficult problems much easier.

Dataflow techniques have been applied to DSP in the guise of "block-diagram

languages" since its very earliest days. Whereas most of the computer user community resists

the introduction of new programming paradigms, the DSP community has embraced experi

mentation of this type. Dataflow representation of algorithms, in fact, is very natural in DSP,

appealing even without the motivation of concurrency. Of course, automatically exploiting

concurrency can only increase the appeal. However, most attempts to do so through the use of

dataflow architectures have not succeeded commercially. I propose in this paper that the prin

cipal reason is that the dataflow techniques of general purpose computing are too expensive

for DSP and more powerful than what is required. The focus of this discussion is on schedul

ing, the heart of concurrency in dataflow.
f

In the process of developing a general scheduling strategy suitable for DSP, we have to

be realistic in our assertions about the algorithms; specifically, almost any generalization has

counterexamples. Although we can rely on relatively little decision making in the algorithms,
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we cannot rely on no decision making without sacrificing a great number of applications.

Consequently, the proposed scheduling strategies tolerate decision making, but the perfor

mance may degrade as the amount of decision making increases. This tolerance, however,

means that elements of the strategy may be applicable in general purpose computing. For

example, we will suggest that when only the assignment of actors to processors is done at

compile time, it could be done by constructing a static schedule, and discarding all informa

tion in the schedule except the assignment.

1.1. A Scheduling Taxonomy

In this paper, we only consider non-preemptive scheduling, and the emphasis will be on

practical solutions rather than unrealistic abstract models. For the purposes of this paper, I

will define "scheduling" to include three tasks: (1) assigning actors to processors, (2) ordering

the actors on each processor, and (3) specifying their firing time. Every dataflow implementa

tion must perform all three tasks, but implementations can differ by performing them at com

pile time or at run-time, or by using complex or simple scheduling strategies. Depending on

which tasks are done when, we define four classes of scheduling. The first is fully-dynamic,

where actors are scheduled at run-time only. When all input operands for a given actor are

available, the actor is assigned to an idle processor. The second type is static allocation,

where an actor is assigned to a processor at compile time and a local run-time scheduler

invokes actors assigned to the processor. In the third type of scheduling, the compiler deter

mines the order in which actors fire on each processor. At run-time, each processor waits for

data to be available for the next actor in its ordered list, and then fires that actor. We call this

self-timed scheduling because of its similarity to self-timed circuits. The fourth type of

scheduling is fully-static; here the compiler determines the exact firing time of actors, as well

as their assignment and ordering. This is analogous to synchronous circuits. As with most

taxonomies, the boundary between these categories is not rigid.
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1.2. Examples

We can give familiar examples of each of the four strategies applied in practice. Fully-

dynamic scheduling has been applied in the MIT static dataflow architecture [Den80], the

LAU system, from the Department of Computer Science, ONERA/CERT, France [Pla76], and

the DDM1 [Dav78]. It has also been applied in a digital signal processingcontext for coding

vector processors, where the parallelism is of a fundamentally different nature than that in

dataflow machines [Kun87]. A machine that has a mixture of fully-dynamic and static-

assignment scheduling is the Manchester dataflow machine [Wat82]. Here, 15 processing ele

ments are collected in a ring. Actors areassigned to a ring at compile time, but to a PE within

the ring at run time. Thus, assignment is dynamic within rings, but static across rings.

Examples of static-assignment scheduling include many dataflow machines. It is a com

monly adopted practical compromise in these machines is to allocate the actors to processors

at compile time. Many implementations are based on the tagged-token concept [Arv82]; for

example TI's data-driven processor (DDP) executes Fortran programs that are translated into

dataflow graphs by a compiler [Cor79] using static-assignment. Another example (targeted at

digital signal processing) is the NEC uPD7281 [Cha84]. The cost of implementing tagged-

token architectures has recently been reduced significantly using an "explicit token store"

[Pap88]. Another example of an architecture that assumes static-assignment is the proposed

"argument-fetching dataflow architecture" [Gao88], which is based on the argument-fetching

data-driven principle of Dennis and Gao [Den88].

When there is no hardwaresupport for scheduling (except perhaps synchronization prim

itives), then self-timed scheduling is usually used. Hence, most applications of today's gen

eral purpose multiprocessor systems use some form of self-timed scheduling, using for exam

ple CSP principles [Hoa78] for synchronization. In these cases, it is often up to the program

mer, with meager help from a compiler, to perform the scheduling. A more automated class
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of self-timed schedulers targetswavefront arrays [Kun88]. Taking a broadview of the mean

ing of parallel computation, asynchronous digital circuits can also be said to use self-timed

scheduling.

Systolic arrays, SIMD (single instruction, multiple data), and VLIW (very large instruc

tion word) computations [Fis84] are fiilly-statically scheduled. Again taking a broad view of

the meaning of parallel computation, synchronous digital circuits can also be said to be fully-

statically scheduled.

1.3. Generality

As we move from strategy number one to strategy number four, the compiler requires

increasing information about the actors in order to construct good schedules. However,

assuming that information is available, the ability to construct deterministically optimal

schedules increases. To construct an optimal fully-static schedule, the execution time of each

actor has to be known; This requires that a program have only deterministic and data-

independent behavior. Constructs such as conditionals, data-dependent iteration, and some

recursion make this impossible and realistic I/O behavior makes it impractical.

Self-timed scheduling in its pure form is effective for only the subclass of applications

where there is no data-dependent firing of actors, andthe execution times of actors do not vary

greatly. However, unlike fully-static scheduling, some variation is tolerable. Signal process

ing algorithms and scientific computation often fit this model. The run-time overhead is very

low, consisting only of simple handshaking mechanisms, and requiring no sophisticated

hardware capability such asindivisible "fetch-and-add" or"fetch-and-set" primitives. Further

more, provably optimal (or close to optimal) schedules are viable. As with fully-static

scheduling, conditionals, data-dependent iteration, and recursion are excluded if the resulting

schedule is to be optimal.
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Static-assignment scheduling is acompromise that admits more data dependencies than

either fully-static or self-timed, but all hope of optimality must be abandoned in most cases.

Although static-assignment scheduling is commonly used, compiler strategies for accomplish

ing the assignment are not satisfactory. Numerous authors have proposed techniques that

compromise between interprocessor communication cost and load balance [Muh87] [Chu80]

[Zis87] [Ma82] [Efe82] [Lu86]. But none of these consider precedence relations between

actors. To compensate for ignoring the precedence relations, some researchers propose a

dynamic load balancing scheme at run-time [Kel84][Bur81][Iqb86]. Unfortunately, the cost

can be nearly as high as fully-dynamic scheduling. Others have attempted with limited suc

cess to incorporate precedence information in heuristic scheduling strategies. For instance,

Chu and Lan use very simple stochastic computation models to derive some principles that

can guide heuristic assignment for more general computations [Chu87]. However, only very

simple stochastic models yield to analysis, so we should not expect too much from the result

ing principles.

Fully-dynamic scheduling is most able to utilize the resources and to fully exploit the

concurrency of a dataflow representation of an algorithm, regardless of the amount of data

dependencies. However it requires too much hardware and/or software run-time overhead.

For instance, the MIT static dataflow machine [Den80] proposes an expensive broadband

packet switch for instruction delivery and scheduling. Furthermore, it is not usually practical

to make globally optimal scheduling decisions at run-time, so practical implementations fall

short of the theoretical ability to exploit parallelism. One attempt to overcome this by using

compile-time information to assign priorities to actors to assist a dynamic scheduler was

rejected by Granski et. al.t who conclude that there is usually not enough performance

improvement to justify the cost of the technique [Gra87]. However, in the special case of

algorithms with "regular, static structure" (such as a DFT), there are significant performance
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improvements. But it is precisely such algorithms that require only static scheduling, and can

therefore be efficiently implemented on much less expensive machines that include no run

time mechanism for scheduling actors. A cost effective solution for a general-purpose com

puter might be an architecture that can revert to imperative control flow (or something resem

bling it) when executing algorithms that are statically scheduled. Perhaps some of the

recently proposed hybrid von Neumann/dataflow architectures could take advantage of this

observation (see for example [Nik89][Ian88]).

In view of the high cost of fully-dynamic scheduling, static-assignment and self-timed

arc attractive alternatives. This is true even though both will suffer in performance, compared

to fully-dynamic scheduling, as the amount of data dependency increases. Self-timed is more

attractive for scientific computation and digital signal processing, because it is more static,

while static-assignment may be more attractive when thereis more datadependency. The per

formance of both techniques depends heavily on good compile-time decisions, so it is

appropriate to concentrate on finding good compiler algorithms.

1.4. Strategy

For any scheduling strategy that requires compile-time decisions, for example assign

ment or ordering, these decisions can be madeby constructing a fully-static schedule and dis

carding the information that is not required. At run time, the execution is forced to exactly

match the "retained" information. For example, in static-assignment, only the assignment

information is retained. In self-timed, the assignment and ordering information is retained. In

fully-static scheduling, all information is retained.

We will explore a model lying between fully-static and self-timed, and develop an

approach to architecture designwell matched to this model. In this new model, we retain not

only the ordering of actors on each processor, but also the ordering of accesses to shared
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resources, such as shared memory or shared data structures. Architectures supporting this

model are only slightly more complex than architectures supporting fully-static scheduling,

but the model is much more robust. Specifically, some of the flexibility of self-timed schedul

ing persists, because timing information in the fully-static schedule is discarded. Hence the

execution time of actors can vary at run time without affecting the correctness of the execu

tion. On the other hand, the run-time execution is more constrained than for self-timed,

because the order in which processors access shared resources is forced at run time to exactly

match that of the fully-static schedule.

2. RUN-TIME ENVIRONMENT

For fully-static implementations the target architecture need not have any special

hardware for run-time scheduling. For self-timed scheduling, the only additional requirement

is efficient handshaking. In both cases,Von Neumann processingelements are adequate; there

is no need to resort to dataflow machines. This section explores these advantages by discuss

ing the run-time cost of two architectures, one designed for self-timed scheduling, and one

designed for a new model lying between self-timed and fully-static scheduling.

We assume a host carries out the compilation, mapping an application program onto

parallel processors that run under control of thehost. The parallel processors are designed for

signal processing and scientific computing, so we will notbe so ambitious as to try to mapthe

compiler and operating system onto the same set of parallel processors by the same tech

niques. However, with the dropping costof hardware, a heterogeneous multiprocessor system

of this type is attractive. Different pans of the- system are specialized to different functions,

and hencecando a much betterjob than acompletely "general purpose" solution.
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2.1. Architectures for Static Scheduling

At Berkeley, we have implemented a limited dataflow programming environment

(Gabriel) for digital signal processing that targets multiprocessor machines made with pro

grammable DSP microprocessors [Lee89b]. In this case, the compiler and scheduler produce

assembly code for each Von Neumann processor in the system. Self-timed scheduling is used,

so there are no dataflow principles invoked at run-time, except that semaphore-based syn

chronization is used when tokens pass between processors.

One of the target architectures in our lab, donated by Dolby Labs of San Francisco, has

four Motorola DSP56000's, each with a private memory, plus a single shared memory.

Accessing the shared memory requires first requesting the bus, then reading the memory,

checking a semaphore, and resetting the semaphore. An ideal transaction is illustrated in

figure 1(ideal means that the bus is free when requested, and the semaphores are in their

proper state when checked). It is not necessary to have indivisible test-and-set primitives

KEY:

setup - load registers

bus - acquire the bus

check - check semaphore

write • write to shared memory

rel • release the bus

setup bus check write rel read - read from shared memory
clear - clear the semaphore

TRANSMITTING PROCESSOR

setup bus check read clear rel

RECEIVING PROCESSOR

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1

0 INSTRUCTION CYCLES 30

Figure 1. An ideal transaction throughshared memory ina typical shared memory multipro
cessor when scheduling is self-timed. The number of instruction cycles shown are meas
ured on a prototype multiprocessor system in our Lab.
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because the static buffering strategy used in Gabriel ensures that no more than one processor

will be writing data to any given memory location, and no more than one processor will be

reading data from that location [Lee87b]. The bus contention/resolution and semaphore han

dling are the only scheduling overhead incurred at runtime. Nonetheless, in the Dolby archi

tecture these require about 30 instruction cycles for a single transaction, as shown in figure 1.

This relatively high cost implies that only large-grain dataflow can be supported efficiently.

Furthermore, each token should ideally contain more than a single data value, because the

overhead is incurred only once for each token. We deem these restrictions excessive, and

attribute them to the fact that the architecture was not designed with self-timed scheduling of

dataflow graphs in mind. It is much more general than we need.

In the Dolby architecture, if the bus is not available when requested, the requesting pro

cessor halts until the bus becomes available. Hence contention for the bus can extend the

duration of a transaction well beyond the 30 cycles shown in figure 1. In our software imple

mentation of semaphore handling, if the semaphore read from shared memory is not in the

desired state, then the processor releases the bus, and attempts the transaction again some time

later. The processor busy-waits in the meantime. It is up to the scheduler to ensure that pro

cessors do not spend much time busy-waiting. Of course, these repeated reads further increase

the load on the shared bus. We conclude that some modification of the architecture is required

to be able to effectively map self-timed dataflow graphs onto it.

2.1.1. A Gated-Shared-Memory Architecture

One way to reduce the total transaction time illustrated in figure 1 would be to add

hardware that performs the functions we now perform in software, such as semaphore

management. An architecture doing this might look like that in figure 2. Shared memory

accesses begin by supplying an address in the shared memory space to the gate keeper. The

gate keeper asserts a wait signal until the memory request can be satisfied, causing the
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Figure 2. A gated-shared-memory architecture.

processor to halt. Meanwhile, the gate keeper acquires the bus, accesses the shared memory,

and checks the semaphore. Just as in the software implementation, if the semaphore is not in

the desired state, then the read is repeated some time later, with the processor held in its

suspended state in the meantime. As before, it is up to the scheduler to ensure that notmuch

time is wasted this way. Since the schedule is self-timed, there is no danger of introducing

deadlock by this mechanism.

On writes to shared memory, the gate-keeper need not halt the processor requesting the

write. The processor can proceed with its execution until the next shared-memory transaction

is encountered. In the meantime, the gate keeperperforms the shared-memory write in paral

lel.

The mainadvantage of this architecture is that the functions we now perform in software

are performed in hardware, and therefore presumably occur much faster. Furthermore, the
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processingelements can access shared-memory locations the same they access local memory.

The contention/resolution and synchronization functions are transparent. However, the gate

keeper is not trivial, so the time required for shared-memory accessesis still likely to be larger

than the time for local memory accesses, even when there is no contention and the semaphores

are in the desired state. In addition, a preliminary design indicates that to implement it on a

single chip requires a large (albeit manageable) number of pins. This preliminary design

assumedthe processing elements would be Motorola DSP96002's, which have separate 32-bit

address and data busses (two of each). Consequently, it is worth considering an alternative

that brings us closer to fully-static scheduling.

2.1.2. An Ordered-Shared-Memory Architecture

Consider an architecture, shown in figure 3, where a shared bus is not requested by the

processors, but rather a central controller (labeled MOMA) grants the bus to processors in

some prespecified order. Once the bus has been granted to a processor, it is not released until

the processor has completed a shared-memory transaction. The key idea is that a fully-static

scheduler can determine a-priori the order in which shared-memory transactions will occur.

Hence, at the same time that a program is loaded into the private memories of each of the pro

cessors, a list is loaded into the controller specifying the order of memory transactions. This

list is simply a list of processor numbers, and the controller simply asserts the bus-grant line

for each processor in turn. The key advantage is that no explicit hardware or software is

required for contention/resolution or semaphore management. Contention is avoided by

granting the bus to only one processor at a time. If any processor reaches a code segment

where it tries to access shared memory but has not been granted die bus, it simply halts until

the bus is granted. Static scheduling ensures that this will not cause deadlock. Furthermore,

semaphore synchronization is no longer required. To see this, suppose processor 1 wishes to

read a location written by processor 2. Static ordering of memory accesses ensures that the
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Figure 3. Shared memory accesses can be made extremely efficient when scheduling is
static. Here, a controller (MOMA: Maintains Ordered Memory Accesses), grants access to
the shared memory in the order predicted by the scheduler. No software or hardware over
head is required for contention/resolution or semaphore handling.

read and write occur in the proper order. Furthermore, if the static scheduler has done a good

job, very high bandwidth to shared memory is achievable. The bus is held a minimum

amount of time for each transaction. A good hardware design and a good schedule could

achieve at least 15 times the shared-memory bandwidth of the implementation in figure 1.

In general, centralized controllers in multiprocessor systems are not a good idea because

they limit scalability. However, we believe that the architecture in figure 3 can be used to find

the true limits of scalability of shared-memory architectures. The controller will not be the

bottleneck. Unlike many centralized controllers, this one is simple, and can probably be

implemented easily on a single semi-custom chip. The bus grant lines require one pin per pro

cessor, so pin count is not a serious problem until hundreds of processors are used together

(unlikely even in an efficient shared-memory system). Even if this proves feasible, the bus

grant signal could be encoded, and a small number of decoder chips would have to be added.
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The bus release is accomplished with a single wired-or release signal, so only one pin on the

controller is required for this function.

Interesting enhancements are immediately evident, for example, the static scheduler not

only knows which processor will be accessing shared memory next, but it knows which

memory location will be accessed, and whether the location will be read or written. This

knowledge can be used to speed shared-memory transactions for a relatively slow memory.

As it assertsthe bus-grant line for a processor, the controllercan also drive the addresslines of

the shared memory. If the next transaction is a read, and the processor is not already waiting,

then the response time of the memory will appear to the processor to be zero! When it gets

around to performing the read, the desired data will already be on its data bus.

Another obvious possibility is to apply the same philosophy to architectures with more

elaborate (and more scalable) communication networks. The basic idea is that the order in

which shared resources are used is determined at compile time and enforced at run time.

The main limitation with the architecture in figure 3 is the requirement that the order of

shared memory transactions be known at compile time. This is possible when fully-static

scheduling is possible, which, among other limitations, implies that the execution time of

every actor must be known. The Gabriel system is self-timed because it is not usually practi

cal to know exactly the execution time of all actors. However, the architecture in figure 3 will

function correctly even if estimates of the execution time are used. This is because the

ordered bus grants provide synchronization, of a sort. If poor estimates of runtimes are used,

or a processor is interrupted, then this architecture may yield worse performance than an

architecture that permits dynamic re-ordering of shared-memory accesses, like the Dolby

architecture. However, the overhead is so much smaller, that intuition indicates that these

estimates would have to be poor indeed.
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One mechanism that might cause the estimates of actor execution times to be poor is

traditional cache management. In many systems, a cache miss can cause a processor to

suspend executionof the program for hundreds of cycles. This would probably be unaccept

able, since thereis a goodchance thatmany of the otherprocessors will be delayedas a conse

quence. This wouldnot necessarily occur with self-timed scheduling, because shared-memory

accesses could be dynamically re-ordered. The same is true of interrupts, and to a lesser

degree, data-dependent instruction execution times. Therefore, cache management, interrupt

handling, and data-dependent execution-speed optimizations would have to be rethought, or

more simply, forbidden. An interesting possible solution is to replace dynamic cachemanage

ment with static paging. If fully-static scheduling is possible, then in principle, all the

requisite information is available. In signal processing, because of hard-real-time constraints,

it is common to use software controlled paging rather than dynamic caches [Lee88] [Lee89a].

The scheduling strategy for the architecture in figure 3 lies somewhere between fully

static and self-timed. Hence, just like self-timed scheduling, conditionals, data-dependent

iteration, and recursion are excluded from the programming model. We will explain these

limitations precisely below. They may be acceptable fora subset of signal processing applica

tions, but will not be acceptable in more general applications. A more sophisticated central

ized controller, tuned to these programming constructs, may removethis difficulty. Using our

new quasi-static scheduling strategies to handle these programming constructs [Ha89], prelim

inary indication is that the controller canmonitordecision paths in the program by monitoring

addresses on the shared-memory bus. Consequently, the controller can modify its bus-grant

pattern based on decisions made in each of the component processors.

The processors in figure 3 are specified as DSP96002's, the next generation of 32-bit

floating-point programmable digital signal processors from Motorola. It is expected that this

device will be well suited to general scientific computation, graphics, and signal processing.
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More importantly, it is well matched to the proposed architecture because it has two com

pletely independent tri-stated memory busses. It can be wired exactly as shown in figure 3,

with no extra logic. The result is a very low cost, very dense multiprocessor system.

There is nothing architecturally sophisticated in either figure 3 or figure 2. The sophisti

cation comes with binding the architectureto a software methodology.

2.2. Statically Ordered Data Structure Access

The lack of side-effects in dataflow actors makes it particularly difficult to support large,

shared data structures [Gau86]. Arvind, et. al., have therefore extended the dataflow model by

introducing I-structures, a controlled form of global data structures [Arv87]. I-structures are

write-once data structures with non-strict semantics, which in practice means that reads may

be issued before data is available in the data structure. Support for I-structures requires an

ability to queue read requests until they can be satisfied. This mechanism is the most promis

ing available, but it does not come cheaply. A much simpler mechanism is possible when

scheduling is static.

Consider for example an actor that outputs an array. This array might be carried by a

single token. Suppose there are two actors that take this array as an argument. A pure

dataflow model requires that the array be copied, or at least that an implementation behave as

if the array had been copied. Using an I-structure avoids this copying. However, an older

technique called reference counting [Hud86][Dri86] is more attractive when scheduling is

static. In this example, the reference count (RC) associated with the array storage would be

initialized to zero. When the array is written by the first function, the reference count is incre

mented to 2. Each actor taking the array as an argument can only fire if the RC is greater than

zero, and when it fires it decrements the RC.
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Many variations of this idea immediately come to mind; for example, reference counts

could be used for each element of the array, instead of the whole array, thereby getting some

of the advantages of the non-strictness of I-structure. Specifically, the array does not have to

be completely filled before some of its elements can be read. Also, if the RC is identically

one, then an actor using it may also modify it, something not permitted in the write-once I-

structures.

The reference count technique has been criticized for a number of reasons [Arv87b],

most of which break down when the scheduling is static. For example, for the ordered-

shared-memory architecture of figure 3, the overhead of managing the RC is incurred only at

scheduling time, not at run time. A data structure shared between processors is put in shared

memory, and the RC is used at scheduling time only to determine the order of the accesses.

Also, on the main disadvantages of I-structures is avoided. The non-strictness of I-structures

implies that any number of read requests may be generated for a data structure before the data

is available. Queueing these requests may be burdensome. No such queueing is required with

RC's and static scheduling.

This static reference count mechanism works well with the ordered-shared-memory

architecture. However, if we wish to go to self-timed execution, using for example the gated-

shared-memory architecture, then some run-time support for reference counts is required when

the data structure is shared across processors. The reference count replaces the simpler

full/empty single-bit semaphore that would be requiredif a token had only one destination. In

this case, the RC can be viewed simply as a multi-bit semaphore.
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3. SYNCHRONOUS DATAFLOW

The gated-shared-memory architecture and the static reference counts seem to provide a

very.clean solution to some vexing problems. However, they are only applicable when fully-

static or self-timed scheduling is possible. Although this imposes some serious constraints,

the constraints may be less serious than it may seem at first

A subclass of dataflow graphs lacking data dependency is well suited to static schedul

ing. Precisely, the term "synchronous dataflow" has been coined to describe graphs that have

the following property [Lee87a]:

SDF property:

A synchronous actor produces and consumes a fixed number of tokens on each of a fixed

number of input and output paths. An SDF graph consists only of synchronous actors.

The basic constraint is that the number of tokens produced or consumed cannot depend on the

data. An immediate consequence is that SDF graphs cannot have data-dependent firing of

actors, as one might find, for example, in an if-then-else construct. In exchange for this limi

tation, we gain some powerful analytical and practical properties [Lee87a][Lee87b]:

1) For SDF graphs, the number of firings of each actorcan be easily determined at compile

time. If the program is non-terminating, as for example in real-time DSP, then a

periodic schedule is always possible, and the number of firings of actors within each

cycle canbe determined at compile time. In either case, knowing these numbers makes

it possible to construct a deterministic acyclic precedence graph. If the execution time

of each actor is deterministic and known, then the acyclic precedence graph can be used

to construct optimal or near-optimal schedules.

2) For non-terminating programs, it is important to verify that memory requirements are

bounded. This can.be done at compile time for SDF graphs.
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3) Starvation conditions, in which a program halts due to deadlock, may not be intentional.

Forany SDF graph, it canbe analytically determined whetherdeadlock conditions exist.

4) If the execution time of each actor is known, then the maximum execution speed of an

SDF graph can be determined at compile time. For terminating programs, this means

finding the minimum makespan of a schedule. For non-terminating programs, this

means finding the minimum period of a periodic schedule.

5) For any non-terminating SDF graph executing according to a periodic schedule, it is

possible to buffer data between actors statically. Staticbuffering means loosely thatnei

ther FIFO queues nor dynamically allocated memory are required. More specifically, it

means that the compiler can statically associate memory locations with actor firings.

These memory locations contain the input data and provide a repository for the output

data.

These properties are extremely useful for constructing parallelizing compilers, but they

only apply to SDF graphs, and optimal schedules can only be constructed when the execution

times of the actors are known. For more general dataflow graphs, where there is data-

dependent firing, intuition suggests that the graph should be divided into SDF subgraphs

which can themselves be scheduled statically. However, it is not obvious how to account for

the interaction among such subgraphs. For example, for each SDF subgraph that is scheduled

statically, the compiler must decide how many processors to devote the subgraph. We will

review some techniques that have been developed.

Optimal compile-time scheduling of precedence graphs derived from SDF graphs is one

of the classic NP-complctc scheduling problems. Many simple heuristics have been

developed over time, with some very effective ones having complexity n , where n is the

number of actors (see for example [Hu61]). However, even n2 complexity can bog down a

compiler. Our experience [Lee89b] suggests that medium to large-grain dataflow graphs may
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be required to avoid excessive compilation delays on today's computers, assuming an entire

program is compiled in one step. A much better alternative would be incremental compila

tion, suggesting a line of inquiry. Fortunately, signal processing programs, particularly for

real-time applications, tend to be small, so the problem is not severe in this application

domain. The key limitation, therefore, is the inability to express data-dependent computation.

This does not, however, imply that there is no program control.

4. STATICALLY SCHEDULED CONTROL

Static scheduling promises low-cost architectures, at the expense of compile-time com

plexity. For many applications, this is a very attractive tradeoff. However, only some appli

cations can be statically scheduled. The SDF model, which can be statically scheduled, may

appear to lack control constructs because it does not permit data-dependent firing of actors.

However, this is not entirely true. In this section we explain the control structures that are

possible within SDF.

4.1. Recurrences

The dataflow community has recognized the importance of supporting recursion, or

self-referential function calls. To some extent, this ability has become a litmus test for the

utility of a dataflow model. The most common implementation, however, dynamically creates

and destroys instances of actors. This is clearly going to be problematic for a static scheduler.

In imperative languages, recursion is used to implement recurrences and iteration, usu

ally in combination. If we avoid the notion of "function calls", at least some recurrences can

be simply represented as feedback paths in a dataflow program graph. This section will study

the representation of recurrences using feedback. This representation poses no difficulty for

static scheduling, although to some it lacks the elegance of recursion. Dataflow models for

iteration will be pursued in the next section.



Lee UC Berkeley 20

A dataflow graph with a recurrence is represented schematically in figure 4. This graph

is assumed to fire repeatedly. Borrowing terminology from the signal processing community,

the feedback path has a delay, indicated with a diamond, which can be implemented simply as

an initial token on the arc. A set of delays in a dataflow graph corresponds to a marking in

Petri nets [Pet77] or to tag manipulation operators in the U-interpreter [Arv82]. A necessary

(but not sufficient) condition for avoiding deadlock is that any directed loop in the graph must

have at least one delay.

A delay does not correspond to unit time delay, but ratherto a single token offset. Such

delays are sometimes called logical delays or separators to distinguish them from time delays

[Jag86]. For SDF graphs, a logical delay need not be a run-time operation. Consider for

example the feedback arc in figure 4, which has a unit delay. The numbers adjacent to the

arcs indicate the number of tokens produced or consumed when the corresponding actor fires.

The initial token on the arc means that the corresponding input of actor A has sufficient data,

so when a token arrives on its other input, it can fire. The second time it fires, it will consume

data from the feedback arc that is produced by the first firing of actor B. In steady-state, the

n firing of actor B will produce a token that will be consumed by actor A on its (n + l)r

firing; hence the arc has unit token offset. The value of the initial token can be set by the pro

grammer, so a delay can be used to initialize a recurrence. When the initial value is other than

zero, we will indicate it using the notation Devalue). Since delays are simply initial

-$-
1

»
1

A *
1 1

B
1

>

1

Figure 4. A dataflow graph with a recurrence. Recurrences are expressed using directed
loops and delays.
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conditions on the buffers, they require no run-time overhead.

Consider non-terminating algorithms, or algorithms that operate on a large data set. For

these, directed loops are the only fundamental limitation on the parallelizability of the algo

rithm. This is intuitive because any algorithm without recurrences can be pipelined. A spe

cial case of SDF, called homogeneous SDF, is where every actor produces and consumes a

single token on each input and output. For homogeneous SDF graphs, it is easy to compute

the minimum period at which an actor can be fired. This is called the iterationperiod bound,

and is the reciprocal of the maximum computation rate. Let R (L) be the sum of the execu

tion times of the actors in a directed loop L. The iterationperiod bound is the maximum over

all directed loops L of R(L)/D(L), where D(L) is the number of delays in L

[Ren81][Coh85]. The directed loop L that yields this maximum is called the critical loop.

General SDF graphs can be systematically converted to homogeneous SDF graphs for the pur

pose of computing the iteration period bound [Lee86]. If there are no directed loops in the

graph, then we define the iteration period bound to be zero, since in principle all firings of

each node could occur simultaneously. It is important to realize that there is nothing funda

mental in the following discussion that prevents this. Implementation considerations may

make it impractical, however.

Although in an SDF graph dataflow actors cannot be created at runtime, SDF is not the

same as static dataflow [Dcn80]. For instance, in SDF, there is no impediment to having mul

tiple instances of an actor fire simultaneously. A particular implementation, however, may

impose such a constraint. Consider for example an implementation that permits no more than

one memory location to be associated with each arc. This can be modeled with the recurrence

in figure 4. The feedback arc begins with an initial token. This token represents a "space" on

the output buffer of actor A. After A fires, and consumes that token, it cannot fire again until

after B has fired. Any memory limitation on any arc in an SDF graph can be modeled as a
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feedback path with a fixed number of delays. To avoid unnecessarily sacrificing concurrency,

enough memory should be allocated to each arc that the corresponding feedback path does not

become the critical loop.

Another impediment to multiple simultaneous invocations of an actor is the notion of

state. Particularly in large or medium grain dataflow graphs, it is very convenient to permitan

actor to remember data from one invocation to the next. This is simply modeled as a self-loop

with a unit delay. Such a self-loop precludes multiple simultaneous invocations of the actor.

4.2. Manifest Iteration

Manifest iteration is where the number of repetitions of a computation is known at com

pile time, and hence is independent of the data. Manifest iteration can be expressed in data

flow graphs by specifying the number of tokens produced and consumed each time an actor

fires, and can be statically scheduled. Forexample, actor B in figure 5 will fire ten times for

every firing of actor A. In conventional programming languages, this would be expressed

with a. for loop. Nested for loops areeasily conceived as shown in figure 5. If actors A and E

fire once each, then B and D will fire ten times, and C will fire 100 times. Techniques for

automatically constructing static parallel schedules for such graphs aregiven in [Lee87a].

Although there is no fundamental limitation on the parallelism in figure 5 (there are no

directed loops), there may be practical limitations. In figure 6, we model a buffer of length 10

between actors B & C. Again, the tokens on the feedback path represent empty locations in

the buffer. Actor B must have ten tokens on the feedback path (i.e. ten empty locations in the

A B C D E
10 1 10 1 1 10 1 10

Figure 5. An SDF graph that contains nested iteration.
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10

10 1

10 1

1 10
* D » E

10

Figure 6. A modification of figure 5 to model the effectof a buffer of length ten between ac
tors B and C.

buffer) before it fires. Whenever actorC fires, it consumes one token from the forward path,

freeing abuffer location, andindicating the free bufferlocation by putting atoken on the feed

back path. The minimum buffer size that avoids deadlock is ten.

This non-homogeneous SDF graph could be converted to a homogeneous SDF graph

and the iteration period bound computed, but in this simple example the iteration period

bound is easily seen by inspection. It is clear that aftereach firing of B, C must fire ten times

before B can fire again. The ten firings can occur in parallel, so the minimum period of a

periodic schedule is R B+ Rc, where Rx is the runtime of actor X. In other words, succes

sive firings of B cannot occur in parallel because of the buffer space limitations. By contrast

if the buffer had length 100, then ten invocations of B could fire simultaneously, assuming

there are no other practical difficulties.

A second limitation on the parallelism can arise from the addressing mechanism of the

buffers. Each buffer can be implemented as a FIFO queue, as done in Davis' DDM [Dav78].

Delays are correctly handled, but then access to the buffer becomes a critical section of the

parallel code. FIFO queues are most cheaply implemented as circularbuffers with pointers to

the read and write locations. However, parallel access to the pointers becomes a problem. If

successive invocations of an actor are to fire simultaneously on a several processors, then

great care must be taken to ensure the integrity of the pointers. A typical approach would be

to lock the pointers while one processorhas control of the FIFO queue, but this partially seri-
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alizes the implementation. Furthermore, this requires special hardwareto implement an indi

visible test-and-set operation, assuming the target hardware is a shared memory machine.

A less expensive alternative is static buffering [Lee87b]. Static buffering is based on the

observation that there is a periodicity in the buffer access that a compiler can exploit. It

preserves the behavior of FIFO queues (namely it correctly handles delays and ordering of

tokens), but avoids read and write pointers. Specifically, suppose that all buffers are imple

mented with fixed-length circular buffers, implementing FIFO queues, where each length has

been pre-determined to be long enough to sustain the run without causing a deadlock. Then

consider an input of any actor in an SDF graph. Every N firings, where N is to be deter

mined, the actor will get its input token(s) from the same memory location. The compiler can

hard-code these memory locations into the implementation, bypassing the need for pointers to

the buffer. Systematic methods for doing this, developed in [Lee87b], can be illustrated by

example. Consider the graph in figure 6, which is a representation of figure 5 with the buffer

between B and C assigned the length 10. A parallel implementation of this can be represented

as follows:

FIRE A

DO ten times {
FIREB

DO in parallel ten times {
FIREC

}
FIRED

}
FIREE

For each parallel firing of C, the compiler supplies a specific memory location for it to get its

input tokens. Notice that this would not be possible if the FIFO buffer had length 11, for

example, because the second time the inner DO loop is executed the memory locations

accessed by C would not be the same as the first time. But with a FIFO buffer of length 10,

invocations of C need not access the buffer through pointers, so there is no contention for
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access to the pointers. The buffer data can be supplied to all ten firings in parallel, assuming

the hardware has a mechanism for doing this (such as shared memory).

Using staticbuffers there is no need foran indivisible test-and-setoperation. This is true

even if full/empty semaphoresareused in the individual buffer locations to synchronize paral

lel processors. The savings comes from the observation that each shared memory location is

written by exactly one processorand readby exactly one processor. In particular, there are no

buffer pointers that might be read or written by more than one processor.

An alternative to static buffering that also permits parallel firings of successive instances

of the same actor is token matching [Arv82]. However, even the relatively low cost of some

implementations of token matching [Pap88] would be hard to justify for SDF graphs, where

static buffering can be used.

In figure 5 we use actors that produce more tokens than they consume, or consume more

tokens than they produce. Proper design of these actors can lead to iteration constructs

semantically similar to those encountered in conventional programming languages. In figure

7 we show three such actors that have proved useful. The first, figure 7a, simply outputs the

last of N tokens, where N is a parameter of the actor. The second, figure 7b, takes one input

token and repeats it on the output The third, figure 7c, takes one input token each time it

fires, and outputs the last N tokens that arrived. It has a self-loop used to remember the past

tokens (and initialize them). This can be viewed as the state of the actor; it effectively

LAST

OFN

(a)

REPEAT

(b)

Figure 7. Three SDF actors useful for iteration.

LAST

N

(C)
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prevents multiple simultaneous invocations of the actor. We will see an example shortly that

uses this actor.

A complete iteration model must include the ability to nest recurrences within iteration.

We will illustrate this with a finite impulse response (FIR) digital filter because it is a simple

example. An FIR filter computes the inner product of a vector of coefficients and a vector

with the last N input tokens, whereN is the order of the filter. It is usually assumed to repeat

forever, firing each time a new input token arrives. Consider the possible implementations

using a data flow graph. A large grain approach is to define an actor with the implementation

details hidden inside. An alternative is a fine grain implementation with multiple adders and

multipliers and a delay line. A third possibility is to use iteration and a single adder and mul

tiplier. This first and last possibilities have the advantage that the complexity of the data flow

graph is independent of the order of the filter. A good compiler should be able to do as well

with any of the three structures. One implementation of the last possibility is shown in figure

8. The iteration actors aredrawn from figure 7. The COEFFICIENTS actorsimply outputs a

stream of N coefficients; it produces one coefficient each time it fires, and reverts to the

beginning of the coefficient list after reaching the end. It could be implemented with a

directed loop with N delays, or a number of other ways. The product of die input data and the

coefficients is accumulated by the adder with a feedback loop. The output of the filter is

Figure 8. An FIR filter implemented using a single multiplier and adder.
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selected by the "last ofN" actor.

The FIR filter in figure 8 has the advantage of exploitable concurrency combined with a

graph complexity that is independent of the order of the filter. Note, however, that there is a

difficulty with the feedback loop at the adder. Recall from above that a delay is simply an ini

tial token on the arc. If this initial token has value zero, then the first output of the FIR filter

will be correct. However, after every N firings of the adder, we wish to reset the token on that

arc to zero. This could be done with some extra actors, but a fundamental difficulty would

remain. The presence of that feedback loop implies a limitation on the parallelism of the FIR

filter, and that limitation would be an artifact of our implementation. Our solution is to intro

duce the notion of a resetting delay, indicated with a diamond containing an R. The resetting

delay is associated with a subgraph, which in this example is surrounded with a dashed line.

For each invocation of the subgraph, the delay token is re-initialized to zero. Furthermore, the

scheduler knows that the precedence is broken when this occurs, and consequently it can

schedule successive FIR output computations simultaneously on separate processors.

The resetting delay can be used in any SDF graph where we have nested iterations where

the inner iterations involve recurrences that must be initialized. In other words, anything of

the form:

DO some number of times {
Initialize X

DO some number of times {
newX = f(X)

}
}

The implementation of a resetting delay is simple and general. For the purposes of

implementation, the scheduler first treats the delay as if it were an actor that consumes one

token and produces one token each time it fires. Recall that in practice no runtime operation

is requiredto implement a delay, so there actually is no such actor. However, by inserting this
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mythical actor, the scheduler can determine how many times it would fire (if it did exist) for

each firing of the associated subgraph. The method for doing this is given in [Lee87a], and

consists of solving a simple system of equations. For each resetting delay, the scheduler

obtains a number N of invocations between resets; this number is used to break the pre

cedence of the arc for every Nth token and to insert object code that re-initializes the delay

value. The method works even if the subgraph is not invoked as a unit, and even if it is scat

tered among the available processors. It is particularly simple when in-line code is generated.

However, when the iteration is implemented by the compiler using loops, then a small amount

of run-time overhead may have to associated with some delays in order to count invocations.

We have given a mechanism for handling manifest iteration in data flow graphs, and for

synthesizing efficient parallel implementations. It is worth mentioning that dependence graph

methods [Kun88][Rao85] handle manifest iteration using the notion of an index space but

have the significant disadvantage that all variables used in the algorithm must iterate over the

same index space. This restriction is not present in SDF. On the other hand, the functionality

of the resetting delay is more cleanly expressed as boundary conditions on an index space.

4.3. Conditional Assignment

Conditionals in dataflow graphs are harder to describe and schedule statically. One

attractive solution is a mixed-mode programming environment, where the programmer can

use dataflow at the highest level and conventional languages such as C at a lower level. Con

ditionals would be expressed in the conventional language. This is only a partial solution,

however, because conditionals would be restricted to lie entirely within one large grain actor,

and concurrency within such actors is difficult to exploit. If the complexity of the operations

that are performed conditionally is high, then this approach is not adequate.

A simple alternative that is sometimes suitable is to replace conditional evaluation with

conditional assignment. The functional expression
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y <-if (c) then/(x) elseg(x)

can be implemented as shown in figure 9. The MUX actor consumes a token on each of the T,

F, and control inputs and copies either theT or F token to the output. Hence, bothf(x) and

g (x) will be computed and only one of the results will be used. When these functions are

simple, this approach is efficient; indeed it is commonly used in deeply pipelined processors

to avoid conditional branches. Forhard-real-time applications, it is also efficient when one of

the two subgraphs is simple. Otherwise, however, the cost of evaluating both subgraphs may

be excessive, so alternative techniques are required.

4.4. Quasi-Static Scheduling

Statically scheduled control may prove acceptable for a subset of applications, perhaps

mostly in signal processing. However, the limitations are quite serious, so there is strong

motivation for removing them. At Berkeley we have been developing quasi-static scheduling

strategies that may solve some of these problems [Ha89]. The basic principle is that dynamic

control is used only where absolutely necessary. For instance, with an if-then-else, control is

dynamically transferred to one of two statically scheduled subgraphs. Similarly, for a data-

dependent iteration (such as a do-while), a static schedule for each cycle of the iteration is

dynamically repeated. The challenge, of course, is to develop strategics for constructing the

static schedules for the subgraphs. These techniques imply changes to the ordcred-sharcd-

Figure 9. A dataflow graph with conditional assignment. Both/(-) and g(-) are evaluated,
and only one of the two outputs is selected.
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memory architecture. For further details, see [Ha89].

5. CONCLUSIONS

It is well known thatdata-independent dataflow graphs can be scheduled statically, obvi

ating the need for additional runtime hardware to control the execution. We have illustrated

low-cost parallel architectures that take advantage of this, and have resurrected reference

counts, a mechanism for managing shared data structures that is well suited to static schedul

ing. Furthermore, we have shown that dataflow graphs can include recurrences andmanifest

iteration, and still be statically scheduled. The execution times of actors can vary slightly

without seriously affecting the implementation, but wide variations can have considerable

adverse impacton executionspeed. Furthermore, conditional firing of actors is excluded from

the model. For applications with little decision making, such as signal processing and some

scientific computing, this approach appears attractive. To broaden the application base,

quasi-static scheduling may provide a solution by introducing dynamic control only where

absolutely necessary [Ha89].
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