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Abstract

Rolling constraint is a classical example of a class of constraints knwon as
non-holonomic constraints. Such a constraint is usually difficult to be dealt
with. In this paper, we study motion of an object relative to another under
rolling constraints. In particular, we address the following two problems: (1)
Given the geometries of two contacting bodies, assert if @ motion ezists between
two contact configurations without violating the constraints, and (2) if a motion
ezists, plan a path that links the two contact configurations. Using the kinematic
equations of contact, we first transform contact constraints in the configuration
manifold to a system of differential equations in the parameter space. Then, we
apply a generalized version of the Frobenius’s theorem, called Chow’s Theorem,
to assert the existence of motion. The smallest involutive distribution, v,
generated by the constrained vector fields is computed using Macsyma. If two
contact configurations are within the same maximal integral manifold of Vv,
then a motion exists. To plan a path that links twé contact configurations,
given that it exists, we first identify the contact angle as the holonomy angle
of a closed path in the object surface. Then, we use Lie bracket motion and
the Gauss-Bonnet Theorem to generate a desired path. The motion planning
algorithm is geometric, and is easy to visualize. Potential applications of this
study include (1) rolling a magnetically levitated mobile robot in a crowded
environment, (2) adjusting contact configurations of a multifingered robot hand
without slipping, and (3) following a workpiece by a robot end effector without
dissipation or wearing.

*This research is supported in part by NSF PYI Grant DMC 8451129 and by the Defense
Advanced Research Projects Agency (DoD), monitored by Space and Naval Warfare Systems Com-
mand under Contract N00039-88-C-0292.



1 Introduction

In this paper, we study motion of an ob Ject relative to another under rolling con-
straints. For this, consider the two objects shown in Figure 1, which are labelled
by obj1 and obj2, respectively. Here, obj1 may represent the end-effector of a robot
manipulator, the fingertip of a multifingered robot hand, or a magnetically levitated
mobile robot, and obj2 represents the contacting environment (or the workpiece) of
the manipulator, the object being grasped by the robot hand, or the terrain to be
traveled by the mobile robot.

There are at least three advantages in executing rolling motion over slid-
ing motion, which is known to be holonomic. First, because constraint forces for
non-holonomic constraints are workless, wearing problems associated with the con-
tacting bodies are absent. Second, the associated control problems can be more easily
dealt with.. In order to control sliding motion, for example, the coefficient of fric-
tion has to be known exactly, which is in general difficult. Even the world’s best
figure skater has trouble in managing controlled sliding, On the other hand, rolling
motion can be made safe by staying sufficiently close to the center of the friction
cone ([LHS88], [CHS88]). Finally, as we will see in this paper, the set of reachable .
configurations for rolling is much larger than that for sliding. This is due to the
non-involutivity property of the correspon&ing constrained vector fields.

Suppose that, say because of the apparent advantages of rolling motion,
we have decided to move an object from one contact configuration to another by

rolling, then the following two problems are natural and basic to a robotics engineer.

Problem 1 Assert, using possibly the geometric data of the objects, if @ motion that
lead from one contact configuration to another without violating the constraints
ezists.

Problem 2 If a motion ezists, plan a path that not only satisfies the constraints

but also connects the two contact configurations.

We call the first problem the eristence problem, the second problem the

planning problem. The ob jectives of this paper are to provide solutions to these two
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Figure 1: Motion of an object with rolling constraints

problems.

- This paper is organized as follows. In Section 2, we review the geometries
of a surface and the kinematics of contact. In Section 3, we define the (contact)
configuration manifold and describe the contact constraints. Then, we transform
the contact constraints in the configuration manifold to a system of differential
equations in the parameter space. The ezistence problem is reduced to a problem
of characterizing all possible flows generated by the system of differential equations.
But, the later problem can be dealt with using existence techniques in nonlinear

control theory. In Section 4, using géometric techniques we present a geometric

motion planning algorithm.



2 Preliminaries

In this section, we review briefly the geometries of a surface and the kinematics of
contact. See [MP78], [K1i78] and [Spi74] for a further treatment on the geometries
of a surface and [Mon86], [LHS88], [CR87] and [Ker85] for the kinematics of contact.
A short introduction to local and global surface theory is also provided in Appendix
A, where the notions of covariant differentiation and holonomy angles and Gauss-
Bonnet Theorem are discussed. These issues are key to the development of the

geometrical motion planning algorithm in Section 4.

Notation 2.1 Let C; and C; be two coordinate frames of R3, where ¢ and j are
arbitrary subscripts. Let r;; € R® and R;; € SO(3) denote the position and
orientation of C; relative to C;. For simplicity, we will write 9ij = (rij, Rij) €
SE(3) the configuration of C; relative to C;.

Definition 2.1 The velocity of C; relative to C; is defined by

vig o | Bt | e | Swig) wg
w;,j S~Y(RE ;R ) |’ i 0 0
where S : R — 50(3) identifies R? with the space of 3 x 3 skew-symmetric matrices.

Note that every £ € se(3) defines a left invariant vector field on SE(3),
where the corresponding flow g(t) € SE(3),¢ € I, satisfies the following differential
equation.

g(t) = g(2)¢. (1)
Thus, a trajectory of an object is given by specifying a left invariant vector field,
which in turn is generated by an element £ € se(3). On SE(3), which is a Lie group,
the solution to (1) for any £(t) € se(3) is defined globally.

Proposition 2.1 Consider three coordinate frames C1, C; and C3. The following

relation ezists between their relative velocities.

V31 | _ V2,1 V3,2 o
o = an] ][22



where Adg;; is a similarity transformation, given by

_ | Rz —R§28(rsz2)
Adss'.é ‘[ 0 RS, '

Remark 2.1 Suppose that Cj is fixed relative to C2, then the velocity of C3 relative

to C} is related to that of C; by a constant transformation, namely the Ad o5} Map.

Definition 2.2 A space curve is the image of a C2 map ¢ : I —» R3, where I is an
interval. The pair (¢, ) is called a parameterization of the space curve. c is .regular

if &(t) # 0,¥t € I. A space curve is regular if it has a regular parameterization.

Notation 2.2 U will always denote an open subset of R2. A point of U will be
denoted by u € R?, or by (u1,u;) € R xR, or (u,v) € R x R. Let f:U—Rbea
differentiable map, df, : T,R2 — T4()R® denotes the tangent map of £, and f,, f,

denote the partial derivatives of f with respect to u and v, respectively.

Definition 2.3 A surface ( or an embedded 2 manifold) in R3 is a subset § ¢ R3
such that for every point s € S, there exists an open subset S, of S ( in the induced
topology of R3) with the property (1) s € S,, (2) S, is the image of a C3 map
f: U — R3, where f, x f, # 0,V(u,v) € Uyand 3) f : U — S, CR3is a
diffeomorphism.

S, is called a coordinate patch and the pair (f,U) is called a (local ) coordinate
system of S. The coordinates of a point s € S, are given by (u,v) = f~!(s). From
now on, if the coordinate system is clear from the context, we shall not distinguish
between a point s € S, and its coordinates. The collection of coordinate patches
{S,} which covers S, i.e., S = US,, is called an atlas of S. By a curve in S we mean
a curve ¢ : I — R3, which can be expressed as fo u(t) for some curve u: I — U

inU,

Remark 2.2 The surface of a smooth object is a compact embedded surface, and

thus with a finite number of atlases.



Example 2.1 The sphere S of radius p is an embedded surface. To prove this, let
U={(v,v)eR%-Z<u< 3»—7 < v < 7} and consider the following coordinate

systems
f:U—R3: (u, v) —s (o cosu cos v, —p cos u sin v, p sin u)
and
f:U—R:(n,0)— (—p cosu cos v, psin u, p cosusin v).
The partial derivatives of f and f are
fu = (—psinucosv,psinusinv,pcosu)
fo = (—p cosusin v, —p cos usin v, 0)
and
fo = (psinucos v, pcosu, —psin u sin v)
- fy = (pcosusinv,0, pcosucosv)
Clearly, fu X f, # 0 and f, x f, # 0, ¥(u,v) € U. Moreover, S; = f(U) and
S2 = f(U) covers S. Thus, S is an embedded 2 manifold.
The unit sphere (i.e., p = 1) of R3 is denoted by S2.

Example 2.2 The ellipsoid f:- + g- + f,- = 1 can be parametrized by the following

coordinate system

[:U—R3:(u, V) — (e cosucosv,—bcosusinv, csinu)
and

f:U—R%: (u,v) — (—a cosu cos v, bsin u, ¢ cos u sin v)

where U is given by the previous example.

Definition 2.4 The Gauss map of a surface S is a continuous mapn:S — 52
such that n(s) is normal to S. Note that n induces an orientation on S. We will
also use n to denote the map nof : U — 52, and Tyn : T,R? — Tj(u)R" denote

the tangent map of =.



Definition 2.5 A coordinate system (£, U) s called orthogonalif f,-f, = 0, V(u,v) €
U, and right-handed if f, X f,/|fs X fol = nof(u). (f,U) is called a geodesic co-
.ordinate system if it is orthogonal and fufu=1and f,- f, = g2, for some q>0
which is a function of (u,v). Let (f,U) be an orthogonal right-handed coordinate
system for a surface patch So C S. We define the Gaussian frame at a point s € Sy

as the coordinate frame with origin at f(u) and coordinate axes
x(a) = fu/lful, y(u) = fo/|fyl, and z(u) = no f(u).

Definition 2.8 Let Sp be a coordinate patch of S, with an orthogonal coordinate
system (f,U). At a point s € S, the curvature form K is defined as the 2 x 2

matrix
K = [x(u), y(u)]*[ze(a)/|ful, 2o(u)/| fol],

where u = f~!(s). The torsion form 7T is the 1 X 2 matrix

T= y(u)t[xu(u)/lfula xo(u)/|fol],

and the metric tensor M is the 2 X 2 matrix

_[1fl o
M‘[ 0 lf.,l]'

Note that M is the square root of the first fundamental form.

Example 2.3 Consider the sphere S of radius p- Let S; = f(U) be the coordinate

patch of S studied in Example 2.1. The Gauss frame at a point s € S, is given by

—sinu cosv - sinv COS u COS ¥
x(u) = | sinusinv |, y(u)=| —cosv | and z(u) = | —cosusinv
cos u 0 sin u

The curvature form, torsion form and metric tensor are given by

-_|1/p 0 — 10— _|p 0
Ix—[ 0 l/p],T-[O ta.n'u/p],andM—[0 pcosu}'

We now consider the two objects that move while maintaining contact
with each other (see Figure 1). Choose reference frames C,; and Cr2 fixed relative

to obj1 and obj2, respectively. Let S; C R3 and S, C R3 be the embeddings of the

-
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surfaces of obj! and o0bj2 relative to C,; and Cr2, respectively. Let 7, and ns be the
Gauss maps (outward normal ) for S; and S;. Choose atlases {5142 and {52173
for Sy and S,. Let (fy,, U1,;) be an orthogonal right handed coordinate system for

51, with Gauss map n;. Similarly, let (f2,i,U3;i) be an orthogonal, right-handed
| coordinate system for S,; with n,.

Let c1(t) € 51 and cy(t) € S, be the positions at time ¢ of the point
of contact relative to C,; and C,,, respectively. We will restrict attentions to an
interval I such that c1(t) € S1,; and cp(t) € Sp; forall ¢t € I and some i and some j.
The coordinate systems ( f,;, U3 ;) and (f2,5, Uz;) induce a normalized Gauss frame
at all points in S;; and S2,;. We define a continuous family of coordinate frames,
two for each t € I, as follows. Let the local frames at time t, Cn and Cj,, be the
coordinate frames that fixed relative to C,; and C,2, respectively, that coincide at
time ¢ with the normalized Gauss frames at ¢,(t) and ¢,(t) (see Figure 1).

We now define the parameters that describe the 5 degrees of freedom for
the motion of the point of contact. The coordinates of the point of contact relative
to the coordinate system (f; ;, U; ;) 'and (f2,5, Uz ) are given by u,(t) = {;‘(cl(t)) €
Usri and uy(t) = fy}(ca(t)) € Us;. These account for 4 degrees of freedom. The
final parameter is the angle of contact (t), which is defined as the angle between
the x—axis of Cj; and Cj,. We choose the sign of 9 so that a rotation of Cj, through
—1% around its z axis aligns the x—axis.

We describe the motion of 0bj! relative to 0bj2 at time t, using the local
coordinate frames frames Cj;; and Cj,. Let vz, vy and v, be the components of
translation velocity of C;; relative to Cj, at time ¢. Similarly, let w,, w, and w, be
the components of rotational velocity.

The symbols K, T; and M, represent, respectively, the curvature form,
torsion form and metric at time ¢ at the point c1(t) relative to the coordinate system
(f1,i,U1,i). We can analogously define K, 7%, and M,. We also let

cosyp —siney

Ry = [ —sing —cost }, I\? = Ryl Ry.



Note that K is the curvature of 0bj2 at the point of contact relative to the x- and
y -axes of Cpy. Call K + K, the relative curvature form.

The following kinematic equations that describe motion of the point of
contact over the surface of 0bj1 and 0b72 in response to a relative motion between

these objects are due to Montana ([Mon86]).

Theorem 2.1 (Kinematic equations of contact) At a point of contact, if the relative
curvature form is invertible, then the point of contact and angle of contact evolve

according to

a = Ml-l(Ifl +I;’2)-l([ ~Wy ] - I-&"zl: bz ]), 3)
Wy Vy
w, = M;IR,,,(K1+I?2)-‘([ ~ Yy ] +K1[ i D (4)
wg vy
¥ = w,+TiMyay + ToMyi,, (5)
0 = v, (6)

The last equation is called the constraint equation.

Example 2.4 (The classical ezample re-visited ) Let’s consider the classical ex-
ample of a unit disk rolling on the plane, as shown in Figure 2 (See [Gol80], and
[Gre77]). The coordinates of the plane are given by (u2,v2) € R?, and the coordinate
of the disk is u; € R. Embed the disk in R® with the following parametrization

f:U — R :uy — (cos uy,sin uq, 0).

We define the Gauss frame of the disk by the frame with origin at f(u,) and coor-
dinate axes

x(u1) = f', 2(w1) = f”, and y(u;) =z x x.

Let 1 be the angle of contact. Let (v, vy, v;) be the components of translational ve-
locity of Cj; relative to Cjy, and (0, wy, w;) be the components of rotational velocity.
Note that the disk has only two degrees of rotational Jfreedom. Following a procedure

outlined in [Mon86], we derive the following kinematic equations of contact for the



moving disk.
i -1 0 0 0
773 _ —cos P 0 cos ¢ —siny
13? - sin ¥ v+ N sin 1 vz + cos 1 vy, (7)
Y 0 1 0 0
v, = 0.

From Greenwood ([Gre77]), the constraints of no slippage are described

in differential forms by
dug — cos du; = 0, - (8)
dvy — sin ydu; = 0. (9)
It is important to note that the two differential forms (or 1-forms) given by Equa-

tions (8) and (9) annihilate ezactly the first two vector fields of Equation (7) . For

example, we have that
(=1, - cos,sin,0)- (- cos4,1,0,0)% = 0.

In other words, rolling constraints can be described by one of the following two
equivalent conditions: (1) the differential forms given by (8) and (9) be zero, or (2)

the vector fields which do not annihilate these one-forms vanish from the kinematic

equations of contact, which in turn is equivalent to v, = vy = 0 . This duality

should always be kept clear in mind.

Definition 2.7 We define three special modes of contact (or contact constraints)

in terms of the relative velocity components by

10



(1) Fized point of contact:

(2) Rolling contact:

(8) Sliding contact:

The following results follow immediately from Theorem 2.1.

(10)

(11)

(12)

Corollary 2.1 The kinematic equations of contact correspond to each of the contact

modes are
l.11 = 01
flz = 0,
¢ = w,,
Jor fized point of contact,

g = MI-I(I(I + fk’z)-l[ -wwy ],

u; = M{1R¢(If1 + ffz)"l [ %y ],
We
¢z = TlMlﬁl + TzMzilg.

for rolling contact, and

= -M7U K+ I.fz)"lffz[ zx ],

y

g = Af{lﬁqs(.[fl + .[.\:'2)_1[&'1[ :x },
Yy

| ¢ = TiMyw, + ToMou,.

for sliding contact.

11
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3 Existence of Motion

In this section, we use the kinematic equations of contact and a generalized version
of the Frobenius Theorem to verify the existence of motion between two contact
configurations under rolling. For convenience, we restate the problem here, with a

slight modification.

Problem 1’ Consider motion of obj1 relative to obj2, as shown in Figure 1. Let
92 = (8,2, RY 5) € SE(3) be an initial contact configuration of objl
relative to 0bj2, and g.1,.2(t) € SE(3),t € [0,¢ 7l, be a trajectory of obj1 that
satisfies the rolling constraints and 9r1,,2(0) = g2 ;. Characterize the set of
reachable configurations of obj1, that is, a configuration g;fl‘,z € SE(3) such
that there ezists a t; € [0,00) with grfl,r2 = gr1,r2(ts)-

In Section 2, contact constraints have been described in terms of the local
coordinate frames. We need to transform these constraints to the reference frame

Cr1. By Proposition 2.1, the velocity of C,, is related to that of €}y by a similarity

[ Ur1,r2 ] = Adgu,n . [ vn,r2 ] (16) .

We1,r2 wi1,r2
where g;1,r1 is the configuration variable of the local frame of obj1 at the point of

transformation

contact relative to Cr;. On the other hand, since Cj, is fixed relative to Cra, we

conclude that

Uz . Wa
2= = [ vy | andwner =wnge = | wy
vz wz

Thus, rolling constraints require that the velocity field of 0bj1 be expressible in the

form
[ 0 T
0
Vr1r2 | _ . 0
[ We1,r2 ] - Adgu'n We (17)
Wy
L 0 |

for some (w.,w,) € R2. By Equation (1) the trajectory of objI is uniquely deter-
mined by specifying the rolling velocity (ws, ivy).

12



Figure 3: Motion of a unit ball over another ball

By maintaining contact with 0832, the set of reachable configurations (of
0bj1) must-be within a five dimensional manifold M of SE(3). M is called the
contact configuration manifold, and locally M can be described as the zero set of a
function k : SE(3) — R, i.e., M = h=1(0). Here, h is called a height function.

Example 3.1 Let 0bjz be a unit ball and 0bj2 be the plane, as shown in Figure
1. Let the reference frame C,; be fixed to the center of the ball and the reference
frame C,g be arbitrary at the plane, except that its z-axis points up. Consider the
following function

h:SE(3);» R:(r,R)+— 7, -1,

where r = (r;,ry,7;)t. Clearly, a reachable configuration must be an element of
M = h=1(0), which is a 5 dimensional submanifold of S E(3).

Example 3.2 Let 0bj1 be a unit ball and 0bj2 be a ball of radius p, as shown in
Figure 3. Let C,; and C,; be fixed to the center of obj1 and obj2, 1espect1vely
Then, M is the zero set of the following function

h:SE@)—R:(r,R)— |r| - (1 + p).

From now on, the 5 dimensional manifold M will be called the config-
uration space (or manifold) of objl. In principle, in order to determine the set of
reachable points within A under rolling constraints, we need to know M. But, as

we see from the above examples that an analytic description of M depends on the

13



geometric of the objects and becomes complicated when these objects have less no
symmetries at all. Fortunately, we will need to deal with another space, called the
Parameter space, which is much easier to characterize than M. Moreover, the pa-
rameter space is diffeomorphic to M. Thus, if a motion exists between two contact
configurations within M then a flow exists in the parameter space such that the
images of the two contact configurations are linked by the flow, and conversely. We

now proceed to make these statements more precise.

Definition 3.1 Let S; C R® and S, C R3 be the embeddings of the surfaces of
obj1 and o0bj2 relative to C,; and Cr2, respectively. Let S! be the unit sphere of
R? representing the space of contact angles. Then, the parameter space P is the
following product space

P =5 x Sy x S,

P is afive dimensional manifold. The topology of P is given by the product topology.
In other words, an atlas of P is given by {S;}™ x {52,323 x {S}}™s,, where
{51} is an atlas of Sy, and etc. Consequently, a coordinate system of P is
given by (f1i, Uri) X (fo,5, Uz 4) X ¥. The coordinate system for the contact angle

is induced by a coordinate system of S; and a coordinate system of S,.

Proposition 3.1 If both objects are convez and at least one of them is strictly
convez, then the configuration manifold M is diffeomorphic to the parameter space
P.

Proof. This is essentially a restatement of the kinematic equations of contact. Since
both objects are convex and at least one of them is strictly convex, the relative
curvature form is invertible. This implies that contact must occur over isolated
points. Let f : M C SE(3) — P be the map that takes a contact configuration
to the corresponding contact parameters. Clearly, f is one-to-one and onto, and
the tangent map of f is just the kinematic equations of contact. Thus, f is a
diffeomorphism. O

From Section 2, rolling constraints in the parameter space are described

by a system of differential equations given in Theorem 2.1. Rearrange the kinematic

14



equations of contact, we have
Uy
!
iy [ = Xy(u1, uz, Y)ws + Xo(uy, uz, ¥)w,, (18)
)
¥
where u; = (u3,v;) and u; = (u2,v2). X1(uy,uz,9) and Xa(uy, uz, %) are the
(constrained ) vector fields on P, which correspond to rolling motion. Equation (18)

is a system of differential equations in local coordinates on the manifold P.

Definition 3.2 Let pp = (u), v, 43, v, ¥°)! be an initial pointin P. A pointps € P
is said to be reachable from pq if there ezists a choice of (wz, wy) € R? such that
the flow p(t) of (18) reaches ps after some finite ty € [0,00), i.e., p(0) = po and
p(ty) = p;..Such a py € P is said to be in the reachable space of py.

We can now restate the reachability (or existence) problem in terms of

the system (18).

Problem 1” Given an initial point pg (Po corresponds to the initial contact con-
figuration 991,r2 with the diffeomorphism of Proposition 3.1 ). Characterize the
set of reachable points from py by the system (18).

We apply Chow’s theorem to solve Problem 1”. Chow’s theorem is a
generalization of the Frobenius’s Theorem and has has been widely used in non-

linear control theory ([Isi85), [HK77], [Spi74]).

Theorem 3.1 (Chow’s Theorem )- Consider the following system of differential

equations on a n-dimensional manifold N.
&= fi(z)u1 + e fm(2)tm, M < 7 (19)

where x € N 1is the states in local coordinates, fi(z) € x*°(N),i =1, wm,isa C®
vector field on N and (uy,...unm) € R™ are the control tnputs.

LetV = {f1,...fm}La denote the smallest involutive distribution contain-
ing {f1,...fm} (or the the smallest Lie algebra of vector fields generated by {f1,.-fm}
) and JV,O the mazimal integral manifold of v through zo € N ( ]\7,0 eTists and is

unique by Frobenius’s Theorem ). Then,

15



1. A point z € N is reachable from z4 if and only ifz € 1\730, t.e., (z,z0) belong

to the same mazimum integral manifold of v.

2. Every point in N is reachable if and only if N, = N if and only fdim Vv = n.
The following algorithm computes V.

Algorithm 3.1 Input: A collection of vector fields {f1,...fm} € x®°(N)
Output: V = {fi,...fm}r4-
Step 1: Set
Vo = {f1, fm};
Step 2: Compute _
Vi = Vecr + 3 _[fis Vieor);

i=1

until an integer k* such that Vi. = Vike41, then V = V. and return.

Remark 3.1 1. k*<n.

2. [f1, f2] denotes the Lie bracket vector field of f;, f2 € x**(N). In local coor-
dinates (z;,...z,) € R® of N, the Lie bracket vector field is computed by the

formula

[fi, fo] = %%fl-- %fz,

where gﬁl‘; is the ordinary Jacobian matrix of f;.

Using Chow’s Theorem and Algorithm 3.1 we have the following algo-

rithm for verifying the existence of motion.
Algorithm 8.2 (Ezistence of Motion )

Input: 1. The coordinates of two points p, py € P.

2. Constrained vector fields X;,X, € X (P) that describe the rolling mo-

tion.

Output: A4 binary answer on if p ¢ can be reached from py.

16



Step 1: Compute the coordinate ezpressions of the constrained vector fields X1 (uy, uz, )
and X,(uy, uz, ¥) for (uy, uy) € ({(/'1',-}}"___}1 X {Ug'j};-"gl). ( Assume that S, is

covered by {S1,}12 and S, is covered by {S, gl )

Step 2: Compute the following Lie bracket vector flelds

84X, X,
Xq -

ap;i ' op;

Xs = [X, X3], (20)

Xs = [X2, X3],

X3 = [X1,X,)= X2,

where p = (uy,v1,up,v2,9%)t. Set V/ = {X1, X5, X3, X4, X5}, which is an
involutive distribution containing (X;, X,).

Step 3: . If dim(V') = 5, Vp € P, then V = V' and N,, = P. Return true for
any po and py in P. (Thus, every contact configuration in M is reachable
by rolling.)

o Ifdim(V') = n < 5. Let V be the smallest involutive distribution con-
tained in V' with rank n and N,, the mazimum integral manifold of v

through po. If ps € 1\7,,0 then return true, otherwise return false.
Remark 8.2 The above algorithm can be computed symbolically using Macsyma.

~ Example 3.3 Consider the example of a unit ball moving on the plane, as shown
in Figure 1. From Example 2.1, the ball can be covered by two coordinate systems,
and the plane by a sinle coordinate system in the obvious way. The curvature form,
metric and torsion form of the unit ball are computed in Example 2.3. The geometric

data of the plane can be easily computed using the following coordinate system.
fa1 : Uz — R® : (uz,v2) — (uz, v3,0),

where U,;; = R2. Clearly, the metric is the identity and the torsion form as well as
the curvature form are zero.

Following Algorithm 3.2, we have
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Step 1: On the first coordinate system of P, the kinematic equations of contact

are
/) 0 -1
U1 sec 0
Uy = —-sinyY |wz+ | —~cosy Wy
Vo —-cosy sin 9
¥ —tanu, 0
A

Step 2: The successive Lie brackets of X; and X3 are

0
— sec u; tan 1y
X3 =[X1,X5)=| -sinytanu; |,
— COs u; tan u,
—sec? u,
0
0
Xe=[X1,X3]=| —cosy |,
sin ¢
0
and
0
(14 sin? u;)secd u,
Xs = [Xg, Xa] = 2sin¢sec2 Uy

2cos Psec? uy
2sec? u; tan uy

Step 3: Compute the rank of

v = {Xls X27 X37 X47 XS}

(21)

It is easy to verify that, through elementary row and column operations, the

determinant of V' is identically 1.

Steps 1 through 3 are repeated for the second coordinate system of P and ¥’

is again nonsingular.

Output: It is true that a unit ball can reach any contact configuration on the plane

by rolling!

18



Example 3.4 Our second example consists of a unit ball moving relative to another

ball of radius p (See Example 3.2). Since each ball has two coordinate systems, P

has a total of four coordinate systems.

Step 1: In the first coordinate system the kinematic equations of contact are

i 0 -(1-2)
1’)1 (1- B)secu; 0
U = —fBsin we + —fB cos P Wy
Uq —B cos P sec uy Bsin Y sec us
¥ Btan uz cosyp — (1 — B)tanu, —f tan u, sin ¥
é Xiwz + X2wy’

where 8 = ﬁ.

Step 2: Using Macsyma, the successive Lie brackets of X’ 1 and X; are computed.

0
(1-8)%sec?u,
X3 =[X1,X,) = B(1 — B) sin 1 sin u; sec uy ,
B(1 — B) cos v sin uq sec u; sec u,
X3s

where

X = _B(1 - B) costpcos uy sin uy sinup + {~F%cos?uy + (8 — 1)?} cosup .
35 cos? u; cos? up N

0
0
X4 =[X1,X3]) = B(28 - 1) cos
~B(28 - 1) sin ¥ sin ug sec u,
B(28 — 1) sin ¢ sin u, sec uy

.
3

0
—{~(1 = B) cos? uy + 2(1 ~ A} secd 1,
Xs = [Xq, X3) = —{@3sinp cos? u; — 28(1 — B)?sin 1} sec? u, :
~{B3 cos pcos? uy — 28(1 - B)2 cos ¥} sec? u; sec u,
Xs,s
where
X = {83 cos 1 cos® uy — 26(1 — B)? cos ¥ cos u1}sinup + a
58 = cos3 u; cos uy
and

a={B%*1-pB)cos?u; - 2(1 - )3} sin u; cos u,.
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Step 3: Computing the determinant of
v = {XIQ'XZ’ X3’ X‘Ia XS}

gives

(B o 1

COS % COS Uy 1+p

detv' =
V' is singular for the following cases

¢ 8=1- p=0: This corresponds to 0bj2 being a single point. Note that
the rank of V' is 3 (not 2!). This can also be seen from the multiplicity

of the zeros in the determinant.

e 3= % = p = 1: This corresponds to the case when both objects are
balls of identical radius. In fact, counting the multiplicity of the zeros at
B = %, or computing the rank of v/, the reachable space has dimension
2! This fact can be interpreted using the notion of holonomy angles (See

Section 4).

e =0 = p = co. The result is degenerate because from the previous
example we know that a unit ball can reach any contact configuration on

the plane by rolling.

Steps 1 through 3 are repeated for the other three coordinate systems and the

results are consistent.

Output: It is true that a unit ball can reach any contact configuration by rolling

relative to another ball of radius p if and only if p is not zero and p# 1.

Example 3.5 (The classic' ezample re-visited). Consider again the classic example
of a unit disk on the plane. Note that the two rotations are different here as from
Example 3.3. According to [Gre77] and [Gol80), the disk can reach any contact
configurations by rolling, but as far as we are aware of no proof has been given in

any mechanics textbook. The constrained vector fields from Example 2.4 are

-1 0

—cosy 0

X1 = sin 9 and X, = 0
0 1



The Lie algebra of vector fields generated by {X;,X,} consists of, in addition to
{X1, X2}, the following'vectors

X3=[X1,X) = Tsiny ,

and

—cos Y
sin ¥
. 0]
Note that [X,, X3] = 0. It is simple to verify that

X4 =[X2,X3] =

vV = {Xl, Xa, X3, -Y‘i}

has rank 4, for all points in the parameter space. This shows that any contact

configuration is indeed reachable by rolling.
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4 The Motion Planning Algorithm

In this section, we solve the following planning problem.

Problem 2’ Suppose that a motion ezists between two contact configurations (g2, ,,,
g,{l r2) € M. Find a trajectory of objl that satisfies the contact constraints and
links 9!1.’-2 to g .2

Let po = (uf, 9, u3,v3,%°)t and p; = (uf, v, uj, v, )t be the point in P that
corresponds to the contact configuration g% -2 and g,fl,,.,, respectively. Uniqueness
of po and p; are guaranteeed by Proposition 3.1. We may assume without loss of
generality that po and ps belong to the same coordinate system. The objective
of the planning problem is to construct a trajectory (u1(2),uz(t),%(t)) € P (or
(e1(t),ea(t),%(t)) € P for a coordinate invariant description ) that satisfies the
rolling constraints and links p f to po. We remark that as a generic property of
robot motion planning, the paths are not unique, unless additional constraints such
as minimal distance, maximum safety margin ([Kod87], [Can88] ) and the grasp
condition ([LCS89] ) are imposed.

First, let’s characterize relations between contact trajectories ci(t) € S
of obj1 and c¢,(t) € S; of 0bj2. For this, let T'S; denote the tangent bundle of S,
TS; the tangent .bundle of Sz and T'S? the tangent bundle of S!. We claim that
there exist bundle maps

1 :TSI —_— T52 X TSI, 22)

and
@2:TSy — TS; x TS! (23)

that takes the contact trajectory of one ob ject to the contact trajectory of the other
and the trajectory of the contact angle. The coordinate expression of the map v,
is computed as follows. Let c2(t),t € I, be a trajectory of contact for 0bj2, or
equivalently, (u;, 12) € T'S,. By the second equation of (14), the components of

rolling velocity can be expressed in terms of Uy as

We

[ Wy ] = (K, + I.fz)R‘l,Mgﬁz, Rzl = Ry. (24)
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Substitute this into the remaining equations of (14), yield

u _ M_1R¢ .
)[R e

Equation (25), the coordinate expression of the map 4, defines the evolution of the
contact coordinates of objI and the contact angle. Let uy(2),t € I, be the solution
of (25) and e1(t) = f7'(wi(t)) € S1,t € I, for (f1,Uy) a coordinate system of 5.
c1(t) is called the contact trajectory of obj1 induced by the contact trajectory (1)
of obj2. Conversely, interchange the role between 0bj2 and obj! , we have

a2 M;'R, :
A = b4 Miu,. 26
[sz [T1+T2R¢} 1t (26)

which is the coordinate expression of the map ;.

The angle of contact, %, whose evolution is defined by (26) has a useful
geometric interpretation when 0b;2 is torsion free,ie., T, = 0. Let ¢;(2),t € [to, ta],
be a piecewise regular simple closed curve in S, representing the contact trajectory
of 0bj1, and §v = 9(t1) — ¥(to) denote the net change of contact angle induced by

c1. We have

Proposition 4.1 -6 is equal to the holonomy angle of the loop ¢, (See Appendiz
A for the definition of holonomy angle). In other words, —6v% = [[p kdA, where k

is the Gaussian curvature of S; and R is the regton bounded by c,.

Remark 4.1 Thisis a key result leading to the development of the motion planning
algorithm. In order to realize a desired change of contact angle without altering the
point of contact relative to S;, we may plan a closed curve in S; such that the
Gaussian curvature integral over the region bounded by the loop is equal to the net

angle change.

Proof. By appendix A, we may assume that c1(t) € S is contained within a

geodesic coordinate system. Thus, the metric tensor takes the form

10

M1=[0 q

], i.e.,lf.,x|=1, and |f,,| = q.



and the Christoff symbols are given by
2
If,=T% = %1, Tl =—qq, I3 = q?

r%l =r%2 =I‘{2 =r¥1=0; and k£ = _%.

where ¢ = 5%— and g; = 3‘%?1-. v from (26) is given by (when T, = 0)
’lﬁ = Tllell.

But,

Tl.hIl:—jL[{‘;T"], {TT][; g]z[fv, T A

Using Gauss’s formula and from the special forms of the Christoff’s symbols, we

have
fuw, =T11fu, + T3 fo, + hun = 040+ hyyn,
and
fuin = Tlafu + Thfu +hian = £ fo + hipn.
Thus,
Joo - fuwyuy, = 0and fy, -+ fu0, = @1/g.
Finally,

¥ ="qi, (28)

which is precisely the expression (differing by a sign to account for the reversed
orientation) for the derivative of the holonomy angle (Appendix A). a

Using (25), (26) and Proposition 4.1, we have the following algorithm
that generates a desired path for the planning problem. The example of a unit ball

on the plane is used for illustration.

Algorithm 4.1 (The Motion Planning Algorithm)

Input: 1. Initial and final contact configurations py = (u?, 99,48, v, %°) and

pPr= (u{, ”{’ “z{’ ”{’ '»bf)'



2. Geometric data of objl and obj2: curvature forms (K, K,), metric ten-
sors (M1,M;) and torsion forms (Ty,T; ). ( We assume that obj2 is
torsion free).

Output: A curve that links pg to Py and satisfies the folling constraints.

Step 1: Construct a curve cy(t) € S2,t € [to, 1], such that
ud ul
w(te) =| 2| and ua(ty)=| 2 |. 29
2(to) [vg] 2(tf) [v{] (29)
Let ¢)(t) € S1 and ¥(t) € S, t € [to, 1], denote the induced contact trajectory
of objl and the trajectory of the contact angle, respectively. At t = t,, the
contact point of objl and the contact angle reach some intermediate values,

denoted by
[ :I J = uy(t)) and P = ¢(t,).

Step 2: Construct a closed curve c2(t) € S2,t € [t1,13), such that the induced con-
tact trajectory of objl has the property

- f
Uy [
u(t)=| . nduy(tx) =1 1 |.
1(t1) [vl]a 1(t2) [v{]
Let (t) € S1,t € [t1,1;], denote the induced trajectory of the contact angle.

Att =t,, the angle of contact reaches some intermediate value denoted by
P = Y(t2), wherey(ty) = .

Step 3: Let §v9 = ¥ — ¢ be the desired holonomy angle. Construct a closed curve
c1(t) € S1,t € [t2,ty], such that (1) the induced trajectory cy(t) € S,,t €

[t2,t5], is also closed and (2) the Gaussian curvature integral over the region

bounded by ¢, is equal to the desired holonomy angle.

Output: Return the curve (u(t),uz(t),¥(t)) € P, t € [to,21,] U [t1,22] U (t2, 2],
which is the union of the curves constructed in Step 1, 2 and 3.

f
Remark 4.2 The desired contact point [ u} ] of 0bj2is achieved in Step 1. Then,
v

2

S
using a closed curve relative to obj 2 in Step 2 the desired contact point. [ u} } of
Y
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Figure 4: A Lie bracket motion

obj1 is realized without sacrificing the desired contact point of obj 2. Finally in Step
3, using a closed curve relative to objz, which also induces a closed curve relative to

0bj2, the desired holonomy angle is realized.

We now use the example of a unit ball on the plane to illustrate the
algorithm. Clearly, Step 1 can be easily done using existing techniques in robot
motion planning ([Kod87], [Can88]). Step 2 and Step 3 are carried out as follows.

Step 2A: Without loss of generality, we may assume that the initial anf final points
of contact in the unit sphere 52 are within the same coordinate system. Let
g = ::f: and u{ = :1} be the coordinates of tl}ese contact points.
We wish to construct a closed curve cy(t),t € [t;,1,], in the plane so that
the induced contact trajectory c1(t),t € [ty,25], of S? links @, to u{ , i.e.,

fHa(t)) = & and f~Y(ei(t2)) = ui.

Lemma 4.1 Let ¢{ = f(i;) and c{ = f(u{ ) be ezactly /2 distance apart in the
unit sphere S2. Then, the square of side length 7 /2, shown in Figure § will induce

a contact trajectory ¢, which links ¢ to c{ .

Proof. We need to demonstrate that the square has the desired features. Label
the point ¢ and c{ in the sphere by 4’ and B, respectively, as shown in the figure.
d(A',B') = = /2. There exists a unique geodesic, i.e., an arc of the great circle,
that connects A’ to B’. The great circle will be called the equator. Let A denote

the initial point of contact in the plane. Thus, tracing the geodesic from 4’ to B’

26



induces a straight line in the plane with end point B, and d(B, A) = 7/2 (by arc
length constraint). Going from the point B to the point C in the plane is equivalent
to going from the point B’ to the north pole, C’, in the sphere. Note that £(4BC)
and £(A'B'C’) are both right angles. Now, tracing the straight line from C to
D in the plane induces a curve in the sphere which ends at the starting point A4’.
Consequently, by, closing the curve in the plane with a straight line joining D to A4,
we have arrived at the point B’ in the sphere. This shows that-the square indeed
induces a curve in the sphere which has a net incremental distance 7 /2. This is
called a Lie bracket motion. O

We now return to the more general case.

Step 2B: By Lemma 4.1, we may assume that d(c9, c{) < m/2. Otherwise, Lemma
4.1 can be applied repeatedly until some intermediate point which is less than
7 /2 distance away from c{ is reached. Let I = d(c$, c{ ) < ©/2 be the distance
of these two points. We wish to conétruct a closed curve ¢3(t),t € [t1,15], in
the plane such that the induced contact trajectory ¢;(t),t € [t1,t;], has an
incremental distance ! along the geodesic connecting ¢{ to ¢f.
We propose to use for ¢, the closed curve ABCDE shown in Figure 5, where

¢ = d(A, B) is to be determined, d(B,C) = d(C,D) = 7 /2, and

0 = 2tan~! i-

7[2
- We like to show that for some choice of z, the closed curve ABCDE will
induce a curve ¢;(t),t € [t;,1;], in the sphere that links f to c{ . First, by
tracing the straight line from A to B and then to C induces a curve in the
sphere which starts at A’, passes through B’ and then comes to the north
pole, C'. Note that d(B’,A’) = z and L(A'B'C’) = 90°. Going down from
C to D with an angle § and by a distance 7/2 is equivalent to going down in
the sphere from C’ to some point D’ at the equator. Clearly, d(B’, D’) = 4.
Now, Connect D to A by a straight line, and we claim that (1) £CDA4 = 90°
and (2) d(A,D) = z. To see this, note that by definition £LACD = #/2 and
AC is common to both the triangles AABC and AACD. Thus, they must

(3%
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Figure 5: A (general) Lie brackeét motion

be congruent triangles and the claim follows.

Thus, by tracing the straight line from D back to A in the plane, we have
followed the equator from D’ to some point E’, and d(E’, D’) = z. With ¢,
being the closed curve ABCDE for some choice of z, the induced curve ¢; in
the sphere has its starting point A’ and its ending point E’, where d(E’, 4),
the net incremental distance, is a function of z. Let f(z) = d(E’, A’). Tt is
not hard to see that

=2z -0=2z -2t ‘li.
f(z) =22z 2z — 2tan 72

The hope is to find an z, if possible, that solves the equation

fz) 1. (30)
We claim that there ezists a unigue z that solves (30). To show this, note that
f(0) = 0 and f(7/2) = n/2 > I. Thus, solutions exist. For the uniqueness

part, we compute the derivative of f(z), which is given by

2/r  _ 2-2/7+ 422%/x?
+ 42 T 1442272

fiz)=2-2

Thus, f(z) is a monotone function and the solution to (30), denoted by z+, is
unique!
Consequently, the curve ABCDE, with d(B,A) = z*, has all the desired

features.

Step 3’: We wish to construct a closed curve ¢;(t),t € [t2,2), in S? such that (1)
the induced curve cy(t),t € [ta, 1], in the plane is also closed and (2) ¢, has a

desired holonomy angle §7.
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Figure 6: Another Lie bracket motion

We may assume that 0 < —§9 < 2. Consider the latitude circle with uy(t) =
u3(0),and v(t) = vl.(O) +1t, t € [t2,t2 + 27]. We claim that (1) the induced

trajectory ¢, s also a circle and (2) the holonomy angle of ¢, ranges from 0
uy(t)

vl(t)

to 27 for 0 < u1(0) < 7/2 . To see this, substitute the expression of

into (26) and after some algebra, we get
$(t) - $(0) = —sinu, (0)¢ =S at, a = —sinu,;(0),

and
u2(t) = B cos(at + o) + 70, Yo = u2(0) — cos 1o cos 21(0)/a,
v2(t) = —Bsin(at + 4o) + b0, 6o = v2(0) + sin 1o cos u;(0)/a.
Thus, we have
(u2(2) = 70)% + (va2(2) — b0)? = B2.

This shows the claim.
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5 Conclusion

In this paper, we have studied robot motion planning with nonholonomic con-

straints. First, using the kinematic equations of contact developed by Montana,

we have transformed contact constraints in the configuration manifold to a system

of differential equations in the parameter space. To verify the existence of motion

between two contact configurations, we have established an algorithm that compute

the smallest involutive distribution generated by the constrained vector fields. If.
the distribution has full rank, then any two contact configurations can be reached

from each other by rolling. Otherwise, a motion exists if and only if the two contact

configurations belong to the same maximum integral manifold of the distribution.

As we have shéwn by examples that, it is precisely due to the non-
holonomicity of the rolling constraints that an ob ject can reach an arbitrary contact
configuration by rolling. We conjecture that this is a generic property of any two
ob jects. We have also given an example, namely two balls of equal radius, where
this property fails.

For many interesting applications, one ob ject is approximately torsion
free. In these cases, we have also given an algorithm that generates a desired path
when it exists. The general case is currently under investigation with the framework
developed in this paper.

A more difficult problem which we are also very interested in is, finding a
curve in Sy of shortest distance such that the desired contact point of objl and the
desired contact angle can be realized. This problem has a close relation with another

class of problems recently studied by others ([Mongs)).
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Appendix A

In this appendix, we provide a short introduction to some local and global surface
theory. The concepts to be discussed here include the first, second fundamental
forms in a more general setting, the Christoff symbols, covariant differentiations
and geodesics, holonomy angles and the Gauss-Bonnet Formula for computing the
holonomy angle. An in-depth treatment of these sub jects can be found in ([MP78],
[K1i78] and [Spi74]).

Notation 5.1 Asin Section 2, U will always denote an open subset of R2. A point

of U will be denoted by u € R2, or by (u1,u2) € R xR, or (u,v) € R x R. Let

f: U — R® be a differentiable map, df, : T,R? — T4(u)R® denotes the tangent

map of f, and f,, f, denote the partial derivatives of f with respect to u and v,
. 2 ..

respectively. Also, f;; denotes az%a.%-"a ji=1,2.

Notation 5.2 Let S denote an embedded surface, with a coordinate system (f,0).
Let n: § — 52 denote the Gauss map of S. In a coordinate system (f,U) we will '
also use n to denote the map nof : U — $2 and dn,, : T,R? — T(4)R3 the corre-
sponding tangent map. The first fundamental form I and the second fundamental

form II are denoted by '

[ =|Hh A-f2lalm g
“ fori fa-fa g 922 |’

and

nu'fu Ny * fo ha1  h2

Remark 5.1 1. When (f,U) is orthogonal, the metric M defined in Section 2

IIu=-dnu‘dfu=_[ Ty - fu nu-fv]é [ hi1  hio ]

is the square root of the first fundamental form.
2. When (f,U) is orthogonal, the curvature form is given by K = M ~tIIA{-1,

i.e., a change of basis.

The Gaussian curvature k is given by k = 9(%‘(11—{‘"% and the Christoff symbols of the
second kind are defined by

1 wf0ga  9gi; . Ogij
| 1k i Y9 3 31
r"’ 2;9 (31!1' oy + ou; )’ (31)
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where g'¥ is the | — k entry of the inverse matrix of I,. The Gauss’s formula expresses

fij in terms of the basis (f1, f2,7)
fi; = Y Thfe + hijn, i,5=1,2. (32)
k

Definition 5.1 Let X be a tangent vector field along a curve ¢(t) in S, which in
local coordinates can be written as X (t) = ¥ z;(t) fiou(t). The covariant derivative
of X along c is defined by

%i—{(t) = ; (:i:k + Z z,-ajrﬂ‘,-) Sfrou(t) (33)

Y]

and X is called parallel along ¢ if ZX(t) = 0

A curve ¢(t) on S is called a geodesic if and only if %5{‘—) = 0. By (33) this is
equivalent to the second derivative of ¢(t) being normal to the surface. Thus, all

geodesics to the unit sphere S? are arcs of the great circles.

Proposition 5.1 Let ¢(t) be a curve on a surface S. Let X be a tangent vector to
S at c(to). Then, there ezists a unique vector field X (t) that is parallel along c(t)
with X(to) = X.

Proof. Consider the following initial value problem

G = - T Ty,

Ti(to) = &, k=1,2.
By Picard’s theorem (i.e., existence and uniqueness of 0.D.E), this has a unique
solution for values of ¢ near ty. The solution clearly is parallel along ¢(t), where it is
defined. Repeated application of this gives a unique X defined along all of ¢(2). a
The unique vector field X (t) parallel along c(t) such that X (t) = Xis
called the parallel translate of X along c(t). Note that if two vector fields X(t)
and Y(¢) are both parallel along a curve ¢ in S. Then, |X(t)| is constant and so
is the angle between X(¢) and Y(2). To see this, let g(¢) = (X(t),Y(2)). dg/dt =
(dX/dt,Y)+ (X, dY/dt) = 0+ 0 = 0, s0 g is constant. f ¥ = &, this implies |X|
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is constant. The cosine of the angle between X and ¥ is g(t)/1X||Y|, which is then
constant and so is the angle.

We now introduce the notion of holonomy angle.

Let c be a piecewise regular simple closed curve in a surface S with period
L and is contained within a simply connected geodesic coordinate system, bounding
a region R. Let X be a unit vector field parallel along c. (Such an X exists by
Proposition 5.1.) In general, we have X (0) # X(L). We shall be interested in the
angle between X (0) and X (L), which we denote it by 68 = £(X(0),X(L)). 66 is
called the holonomy angle of ¢. Since an orientation of § is given by the Gauss map,
the angle bétween X(0) and X (L) is well defined (i.e., counter clockwise rotation

about the normal).

Theorem 5.1 (Gauss-Bonnet Formula) Let c(t) be the curve on S as described
above. Let kg be the geodesic curvature of ¢ and @y, ...a, be the jump angles at the

junctions. Then,

1.
86 = £(X(0), X(L)) = / /R kdA, (34)

where k is the Gaussian curvature of ¢ and

//deA+/kgds+Za;=27r. - (35)
A

Remark 5.2 1. Let c be a unit speed curve. The geodesic curvature ks of cis
defined by the following formula
ko(n x é(t)) =" (ilk + Zrﬁ;a;ﬁj) fr (36)
k i,J
Since (f1, f2) are linearly independent, kg is uniquely defined by (36). A curve
¢ is a geodesic if and only if kg = 0.
2. f: U — R3 is a geodesic coordinate system, if the first fundamental form

takes the form

Iu=[3 qon’ (37)



for some ¢ > 0, which is a function of (u;,u;). Every surface can be covered

by geodesic coordinate systems.

Proof (of Theorem 5.1). We shall only prove (1). The proéf of (2) can be found in
any standard text book on differential geometry (e.g. [MP78], [K1i78] and [Spi74]).
In a geodesic coordinate system, the first fundamental form takes the

form of (37). By (31), the Christoff symbols are
rf, = Th = %1, T3 = —qa1, I3, = z_z

I‘}1=I‘§2=I‘}2=I‘§1=0, andk:_gél,

where ¢; = 9q/0v;.

Since all tlhle quantities in the conclusion are independent of parametriza-
tion, we may assume that c is parametrized by arc length. Let 8 = £(f,X). Note
that cosf = (fy,X) so that —(sin8)§ = (f;,X) + (f1,X) = (f,X) since X is
parallel along ¢. However, |

A =tafu +d2fia

so that Gauss’s formula (32) yield

—(sin) = (if + u2 f12, X)
= ((@1l]; + @lh)f + (4,72, + dzrfz)fz, X).

The specific form of l‘fj allows us to conclude

X)

— (sin6)f = 4, 28f2 X) <f;' (38)

Because 12 = 0, {f1, f2/| f21} is an orthonormal basis of Tf(u)S, for each u € U.

Hence,

X = (Xy.fl)fl + ('YifZ/lesz.
| f2

Since X is a unit vector and (X, f;) = cosé, we have (X, f2) = sin6. Hence (38)

becomes § = —gq, 4, so that
60 = —/qlﬁgds = —/qldug (39)
c c
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Figure 7: A geodesic triangle in 52

By Green’s Theorem,

—/qldug = —// quduldug = -—/ ql—lqduldug = // de, (40)
c R R q R

where [fpdA = [fp qduidu, is the area integral.
On the other hand, we can write
£(X(0),X(L)) = £(frou(L),X(L))- £(f10u(0),X(0))
8(L) - 6(0) = / Z—st = 6. (41)
O

Example 5.1 Let A, B be two points on the equator of the unit sphere $2, sep-
arated by a distance @ < 7, and NV the north pole (Figure 7) . Clearly, the three .
points can be connected by unique geodesics (i.e., arcs of the great circles ) to form
a triangle. This is called a geodesic triangle. The three edges are labeled by ¢y, ¢,
and c3. Consider the closed curve ¢ which consists of the union of c1,¢2 and c3.
Let X(0) be the unit tangent vector to ¢; at c1(0), as shown in the figure, and
X(t) the vector field which is the parallel translate of X(0). The holonomy angle
60 = £(X(0),X(L)) can be computed using either (34) or (35).
By (34), k = 1 for the unit sphere. Thus,

50=// kdA = area of R'=-]5-47r-i=a.
R 2 2r

On the other hand, by (35) k, = 0 since cis a geodesic triangle and the jump angles

are @y = 1/2,a2 = /2, and a3 = 7 — a. Therefore,

60 =2r- € kgds-Za,- = a.
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Remark 5.3 Given two points A and B in M, if B is not a conjugate point of A,
then there exists a unique geodesic connecting B to A. In other words, there exists

no Jacobi field along the geodesic connecting B to 4 ([K1i78)).

38



	Copyright notice1989
	ERL-89-13

