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Abstract

Rolling constraint is a classical example of a class of constraints knwon as
non-holonomic constraints. Such a constraint is usually difficult to be dealt
with. In this paper, we study motion of an object relative to another under
rolling constraints. In particular, we address the following two problems: (1)
Given the geometries oftwo contacting bodies, assert ifa motion exists between
two contact configurations without violating the constraints, and (2) ifa motion
exists, plan apath thai links the two contact configurations. Using the kinematic
equations ofcontact, we first transform contact constraints in the configuration
manifold toasystem ofdifferential equations in the parameter space. Then, we
apply ageneralized version ofthe Frobenius's theorem, called Chow's Theorem,
to assert the existence of motion. The smallest involutive distribution, V,'
generated by the constrained vector fields iscomputed using Macsyma. If two
contact configurations are within the same maximal integral manifold of V,
then a motion exists. To plan a path that links two contact configurations,
given that it exists, we first identify the contact angle as the holonomy angle
of a closed path in the object surface. Then, we use Lie bracket motion and
the Gauss-Bonnet Theorem to generate adesired path. The motion planning
algorithm is geometric, and is easy to visualize. Potential applications of this
study include (1) rolling a magnetically levitated mobile robot in a crowded
environment, (2) adjusting contact configurations ofamultifingered robot hand
without slipping, and (3) following a workpiece by a robot end effector without
dissipation or wearing.

•This research is supported in part by NSF PYI Grant DMC 8451129 and by the Defense
Advanced Research Projects Agency (DoD), monitored by Space and Naval Warfare Systems Com
mand under Contract N00039-88-C-0292.



1 Introduction

In this paper, we study motion of an object relative to another under rolling con-
straints. For this, consider the two objects shown in Figure 1, which are labelled

by objl and obj2, respectively. Here, objl may represent the end-effector ofarobot
manipulator, the fingertip of amultifingered robot hand, or amagnetically levitated
mobile robot, and obj2 represents the contacting environment (or the workpiece) of
the manipulator, the object being grasped by the robot hand, or the terrain to be
traveled by the mobile robot.

There are at least three advantages in executing rolling motion over slid
ing motion, which is known to be holonomic. First, because constraint forces for
non-holonomic constraints are worHess, wearing problems associated with the con
tacting bodies are absent Second, the associated control problems can be more easily
dealt with.. In order to control sliding motion, for example, the coefficient of fric
tion has to be known exactly, which is in general difficult. Even the world's best
figure skater has trouble in managing controlled sliding. On the other hand, rolling
motion can be made safe by staying sufficiently close to the center of the friction

cone ([LHS88], [CHS88]). Finally, as we will see in this paper, the set of reachable .
configurations for rolling is much larger than that for sliding. This is due to the
non-involutivity property of the corresponding constrained vector fields.

Suppose that, say because of the apparent advantages of rolling motion,
we have decided to move an object from one contact configuration to another by
rolling, then the following two problems are natural and basic to arobotics engineer.

Problem 1 Assert, using possibly the geometric data of the objects, ifamotion that
lead from one contact configuration to another without violating the constraints
exists.

Problem 2 If a motion exists, plan a path that not only satisfies the constraints
but also connects the two contact configurations.

We call the first problem the existence problem, the second problem the
planning problem. The objectives ofthis paper are to provide solutions to these two



Figure 1: Motion of an object with rolling constraints

problems.

This paper is organized as follows. In Section 2, we review the geometries
of a surface and the kinematics of contact. In Section 3, we define the (contact)
configuration manifold and describe the contact constraints. Then, we transform

the contact constraints in the configuration manifold to a system of differential

equations in the parameter space. The existence problem is reduced to a problem
ofcharacterizing all possible flows generated by the system of differential equations.
But, the later problem can be dealt with using existence techniques in nonlinear
control theory. In Section 4, using geometric techniques we present a geometric
motion planning algorithm.



2 Preliminaries

In this section, we review briefly the geometries of a surface and the kinematics of

contact. See [MP78], [KH78] and [Spi74] for a further treatment on the geometries

ofasurface and [Mon86], [LHS88], [CR87] and [Ker85] for the kinematics ofcontact.

A short introduction to local and global surface theory is also provided in Appendix

A, where the notions of covariant differentiation and holonomy angles and Gauss-

Bonnet Theorem are discussed. These issues are key to the development of the
geometrical motion planning algorithm in Section 4.

Notation 2.1 Let Q and Cj be two coordinate frames of R3, where i and j are

arbitrary subscripts. Let r,ti 6 R3 and #t)i e 50(3) denote the position and

orientation of C, relative to Cj. For simplicity, we will write gitj = (rij,Ritj) e
Sf?(3) the configuration ofC, relative to Cj.

Definition 2.1 The velocity of d relative to Cj is denned by

. or &.• =
'«.j

wt
»ij [ S'HRljRij) J 0 0

where 5 :R —• so(Z) identifies R3 with the space of3x 3skew-symmetric matrices.

Note that every f € se(3) defines a left invariant vector field on S£(3),
where the corresponding flow g(t) € S£(3),r € J, satisfies the following differential
equation.

*(*) =*(*)£• (1)

Thus, a trajectory of an object is given by specifying a left invariant vector field,
which in turn is generated by an element £6 se(3). On SE(3), which is aLie group,
the solution to (1) for any f(t) € se(Z) is defined globally.

Proposition 2.1 Consider three coordinate frames Cx, C2 and C3. The following
relation exists between their relative velocities.

V3.1

™3,1

*>2,1

U>2,1 _ +
*>3,2

W3,2
(2)



where Adg-i is a similarity transformation, given by

Ada-i =
9*,2

•^3,2 -^3,2^(r3,2)
0 *3,2

Remark 2.1 Suppose that C3 is fixed relative toC2, then the velocity of C3 relative
toCi is related to that ofC2 by a constant transformation, namely the Ad _i map.

93,2

Definition 2.2 Aspace curve is the image ofa C2 map c:I —• R3, where J is an
interval. The pair (c,I) is called a parameterization of the space curve, c is regular
if c(t) # 0,Vt € J. Aspace curve is regular ifit has a regular parameterization.

Notation 2.2 U will always denote an open subset of R2. A point of U will be

denoted by u 6 R2, or by (uuu2) € Rx R, or (u,v) € Rx R. Let / : U —• R3 be a
differentiable map, dfu :TUR2 —• T/(u)R3 denotes the tangent map of /, and /u, /„
denote the partial derivatives of / with respect to uand v, respectively.

Definition 2.3 A surface ( or an embedded 2 manifold) in R3 is a subset S C R3

such that for every point s € 5, there exists an open subset S8 of S(in the induced
topology of R3) with the property (1) s 6 5„ (2) S, is the image of a C3 map
/ : U —> R3, where fuxfv? 0,V(ti,t;) € 17, and (3) / : U —* Sa c R3 is a
diffeomorphism.

S„ is called a coordinate patch and the pair (/, U) is called a (local ) coordinate
system of 5. The coordinates of a point s € Sa are given by (u, v) = f"l(s). From
now on, if the coordinate system is clear from the context, we shall not distinguish
between a point s GSa and its coordinates. The collection of coordinate patches
{5,} which covers 5, i.e., 5 = US,, is called an atlas ofS. By a curve in S we mean

a curve c:I —> R3, which can be expressed as /ou(r) for some curve u : / • U
in U.

Remark 2.2 The surface of a smooth object is a compact embedded surface, and
thus with a finite number of atlases.



Example 2.1 The sphere 5 of radius pis an embedded surface. To prove this, let
U= {(w, v) e R2, -f < u< f, -7T < v< 7r} and consider the following coordinate
systems

/ : U—• R^ : (it, v) i—• (p cos it cos v, —p cos it sin v, psin u)

and

/ : ^ —• R : 0*, 0) i—• (—pcos itcos v,psin it, pcos itsin v).

The partial derivatives of / and / are

/u = (—psin itcos v,psin itsinv,pcos it)

fv = (—pcos itsinv,—pcosttsinv,0)

and

fu = (psinitcost;,pcosit, —psin itsinv)

fv = (pcositsini;,0,pcositcosi;)

Clearly, fu x fv ± 0 and fu x /„ # 0, V(«,t>) € tf. Moreover, 5T = f(U) and
52 = /(#) covers S. Thus, 5 is an embedded 2 manifold.

The unit sphere (i.e., p = 1) ofR3 is denoted by 52.

Example 2.2 The ellipsoid £ +£ +£ =1can be parametrized by the following
coordinate system

/ : ^ —> " : («,»)'—• (acositcosv, —&cositsini;,csinit)

and

/ •' U —*• R •(u, v) i—• (—a cos ucos v, ftsin it, ccos itsin v)

where U is given by the previous example.

Definition 2.4 The Gauss map of a surface 5 is a continuous map n : 5 —> S2
such that n(s) is normal to S. Note that n induces an orientation on S. We will

also use n to denote the map no/ : U—> 52, and Tun :TUR2 —» 2/(u)R3 denote
the tangent map of n.



Definition 2.5 Acoordinate system (/,tf) is called orthogonal if/„•/„ = 0, V(it,v)e
U, and right-handed if fu x fv/\fu x fv\ = no/(u). (/, U) is called a geodesic co
ordinate system ifit is orthogonal and fu •fu = 1 and fv . /„ = g2, for some <? > 0
which is a function of (it,u). Let (f,U) be an orthogonal right-handed coordinate
system for a surface patch 50 C5. We define the Gaussian frame at a point s GS0
as the coordinate frame with origin at /(u) and coordinate axes

x(u) = /„/|/u|, y(u) = fv/\fvU and z(u) = no/(u).

Definition 2.6 Let 50 be a coordinate patch of S, with an orthogonal coordinate
system (f,U). At a point s 6 50, the curvature form K is defined as the 2 x 2
matrix

K = Wu),y(u)]*[«ll(n)/|/(l|l«.(tt)/|/w|],

where u = f~l(s). The torsion form T is the 1 x 2 matrix

T*y(u)«[xll(u)/|/Il|,x„(u)/|/I,|],

and the metric tensor M is the 2x2 matrix

Af =

Note that M is the square root of the first fundamental form.

l/ul 0
0 |/u|

Example 2.3 Consider the sphere S of radius p. Let 52 = f(U) be the coordinate
patch of 5 studied in Example 2.1. The Gauss frame at a point s GSx is given by

x(u) =
— sin it cos v

sin it sin v

cos it

. y(u) =
— sinv

-cosu

0

and z(u) =
cos u cos i;

— cos it sin v

sin it

The curvature form, torsion form and metric tensor are given by

A' =
0 1/p , T = [0 - tanit/p], and M = P 0

0 p cos it

We now consider the two objects that move while maintaining contact
with each other (see Figure 1). Choose reference frames Crl and Cr2 fixed relative

to objl and obj2, respectively. Let 5T CR3 and 52 C R3 be the embeddings of the



surfaces of objl and obj2 relative to Crl and Cr2, respectively. Let nx and n2 be the

Gauss maps (outward normal) for Si and S2. Choose atlases {S^,-}?^ and {52(1}l^?1
for Si and 52. Let (/1>t-, J7lff-) be an orthogonal right handed coordinate system for

Si,,- with Gauss map m. Similarly, let (/2,;, 172,;) be an orthogonal, right-handed
coordinate system for 52,,- with n2.

Let ci(t) € Si and c2(t) € S2 be the positions at time t of the point
of contact relative to Crl and Cr2, respectively. We will restrict attentions to an

interval I such that ci(t) 6 Si,,- and c2(r) € S2J for all t 6 J and some i and some j.
The coordinate systems (fu, Uu) and (/2j, £7^) induce a normalized Gauss frame

at all points in Si,,- and S2j. We define a continuous family of coordinate frames,

two for each t € I, as follows. Let the local frames at time t, C/i and C/2, be the

coordinate frames that fixed relative to CrX and Cr2, respectively, that coincide at

time t with the normalized Gauss frames at ci(r) and c2(t) (see Figure 1).

We now define the parameters that describe the 5 degrees of freedom for

the motion of the point of contact. The coordinates of the point of contact relative

to the coordinate system (fu, tfi,,) and (/2ti, U2J) are given by m(t) =/{? (<*(*)) 6
Uu and u2(t) = f2](c2(t)) € U2J. These account for 4 degrees of freedom. The
final parameter is the angle ofcontact ^>(t), which is defined as the angle between
the x-axis of Clx and C/2. We choose the sign of ^ so that arotation of Cn through
-^ around its z axis aligns the x—axis.

We describe the motion of objl relative to obj2 at time t, using the local

coordinate frames frames C/i and Cl2. Let vx,vy and vz be the components of

translation velocity ofCn relative to Cl2 at time t. Similarly, let wx, wy and wz be
the components of rotational velocity.

The symbols K\,T\ and M\ represent, respectively, the curvature form,

torsion form and metric at time t atthe point ci(t) relative to the coordinate system

(/i,ii #i,i). We can analogously define K2,T2i and M2. We also let

R*h =
cos if) —sin if)

—sin if) —cos if) , A2 = R1f,Ii2Rti>.



Note that K2 is the curvature of obj2 at the point of contact relative to the x- and
y -axes of C/x. Call A'i + A'2 the relative curvature form.

The following kinematic equations that describe motion of the point of
contact over the surface of objl and obj2 in response to a relative motion between

these objects are due to Montana ([Mon86]).

Theorem 2.1 (Kinematic equations ofcontact) At apoint ofcontact, ifthe relative
curvature form is invertible, then the point of contact and angle of contact evolve
according to

\-iui = Mr\Ki + K2)

u2 = ^2"%(ft + *2)

j> = w,+TiJl/iui +r2M2u2,

0 = vx.

The last equation is called the constraint equation.

-Wy -K2
vx \

U>x . vy. )
/ r _

'( -Wy
+ A'a

vx

V V>x . vy.

(3)

(4)

(5)

(6)

Example 2.4 (The classical example re-visited ) Let's consider the classical ex

ample of aunit disk rolling on the plane, as shown in Figure 2 (See [GolSO], and
[Gre77]). The coordinates ofthe plane are given by (it2, i;2) € R2, and the coordinate
ofthe disk is itx € R. Embed the disk in R3 with the following paxametrization

/ • U\ —> R3 •* iti i—* (cos iti,sin iti,0).

We define the Gauss frame of the disk by the frame with origin at f{ux) and coor
dinate axes

x(«i) = /', z(it0 = /", and y(itx) = z x x.

Let if) be the angle ofcontact. Let (vx, vy, vz) be the components of translational ve

locity of Clx relative to C/2, and (0, u/y, wz) be the components of rotational velocity.
Note that the disk has only two degrees of rotational freedom. Following a procedure
outlined in [Mon86], we derive the following kinematic equations of contact for the



Figure 2: A unit disk roll in the plane

moving disk.

* iti " -i ' 0 " 0 0 1
it2

v2
=

—cos^>
sin if)

Wy +
0

0
wz +

COS if)
s'mip

vx +
—sin^
cos^>

L* J 0 _ 1 0 0

= 0.

'y> (7)

From Greenwood ([Gre77]), the constraints of no slippage are described
in differential forms by

<fit2 —cos if)du\ = 0,

dv2 —sin ^rfiti = 0.

(8)

(9)

It is important to note that the two differential forms (or 1-forms) given by Equa
tions (8) and (9) annihilate exactly the first two vector fields of Equation (7) . For
example, we have that

(-1, - cos if), sin if), 0)•(- cos if), 1,0,0)*= 0.

In other words, rolling constraints can be described by one of the following two
equivalent conditions: (1) the differential forms given by (8) and (9) be zero, or (2)
the vector fields which do not annihilate these one-forms vanish from the kinematic

equations of contact, which in turn is equivalent to vx = vy = 0 . This duality
should always be kept clear in mind.

Definition 2.7 We define three special modes of contact (or contact constraints)
in terms of the relative velocity components by

10



(1) Fixed point of contact:

(2) Rolling contact:

L vy J
(3) Sliding contact:

— 0, and
wx

wu
= 0;

= 0, and wx = 0;

Wx

Wy = 0.

(10)

(11)

(12)

The following results follow immediately from Theorem 2.1.

Corollary 2.1 The kinematic equations ofcontact correspond to each ofthe contact
modes are

' ui = 0,
u2 = 0, (13)

k 4> = v>z,
for fixed point of contact,

for rolling contact, and

for sliding contact.

ui = Mr 1(JT1 + k2)'1

ii2 = M^tt^Ki + K2)~*

I ^ = r!Miui + r2Af2u2.

-Wy

yjx

-Wy

wx

xii = 'Mr1{Kl + K2)'lK2 Vx

vs

u2 = MZlk+{Ki + K^Ki

( ^ = TiMiUi+T2M2u2.

11

y

Vx

v.,

(14)

(15)



3 Existence of Motion

In this section, we use the kinematic equations ofcontact and a generalized version
of the Frobenius Theorem to verify the existence of motion between two contact

configurations under rolling. For convenience, we restate the problem here, with a
slight modification.

Problem 1» Consider motion ofobjl relative to obj2, as shown in Figure 1. Let
9ri,r2 = (rri,r2>^ri,r2) € SE(Z) be an initial contact configuration of objl
relative to obj2, and grltr2(t) € SE(3),t € [0,*/], be a trajectory ofobjl that
satisfies the rolling constraints and 0n,r2(O) = g?lr2. Characterize the set of
reachable configurations ofobjl, that is, a configuration gsrlr2 £ SE(3) such
that there exists atj € [0,oo) with g{Xr2 = grXyT2{ts).

In Section 2, contact constraints have been described in terms of the local

coordinate frames. We need to transform these constraints to the reference frame

Cri. By Proposition 2.1, the velocity of Crl is related to that of C{1 by asimilarity
transformation

Vrl,r2

Wrl,r2
= Ad'911, rl

Vlltr2

W/l,r2
(16)

where gnirl is the configuration variable of the local frame of objl at the point of
contact relative to Crl. On the other hand, since Cl2 is fixed relative to Cr2, we
conclude that

*>/l,r2 = V/1,/2 =

Vx

vv
Vx

and wtitr2 = iz;jit/2 =
Wx

Wy

. WZ .

Thus, rolling constraints require that the velocity field ofobjl be expressible in the
form

Vrl,r2

Wrl,r2
= Ad'9ll,rl

0

0

0

VJX

Wy

(17)

for some (wx,wy) e R2. By Equation (1) the trajectory of objl is uniquely deter
mined by specifying the rolling velocity (wx, wy).

12



Figure 3: Motion of a unit ball over another ball

By maintaining contact with obj2, the set of reachable configurations (of
objl) must be within a five dimensional manifold M of SE(3). M is called the
contact configuration manifold, and locally M can be described as the zero set ofa

function h: SE{3) —> R, i.e., M= h~\0). Here, his called a height function.

Example 3.1 Let objl be a unit ball and obj2 be the plane, as shown in Figure
1. Let the reference frame Crl be fixed to the center of the ball and the reference

frame Cr2 be arbitrary at the plane, except that its z-axis points up. Consider the
following function

h : SE(3) —>R:(r,R)>—>rz- 1,

where r = (rx,ry,rzy. Clearly, a reachable configuration must be an element of
M= A_1(0), which is a5dimensional submanifold of SE(3).

Example 3.2 Let objl be a unit ball and obj2 be a ball of radius />, as shown in
Figure 3. Let Crl and Cr2 be fixed to the center of objl and obj2, respectively.
Then, M is the zero set ofthe following function

h :SE(3) —>R:(r,R)>—> \r\ - (1 + p).

From now on, the 5dimensional manifold Mwill be called the config
uration space (or manifold) of objl. In principle, in order to determine the set of

reachable points within Munder rolling constraints, we need to know M. But, as
we see from the above examples that an analytic description of Mdepends on the

13



geometric ofthe objects and becomes complicated when these objects have less no
symmetries at all. Fortunately, we will need to deal with another space, called the
parameter space, which is much easier to characterize than M. Moreover, the pa
rameter space is diffeomorphic to M. Thus, if a motion exists between two contact

configurations within M then a flow exists in the parameter space such that the
images of the two contact configurations are linked by the flow, and conversely. We
now proceed to make these statements more precise.

Definition 3.1 Let 5a C R3 and S2 C R3 be the embeddings of the surfaces of
objl and obj2 relative to Crl and Cr2, respectively. Let Sl be the unit sphere of
R2 representing the space of contact angles. Then, the parameter space P is the
following product space

P = Si xS2xS\

Pis afive dimensional manifold. The topology ofPis given by the product topology.
In other words, an atlas of P is given by {Slti}^\ x {S^}^ X{S}}^\, where
{^i,i}2?i is ^ a-tlas of Si, and etc. Consequently, a coordinate system of P is
given by (fu,Uu) x (f2J, U2J) Xif). The coordinate system for the contact angle
is induced by a coordinate system of 5a and a coordinate system of S2.

Proposition 3.1 If both objects are convex and at least one of them is strictly
convex, then the configuration manifold Mis diffeomorphic to the parameter space
P.

Proof. This is essentially arestatement of the kinematic equations of contact. Since
both objects are convex and at least one of them is strictly convex, the relative
curvature form is invertible. This implies that contact must occur over isolated

points. Let / : MC SJE?(3) —• P be the map that takes a contact configuration
to the corresponding contact parameters. Clearly, / is one-to-one and onto, and
the tangent map of / is just the kinematic equations of contact. Thus, / is a
diffeomorphism. Q

From Section 2, rolling constraints in the parameter space are described

by asystem of differential equations given in Theorem 2.1. Rearrange the kinematic

14



equations of contact, we have

vi

u2

v2

L i> J

= Xi(\ix, u2, if))wx + X2(ui, u2, if))wy, (is)

where m = (uuVl) and u2 = (i*2,i;2). JTi(ui,u2,^) and X2{uuu2,if)) are the
(constrained )vector fields on P, which correspond to rolling motion. Equation (18)
is a system of differential equations in local coordinates on the manifold P.

Definition 3.2 Letp0 =(«?, tft tij, t& tf°)« be an initial point in P. Apoint pf €P
is said to be reachable from p0 if there exists a choice of (wx, wy) e R2 such that
the flow p(t) of (18) reaches pf after some finite tf G[0,oo), i.e., p(0) = pQ and
P(tj) = Pf- Such apj £ P is said to be in the reachable space of p0.

We can now restate the reachability (or existence) problem in terms of
the system (18).

Problem 1" Given an initial point p0 (p0 corresponds to the initial contact con
figuration g°lr2 with the diffeomorphism of Proposition 3.1). Characterize the
set ofreachable points from p0 by the system (18).

We apply Chow's theorem to solve Problem 1". Chow's theorem is a

generalization of the Frobenius's Theorem and has has been widely used in non
linear control theory (psi85], [HK77], [Spi74]).

Theorem 3.1 (Chow's Theorem ). Consider the following system of differential
equations on a n-dimensional manifold N.

*= fi(x)ui + ...fm(x)um, m<n (19)

where x € N is the states in local coordinates, /,•(«) g x°°(JV),i = 1, ...m, is a C°°
vector field on N and (uu ...um) 6 Rm are the control inputs.

Let V = {fi,...fm}LA denote the smallest involutive distribution contain-
in9 {fu -/m} (or the the smallest Lie algebra of vector fields generated by {/j, .../m}
; and Nxo the maximal integral manifold of V through x0 € N ( NXo exists and is
unique by Frobenius's Theorem ). Then,

15



1. Apoint x£N is reachable from x0 ifand only ifx GNXo, i.e., (x,x0) belong
to the same maximum integral manifold of V.

2. Every point in N isreachable ifand only ifNXo = N if and only ifdim V= n.

The following algorithm computes V.

Algorithm 3.1 Input: Acollection of vector fields {/i,.../m} Gx°°(N)

Output: V = {/!,..,fm}LA.

Step 1: Set

^o = {/i,/m};

Step 2: Compute
m

•asl

until an integer km such that V*. = Vk.+1, then V = V*. and return.

Remark 3.1 1. km < n.

2. [/i./j] denotes the Lie bracket vector field of fx,f2 e X°°(N)- In local coor
dinates (a?i, ...xn) GRn of N, the Lie bracket vector field is computed by the
formula

[A,/,)-—*.-—/„

where ^ is the ordinary Jacobian matrix of f\.

Using Chow's Theorem and Algorithm 3.1 we have the following algo
rithm for verifying the existence of motion.

Algorithm 3.2 (Existence of Motion )

Input: 1. The coordinates oftwo points po,pf GP.

2. Constrained vector fields XUX2 GX°°(P) that describe the rolling mo
tion.

Output: A binary answer on ifpf can be reached from p0.

16



Step 1: Compute the coordinate expressions of the constrained vector fields Xi(uuu2, p)
and X2(uu u2, if)) for (ulf u2) G({^i,,}^ X{ff2j}J2i). (Assume that Sx is
covered by {Si,,}-^ and S2 is covered by {52j}^?1 ;.

Step 2: Compute the following Lie bracket vector fields

x* = [X\,X2] = ——Xi - ——X2,
opt dpi

%4 - [Xi,X$, (20)

-^5 = [X2, X3],

where p = (izi,ui,u2,i;2, V)'. Set V = {XUX2,X3,X4,X5}, which is an
involutive distribution containing (Xi,X2).

Step 3: • //dim(V') = 5, Vp GP, then V= V' and N^ = P. Return true for
any p0 and pf in P. (Thus, every contact configuration in Mis reachable

by rolling.)

• If dim{V') = n < 5. LetV be the smallest involutive distribution con

tained in V' with rank n and N^ the maximum integral manifold ofV

through po. Ifpf€ N^ then return true, otherwise return false.

Remark 3.2 The above algorithm can be computed symbolically using Macsyma.

Example 3.3 Consider the example of a unit ball moving on the plane, as shown

in Figure 1. From Example 2.1, the ball can be covered by two coordinate systems,
and the plane by asinle coordinate system in the obvious way. The curvature form,
metric and torsion form of the unit ball are computed in Example 2.3. The geometric

data of the plane can be easily computed using the following coordinate system.

/2,i :'02fl —> R3 : 0*2,v2) >—* (u2,v2,0),

where U2A = R2. Clearly, the metric is the identity and the torsion form as well as
the curvature form are zero.

FollowingAlgorithm 3.2, we have
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Step 1: On the first coordinate system of P, the kinematic equations of contact
are

It! 0 -1 '
i>! sec i*i 0

u2
— —sin^> VJX + —COS if)

V2 —cos^» sin if)

* . m—tan«i 0

= XlWx + X2Wy.

Step 2: The successive Lie brackets of X\ and X2 are

and

-^3 = [X\,X2] =
— sec iti tan 1*1

—sin ^ tan 1*1
— cos i*i tan iti

—sec21*1

X4 = [Xi,X3] =

0

0

—cos^
sin^>

0

Xs = [X2,Xz] =
(l + sin2i*i)sec3i*i

2 sin if) sec2 1*1
2 cos if) sec2i*i
2 sec2 i*i tan 1*1

Step 3: Compute the rank of

w, (21)

V = {X\,X2,Xz,XA,X^}

It is easy to verity that, through elementary row and column operations, the
determinant of V' is identically 1.

Steps 1 through 3 are repeated for the second coordinate system of P and V
is again nonsingular.

Output: It is true that aunit ball can reach any contact configuration on the plane
by rolling!
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Example 3.4 Our second example consists of aunit ball moving relative to another
ball of radius p (See Example 3.2). Since each ball has two coordinate systems, P
has a total of four coordinate systems.

Step 1: In the first coordinate system the kinematic equations of contact are
i*i

v\

u2

v2

L tf J

where 0 = •?!—.

0

(1-/?) sec1*1
—0 sin. if)

—0 cos if) sec it2
. 0 tani*2 cos if) - (1 - f3)tanui .

= X\wx + X2wy,

wx +

-(1-/3)
0

—0 COS if)
0 sin if) sec i*2

—f3 tan it2 sin if)

w.

Step 2: Using Macsyma, the successive Lie brackets ofXi and X2 are computed.

-^3 = [X\,X2] =

where

0

(l-/?)2 sec2 i*r
0(1 —0)sm if) sin i*i sec i*i

0(1 - 0) cos if)sin i*i seci*i seci*2
-^3,5

Xz _ /?(! - 0) cosV>cosi*i sin iti sini*2 +{-/?2 cos2 i*i +(/? - l)2} cosi*2
COS2 l*i COS2 l*2 '

X4 = [Xi,j^3] =

0

0

0(20-l)cosif)
-0(20 - 1)sin if) sin i*2 sec i*2
0(20 - 1) sin if) sin i*2 sec i*2

0

X5 = [X2, X3] =
-{-(1 - 0f cos2 1*1 + 2(1 - 0f} sec3 Ul

—{/?3 sin if) cos21*1 - 2/?(l - /?)2 sin ^} sec2 ux
-{0Z cos ^ cos21*1 - 2/?(l - 0)2 cos ^} sec21*! sec i*2

-^5,5
where

and

x _ {03 cos 0cos31*1 - 2/?(l - 0)2 cos if) cos 1*1} sin i*2 -f- a
COS3 l*i COS l*2

a = {02(1- /3)cos2i*! - 2(1 - /3)3}sini*! cosi*2.
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Step 3: Computing the determinant of

gives

V = {Xi,X2,Xz,X4,Xs}

d(t^ =.(HW^ ,= _i_
COS l*i coslt2 ' 1 + p

V is singular for the following cases

• /? = 1 -* /> = 0 :This corresponds to obj2 being a single point. Note that

the rank of V' is 3 (not 2!). This can also be seen from the multiplicity

of the zeros in the determinant.

• 0 = 2 -♦ P = 1: This corresponds to the case when both objects are

balls of identical radius. In fact, counting the multiplicity of the zeros at

0 = 5, or computing the rank of V', the reachable space has dimension

2! This fact can be interpreted using the notion ofholonomy angles (See
Section 4).

• 0 = Q-*p=z<x>. The result is degenerate because from the previous

example we know that aunit ball can reach any contact configuration on
the plane by rolling.

Steps 1 through 3 are repeated for theother three coordinate systems and the

results are consistent.

Output: It is true that a unit ball can reach any contact configuration by rolling
relative to another ball ofradius p if and only if p is not zero and /> # 1.

Example 3.5 (The classic example re-visited). Consider again the classic example
of a unit disk on the plane. Note that the two rotations are different here as from

Example 3.3. According to [Gre77] and [G0I8O], the disk can reach any contact

configurations by rolling, but as far as we are aware of no proof has been given in

any mechanics textbook. The constrained vector fields from Example 2.4 are

X^ =

-1

—COS if)
sin^

0

and X2 =
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The Lie algebra of vector fields generated by {XUX2} consists of, in addition to
{A'i, X2}, the following vectors

X3 = [Xi,X2] =

and

X4 = [X2,X3] =

Note that [Xi,X3] = 0. It is simple to verify that

0

—sin^>
—cos^>

0

0

—cos^
SlTLlf)

0

V={XUX2,X3,X4}

has rank 4, for all points in the parameter space. This shows that any contact
configuration is indeed reachable by rolling.
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4 The Motion Planning Algorithm

In this section, we solve the following planning problem.

Problem 2' Suppose that amotion exists between two contact configurations (g^ r2,
0ri,r2) € M. Find a trajectory o/objl that satisfies the contact constraints and
linksgfrlr2 to <tfltr2.

Let po = (t*?,v?,i*§,i;§,V0)' and pf = (u{,v{,u(,v(,if)^y be the point in P that
corresponds to the contact configuration flr°i|r2 and $/lr2, respectively. Uniqueness
of po and pf are guaranteeed by Proposition 3.1. We may assume without loss of

generality that p0 and pf belong to the same coordinate system. The objective

of the planning problem is to construct a trajectory (ui(t),u2(t),if)(t)) € P ( or
(ci(t),c2(t),tf)(t)) 6 P for a coordinate invariant description ) that satisfies the
rolling constraints and links pf to p0. We remark that as a generic property of
robot motion planning, the paths are not unique, unless additional constraints such

as minimal distance, maximum safety margin ([Kod87], [Can88] ) and the grasp
condition ([LCS89] ) are imposed.

First, let's characterize relations between contact trajectories ci(*) e Si
of objl and c2(t) £ S2 of obj2. For this, let TSX denote the tangent bundle of Su
TS2 the tangent bundle of S2 and TS1 the tangent bundle of S1. We claim that
there exist bundle maps

<Pi :TS1 —>TS2xTS\ (22)

and

<p2 :TS2 —> TSl x TS1 (23)

that takes the contact trajectory ofone object to the contact trajectory ofthe other
and the trajectory of the contact angle. The coordinate expression of the map tf)2
is computed as follows. Let c2(t),t € J, be a trajectory of contact for obj2, or
equivalent^, (u2,u2) 6 TS2. By the second equation of (14), the components of
rolling velocity can be expressed in terms of u2 as

-wy

v)x
= (A'i +A*2)i^,M2u2, Rj1 =&+. (24)
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Substitute this into the remaining equations of (14), yield

M2u2.
ui

T\R$ + T2 (25)

Equation (25), the coordinate expression of the map if)2, defines the evolution of the
contact coordinates of objl and the contact angle. Let ui(t),t e I, be the solution

of (25) and ci(t) = /rHmW) 6 Sut €J, for (fx,Ux) a coordinate system of Sx.
cx(t) is called the contact trajectory of objl induced by the contact trajectory c2(t)
ofobj2. Conversely, interchange the role between obj2 and objl , we have

M2lR^ 1 .
tx +t2r<,\m^' (26)

which is the coordinate expression of the map if)X.

The angle of contact, if), whose evolution is defined by (26) has a useful
geometric interpretation when obj2 is torsion free, i.e., T2 = 0. Let cx(t),t 6 [to,h],
be a piecewise regular simple closed curve in Si representing the contact trajectory
of objl, and Sif) = if)(tx) - if)(t0) denote the net change of contact angle induced by
c\. We have

Proposition 4.1 -Sif) is equal to the holonomy angle ofthe loop cx (See Appendix
Afor the definition of holonomy angle). In other words, -Sif) = JJR kdA, where k
is the Gaussian curvature ofSx and R is the region bounded by cx.

Remark 4.1 This is akey result leading to the development of the motion planning
algorithm. In order to realize a desired change of contact angle without altering the
point of contact relative to Si, we may plan a closed curve in Sj such that the

Gaussian curvature integral over the region bounded by the loop is equal to the net
angle change.

Proof. By appendix A, we may assume that ci(t) e Sx is contained within a
geodesic coordinate system. Thus, the metric tensor takes the form

Mi =

u2

1 0

0 q , i.e., |/ttl | = 1, and \fVl | = q.
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and the Christoff symbols are given by

r2 - r2 - 2L r1 - nn r2 _ 22i12 — i21 — ""» -122 —99i> i22 = —

rh =v\2 = r{2 =v\x = o; and * = -Sii.

where ft =^jL and ?2 =^-. ^ from (26) is given by (when T2 =0)

But,

if) = TiMiUi.

1 l~ * U/UJ' IAJ
1 o

0 q
Jv\ ' JU\ U\ JV\ ' fui Vl

(27)

Using Gauss's formula and from the special forms of the Christoff's symbols, we
have

fuxui - Txxftn + Tn/t,! + hxxn = 0+ 0+ hxxn,

and

fuivi —Fi2/Ul + r12/Ul + hx2n = —fVl + hX2n.

Thus,

fvi - fUlui = 0 and fVl • fUlVl = qx/q.

Finally,

if) = qivx

which is precisely the expression (differing by a sign to account for the reversed

orientation) for the derivative of the holonomy angle (Appendix A). •

Using (25), (26) and Proposition 4.1, we have the following algorithm
that generates a desired path for the planning problem. The example ofa unit ball
on the plane is used for illustration.

Algorithm 4.1 (The Motion Planning Algorithm)

Input: 1. Initial and final contact configurations p0 = (i*?, i>?, i*§, i>§, ^°) and
Pf = (u{,v{,u{,vs2,ij)f).
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2. Geometric data o/objl and obj2; curvature forms (KX,K2), metric ten
sors (MX,M2) and torsion forms (TX,T2). ( We assume that obj2 is
torsion free).

Output: A curve that links p0 to pf and satisfies the rolling constraints.

Step 1: Construct a curve c2(i) e S2,t € [to,h], such that

u2(*o) =
1$
V2

and u2(tf) = ui

I V2 J
(29)

Let cx(t) € Si and if)(t) € Sl,t € [*o,*i], denote the induced contact trajectory
o/objl and the trajectory of the contact angle, respectively. At t = tlt the
contact point o/objl and the contact angle reach some intermediate values,
denoted by

= ux(tx)andif) = if)(tx).
i*i

vx

Step 2: Construct a closed curve c2(t) € S2,r 6 [tx,t2], such that the induced con
tact trajectory o/objl has the property

ui(«i) =
l*!

vi
and ux(t2) = i*

'i J

Let if)(t) £ S1,* G[<i,*2], denote die induced trajectory of the contact angle.
Att = t2, the angle ofcontact reaches some intermediate value denoted by

if) = if)(t2), where if)(tx) = if).

Step 3: Let Sif) = if)* - if) be the desired holonomy angle. Construct a closed curve

ciM 6 Si,* € [<2></], such that (1) the induced trajectory c2(t) £ S2,t €
[t2,t/], is also closed and (2) the Gaussian curvature integral over the region
bounded by cx is equal to the desired holonomy angle.

Output: Return the curve (ux(t),u2(t),if)(t)) 6 P, t 6 [t0,tx,] U[tx,t2] U[t2,ts)}
which is the union of the curves constructed in Step 1, 2 and 3.

Remark 4.2 The desired contact point u2

vsL V2
of obj2 is achieved in Step 1. Then,

using a closed curve relative to obj 2 in Step 2 the desired contact point ui

v

of
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A' =D*

* A=E

Figure 4: A Lie bracket motion

objl is realized without sacrificing the desired contact point of obj 2. Finally in Step
3, using a closed curve relative to objl, which also induces a closed curve relative to

obj2, the desired holonomy angle is realized.

We now use the example of a unit ball on the plane to illustrate the

algorithm. Clearly, Step 1 can be easily done using existing techniques in robot
motion planning ([Kod87], [Can88]). Step 2 and Step 3 are carried out as follows.

Step 2A: Without loss ofgenerality, we may assume that the initial anf final points
it sj

and u{ =
ofcontact in the unit sphere S2 are within the same coordinate system. Let

i*i
ui =

L vi
be the coordinates of these contact points.

We wish to construct a closed curve c2(t),t € [*i,*2], in the plane so that
the induced contact trajectory cx(t),t € [*i,t2], of S2 links ui to u{, i.e.,
f-Hdih)) = ui and f~l(cx(t2)) = u{.

Lemma 4.1 Let cj = f(\ix) and c{ = /(u{) be exactly tt/2 distance apart in the
unit sphere S2. Then, the square of side length tt/2, shown in Figure 4 will induce
a contact trajectory cx which links cj to c{.

Proof. We need to demonstrate that the square has the desired features. Label

the point cj and c{ in the sphere by A' and B', respectively, as shown in the figure.
d(A', D') = tt/2. There exists a unique geodesic, i.e., an arc of the great circle,
that connects A' to B'. The great circle will be called the equator. Let A denote

the initial point of contact in the plane. Thus, tracing the geodesic from A' to B'
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induces astraight line in the plane with end point B, and d(B,A) = tt/2 (by arc
length constraint). Going from the point Bto the point Cin the plane is equivalent
to going from the point B' to the north pole, C", in the sphere. Note that l(ABC)
and ^.(A'B'C) are both right angles. Now, tracing the straight line from C to
Din the plane induces acurve in the sphere which ends at the starting point .4'.
Consequently, by closing the curve in the plane with astraight line joining Dto .4,
we have arrived at the point B' in the sphere. This shows that the square indeed
induces a curve in the sphere which has anet incremental distance x/2. This is
called a Lie bracket motion. •

We now return to the more general case.

Step 2B: By Lemma 4.1, we may assume that rf(cj, c{) <tt/2. Otherwise, Lemma
4.1 can be applied repeatedly until some intermediate point which is less than

tt/2 distance away from c{ is reached. Let / =d(cf,c{) <tt/2 be the distance
ofthese two points. We wish to construct aclosed curve c2(t),t e [tx,t2], in
the plane such that the induced contact trajectory Ci(t),t € [*i,*2], has an
incremental distance / along the geodesic connecting cj to c{.
We propose to use for c2 the closed curve ABCDE shown in Figure 5, where

x = d(A,B) is to be determined, d(B,C) = d(C,D) = tt/2, and

0 = 2tan-1-2i-.
tt/2

We like to show that for some choice of x, the closed curve ABCDE will

induce a curve cx(t),t € [*i,*2], in the sphere that links c? to c{. First, by
tracing the straight line from A to B and then to C induces a curve in the

sphere which starts at A', passes through B' and then comes to the north

pole, C". Note that d(B,,A') = x and £(A'B'C') = 90°. Going down from

C to D with an angle 9 and by adistance x/2 is equivalent to going down in
the sphere from C to some point D' at the equator. Clearly, d(B',D') = B.
Now, Connect D to Aby astraight line, and we claim that (1) LCDA= 90°
and (2) d(A,D) = x. To see this, note that by definition IACD = 9/2 and
AC is common to both the triangles AABC and AACD. Thus, they must
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Figure 5: A (general) Lie bracket motion

be congruent triangles and the claim follows.

Thus, by tracing the straight line from D back to A in the plane, we have

followed the equator from D' to some point E', and d(E', D') = x. With c2

being the closed curve ABCDE for some choice of x, the induced curve cx in

the sphere has its starting point A' and its ending point E', where d(E', A'),
the net incremental distance, is a function of x. Let f(x) = d(E',A'). It is
not hard to see that

f(x) = 2x-9 = 2x- 2tan~1 -4-.
7T/2

The hope is to find an x, if possible, that solves the equation

f(x) = /• (30)

We claim that there exists a unique x that solves (30). To show this, note that

/(0) = 0 and /(?r/2) = tt/2 > I. Thus, solutions exist. For the uniqueness
part, we compute the derivative of f(x), which is given by

Thus, f(x) is a monotone function and the solution to (30), denoted by x*, is
unique!

Consequently, the curve ABCDE, with d(B,A) = xm, has all the desired
features.

Step 3': We wish to construct a closed curve cx(t),t € [t2,tf], in S2 such that (1)
the induced curve c2(t),t 6 fa,*/], in the plane is also closed and (2) cx has a
desired holonomy angle Sif).
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Figure 6: Another Lie bracket motion

We may assume that 0< -Sif) < 2*. Consider the latitude circle with i*i(t) =
i*i(0),and vx(t) = vx(0) + t,te [t2,t2 + 2tt]. We claim that (1) the induced
trajectory c2 is also a circle and (2) the holonomy angle of cx ranges from 0

to 2ir for 0 < i*i(0) < w/2 . To see this, substitute the expression of

into (26) and after some algebra, we get

and

if)(t) - if)(0) = - siniti(0)t = at, a = - sini*i(0),

u2(t) = 0 cos (at +^0) +7o, 7o = tt2(0) - cos if)0 cos ux (0)/a,

v2(t) = -0 sin (at+^o) +4), <5o = ^(0) + sin if)Q cos i*i(0)/a.

Thus, we have

(•»(*) - 7o)2 + («j(*) - So)2 = 02-

This shows the claim.
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5 Conclusion

In this paper, we have studied robot motion planning with nonholonomic con

straints. First, using the kinematic equations of contact developed by Montana,

we have transformed contact constraints in the configuration manifold to a system
of differential equations in the parameter space. To verify the existence of motion

between two contact configurations, we have established an algorithm that compute
the smallest involutive distribution generated by the constrained vector fields. If

the distribution has full rank, then any two contact configurations can be reached

from each other byrolling. Otherwise, amotion exists if and only if the two contact

configurations belong to the same maximum integral manifold of the distribution.

As we have shown by examples that, it is precisely due to the non-

holonomicity of the rolling constraints that an object can reach an arbitrary contact
configuration by rolling. We conjecture that this is ageneric property of any two
objects. We have also given an example, namely two balls ofequal radius, where
this property fails.

For many interesting applications, one object is approximately torsion
free. In these cases, we have also given an algorithm that generates adesired path
when it exists. The general case is currently under investigation with the framework
developed in this paper.

Amore difiicult problem which we are also very interested in is, finding a
curve in S2 of shortest distance such that the desired contact point o/objl and the
desired contact angle can be realized. This problem has aclose relation with another
class ofproblems recently studied by others ([Mon88]).
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Appendix A

In this appendix, we provide a short introduction to some local and global surface
theory. The concepts to be discussed here include the first, second fundamental
forms in a more general setting, the Christoff symbols, covariant differentiations
and geodesies, holonomy angles and the Gauss-Bonnet Formula for computing the
holonomy angle. An in-depth treatment of these subjects can be found in ([MP78],
[Kli78] and [Spi74]).

Notation 5.1 As in Section 2, Vwill always denote an open subset of R2. Apoint
of U will be denoted by u 6 R2, or by (ux,u2) 6 Rx R, or (u,v) e Rx R. Let
/ : U—> R3 be a differentiable map, dfu :TUR2 —• T/(u)R3 denotes the tangent
map of /, and fu,fv denote the partial derivatives of / with respect to u and u,
respectively. Also, fy denotes ^^r,ij = 1,2.

Notation 5.2 Let 5 denote an embedded surface, with a coordinate system (f,U).
Let n :S —• 52 denote the Gauss map of 5. In a coordinate system (/, U) we will
also use n to denote the map no/ :U—• S2 and dnu :TUR2 —• T/(u)R3 the corre
sponding tangent map. The first fundamental form I and the second fundamental

form II are denoted by

/« =

and

' fl-fl fl-fi' A 011 912

h • /i h- h 921 922
i

f = - flu ' Ju ftu ' Jv A ^11 ^12
fu —

Kv' fu nv ' f«. h 21 ^22

Remark 5.1 1. When (/, U) is orthogonal, the metric M defined in Section 2

is the square root of the first fundamental form.

2. When (/, U) is orthogonal, the curvature form is given by K = M^IIM'1,
i.e., a change of basis.

The Gaussian curvature kis given by k= jffiffi and the Christoff symbols of the
second kind are defined by

rjfc_if Jk(fya %j , dgiA
/=i

(31)
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where glk is the /-kentry of the inverse matrix of Iu. The Gauss's formula expresses
fij in terms of the basis (fx,f2, n)

fij = YlT*3fk +hijn, i,j = 1,2. (32)
k

Definition 5.1 Let X be a tangent vector field along a curve c(t) in S, which in

local coordinates can be written as X(t) = Zi*i(*)fiQ*(t)- The covariant derivative
of X along c is defined by

^§{t) =Ef** +E*-'*ir&) A°«(<) (33)
and X is called parallel along cif ^(*) = 0

Acurve c(t) on 5 is called a geodesic if and only if Z$l = 0. By (33) this is
equivalent to the second derivative of c(t) being normal to the surface. Thus, all
geodesies to the unit sphere S2 are arcs of the great circles.

Proposition 5.1 Let c(t) be a curve on asurface S. Let X be a tangent vector to
S at c(t0). Then, there exists aunique vector field X(t) that is parallel along c(t)
with X(t0) = X.

Proof. Consider the following initial value problem

*k(to) = xk, k =1,2.

By Picard's theorem (i.e., existence and uniqueness of O.D.E), this has a unique
solution for values of tnear t0. The solution clearly is parallel along c(t), where it is
defined. Repeated application of this gives aunique Xdefined along all of c(t). •

The unique vector field X(t) parallel along c(t) such that X(t) = X is
called the parallel translate of Xalong c(t). Note that if two vector fields X(t)
and Y(t) are both parallel along a curve c in 5. Then, \X(t)\ is constant and so
is the angle between X(t) and Y(t). To see this, let g(t) = (X(t),Y(t)). dg/dt =
(dX/dt,Y)+ (X,dY/dt) =0+0=0, so gis constant. If Y=A', this implies \X\
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is constant. The cosine of the angle between X and Y is g(t)/\X\\Y\, which is then
constant and so is the angle.

We now introduce the notion ofholonomy angle.

Let cbe apiecewise regular simple closed curve in asurface 5 with period
Land is contained within asimply connected geodesic coordinate system, bounding
aregion R. Let X be aunit vector field parallel along c. (Such an X exists by
Proposition 5.1.) In general, we have X(0) 5* X(L). We shall be interested in the
angle between X(0) and X(L), which we denote it by SB = £(X(0),X(L)). SO is
called the holonomy angle of c. Since an orientation of S is given by the Gauss map,
the angle between X(0) and X(L) is well defined (i.e., counter clockwise rotation
about the normal).

Theorem 5.1 (Gauss-Bonnet Formula) Let c(t) be the curve on S as described

above. Let kg be the geodesic curvature of c and ax,...an be the jump angles at the
junctions. Then,

1.

S9 =£(X(*),X(L)) =JJr kdA, (34)
where k is the Gaussian curvature of c and

2.

JJR kdA +/ kads +Ha« =2t- (35)
Remark 5.2 1. Let cbe aunit speed curve. The geodesic curvature kg of cis

defined by the following formula

kg(n xc(t)) =£Uk +J21$Atfi JA. (36)
Since (fx,f2) are linearly independent, kg is uniquely defined by (36). A curve
c is a geodesic if and only if kg = 0.

2. / : U —• R3 is a geodesic coordinate system, if the first fundamental form

takes the form

r 1 0
/« = 0 $ (37)

35



for some q > 0, which is a function of (ux, u2). Every surface can be covered

by geodesic coordinate systems.

Proof (of Theorem 5.1). We shall only prove (1). The proof of(2) can be found in

any standard text book on differential geometry (e.g. [MP78], [Kli78] and [Spi74]).

In a geodesic coordinate system, the first fundamental form takes the

form of (37). By (31), the Christoff symbols are

J-12 - J-21 - —» J-22 = -99l» r22 = —
Q 9.

In = T\2 = r}2 = T2U = 0, and k= -£i,
9

where qt = dq/dut.

Since all the quantities in the conclusion are independent of parametriza-
tion, we may assume that cis parametrized by arc length. Let 0= £(fx,X). Note
that cos* = (fx,X) so that -(sin*)* = (fXlX) + (fx,X) = (fx,X) since X is
parallel along c. However,

A = «i/ii + ^2/12

so that Gauss's formula (32) yield

-(sin*)* = (uxfxl-ru2fX2,X)

= ((«iln +u2T\2)fx + (uxT2xx + u2T22)f2, X).

The specific form of T*- allows us to conclude

-(sin*)* =u2*<£i£>. (38)

Because gx2 = 0,{/!,/2/|/2|} is an orthonormal basis of Tf{u)S, for each u € U.
Hence,

1/21

Since .Y is a unit vector and (Jf,/^ = cos*, we have (X,f2) = sin*. Hence (38)
becomes * = -qxu2 so that

M=~ / <?i^2rfs = - / 9irfw2 (39)
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Figure 7: A geodesic triangle in S2

By Green's Theorem,

- Jc q\du2 =- JJ qxxduxdu2 =-Jj —qduxdu2 = ff kdA, (40)
where ffRdA = JfRqduxdu2 is the area integral.

On the other hand, we can write

4*(0), X(L)) = Z(Aou(L), X(L)) - A(fx ou(0), X(0))

= 0(L) - 0(0) =J^ds =SO. (41)
D

Example 5.1 Let A, B be two points on the equator of the unit sphere S2, sep
arated by a distance a < *, and N the north pole (Figure 7) . Clearly, the three
points can be connected by unique geodesies (i.e., arcs of the great circles ) to form
a triangle. This is called a geodesic triangle. The three edges are labeled by cx,c2
and c3. Consider the closed curve c which consists of the union of ci,c2 and c3.
Let X(0) be the unit tangent vector to cx at ci(0), as shown in the figure, and
X(t) the vector field which is the parallel translate of A"(0). The holonomy angle
S6 = £(X(0),X(L)) can be computed using either (34) or (35).

By (34), k = 1 for the unit sphere. Thus,

SO = / / kdA = area of R= - •4tt •— = a
JJr 2 2tt

On the other hand, by (35) kg = 0since cis ageodesic triangle and the jump angles
are ax = tt/2,q2 = t/2, and q3 = tt - a. Therefore,

SO = 2ir- £ kgds - 22<*i = <*•
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Remark 5.3 Given two points A and B in M, if B is not a conjugate point of A,

then there exists a unique geodesic connecting B to A. In other words, there exists

no Jacobi field along the geodesic connecting B to .4 ([KU78]).
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