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ABSTRACT

We considered several problems which arise in the design of finite dimensional compen-
sators for feedback systems with infinite dimensional plants, described by a functional
differential equation in a reflexive Banach space and exhibiting only a finite number of

unstable modes. Our work was motivated by the design of controlled flexible structures.

First we considered feedback-system stabilization. We defined a characteristic function
for a unity-gain feedback system with infinite dimensional plant and related its' zeros to the
exponential stability of the closed-loop system. For exponentially stable plants, this relation-
ship enabled us to exhibit the existence of simple, proportional-plus-multi-integral compensa-
tors that result in exponentially stable feedback-systems which track polynomial input signals
and suppress polynomial output disturbances, asymptotically. In addition, it has led to an
extension of a powerful stability criterion, in semi-infinite inequality form, which makes possi-
ble the design of finite dimensional stabilizing compensators for feedback systems, using the
full infinite-dimensional plant model.

Next we turned to semi-infinite-optimization-based design of compensators for feedback
systems with infinite dimensional plant, subject to design requirements, such as stability mar-
gin, disturbance rejection, robustness to plant variations, and specified ﬁtﬁe-domain responses.
We showed that these requirements can be transcribed into semi-infinite inequalities involving
matrix norms of various transfer functions, with compensators specified either in parametrized
state-space form or by means of a finite dimensional matrix parameter Q in a factored charac-
terization of all stabilizing compensators. The state-space form has the advantage of allowing

preselection of compensator order, but requires the use of our stability criterion and results in a



ii

nonconvex optimization problem. On the other hand, Q-parametrization leads automatically to
an elegant convex optimization problqm, whose solution, unfortunately, is an infinite dimen-
sional stabilizing compensator which must be approximated. As the dimension of the parame-

ter Q is increased, the resulting compensators converge to an optimal A~ solution of the design

problem.

We illustrated our design methodology by numerical examples in which we considered
the control system design for the bending motion of a flexible cantilever beam with boundary

point force/moment actuators and point displacement/angle-of-rotation sensors.
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NOTATION

Complex numbers (plane).

{se CIRe(s) <0]}.

{se CIRe(s)20}= C-C.

{se €| Re(s) > 0}.

{se C|Re(s) =0]}.

{se €| Re(s) < —a}, the stability region.

Domain of the operator T.

The set of matrices whose elements belong to the set F.

Transfer matrix of the compensator, & C,(s/ — A,)"'B, + D..

Transfer matrix of the plant, & C(s/ — A,)'B, + D, V sep(4,).

The Hardy space of complex functions that are bounded and analytic in U?,,

continuous on dU_, and equipped with the norm defined as follows
Nl = ﬁsgg_a R, feH 4.

The Hardy space H_, with o = 0.

Natural numbers = (1, 2, 3, ...}.

Real numbers.



R Range of the operator T.

R(s) The set of proper rational functions.

R_,(5) The set of proper rational functions which are analytical in U_,.

U_y {se CIRe(s) 2 -} = C-D_,.

aU_, {se €IRe(s) = —a}.

U2y {se ClIRe(s) >~} = U_o~ U_g.

V-U Thesetof {se Vands & U}.

W_o(s) The set of complex functions which are analytical in UZ,, continuous on

dU_, and converge at infinity in U_,.

wmn The set of mxn matrices whose elements belong to the set W.
Z(f) {se CIf(s) = 0}, the set of zeros of f.

a>0 Stability Margin,

o) Spectrum of the operator T.

M) Largest singular value of the matrix M.

p(T) : Resolvent set of the operator T, = C—o(T).
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CHAPTER 1

INTRODUCTION

Controlled flexible structures are found both in space and in terrestrial applications. In
space, they arise in the complex form of satellites, and space stations, on earth they tend to be
simpler, as in the form of flexible arms of a robot, or mechanical manipulator. Their study has
motivated our research on the design of finite dimensional compensators for infinite dimen-
sional feedback systems described by functional differential equaﬁdns, in a semi-infinite optim-

ization setting.

The earliest attempts to design a finite dimensional compensator for an infinite dimen-
sional system consisted of approximating the infinite dimensional system by a finite dimen-
sional system, and then applying well-developed finite dimensional system design methodolo-
gies. A variety of approximation schemes have been used, for example, the Rayleigh-Ritz
method [Jun.1], modal approximation [Gib.1, Mei.1], and finite-element methods [Mov.1]. The
work in [Gib.1, Gib.2, Gib.3, Ban.1], which deals with linear quadratic regulators (LQR), vali-
dates some discretization schemes by showing that, under some conditions, the sequence of
optimal compensators for the finite dimensional systems converges to the optimal compensator

for the infinite dimensional system.

In later work, basic LQR methods were generalized to deal with the design of compensa-
tors for distributed plants. This generalization resulted in functional Riccati equations from
which infinite dimensional compensators can be derived [Cur.2, Zab.1]. The approach of
QO-parametrization has also been generalized to design compensators for infinite dimensional

feedback systems [Cal.1, Des.1, Des.2, Net.1, Vid.1]. In both cases, various approximation



methods have been applied to get a finite dimensional compensator [Bal.2, Pri.1, Ito.1, Bis.1,
Vid.1, Cur.3]. In another alternative -approach, the state-space formulation and the concept of
invariant subspace have been used to obtain finite dimensional stabilizing compensators [Cur.1,

Sch.1].

All of the above approaches share a common feature: approximation techniques are first
used during the design process to get a finite dimensional compensator, and then robustness
theory is applied to show that the resulting finite dimensional compensator stabilizes the infinite
dimensional plant. Since the relationship between the particular approximation technique and
the order of the compensator is not known, the order cannot, in general, be selected in

advance.

In this thesis, we consider optimal feedback system design for a class of linear time-
invariant infinite dimensional systems. We propose a design methodology that does not require
truncation of the infinite dimensional system to a finite dimensional one. Consequently, we

avoid the nontrivial stability robustness problem.

Feedback control is used to satisfy various design specifications, such as stability, distur-
bance attenuation, and low sensitivity to changes in the plant. In this thesis, we transform
various design specifications into a constrained H* semi-infinite optimization problem. The
solution of this problem is made possible by the recent development of algorithms for the con-
strained minimization of regular, uniformly locally Lipschitz continuous functions in RY
[Pol.3]. This approach has been used to solve problems in finite dimensional control system
design [Gus.1, Boy.1, Pol.5, Pol.6, Wuu.1]. Our method is new and has not appeared in the

literature before.

In Chapter 2, we define the class of infinite dimensional plants considered in this thesis.

We model the plants by a functional differential equation in a reflexive Banach space and



assume that the plant has a finite number of unstable modes. We illustrate our design metho-
dology by means of a specific plant.- For this purpose, we consider the bending motion of a
cantilever beam with boundary point force/moment actuators and point displacement/angle-of-
rotation sensors. We show that this plant is a member of the class of infinite dimensional sys-
tems mentioned above. We present some preliminary results conceming unity-gain feedback
systems. Next, we define a characteristic function for the feedback system and relate the

exponential stability (with a stability margin) to the zeros of this characteristic function.

In Chapter 3, we consider exponentially stable infinite dimensional systems. We design a
simple low-order proportional-plus-multi-integral compensator. This resulting closed-loop sys-
tem is exponentially stable, asymptotically tracks polynomial inputs, and asymptotically

suppresses polynomial disturbances.

In Chapter 4, we consider a more complicated system design which allows the require-
ment of a certain stability margin and includes additional design specifications such as robust-
ness, disturbance depression, saturation avoidance, shaped output response specifications, etc.
We transform the problem of designing optimal compensators for the infinite dimensional
plants, introduced in Chapter 2, into a semi-infinite optimization problem. First, we present a
computational stability criterion which gives us a necessary and sufficient condition for testing
exponential stability of the feedback system that is appmpriaie in a semi-infinite optimization
setting. We then consider the formulation of other frequency- and time-domain design
specifications. We also discuss the numerical implementations in the design process with an
emphasis on the ~evaluation of the plant frequency response. We model the compensator in a
parametrized state-space form. The main advantages of using the parametrized state-space
form for the compensator are: (1) the order of the compensator can be preselected; (2) it is

easy to generalize the design methodology presented in this chapter to a collection of intercon-



nected feedback systems; and (3) it is suitable for integrated system design in which some
plant parameters are design variables.- A drawback of this approach is that it leads to optimiza-

tion problems that may have local minima.

In Chapter 5, we present an altemnative design methodology to that proposed in Chapter
4. In this approach, we parametrize compensators by means of Q-parametrization and
transform the design problem into a convex semi-infinite optimization problem. We construct a
sequence of finite dimensional compensators that converge to the optimal solution. Because
the resulting semi-infinite optimization problem is a convex one, this approach guarantees that

we can find the global solution.

Finally, in Chapter 6, we draw some conclusions and give some suggestions regarding

future research.



CHAPTER 2

MODELING OF INFINITE-DIMENSIONAL FEEDBACK SYSTEMS AND

PRELIMINARY RESULTS

2.1 Introduction

In this chapter, we develop a model for infinite dimensional feedback systems and give
some preliminary results. These preliminary results are relevant to the control system design
that will be discussed subsequently. In Section 2.2, we introduce the class of infinite dimen-
sional plants for which we will design feedback systems. We formulate the plant in a func-
tional differential form so that semigroup theory can be applied. The plant we consider has a
finite number of unstable modes, for which we can construct a finite dimensional stabilizing
compensator, Throughout this thesis, we illustrate our design methodologies by considering
control system design for the bending motion of a flexible cantilever beam with boundary point
force/moment actuators and point displacement/angle-of-rotation sensors. Therefore, in Section
2.3, we pay particular attention to the bending motion of a flexible cantilever with boundary
point force/moment actuators and point displacement/angle-of-rotation sensors and show that it
is a member of the class of infinite dimensional systems introduced in Section 2.2. In Section
2.4, we formulate the compensator in finite dimensional state-space form. Stability (with a cer-
tain stability margin) is defined in the internal sense, instead of the input-output sense: that is,
stability is defined in terms of the semigroup of the closed-loop system instead of transfer
functions. We then define the characteristic function of the feedback system, and present a
‘relationship between the zeros of the characteristic function and the stability of the closed-loop
system in Theorem 2.4.1. The relationship is used quite often in the subsequent chapters to test

the stability of the feedback systems. A similar result holds in the finite dimensional case



[Des.3). Based on Theorem 2.4.1, a computational stability test, compatible with the use of
semi-infinite optimization, is constructed in Chapter 4.

For the terminologir in functional analysis and semigroup theory, we refer the reader to
standard books such as [Kat.1, Paz.1, Bal.1]. Notations used frequently in this thesis are

defined on pages iv and v.
2.2 Modeling of the Plant

Consider the feedback system S(P, K) shown in Figure 2.1. We assume that the plant,
with n; inputs and »n, outputs, is described by a linear and time-invariant differential equation in
a reflexive Banach space Z:

X)) = Apx,(1) + Bpex(d),

(2.2.1)
y2(r) = Cpxy(8) + Dpes(®),

where x,(t) € Z, e,(5) € R™, y,(f) € R™, for t 2 0 and D,:R"™ — R™.

Assumption 2.2.1: The operator A, DAY — Z, with D(A,) dense in Z, generates a
strongly continuous (Cy) bounded semigroup, {eA"}, >0 n
Assumption 22.2:  The operators B,:R" —Z, C,:Z—>R™ and D,'R" - R™ are
assumed to be bounded. |
Hille-Yosida Theorem [Paz.1): For each strongly continuous semigroup, Ap, there exist

M 21 and y e R such that

le*l < Me®, v £ 2 0. 2.2.2)
u

If v is the constant of the previous theorem, the following result says that the resolvent set of

the operator A,, contains the open right half plane U3 € {s e CIRes> 7).



Proposition 2.2.1 [Paz.1, Theorem 1.5.3]: U; C p(Ay).
]

Definition 2.2.1:  For all s € p(A,), we define the transfer function of the plant, G(s), to be
Gy(s) & C(sI - A)'B, + D, (2.2.3)

where I: Z — Z is the bounded identity operator, i.e., Iz=2,V z e Z. [ |

Referring to [Kat.1, Theorem III 6.7], we have the following result.

Proposition 2.2.2: Gp(s) is analytic on p(A,). ]

Definition 2.2.2: We will say that a function, g: € — C, converges at infinity in a domain

D c &, if there exists a finite complex number, ¢, such that lim lsslgp Ig(s) — ¢l = 0, and we
pr=isi2p

will write ¢ = limy _, .g(s). We will say that a matrix function G: € — C™*” converges
seD

at infinity in a domain D if each of its elements converges at infinity in D. |

Since {C,(s/ — A,)"'B,} tends to zero as Isl — e in U} [Doe.1, Theorem 23.7], where 7 is the

constant shown in (2.2.2), we have

Proposition 2.2.3 [Jac.1]:

limy _, «Gy(s) = D, . (2.24)
Res>y ]

Definition 2.2.3: For any a 2 0, a semi-group {7(#)}, > ¢, defined on a Banach space, is said

to be a—stable if there exist M e (0, <) and ¢ > o such that

Il <Me™ , Vi20. 223

We assume that the plant model (2.2.1) satisfies the following spectrum decomposition assump-

tion.



Assumption 2.2.3: There exists a decomposition of Z = Z_ ®Z,, with Z, finite-dimensional,

which induces a decomposition of the plant (2.2.1), of the form

i 01r
d xp_(t)] . [Ap- ]x,,.(t) . [B,,.]e
i Pl ”(t:i P 226)
X, (L
}’2(0 = [Cp— Cp-a-] .x:(t)- + Dpez(t),

such that o(Ap,) € U_g, (Ap:, Bpy) is controllable, (4., Cps) is observable, and A,_ is the

infinitesimal generator of an o—stable Cy~semigroup on Z_. ]

Remark 2.2.1: As in the finite dimensional case, we say that the plant in (2.2.1) is a~stabil-
izable and o—detectable if there exist bounded linear operators K: Z — IR” and F: R* - Z
such that A, — B,X and A, — FC, are the infinitesimal generators of a~stable Cg—semigroups.
It can be shown that the plant is o-stabilizable and a-detectable if and only if it has the
decomposition of the form (2.2.6) [Nef.1, Jac.l]. In [Nef.1, Jac.1] only O-stability is con-

sidered. The extension to o—stability is trivial. a

Under the assumptions 2.2.1-3, the following result guarantees that there exists a finite

dimensional stabilizing compensator for the feedback system S(P, K) shown in Figure 2.1.

Proposition 2.2.4 [Jac.1]: A plant of the form (2.2.1) has a decomposition of the form
(2.2.6) if and only if there exists a finite dimensional strictly proper compensator such that the

feedback system is o—stable. |

Remark 2.2.2: Although the state space of the plant is assumed to be a Hilbert space in
{Jac.1], the results from (Jac.1] used in this section remain true if we assume that the state

space of the plant is a reflexive Banach space. ' [ |



2.3 An Example: Bending Motion of A Cantilever Beam

In this section, we show that the bending motion of a flexible cantilever beam with boun-
dary point force/moment actuators and point displacement/angle-of-rotation sensors can be
modeled by equations of the form (2.2.1). We use this infinite dimensional plant model in the
numerical design examples in the subsequent chapters to illustrate our proposed design pro-

cedure.

Consider the planar bending motion of a cantilever flexible beam, shown in Figure 2.2,
with a particle of mass M attached to the free end. The x-axis is the undeformed beam cen-
troidal line; the y-axis is the cross-section principal axis. The associated control syétem is
required to damp out vibrations. We assume that the beam has unit length and has point
force/moment actuators and point displacement/angle-of-rotation sensors at the boundary. Its

bending motion can be described by the following partial differential equation {Clo.1]:

izﬂa;—&+ 1—3“%%‘1 +El—-‘ai'—"l 0, t20, 0<x<1, 2.3.12)
29 x

with boundary conditions

w(t,0) =0, 22,0 =0, 23.1b)
ox
‘:’2" e -a x3 9w o1y - Erd x3 OW ¢ 1) = /0, ' 2.3.10)
3 (t D+ CI (t 1) + El— azw —(t,1) = (® (2.3.1d)
Fxy ax28 Py =0 =

where w(t, x) is the vibration along the y-axis, f(?) is a conﬁol force. £>(2) is a control moment,
m is the distributed mass per unit length of the beam, c is the material viscous damping
coefficient, E is Young’s modulus, M is the end mass, / is the beam sectional second moment
of area with respect to the y-axis, and J is the rotational inertia of the end mass. The output

sensors are modeled by
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n®=wi1), t20, (2.3.2a)
or
0= 261, 120 2.32b)

We now proceed to show that the system (2.3.1a-d), (2.3.2a-b) can be transcribed into the
first order form (2.2.1), with the assumptions stated. For simplicity and without loss of gen-
erality, we assume that there is only one force or moment actuator and one displacement or

angle-of-rotation sensor. First we rewrite (2.3.1a-d), (2.3.2a-b) in the form of

Wt,) + Dgit,) + Agt,) = Bgt)), t20, 0Sx< 1, 2.3.3a)
¥ = Cowie,), (2.3.3v)
where "-" denotes the derivative with respect to time, in the following definitions, we assume

that ¢ is fixed and omit it for notational simplicity,

() = (W), wi, )" € D(Ag) = D(Dy) = {W(') € HY(0, 11), w(0) = w'(0) = 0, w; = w(l), w; = W'(l)}

c Vo 4 L%([0,1]) x R?,
(2.3.3¢)
c d'w(x) —cI dw cl @w ,.\T
Dgw (m patly v M, = T 22 — 1), (2.3.3d)
EI a4t -El d&° El d&w
A & (= d’:ﬁx). = d:;' n, = dxz(l))T (2.3.3¢)
Ao L oF RV,
By 2 (0, E 0, or (0,0, J) , (2.3.3f)
Cow 2 w(l) , or W(l), (2.3.3g)

AH“([O,I]) denotes the set of functions whose fourth derivative belongs to Lz([O,I]) and w

denotes the derivative of w with respect to the spatial variable x. Note that
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D) = £Ao() (2.3.3h)
in the above example.
Let @ = (u(), 4y, )" and ¥'= (v("), vy, vp)" belong to V; in (2.3.3c). We define a inner
product in Vj as follows:
— M J
A =, + = + = . -3
@&, Vv, =W V2o L Rt O (234)

We have the following nice property for the operator A,.

Proposition 2.3.1: The linear stiffness operator Ap is a positive definite and self-adjoint
operator from D(Ap), which is dense in V{, onto Vj, with compact inverse. In fact, Ag is coer-

cive, i.e., there exists p > 0 such that

A7, Dy, 2 %I, . ¥ Ve DAy . (2.35)

Proof: The following proof is similar to that given in [Sch.2].

We first prove that D(Ao) is dense in V. Let 7= (W), vy, v)) € V;. Define

0, x e [0, 1/n)
Z,(x) = { v(x), x € [ln, 1-1/n] 2.3.6)
vy + vy (x-1), x € [1-1/n, 1+1/n]
Let ¢:(-) be a positive function in C*, the space of infinitely differentiable real-valued functions
on (—oo, o), such that
de(—x) = ¢e() ,

,[: ddx =1, (2.3.7)
O(x) =0 forx & (¢, €) .

We define
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.~

@[ na-»0, b =[ 200, G-Ndy, 0sxs1. 238)
an 4n

Then it is straightforward to check that u,() € C™([0, 1]), u,(0) = u,’(0) =0, u,(1) = v;,
u, (1) = v, and u, converges to v in L*([0,1]). Therefore (u,,(-),v,,v,)Te D(Ap) and it con-

verges to vin V.

Now we prove that 4 is invertible. For any v = (v(-),vl,v7)T € Vy, we define

% £ ]
uG) = B[ dey [ ey ([ s [ weades = o] + Ly ) .

= Emif de, f‘ d&zf’dfe f" V(eq)des — %%x’(x-s) +é%xz.

Then 72 (), u(l), u’(l))T € D(Ap) and Agir = V. Since Aal is an integral operatof, it is com-
pact and therefore bounded.
Next we prove that A, is self-adjoint. Consider T = (u(-), u(1), &’ (1))T and

7= (v(), v(1), V(1))T € D(Ap. Then

(I, Ag¥ v, = (G wD), WY, (CEV¥), ~2v (), ZlviayT )y, |
El ¢! ; El El 23.10)
== L u(@WVOND)dr — Z=u(1)(1) + —w (1WV"(1) .
m m m
Integrating by parts, we obtain
o EL¢t El, o
(&, A7y, = | W@y (@de = = uw’(), v'O) Doy - (2.3.11a)
Similarly, we have that
(AGT, Ty, = ZHwC), V') agery = (o AT 23.11b)
N T Ty ’ L¥10,1) » 40V 1V - -2

Hence for any Ve D(Ag), we have ¥ e D(Aq) and AgV = AgV. Therefore D(Ag) < D(Ap. To
prove that Ay = Ag, we have to show that D(Ag) < D(A). Suppose ¥ € D(Ag) and Ay = Z.

From the definition of Ag, we have



(¥, At )y, =@, By, ¥ Te DA .

13

(23.12) -

Since T& V, and R(Ay) = V, there exists Ve D(Ag) such that A = Z. Hence from (2.3.12),

we get

(y', Aoﬁ)vo = (Z_, IT)VO = (AoV, -u_)vo = (V, Aoﬁ')vo , Vite D(Ao) .

(2.3.13)

The last equation comes from (2.3.11b). Therefore y = V'€ D(4q) because R(4q) = Vp. So we

have shown that Ay is self-adjoint (and therefore closed).

Next, we prove that A, is coercive. Consider v = (v(-), v(1), v’(l))TeD(Ao). In

(2.3.11a), we show that
_ —_ - El ,, , 2

{7, Ay, = =V lipzgoy, -

Since v(x) = f V'(t)dv, it follows from the Schwartz Inequality that
1 1 Y

o)l < [ Wl ars [ el des (} v@les)” = vl oy -

which implies that
1 %

Vil Lxpo,1) = (£ lv(x)|2 dx) < Lx[o,1)) *

Similarly,

and

IV Loy < IV 2o, -

Note that

2 _ 2 M J
My, = vl o T 71'(1)2 + ;v'(l)2 .

(2.3.14)

(2.3.1523)

(2.3.15b)

(2.3.16a)

(2.3.16b)

(2.3.17)
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As a consequence of (2.3.15a), (2.3.16a-b), we have that

M . 2_ M, .m2 )
—y(1)* < —[p” , 2.3.18
m V( ) m " “ L*([0,1]) ( a)
J 2 J 2
V(1)< — , 2.3.18b
m ( ) m"v " LZ([OJ]) ( )
and
o7, < @+ 2 Ly 2
m m g
M_J.m m. M J (2.3.180)
- e T A WELLLAN ¢ 7 vV s(—+—=—+=)(7V, AV .
At B AT v = G + g + 5P (T A,
and the proof is completed. u

Referring to [Kat.1, p. 187], we obtain the following result which characterizes the spectrum of

Aop:
Lemma 2.3.1: The spectrum of Ay is an infinitely increasing sequence of positive real eigen-
values { mﬁ},em, each of finite multiplicity, and the corresponding mutually orthogonal eigen-
vectors {N,} ey comprise a complete basis in Vj, |
The ®,’s and n,s are, respectively, the natural frequencies and mode shapes of free, undamped
oscillations.

Since Ag has the nice properties described in Proposition 2.3.1, its square root, A}?, is

well defined [Rud.2]. In fact, V 8 D(A(’,ﬁ) is a Hilbert space with the inner product
(71, v & (AfW, AWy, Wil V. (2.3.19)
We define the energy space T = V X V,, with the inner product

((v-lo ’Tl)Tt (.‘729 h_Z)T)Zé(v-]' V_Z)V+(}?i’ h—Z)Vo’ Vl: v.ze Vn ’_l-]' ’72 € VO . (2.3.20)

‘Remark 2.3.1: (i) The eigenvectors of A4 are also mutually orthogonal and complete in V,

and the pairs (n,, 0)” and (0, n,)” are thus mutually orthogonal and complete in T [Gib.1].
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(ii) In fact, V = D(A{{‘) is the closure of D(Ap with respect to the norm defined by (2.3.14).
For the above example of the flexible- beam, it can be easily seen from (2.3.14), (2.3.15a), and

(2.3.16a-b) that [Sch.2]

V= {T= (), v, W lve H}0,1]), v©0) = v(0) = 0, v; = W(1), v, = V(1)}, (2.3.21a)

El
Miv = 4 ,.._ Vv’ 2.3.21b
lv|V " " Lz([O.I]) , ( )

where H%([0, 1]) denotes the set of functions whose 2nd derivative belongs to L0, 1)).
B

Let x,(5) = W(t,), w(t))T € D(AXD(Ag) < =. Then (2.3.3a-b) can be rewritten in the

following first order form:

x(8) = Apx, (1) + B, f(1)

A 0 1 0 (2.3.222)
= -4y Dy x (D + B, 3}

y(® = Cpxp(0)

(2.3.22b)
8 (Co, O)x,(0) .

It is clear from (2.3.3f) that B,():IR— Z is a bounded operator. We will show that
Cp,: Z = R is also a bounded operator. In the following, ¢ will be assumed to be fixed and

omitted for simplicity.
Proposition 23.2: C,:Z — R is a bounded operator.
Proof:  Consider x,=(, W' e Z=VxV, where ¥=@(),wl), V(1T e V and

T = (), uy, up)" € V,. Referring to (2.3.3b), (2.3.3g), we consider the following two cases

of different types of sensors:

Case I:  Point displacement sensor.

In this case,
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Cpx, = (Co, 0 [ﬁ = Cv = W(1). (2.323)

As a consequence of (2.3.21a), (2.3.15a), (2.3.16b), we have Iv(1)l < [V”]| Lq0.1]) * Note that

Iklls = \jlfﬂlv + lezo . (2.3.24a)

Dividing (2.3.23) by (2.3.24a), we get

ICpx _ ()l _ _ v(D)
lle Il i + i,
"_‘7“ 1’4 ﬂ 29 El .
\’ m "V "LZ([o'l])

Hence, C, Z — R is a bounded operator.
Case II:  Point angle-of-rotation sensor.
In this case,

Cpxp = (Cop, 0) [EJ = Cov = V(1) (2.3.25)

As a consequence of (2.3.21a), (2.3.16a), we have W (1)l < "V”"Lz([o' 1y The remaining proof

of this case is similar to that of case I. B

Remark 23.2: It is clear from the above proof that the resulting operator C,(") is also

bounded if the point sensor is located at any place on the beam.
. a

Now we will see how the operator A4, is defined so that it will generate a strongly con-

tinuous semigroup. First we choose the domain of A, to be

-1 -1
-Ag'Dy —Ag (2.3.26)
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‘-

where Ag!D, is the bounded extension of AalDo to V and R(T) denotes the range of the opera-
tor T. It follows from (2.3.3h) that Ag'Dy is the operator of constant multiplication defined by

Ag'Dyv = %v, V v € V and, hence, we have

D@y = (1, W | % = £+ By, V3 =~ + B, B &l € D(Ao), Ty & (0N U(V-D(AD)),
(2.3.27a)
where V-D(A() AviveVand v & D(Ap)}. For any v, € D(A,) defined by (2.3.27a), we

define

C —

Ly + o
a0t E°T M ~iiy + i (2.3.27b)
P < |49 D

>

~Hy+ 1 | |~Adh — Doz |
Now we show that the operator A, is well defined. Suppose v} =2 e D(4,). Referring to

(2.3.27a), we have the following representations: v,‘, = V}, 17‘2)7 with V% = %:7’0 + ﬁ'{ and

V=Wt B vp= 7, )T with % =
thatv;=v,2,,wehaveﬁ%:ﬁ},+w,ﬁ%=i1}—-§-w, andﬁ%:@+w. where w € D(Ap). It is

then straightforward to show that Apv}, = Apvf, .

Proposition 2.3.3 [Gib.1): The operator A, defined in (2.3.27a-b) generates a Cg-semigroup

(€");20in S and ¥z < 1,V r2 0. -

Now we show that Assumption 2.2.3 is also satisfied. We first characterize the spectrum

of A,. To begin with, Lemma 2.3.1 shows that

Aoﬂn = mnznn ’ (2328)

where ®,’s and m,’s are, respectively, the natural frequencies and mode shapes of free,
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undamped oscillations.

Proposition 2.3.4:  The spectrum of A, is given by

=€ 2 £ o — @2 _E 2.3.29
{ZEw,.:I:'\/jEzw,. o} U (=71 (2.3.29)

The first set is the point spectrum (eigenvalues). The number, —%, is not an eigenvalue.

Proof: (i) Point Spectrum: Let 0 X, = (x1, x7)T € D(Ap) defined in (2.3.27a). Con-

sider the equation A,x, = Ax,. We have

0 : [x] A'[XI]
= , 2.3.30
—Ag __}cg Ao 2 ) (2.3.30)
which is equivalent to

X = Ax (2.3.31a)

—Agx; — 'zCT:A“’ = Ax,. (2.3.31b)
Substituting (2.3.31a) into (2.3..3 1b), we get

a2+ A%Ao +Adx =0. (2.3.32)
Since (n,} is a complete basis in V, we can express

X = g.am,. - (2.3.33)
Substituting (2.3.33) into (2.3.32) and applying (2.3.28), we get

07 + A= 07 + @, = 0. (2.3.343)

Therefore for all n such that a,, # 0, we must have that
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A2+ x—%mﬁ +o2=0. (2.3.34b)

It is easy to see that A cannot simultaneously satisfy the above equations for more than two

different values of ®2. Therefore we know the eigenvalues are

M= ol+ \/ Z%m: —a? A= Lol- \/4—‘;«»: —o?, (2:335)

with the corresponding eigenvectors

Na Na
P PR B 2.3.36
) b @350
(i) The spectrum other than the point spectrum: Suppose A € 6(4,) but is not a point
spectrum. By definition, this means that (\/ — A,): D(A,) — I is one-to-one and
RM-A)=#Z, (2.3.37)

where [ is the identity operator in . Let y = (y;, y)7 € £ with y, € V and y, € V, and

x=(%, ») e D(A,). Now consider (M — A)x =y, i.e.,

Ag A+ —g-Ao X2 2 (2.3.38)

which is equivalent to

Ax; —x =y
(2.3.39)
Aox + Axp + %onz = Y2
It follows from (2.3.27a) that x; and x, can be expressed as
c
Xy = —=Ug+ u
E ! (2.3.40)

Xp = —Up + Uy,
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where u,&u, € D(Ap) and uye {OWJ(V-D(Ap). Substituting the above equation into

(2.3.39), we get
(%;\v + Dug + ?..ul ~U =y (2.341a)
Aglty + M=t + up) + -IE,-A(,u2 = y,. (2.3.41b)

IfA= —%, we can always find ug, u;, and u, such that (2.3.41a-b) is satisfied for any y e =
because R(dg) = V. If A = -%, then (2.3.41a) becomes Au; — u; = y;. Since uy, u, € D(Ag),
(2.3.41a) cannot be satisfied if y; € V-D(Ap). It is easy to see from (2.3.39) that if A = -—LC':-
and y; =y, =0, then x; = x, = 0. Therefore (—%I —Ap: D(Ay)) = X is one-to-one. Hence
{--}cz} belongs to the spectrum of A, but is not a point spectrum. The proof is therefore com-
plete.

The diagram for the spectrum of A, is shown in Figure 2.3. Note that —% is an accumu-

lation point of the point spectrum {émﬁ + 4—‘;@ - @2}, - Therefore to have Assump-

tion 2.2.3 hold, the stability margin o has to be chosen less than % From Remark 2.3.1, we

know that {[T(‘)’*], [T?n] Jane N iS an orthogonal basis in X. It is clear that, for each n,

span ([x:"'n], [}:}" ]} = span {[%'], [’f(l)]} Therefore the eigenvectors of the operator A
n*in n

form a basis for X. Let I, denote the finite dimensional space spanned by the eigenvectors

corresponding with the eigenvalues in the right half plane U_, and let Z_ be the space spanned

by the other eigenvectors. Then
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=IO, ) (2.3.42)

and X_ and %, are both invariant spaces of 4,, i.e.,

AZ,C%, A cE. (2.3.43)

It follows that (2.2.1) can be decomposed in the form of (2.2.6). It is then straightforward to
check whether (A,,, By,) is controllable and (A,., Cp,) is observable. In most cases, these
conditions are satisfied [Laf.1]. The only thing that remains is to prove that A, is the
infinitesimal generator of an a-stable Cg-semigroup on Z_. From [Hua.l], we know that A,

generates an analytic semigroup in Z. Therefore the operator A, restricted to X_, denoted by
Ayt
A,z also generates an analytic semigroup {e PR Ji2 0 Since A,z generates an analytic semi-

group, the following spectrum determined growth assumption is satisfied [Tri.1],

At

Pl
sup Re (0(A,z)) = ﬂ%‘ . (2.3.44)

We conclude that A,z is the infinitesimal generator of an a-stable Co-semigroup because

G(Ap.lz_) cD -

Remark 2.3.3: We have shown that the bending motion of a flexible cantilever beam with
boundary point force/moment actuators and point displacement/angle-of-rotation sensors can be

transformed into the standard formulation (2.2.1) with Assumptions 2.3.1-3 satisfied.
|

2.4 Stability of The Feedback System

Consider the feedback system S(P, K) shown in Figure 2.1. We assume the compensator,

K, to be finite dimensional, linear, time-invariant and minimal, with state equations
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x(1) = Ax (D) + B.ey(@) ,

(24.1)
n@ = Cex () + D.ey@) ,

where x(f) € IR™, e;() e R™, y,() € R" and A,, B,, C, and D, are matrices of appropriate
dimension. The compensator transfer function is G.(s) = Cc(sI,,e-Ac)"ch + D.. To ensure

well-posedness of the feedback system, we assume that det(/, + D.D,) # 0.

We define the product space H = Z x IR™, Since ¢, = u; ~ y, and e, = y; + u,, the state

equations for the feedback system are

-
- l-ofe) ~

where

,:;p-BPDc(I,,°+D,,,Dc)'l C, By,tD cDP)—lcc (2.4.3a)
Y > i ’ 4.
B ADLDYIC, AU, D DI D,C.

.

r .

B,D (I, #D,D)™"  B,U,+D Dy

. PD_I ’ CDPI _ (2.4.3b)
B(l,+D,D)™ -B(l,+D,D)'D,| "

~I,+D,D)'C, (I, +D,D)'D,C.
C = . 3 , (2.4.3c)
=D, n,+D pD e) Cp @ n‘+ DD p) Cc

[ @, 4D, D" U, +D,DY"D
D= & a & s (2.4.3d)
DU, +D,DY"  (1,+DD

The domain D(A) = D(4,) X R™ c H.

Remark 2.4.1: It follows from [Paz.1, p. 76, that since (i) all the operators in the matrix A
except A, are bounded, and (ii) diag(A,,0) generates a Co-semigroup, the operator A also gen-

erates a Cg—semigroup, {¢}, » o.
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Let x = [x,, xJeH. Then the formula x() = Axy + Ll AC-By(t)dr defines a mild
solution of (2.4.2) [Paz.1]. We therefore define the exponential stability of the feedback system

S(P, K) in terms of the semigroup {€*},> .

Definition 2.4.1: For any o 2 0, the feedback system S(P , K) is a~stable if the semigroup

{e*), » o is a—stable. ]

Remark 2.4.2: It was shown in [Jac.1] that, under the above assumptions, the feedback sys-
tem S(P, K) is also o—stabilizable and o—detectable. [ |
From the decomposition property in (2.2.6) for o—stabilizable and o—detectable systems, we
can easily deduce the following relationship between o—stability of the feedback system and

the spectrum of A, first established in [Jac.1]:
Proposition 2.4.1: If the above assumptions hold, the feedback system is o-stable if and

only if U_, is contained in p(A). , a

Remark 2.43: Note that Proposition 2.4.1 does not hold for a general infinite dimensional

feedback system. We refer the reader to [Zab.2] for a counter-exémple. -]

As an extension from finite dimensional case [Des.3], we define the characteristic func-

tiony : € - C, of the feedback system S(P, K), by
x(s) & det(sl, — Ay )det(sl, — Addet(ly, + GL()G,(5)) 2.4.4)

where Apy is defined as in (2.2.6) and a, is the dimension of Apy. To relate the zeros of x(s)

to the o-stability of the feedback system, we apply the following Weinstein-Aronszajn (W-A)

formula ([Kat.1, p. 247]).

The W-A Formula: Let F be a closed operator in the Banach space X. Let Q be a bounded

operator in X, and suppose that R A R(Q) is finite-dimensional. Let y: € —» C, defined by
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y(s) = detlg + (QF — sl)™)lp), be the associated W-A determinant, with I the identity opera-
tor in R and (Q(F - sI)“)IR the restriction of Q(F — s)™! to R. If A is a domain of the com-
plex plane consisl:i!ig of points of p(F) and of isolated eigenvalues of F with finite multiplici-
ties, then y(s) is meromorphic in A. Next, we define the multiplicity function v(s;y) of y(s) by

k if s is a zero of y of order k

v(s;y) = -k if sisapoleofyoforderk ¢, (2.4.5a)
0 forotherseA

and, for any closed operator G:X — X, we define the multiplicity function v (s;G) by

0 ifsep(G)
v (s;G) =4 dim(P) if sis an isolated point of 6(G) f, (2.4.5b)
+ oo in all other cases

where P is the projection associated with an isolated point of 6(G) (see [Kat.1, p.180]). Then
the W-A formula relates the multiplicity function of the operator F + Q to those of F and y(s),

as follows:

v(s;F + Q) = V(s;F) + v(s;y), ¥ seA . (2.4.59

Next, for any function : € — C, we define Z(f) & {se €| As) = 0} to be its set of zeros.
Theorem 2.4.1:  The system S(P, K) is a—stable if and only if Z( ) € D_,.

Proof: We begin by decomposing the operator A (in (2.4.3a)) into the form A = F + Q, as
shown below, with the plant decomposed as in (2.2.6) and A, such that Re(A,) < —c,
A, 0 0

F=|0 A, O], (2.4.62)
0 0 Ad,



B,D({, +DPY'Cre  ~BpDlly, +DD)Cpr B,y + DD,Y'C.
Q = -Bpch(Ino + DpDc)-‘Cp- Ap+ - Bp-l-Dc(Ino + DpDc)-lcp-o- - MM Bp(-(ln‘ + Dch)—lcc
-B.(, n, + DpD c)—lcp- _Bc(ln‘, + DpD c)-lcpl- A~ <, n, +D pDc)-lD pCc"A'cln‘=
(2.4.6b)

It is easy to see that F generates the Co-semigroup (€}, Where
&t = diage’™ €™1,,,e1,), and that (F - sl) is invertible for seUy; Q=A-F is a
bounded operator, and R(Q) is finite dimensional. Consider s € U_y4 € p(A,). Since

(F - sD)™! exists and is bounded, we can define V(s) by

V(s) = Q(F — s}

B, D (I, +D,DY"C,(Ay—sI)™ =B, DIy, + DP ' Cprlhe = )7
= |-BpDll,, + DD Cp(Ap=sD)™  (Apy = BpuDelly, + DpDe) ' Cps = ML) = 8
-B{,,+ DD Cp(Ap — sI)! -B I, + D,D)'Cp, - 5)!

B, (I, + DDy 'C\, - )™
Byy(ly, + DD Colh, - 5)™
(Ac = BAI,, + D,DY'D,Cc = Al ) = 5
(2.4.7)

Let By 2 R(Q) = R(B,) X R™ = R(B,-) X R(B,,) X R™ and let Vp(s) denote the restriction of
V(s) to By. Then det(/ + V(s)) A det(/p, + Vp,(s)) is well defined [Kat.1]. We will show that

det(/p, + V) = x(s) and then apply the W-A formula.

Let b;4 B, ¢, j =1,2,...,n;, where {¢}};1 is the standard unit basis in R™ Suppose,
without loss of generality, that 7 < n; is a positive integer such that [bj}}ﬁl is the largest
linearly independent subset of {bj}}';l. Using {bj],i’il as a basis for R(B,.), the linear operator

nx n;

B, assumes the matrix form B, = (I, ;| EP_) € IR , where column i of Ep_ is obtained

by expressing b_,; in terms of the basis {bj}}‘;,. LetB & (by,by,... ,by). Then
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Now suppose that the system S(P, K) is a—stable. Then it follows from Proposition 2.4.1
that U_y < p(A), which is equivalent to saying that U_, N o(A) is the empty set. Hence, from

(2.4.10), U_, N Z(y(s)) is the empty set, which implies that Z(x(s)) < D_,.

Next, suppose that Z(x(s)) € D_o. Then U_g N Z(y(s)) must be empty. It now follows

from (2.4.10) and Proposition 2.4.1 that S(P, K) is o—stable, which completes our proof. [ |

2.5 Concluding Remarks

In this chapter, we have modeled the class of infinite dimensional plants for which we
consider control system design in this thesis. We have shown that the planar bending motion
of a flexible cantilever beam with boundary point force/moment actuators and point
displacement/angle-of-rotation sensors belongs to this class of infinite dimensional plants. We
have defined the characteristic function for the closed-loop feedback system and related its
zeros to the exponential stability of the feedback system. This result'is useful for the design of
stabilizing compensators in the subsequent chapters. In the next chapter, we assume that the
infinite dimensional plant is exponentially stable and design a simple proportional-plus-multi-

integral compensator for it.



Figure 2.1: The feedback system S(P, K).

® actuators

O sensors

Figure 2.2: Planar bending motion of a flexible beam.
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Figure 2.3: The spectrum of 4, in (2.3.27).
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CHAPTER 3

THE DESIGN OF PROPORTIONAL-P'LUS-MULTI-INTEGRAL STABILIZING COMPENSATORS

3.1 Introduction

Exponential stability, asymptotic tracking, and disturbance rejection are among the most
fundamental requirements in control system design, and they have received a considerable
amount of attention in the literature. In [Dav.1-2], Davison presented a characterization of a
minimal-order, robust, error-driven servocompensator that achieves asymptotic tracking and
disturbance rejection for finite dimensional systems. The result was extended to distributed
parameter systems in [Cal.1, Des.1] in which, because of the coprime factorization used to
obtain it, the compensator tumns out to be infinite dimensional. Since practical considerations
require a finite dimensional compensator, the approach in [Cal.1] must be supplemented with
cumbersome approximation and order reduction techniques. In [Poh.1-2, Koi.l, Jus.1, Log.1-
2}, it is shown that feedback systems with exponentially stable infinite-dimensional plants can
be stabilized and regulated by a multivariable proportional-plus-integral compensator of the

form:

%kK,-fK. O<ks<k, (.1.1)

where K; and K, are real matrices whose dimensions are related to the input and the output

dimensions of the plant, k* is some real positive number, and s is the Laplace parameter.

In this chapter, we present a method for designing finite dimensional, proportional-plus-
multi-integral stabilizing compensators for the class of feedback systems discussed in Chapter
2, with additional assumptions that the infinite dimensional plants are exponentially stable and

their transfer matrix evaluated at s = 0 has maximum rank. The resulting feedback systems are



31

internally stable and asymptotically track polynomial inputs and suppress polynomial distur-
bances. Our analysis makes use of the characteristic function defined in Section 2.4, of
Theorem 2.4.1, and of the Rouche theorem in complex variable theory [Chu.1]. The resulting

proofs are quite straightforward.

In Section 3.2 we give some preliminary results about the stability of the feedback system
obtained by using proportional-plus-multi-integral compensators, applying the results presented
in Section 2.4. The main results are established in Section 3.3. In Section 3.4 we give a

numerical design example. We draw some concluding remarks in Section 3.5.
3.2 Preliminary Results
Consider the feedback system S(P, K) introduced in Section 2.2.

Definition 3.2.1: In this chapter, we will use the term “"exponentially stable" to mean
"o—stable with o. = 0", [ ]
In addition to the assumptions in Section 2.2, we need the following assumptions.'

Assumption 3.2.1: The operator A, generates an exponentially stable semigroup {eA"' }izo0

i.e., we can find 0y > 0 and M < == such that

e, < Me™ , V120 G2.1)
n

Under Assumption 3.2.1, it follows from Section 2.2 that U2, € p(A,), G,(s) is analytic

on U%,, and lim o _zocp(s) = D,. Therefore G,(0) = — C,A;'B, + D, is well defined.

Assumption 3.2.2: The matrix G,(0) has maximum rank.

It is easy to show that the following is true:

! These assumptions are only required in this chapter.
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Proposition 3.2.1: Suppose that Assumption 3.2.1 holds. Then there exist M <o and
0 < oy < 0 such that each element of G(s) denoted by [gf,J(s)] satisfies
IGNSM , Vse Uy ,i=12 - ,n,j=12, 5. (3.2.2)
|
We are required to design a minimal, finite dimensional, proportional-plus-multi-integral
compensator, described by a differential equation of the form:

%) = Ax ) + B.ey(d) ,

(3.2.3)
1) = Cx () + Dey(®) ,

where x(5) € R™, ¢,() € R™, y;(*) € R”, and A, B,, C, and D, are matrices of appropriate
dimension, with all the eigenvalues of A, equal to zero, for integral action. Since o(4.) = {0},
the compensator transfer function is G.(s) = C(sI — A)'B.+D, = Yo Fj /s/, where each

Fj e R™"™ and m depends on A,.

Let the state-space matrices (4, B, C, D) of the closed-loop system be defined as in
(2.4.2), (2.4.3a-d). The following result relating the exponential stability to the spectrum of the

operator A is a special case of Proposition 2.4.1 in Chapter 2.

Proposition 3.2.2: The feedback system is exponentially stable if and only if €, is con-

tained in p(A). n

We define the characteristic function Y(s) of the system S(P, K), by

x(s) = det(sl, — A) det(l, + G()G,(5)) = s det(l,, + G($)Gy(s5)) = s detl, + Gp()G(5) ,
(3.24)
where the last equation comes from the fact that det(/, + MN) = det(/, + NM) for any

n

Me R and N e R™™. The following proposition follows directly from Theorem 2.4.1.
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Proposition 3.2.3:  The system S(P, K) is exponentially stable if and only if Z(y) < C..
n

3.3 Stabilizing Proportional-Plus-Ml;lti-Integral Compensators

We establish the existence of a proportional-plus-multi-integral stabilizing compensator in
three steps. First we show that we can construct a proportional stabilizing compensator and
then that we can‘constmct an integral stabilizing compensator. Finally we combine and extend
these two results to show that we can construct proportional-plus-multi-integral stabilizing
compensators of arbitrary order. As a corollary to the results in [Cal.1], we show that these
compensators result in asymptotic error-free tracking of polynomial inputs and in asymptotic
polynomial outputhisturbance suppression.

In the proofs to follow, we make use of the Rouche theorem, stated below [Chu.1].

The Rouche theorem: Let f,g: C > € be functions which are analytic inside and on a
positively oriented (counterclockwise) simple closed contour C in the complex plane. If
Ifis) > Ig(s)! at each point s on C, then the functions f{s) and f{s) + g(s) have the same number
of zeros, counting multiplicities, inside C. u
Theorem 3.3.1: Consider the feedback system S(P, K) in Figure 2.1 and suppose that A, = 0,
B, =0, C. =0 and n_ = 0. Then there exists a matrix D, # 0 such that the closed-loop system

is exponentially stable.

Proof: By Proposition 3.2.3, the system S(P, K) is exponentially stable if and only if

Zldet(, + D.G,(s)] = C.. Suppose that D, = {d¥] and G,(s) = [gj/(s)]. Then

et + D.Gs) = det([aY + S,
k=1

1>

n; no
=1+ Y ¥d% + - & 1+HE), (3.3.1)
I=1k=1

where AW = 1 when i = j and A¥ = 0 otherwise, and H(s) represents the first and higher order
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terms in d¥ and gJ(s). It follows from Proposition 3.2.1 that V iy, there exist M > 0 and
0 < 0y < @ such that Igi¥(s)l < M, for all s € OU_q.2 It is clear that we can always choose a
matrix D, # 0, with sufficiently small components, &V, to ensure that LH(s)l <1, for all
s€dU_y,. In addition, H(s) is an analytic function on U_,. Setting C = dU_o , fs) =1 and
g(s) = H(s), we obtain from the Rouche theorem that det(/, + D.Gy(s)) = 1 + H(s) has the
same number of zeros in U_q as f{*), which is zero. Therefore det(l, + D G(s)) has no zeros

on € c U, Thatis, Z( dewl, +DGp) )< €., which completes the proof. u

Theorem 3.3.2: Suppose that D, = 0 and A, = 0, 50 that G(s) = %ccsc. Then there exists

an n; X n, maximum-rank matrix F; such that for any matrices B,, C, satisfying C B, = F, the

closed loop system is exponentially stable.

Proof: Case I: n; = n,, ie., the plant and the compensator transfer functions are square
matrices. Let n, = n; = n,, B, & C, € IR such that C B, = F; e R™™, It follows from

Proposition 3.2.3 and Equation (3.2.4), that the system is exponentially stable if
F,
Z(x(s)) = Z(dex(sl, )det(l, + G”(S)Tl» = Z(det(sl, + G,()Fp)) < €. (.32

We denote the elements of F; by £, so that F; = [f¥]. Then

e B
det(sl, + GOF) = ™+ "7'S, TS+ -+ )+ -+ +detG (s)detF) . (3.3.3)

=1 k=1
Re R
Let fis) =5 and let g(s) =5 3 TH GO+ -0 )+ -+ +detG,(s)detF,.
E1 k=l

Clearly, fs) and g(s) are both analytic on U_,, for some o satisfying 0 < oy < 0. Suppose

that for some & > 0, Iffl < 8, for all ij. Consider any s € 9U_,. We have

2 In this section, the set of 3U_q, includes the points at infinity in Uay
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B B
lg() < 1™ NIZ Sk + 1™ )+ -+ + IdetG(s)detF
I=1k=1

< 15 INMS + ISP NMEE 4 - 4 N, MO
< Nist™ (IsTIMS + Is72M282 + 1s3M38% + - - - + s M™5™), (3.34)

where N; is the number of product terms in the coefficients of Isi™, N = max; N;, and M > 0 is

oy

defined in (3.2.2). Since Isl 2 o for any se au_al ,ifd < , we have that

I !
£s) _ lgG) 1 220282 L ... ey RS
:j(s): o < N(sT M9 + IsTM“6° + + 157" M)

NMd NMS 2NMo
< < <
Is-M& — oy—MS oy

<1. (3.3.5)

Setting C = auﬂl and applying the Rouche theorem, we conclude that det(s/, + G,(s)F) has
A zeros in U_g .

For any €>0, let C.,2{se Clis+e =¢2). Clealy, if &<20,/3, then
Ce c U_q,N C_. Since by Assumption 3.2.2, detG,(0) # 0, it follows by continuity that there
exists an &,e(0,20,/3) such that detG,(—€) # 0 for all 0 <& <g,. Finally, there is an
&€ (0,¢€,) such that for all e (0,¢y), if

F 4G (-e)e, | (3.3.6)

then I,f}il < oy /2MN is satisfied for all ij and (3.3.5) holds. Therefore det(sl, + G,(s)F)) has n,
zeros in U_y. Note that the square matrix F; has maximum rank. Now, using the first order

expansion of G,(s) about s = —¢, in integral form, we obtain

det(sl,,_ + Gy()Fp) = det((s + &)l,,_+ G,(s)F| — el,,)
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,

1
= det|(s + &), + [G,(-€) + (s + &) l[ Gy( € + (s + €) |G (-e) e — el

-

r

1
= det|(s + &), + &(s +€) ! G( € + Us + €) )dt|G, ()™

-

1
= det((s + €)l,, )det(l,_+ €[ J G —€ + (s + &) )dtlG,(~e) ™)

= (s + ™1 + £0y(s) + EQy() + -+ + %0, ()

= (s + )" + (s + ©)"eQ)(5) + (s + )€20x(s) + - - - + (s + )" €™Q, (5), (3.3.7)

where the functions Qfs) are determined by the elements of the matrix

1
‘[ G;,( —€ + (s + €) )dt G,,(—t-:)‘1 and Gp'(—e + t(s + €)) means [dG,(M)YdNnlly = ¢ 4 s+ It

is easy to see that the Q/s are analytic on U_, and therefore that they are analytic on and

inside C;. Let W;= max, v, 194 and let W =max; W, Let f(s) A (s+e)™ and let
A R R Re A

8(s) & (s + £)0y(s) + (s + €)€20x(s) + - - - + (s + &) Q,(5). Both of ) and g(-) are

analytic on C. Then if € < min{1/2,1/2W,¢,}, we have

|§(%ll SEW +EWy+ - + W,

SsW[l +E+ - +s"‘"‘]

eW

< <2eW < 1. (3.3.8)

Therefore we obtain If{s)l > Ig(s)! for all se C,. It now follows from the Rouche Theorem that

det(sl,,c + G,(s)F)) = f(s) + g(s) has the same number of zeros, n,, inside C, as fs). Since we
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have

shown that det(sl, +Gy()F) has n, zeos in U, we know that
Z(det(sl,, + G,(S)F) € C\UD_q, € D_gp c €_. Tt follows from Proposition 3.2.3 that the

system is exponentially stable.

Case II: n,<n; Because of Assumption 3.2.2, without loss of generality, we may
assume that the first n, columns of G,(0) are linearly independent. Let n. = n, and
B, e R"™, C, e R™™ such that C,B, = F; e R™¥™, It follows from Proposition 3.2.3, that

the system is exponentially stable if Z[det(sl, + G (s)Fp] ¢ C_. Let

811 - 812
8210 - 82409

Gp.n,(s) A : ' 3.39
gno.l(s) e 8;.,,;.,(3)

Then by the above assumption, detG,, (0) # 0. Let &€ > 0 be such that detG,, (-¢) # 0, and

let

Gy, (e le
F= pa 7€) e R¥™ (3.3.10)
On-nxn, ’

which has maximum rank , n,. Then, since G,(-e)F; = &I, = &l,, similar to (3.3.7), we have

.

1
det(sl,, + G,()F)) = det|(s + &), + |G,(-&) + (s + ©) JG;(-e + (s + €)dT|F; — &l

.

' 1
= det |(s + &), +E&(s +€) JG;%(-e +%s + )t |Gpa (-0 (33.1D)

-

The rest of the proof follows that for Case I.
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CaseIl: n,>n;. Letn,=n;and B, e R¥™, C, e R™™ such that C.B, = Fj e R,

It follows from Proposition 3.2.3 that the system S(P, K) is exponentially stable if

F F,
Z(det(sl,, Ydet(l, + G,,—;’- ) = Z( dex(sl,)detdl,, + —sl-GP(s)) ) = Z( det(sl,_+ FiG,()) < €.,
(3.3.12)
Because of Assumption 3.2.2, we can assume, without loss of generality, that the first n; rows

of G,(0) are linearly independent. Let

81169 1 81,0
82105) - 82,0

Gou@8| . (33.13)
Lgn,, i® - g.,,,..,(S)_

Then by assumption, detG,,(0) # 0. Let € > 0 be such that detG, ,(—€) # 0 and let
Fi= [Gpm(_e)-l‘s , on.-x(n,—n.-)] e R¥™. (3.3.14)

Then F; has maximum rank #n; The rest of the proof proceeds as for Case 1.

We can now establish the main result of this chapter.

Theorem 3.3.3:  For any integer m 2 0, there exist m+1 n; X n, matrices F, 0<j<m, with
F, of maximum rank, such that, if [A.,B,,C.,D;] is a minimal realization of the matrix
transfer function 3.7, F; /s, with state dimension n, = m-min{n,, n;}, then the closed-loop sys-
tem is exponentially stable.

Proof: Case I: n;2n, We prove this theorem by induction. First we note that the

theorem is true for m = 0 by Theorem 3.3.1. Next, because in the proof of Theorem 3.3.1 the

only requirement on D, is that its components be sufficiently small, there exists a maximum
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rank matrix Fo ( = D) such that I + G,(0)F, and G,(0)F, are both invertible. This completes
the initialization of the induction.

Suppose that m 2 1 and that there exists a minimal stabilizing compensator with the state
space matrices [A,, B;, C;, D_] and transfer function ¥7;! F; /s’, where F,,_, has maximum
rank and G,,(O)F,',,_l is invertible. Referring to Figure 3.1a, we consider this closed loop sys-
tem as a "new plant” with transfer function
Go(s) 8 [U,, +Gy(s) I Fit sH G(s) It Fif 5'). Then
Gy(0) = (U, + G,(OF)™ G,(0)F, for m =1, and G,(0) = [G,(OF ]G, (O)F g = I, for
m > 1. In either case, Assumption 3.2.2 is satisfied. According to Theorem 3.3.2, for this new
plant, we can find a stabilizing compensator with transfer function of the form F:,, /s, where
F;,,e R"™ of maximum rank. For this compensator, it follows from the proof of Theorem 3.2

that there exists ;>0 such that Zl:de:t(.s'l,,° + @(s)F;)] cD_,.  Expanding
Z[det(sl,,o + G‘,,(s)F;,,)], we obtzin that
— R m-l m1l
VA [det(sl,,o + G,,(s)F,,,)] = Z| det( sl,, + (I, +G,(s) X, F;/ s')‘le(s)( Y, Fil sFp)
=0 i=0

m-1 m-1 . s
=Z L det] sl, + (™, 4G,(s) TFs" 7 Y IG (N T Fs™ " HF,, ] }
=0 =0

= Z| (det] s, + G(s) "_gF;f-‘-‘ 1! dei[ S, + G,(s)g(p;.,ﬁ;,+ﬁ"i)d"" ] } cD_q,
- (3.3.15)
where  F; 80, FAF, for 0Si<m-1 and F,80. Let
X(s) 8 det(s™ I, + G,(s) TR'Fs™ ) = det(s™ 1, )-det(l,, + Gp(s) T5'Fis™ and  let
Y(s) 8 det(s™,, + Go(s) TTo(FitFrtF)s™ ) = det(s™,) detll, + G (s) TPoFirFintF)s™).
Note that X(s) and Y(s) are analytical functions on UZ,, where 0y is defined in Assumption

3.2.1.
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By  assumption, [A,, B,, C,,D] is a minimal realization for
ml F s = (S Fs™ ("', ). Since Fj,, has maximum rank, it can be shown that
7ol and s, are coprime. From [Che.1, Chap. 6], it follows that A, is a square
matrix of dimension n, = deg(det(s""'],)) = (m—1)n,. Combining with the assumption that
I7lF; / s* is the transfer function of a stabilizing compensator and Proposition 3.2.3, there
exists a >0 such that Z(X) € D_g. It now follows from (3.3.15) that Z(Y) < D_,, where
v = min(oy,B,00). We now set
Fi=F_F. +F,, 0Si<m. (3.3.16a)
Then F,, = ;,,_IF;,, has maximum rank because F;,,_l has maximum rank and F., is invertible.
Also G,(0)F , = (GO)F,,1)F,, is invertible because G,(0)F,,_, and F,, are invertible. Hence
we conclude that any minimal realization for the transfer function "7, F;/s' (with state
dimension n, = mn,) is a stabilizing compensator.
Case II: n;<n, We proceed again by induction, as for Case I, except that we reason in
terms of the configuration shown in Figure 3.1b. Thus we set CT,,(s) =
(CIF; 15 G () 1, + (CTLF; Ish) G,(s) I"! and select a stabilizing compensator transfer
function F,/s with Fn,e R¥™ and we examine the set Zldet(sl,, + F,G(9)] (cf. (3.3.12)).

The rest of the proof is then similar to that for Case I, except that we define F; as follows:
Fi=F,F_,+F,, 0Si<m. (3.3.16b)

If [Ac, B, Cc, D] is a minimal realization for 3% F; /s’ = (s™1,) /(T PoFs™), the dimen-

sion of A, is n, = mn;. This completes the proof.
[ ]

Remark 3.3.1:  Equations (3.3.6), (3.3.10), (3.3.14), (3.3.16a-b) define a method for finding

the coefficient matrices F; for a stabilizing proportional-plus-multi-integral compensator. In
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fact, Theorem 3.3.3 can be restated as follows:

There exist matrices {K;}7o C R, where K,, has maximum rank, such that the plant of

(2.2.1) can be stabilized by proportional-plus-multi-integral compensators of the form
m i "
2 kKi§, O<kiski, 0<j<m, (3.3.17)
=0

where k;’s are positive real numbers.

To prove this statement, we first note that, according to the proof of Theorem 3.3.1, we can
find a constant matrix Fo and kj > O such that for all D, = kyFy with 0 < kg < ko, Theorem
3.3.1 is still true. Next, instead of choosing F = G,(—€) ' in Case I of the proof of Theorem

3.3.2, we choose
F4G,0 (3.3.18)
and note that

1 -1
G0 e = G- e + ¢ -d—(c—”i::i)-dt
(3.3.19)

1
= G, (-e)le - 52L G (—et+te) 2t .

The rest of the proof remains the same as that of Theorem 3.3.2 as long as € is chosen to be
small enough. Similar substitutions are then applied to Cases II and III : For n, <n; we

choose

-1
F, = Cpn (0 € e R (3.3.202)
! 0("1—"0)""0 '

and for n, > n;, we choose
Fr= [GP ,,i(O)“‘-e , On.x(n,-n,-)] e R¥™, (3.3.20b)

The result then can be induced from (3.3.16a,b).
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Furthermore, Theorem 3.3.3 still holds if the transfer function of the compensator is in

the form of 37.F; /s, i.e., Fg is set to 0. The proof is similar to that of Theorem 3.3.3. For

’ P A O
this case, we can choose in (3.3.17) that K =0,., and K;=G,0)", 0 , or
ve (nny)xn,

[GP,.‘(O)"-e , 0,.,.x<,,,_,,,)] for 1< j < m depending on the dimension of the inputs and outputs.?

This can be easily induced from (3.3.16a-b). The initialization of the induction comes from

(3.3.18), (3.3.20a-b). Note that F,,’ =1, and I, for m 21 in (3.3.16a) and (3.3.16b) respec-

tively for this case.
|

Referring to [Cal.1], we observe that the proportional-plus-multi-integral compensators we
have constructed not only stabilize the feedback system, but also have the following input fol-

lowing and disturbance rejection property:

Proposition 3.3.4: Suppose that Zj”:'o F/sf, with F,.e R*" of maximum rank and n; 2 n,, is
the transfer function of a proportional-plus-multi-integral stabilizing compensator for the feed-
back system in Figure 2.1. Then the resulting feedback system can track asymptotically poly-
nomial reference inputs and suppress asymptotically polynomial output disturbances up to order
(m-1). ]

3.4 A Numerical Example

Consider the planar bending motion of the flexible cantilever beam introduced in Section
2.3. We assume that a point force actuator and a point displacement sensor at the boundary
are used. The differential equation of describing the bending motion is repeate& below for

convenience:

3 We have made the same assumptions given in the proof of Theorem 3.3.2 here: If n; > n,, we assume that the first 1,
columns of G,(0) are linearly independent; If #; < n,, we assume that the first n; rows of Gp(0) are linearly independent.
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4.
- (%) +cla"’("") +Etaw("") =0, t20, 0Sx<1,

3.4.1
Y axor " G412
with boundary conditions
wz,0 =0, iaﬂ(t.O) =0, (3.4.1b)
29
a?-w ’w
\1 1) = EI—(t,1) = D), 4.1
a:z(t) axga ) - axg(t) ) (34.10)
I 01y a2y + B2 1y <0 (3.4.1d)
axazz axla ox?
where f{-) is a control force. The output sensor is modeled by
yO =w@t, 1), t20. (3.4.2)

We show in Section 2.3 that the system described by the above equations can be
transformed into the form of (2.2.1) with Assumption 2.2.1-3 holding. Since o = 0 and the
spectrum of A, is shown as in Figure 2.3, A, in (2.2.6) is O for this example. Therefore

A, = A,_ generates an exponentially stable semigroup and Assumption 3.2.1 holds.

We assumed that m = 2, ¢/ = 0.01, EI = 1, M = 5, J = 0.5. The evaluations of G,(s) at
different values of s = jo are discussed in next chapter. For this example, we can obtain a

closed-form (but irrational) equation for G,(s).* We find that
GP(O) = 0.333, _ (3.4.3)

Therefore Assumption 3.2.2 also holds.

First we choose the transfer function of compensator to be

G(s) = 0.001

GO = 0003 (3.4.4)
s s

4 This can be obtainéd by solving the two-point boundary value differential equation formulated as in the form of (4.5.3),
(4.5.4a-c). Note that the coefficients, EJ, ¢/ and m, in the differential equations (3.4.1a-d) are constants.
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Since minimal realizations of G(s) are first. order, it follows from (3.3.2) .that
X(8) = s det(l; + G,(s)G(5)). The plat of y(jw)/dy(jw) with dy(s) = s + 0.001 is shown in Fig-
ure 3.2. For our design example, the critical frequency interval for the evaluation of
X(j@)/do(jw) was chosen to be [1075,200]; 500 points were used to produce the plots in Fig-
ures 3.2, 3.3 and 3.4. Since the zeros of dy(s) have negative parts, it is obvious from Figure
3.2 and the Argument Principle of complex variable theory [Chu.l] that Z(x(s)) ¢ €. and

therefore that the feedback system is exponentially stable (see Theorem 4.2.1).

If we choose the transfer function of the compensator to be

G(s) = 0.004*

GO _ 0012 (3.45)
- : 4.

s

then the plot of ¥(jw)/do(jw) in Figure 3.3 shows that the feedback system is again exponen-
- tially stable.
Alternatively, we can choose the second-order integrator compensator

0.001
52

)= 0.009% + 0001, (3.4.6)

s?

Gs) = 0.003*6,,(0)-1*(-% +

Since minimal realizations of G.(s) are second order, it follows from (3.3.2) that
X(s) = Pdet(ly + G,(s)G(s)). We choose dy(s) = s* +0.006s + 1.5%10°. The plot of

x(j®)/dy(j®) in Figure 3.4 shows that the feedback system is exponentially stable.

3.5 Concluding Remarks

Since it is possible to both stabilize and ensure asymptotic tracking of polynomial inputs
and asymptotic rejection of polynomial disturbances by means of very simple finite dimen-
sional compensators, it may be possible to satisfy fairly complex design specifications like
robustness and satisfactory transient responses by fairly low dimensional compensators. Such

compensators are best designed using nonsmooth optimization techniques as outlined in [Pol.6).
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This topic is covered in the next chapter. The proportional-plus-multi-integral compensator
design proposed in this chapter can then serve as the initial design for the compensator. For

example, we can assume that the transfer function of the minimal compensator is given by
mF,
Z'_~ + Gc(sv Pc) » (3.5.1)
=0 s

where the components of the matrices Fj, 0 < j < m, and the vector p, serve as the design vari-
ables after we formulate the complex design specifications into the semi-infinite form presented
in the next chapter. The initial values of Fj, 0 < j < m, are chosen in the manner described in

this chapter and thus allow us to further improve the system performance.
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Figure 3.1a: Feedback compensator structure for case I of the proof of Theorem 3.3.3.
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Figure 3.1b: Feedback compensator structure for case II of the proof of Theorem 3.3.3.
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Figure 3.2: Plot of %(jw)/dg(jo) for the feedback system with the transfer function of
the compensator defined in (3.4.4).
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Figure 3.3: Plot of y(jw)/dy(jew) for the feedback system with the transfer function of
the compensator defined in (3.4.5).
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Figure 3.4: Plot of x(jw)/dy(jw) for the feedback system with the transfer function of
the compensator defined in (3.4.6).
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CHAPTER 4
OPTIMAL DESIGN OF FEEDBACK COMPENSATORS I:

PARAMETRIZED STATE-SPACE FORM

4.1 Introduction

In this chapter, we present a more complex control system design methodology than that
considered in Chapter 3. Feedback control is used to achieve various desirable properties, such
.as exponential stability with a prescribed stability margin, disturbance attenuation, low sensi-
tivity to changes in the plant, specifications of shaped output time responses, etc. We transform
the various design specifications mentioned above into a semi-infinite optimization problem.
We then model the compensator in the parametrized state-space form, using the elements of the
state-space matrices of the compensator as design parameters. Therefore, the order of the com-

pensator can be assigned by the designer in advance.

In Section 4.2, we transform the requirement of exponential stability with a prescribed
stability margin into the semi-infinite form. In Section 4.3, we consider the formulation of
various frequency- and time-domain performance specifications. In Section 4.4, we discuss the
numerical implementation of the semi-infinite optimization problems. In particular, we study
the evaluation of the frequency responses of the infinite dimensional plants by considering a
case study for the bending motion of a flexible cantilever beam in Section 4.5. A numerical

example of designing a stabilizing compensator for the bending motion of a flexible cantilever

beam is given in Section 4.6.
We make the following basic assumption:

Assumption 4.1.1: We assume that the matrices, A, B, C,, and D,, are continuously

differentiable in the design parameter vector p..
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It is then obvious that G(s, p.) = C.(sI — A)™'B, + D, is continuously differentiable in p..

4.2 Design of Exponentially Stable Feedback System with a Stability Margin

4.2.1 Introduction

Exponential stability of the closed loop system is the most basic requirement in control
system design; it guarantees that the system will not "blow up”. Although the Nyquist stability
criterion [Nyq.1] has served for many years as the principal "manual” tool for ensuring stabil-
ity in linear time-invariant systems, it cannot be used in conjunction with computer-aided
design techniques based on semi-infinite optimization [Pol.3] because it defines an integer-
valued encirclement function, while semi-infinite optimization requires, at a minimum, that con-

straint and cost functions be locally Lipschitz continuous.

The first attempt to produce a frequency domain stability test for finite dimensional sys-
tem compatible with the requirements of semi-infinite optimization was presented in [Pol.1]. A
significant improvement was presented in [Pol.2]. The necessary and sufficient stability cri-
terion proposed in [Pol.2] is based on the following observation. Suppose that X(s) is a
characteristic polynomial. Then all the zeros of ¥(s) are in C_ if and only if there exists a

polynomial d(s), of the same degree as x(s) and whose zeros are in C_, such that
Re [x(jw) / d(ji@)] >0, VYV we(~eo , o). (4.2.1)

The proof of this result is simple. If all the zeros of x(s) are in C_, then set d(s) = x(s) and
hence (4.2.1) holds. Alternatively, if (4.2.1) holds, then the origin is not encircled by the locus
of x(jm)/d(jo), and hence the conclusion holds as for the Nyquist stability criterion. When used
in design, the characteristic polynomial is also a differentiable function of compensator design-

able parameters p, €IR* and has the form y(s, p.); and the normalizing polynomial d(s) is
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written in a factored form, such as d(s, ¢) = I'Ij:{ (> + a;s + b)), which makes it simple to

ensure that the zeros of d(s) are in C_ (g is a vector whose components are the g;'s and b;’s).

In this section we extend the computational stability criterion presented in [Pol.2] to a
form that can be used in the design of finite dimensional stabilizing compensators for the class
of feedback systems with infinite dimensional plants described in Section 2.2. Since in this
case the characteristic function defined in (2.4.4) is not a polynomial, there is no simple way to
define a normalizing polynomial (of finite degree) for a test of the form (4.2.1), and hence
approximation theory has to be applied. The new stability test guarantees the internal stability
of the feedback system. Because the numerical implementation of the test does not depend on

the use of a reduced plant model, the test will not lead to spill-over effects.

4.2.2 The Computational Stability Test

Consider the feedback system S(P, K) described in Sections 2.2 and 2.4. We first intro-
duce an approximation result.
Proposition 42.1:  Given o 2 0, any function f: € — C that is analytic in UZ,, continuous
on oU_, and converges at infinity in U_,, can be approximated uniformly by a rational func-

tion that is also analytic on the same domain.

Proof :  Let f{s) be a function which is analytic in U%,, continuous on oU_, and converges

at infinity in U_,,. Define the bilinear transformation

g A S=pEe A g, plH2 4.2.2)
s+p+o 1-2

and let g(z) = R—o+ p(1 + 2)/(1 — z2)). Since U_, is mapped onto the unit disc, g(z) is ana-
lytic in the open unit disc and continuous on the unit circle. By Mergelyan’s theorem [Rud.1],
g(z) can be uniformly approximated arbitrarily closely on the unit circle by a polynomial in z.

Since the transformation (4.2.2) is H™-norm preserving, the desired result follows.
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The characteristic function %(s) was defined in (2.4.4) and is repeated here for convenience:
%) a det(sl,, — Ap,)det(sl, — A)det(l,, + G(s)Gy(s)) - (2.4.4)

Now we introduce the computational stability criterion.

Theorem 4.2.1: Let n, and n, be the dimensions of the matrices A, in (2.2.6) and A, in
(2.4.1), respectively. Z( x ) < D_q if and only if there exists an integer N, > 0, and polynomi-

als dy(s) and n(s), of degree N; = N, + n, and N,, respectively, with n; = n+n,, such that

() ZAys)) €D.q, Znys)) cD_y; (iD) Re [—42%@-] >0 VsedU,.

4.2.3)
Proof: (i) Suppose that (4.2.3) holds. Since A,_ is a-stable, there exists € > 0 such that
U_(a+g) i @ subset of p(A,.), and (s/ — A‘,,_)‘l is analytical on U_(ye). From (2.4.9), (2.4.8D),
we observe that y(s) is an analytic function over U_gy,¢). Then it follows from the Argument

Principle [Chu.1] that Z( ) < D_,.
(ii) Suppose that Z( y ) € D_,. We first apply the appi‘oximation result given in Proposition

42.1 to the function ¥(s)/(s + B)™, where P = o. Clearly, there exists some real number

Yo > =0 such that lim _, , G,(s) = D, and limy_, ., G(s) = D, Because the degree of
Resz21v, Res2 1

det(sl,, — Ap,)det(sl, —A) is n;, we obtain

lim 1—X9 | = jim det(sl, — Ap,)det(sl, — AJ)

- - lim Idet(l,, + G(s)G ()
S B s+ B)" T
0
= \det(l,, + D.D,).

4.2.4a)

Since x(s) is analytic on U_gys) for some € > 0, it is uniquely determined by its values over
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Uy, [Chu.1, p.286]. Hence'

lim g . I—XQL"-I = ldet(l,, + DD #0 . (4.2.4b)
selUqy(s+B)”°

Note that Idet(/, + D.Dp)l is not equal to zero because the feedback system is assumed to be

well-posed. Therefore it follows from Proposition 2.4.1 that for any 8 >0, we can find a
rational function d(s)/n(s) such that all the zeros of a(s) c D_,, and
Ixs)(s + BY™ — d(s)n(s)li ) . ggg IX()(s + B)™ — d(s)n(s) < & . 4.2.5)

Since Z(y ) c D_, and for s eU_g, IY(s) — oo as Isl = oo, it is easy to show that

infy ey () = co > 0. Because of (4.2.4b), for any given n > 0 sufficiently small, there
exists ry such that Ix(s)/(s + B)"'I > ldet(l,, + D D)l — m, for all s eU_4 and Isl 2 ry,. Next we
show that if § < min {ldet(, + DD =1 , co / (ry + B)™}, then Z( d(") ) & D_,. If not, then
there exists so €U, such that d(s)) =0. Now, by (4.2.5), Ix(sol(so + B)™ — d(so)/n(so)l
= Ix(so)/(so + B)" < 8. If Isgl > ry, it contradicts Ix(so)/(sp + B)™ > ldet(Z,, + D Dp)l — M >,
while if Isgl < ry, it contradicts Ix(sp)/(so + B)™ > co/(ry + B)™ > 8.
From (4.24b) and because inf, eUy Ix@)I =¢p>0, it is easy to show that
inf; ¢ 3y, X()/(s + B =1Il#0. From (425), if 38<ly2, then for sedl.,

ld(s)/n(s) > (s)/(s + B)™ — & > Ix(s)/(s + B)™V2. Therefore if & is chosen to be less than

min [10/2,ldet(l,,, + DDyl — M, co/(ry + [3)"‘}, from (4.2.5), we obtain that

(s + B)™ = ds)n(s)l 1 1d(s)n(s) < & /1 1d(s)n(s) < 28 / Ix(s)(s + B <1, sedU_y.
4.2.6)

! The following is a sketch of the proof for (4.2.4b). Consider the function f(s):U.,o — € such that f{s) = %(s) for s e U7o'
By using the transformation defined in (4.2.2), we transform U, _in the s plane unto a subset of unit disc in the z plane, which in-

%
cludes the point z = 1. Then there exists a unique analytic extension of the function g(z) = f(-u.-l-p%) to the unit disk, which is

h(z) = x(—a+p%). Izl < 1. Therefore (4.2.4b) is just the consequence of k(1) = g(1).



54

It follows that for all s € dU_g, I[x(SHn(s)/(s + B)"‘d(s)] - 1l < 1, and hence that

Ref 289 150, v seav,, 2.7)
(s + B)"d(s)

Let ny(s) = n(s) and dy(s) = (s + B)"'d(s). This completes our proof. ]

In practice, the test (4.2.3) can only be used as a sufficient condition, because one must
choose in advance the degree N, of the polynomial dy(s). We now sketch out some of the
numerical aspects of using the test (4.2.3) in the design of stabilizing compensators. First, the
order n, of the compensators (2.4.1) must be selected. Second, the polynomials dy(s) and r;o(s)
must be parametrized. In [Pol.2] we find a computationally efficient parametrization for dy(s)
and ny(s) that is based on the following observation. When a.b € R, Z[(s+0) + a)] € D_q if

and only if @ > 0, and Z[(s+0)? + a(s + 0) + b] c D_g, if and only if >0, b>0. Hence,

when the degree of dy(s) is odd, we set dy(s, g2 As+0)+ ao)ﬁ((s + 0)% + afs + @) + b),

=1
where g; & (ap, a1, a3, *** ,@p, by, ba, -+ -, b)T €R*™! and Ny = 2m+1. When N, is
even, the linear term is omitted. The polynomial ny(s), which is of degree N, = N, — n, can

be parametrized similarly, with corresponding parameter vector g,. As a result, if we define

vier?, max  (e-qi, (4.2.82)
VgD &, max RO (4.2.8b)

-a + ‘(D' -a + .(op
v, 94, 90 4 (e — Re( x( J@, pne( Jjo, q») )

e (0,) dol —0. + jO, 92 b, (4.2.9)

where ¢i, ¢, are the components of g, ¢,, and € is a small positive number, the test of (4.2.3)

becomes

vigpso, (4.2.102)
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¥(g) <0, : (4.2.10b)

v'®c, 94, 4 S0 : 4.2.11)

Note that we have defined y?, y”, ! in such a way that the test of (4.2.3) is transformed into

the min-max forms.

4.3 Design Specifications

As an extension from the finite dimensional case [Wuu.1, Pol.5, Pol.6], we transcribe the
various frequency- and time-domain performance specifications into semi-infinite inequality
form. These specifications require the shaping of several closed-loop responses. For this pur-
pose, we consider the feedback control system configuration S(P, K) shown in Figure 4.1. Let
y = (e, €5, )7 and u = (uy, wy, dy, d)'. Let H(G,, G,) denote the transfer matrix from
to y. It can be shown that

I+GG)! —(U+G,G)'G, -U+GG)' ~(U+G,G)"
HG, G)=| GU+G,G)! (+GG)! —GU+GG)' —GU+GG)™"

GG +G,G)' GU+GG)' (+G,G)! -GGU+GG)!
4.3.1)

(i) Stability Robustness:.

To begin with, we consider the problem of ensuring closed-loop system stability in the
presence of unstructured plant uncertainty. Before we do this, we first define the bounded-
input-bounded-output (BIBO) o-stability for the feedback system described by (2.4.2) and find

its relationship with the (internal) stability defined in Definition 2.4.1.

Definition 4.3.1: The feedback system S(P, K) formulated by (2.4.2) is said to be BIBO ¢-

stable if there exist M € (0, =) and oy > o such that

ICeABI < Me™™¥, ¥ ¢t>0), 4.3.2)
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where (A, B, C) is the set of closed-loop state-space operators defined in (2.4.2).
|

Remark 4.3.1: It is clear that if a system is (internally) o-stable, as defined in Definition
24.1, it is also BIBO o-stable. If a system is BIBO a-stable, and o-stabilizable and o-

detectable, then the system is also (intemnally) a-stable [Jac.1]. . [ |

Now we retum to the problem of robustness design. Consider the perturbed plant
Gy(s) = (1 + A(5))Gy(s) as shown in Figure 4.2, where A(s)G,(s) converges to 0 at infinity of

U_q, and G,(s) and G,(s) have the same number of poles in U_,. Referring to [Che.2], we see

that if the nominal design for the plant is BIBO o-stable, then the closed-loop system will
remain BIBO a-stable for all perturbed plants Ez‘rp(s) = (1 + A(5))G,(s) with A(s) satisfying
SlA(-a + jw)] <b(@), Y20 4.3.3)
if and only if the nominal feedback system satisfies
SlH (-0 + jo)] = SH{G,G(1 + GG (o +j) S Ub@) , Y020, (4.3.4)

where H; () means the (i, j)-th element of H(G,, G;) and 3(M) denotes the largest singular

value of the matrix M. Note that H; (") is itself a matrix function. Hence if we define

V@e)4 su | (Bl (-0 + j)] - Ub(@))

® €[0,
. . 43.5)
= S (BUG,G + GG )ox + ja] = Ub@)) .
then for all p,. such that
Vi) <0 | 4.3.6)

holds, the resulting compensator will stabilize not only the nominal plant G,, but also the plant

(1+A(S)G(s) with A(s) satisfying (4.3.3).
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(ii) Disturbance Suppression and Good Command Tracking:

Good input tracking and disturbance rejection over the bandwidth of the feedback system
can be achieved by making the norm of the transfer function from the command input u; to the
tracking error e; or equivalently, from dy to 2z, (see Figure 4.1) small over the system

bandwidth. Hence, if we define the performance function

V& sup  (SlH(0) - bAw)
=, Sip_ (311 + GG ()] - bdw) ,

me[

4.3.7)

where b(-) is a continuous bound function, good command tracking and disturbance rejection

performance require

v(p,)<0. (4.3.8)

The extension of Bode’s integral theorem states [Boy.2]

‘[ log{B{H33(®)]} 20 . | (4.39)

Therefore for every frequency interval of nonzero measure over which the feedback system
attenuates output disturbances, there must exist an interval of nonzero length over which the
system amplifies output disturbances. Hence we must let b(-) exceed 1 over some frequency
interval outside the system bandwidth [@,, ®,]. An example of the function b (-) is shown in

Figure 4.3.

(iii) Plant Saturation Avoidance:

Since a large plant input can drive the plant out of the operating region for which the
linear model is valid, it is important to keep the plant input small to avoid deterioration of per-

formance and instability. We define the performance function by
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vp) 4 su | (Ot o] - b,)

® € [0, o

. (4.3.10)
sup  {GUG + GpGo™)(®)] = b}

®el0, o

where b, > 0 is a suitable bound for the plant input power spectrum amplitude. Ignoring the .
effects of output disturbances or sensor noise, the saturation avoidance requirement can now be

formulated as

vip) <0. (4.3.11)

(iv) I/0 Map Decoupling:

In many design problems, it is desirable to have a decoupled (diagonal) I/O

(Input/Output) map. Therefore we define

Veod  swp o (i) -e)
1SiSn, 1SjSn, i#j “312)
= S ((G,G1 + G,G) 1))l — €} . -

1SsisSnm, 1SjSn,ixj

where [H3,]¥ is the scalar transfer function from the input #/ to the output ¥’ and & is some

small positive number. The I/O map decoupling can be achieved by requiring
v(p)<0. 4.2.13)
In practical system design, we replace the semi-infinite interval {0, <] appeared in the

above equations by a critical compact interval. Therefore, all the functions of s defined

above and in (4.2.10a-b, 4.2.11) are in the form of
sup fz,3) . (4.3.14)

where Y is some compact interval and f is a real function which is continuously differentiable
in the design parameter vector z. Therefore we have ensured that all the y’s are at least locally

Lipschitz continuous [Pol.3].
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(v) Time-Domain Response:

In many design problems, time-domain design specifications are essential. In general,
because there are no simple relations between time responses and frequency responses, time-

domain design specifications cannot be transcribed into frequency-domain specifications.

Suppose we are required to shape the response of the first channel of the plant output to a

certain input function in the first input channel denoted by ul(?). For this purpose, we define

Vo) 8 2%, {L"{[H3.1<s>11"v%(s>n<r) - lz‘(t)}

(4.3.15)
_ -1 —1ra1l1771 - p!
= max, {L ([GGU + GG O Ui} - b (t)}
and
v(po) = e {E‘(:) - LY[G,G M + GG (M U}(s)}(:)} (4.3.16)

where b'(-) and b'(-) are respectively the lower and upper bounds for the first channel of the
plant output, L™! is the one-sided inverse Laplace transform, and Ul(s) is the Laplace transform
of the input ul(s). An example of time-domain step response specification is shown in Figure

4.4. By requiring that

Vo) <0 (4.3.17)
and

V<0, (4.3.18)
satisfactory time-domain responses can be achieved.

We prove that y®(-) and y’(-) are Lipschitz continuous in Appendix 4.A under the assumption

that SIG,()IU1(s) = OG™d).
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We refer the reader to [Pol.5, Pol.6, Wuu.1] for more examples of design specifications.

4.4 Formulation of The Semi-Infinite Optimization Problem

Exponential stability of the feedback system must be guaranteed before we attempt to
satisfy other design specifications. Otherwise, some closed-loop transfer functions which are
used for shaped feedback system specifications may have unstable poles. Problems of numeri-
cal instability may arise when the unstable poles of the feedback system cross over the jw-axis
(or the boundary of instability region, dU_g) during the design process. Therefore the first step

in feedback system design is to make sure that (4.2.10a,b) and (4.2.11) are satisfied.

Next, we try to satisfy the various design requirements mentioned above by finding an

element of the feasible set, F, defined by
F={ze R®"Iy¥2) <0, ke Iy}, @4.1)

where z 4 ®e¢» 94, qn) is the vector of the design parameters, m, is the dimension of z,
Iy ={1,2, -, ko}, and kg is the number of the design requirements. Once we obtain an ele-
ment in the feasible set F, we can tighten the performance requirements by replacing y* < 0
with y*+ b <0 for some b>0. We can also add new performance functions to the set

(y*, ke I}. Altematively, we can solve a problem of the type

min (W@ 1 y¥2) <0, ke Iy} . 4.4.2)

zeR*

Then we can minimize a given performance function \yo without degrading other performance
figures. Essentially, we formulate "negotiable” requirements as a cost function that we want to
optimize and put "non-negotiable" specifications into the form of semi-infinite inequality con-
straints. Once the cost performance function is adequate, we can reformulate (4.4.2) by

transforming the cost performance function into a constraint and adding a new cost perfor-
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mance function.

In (4.4.1-2), each y*: IR™ — R is at least Lipschitz continuous in z. This guarantees
the existence of gradients or generalized gradients of these functions. The solutions of the
optimization problems given in (4.4.1) and (4.4.2) are made possible by new semi-infinite pro-
gramming algorithms for the constrained minimization of regular, uniformly locally Lipschitz
continuous functions in IRY [PoL.3]. This approach has been applied to solve problems in finite
dimensional control system design [Pol.6, Wuu.1]. Even though we are dealing with infinite
dimensional systems, the dimension of the design parameters is finite, and, the numerical tech-
niques developed in the finite dimensional case can therefore be borrowed to solve the optimi-
zation problems formulated in (4.4.1) and (4.4.2). However, two numerical problems arise for

infinite dimensional feedback systems.

The first problem concems the implementation of the inverse Laplace transform for the
time-domain design specifications. For the finite dimensional case, the inverse Laplace
transform can be implemented by the simulation of an ordinary differential equation. Such
simulations are usually performed by repeated computations of the exponential of a matrix
[(Wuu.1]. We take the example of the bending motion of the cantilever beam introduced in
Section 2.3 to explain the implementation of the inverse Laplace transform for the infinite
dimensional case. If we borrow the idea from the finite dimensional case, the implementation
of the inverse Laplace transform involves the simulation of a partial differential equation. The
simulations wﬂl give us the values of the vibration in terms of the time and the space variables
and are usually very time-consuming. Because we are only interested in the values of the
vibration in time-domain at the spatial points where the sensors are located, the values of the
vibration on the other points of the beam are irrelevant. A similar problem has been con-

sidered to determine response histories at isolated stations in linear viscoelastic media that have
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been subjected to impact [Sac.1, Sac.2). For this reason, we suggest to use the Fast Fourier
Transform (FFT) Algorithm to perform the inverse Laplace transform instead of using the
simulation of a partial differential equation. Reliable FFT software packages are available.
However, this approach requires prior information about the bandwidth of the relevant transfer

functions to avoid big aliasing errors [Opp.1] .

The second problem we face is the evaluation of the transfer function G,(s) of the infinite

dimensional plant, which is discussed in the next section.

4.5 Evaluation of Frequency Response of the Bending Motion of A Cantilever Beam: A

Case Study

A truly efficient method for evaluating G,(s) for many values of s € € remains to be
developed, particularly for cases in which some design parameters are plant parameters, as in
integrated system design. In this section, we consider a case study for the planar bending
motion of a flexible cantilever beam. For simple cases like that discussed in Section 2.3, we
can obtain a closed-form formula for G,(s). However, for the general case, it is impossible to
obtain a closed-form formula for G,(s), and instead we have to compute G,(s) by solving a

two-point boundary value problem. For example, consider a general formulation for the planar

bending motion of a flexible beam shown in Figure 2.2, which is given below:!

mEW(, 0 + f;—[c(x)l(x)-;%»b(x. ]+ %[E(x)l(x)%w(x, 9] = }ér’(x)}"(t). @4.5.12)
with the boundary conditions:
W, #) = %(o, H=0, (4.5.1b)

1 I we want to apply the design methodology proposed in this thesis to the system described by (4.5.1a-d), (4.5.2a-b), we
have to prove that it can be transformed into the standard model (2.2.1) with Assumptions 2.3.1-3 holding. That proof is not dis-
cussed in this thesis.
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dw d*w

(l )+ c(DI))— 2 1, o+ EDI))— 2 1,n=0, 4.5.1¢)
ML) - —IC(x)l(x)M'—l] L.=1 - —[E(x)z(x)ﬂ"’—ll ot = (4.5.1d)

where #(x) is the influence function of the jth actuator, and n; is the number of the point actua-
tors. Depending on whether the sensor is a point displacement sensor or a point angle-of-

rotation sensor, we formulate the output of the bending motion of the cantilever beam by

Y@ = w, o), (4.5.2a)

or
Yo = w(, o), (4.5.2b)

where 1 <i < n,, n, is the number of the sensors, Z is the location of the i-th sensor and ""
denotes the derivative with respect to the spatial variable x. To obtain the (i,)-th component of
the transfer function, we take the Laplace transform with respect to time for (4.5.1a-d), and set
=0,V k= Jj. Let Tx, s) be the ratio of the Laplace transforms of w(x, #) and F(1). We

obtain the following boundary value differential problem for T(:, s):

-;‘;- ((E®I(x) + sc(x)z(x))f;-r,(x,s)} + m()sTx,8) = P(x), 0sxs1, 4.53)
with the boundary conditions:
T0,5) = %i(o,s) =0, | (4.5.42)
[ECI1) + sc(l)l(l)]ﬂ(l 9 +I125 1,5 = 0, (4.5.4b)
d? dx
% {(EGI() + seI(x)—E5— dszz 9 }: = MS*T(1,s) . (4.5.4c)

The (i,j)th component of the transfer function G,(s), g/(s), is then equal to
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gis) =TfZ, 9) , (4.5.5a)

and
giis) =T(, 5) . (4.5.5b)

respectively for the point displacement sensor and the point angle-of-rotation sensor. Since
P(-) in (4.5.3) may be a delta function or a derivative of a delta function, we would like to

integrate (4.5.3) twice from 1 to x. Then combining the result with (4.5.4b,c), we get

2 ’ T2
EOIE + scOIE)-25Tfx,5) + MA-STL1,5) + JPT(1.) + szrdtz [ mE)T i .5)dr

- 4.5.6)
= [an Pepan |
We define Wix.s) A rdhfzm(tl)l}(tls)dtl which is equivalent to
W;
dxzj (x5) = mET(xs) , (4.5.72)
with the boundary conditions
W(ls) = W(l,) =0. (4.5.7b)

Let Y(x, 5) & (Ti(x, 5), T{x, 8), Wiix, 5), Wiz, s))". Then (4.5.6), (4.5.7a,b) can be rewritten

in the following form:

dy (x, /
gc 2 A(x, Y[x, 8) + by(x, HTL1, 5) + b3(x, HT(1,5) + by(x, 5) .
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(0 1 0 0]
52 0
0 0 E(x)l(x):-sC(x)I(x) 0 (LM
A o o 0 . Y, (x, 5) + E(x)I(x)-lgC(x)I(x) T, (1,5)
m(x) 0 0 0) 0
0 0
—Js g(x)
+ E(x)I(x)-lasC(x)I(x) T;(l, )+ E(x)I(x)-lasC(x)I(x)
0 0

(4.5.8)

where g(x) 8 rdtz_[tzﬂ(tl)dtl. If P(x) = 8(x — ) where ¥ is the location of the actuator,

_ ¥-x if¥zx,
8(0) = {0 otherwise . (4.5.92)

If P(x) = =8'(x — ¥),

_l1 ifdex,
8 = {0 otherwise . (4.5.9b)

From (4.5.4a), (4.5.7b), the boundary conditions of (4.5.8) can be expressed by

1000] - 0010
[o 10 O]YJ(O' $) = [0] ' [o 00 I]Y,(l.s) = [0]. (4.5.10)

The above linear boundary value problem can be solved using a shooting method. Let
ho(x, s) and hy(x, s) denote the homogeneous solutions of (4.5.8) with initial conditions
0,0, 1,07 and ©, 0,0, DT respectively, ie.,
dhy(x, s)ldx = A(x, S)h{x, 5), i = 0,1, he(0, 5) = (0, 0, 1, 0)T and A,(0, 5) = (0, 0, 0, DT Let
hy(x, s) and hs(x, 5) denote the solutions of dYjdx = AY;+ by and dY/dx = AY; + by respec-
tively with zero initial conditions. Finally let h4(x, s) denote the solution of dY/dx = AY; + b,

with zero initial condition. Then the solution of (4.5.8) can be expressed as
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Yi(x, 5) = co(SHho(x, 5) + ¢1()h(x, 5) + T(1, Hhy(x, s) + T;(l. S)hs(x, 5) + h4(x, 5). (4.5.11)
The constants co(s), ¢1(s), T(1, s) and T;(l, ) can be determined by the following linear equation:

col@hl(1, 8) + (DRI, ) + TL1, HHY, 8) + TA1, HAY(, 5) + ki(L, 5) = T(1, 5)
colSIR(L, 5) + (R, 8) + TLL, HRYA, 5) + T, HRY, 5) + K31, 5) = T(1, 5)

A 4.5.12)
coS(1, 8) + cyRL, 5) + T(L, A, 5) + T(L, HH(, 8) + (L, ) = 0
co(RY(1, 8) + (AL, 8) + T, 3L, 5) + T(L, HA3(L, 8) + k41, 5) = O,
which is equivalent to the following matrix form,
i1, ) Al s) KL -1 AL s) |
g( 5) ;( s) 2(2 5) ) 3(1, 5) ) A1, 5
KL 8) KL B8 B -1]] o _ -k, 5) wsy
K, 9 K KL KL [T [-Ada, e
W K Bao K [0 [
where hj s) means the ith component of the vector As). Equations (4.5.5a,b) then become
&) = Yi(Z, ) (4.5.142)
and
gl = Y2, 9), (4.5.14b)

where Yj{x, s) denotes the ith component of Y,(x, 5).

In Table 4.1, we compare the evaluations of the frequency response of the system
described in (4.5.1a-d) and (4.5.2a-b) by using the shooting method and an analytical closed-
form solution. In our numerical simulations, we assumed that the coefficients in (4.5.1a) are
constants. We choose m =2,c/ =001, EI=1,M =5 and J = 0.5. A point force actuator
and a point angle of rotation sensor are used and colocated at x = 1. The shooting method
gives quite accurate results. The CPU time that it requires is six times that required by the

closed-form evaluation.



Closed-Form Solution

Table 4.1: Evaluation of Frequency Responses

Frequency Points Shooting Method

1.000000e-02 3.334066e-01 +i -3.334800e-05 3.334063e-01 +i -3.334796e-05
2.511886e-02 3.337964e-01 +i -8.396236e-05 3.337961e-01 +i -8.396227e-05
6.309573e-02 3.362770e-01 +i -2.140504e-04 3.362767e-01 +i -2.140502¢-04
1.584893e-01 3.528282¢-01 +i -5.919151e-04 3.528278¢-01 +i -5.919145¢-04
3.981072e-01 5.123786e-01 +i -3.138715e-03 5.123778e-01 +i -3.138709¢-03
1.000000e+00 -2.682607e-01 +i -2.267297e-03. -2.682609e-01 +i -2.267304¢-03
2.511886e+00 -1.580077¢-02 +i -8.705360e-04  -1.580077e-02 +i -8.705344e-04
6.309573e+00 -4.560727e-03 +i -2.129576e-05  -4.560733e-03 +i -2.129572¢-05
1.584893e+01 -5.937243¢e-04 +i -1.93677%-04  -5.937077e-04 +i -1.936427e-04
3.981072e+01 -1.155983e-04 +i -5.730677e-06  -1.155982e-04 +i -5.729772e-06
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As we have shown, the shooting method reduces the linear boundary-value problems to a
set of linear initial-value problems. Various other methods can be used to solve the linear
boundary differential equation (4.5.8), such as finite difference method [Asc.1] or the factoriza-
tion method [Tau.1]. However, we prefer the shooting method for the following reasons: (i) it
can be easily generalized to solve multi-point boundary-value problems that come from the
multi-link flexible structures; (i) it is well suited to the evaluation of the frequency responses
for the multi-input-multi-output systems because we only have to calculate the functions
ho(+), By(), ha(-) and As(-) in (4.5.11) once, and we just perform mbre evaluations like
(4.5.14a,b) for additional output sensors. For the example mentioned above, if we evaluate the
frequency response for the two-input-two-output case, the time taken by using shooting method
is 2.6 times that taken by using the closed-form evaluation, compared with 6 times for the
single-input-single-output case. (iii) it follows from (4.5.11) and (4.5.14a,b) that only the

values of h(x, s) forO0<Si<4atx=1and x = 7 for 1 £ < n, must be stored in memory.
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4.6 A Numerical Example

This section describes the numerical process in designing a fourth order compensator for
a single-input-single-output feedback system with the plant described by (2.3.1a-d) and
(2.3.2a,b) in Section 2.3. We assume that m = 2, ¢/ = 001, EI = 1, M = 5, J = 0.5, that the
required stability margin o = 0.2, and that the point force actuator and the point displacement

sensor are colocated at x = 1.

To obtain an initial compensator design and to provide a testbed for the study of trunca-
tion effects, we first solve (2.3.28) to derive the first four natural frequencies and the

corresponding mode shapes of undamped oscillations as follows:

o} = 0451, 1,(x) = —0.0289%exp(a,x)—0.792exp(—a,x)-0.763sin(a;x)+0.821cos(ax), a, = 0.975;

(4.6.1a)
©3 = 8.936, Mo(x) = 0.117exp(axx)-0.737exp(~a,x)-0.854sin(axx)+0.620cos(ax), a; = 2.06;

(4.6.1b)
3 = 274.36, M3(x) = —0.00735exp(asx)—0.975exp(—ax)-0.96Tsin(asx)y+0.982cos(asx), a3 = 4.84;

(4.6.1c)
0F = ~1956.89, N4(x) = 0.000351exp(asx)-0.996exp(—asx)-0.996sin(asx)+0.9956cos(asx), as = 791 .

(4.6.1d)

We then carry out a modal expansion of the plant dynamics to obtain the first eight modes:
-0.0023 + 0.6716j, -0.0447 + 2.9890j, -1.3718 % 16.5069j, -9.7845 £ 43.1411j. In the
corresponding truncated state space plant model, the matrix A, has the form

Ap = diag(Au ,Azz ,A33 ,A44), where

0 1 0 1
Au = [-0.451053 ~0.00451 1] Ax = [—8.936154 —0.089362] '

(4.62)
0 1 0 1
A3 = | 274350603 —2.743506| A4 = |-1956.804214 —-19.568942] -

Also we obtain
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B, = (0, -0.272993, 0, -0.112681, 0, 0.073277, O, -0.047885)7, 4.6.3)

C, = (-0.545986, 0, -0.225362, 0, 0.146553, 0, -0.095770, 0), 4.6.4)

and D, = 0. It is straightforward to check that the unstable modes are controllable and observ-
able. We choose to design the compensator in transfer function form:
G(pe.5) = colcrs? + €28 + 1)(C35% + €45 + 1)/(d5? + dps + 1)(das? + dys + 1), which results in

Pe = (€0,€1,€2,€3,C4,dy,dp,d5,dp)T. We set n(s) = 1 and
4 A T

do(s, 42 = TT (s + &) + a¥(s + o) + b)), so that g, 2 (ay,a2,03,a4,b1,b2,03,09)". We set
=1

€ = 0in (4.2.8a,b, 4.2.9).

Using pole assignment on the fourth order truncated model, we obtain the initial compen-

21044.85° + 96356.55 + 88286.1s + 858018

sator transfer function: G.(p.,s) = .
Pe:) 5 + 2.946135° + 177.3015° — 3333.835-7930.13

which

stabilizes the truncated model. However, it fails to stabilize the truncated plant of orders 6 and

8 as well as the full precision model.

Using this compensator as the starting point for our semi-infinite optimization algorithm
and choosing .Qd = (0.8945, 0.6322, 0.4001, 0.2828, 10.008, 7.0027, 5.0006, 3.0003), we
obtain in two iterations of a semi-infinite minimax algorithm the following transfer function of
the stabilizing compensator for our controlled flexible structure: G.(p..s) =

—12.5806s" + 20658.85° + 94255.7s% + 87402.15 + 841483
s* 4+ 2.127625% + 171.79s5% — 3262.91s — 7774.42 )

The new q4

= (0.8945, 0.6324, 0.3998, 0.2828, 10.008, 7.0030, 5.0016, 2.9997). The critical frequency
interval for the evaluation of x(p.,s)/dy(s, g2 is [0.1 , 200] and the number of sampling points
used is 50; 500 points are used to produce the plots in Figures 4.5 and 4.6 The plot
corresponding to X(p.,s)/dy(s.qy) for the initial value of the compensator is shown in Figure 4.5

and the plot for the final value in Figure 4.6.
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It is interesting to observe that the closed-loop system poles which result from the use of
this stabilizing compensator and the truncated plant of order 4 are 0.695414 % j9.82352,
—-1.4397 % j7.04732, -0.128045 * j4.91775, —0.238414 * j2.99904. As we can see, there are
two unstable poles. However, when the plant model is truncated to orders 6 and 8, respec-
tively, the closed-loop system is stable and has poles at -0.521081 * j16.3213,
-1.02523 % j9.92591, -0.459227 % j7.0698, -0.23843 * j4.9936, —0.238574 * j2.99953; and
-9.75924 + j43.1321, -0.51818 £ j16.3271, -1.09369+ j9.94782, -0.411156% j7.04619,

—-0.246175 * j4.99733, -0.238581 * j2.99956, respectively.

4.7 Concluding Remarks

In this chapter, we have transformed design requirements, including exponential stability
with a certain stability margin and various frequency- and time-domain feedback-loop
specifications, into a semi-infinite programming form and discussed the problems of numerical
implementation. The desfgn parameters are the elements of the state-space matrices of the
compensator, and the order of the compensator can be assigned by the designer. We have
given a numerical example in which a finite diﬁlensional compensator was designed to stabilize
the bending motion of a flexible cantilever beam with a specified stability margin. One draw-
back of the design approach proposed in this chapter is that it leads to semi-infinite optimiza-
tion problems that have local minima. In the next chapter, we will use Q-parametrization for

the compensators that will lead to convex optimization problems and hence avoid the problem

of local minima.
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Proposition 4.A.1: If we assume that B[Gp(s)]U{(s) = 0(s™2), then \|t6 and \|17 are Lipschitz

continuous in p,.

Proof: Since the proof for \p7(-) is the same as that for \|16(~), we only consider the case of

vo0).
Let G 8 G.(p}) and G2 8 G,(pd). ! Consider
o2 - W)

=1 max {L-' ([G,G2U + G,GY ' N Ul®))®) - lz‘(t)}

- max {L“{[G,G}(I + G,GH I UL$)}) - a’(z)}l

tef04]
S max | CHIG,G + G,GY ' N UI9))®) - B'(®)

~ LHIG,GW + GGY ' MU} - b)) |
-1 1y-1 2 _ il 2\-111,1771
S max | L (U + G,GH'G,G? - GH + G,GH MUl () |
{ co+ joo
= 1 -1 2 _ 1 2\-111,1771 t
= t?&:ﬁl 2., j;w ([T + G,G)'G,(G? — G + GG 1MUN(s))e¥ds |
Co + jo

1
_ 1 14-1 ’(n! 2_ oI\ n2_ pl
= z?[%},] I—an o IP {[(I + Gch) Gp(£ (Gc (pc + t(pc pc))- Pe pc>dt)

I + GG " Uls))eds |

4.A.1)

4.A2)

(4.A3)

“4.A4)

4.A5)

1 It should be clear that G, (and other transfer functions) are functions of the Laplace parameter s which will often be omit-

ted for simplicity of notation.



72

Co +j 1
< Ip; —pp max e Itzi [ ot +G,Gy)s) BIG,(s)] 1[es[GJp: + (2 — p)de
€[04 ' o= joo . 4AS)

3 + G,GH 9] Wi dsil ,

where ¢y is chosen large enough in (4.A.4) so that all the functions are analytical on U,; the
expression for the inverse Laplace operator L™1(-) shown in (4.A.4) can be found in [Chu.2); in
(4.A.5), by examining G,: R™ —» €™, we see that G/()e € " is a well-defined
differential [Die.1]; (4.A.6) is obtained from (4.A.5) by taking the absolute value sign into the
integrand and noting that M™ < S(M) and G(MN) < S(M)G(N), where M and N are c.omplex
matrices and M"Y is the (i,)th component of M. Since BI(I + G,G1)')(s), TIG,/())(s), and
ol + G,G2'1(s) can be shown to be O(1) and BIG,(s)IU](s) is assumed to be O(s™2), the

last integral is well defined. This completes the proof.



Figure 4.1: The feedback system S(P, K).
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Figure 4.2: The perturbed plant, G(s)=(1+ A(s))Gp(s).
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Figure 4.3: A sample of the function b4(),
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Figure 4.4: Time-domain step response specification,
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Figure 4.5: _Modiﬁed Nyquist diagram (initial design).
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Figure 4.6: Modified Nyquist diagram for the stabilized system.
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CHAPTER §

OPTIMAL DESIGN OF FEEDBACK COMPENSATORS II: Q-PARAMETRIZATION

5.1 Introduction

In this chapter, we study the design of an optimal feedback system using Q-
parametrization. With this approach, the design problem can be transformed into a convex
optimization problem, allowing a global solution to be obtained. This approach has been

applied to the design of control systems for finite dimensional systems [Pol.5].

In Section 5.2, we derive the coprime factorizations for the infinite dimensional plant and
introduce the Q-parametrization for the compensators. Since the Q-parametrization introduces
infinite dimensional compensators, we have to apply an approximation result to obtain finite
dimensional stabilizing compensators. In Section 5.3, we transcribe the design requirements
introduced in Chapter 4 into the convex H™ semi-infinite inequality form. We show that under
reasonable assumptions, we can construct a minimizing sequence of finite dimensional compen-
sators that converges to the global solutic‘m. We also discuss the numerical implementation of
this approach. In Section 5.4, we give a design example in which we design a compensator to
enhance the robustness of the feedback system to the modeling errors of the bending motion of

a flexible cantilever beam.
5.2 Q-Parametrization for the Compensators and Preliminary Results

Consider the feedback system S(P, X) introduced in Sections 2.2 and 2.4.

It follows from (2.2.6) that we can express the transfer function of the plant, G,(°), as the

sum of unstable and stable parts as follows:
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Gy(s) = C,(sl - Ay'B, + D,
= (Cpi(sly, = ApY 'Bpy + Dp) + Cp(sI_ — A, ) "B, (52.1)
2 G}(s) + G,

where 7 and I_ are identity operators in Z and Z_ respectively, n, is the dimension of A,
Gi(s) & Cpy(sl,, — Ay "By, + D, € E(R(s)), and G;(s) & Cp(sI_— A,)'B,. By definition
of A,, there exists cg > o and M > 0 such that IIeA"'llz_ <Me ™,V t>0. Therefore G,(s) is
analytical in U_q, [Paz.1, Theorem 1.5.3] and converges to 0, x,, at infinity in U_q [Jac.1, Fact
20]. Therefore we have proved the following result.

Proposition 52.1:  G,(s) € E(W_o(s)). n

Since any matrix in E(R(s)) has coprime factorizations in E(R_4(s)) [Vid.1], G,(s) can be

assumed to have the following right and left coprime factorizations

G, 4 N,D;! ; detD, =0, (5.2.22)
2 D;, Np ; detD, =0, (5.2.2b)
with the corresponding Bezout identity
Vor Upr|[Dpr =Upi 523
N D P] N V = I"l"" o’ ( - )

where Vs, U's, N's and D’s all belong to E(R_q(s)).! According to [Net.2], the Vs, U's, N's and
Dsin (5.2.3) can be derived from the matrices Apes Bpy, Cpy, and Dy, The following result is

easily established from (5.2.3).

! Whenever it is clear that variables are functions of the complex variable s, we will omit it for simplicity of notation.
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Proposition 5.2.2: (N, + G,D,,, D,,) and (D, N, + D,G,) are respectively the right and
the left coprime factorizations of G, = G; + G, over E(W_o) with the Bezout identity

Vpr"' UprG; Upr Dpr —Ypl

=1, o - (5.2.4)
Wi+ DyG) D[Ny + GyDpr V= GyUp] = Tom

Next we restate Theorem 2.4.1 in terms of coprime factorization matrices of the plant and
the compensator. Suppose that the transfer function of the o-stabilizable and o-detectable com-
pensator, G(-), has right and left coprime factorizations (N,,, D.,) and (D, N.p), respectively,

with D’s and N’s belonging to E(R_,(s)). Define

%1(5) 8 det ( DD,y + NefNpr + GoD ) ) (5.2.5)
and
X2(s) 8 det ( DD, + (N + D,G,N,, ). (5.2.6)

Then Theorem 2.4.1 can be restated as follows.

Theorem 5.2.1: The feedback system S(P, K) is o-stable if and only if

Z(x1) € D, (5.2.7)
or equivalently
Z(X2) € D_g (5.2.8)

Proof: (i) It follows from (2.4.4) that
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X(S) = det(sl,, — A,y) det(sl, — A) det(l,, + GA)G(s))
= det(slpy — Apy) det(sl, — Ao det(ly, + DiNANpr + GpDp)Dpl)
_ det(slyy, — Apy) det(sl, —A)
T detD,(s) detD (s)
_ det(shyy. — Apy) deUsl, — A
T detD,(s) detD (s)

det(DD,, + NN,y + G;D,) (529)

X1(s) -
Suppose that the compensator has an o-stabilizable and o-detectable state-space realization
(A, B,, C., D). Then there exist K, € R™™ and F, ¢ R™™ such that

Z( det(sI - (A, +BK)))cD_y & Z(det(sI— (A, +F.C.) ) c D_,. (5.2.10)
According to [Net.2], a left coprime factorization of G, (5c,, ﬂd) can be chosen as follows:

By=1,-Cusl, ~ A, +FCY'F,, (5:2.112)

Ny = Csl,, - A. + F.C)'B, + D,D.. (5.2.11b)
It follows from [Vid.1, Theorem 4.1.43] that there exists an M(s) € E(R_4(s)) such that
MY(s) € E(R_q(s)) and

D, = M-D,, (5.2.12a)

N, = MR, (5.2.12b)
Furthermore, we have (see [Vid.1, p. 393])

det M & det M! € R_,(s). (5.2.13)
It follows from (5.2.11a) that

By=1,-Cysl, —-A.+FC)'F,

= Ip, = (I, + Csl, — A 'F)ICsl, - A)'F, (5.2.14)

= (I, + C(sl, — A)'F ).
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Hence, for all s € U_,, because of (5.2.10) and (5.2.13), we have

det(sl, —A)  det(sl, —A)  det(sl, —A)
DA ey DsM(s))  detDyls) IO

= det(sl, — A det(l,, + C(sl, — A)'F.)-det(M'(s))

(5.2.15)
= det(sl, — Ap) det(, + F.Csl, — A)™")ydetM(s))

= det(sl, — (A, — F.Co)detM'(s)) 0.

det (sI,,, — A,4)
det D,,(s)

A similar argument can be applied to show that #0 .,V se U, Hence

Z(x ) < D_g if and only if Z( %; ) € D_,. It follows from Theorem 2.4.1 that the feedback

system is o-stable if and only if Z(%;(s)) < D_q.
(ii) It follows from (2.4.4) that %(s) can be expressed in the following alternative way:

X() = det(sl,, — Apy) det(sI,,c -A) det(l,,o + G ()G ()
det(sl,, — Apy) det(sl, — A) det(l, + Dy (Np + DpGpN,DZ)
_ det(sl,, — A,,) det(sl, —A;)
T detD,(s) detD,,(s)
det(sl,, — A,,) det(sl, — Ao
=3 x2(5) -
etD,(s) detD(s)

det(DpD., + (Np + DpGoIN,,) (5.2.16)

According to [Net.2], a right coprime factorization of G,, (ﬁc,, ﬁc,) can be chosen as follows:
B, =1, - Ksl, - A. + BK) B, (5.2.17a)
R, =Cusl, -A.+BKX)'B.+DD,, . (5.2.17b)

Following the steps in part (i), we can prove that the feedback system is o-stable if and only if

Z( X2 ) € D_y. The proof is therefore completed.
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Now we define a set of feedback compensators, S(P), as follows

S—(P ) = { [Vpr - UprG; - O, pt DplG;) ]-I(U port QDpl) 1 Q € E(W_i(5)),
(5.2.18)
det(Vp, -U p,G; - QOWN, ot + DP‘G;)) =0 }

Define D8 V,, - U,G, — QW+ D,G;) and N,8 U, + QD,. It is straightforward to

check from (5.2.4) that
D_c,Dp, + IV,_.,(NP, +G,Dp) =1, . - (5.2.19)

The way we formulate S(P) in (5.2.18) is the so-called Q-parametrization for the compensator
in the factorization approach of control system theory. Note that the Q-parametrization intro-

duces infinite dimensional compensators.

Next, we derive a set of finite dimensional o-stabilizing compensators from S(P) defined
in (5.2.18). By Proposition 4.2.1, any function f: € — C belonging to W_,(s) can be uni-
formly approximated by a rational function which is analytic on U_,. Suppose the D_; and the

N, in (5.2.18) are approximated by functions in R_.(s), say D, and N, in the H_.(s) space

such that
D (s) 8 D (s) + Ay(s), (5.2.202)
Nols) 8 Nefs) + B(s). _ (5.2.20b)

The following theorem provides a sufficient condition in terms of A; and A, so that the «-

stabilizable and o-detectable compensator with the transfer function DN, stabilizes the plant.

Theorem 5.2.2:  Suppose that a o-stabilizable and a-detectable compensator has a transfer

function DN, with D, and N, defined in (5.2.20a-b). If A; and A, in (5.2.20a-b) satisfy



82

141()D () + B (SYNpr + GpDp )M < 1, (5.2.21)
then this finite dimensional compensator stabilizes the plant with a stability margin c.

Proof:  According to Theorem 5.2.1, the proof is complete if we can show that

Z(y ) € D_,. It follows from (5.2.20a,b) and (5.2.19) that

116 = det(D Dy, + NefiNyr + GD,r))

(5.2.22)

= det1, + MED) + Ao SHNp + DO
Now we prove by contradiction that
det{l,,‘ + Al(s)Dp,(s) + Az(s)(NP, + G;Dp,)(s)} #0,Vse U, Suppose that

det{l, + Ay(S)Dp(s) + Ay(s)(Np, + GpDp)s)} =0  for some se U, Assume  that
[A1(5)D () + Ax(S)(Npr + GpD,,)(s)] has the singular value decomposition UAV", where U and
V are unitary complex nxn; matrices, V" denotes the complex conjugate transpose matrix of V,
and A is a diagonal real nxxn; matrix whose diagonal elements are positive but less than 1
because of (5.2.21). Then there exists a vector u € C" such that Uy, + UAV"u = 0. How-
ever, this means that lul = WWAV ul = IAV'ul < IV'ul = lul, which is a contradiction. Hence
det{{l,, + Ay(S)Dp(5) + Dy(YNp, + G Dp,)(s)} #0 ,¥ se U,  which  implies  that

Z( %1 ) € D_y. The proof is therefore completed. [ ]

Next we show that the transfer function of any finite dimensional stabilizing compensator
can be expressed in the form of (5.2.18). In other words, the set of transfer functions defined

in (5.2.18) contains all the rational transfer functions of finite dimensional stabilizing compen-

sators.

Theorem 5.2.3: For each finite dimensional stabilizing compensator which is a-stabilizable

and o-detectable and has the transfer function D} N,;, we can find a Q € E(W_y) such that
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D; N,,,_[ UnG, - Q(Np,+Dp,G')] Uy + QD) 2 (5.2.23)

Proof: Since we assume that the compensator stabilizes the plant, it follows from Theorem

5.2.1 that

Z(det M(s) ) € D, (5.2.24)
where

M(s) 8 DyD,, + NNy + GoD,p) € W_o(s)™. (5:2.25)

It is easy to check that lim det(M(s)) = lim det(DD, + NNp + GoDp))(s)
L S => o

sel, sel_,

= cgrdet(l,, + D.D,) # 0, where ¢o € R is some nonzero constant. Combining this result with
(5.2.24), we obtain (detM(s))™! € W_o(s) and
M(s) € W_o (V™. (5.2.26)
Now we rewrite (5.2.25) in the following form:
MDD, + M'N(N,, + G;D,) = I, . (5.2.27)
Therefore, we hz;ve

Dpr 'Upl

1 1 —
(M- Ddr M_Ncl) Npr+G-prr VpI_G;Upl - (In" Q) »

(5.2.28)

where Q 8 =MD U, + M'N(V,; - GU,) € W_o(s)""™. 1t follows from (5.2.4) that

Vor= UprG; Upr

MDa, MN) = (o, Oy b 6y D,
P!

Note that (5.2.23) does not imply that Dy = V,,, = U,G, = QN + DpG;) and Ny = Uy + QD
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[w,,, — UpGy) - QW + Dp@]

(5.2.29)
Uy + QD
Hence,
DNy = M Dy M'N,)
(5.2.30)
= [V,,- U,,G;-Q(NP,+DP,G;)] Up + 0D,
and the proof is completed. u

In the next section, we obtain the input-output maps in terms of the parameter Q. We
show that the elements of input-output maps are affine functions of Q and then transform the
design specifications introduced in Chapter 4 into convex semi-infinite forms. ' Theorems 5.2.2
and 5.2.3 are applied to obtain a minimizing sequence of finite dimensional stabilizing compen-

sators that converges to the global optimal solution.

5.3 Optimal Design of Feedback Compensators

5.3.1 Problem Formulation

We substitute G(-) in (4.3.1) with that defined in (5.2.18). By (5.2.4), we obtain the
corresponding achievable (stable) input-output maps, H, in terms of the parameter

Q € E(W_y(s)) as follows

-, rQb_pl + ‘7PID—P’ P’QNP - ,‘7 varQD_pl - Vplﬁpl N, QE, - —ID_pl

H = |\DpODyi + DpyUpr ~DyQNpi + DpyVpr ~DpODpi = DpyUpr —~DpyQDp1 — DUy
prQ pl + va,ﬁ- - prQNpl + N, V prDp’ + foDpl - P’Q pl = ﬁ U_ (5.3.1)
where
Npr = N» + GoDpy, Dpy = Dpy, Uy = Uy, ¥y = Vpy = U, G, 532
Npt = Npt + DGy, Dpy = Dty Upt = Upty Vot = Vor = GjUp - h
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The various design specifications considered in Chapter 4 can be reformulated as follows.
(i) Stability Robustness:.
We define ¢!: W_o(5)"™ > R as

o} 4 oS3 (BlHs (-0 + o] — Vb(@))

(5.3.3)
= Sup_ (SN, QD + Ny Uy} (-0 + ja)] — 1b(@)} .

Then if

(@) <0 : (5.34)

holds, the compensator will stabilize not only the nominal plant, but also the perturbed plant

whose transfer function is (1+A())G(s) with A(s) satisfying (4.3.3).

(ii) Disturbance Suppression and Good Command Tracking:
Let ¢2: W_o(5)™ ™ — IR be defined by
%) 4 o Sip_ (BTHs ()] - b))
= oy BN NorQDpy + VoD, (j@)] = b@)}

me[

(5.3.5)

where b(‘) is a continuous bound function. Good command tracking and disturbance rejection

requires
$%Q)<0. (5.3.6)

(iii) Plant Saturation Avoidance:

nxn,

For plant saturation avoidance, we define the performance function ¢3: W_,(s) - R

by



86

@2 s (BH ()] - ;)

D..0D., + D, T, ) (53.7)
=, 68}10[')“] (81D, QD + D, U,p)(j)] - by} .

The saturation avoidance requirement can be formulated as

¥@<o0. (5.3.8)

@iv) 1/0 Map Decoupling:
By defining ¢*: W_q(s)"™ — R by

¢%0) & sup {I[H3 1]¥(w)l - €}
,_oell=
1€ism, 1SjSn,, i+j
= su (V@D + N, T, )¥(jo) - €},

o € [0, o)
1isn, 1SjSn,, izj

(5.3.9

the I/O map decoupling can be achieved by requiring

As in the finite dimensional case [Pol.5], it is easy to show that all the ¢’s defined above

are at least locally Lipschitz continuous in H_g.

(v) Time Domain Response:

Referring to (4.3.15), (4.3.16), we define ¢° and ¢5: W_q(s)™ — R by

Q) 8 max, {L“ {([H3 MUY @) - 12‘(:)}
(5.3.11)

= max {L-l (INyyQD i + N, Tp 1 ) U)}() - a‘c:)}

and

0%0) = hi3 {E‘(t) - L'Y{(N,.0D, + N;’r[—j;’r]l'l(s)u}(s)}(t)} : (5.3.12)
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Then the following two inequalities

»(Q) <0 : (5.3.13) .
and

%@ <0 (5.3.14)
guarantee satisfactory time domain responses.

It can be shown that ¢°(-) and ¢°(:) are Lipschitz continuous in the Hardy space H_, under the

assumption that S{N,,()IS(D U} 1(s) = O(s™?). The proof is similar to that given in [Pol.5].

It is easy to observe the following from the above examples:

Proposition 5.3.1: The functions ¢‘ : (W_‘,l(.s')"‘x'l ° M) = R, 1 £i<6, defined above,

are affine and hence convex functions, where the |||, is the H -norm in H_,. [ ]

5.3.2 Optimal System Design

Suppose that we have transformed the various frequency- and time-domain design

requirements into the following optimization problem OP :

OP: min {$%Q) 19 Q) <0, ie Iy},
Qe Wo) ’ (5:3.15)

where [ = (1, 2, -, ko) and kg is the number of constraints. We assume that the functions,
¢’s, satisfy the following assumption.

Assumption 5.3.1: () Each ¢"(-), k e {0}/, is an affine function and hence, Lipschitz
continuous and convex in the Hardy space H_,. (i) There exist 0 € W_y(s)" ° and §>0
such that ¢'(Q) < 5 for all i I, ]
The second part of Assumption 5.3.1 guarantees that the feasible set of the optimization prob-

lem OP, {Q € W_o(s)""™1¢¥(Q) <0, i € Iy}, is not an empty set.



We parametrize the free parameter Q € W_a(s)""x"" as follows: Let p € R,, and for
ne N, xe R"™", define the matrices X;e R¥"™, i=1,2, ---, n, by filling them in

order, row-wise, with the components of x, i.e.,

[Xi]k,zé &6 - vmpy + k- 1m, 40, k€ B, L€ By, (5.3.16)
where n;4(1,2,---,n} and &é (L2, n). Let Qp R™™ - W_o(sy™™ be
defined by

n -
0,08 3 xS=pF &y a1

i=1 sS+p+0a
The parametrization (5.3.16-17) has the following useful properties:

Proposition 53.2:  The set {Q,(x) | x € R"™™, n e N} is dense in W_o ()™, lle)-

]
The proof follows that of Proposition 4.2.1 line by line and is therefore omitted here.
Since the parametrization equation (5.3.17) is linear, it is easy to show that
Proposition 53.3:  Each ¢%Q,("))’s : R"™™ — R, k e {0}, is convex.
|
Now we consider the sequence of convex optimization problems,
OP,: min {¢°(Q,.(x)) 16%Q.N <0, ke Io}. (5.3.18)
xeR '°

where n € IN. Then given any n € N, it follows from Proposition 5.3.3 that there exists an

%, € R™™ which achieves the minimum in (5.3.18) [Pol.5]. Define

vy4  inf ) {¢°(Q) 164Q) <0, i€ 10} (5.3.19)
Qe Wo@)' e

to be the optimal value of the optimization problem OP in (5.3.15). If Assumption 5.3.1 holds,
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we have the following result:

Proposition 5.3.4:  For all & > 0, there exist p € (0, €), n; € N and x, € R™* such that

%0, ) SY+E : (5.3.20)

and
M Q) S P, ke Iy. (5:32)

The proof is similar to that given in [Pol.5] and is omitted here.

We can now give the following main result by applying Theorems 5.2.2, 5.2.3, and the

above propositions.

Theorem 53.1: Suppose Q solves the OP problem in (5.3.15). Then there exists a sequence
{0,)} & W_y(s) such that the corresponding stabilizing compensators are finite-dimensional and

{0,) is a minimizing sequence for the problem OP, i.e., each of Q, satisfies all of the con-

straints and

lim 9Ty =y (5.322)
and

12, - A.. = 0 (5.3.23)

where |||, is the H”-norm in H_,.

Proof: By Proposition 5.3.4, for a given € >0, we can find n,e N, p € (0, €), and
X, € R™™™ such that (5.3.20-21) holds. This x, defines a 0, € W_q(s)* ™. Substituting

this 0, in (5.2.18), we get
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Gee = [Vpr = UpGp = O (Npi + DpG5) ]-l(Upr + 0, Dpl)
A D (53.249)
= ZngVn,
where D, 4V, - U,G, - 0, (N, + D,G,) and N, 2 U, + 0,D,. Note that D, is most
likely not a rational function because of G,. Since D, and N, € W_y(s "% it follows from
Proposition 4.2.1 that there exists D, and N, e R_(,L(.s')"“x'Io such that®
D, =D, +AD,, N, =N, +AN,, (5.3.252)
and
HAD, Jl < o€, AN, |l < €, (5.3.25b)

where o and o, are small enough such that

"ADnBDpr + ANne(Npr + G-prr)“oo < “ADne"ao'qur"ao + "AN,.JL,,’"NP, + G_prr"oo <1l
(5.3.25¢)

- We conclude from Theorem 5.2.2 that G, & DN, = (D, + AD,)™'(N, + AN) is a stabiliz-

_ ing finite dimensional compensator. It follows from Theorem 5.2.3 that there exists a

Q,,.B € E(W_gp) such that
Gee = (Ve = UpG; = Qupi+ DpGp | Uy + 0oy (5.3.26)

We have the following equations from the Bezout identity expressed in (5.2.4):

UpVpt = GoUp) = (Vor = UpGy)Up, (5.3.27a)
DoV = GoU,) = ~(Npy + DpG)Uy + 1, (5.3.27b)
~Up{GDpr + Npp) = Vi = UpG)Dpy = I, (5.3.27¢)

3 Even though N;'e € E(R_y), it may have a very high order because of E‘e’ For practical reasons, it is approximated by a
one with a lower order.
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-D,(G;D, + Npp) = =Ny + D,GD,, . - . (53.27d)

It is then straightforward to show that’

Uy + QnaDpl) [Vpl = GpUp = (GpDp, + Npr)Qne] = [Vpr = UpnGp - Qne(Npl + Dp(G) ]

, ot DP’Q "t)'
(5.3.28)
It follows from the above equation that G, . in (5.3.26) is equal to
-1

Gee = W+ Dpl2) Vi = Gyl = Gy + Ny - (5:329)
Therefore we have

Gee(Vii = GyUpi = Gy + N0 = Ui+ Dy, (5.3300)
which is equivalent to

[Gc.e(G-prr + Npr) +N pr) + Dpr]Qne = Gc,z(vpl - G;U pl) -U, pl (5.3.30b)

Hence it follows from (5.3.25a,b) that

O, = [Gc.e(G-prr + Npp) + Dpr]-l [Gc.e(Vpl -GUw-U pl]

= {(5,,e + AD, ) (N, + AN, )(G,Dp + Npy) + D)‘,,]'1 [(13,,c + AD, ) (N, + AN, )V — G,U,)

~u,]

— -1{— —
= (R (G3Dp + Ny + D, Dy + 8D, Dy + AN, (G5 Dy + Np] [Woi Vi = GUpd = DU

— AD, Uy + AN, (Vy - G;U,,,)].
(5.3312)

It follows from (53.27a-d) that N,(G,D, +N,) +D,D, =1, and N,(V,-G,U,)

- D, Uy = 0,. Therefore
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Oy, = U, + AD, Dy, + AN, (G5Dpy + Np)Y U@, — AD, Uy + AN, (V= GpUp)) . (5.3.31b)
Hence
0, = @, = (U, + AD, D, + AN, (G;D,,, + N,V @, — AD, Uy + AN, (V- GU,»

= (I, + AD, D, + AN, (G,Dpy + Np))2,)

= (Up, + AD, Dy + AN, (GiDpr + N ) [AD,,B(-U,,, ~ Dp,) + ANy (Vi = GgUp = (GyDipr + N,,,)Q_,e)].
(5.3.32)

We can choose a; and o, in (5.3.25b) small enough that |AD, D, + AN, (GpDpr + Npll < 1/2.
Therefore [, + AD, Dy, + AN, (GpDpr + Nplle > 12 and (I + AD, D, + AN, (GiDpr + Np))™'(9)
exists for s e U_, with its H~-norm in H_; bounded by 2. Also, there exists some M > 0 such

that max(-Upt = DO llws IVt = GoUpt = (G;Dpr + Np)@n ll) < M. 1t follows from (5.3.32) that

"Qne - gnelln < "(Ini + ADnBDpr + ANna(G-prr + Npr))-l“u
D lb-Ups = DBl + IAN ItV = GUyi = (G + Ny

< 2M(0; + op)e.
(5.3.33)

Since every ¢* is continuous in Q for ke (O} I, by choosing a; and o, small enough, we

have
0%Qn) < ¥+2¢ | (5.3.34)
Q) s-5. kel (5.3.35)

Hence {Q,} forms a minimizing sequence for the problem OP in (5.3.15) and the proof is

completed.
[ |

Remark 5.3.1: (i) The above theorem states that we can always find a finite dimensiona

stabilizing compensator that is as close as possible to the global optimal compensator. (ii)

¢
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According to (5.3.33-35), a suboptimal finite dimensional compensator with a prescribed
(McMillan) order can be obtained by finding D, & Ny € E(R_o(s)) such that D, and N, have

prescribed orders, and ||D,; — D_jl.. and |IN_; — Nj|.. are as small as possible. n
5.3.3 Numerical Implementations

In the design process, we first evaluate the frequency responses of the infinite dimen-
sional plant, G,(-), which are discussed in Chapter 4. We the.n find the matrices Ay, By, and
Cp. and evaluate G;(s) = Cpy(shyy — A,,‘.)‘IBP.. +D, and Gy(s) = Gy(s) - G;(s). The
U's, V's, D’s, N's in (5.2.3) can be determined from (4,,, B,,, Cp,) [Net.2]. The simulations
of the inverse Laplace transform for time-domain specifications are discussed in Section 4.4.
The algorithm given in [Pol.5] can be applied to solve the optimization problem OP, in
(5.3.18). Suppose D,(s)"'N(s) is the resulting optimal infinite dimensional compensators with
D, and N defined as in (5.3.24). By Remark 5.3.1, we can find a suboptimal fixed-order
compensator with the factorization (D, N,) by solving the following non-convex optimization

problem:

min [|D (s, 2;) = Def(S)llo,  min [INAS, 20) — Nl (5.3.36)
2 22

where z; and z, are the vectors of design parameters which are the coefficients of the fixed-
order rational matrices D, and N, respectively. Since D, and N, are required to belong to
E(R_y4(s)), there are constraints for the elements of z; and z;. For example, if we parametrize
the (polynomial) denominators of the matrices D,; and N,; as we did for polynomials ny and dy
in (4.2.9), we -get similar constraints, shown in (4.2.8a,b), for those elements of z, and 2, that
are the coefficients of denominators of the components of D, and N The optimization prob-
lem can be solved by the algorithms developed in [Pol.3]). Suppose that the optimal solutions

z; and z; of (5.3.36) are obtained. The a-stability of the resulting feedback system can be
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checked

in two ways. The first way is to apply Theorem 5.2.2 to check whether the following

sufficient condition is satisfied:
DA, 21) = DeASID ) + (Ness 2) = NefsHWpr + GpDpr Y9l S 1. (5.3.37)

The second way is based on the necessary and sufficient condition given in Theorem 5.2.1.

We plot the Nyquist diagram by evaluating the following complex-value function,
det( D (s, z1)Dp(s) + Nei(s, 2)WNpr + GoDp)(8) )y s € Uy (5.3.38)

The feedback system is stable if the Nyquist diagram does not encircle the origin. If the above
stability criteria are not satisfied, we must increase the order of the compensator, go back to

solve (5.3.36), and perform the stability tests again.

5.4. A Numerical Example

This design example uses the approach of Q-parametrization. We consider again the
example of the flexible cantilever beam introduced in Section 2.3. We assume that
m=2,¢cl=001,El=1,M=15,J = 0.5 and that the point force actuators and point displace-

ment sensors are colocated at x = 1.

We can enhance the system’s stability robustness by solving the following optimization

problem (see (5.3.3)):
0 elrggv 4)¢(Q) =0 En;z(u&, ) mef&‘,’ o G[{N,, QD + N, Up, ) (-0 + jw)] . (5.4.1)

We assume that the feedback system requires a stability margin o = 0.2 and that the critical
frequency range [®;, ®,] is chosen to be [0.01, 10]. The number of sampling points used is

24 and the sampling points are chosen to be geometrically distributed in [0.01, 10]. We
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‘-

parametrize Q in the form of (5.3.17) with p = 1.0. We consider two cases of n = 2 and

n = 5. For each case, the initial condijtion is chosen to be X; = I, and X; = O for all other i’s.

For n = 2, the value of ¢(-) decreases from 2533.36 to 727.1 in 20 iterations, which
means that the allowable value of b(®) defined in (4.3.3) at these 24 sampling points increases

from 0.000395 to 0.00138. The final values are X; = 640.02 and X, = 850.34.

For n = 5, the value of ¢(-) decreases from 2533.36 to 407.6 in 29 iterations, which
means that the allowable value of b(®) at these 24 sampling points increases from 0.000395 to
0.00245. The final values are X, = 851.19, X, = 979.92, X; = -606.2, X4 = —69.92 and

X5 = —683.47.

We plot these numerical results in Figure 5.1, where the x—axis indicates the number of

1
®(Qn)

iterations and the y—axis indicates the allowable value of max b(®w), which is equal to

at the 24 sampling frequency points.

We apply the scaling techniques in [Pol.4] in the above numerical experiments to speed

up the convergence.

5.5 Concluding Remarks

We have discussed optimal system design using Q-parametrization. The various
frequency- and time-domain requirements are transformed into a convex semi-infinite optimiza-
tion problem, and the numerical method of solving the optimization problem is presented.
Since the problem is convex, the global solution can be obtained. We show that we can con-
struct a minimizing sequence of finite dimensional stabilizing compensators that converges to
the optimal solution. In a practical design, we solve the problem OP, defined in (5.3.18) with n
large enough that the optimal solution of OP, is close enough to the optimal solution. We

then solve (5.3.36) to obtain a suboptimal finite dimensional stabilizing compensator that is
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close to the optimal solution.

One drawback of using Q-parametrization is the cumbersome and nonconvex model-

reduction problem given in (5.3.36).



$@,) x10-3
25 v T T T

97

o N 2 1 1 1
0 5 10 15 .20 25 30
# of iterations
1

Figure 5.1: The value of forn=2andn=>S5.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

We have presented a design methodology for a class of infinite dimensional systems and
applied it to the control system design for the bending motion of a flexible cantilever beam. In
Chapter 2, we defined a characteristic function for the infinite dimensional feedback system and
related its zeros to the exponential stability of the feedback systems. This result was used
often in the later chapters to test the exponential stability of the closed-loop system. For
exponentially stable plants, we constructed simple proportional-plus-multi-integral stabilizing
compensators in Chapter 3 to asymptotically track polynomial-type inputs and suppress
polynomial-type output disturbances. In Chapter 4, we considered a more sophisticated feed-
back system design to achieve various desirable system performances. We used the
parametrized state-space form for the compensator, allowing the order of the compensator to be
chosen in advance. We gave a computational stability criterion appropriate to the semi-infinite
form. We also transformed other frequency- and time-domain design requirements into a con-
strained H™ semi-infinite optimization problem. - However, because the resulting semi-infinite

optimization problem is not convex, the problem of local minima may arise.

In Chapter S, we used the alternative approach of Q-parametrization and transformed the
design problem into a convex semi-infinite optimization problem. This approach allows us to
find a global optimal solution. We constructed a sequence of finite-dimensional compensators
which converges to the global solution. To obtain a suboptimal finite dimensional compensator

with a prescribed order, we must solve a nonconvex order-reduction problem.

Some suggestions for future research are listed below.
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(a) Integrated control system design for infinite dimensional systems

Some parameters of the plant can be adjustable, and these can become the design parame-
ters. Choosing optimum values for these parameters will relax many stringent requirements for
the feedback system. Such parameters may include the locations of the actuators and the sen-
sors and various physical parameters, such as the beam sectional moment of inertia and beam
shapes. Solving this type of problem requires further study of problem formulations and

numerical algorithms.
(b) Numerical simulations

It would be interesting to do more numerical simulations for the two design approaches
proposed in Chapters 4 and S and to compare their results. The two approaches could be com-
bined in a hybrid design, and we could compare it with the two individual approaches by
numerical simulations. Hybrid design might proceed as follows: First, use the approach of Q-
parametrization to get an infinite dimensional compensator close enough to the optimal solu-
tion, and approximate it by a finite dimensional one with a prescribed order. Next, switch to
using the parametrized state-space form for the compensator to do the minor adjustments, and
use the finite dimensional compensator obtained from the approach of Q-parametrization as the
initial design.

Both the hybrid and Q-parémet!ization approaches require approximation of the infinite
dimensional compensator by a finite dimensional one with a prescribed order. An efficient and

reliable algorithm for the approximation is therefore very desirable.

The idea of doing inverse Laplace transform with Fast Fourier Transform algorithms, pro-

posed in Chapter 4 for time-domain requirements, needs to be justified by numerical simula-

tions.
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(c) Extensions to a general interconnection configuration

The design methodology proposed in Chapter 4 could be extended to the design of
infinite dimensional systems with a general interconnection structure, such as two-degree-of-
freedom feedback systems. Similar work has been done for finite dimensional systems

[Wuu.1].
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