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ABSTRACT

We considered several problems which arise in the design of finite dimensional compen

sators for feedback systems with infinite dimensional plants, described by a functional

differential equation in a reflexive Banach space and exhibiting only a finite number of

unstable modes. Our work was motivated by the design of controlled flexible structures.

First we considered feedback-system stabilization. We defined a characteristic function

for a unity-gain feedback system with infinite dimensional plant and related its zeros to the

exponential stability of the closed-loop system. For exponentially stable plants, this relation

ship enabled us to exhibit the existence of simple, proportional-plus-multi-integral compensa

tors that result in exponentially stable feedback-systems which track polynomial input signals

and suppress polynomial output disturbances, asymptotically. In addition, it has led to an

extension of a powerful stability criterion, in semi-infinite inequality form, which makes possi

ble the design of finite dimensional stabilizing compensators for feedback systems, using the

full infinite-dimensional plant model.

Next we turned to semi-infinite-optimization-based design of compensators for feedback

systems with infinite dimensional plant, subject to design requirements, such as stability mar

gin, disturbance rejection, robustness to plant variations, and specified time-domain responses.

We showed that these requirements can be transcribed into semi-infinite inequalities involving

matrix norms of various transfer functions, with compensators specified either in parametrized

state-space form or by means of a finite dimensional matrix parameter Q in a factored charac

terization of all stabilizing compensators. The state-space form has the advantage of allowing

preselection of compensator order, but requires the use of our stability criterion and results in a
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nonconvex optimization problem. On the other hand, g-parametrization leads automatically to

an elegant convex optimization problem, whose solution, unfortunately, is an infinite dimen

sional stabilizing compensator which must be approximated. As the dimension of the parame

ter Q is increased, the resulting compensators converge to an optimal IT solution of the design

problem.

We illustrated our design methodology by numerical examples in which we considered

the control system design for the bending motion of a flexible cantilever beam with boundary

point force/moment actuators and point displacement/angle-of-rotation sensors.
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NOTATION

C Complex numbers (plane).

C_ {se C I Re(s) < 0}.

C+ {se C I Re(,s) > 0} = C- €L.

€? {se C I Re(s) > 0}.

9 C+ {se CI Re(,y) = 0}.

D_a {se CI Re(y) < -a}, the stability region.

D(T) Domain of the operator T.

E(F) The set of matrices whose elements belong to the set F.

Gc(s) Transfer matrix of the compensator, 4 Cc(sl - A^"lBc + D^

Gp(s) Transfer matrix of the plant, £ Cp(sl - ApTxBp +Dp, Vse p(Ap

H_a The Hardy space of complex functions that are bounded and analytic in Ui,

continuous on dU^ and equipped with the norm defined as follows

||/1L= sup |fc)l, feH.

H0 The Hardy space H^ with a = 0.

N Natural numbers = {1, 2, 3,...}.

IR Real numbers.

'-a*

IV

-a»



R(T) Range of the operator T.

R(s) The set of proper rational functions.

R-a(s) The set of proper rational functions which are analytical in U^.

U_a {se C I Re(j) £ -a} = C-D^.

3t/_a {se C I Re(s) = -a}.

Ul* {se C I Re(s) > -a} = tf_a- &/_«.

V-U The set of {s e V and s £ tf}.

W_a($) The set of complex functions which are analytical in £/£«, continuous on

dU_a, and converge at infinity in U^.

W"*" The set of mxn matrices whose elements belong to the set W.

Z(f) {se C \fis) = 0}, the set of zeros of/.

a > 0 Stability Margin.

g(T) Spectrum of the operator T.

o*(M) Largest singular value of the matrix M.

p(T) Resolvent set of the operator7, = C-o(7).
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CHAPTER 1

INTRODUCTION

Controlled flexible structures are found both in space and in terrestrial applications. In

space, they arise in the complex form of satellites, and space stations, on earth they tend to be

simpler, as in the form of flexible arms of a robot, or mechanical manipulator. Their study has

motivated our research on the design of finite dimensional compensators for infinite dimen

sional feedback systems described by functional differential equations, in a semi-infinite optim

ization setting.

The earliest attempts to design a finite dimensional compensator for an infinite dimen

sional system consisted of approximating the infinite dimensional system by a finite dimen

sional system, and then applying well-developed finite dimensional system design methodolo

gies. A variety of approximation schemes have been used, for example, the Rayleigh-Ritz

method [Jun.l], modal approximation [Gib.l, Mei.l], and finite-element methods [Mov.l]. The

work in [Gib.l, Gib.2, Gib.3, Ban.l], which deals with linear quadratic regulators (LQR), vali

dates some discretization schemes by showing that, under some conditions, the sequence of

optimal compensators for the finite dimensional systems converges to the optimal compensator

for the infinite dimensional system.

In later work, basic LQR methods were generalized to deal with the design of compensa

tors for distributed plants. This generalization resulted in functional Riccati equations from

which infinite dimensional compensators can be derived [Cur.2, Zab.l]. The approach of

<2-parametrization has also been generalized to design compensators for infinite dimensional

feedback systems [Cal.l, Des.l, Des.2, Net.l, Vid.l]. In both cases, various approximation



methods have been applied to get a finite dimensional compensator [Bal.2, Pri.l, Ito.l, Bis.l,

Vid.l, Cur.3]. hi another alternative approach, the state-space formulation and the concept of

invariant subspace have been used to obtain finite dimensional stabilizing compensators [Cur.l,

Sch.l].

All of the above approaches share a common feature: approximation techniques are first

used during the design process to get a finite dimensional compensator, and then robustness

theory is applied to show that the resulting finite dimensional compensator stabilizes the infinite

dimensional plant. Since the relationship between the particular approximation technique and

the order of the compensator is not known, the order cannot, in general, be selected in

advance.

In this thesis, we consider optimal feedback system design for a class of linear time-

invariant infinite dimensional systems. We proposea design methodology that does not require

truncation of the infinite dimensional system to a finite dimensional one. Consequently, we

avoid the nontrivial stability robustness problem.

Feedback control is used to satisfy various design specifications, such as stability, distur

bance attenuation, and low sensitivity to changes in the plant. In this thesis, we transform

various design specifications into a constrained H°° semi-infinite optimization problem. The

solution of this problem is made possible by the recent development of algorithms for the con

strained minimization of regular, uniformly locally Lipschitz continuous functions in JRN

[Pol.3]. This approach has been used to solve problems in finite dimensional control system

design [Gus.l, Boy.l, Pol.5, Pol.6, Wuu.l]. Our method is new and has not appeared in the

literature before.

In Chapter 2, we define the class of infinite dimensional plants considered in this thesis.

We model the plants by a functional differential equation in a reflexive Banach space and



assume that the plant has a finite number of unstable modes. We illustrate our design metho

dology by means of a specific plant For this purpose, we consider the bending motion of a

cantilever beam with boundary point force/moment actuators and point displacemem/angle-of-

rotation sensors. We show that this plant is a member of the class of infinite dimensional sys

tems mentioned above. We present some preliminary results concerning unity-gain feedback

systems. Next, we define a characteristic function for the feedback system and relate the

exponential stability (with a stability margin) to the zeros of this characteristic function.

In Chapter 3, we consider exponentially stable infinite dimensional systems. We design a

simple low-order proportional-plus-multi-integral compensator. This resulting closed-loop sys

tem is exponentially stable, asymptotically tracks polynomial inputs, and asymptotically

suppresses polynomial disturbances.

In Chapter 4, we consider a more complicated system design which allows the require

ment of a certain stability margin and includes additional design specifications such as robust

ness, disturbance depression, saturation avoidance, shaped output response specifications, etc.

We transform the problem of designing optimal compensators for the infinite dimensional

plants, introduced in Chapter 2, into a semi-infinite optimization problem. First, we present a

computational stability criterion which gives us a necessary and sufficient condition for testing

exponential stability of the feedback system that is appropriate in a semi-infinite optimization

setting. We then consider the formulation of other frequency- and time-domain design

specifications. We also discuss the numerical implementations in the design process with an

emphasis on the evaluation of the plant frequency response. We model the compensator in a

parametrized state-space form. The main advantages of using the parametrized state-space

form for the compensator are: (1) the order of the compensator can be preselected; (2) it is

easy to generalize the design methodology presented in this chapter to a collection of intercon-



nected feedback systems; and (3) it is suitable for integrated system design in which some

plant parameters are design variables. A drawback of this approach is that it leads to optimiza

tion problems that may have local minima.

In Chapter 5, we present an alternative design methodology to that proposed in Chapter

4. In this approach, we parametrize compensators by means of Q-parametrization and

transform the design problem into a convexsemi-infinite optimization problem. We construct a

sequence of finite dimensional compensators that converge to the optimal solution. Because

the resulting semi-infinite optimization problem is a convex one, this approach guarantees that

we can find the global solution.

Finally, in Chapter 6, we draw some conclusions and give some suggestions regarding

future research.



CHAPTER 2

MODELING OF INFINITE DIMENSIONAL FEEDBACK SYSTEMS AND

PRELIMINARY RESULTS

2.1 Introduction

In this chapter, we develop a model for infinite dimensional feedback systems and give

some preliminary results. These preliminary results are relevant to the control system design

that will be discussed subsequently. In Section 2.2, we introduce the class of infinite dimen

sional plants for which we will design feedback systems. We formulate the plant in a func

tional differential form so that semigroup theory can be applied. The plant we consider has a

finite number of unstable modes, for which we can construct a finite dimensional stabilizing

compensator. Throughout this thesis, we illustrate our design methodologies by considering

control system design for the bending motion of a flexible cantilever beam with boundary point

force/moment actuators and point displacement/angle-of-rotation sensors. Therefore, in Section

2.3, we pay particular attention to the bending motion of a flexible cantilever with boundary

point force/moment actuators and point displacement/angle-of-rotation sensors and show that it

is a member of the class of infinite dimensional systems introduced in Section 2.2. In Section

2.4, we formulate the compensator in finite dimensional state-space form. Stability (with a cer

tain stability margin) is defined in the internal sense, instead of the input-output sense: that is,

stability is defined in terms of the semigroup of the closed-loop system instead of transfer

functions. We then define the characteristic function of the feedback system, and present a

relationship between the zeros of the characteristic function and the stability of the closed-loop

system in Theorem 2.4.1. The relationship is used quite often in the subsequent chapters to test

the stability of the feedback systems. A similar result holds in the finite dimensional case



[Des.3]. Based on Theorem 2.4.1, a computational stability test, compatible with the use of

semi-infinite optimization, is constructed in Chapter 4.

For the terminology in functional analysis and semigroup theory, we refer the reader to

standard books such as [Katl, Paz.l, Bal.l]. Notations used frequently in this thesis are

defined on pages iv and v.

2.2 Modeling of the Plant

Consider the feedback system S(jPt K) shown in Figure 2.1. We assume that the plant,

with rii inputs and n0 outputs, is described by a linear and time-invariant differential equation in

a reflexive Banach space Z:

xp(t)= ApXp(t) + Bpe2(t),
(2.2.1)

y2(t) = CpXp(t) + Dpe2(t),

where xp(t) e Z, e2(t) e R*', y2(t) e RBtf, for t* 0 and Dp:JRnt -» Rrttf.

Assumption 2.2.1: The operator Ap: D(Ap) -» Z, with D(Ap) dense in Z, generates a

strongly continuous (C0) bounded semigroup, {e^}, ^q. •

Assumption 2.2.2: The operators Bp.lR?1-> Z, Cp:Z-*Rl,° and D^R*'-* Rrt° are

assumed to be bounded. •

Hille-Yosida Theorem [Paz.l]: For each strongly continuous semigroup, Ar there exist

M £ 1 and y e R such that

We^WZMeV, V*£0. (2.2.2)
•

If y is the constant of the previous theorem, the following result says that the resolvent set of

the operator Ap contains the open right half plane WJ 4 {s e CIRe s >y}.



Proposition 2.2.1 [Paz.l, Theorem 1.5.3]: Uy c p(Ap).
•

Definition 2.2.1: Foralls e p(Ap), we define the transferfunction of the plant, Gp(s), to be

Gp(s) &Cp(sl - ApT% +Dp. (2.2.3)

where /: Z -» Z is the bounded identity operator, i.e., Iz-z^zeZ. •

Referring to [Kat.1, Theorem HI 6.7], we have the following result.

Proposition 2.2.2: Gp(s) is analytic on p(Ap). •

Definition 2.2.2: We will say that a function, g: C -» C converges at infinity in a domain

D c C, if there exists a finite complex number, c, such that lim sup \g(s) - c\ = 0, and we
p -» oo Id S p

will write c = limw _> ^(s). We will say that a matrix function G: C -> C" x" converges

at infinity in a domain £> if each of its elements converges at infinity in D. •

Since {Cp(sl - ApTlBp) tends to zero as \s\ -» ~ in tfij [Doe.l, Theorem 23.7], where y is the

constant shown in (2.2.2), we have

Proposition 2.2.3 [Jac.l]:

!iniw -»*Gp(s) -» Dp . (2.2.4)
Res > y g

Definition 2.2J: For any a > 0, a semi-group {T(t)}t^0, defined on a Banach space, is said

to be a-stable if there exist M e (0, «>) and Oq > <x such that

Wmw^Me-*1* , vrao. (2.2.J

We assume that the plant model (2.2.1) satisfies the following spectrum decomposition assump

tion.
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Assumption 2.23: There exists a decomposition of Z = Z_ $Z+, with Z+ finite-dimensional,

which induces a decomposition of the plant (2.2.1), of the form

dt

XpXt)
Xp4f)

0

0 A
p+.

y2(0 = [Cp_ Cpj

XpJf)
Xp4f)

XpJf)
Xp4f)

p+
e2(t) ,

+ Dpe2(t),

(2.2.6)

such that o(Ap+) c £/_«, (Ap+, Bp+) is controllable, (Ap+, Cp+) is observable, and Ap_ is the

infinitesimal generator of an a-stable Co-semigroup on Z_. •

Remark 2.2.1: As in the finite dimensional case, we say that the plant in (2.2.1) is a-stabil-

izable and a-detectable if there exist bounded linear operators K: Z —» R"* and F: R""-» Z

such that Ap - BpK and Ap - FCp are the infinitesimal generators of a-stable Co-semigroups.

It can be shown that the plant is a-stabilizable and a-detectable if and only if it has the

decomposition of the form (2.2.6) [Nef.l, Jac.1]. In [Nef.l, Jac.1] only O-stability is con

sidered. The extension to a-stability is trivial. D

Under the assumptions 2.2.1-3, the following result guarantees that there exists a finite

dimensional stabilizing compensator for the feedback system S(Pf K) shown in Figure 2.1.

Proposition 2.2.4 [Jac.1]: A plant of the form (2.2.1) has a decomposition of the form

(2.2.6) if and only if there exists a finite dimensional strictly proper compensator such that the

feedback system is a-stable. •

Remark 2.2.2: Although the state space of the plant is assumed to be a Hilbert space in

[Jac.1], the results from [Jac.1] used in this section remain true if we assume that the state

space of the plant is a reflexive Banach space. •



2.3 An Example: Bending Motion of A Cantilever Beam

In this section, we show that the bending motion of a flexible cantilever beam with boun

dary point force/moment actuators and point displacement/angle-of-rotation sensors can be

modeled by equations of the form (2.2.1). We use this infinite dimensional plant model in the

numerical design examples in the subsequent chapters to illustrate our proposed design pro

cedure.

Consider the planar bending motion of a cantilever flexible beam, shown in Figure 2.2,

with a particle of mass M attached to the free end. The jc-axis is the undeformed beam cen-

troidal line; the y-axis is the cross-section principal axis. The associated control system is

required to damp out vibrations. We assume that the beam has unit length and has point

force/moment actuators and point displacement/angle-of-rotation sensors at the boundary. Its

bending motion can be described by the following partial differential equation [Clo.l]:

ma^^ +c/if^+£/aS^ =a t^0 0£X<lf (231a)
dr dx*dt 9jc4

with boundary conditions

w(t,0) =0, -|̂ (/,0) =0, (2.3.1b)
dx

M^{t, 1) -cl^-it, 1) -£'|j(', 1) =flit). (2.3.1c)

J~t&?(f'1) +c/a^(u)+£/lj(U) =m (2,3'ld)
where w(r, x) is the vibration along the y-axis, /i(f) is a control force, f2(t) is a control moment,

m is the distributed mass per unit length of the beam, c is the material viscous damping

coefficient, E is Young's modulus, M is the end mass, / is the beam sectional second moment

of area with respect to the y-axis, and / is the rotational inertia of the end mass. The output

sensors are modeled by



10

yl(t)=w(t1 1), r>0, (2.3.2a)

or

y2(0 =-f^k 1), ^0. (2.3.2b)

We now proceed to show that the system (2.3.1a-d), (2.3.2a-b) can be transcribed into the

first order form (2.2.1), with the assumptions stated. For simplicity and without loss of gen

erality, we assume that there is only one force or moment actuator and one displacement or

angle-of-rotation sensor. First we rewrite (2.3.1a-d), (2.3.2a-b) in the form of

fPfo-) + DQwXtt>) + A0w(r,) = Boflf), t Z 0, 0 £ x £ 1, (2.3.3a)

y(f) = C0wXW), (2.3.3b)

where "•" denotes the derivative with respect to time, in the following definitions, we assume

that t is fixed and omit it for notational simplicity,

«*) =(wO, wlt wi? e D(Ao) =D(Do) =W) 6H*([0t1]), w(0) =w'(0) =0, wx =w(l), w2 =w'(l)l

cV0^2([0,l])xR2,

(2.3.3c)

B0 4(0, ±, 0)r, or (0, 0, ±f, (2.3.3f)

C0w^w(l) , or w/(l), (2.3.3g)

/^([O.l]) denotes the set of functions whose fourth derivative belongs to L2([0,1]) and v/

denotes the derivative of w with respect to the spatial variable x. Note that
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£>o() ="f^oO (2.3.3h)

in the above example.

Let u = («(•), ux, u^7 and v" = (v(), vx, v^7 belong to V0 in (2.3.3c). We define a inner

product in V0 as follows:

&> v)v0 =<V, v)L2([oa]) +^uxvx +-^M2V2 • (2.3.4)

We have the following nice property for the operator Aq.

Proposition 23.1: The linear stiffness operator AQ is a positive definite and self-adjoint

operator from D(Aq), which is dense in Vo, onto V0» with compact inverse. In fact, A0 is coer

cive, i.e., there exists p > 0 such that

C40v, v)Vo 7> p2\\v\\v0 , V ve D(Aq) . (2.3.5)

Proof: The following proof is similar to that given in [Sch.2].

We first prove thatD(Aq) is dense in Vq. Let v = (v(), vlf v^7 e VQ. Define

0, x e [0, Vn]

z„(x) = « v(x), x e [1/n, 1-1//1]

Vj + v2(jc-1), xe [1-1/n, l+l/ii]
(2.3.6)

Let <$>e() be a positive function in C°°, the space of infinitely differentiable real-valued functions

on (-«>,<»), such that

<i>e(-*) = $*(x) ,

£ Ux)dx =1, (2.3.7)
$z(x) = 0 for* e (-e, e).

We define
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un(x) £ [_ zn(x - y)$±(y)dy =J_ zn(y)ty±(x -y)ay , 0<x£ 1. (2>3.8)
4n 4n

Then it is straightforward to check that «„(•) e C°°([0, 1]), k„(0) = un\0) = 0, «n(l) = vb

un'(l) = v2 and un converges to v in L2([0,1]). Therefore («„(•),Vi,V2)TeD(i40) and it con

verges to v"in V0.

Now we prove that AQ is invertible. For any v"= (vO.v^v^7 e Vq, we define

u(x) =jL£ <fe, £ de* {f de3 [f v(e4)de4 -^vj +-£v2}

Then w=(w(), k(1), m'(1))7 e D(A0) and i4oST= v: Since Aq1 is an integral operator, it is com

pact and therefore bounded.

Next we prove that A0 is self-adjoint Consider u = (u(), k(1), ufil))7 and

v = (v(), v(l), /(l))7 e D(^o). Then

(u, AQv)Vo =((M, «(l)f M'(l))r, (-^v<*>(x), -^V"(l), -^v"(l))r)i

=— [ «(T)v('v>(T)rfc - -^a(l)v"'(l) +^L^(l)v"(l).
m <» m m

Integrating by parts, we obtain

(2.3.10)

(u, AQv)Vo =-£q M"(x)v"(T)dT =^(*"(), v"(-) )L9mj>. (2.3.11a)

Similarly, we have that

EI(A0u, V)Vo =—(u"Q, v"() )L2(I01]) =(IT, i40v-)Vo. (2.3.1 lb)

Hence for any Ve D(A0), we have ve D(Aq) and i40v~= AQv. Therefore D(Aq) c D(Aq). To

prove that AQ =Aj, we have to show that D(Aq) c D(Aq). Suppose ye D(Aq) and AqY= zT

From the definition of i40, we have
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{y, Aqu)Vq =<?, u)Vq, V ue D(Aq) . (2.3.12)

Since Te Vq and R(A0) = V0, there exists v"e D(Aq) such that AQv=t T. Hence from (2.3.12),

we get

{y, Aqu)Vo =<?, u)Vq ={A0v, u)Vq =(v, i40IT)v0 » V ETe D(^ . (2.3.13)

The last equation comes from (2.3.11b). Therefore y = ve D(A0) because R(AQ) = VQ. So we

have shown that A0 is self-adjoint (and therefore closed).

Next, we prove that A0 is coercive. Consider v"= (v(-), v(l), /(l))reD(Ao). In

(2.3.11a), we show that

^vM0v)Vo =-f-||v"|g2([0tl]). (2.3.14)

Since v(;t) = T v'(x)dx, it follows from the Schwartz Inequality that

lv(*)l <; £ l/(x)l dx <[ h/(x)l dz Z([ Wi^fdxf =||v'|| L^Q n) , (2.3.15a)

which implies that

IMI z^o.i]) =(£ Wxtfdxf <> H/ll L2([0fll). (2.3.15b)

Similarly,

!/(*)! £ ||v"|| LH[0l]) (2.3.16a)

and

M^iciD^M^o,!])- (2.3.16b)

Note that

IW». =IW &Q0.1D +̂ v^)2 +iVM2 • (2.3.17)
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As a consequence of(2.3.15a), (2.3.16a-b), we have that

^•KD^^-llvl^^, (2.3.18a)

4V(1)2 <i 4llv"ll Jattany (2.3.18b)
and

m m L*WW

m m
imfel^(i +e +4-)iKiii^iiD

(2.3.18c)

and the proof is completed. •

Referring to [Katl, p. 187], we obtain the following result which characterizes the spectrum of

A0:

Lemma 23.1: The spectrum of A0 is an infinitely increasing sequence of positive real eigen

values {coJ}neIN, each of finite multiplicity, and the corresponding mutually orthogonal eigen

vectors {T|n}n6B^ comprise a completebasis in Vq. •

The (Qn's and r\n's are, respectively, the natural frequencies and mode shapes of free, undamped

oscillations.

Since A0 has the nice properties described in Proposition 2.3.1, its square root, Aq2, is

well defined [Rud.2]. In fact, V&D(A$) is a Hilbert space with the inner product

{vi, v2)v4 (i4oV,, A$v2)Vo, vlfv2eV. (2.3.19)

We define the energy space Z = Vx V0 with the inner product

Uvi, hx)7, (v2, KiiDz&di, v2)v +(hlt h2)Vo, vi, v2e V, hu h\ e V0 . (2.3.20)

Remark 2.3.1: (i) The eigenvectors of A0 are also mutually orthogonal and complete in V,

and the pairs (y\n, 0)t and (0, r]^7 are thus mutually orthogonal and complete in 2 [Gib.l].
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(ii) In fact, V= D(/l§) is the closure of D(Aq) with respect to the norm defined by (2.3.14).

For the above example of the flexible beam, it can be easily seen from (2.3.14), (2.3.15a), and

(2.3.16a-b) that [Sch.2]

V= {v = (vQ, vlt V2)T Iv e tf2([0,l]), v(0) = v'(0) = 0, vY = v(l), v2 = v'(l)}. (2.3.21a)

mw =V5!v"H mil) • (23-21b)
where #2([0, 1]) denotes the set of functions whose 2nd derivative belongs to L2([0, 1]).

•

Let Xp(t) = (w(f,-), w(r,))re D(Aq)xD(Aq) cS. Then (2.3.3a-b) can be rewritten in the

following first order form:

xp{t) = ApXpit) + Bpfit)

4° l (2.3.22a)0

Bo

v(r) = CpXp(0
a (2.3.22b)
^ (Co, 0)jtp(f) •

It is clear from (2.3.3f) that flp(): IR -» I is a bounded operator. We will show that

Cp: 2 -> IR is also a bounded operator. In the following, t will be assumed to be fixed and

omitted for simplicity.

Proposition 2.3.2: Cp:L -» R is a bounded operator.

Proof: Consider xp = (v~, u)7 e Z= Vx V0, where v"= (v(), v(l), /(l))7 e V and

S" = (m(), u\, wi)7 e VQ. Referring to (2.3.3b), (2.3.3g), we consider the following two cases

of different types of sensors:

Case I: Point displacement sensor.

In this case,



CpXp = (C0. 0) I = c0v = v(l).
u
» J

16

(2.3.23)

As aconsequence of (2.3.21a), (2.3.15a), (2.3.16b), we have lv(l)l £ ||v"|| L^0tlj). Note that

\\xjk =VI*+ll*o

Dividing (2.3.23) by (2.3.24a), we get

\CpXp\

\\xjk
„ lv(l)l lv(l)l

Ms VlFllv+PllVo
l|v"|| t2([0,l]) _ l|v"ll L\[0,\])

V5,v,,|,^o,ID

Hence, Cp: 2 -> IR is a bounded operator.

Case II: Point angle-of-rotation sensor.

In this case,

CpXp = (C0, 0) I = C0v =v'(l).
u

v J

(2.3.24a)

V EI

(2.3.24b)

(2.3.25)

As a consequence of (2.3.21a), (2.3.16a), we have 1/(1)1 £ l|v"||L2([0t 1]}. The remaining proof

of this case is similar to that of case I. •

Remark 232: It is clear from the above proof that the resulting operator Cp() is also

bounded if the point sensor is located at any place on the beam.

Now we will see how the operator Ap is defined so that it will generate a strongly con

tinuous semigroup. First we choose the domain of Ap to be

D(AD) = /?(
/ 0 )cl,

(2.3.26)
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i-li i-lwhere AqDq is the bounded extension of AqDq to V and R(T) denotes the range of the opera-

1-1tor T. It follows from (2.3.3h) that AqlD0 is the operator of constant multiplication defined by

1-1Aq Dqv = — v, V v e V and, hence, we have

D(Ap) = {(Vi, vi)7 Ivl =4"b + Bi. ^ =-Bb +i£, Si<6^ e £>04o), Bb e {0}u(V-D(Aq))} ,

(2.3.27a)

where V-D(Aq) 4 {v Ive Vand v e D(i4o)}. For any vp e D(Ap) defined by (2.3.27a), we

define

A v &

» *

C — , _

0 /
—Uq + UX

4
-Aq -Dq

^ J
-UQ + U2

-Uq + U2

-AqUi - DqWz
(2.3.27b)

Now we show that the operator Ap is well defined. Suppose vp = v2 e D(Ap). Referring to

(2.3.27a), we have the following representations: vp = (v},v2)r with v{ = —5o + 3i a*10*

i4 =-Bo +B* v2 =(vj, v^)7 with vj = -^l^ +5? and v\ =-Sq +u% From the assumption

that vlp = v2, we have 5© = kJ +w, H? = b{ - —h>, and u\ = sj +w, where we D(Aq). It is
E

then straightforward to show that Apvp = Apv% .

Proposition 233 [Gib.l]: The operator Ap defined in (2.3.27a-b) generates a C0-semigroup

{«V}iiO " I and ||e^||s< 1, Vt> 0. •

Now we show that Assumption 2.2.3 is also satisfied. We first characterize the spectrum

of Ap. To begin with, Lemma 2.3.1 shows that

Afl/, = G>2n«. (2.3.28)

where &n's and r\^s are, respectively, the natural frequencies and mode shapes of free,
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undamped oscillations.

Proposition 2.3.4: The spectrum of A, is given by

(^±^5*15u{-£,. (2.3.29)

The first set is the point spectrum (eigenvalues). The number, , is not an eigenvalue.
c

Proof: (i) Point Spectrum: Let 0* xp = (xx, x^7 e D(Ap) defined in (2.3.27a). Con

sider the equation ApXp = tacp. We have

0 1
r "\ r "\

X\

X2
= A.

which is equivalent to

x2 = hX\

"AoXl "" £i4°X2 =^2"

x\

Substituting (2.3.31a) into (2.3.31b), we get

(tf+X^AQ +Aoyx^O.

Since {T|n} is a complete basis in V, we can express

x\ = Lcyi,

Substituting (2.3.33) into (2.3.32) and applying (2.3.28), we get

2(X2 +^co2+co2)anTi„ =a

Therefore for all n such that a„ * 0, we must have that

(2.3.30)

(2.3.31a)

(2.3.31b)

(2.3.32)

(2.3.33)

(2.3.34a)
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X2 + X±<o2n + G>2n = 0. (2.3.34b)

It is easy to see that X cannot simultaneously satisfy the above equations for more than two

different values of co2 Therefore we know the eigenvalues are

2E \ 4E2 2E y 4E2

with the corresponding eigenvectors

In

ten.V. J

»

(2.3.35)

(2.3.36)

(ii) The spectrum other than the point spectrum: Suppose Xe a(Ap) but is not a point

spectrum. By definition, this means that QJ - Ap): D(Ap) -» Z is one-to-one and

R(XI -Ap)*?L, (2.3.37)

where / is the identity operator in 2. Let y = (yx, yd7e L with yx e V and y2 e V0» and"

x = (jcx, JK2)7 e D(Ap). Now consider (A/ - Ap)x =y, i.e.,

X -1

i40 X+ -~A)

Vl

v «/ ^ j

which is equivalent to

**1 - Xj, = V!

j4o*i + te2 + -—i4o*2 = y2.
li

lt follows from (2.3.27a) that xY and x^ can be expressed as

x\ = ~Wo + «i

X2=-Uq + u2,

(2.3.38)

(2.3.39)

(2.3.40)
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where ux&u2 e D(Aq) and Uq e {0}{j(V-D(Aq)). Substituting the above equation into

(2.3.39), we get

(— X + \)uq + Xux-u2 = yx

A0ux + U-Uq + u£ + -zAqU2 = y2.
hi

(2.3.41a)

(2.3.41b)

If X* —, we can always find uq, ux, and h2 such that (2.3.41a-b) is satisfied for any y e £
c

p>

because R(Aq) = Vq. If X = —, then (2.3.41a) becomes Xux - Wi = yx. Since ux,u2e D(A0),
c

(2.3.41a) cannot be satisfied if yx e V-D(Aq). It is easy to see from (2.3.39) that if X = -—
c

and yi = yi = 0, then xx = *2 = 0. Therefore (—/ - AD): D(AD) -> S is one-to-one. Hence

{—} belongs to the spectrum of A„ but is not a point spectrum. The proofis therefore com-
c

plete.

The diagram for the spectrum of Ap is shown in Figure 2.3. Note that —— is an accumu-
c

lation point ofthe point spectrum {-^co2 +A/—r-coj - 0)J}„eK- Therefore to have Assump-
2E j 42s

tion 2.2.3 hold, the stability margin a has to be chosen less than —. From Remark 2.3.1, we
c

r *\

An
0

0know that {

span { Tin

KVn Ka,
v j \. j

n

s. j

}rt6N is an orthogonal basis in I. It is clear that, for each n,

} = span { An
0

0

An
}. Therefore the eigenvectors of the operator A

form a basis for S. Let £+. denote the finite dimensional space spanned by the eigenvectors

corresponding with the eigenvalues in the right halfplane U^ and let 2L be the space spanned

by the other eigenvectors. Then
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£ = £_ OE+ (2.3.42)

and 2L and Z^ are both invariant spaces of Ap, i.e.,

ApZ+cZt. AplLcJL. (2.3.43)

It follows that (2.2.1) can be decomposed in the form of (2.2.6). It is then straightforward to

check whether (A^, Bp+) is controllable and (A^, C^) is observable. In most cases, these

conditions are satisfied [Laf.l]. The only thing that remains is to prove that Ap. is the

infinitesimal generator of an a-stable Co-semigroup on Z_. From [Hua.ll, we know that Ap

generates an analytic semigroup in £. Therefore the operator Ap restricted to £_, denoted by

ApJ£_, also generates an analytic semigroup {e "}t%q. Since Ap^ generates an analytic semi

group, the following spectrum determined growth assumption is satisfied [Tri.l],

Apj£ t

sup Re WApjz)) =jjm111'* "' . (2-3.44)

We conclude that i4PfE_ is the infinitesimal generator of an a-stable Co-semigroup because

Remark 233: We have shown that the bending motion of a flexible cantilever beam with

boundary point force/moment actuators and point displacement/angle-of-rotation sensors can be

transformed into the standard formulation (2.2.1) with Assumptions 2.3.1-3 satisfied.

2.4 Stability of The Feedback System

Consider the feedback system S(P, K) shown in Figure 2.1. We assume the compensator,

K, to be finite dimensional, linear, time-invariant and minimal, with state equations



xc(t) = A^t) + Bcex(t) ,

y1(r) = Ccxc(r) + £>c«i(0 .

22

(2.4.1)

where xc(t) e IR"C, ex(t) e lRrt°, yx(t) e IR"* and Ae, flc, Cc and Dc are matrices of appropriate

dimension. The compensator transfer function is Gc(s) = Cc(sl„e - A£~lBc + Dc. To ensure

well-posedness of the feedback system, we assume that det(/^ + DcDp) * 0.

We define the product space H = Z x IRBe. Since ex = ux- y2 and e2 = yx + i^, the state

equations for the feedback system are

Xp

ft
= A

» i

+ B
«1

«2

*1

*2
= C

Xp

Xc
• j

+ D
"1

«2
• «

where

A =

\-i ,-LAp-BpDc(In+DpDcrCp Bpil^DfipT^
v-l ,-ll-Bc(In+DpDJ-lCp Ac-Bc(Jn+DpDcTlDpC<

5 =

v-lBpDc(In+DpD^1 BpQ^Dfip)-1

\-i rliBc(In+DpDfl -B&n+DpDJ-^

C =

v-l -li~(In+DpDfCp -{In+Dp^DpC(
\-i r-h-Dc(In+DpDcTlCp {InfDPpT1^

Z> =

v-l -h(In+DpDer -Vn+DpD^D,
v-lDc(IH+DpDcrl Vn+DPp)-l

(2.4.2)

(2.4.3a)

(2.4.3b)

(2.4.3c)

(2.4.3d)

The domain D(A) = D(Ap) x IRBc c H.

Remark 2.4.1: It follows from [Paz.l, p. 76], that since (i) all the operators in the matrixA

except Ap are bounded, and (ii) diag(Ap,0) generates a C0-semigroup, the operator A also gen

erates a Co-semigroup, {eAt]t ^0.
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Let x=[xp, xc]eH. Then the formula x(t) - e^XQ* ( ^''^Butydz defines a mild

solution of (2.4.2) [Paz.l]. We therefore define the exponential stability of the feedback system

S(P, K) in terms of the semigroup {c^},a0.

Definition 2.4.1: For any a > 0, the feedback system S(P , K) is a-stable if the semigroup

{e4*}, 2o is a-stable. •

Remark 2.4.2: It was shown in [Jac.1] that, under the above assumptions, the feedback sys

tem S(P, K) is also a-stabilizable and a-detectable. •

From the decomposition property in (2.2.6) for a-stabilizable and a-detectable systems, we

can easily deduce the following relationship between a-stability of the feedback system and

the spectrum of A, first established in [Jac.1]:

Proposition 2.4.1: If the above assumptions hold, the feedback system is a-stable if and

only if U^ is contained in p(A). B

Remark 2.43: Note that Proposition 2.4.1 does not hold for a general infinite dimensional

feedback system. We refer the readerto [Zab.2] for a counter-example. B

As an extension from finite dimensional case [Des.3], we define the characteristic func

tion % : C -> C, of the feedback system S(P, K), by

X(s) ^ detisI^-ApJdetisI^-AJdetVnt +GcWGpis)) , (2.4.4)

where Ap+ is defined as in (2.2.6) and n+ is the dimension of Ap+. To relate the zeros of %(s)

to the a-stability of the feedback system, we apply the following Weinstein-Aronszajn (W-A)

formula ([Kat.l, p. 247]).

The W-A Formula: Let F be a closed operator in the Banach space X. Let Q be a bounded

operator in X, and suppose that R^ R(Q) is finite-dimensional Let y: C-» C, defined by
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y(s) = det(/j? + (Q(F - sI)~1)Ir), be the associated W-A determinant, with IR the identity opera

tor in R and (Q(F - sl)'1)^ the restriction of Q(F - si)"1 to R. If A is a domain of the com

plex plane consisting of points of p(F) and of isolated eigenvalues of F with finite multiplici

ties, then y(s) is meromorphic in A. Next, we define the multiplicity junction v(s;y) of y(s) by

v(y;y) = <

k if s is a zero of y of order k
-k if s is a pole of y of order *

0 for other seA

(2.4.5a)

and, for any closed operator G:X -» X, we define the multiplicity function v (s;G) by

v Cs;G) = -

0 ifjep(G)

dim(P) if s is an isolated point of a(p)
+ oo in all other cases

(2.4.5b)

where P is the projection associated with an isolated point of o(G) (see [KaLl, p.180]). Then

the W-A formula relates the multiplicity function of the operator F + Q to those of F and y(s),

as follows:

v(s;F + Q) = v(*;F) + v(s;y), V jeA . (2.4.5g

Next, for any function/: C -> C, we define Z(f)£ {se C \j{s) = 0} to be its setof zeros.

Theorem 2.4.1: The system S(P, K) is a-stable if and only if Z( %) c D^.

Proof: We begin by decomposing the operator A (in (2.4.3a)) into the form A = F + Q, as

shown below, with the plant decomposed as in (2.2.6) and Xc such that Re(Xc) < -a,

F =

Ap. 0 0

0 Vn+ 0

0 0 v*

(2.4.6a)
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-BpS>c{Ino +Dfi^Cp. -Bp-Dcdn. +DfierlCp, B^ +DJDJTlCa
Q= -B,J)e(Jno +DpcTxCp- A,* - Bp^c{Ino +Dfi^C^ - U» M^+ W^C,

-Be(!no +DficTxCp. -Be{fHo +Dfi^Cp, Ae-Be(!no +DfieTlDpCc-Xjne

(2.4.6b)

It is easy to see that F generates the C0-semigroup {e^J^o* where

i1 = diagif*-1'.eVj^.eVy, and that (F-sI) is invertible for reU^ Q=A-F is a

bounded operator, and R(Q) is finite dimensional Consider s e U_a c p(Ap_). Since

(F - si)"1 exists and is bounded, we can define V(s) by

V(s) = Q(F-sI)-1

-BpJDcVn+DpDe)-1Cp_(Ap_-sr)-1 -BpJ>c<Jn0 +DpDj-lCp+0.c - s)~l
-BpjyjJ^ +DpD^Cp.iAp.-sI)-1 (Ap+ - BpJ>c(Ino +DpD^Cp, - V«+)ftc - sfl
-Bc{Ino +DfiJ+CpJAr- - s/>"1 ~BcVn0 +DpD^Cp+frc - s)'1

BpJJni+r><PpTXCcQ>c-sTl

{Ac- Bc(I„o +DpDcrlDpCc - Xjn)(Xe - sTl

(2.4.7)

Let B0 =R(Q) =R&p) x 1R* =^(V> x *<V) x R"c and let V50(J) denote me restriction of

V(s) to B0. Then det(/ +V{s)) £ det(/Bo +VBq(s)) is well defined [KaLl]. We will show that

detC/ji + VB^ = x(5) and then apply the W-A formula.

Let bj&Bp_eJt j =\,2,...,nit where {ej\%x is the standard unit basis in IR*'. Suppose,

without loss of generality, that n£ nt is a positive integer such that {tyJjLi is the largest

linearly independent subset of {bj\%x. Using {bj)jLx as abasis for R(BpJ, the linear operator

Bp_ assumes the matrix form Bp. = (IKxn-\ Bp-) e Rrt *"', where column i ofBp. is obtained

by expressing bJ&ei in terms of the basis {fyJjLi- LetB = 0>x,b2,...,b^. Then



^o=

-BpJDc(In+DpD<rlCp-(Ap_-sirlB-BpJJ^+DpD^Cp+CXc-sT1
-BpJDc{In+DpflCpXAp_.-sirlB(A^-Bp^^+DpP^Cp^-Xj^^-s)-1

v-l-15" -Bc(In+DpDc)-lCp_(Ap_-sI)-1B\-i -BJUn+DpD^CpJXc-s)

BpJJntDJDp)-lCc{Xc-s)-x

BpJJ^DPp^CJiXc-sy1
{Ac-Bc(In+DpDcTlDpCc-Xjn)(Xc-sTl

(2.4.8a)

-Bpjyjln.+DpDcTlCpJXc-sTl
-h -BpS>c(Ino+DpD^lM(s)

v-l-li
-Bp*DJJn0+DpD^Mis)CV-Bp^c(Ine+DpD^Cp,-XJ^)^-j>

v-l

v-li -Bc{Ino+DpDerlM(s)-Bc(J„o+DpDcTlCpJiXc-s)"1

BpSJ^+DJDpT^CJLXc-sT1
Bp¥(Ini+DtpprlCe(Xc-srl

(Ac~Bc«no+DpDcTlDpCc-Xjn)(Xc-s)'1

(2.4.8b)

whereM(s)4[rx(s),r2(s),...,rJLs)]eC"*x?rwithrfc)4CpJAp--srflbitl£i£n.Because

eachelementin(2.4.8b)isinmatrixform,itisstraightforwardtoshowthat

det(/Bfl+VBo(s))=detisl^-V)det(.s/Be-Ac)det(/„,+Gc(s)Gp(s))=xC*)•(2.4.9)

NowweusetheW-Aformula.LetFandQbedefinedasin(2.4.6a-b),sothat

A=F+Q.SinceU^cp(F),wecanchooseA=U^.Then

%(s)=det(//j+(Q(F-s!)~1)\r),forset/_a.ApplyingtheW-Aformula,weobtain

v(s;A)=v(s;F)+v(s;x)forallseU^.SinceU^cp(F),itfollowsthatv(s;F)=0forall

seU-a,andhencev(s;A)=v(j;%)forallseU_a,whichimpliesthat(i)theoperatorAhas

onlyfinitelymanyeigenvaluesinU_aand(ii)

26

U^no~G4)=K^nz(x(s)).(2.4.10)
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Now suppose that the system S(P, K) is a-stable. Then it follows from Proposition 2.4.1

that i/_a c p(A), which is equivalent to saying that!/_« n o(A) is the empty set Hence, from

(2.4.10), U_a r\ Z(x(s)) is the empty set, which implies thatZ(x(s)) c D^.

Next, suppose that Z(x(s)) c D^. Then t/_a n Z(x(s)) must be empty. It now follows

from (2.4.10) and Proposition 2.4.1 that S(P, K) is a-stable, which completes our proof. •

2.5 Concluding Remarks

In this chapter, we have modeled the class of infinite dimensional plants for which we

consider control system design in this thesis. We have shown that the planar bending motion

of a flexible cantilever beam with boundary point force/moment actuators and point

displacement/angle-of-rotation sensors belongs to this class of infinite dimensional plants. We

have defined the characteristic function for the closed-loop feedback system and related its

zeros to the exponential stability of the feedback system. This result is useful for the design of

stabilizing compensators in the subsequent chapters. In the next chapter, we assume that the

infinite dimensional plant is exponentially stable and design a simple proportional-plus-multi-

integral compensator for it



U.

•in—*

Figure 2.1: The feedback system S(Pt K).

B actuators

o sensors

Figure 2.2: Planar bending motion of a flexible beam.
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ji • ac

Figure 2.3: The spectrum of Ap in (2.3.27).
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CHAPTER 3

THE DESIGN OF PROPORTIONAL-PLUS-MULTI-INTEGRAL STABILIZING COMPENSATORS

3.1 Introduction

Exponential stability, asymptotic tracking, and disturbance rejection are among the most

fundamental requirements in control system design, and they have received a considerable

amount of attention in the literature. In [Dav.1-2], Davison presented a characterization of a

minimal-order, robust, error-driven servocompensator that achieves asymptotic tracking and

disturbance rejection for finite dimensional systems. The result was extended to distributed

parameter systems in [Call, Des.l] in which, because of the coprime factorization used to

obtain it, the compensator turns out to be infinite dimensional. Since practical considerations

require a finite dimensional compensator, the approach in [Cal.l] must be supplemented with

cumbersome approximation and order reduction techniques. In [Poh.1-2, Koi.l, Jus.l, Log.l-

2], it is shown that feedback systems with exponentially stable infinite-dimensional plants can

be stabilized and regulated by a multivariable proportional-plus-integral compensator of the

form:

-kKj + Kp, 0<k£k* , (3.1.1)

where K{ and Kp are real matrices whose dimensions are related to the input and the output

dimensions of the plant, k* is some real positive number, and s is theLaplace parameter.

In this chapter, we present a method for designing finite dimensional, proportional-plus-

multi-integral stabilizing compensators for the class of feedback systems discussed in Chapter

2, with additional assumptions that the infinite dimensional plants are exponentially stable and

their transfer matrix evaluated at s = 0 has maximum rank. The resulting feedback systems are
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internally stable and asymptotically track polynomial inputs and suppress polynomial distur

bances. Our analysis makes use of the characteristic function defined in Section 2.4, of

Theorem 2.4.1, and of the Rouche theorem in complex variable theory [Chu.l]. The resulting

proofs are quite straightforward.

In Section 3.2 we give some preliminary results about the stability of the feedback system

obtained by using proportional-plus-multi-integral compensators, applying the results presented

in Section 2.4. The main results are established in Section 3.3. In Section 3.4 we give a

numerical design example. We draw some concluding remarks in Section 3.5.

3.2 Preliminary Results

Consider the feedback system S(Pt K) introduced in Section 2.2.

Definition 3.2.1: In this chapter, we will use the term "exponentially stable" to mean

"a-stable with a = 0". •

In addition to the assumptions in Section 2.2, we need the following assumptions.1

Assumption 3.2.1: The operator Ap generates an exponentially stable semigroup [e ^}/2o>

i.e., we can find ocq > 0 and M0 < °° such that

||^||z<M0e~a°', V^O (3.2.1)
•

Under Assumption 3.2.1, it follows from Section 2.2 that Ui^ c p(Ap), Gp(s) is analytic

on UIoq, and lim w_> « Gp(s) = Dp. Therefore Gp(0) =- CpAplBp +Dp is well defined.
Re j>-o0

Assumption 3.2.2: The matrix Gp(0) has maximum rank.
B

It is easy to show that the following is true:

1These assumptions are only required inthis chapter.
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Proposition 3.2.1: Suppose that Assumption 3.2.1 holds. Then there exist M < oo and

0<ai < Oq such that each element of Gp(s) denoted by [$(s)] satisfies

\#(s)\ <> M , Vs e U^ , i = 1,2, • • ,n0, j = 1,2, • • • ,nt. (3.2.2)

•

We are required to design a minimal, finite dimensional, proportional-plus-multi-integral

compensator, described by a differential equation of the form:

xc(t) = AMD + Bcex(t) ,

vi(0 = Ccxc(r)+^i(0 .

where xc(t) e R"e, ex(t) e IR*", yx(t) e IRB/, and A^ B0 Cc and De are matrices of appropriate

dimension, with all the eigenvalues of Ac equal to zero, for integral action. Since a(/y = {0},

the compensator transfer function is Gc(s) = Cc(sl - Ac)~lBc +De = J^q Fj Is*, where each

Fj e ir"'*"* and mdepends on Ac.

Let the state-space matrices (A, B, C, D) of the closed-loop system be defined as in

(2.4.2), (2.4.3a-d). The following result relating the exponential stability to the spectrum of the

operator A is a special case of Proposition 2.4.1 in Chapter 2.

Proposition 3.2.2: The feedback system is exponentially stable if and only if C^ is con

tained in p(A). •

We define the characteristicfunction %(s) of the system S(P, K), by

X(s) = det(s/fle - Ac) det^. +Gc(s)Gp(s)) = j* det(/„, +Gc(s)G,(*)) = /• det(/„o + Gp(s)Gc(s)) ,
(3.2.4)

where the last equation comes from the fact that det(/rti + MN) = det(/no + NM) for any

Me Rn/X"0 and Ne IR"0***'. The following proposition follows directly from Theorem 2.4.1.
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Proposition 3.2.3: The system S(P, K) is exponentially stable if and only if Z(%) c C_.
•

33 Stabilizing Proportional-Plus-Multi-Integral Compensators

We establish the existenceof a proportional-plus-multi-integral stabilizing compensator in

three steps. First we show that we can construct a proportional stabilizing compensator and

then that we can construct an integral stabilizing compensator. Finally we combine and extend

these two results to show that we can construct proportional-plus-multi-integral stabilizing

compensators of arbitrary order. As a corollary to the results in [Call], we show that these

compensators result in asymptotic error-free tracking of polynomial inputs and in asymptotic

polynomial output-disturbance suppression.

In the proofs to follow, we make use of the Rouche theorem, stated below [Chu.l].

The Rouche theorem: Let/,g: C -» C be functions which are analytic inside and on a

positively oriented (counterclockwise) simple closed contour C in the complex plane. If

\fts)\ > \g(s)\ at each point s on C, then the functions/(.s) mdfis) + g(s) have the same number

of zeros, counting multiplicities, inside C. •

Theorem 33.1: Consider the feedback system S(JP, K) in Figure 2.1 and suppose that Ae = 0,

Be = 0, Ce = 0 and ne = 0. Then there exists a matrix De * 0 such that the closed-loop system

is exponentially stable.

Proof: By Proposition 3.2.3, the system S{P, K) is exponentially stable if and only if

2[det(/B/ +DcGp(s))] c C_. Suppose that De =[d^ and Gp(s) = [gpJ(s)l Then

det(/„c +DcGp(s)) =det([A'̂ + Zd*#Cj)]y]
fei

=1+SZrf^gf(r) + ••-A 1+H(s) , (3.3.1)
Mfc»l

where A'*7 = 1 when i = j and Av = 0 otherwise, and H(s) represents the first and higher order
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terms in d4*' and gfi(s). It follows from Proposition 3.2.1 that V ij, there exist M>0 and

0<ax < Oq such that \gft(s)\ <M, for all s e dU^.2 It is clear that we can always choose a

matrix Dc * 0, with sufficiently small components, d*, to ensure that \H(s)\ < 1, for all

sedU^. In addition, H(s) is an analytic function on Ul^. Setting C = 3f/_ai, fts) a 1 and

g(,s) = H(s), we obtain from the Rouche theorem that det(/„c + DJGpis)) = 1 + His) has the

same number of zeros in C/_fltl as^O. which is zero. Therefore det(/„e + DeGp(s)) has no zeros

on €+ c U^. That is, Z( det(/„c + DjGp)) c C, which completes the proof. •

Theorem 3.3.2: Suppose that Dc = 0 and Ac = 0, so that Gc(s) = —C^. Then there exists

an n,- x n0 maximum-rank matrix Fj such that for any matrices Bc, Cc satisfying CJBC = Fj, the

closed loop system is exponentially stable.

Proof: Case I: nt = n0, i.e., the plant and the compensator transfer functions are square

matrices. Let nc = «,- = n0, Be&Cce IR"**"' such that CJBc = F7 elR*^. It follows from

Proposition 3.2.3 and Equation (3.2.4), that the system is exponentially stable if

Z(x(s))=Z(.detWn)de\(IHe + Gp(s)—)) =Z(detCy/„e +G/tfF,)) c CL . (3.3.2)
s

We denote the elements of Fj hyff, so that Ff = \ffy. Then

dttisL +Gp(s)Fi) =s* +/' !E Z/f*#<fl +s**( ••)+•+ detG,Cs)detF,. (3.3.3)
/=i jfc=i

Let As) =/e and let g(s) =A"1 £ f//*^) +/e"2( ...)+•••+ detGUtfdetF,.
t=i fc»i

Clearly, fi(s) and g(s) are both analytic on LLai for some ax satisfying 0 <ax < Oq. Suppose

that for some 8>0, l/^l <5, for all ij. Consider any s e dU^. We have

' In this section, the set of dU_a, includes the points at infinityin £/_„.
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lg(s)l 5 li*"1! ISZ^*^)I +l/c"2l !(•♦•)!+ ••• +ldetGp(5)detF/l
/=i*=i

£ \s\n,rlNxM8 + \s\n°-2N2M2& + ••• +NnNfeh*e

<> N\s\"e (bTtaS + fcr2Af282 + IsrtllW + • • • + IsfW'S"6), (3.3.4)

where ty is the number of product terms in the coefficients of bT, N = max,- Af,-, and Af > 0 is

OCi
defined in (3.2.2). Since Id £ o^ for any sedU^ , if 8 < ^ , we have that

1 2NM

,J#! =^r *aw'ms + \sr2M2& + ••• +iiTVV-)
i^)i WW

< iVMS < ATMS < 2JVM8 - ,_ .,

Setting C = 3£/_a1 and applying the Rouche theorem, we conclude that det(,?/n +Gp(s)Ff) has

nc zeros in U^.

For any e >0, let Ce£ {se CIIs +el =e/2}. dearly, if e <2CV3, then

Ce c i/_ttl^ C_. Since by Assumption 3.2.2, detGp(0) * 0, it follows by continuity that there

exists an e^(0,2^/3) such that detGp(-€)*0 for all Q£e£ex. Finally, there is an

626(0,6!) such that for all £€(0,62), if

Ff £ Gp(-E)-lB, (3.3.6)

then \fii\ <ax I2MN is satisfied for all ij and (3.3.5) holds. Therefore det(j/„e +Gp(s)F/) has nc

zeros in U^^^. Note that the square matrix Ff has maximum rank. Now, using the first order

expansion of Gp(s) about s = -e, in integral form, we obtain

det(.s/Bc + Gp(s)Fj) = det(Cs +e)/„e +Gp(s)F) - eln)
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= det (s + £)/„ + G„(-e) + (5 +e)fG;( -e + z(s + e) )dz GpC-er'e-e^

= det (s + e)/„ + e(s + e) i«(-e + x(s + e) )rfr G/-E)"1

=det((s +£)/ne)det(/„e +£[ | g;( -6 +x(s +6) XW^-e)-1)

= (s +£)"c(l +e&<0 + f?Q2(s) + ••• +e\»)

= (s +er + fr + e)^Efii(f) + (j +e)eefQ2(s) + • • •+ (s + £)VC<2„ (j) , (3.3.7)

where the functions fi,<5) are determined by the elements of the matrix

i G'( -£ + x(s + £) )dx Gp(-z) l and G/(-£ +x(s +£)) means [dGp(y\)/dn]\^ =_e +X(J +E). It

is easy to see that the Qfs are analytic on C/_otl and therefore that they are analytic on and

inside Ce. Let WL =max^^ IQ,{,s)l and let W= maxiWi. Let As) 4 (5 +£)"e and let

gC*) 4 (5 +eyS£i(v) +(5 +e)Vj22(j) +••• +(j +e)Vefinc(,s). Both of /() and *(•) are

analytic on Ce. Then if £ < min{ 1/2,1/2W,£2), we have

l-^-l £ £^! +e2W2 + ••• +eneWn
As)

£eW l+£+ • • +e 1
£ -42— < 2fiW £ 1.

l-£
(3.3.8)

Therefore we obtain \fts)\ > \g(s)\ for all seCz. It now follows from the Rouche Theorem that

det(s/„c + Gp(s)F/) =As) + g(s) has the same number of zeros, nc, inside Ce as As)- Since we
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have

shown that det(sIne + Gp(s)F[) has nc zeros in U^, we know that

Z(det(.y/Bc + Gp(s)F[)) c C^D^ c D^a c €L. It follows from Proposition 3.2.3 that the

system is exponentially stable.

Case U: n0 < «/. Because of Assumption 3.2.2, without loss of generality, we may

assume that the first nQ columns of Gp(0) are linearly independent. Let nc = n0 and

Bc e R"^0, Cc e JR*1*"" such that C^c = Ffe JRV°. It follows from Proposition 3.2.3, that

the system is exponentially stable if Z\dsx(sln + Gp(s)Fj)} c C_ Let

<w» =

8i,i(s)

8l,l(s)

Sin.®

8no,i(s) ••• gno,nCs)

(3.3.9)

Then by the above assumption, detGp „o(0) * 0. Let £ >0 be such that detGp,,, (-e) * 0, and

let

Ft =

-lGPA-*r e
0,(nrnjxne

e JK
«**»« (3.3.10)

which has maximum rank , n0. Then, since Gp{-€)Fj = eIno = e/v similar to (3.3.7), we have

det(s/, + GJs)Fr) = det

= det

•

(S + £)/„e + Gp(-e)
l

+ (S +£) fGp(-£ +X(s +&))dx F,-

(S + £)/Bc + £(,5 + £)
1

JGp^o(re +x(s +e))ax <W-er' m

.

\)

4

The rest of the proof follows that for Case I.

(3.3.11)
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Case DDE: n0 > nh Let nc = nt and Bc e TRn^°, Cc e JR*™ such that CA = F,e IR""*"0

It follows from Proposition 3.2.3 that the system S(P, K) is exponentially stable if

Z(det(^/B;det(/no +Gp-±)) =Z( dtt{sln)d*(jn( +—Gp(s))) =Z( det(*/flc +FjGp(s))) c C_.
5 S

(3.3.12)

Because of Assumption 3.2.2, we can assume, without loss of generality, that the first nt rows

of Gp(0) are linearly independent Let

<w» =

8i,i(s)

82,i(s)
' 8ufs>
• 82*{s)

8nhl(s) ' ' * Snt.nf^S)

Then by assumption, detGm(0) * 0. Let£ > 0 be such that detGPiBf(-£) * 0 and let

Ft =(^(-e)"1'8 »<W«v^) eR"^a • (3.3.14)

Then Fj has maximum rank nt. The rest of the proof proceeds as for Case I.

(3.3.13)

We can now establish the main result of this chapter.

Theorem 3.33: For any integer m£ 0, there exist m+1 nt x n0 matrices Fj,0<j£m, with

Fm of maximum rank, such that, if [Ac,Be,Cc,Dc] is a minimal realization of the matrix

transfer function J^o Fj ^» witn state dimension nc = mmin{n0, «,}, then the closed-loop sys

tem is exponentially stable.

Proof: Case I: «,• £ w0. We prove this theorem by induction. First we note that the

theorem is true for m = 0 by Theorem 3.3.1. Next, because in the proof of Theorem 3.3.1 the

only requirement on Dc is that its components be sufficiently small, there exists a maximum



39

rank matrix F0 ( = D^ such that / + Gp(0)F0 and Gp(0)F0 are both invertible. This completes

the initialization of the induction.

Suppose that m £ 1 and that there exists a minimal stabilizing compensator with the state

space matrices [Ac, Bc, Cc, Dc] and transfer function ^Jj1 FJ/$', where F^ has maximum

rank and Gp(0)F/n_x is invertible. Referring to Figure 3.1a, we consider this closed loop sys

tem as a "new plant" with transfer function

Gp(s) A [(/„, +Gp(s) 251 F\ IsTl Gp(s) XS1 F\ IA Then

Gp(0) =(/„, +Gp(0)FqT1 Gp(0)F0 for m=1, and Gp(0) =[G^F^^G/O^ =/„, for

m > 1. In either case, Assumption 3.2.2 is satisfied. According to Theorem 3.3.2, for this new

plant, we can find a stabilizing compensator with transfer function of the form Fm /s, where

F^TR"**"0 of maximum rank. For this compensator, it follows from the proof ofTheorem 3.2

that there exists a^O such that Z detC?/^ +GptyF^ c £Lttl. Expanding

Z det($/„o +Gp(s)FJ|, we obtain that

z[det(*/n, +Gp(s)Fj] = m—\ f m-l t t
det( sL +(In+Gp(s) £ FiI 5fr1Gp(j)(£ F,- / sl)Fm )

a=o p=0

= Z

= Z

where

m-l / m-l , t
det[ */„. +( sr-lIn+Gp(s) S^^"1"1" r'G^XZ^r^1"')^ ]

m-l , m / /
( det[ f^K +Gp(s) E^^1"1 ]T1 det[ j*/. +GMJ^^iFm^Fyrl ]

*=0 j=0

/ 4 F AF.iiO, F^Fi for 0 < i < m-l and F ^O.

(3.3.15)

Let

X(s) A6et(jr-\ +Gp(s) ES1^1"-1") = dct(s^lIn)dct{Ino +Gp(j) JSW) »nd let

TO Adet(i%, +Gp(s) ^(F^F^F^*"1') =det(r/„; det(/B<> +GpC*) Z^F^+F^-').

Note that X(s) and l%s) are analytical functions on Ul^, where a© is defined in Assumption

3.2.1.
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By assumption, [Ae, Be, dc, Dc) is a minimal realization for

XS1 Fits1 =(ESolF^m~l~i)(sm~lIn)~l. Since F^ has maximum rank, it can be shown that

S=o1F>'*~1"~i and 5w"1/„o are coprime. From [Che.l, Chap. 6], it follows that Ac is a square

matrix of dimension ne =deg(dct(sm'lIn)) =(m-l)/?,,. Combining with the assumption that

T!SoFi I s1 is the transfer function of a stabilizing compensator and Proposition 3.2.3, there

exists a p > 0 such that Z(X) e D_$. It now follows from (3.3.15) that Z(Y) c D^, where

y = min(ai,p,oto). We now set

/ /

Fi = Fh-\Fm + Fi. 0£i<m. (3.3.16a)

Then Fm = Fmr.xFm has maximum rank because F„^x has maximum rank and Fm is invertible.

Also Gp(0)Fm = (GpiCbF^Fn is invertible because GpQfyF^ and Fm are invertible. Hence

we conclude that any minimal realization for the transfer function X2oF,-/s' (with state

dimension nc - mn^ is a stabilizing compensator.

Case II: ji; < n0. We proceed again by induction, as for Case I, except that we reason in

terms of the configuration shown in Figure 3.1b. Thus we set Gp{s) =

(XSo Fi Is1) Gp(s)[ I„t + (J^qF'i Is*) Gp(s) Tl and select a stabilizing compensator transfer

function FJs with F^R^, and we examine the set Z[dQt(sI„i +FmGp(s)] (c.f. (3.3.12)).

The rest of the proof is then similar to that for Case I, except that we define F,- as follows:

Fi^F'nfli+Fi, OZiZm. (3.3.16b)

If [Ac, Bc, Cc, Dc] is a minimal realization for 2£o Ff /s1 =(^I^CZ^qF^), the dimen

sion of Ac is nc = mn,-. This completes the proof.
•

Remark 33.1: Equations (3.3.6), (3.3.10), (3.3.14), (3.3.16a-b) define a method for finding

the coefficient matrices F,- for a stabilizing proportional-plus-multi-integral compensator. In
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fact, Theorem 3.3.3 can be restated as follows:

There exist matrices {-fif,-}£o c TRnp<n* where Km has maximum rank, such that the plant of

(2.2.1) can be stabilized by proportional-plus-multi-integral compensators of theform

^kjKjsi , 0<kj£k], 0£j£m, (33.17)

where kj's are positive real numbers.

To prove this statement, we first note that, according to the proof of Theorem 3.3.1, we can

find a constant matrix F0 and #J >0 such that for all Dc = IcqFq with 0 < Icq £ k& Theorem

3.3.1 is still true. Next, instead of choosing F7 =Gp(-£)_1£ in Case I of the proof ofTheorem

3.3.2, we choose

Fj 4 Gp(0rlt (3.3.18)

and note that

, i r1 d(GJ-e+te)-1)Gp(0)-l£ =Gp(-E)-le +fit p . dt
m (3.3.19)

=Gp(r€Tx* - fi2! Gp(rz+te)-2dt.

The rest of the proof remains the same as that of Theorem 3.3.2 as long as £ is chosen to be

small enough. Similar substitutions are then applied to Cases n and in : For n0 < n-t, we

choose

F,=
CWO)-1 £

Q{nrnjixn0
e IR"^ , (3.3.20a)

and for n0 > nt, we choose

Fj =[g^XO)"1^ ,0^^.)] e IR"'̂ . (3.3.20b)

The result then can be induced from (3.3.16a,b).
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Furthermore, Theorem 3.3.3 still holds if the transfer function of the compensator is in

the form of J$L\Fj Jst, i.e., F0 is set to 0. The proof is similar to that ofTheorem 3.3.3. For

<w°>~n\-i , orthis case, we can choose in (3.3.17) that K0 = 0nxn and Ks = Gp(0)~\ n

Gp^(0)_1£ , 0B.X(Bo_rt/) for 1£ j <mdepending on the dimension ofthe inputs and outputs.3

This can be easily induced from (3.3.16a-b). The initialization of the induction comes from

(3.3.18), (3.3.20a-b). Note that Fm' = IHo and 1^ for m £ 1 in (3.3.16a) and (3.3.16b) respec

tively for this case.
•

Referring to [Cal.l], we observe that the proportional-plus-multi-integral compensators we

have constructed not only stabilize the feedback system, but also have the following input fol

lowing and disturbance rejection property:

Proposition 33.4: Suppose that ££o F/sf, with FmeIRn|XBe ofmaximum rank and nt £ n0, is

the transfer function of a proportional-plus-multi-integral stabilizing compensator for the feed

back system in Figure 2.1. Then the resulting feedback system can track asymptotically poly

nomial reference inputs and suppress asymptotically polynomial outputdisturbances up to order

(m-l). •

3.4 A Numerical Example

Consider the planar bending motion of the flexible cantilever beam introduced in Section

2.3. We assume that a point force actuator and a point displacement sensor at the boundary

are used. The differential equation of describing the bending motion is repeated below for

convenience:

3We have made the same assumptions given in the proof ofTheorem 3.32 here: If nt> not we assume that the first n0
columns ofGp(0) are linearly independent; If n, <n0, we assume that the first n( rows ofGp(0) are linearly independent
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m^^ +c/a^ +£/aV^ m t^ 0zxzlt (3.4.ia)
a*2 dx*dt dx4

with boundary conditions

w(*,0) =0,|^('.0) =0, (3.4.1b)

M^(M) -cl-^(t,l) -EI^{t,\) =At), (3.4.1c)

' m?W)+CI'Btt(t'l)+£/Ij(u)=°' (3Ald)
where^-) is a control force. The output sensor is modeled by

y(t) = w(t, 1), f£0. (3.4.2)

We show in Section 2.3 that the system described by the above equations can be

transformed into the form of (2.2.1) with Assumption 22.1-3 holding. Since a = 0 and the

spectrum of Ap is shown as in Figure 2.3, Ap¥ in (2.2.6) is 0 for this example. Therefore

Ap - Ap_ generates an exponentially stable semigroup and Assumption 3.2.1 holds.

We assumed that m = 2, cl = 0.01, EI = 1,M = 5, / = 0.5. The evaluations of Gp(s) at

different values of s = ;co are discussed in next chapter. For this example, we can obtain a

closed-form (but irrational) equation for Gp(s).* We find that

Gp(0) = 0.333 . (3.4.3)

Therefore Assumption 3.2.2 also holds.

First we choose the transfer function of compensator to be

Gc(s) =0.001*^^ =-2^.. (3.4.4)

4 This can be obtained by solving the two-point boundary value differential equation formulated as in the form of (4.5.3),
(4.5.4a-c). Note that the coefficients, El, cl and m, in the differential equations (3.4.1a-d) are constants.
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Since minimal realizations of Gc(s) are first order, it follows from (3.3.2) that

X(s) = s det(/2 + Gp(s)Gc(s)). The plot of x(A»)/4>(/g>) with do(s) = s + 0.001 is shown in Fig

ure 3.2. For our design example, the critical fiequency interval for the evaluation of

X0'to)/db(/<*>) was chosen to be [10^,200]; 500 points were used to produce the plots in Fig

ures 3.2, 3.3 and 3.4. Since the zeros of d^s) have negative parts, it is obvious from Figure

3.2 and the Argument Principle of complex variable theory [Chu.l] that Z(x(s)) c CL and

therefore that the feedback system is exponentially stable (see Theorem 4.2.1).

If we choose the transfer function of the compensator to be

GM =0.004.5^- =Mil f (3.4.5)
s s

then the plot of %(/©)/db(/G>) m Figure 3.3 shows that the feedback system is again exponen

tially stable.

Alternatively, we can choose the second-order integrator compensator

Gc(s) =0.003*Gp(0)-1*(- +-2^-) =0.009(- +-^^2!) . (3.4.6)

Since minimal realizations of Gc(s) are second order, it follows from (3.3.2) that

X(s) =?det(/2 +Gp(s)Ge(s)). We choose do(s) =s2 +0.006s + 1.5*10"5. The plot of

XOWdoO'©) m Figure 3.4 shows that the feedback system is exponentially stable.

3.5 Concluding Remarks

Since it is possible to both stabilize and ensure asymptotic tracking of polynomial inputs

and asymptotic rejection of polynomial disturbances by means of very simple finite dimen

sional compensators, it may be possible to satisfy fairly complex design specifications like

robustness and satisfactory transient responses by fairly low dimensional compensators. Such

compensators are best designed using nonsmoothoptimization techniques as outlined in [Pol.6].
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This topic is covered in the next chapter. The proportional-plus-multi-integral compensator

design proposed in this chapter can then serve as the initial design for the compensator. For

example, we can assume that the transfer function of theminimal compensator is given by

m p.
£-f + Ge(s,pc) , (3.5.1)

where the components of the matrices Fy, 0 £ j £ m, and the vector pc serve as the design vari

ables after we formulate the complex design specifications into the semi-infinite form presented

in the next chapter. The initial values of Fj, 0 £ j £ m, are chosen in the manner described in

this chapter and thus allow us to further improve the system performance.
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U1 ♦

Figure 3.1a: Feedback compensator structure for case I of the proof of Theorem 3.3.3.

Figure 3.1b: Feedback compensator structure for case II of the proof of Theorem 3.3.3.
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Figure 3.2: Plot of xW^oO'^) for the feedback system with the transfer function of
the compensator defined in (3.4.4).
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Figure 3.3: Plot of X(/<«>)/<*0(/fi>) for the feedback system with the transfer function of
the compensator defined in (3.43).
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Figure 3.4: Plot of xtfwW©) for the feedback system with the transfer function of
thecompensator defined in (3.4.6).
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CHAPTER 4

OPTIMAL DESIGN OF FEEDBACK COMPENSATORS I:

PARAMETRIZED STATE-SPACE FORM

4.1 Introduction

In this chapter, we present a more complex control system design methodology than that

considered in Chapter 3. Feedbackcontrol is used to achieve various desirableproperties, such

as exponential stability with a prescribed stability margin, disturbance attenuation, low sensi

tivity to changes in the plant, specifications of shaped output time responses, etc. We transform

the various design specifications mentioned above into a semi-infinite optimization problem.

We then model the compensator in the parametrized state-space form, using the elements of the

state-space matrices of the compensator as design parameters. Therefore, the order of the com

pensator can be assigned by the designer in advance.

In Section 4.2, we transform the requirement of exponential stability with a prescribed

stability margin into the semi-infinite form. In Section 4.3, we consider the formulation of

various frequency- and time-domain performance specifications. In Section 4.4, we discuss the

numerical implementation of the semi-infinite optimization problems. In particular, we study

the evaluation of the frequency responses of the infinite dimensional plants by considering a

case study for the bending motion of a flexible cantilever beam in Section 4.5. A numerical

example of designing a stabilizing compensator for the bending motion of a flexible cantilever

beam is given in Section 4.6.

We make the following basic assumption:

Assumption 4.1.1: We assume that the matrices, Ac, Bc, Cc, and D^ are continuously

differentiate in the design parameter vector pc.
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It is then obvious thatGc(s, p£ = Ce(sl - AJ~lBc + De is continuously differentiable in pc.

4.2 Design of Exponentially Stable Feedback System with a Stability Margin

4.2.1 Introduction

Exponential stability of the closed loop system is the most basic requirement in control

system design; it guarantees that the system will not "blow up". Although the Nyquist stability

criterion [Nyq.ll has served for many years as the principal "manual" tool for ensuring stabil

ity in linear time-invariant systems, it cannot be used in conjunction with computer-aided

design techniques based on semi-infinite optimization [Pol.3] because it defines an integer-

valued encirclement function, while semi-infinite optimization requires, at a minimum, that con

straint and cost functions be locally Lipschitz continuous.

The first attempt to produce a frequency domain stability test for finite dimensional sys

tem compatible with the requirements of semi-infinite optimization was presented in [Pol.l]. A

significant improvement was presented in [Pol.2]. The necessary and sufficient stability cri

terion proposed in [Pol.2] is based on the following observation. Suppose that xfc) is a

characteristic polynomial. Then all the zeros of xfa) are in CL if and only if there exists a

polynomial d(s), of the same degree as x(s) and whose zeros are in C_, such that

Re txO'co) / d(j(0)] > 0, V co e (-~ , ~ ). (4.2.1)

The proof of this result is simple. If all the zeros of x(s) are in €L, then set d(s) = xfa) and

hence (4.2.1) holds. Alternatively, if (4.2.1) holds, then the origin is not encircled by the locus

of x(/G>)/d(/<»)» and hence the conclusion holds as for the Nyquist stability criterion. Whenused

in design, the characteristic polynomial is also a differentiable function of compensator design-

able parameters pe e IRn and has the form xfo Pc)> and the normalizing polynomial d(s) is
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written in a factored form, such as d(s, q) = Epf (s2 + ajs + bfi, which makes it simple to

ensure that thezeros of d(s) are in €L (q is a vector whose components are the a/s and bjs).

In this section we extend the computational stability criterion presented in [Pol.2] to a

form that can be used in the design offinite dimensioned stabilizing compensators for the class

of feedback systems with infinite dimensional plants described in Section 2.2. Since in this

case the characteristic function defined in (2.4.4) is not a polynomial, there is no simple way to

define a normalizing polynomial (of finite degree) for a test of the form (4.2.1), and hence

approximation theory has to be applied. The new stability test guarantees the internal stability

of the feedback system. Because the numerical implementation of the test does not depend on

the use of a reduced plant model, the test will not lead to spill-over effects.

4.2.2 The Computational Stability Test

Consider the feedback system S(Pt K) described in Sections 2.2 and 2.4. We first intro

duce an approximation result

Proposition 4.2.1: Given a £ 0, any function/: C -> C that is analytic in UZ& continuous

on dU.a and converges at infinity in U^, can be approximated uniformly by a rational func

tion that is also analytic on the same domain.

Proof : Letf(s) be a function which is analytic in Uia, continuous on 9C/_a, and converges

at infinity in U^. Define the bilinear transformation

z 4 '-?*« .. , A -a+p4±i , (4.2.2)
s + p + a 1 - z

and let g(z) = fi-a + p(l + z)/(l - z)). Since £/_« is mapped onto the unit disc, g{z) is ana

lytic in the open unit disc and continuous on the unit circle. By Mergelyan's theorem [Rud.l],

g(z) can be uniformly approximated arbitrarily closely on the unit circle by a polynomial in z.

Since the transformation (4.2.2) is /T-norm preserving, the desired result follows.
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The characteristic function x(s) was defined in (2.4.4) and is repeated here for convenience:

X(s) & det(rfB+ - AgJdetW^ - A^dettX,, +Gc(s)Gp(s)) . (2.4.4)

Now we introduce the computational stability criterion.

Theorem 4.2.1: Let n+ and nc be the dimensions of the matrices A^ in (2.2.6) and Ac in

(2.4.1), respectively. Z( x ) c D_a if and only if there exists an integerNn > 0, and polynomi

als d0(s) and n<£s), of degree Nd = Nn + ns and Nnt respectively, with ns = ne+n+, such that

X(s)no(s)
(0 Z{ddis)) c D_a f Z(no(s)) c D^ ; (it) Re

<W)
> 0 V s edU-a .

(4.2.3)

Proof: (i) Suppose that (4.2.3) holds. Since Ap_ is a-stable, there exists e > 0 such that

£/-(a+e)is a subset of p(Ap_), and (si - A^X1 is analytical on U^a+ey From (2.4.9), (2.4.8b),

we observe that x(s) is an analytic function over U^a+ty Then it follows from the Argument

Principle [Chu.l] that Z( x ) <=• D^.

(ii) Suppose that Z( x) c: D_a. We first apply the approximation result given in Proposition

4.2.1 to the function x(*)A> + p)n', where p £ a Qearly, there exists some real number

Yo > -a such that limw_> „ Gp(s) -» Dp and lim w_> ^ Gc(j) -» D^ Because the degree of
Re s £ Yo Re * 2 y0

det(j/„+ - ApJdQtisI^ - AJ is ns, we obtain

,. , X(s) , t. det^-A^det^ -Ac)hm I ™v | = bm | 1 £_—f 1. Um \det(In+Gc(s)Gp(s))\

= ldet(/fl/ + DcD,)l.

(4.2.4a)

Since xC*) is analytic on C/_(a+£) for some e > 0, it is uniquely determined by its values over
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Uy0 [Chu.l, p.286]. Hence1

lim m— I *WI =ldet(/„f +D^)! *0. (4.2.4b)

Note that ldet(/B| +D^)! is not equal to zero because the feedback system is assumed to be

well-posed. Therefore it follows from Proposition 2.4.1 that for any 6 > 0, we can find a

rational function d(s)/n(s) such that all the zeros of n(s) c D_a, and

\\X(s)/(s +P)"' - d(s)/n(s)\\ 4 ŝun \x(s)/(s +p)"' - d(s)/n(s)\ <8. (4.2.5)

Since Z(x)cD-a a*10" ror s €^-a» 'Xfc)1 ~* °° as W -» °° t it is easy to show that

infseu.* 'XW = co > 0. Because of (4.2.4b), for any given r\ > 0 sufficiently small, there

exists rn such that \x(s)/(s +P)"*l >Idet^+DcDp)\ - r\, for all s eU_a and Id >r^. Next we

show that if 8<min {!det(/„f +DJDp)\ - x\ , cQ I(rn +P)"'}, then Z( <*(•) ) c D^. Ifnot, then

there exists s0 e ^-a such that d(s0) =0. Now, by (4.2.5), \x(so)Kso + P)"' - d(s0)/n(s0)\

=IXfooVfro +P)n'1 <8. If k0l >rn, it contradicts IxC^/fro +P)"*1 >!det(/n, +D^pi - ri >8,

while if Ij0I <r^, it contradicts IxC^/fao +P)"*l > c^(r^ +p)"' >8.

From (4.2.4b) and because inf,^ lx(ff)l s Cq>0, it is easy to show that

inf* eau^ WKs +P)"1 =/0 * 0. From (4.2.5), if 8</q/2, then for s eac/_e,

W(j)M(j)I > \x(s)t(s + P)n'l - 8 >lx(j)/(^ + P)"'l/2. Therefore if 8 is chosen to be less than

min {/b/2,ldet(/B/ +D,pp)\ - r\,co/(r^ + p)"*}, from (4.2.5), we obtain that

\X(s)/(s + p)"' - d(s)!n(s)\ I \d(s)ln(s)\ < 8 / \d(s)ln(s)\ < 28 / lxCs)/(* + P)"1 < 1 , s edU^ .

(4.2.6)

1The following is asketch ofthe proof for (4.2.4b). Consider the function J{s):Uj -» € such thatfts) =%(s) for seUy.
By using the transformation defined in (423), wetransform Uy inthe * plane unto a subset of unit disc in the z plane, which in*

eludes the point z = 1. Then there exists a unique analytic extensionof the functiong(z) =./(-a+p-:—) to the unit disk, which is
1+zh(z) =%(ra+p~7^-), Izl £ 1.Therefore (4.2.4b) isjust the consequence of A(l)=$(1).
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It follows that for all s e8t/_a, \[x(s)n(s)/(s + $)n'd(s)] - II < 1, and hence that

Re[ X(s)n(s) ]>Q ^y s e9c/_a ^ (4 2?)
(s + pf'd(s)

Let n<>(s) = n(s) and dbte) = (s+ P)"'dte). This completes our proof. •

In practice, the test (4.2.3) can only be used as a sufficient condition, because one must

choose in advance the degree Nd of the polynomial dote). We now sketch out some of the

numerical aspects of using the test (4.2.3) in the design of stabilizing compensators. First, the

order nc of the compensators (2.4.1) must be selected. Second, the polynomials do(s) and nQ(s)

must be parametrized. In [Pol.2] we find a computationally efficient parametrization for do(s)

and note) that is based on the following observation. When ajb g IR, Z[(5+a) + a)] c £_« if

and only if a > 0, and Z[te+<x)2 + a(s + a) +b] c D^ if and only if a > 0, b >0. Hence,

m

when the degree of d$(s) is odd, we set do(s, qj) 4 (te +a)+a^Yl((s +a)2 +a£s +a) +b^
hi

where qd k (oq, au fy, • • • ,0m, bu b2, • • , 6JT elR2"*1 and ty, = 2/n+l. When ^d is

even, the linear term is omitted. The polynomial n0te). which is of degree Nn = Nd- ns can

be parametrized similarly, with corresponding parameter vector qn. As a result, if we define

VW=. max {e-<&} , (4.2.8a)
i = 1,2, ' •' >Na

¥*(?«)=. max (e-i) f (4.2.8b)
i = 1,2, • • • ,Nn v '

¥ (Pc <Id> <7«) = sup {e - Re( j , _„ . tn „ >> ^ ' (4-2-9>e> e [6. ~) J0( -a + j<o, qj)

where <& ^ are the components of qd% qn, and e is a small positive number, the test of (4.2.3)

becomes

tfOid) £ 0 , (4.2.10a)
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yfiqj £ 0 , (4.2.10b)

Vfo. <fc> <7n) * 0 . (4.2.11)

Note that we have defined vjr4, y, y1 in such a way that the test of (4.2.3) is transformed into

the min-max forms.

43 Design Specifications

As an extension from the finite dimensional case [Wuu.l, Pol.5, PoL6], we transcribe the

various frequency- and time-domain performance specifications into semi-infinite inequality

form. These specifications require the shaping of several closed-loop responses. For this pur

pose, we consider the feedback control system configuration S(P, K) shown in Figure 4.1. Let

y =(fix, e2, z-if and u=(ult v^, do, d5)T. Let H(Gp, GJ denote the transfer matrix from u

to y. It can be shown that

H(GD, Gc) =

(I+GpGcf1 -<I +GpG^-lGp -(I+GpGJ-1 -{I+GpGcYl
Gc(I +GpGcTl (I+GcGpTl -Gc(I +GpGJ-x -Gc(I +GpGfl

GpGcQ + GpGcTl Gp(I +GcGprl (I +GpGcTl -GpGc(I +GpG^\
(4.3.1)

(i) Stability Robustness:

To begin with, we consider the problem of ensuring closed-loop system stability in the

presence of unstructured plant uncertainty. Before we do this, we first define the bounded-

input-bounded-output (BIBO) a-stability for the feedback system described by (2.4.2) and find

its relationship with the (internal) stability defined in Definition 2.4.1.

Definition 43.1: The feedback system S(P, K) formulated by (2.4.2) is said to be BIBO te

stable if there exist M e (0, ~) and Oq > a such that

\\CJ*B\\ £ Me~°*, V t > 0 , (4.3.2)
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where (A, B% C) is the set of closed-loop state-space operators defined in (2.4.2).
•

Remark 43.1: It is clear that if a system is (internally) a-stable, as defined in Definition

2.4.1, it is also BIBO a-stable. If a system is BIBO a-stable, and a-stabilizable and a-

detectable, then the system is also (internally) a-stable [Jac.1]. . •

Now we return to the problem of robustness design. Consider the perturbed plant

Gp(s) =(1 +Ate))Gpte) as shown in Figure 4.2, where A(s)Gp(s) converges to 0 at infinity of

£/_«, and Gp(s) and Gp(s) have the same number of poles in U^. Referring to [Che.2], we see

that if the nominal design for the plant is BIBO a-stable, then the closed-loop system will

remain BIBO a-stable for all perturbed plants Gp(s) = (1 + A(s))Gp(s) with Ate) satisfying

S[A(-a +»] < fc(oo), V co > 0 (4.3.3)

if and only if the nominal feedback system satisfies

<J[/73,iHx +;©)] = mGpGc(\ + GpGcTl)(-a +»] £ l/6(a» , Vco 2> 0 , (4.3.4)

where /Y,/) means the (i, j)-th element of H(Gp, G£ and 1S(M) denotes the largest singular

value of the matrix M. Note that ifyQ is itselfa matrix function. Hence if we define

yf(pc) ft sup {G[H3tl(-a +;co)] - Vb((i>))
mG[*~] , (4.3.5)

= sup m[GfiJL\ +GfijrlK-a +;o»] - 1/6(cd)} .

then for all pc such that

\f(pc) £ 0 (4.3.6)

holds, the resulting compensator will stabilize not only the nominal plant Gpy but also the plant

(l+Ate))Gpte) with Ate) satisfying (4.3.3).
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(ii) Disturbance Suppression and Good Command Tracking:

Good input tracking and disturbance rejection over the bandwidth of the feedback system

can be achieved by making the norm of the transfer function from the command input U\ to the

tracking error ex or equivalently, from d$ to z2 (see Figure 4.1) small over the system

bandwidth. Hence, if we define the performance function

V*(pc) ft sup {<S[H3t(jm - bM)
. (4.3.7)

= sup flj[(l +GpGcTx(jm - b^)) ,
CD € [0, oo] r

where b£) is a continuous bound function, good command tracking and disturbance rejection

performance require

VCp,) £ 0 . (4.3.8)

The extension of Bode's integral theorem states [Boy.2]

f log{<3[tf3t3(/G»]} £ 0 . (4.3.9)

Therefore for every frequency interval of nonzero measure over which the feedback system

attenuates output disturbances, there must exist an interval of nonzero length over which the

system amplifies output disturbances. Hence we must let b^-) exceed 1 over some frequency

interval outside the system bandwidth [co1# coj. An example of the function bji) is shown in

Figure 4.3.

(iii) Plant Saturation Avoidance:

Since a large plant input can drive the plant out of the operating region for which the

linear model is valid, it is important to keep the plant input small to avoid deterioration of per

formance and instability. We define the performance function by



58

x/Ggft sup {s[/*-21(/o»]-M
"e[(f'~] (4.3.10)

= sup {<J[(GC(/ +GpG^m] ~bs) ,
CO € [0, oo]

where 6, > 0 is a suitable bound for the plant input power spectrum amplitude. Ignoring the

effects of output disturbances or sensornoise, the saturation avoidance requirement can now be

formulated as

\|Apc)^0- (4.3.11)

(iv) HO Map Decoupling:

In many design problems, it is desirable to have a decoupled (diagonal) I/O

(Input/Output) map. Therefore we define

^W* am {l[%]'«l-e}
CO 6 [Cf, oo]

1 £ i £ itj, 1 £y £ n0, i #y

sup {l([GpGc(l +GfiJ-l\V)lM - e)
co e[CT, oo]

(4.3.12)
{l([GpGc(l + GfiJ-'YWW - eJ •

1 SiSnf, 1 &j£n0, i*j

where [#3,1]''' is the scalar transfer function from the input u! to the output y1 and e is some

small positive number. The I/O map decoupling can be achieved by requiring

y^(pc) <> 0 . (4.2.13)

In practical system design, we replace the semi-infinite interval [0, <»] appeared in the

above equations by a critical compact interval. Therefore, all the functions of y/s defined

above and in (4.2.10a-b, 4.2.11) are in the form of

surj f(z, y) , (4.3.14)

where Y is some compact interval and / is a real function which is continuously differentiable

in the design parameter vector z. Therefore we have ensured that all the \|f's are at least locally

Lipschitz continuous [Pol.3].
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(v) Time-Domain Response:

In many design problems, time-domain design specifications are essential. In general,

because there are no simple relations between time responses and frequency responses, time-

domain design specifications cannot be transcribed into frequency-domain specifications.

Suppose we are required to shape the response of the first channel of the plant output to a

certain input function in the first input channel denoted by u\(t). For this purpose, we define

y*<pc)ft max ^{[/f^te)]1'1^)]}^-^)
(4.3.15)

= max <L-H[GpGc(I +GpGf\s)]l>lU\(s)}(t)-!>l(t)

and

-iy'(pc) = max «F(t) - L-v{[GpGc(I + GpGe)•1(f)]w^l(f)}(r)t (4.3.16)

where £*(•) and P() are respectively the lower and upper bounds for the first channel of the

plant output, IT1 is the one-sided inverse Laplace transform, and U\(s) is theLaplace transform

of the input u\(t). An example of time-domain step response specification is shown in Figure

4.4. By requiring that

VW £ o (4.3.17)

and

Wc) £ 0 , (4.3.18)

satisfactory time-domain responses can be achieved.

We prove that tfy) and \|r7(-) arc Lipschitz continuous in Appendix 4.A under the assumption

that^[Gpte)]i7lte) =0(s"2).
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We refer the reader to [Pol.5, Pol.6, Wuu.l] for more examples of design specifications.

4.4 Formulation of The Semi-Infinite Optimization Problem

Exponential stability of the feedback system must be guaranteed before we attempt to

satisfy other design specifications. Otherwise, some closed-loop transfer functions which are

used for shaped feedback system specifications may have unstable poles. Problems of numeri

cal instability may arise when the unstable poles of the feedback system cross over theyco-axis

(or the boundary of instability region, 3t7_o) during the design process. Therefore the first step

in feedback system design is to make sure that (4.2.10a,b) and (4.2.11) are satisfied.

Next, we try to satisfy the various design requirements mentioned above by finding an

element of thefeasible set, F, defined by

F = {z e IR1"* IY*(z) «S 0 , ke /0), (4.4.1)

where z = (pc, qd, ?„) is the vector of the design parameters, n^ is the dimension of z,

/0 = {1, 2, • • • , #o}, and ko is the number of the design requirements. Once we obtain an ele

ment in the feasible set F, we can tighten the performance requirements by replacing \|/* £ 0

with yk + b<0 for some b>0. We can also add new performance functions to the set

{\jr*, ke 70}. Alternatively, we cansolve a problem of the type

min^ {\|/°(z) I\|r*(z) £0 , ke 70) . (4A2)
z e nT*

Then we can minimize a given performance function y° without degrading other performance

figures. Essentially, we formulate "negotiable" requirements as a cost function that we want to

optimize and put "non-negotiable" specifications into the form of semi-infinite inequality con

straints. Once the cost perfoimance function is adequate, we can reformulate (4.4.2) by

transforming the cost performance function into a constraint and adding a new cost perfor-
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mance function.

In (4.4.1-2), each y*; IR™* -> IR is at least Lipschitz continuous in z. This guarantees

the existence of gradients or generalized gradients of these functions. The solutions of the

optimization problems given in (4.4.1) and (4.4.2) are made possible by new semi-infinite pro

gramming algorithms for the constrained minimization of regular, uniformly locally Lipschitz

continuous functions in IR^ [PoL3]. This approach has been applied to solve problems in finite

dimensional control system design [Pol.6, Wuu.l]. Even though we are dealing with infinite

dimensional systems, the dimension of the design parameters is finite, and, the numerical tech

niques developed in the finite dimensional case can therefore be borrowed to solve the optimi

zation problems formulated in (4.4.1) and (4.4.2). However, two numerical problems arise for

infinite dimensional feedback systems.

The first problem concerns the implementation of the inverse Laplace transform for the

time-domain design specifications. For the finite dimensional case, the inverse Laplace

transform can be implemented by the simulation of an ordinary differential equation. Such

simulations are usually performed by repeated computations of the exponential of a matrix

[Wuu.l]. We take the example of the bending motion of the cantilever beam introduced in

Section 2.3 to explain the implementation of the inverse Laplace transform for the infinite

dimensional case. If we borrow the idea from the finite dimensional case, the implementation

of the inverse Laplace transform involves the simulation of a partial differential equation. The

simulations will give us the values of the vibration in terms of the time and the space variables

and are usually very time-consuming. Because we are only interested in the values of the

vibration in time-domain at the spatial points where the sensors are located, the values of the

vibration on the other points of the beam are irrelevant. A similar problem has been con

sidered to determine response histories at isolated stations in linear viscoelastic media that have
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been subjected to impact [Sac.l, Sac.2]. For this reason, we suggest to use the Fast Fourier

Transform (FFT) Algorithm to perform the inverse Laplace transform instead of using the

simulation of a partial differential equation. Reliable FFT software packages are available.

However, this approach requires prior information about the bandwidth of the relevant transfer

functions to avoid big aliasing errors [Opp.l].

The second problem we face is the evaluation of the transfer function Gp(s) of the infinite

dimensional plant, which is discussed in the next section.

4.5 Evaluation of Frequency Response of the Bending Motion of A Cantilever Beam: A

Case Study

A truly efficient method for evaluating Gp(s) for many values of s € C remains to be

developed, particularly for cases in which some design parameters are plant parameters, as in

integrated system design. In this section, we consider a case study for the planar bending

motion of a flexible cantilever beam. For simple cases like that discussed in Section 2.3, we

can obtain a closed-form formula for Gp(s). However, for the general case, it is impossible to

obtain a closed-form formula for Gp(s), and instead we have to compute Gp(s) by solving a

two-point boundary value problem. For example, consider a general formulation for the planar

bending motion of a flexible beam shown in Figure 2.2, which is given below:1

m(xMx, t) +J^[c(x)I(x)^rw(x, t)] +-£t[E(x)I(x)-£tw(x, t)] =£rW(r), (4.5.1a)
dxr axr dx2 dx2, >*i

with the boundary conditions:

w(0, t) =-^(0, t) =0, (4.5.1b)

1If we want to apply the design methodology proposed in this thesis to the system described by (4.5.1a-d), (4.5.2a-b), we
have to prove that it can be transformed into the standard model (2.2.1) with Assumptions2.3.1-3 holding. That proof is not dis
cussed in this thesis.
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/^(l, t) +c(iy(lAl. t) +£(1)/(1)4j(1. 0=0. (4.5.1c)
dx dx2 dx2

mu> -±[c(x)l(x)£^] U- j-{E(x)I(x)£^] U=0. (4.5.1d)

where r*(x) is the influence function of the Jth actuator, and n(- is the number of the point actua

tors. Depending on whether the sensor is a point displacement sensor or a point angle-of-

rotation sensor, we formulate the output of the bending motion of the cantilever beam by

yl(t) = Mj, t), (4.5.2a)

or

/'(r) = W(j, t\ (4.5.2b)

where 1 £ i <, n0$ n0 is the number of the sensors, z1 is the location of the i-th sensor and ""'

denotes the derivative with respect to the spatial variablex. To obtain the 0V>th component of

the transfer function, we take the Laplace transform with respect to time for (4.5.1a-d), and set

ft?) =0, V k*j. Let Tfic s) be the ratio of the Laplace transforms of w(x, t) and f(t). We

obtain the following boundary value differential problem for T}{-, s):

^{(E(x)I(x) +sc(x)I(x))-£-Tj{x,s)) +m(x)s2T/x,s) =Ax), 0<;*£1, (4.5.3)

with the boundary conditions:

T.{0,s) =̂ (Q.s) =0, (4.5.4a)
J dx

[£(1)7(1) +5c(l)/(l)]-^(l ,s) +rf—i-d ,s) =0, (4.5.4b)
dx2 dx

-f {(E(x)I(x) +sc(x)I(x)) J]l *)\ =Mfrjihs) . (4.5.4c)
dx dx2 U*i J

The 0V)th componentof the transfer function GJs), gff(s), is then equal to
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4'te) =Tj{zl, s) , (4.5.5a)
and

#te) =Tjiz1, s). (4.5.5b)

respectively for the point displacement sensor and the point angle-of-rotation sensor. Since

r'C) in (4.5.3) may be a delta function or a derivative of a delta function, we would like to

integrate (4.5.3) twice from 1 to x. Then combining the result with (4.5.4b,c), we get

(E(x)I(x) +sc(x)I(x))-4jT/x,s) +M(1-jc)j2T/1,5) +JsVflj) +s2^a\[ m(%x)Tj{%x^)^\
tj (4-5-6>

=\d*i[ ri(Xi)dxl ,

We define Wftcj) £Ja\[ %nKXi)T/!ci^)dii which is equivalent to

—^(xj) =m(x)Tj{x,s) , (4.5.7a)

with the boundary conditions

Wj(U) = Wj{l,s) = 0 . (4.5.7b)

Let YJx, s) 4 (r/jc, s), T/x, s), Wfx, s), W/x, s))T. Then (4.5.6), (4.5.7a,b) can be rewritten

in the following form:

£&JL =A(x, s)Y/x, s) +b2(x, s)Tj{\, s) +b3(x, s)fj{l,s) +b4(x, s).
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Tj{U)

(4.5.8)

where g(x) i fdvA r*(ix)dxx. If r*(x) =8(x - Xs) where V is the location ofthe actuator,

=\i~X Jl™**' (4-5.9a)2(x) = i*~x H***'
«w 1 n otherwise.

If rfa) = -$'(*-A

g(x) =_4 1 if*^*,
0 otherwise.

From (4.5.4a), (4.5.7b), the boundary conditions of (4.5.8) can be expressed by

1 0 0 0

0 10 0
r/o,,)=[£ . 0 0 10

0 0 0 1
V

r,a*)=LoJ-

(4.5.9b)

(4.5.10)

The above linear boundary value problem can be solved using a shooting method. Let

ho(x, s) and hx(x, s) denote the homogeneous solutions of (4.5.8) with initial conditions

(0, 0, 1, ay and (0, 0, 0, \y respectively, i.e.,

dhfa s)ldx = A(x, s)ht{xt s), i = 0,1, h0(0t s) = (0, 0, 1, 0)T and /^(O, s) = (0, 0, 0, l)r. Let

hzix, s) and h^x, s) denote the solutions of dYjdx = AYj + fe2 and dYjfdx = AYj + b3 respec

tively with zero initial conditions. Finally let h4(x, s) denote the solution of dYJax = AYj + b4

with zero initial condition. Then the solution of (4.5.8) can be expressed as
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Yfic, s) = c0(s)ho(x, s) + cx(s)hx(x, s) +T/l, s)h2(x, s) +7/1, s)h3(xf s) + h4(x, s). (4.5.11)

The constants c0(s)t Cjte), 7/1, s) and f'jd, s) can be determined by the following linear equation:

c0te)/4d. s) +cx(s)h\(\% s) +T/l, s)hl(h s) +7/1, s)h\(h s) +h\(l, s) =T/l, 5)
c0te)/»o(l. *) +cx(s)h2(l, s) +T/l, 5)A|(1, s) +7/1, j)^(lf 5) +hid, s) =7}<1, s)
Co(s)hiXh s) + cx(s)h{(h s) +T/l, j)/i|(1, s) +7/1, ^(1, j) +hid, s) =0
c0te)/»o(l, J) +ciCflftftl. 5) +T/l, s)h\d, s) +7/1, s)hi(l, s) +hid, s) =0,

which is equivalent to the following matrix form,

hkh s) h\(l, s) hid, s) - 1 h\(\, s)

hl(l, s) h2x(l, s) hid, s) /tf(l, s) - 1

1*1.*) h\(hs) h\(l,s) h\d,s)

hfchs) h4x(hs) 4(1, s) hi(hs)

f " • »

cote) -h\d, s)
cx(s) -h24(h s)

tjd, s) -hid, s)
7/1, s) -hid, s)

(4.5.12)

(4.5.13)

where hfe) means the ith component of the vector hj(s). Equations (4.5.5a,b) then become

gjfto =Yjtf. s) (4.5.14a)
and

#te) =Yjtf, s),

where Yfic, s) denotes the ith component of Yfic, s).

In Table 4.1, we compare the evaluations of the frequency response of the system

described in (4.5.1a-d) and (4.5.2a-b) by using the shooting method and an analytical closed-

form solution. In our numerical simulations, we assumed that the coefficients in (4.5.1a) are

constants. We choose m = 2, cl = 0.01, EI = 1, M = 5 and J = 0.5. A point force actuator

and a point angle of rotation sensor are used and colocated at x - 1. The shooting method

gives quite accurate results. The CPU time that it requires is six times that required by the

closed-form evaluation.

(4.5.14b)



Frequency Points

1.000000e-02

2.511886e-02

6.309573e-02

1.584893e-01

3.981072e-01

1.000000e+00

2.511886e+00

6.309573e+00

1.584893e+01

3.981072e+01

Table 4.1: Evaluation of Frequency Responses

Closed-Form Solution

3.334066e-01 +i -3.334800e-05

3.337964e-01 +i -8.396236e-05

3.362770e-01 +i -2.140504e-04

3.528282e-01 +i -5.919151e-04

5.123786e-01 +i -3.138715e-03

-2.682607e-01 +i -2.267297e-03

-1.580077e-02 +i -8.705360e-O4

-4.560727e-03 +i -2.129576e-05

-5.937243e-04 +i -1.936779e-04

-1.155983e-04 +i -5.730677e-06

Shooting Method

3.334063e-01 +i -3.334796e-05

3.337961e-01 +i -8.396227e-05

3.362767e-01 +i -2.140502e-04

3.528278e-01 +i -5.919145e-04

5.123778e-01 +i -3.138709e-03

-2.682609e-01 +i -2.267304e-03

-1.580077e-02 +i -8.705344e-04

-4.560733e-03 +i -2.129572e-05

-5.937077e-04 +i -1.936427e-04

-1.155982e-04 +i -5.729772e-06
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As we have shown, the shooting method reduces the linear boundary-value problems to a

set of linear initial-value problems. Various other methods can be used to solve the linear

boundary differential equation (4.5.8), such as finite difference method [Asc.l] or the factoriza

tion method [Tau.l]. However, we prefer the shooting method for the following reasons: (i) it

can be easily generalized to solve multi-point boundary-value problems that come from the

multi-link flexible structures; (ii) it is well suited to the evaluation of the frequency responses

for the multi-input-multi-output systems because we only have to calculate the functions

ho(-), hx(), h2() and h3() in (4.5.11) once, and we just perform more evaluations like

(4.5.14a,b) for additional output sensors. For the example mentioned above, if we evaluate the

frequency response for the two-input-two-output case, the time taken by using shooting method

is 2.6 times that taken by using the closed-form evaluation, compared with 6 times for the

single-input-single-output case, (iii) it follows from (4.5.11) and (4.5.14a,b) that only the

values of hfa s) for 0 £ / £ 4 at x = 1 and * = z* for 1 £ J £ n0must be stored in memory.
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4.6 A Numerical Example

This section describes the numerical process in designing a fourth order compensator for

a single-input-single-output feedback system with the plant described by (2.3.1a-d) and

(2.3.2a,b) in Section 2.3. We assume that m = 2, cl = 0.01, EI = 1, M - 5, / = 0.5, that the

required stability margin a = 0.2, and that the point force actuator and the point displacement

sensor are colocated at x = 1.

To obtain an initial compensator design and to provide a testbed for the study of trunca

tion effects, we first solve (2.3.28) to derive the first four natural frequencies and the

corresponding mode shapes of undamped oscillations as follows:

a>? = 0.451, ThCc) = ^.(n&9exp(alx)^J92exp(^lx)^J63sin(alxy+Omicos(alx), ax = 0.975;

(4.6.1a)

wl = 8.936, Thte) = 0A\7exp(a^y<iJ31exp(--a^y^.S54sin(a2x)^0.670cos(a^c), a2 - 2.06;

(4.6.1b)

cd| = 274.36, T|3te) = ^.(Xn35expte3x)-0.975exp(--a3x)--0.967«n(fl3x)+0.982co5(a3X), a3 = 4.84;

(4.6.1c)

©J =-1956.89, tu(*) = 0.000351eu:/Kfl4x)^.996c>p(--fl4X)^.996«n(a4x)^.9956co5(a4«). *4 =7.91 .

(4.6. Id)

We then carry out a modal expansion of the plant dynamics to obtain the first eight modes:

-0.0023 ± 0.6716/, -0.0447 ± 2.9890;, -1.3718 ± 16.5069/, -9.7845 ±43.1411/ In the

corresponding truncated state space plant model, the matrix Ap has the form

Ap = diag(Ax x,A22,A33 ,^44), where

A„ =

A33 =

0 1

-0.451053 -0.004511

0 1

-274.359603 -2.743596

Also we obtain

^22 =

i444 =

0 1

-8.936154 -0.089362

0 1

-1956.894214 -19.568942

(4.6.2)
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Bp =(0, -0.272993, 0, -0.112681, 0, 0.073277, 0, -0.047885)7, (4.6.3)

Cp = (-0.545986, 0, -0.225362, 0, 0.146553, 0, -0.095770, 0), (4.6.4)

and Dp - 0. It is straightforward to check that theunstable modes are controllable and observ

able. We choose to design the compensator in transfer function form:

Gc(pc,s) = coteiJ2 + c2s + l)(c3? + C4S + l)/^? + d2,s+ IXd-^s2 + d^s + 1), which results in

Pc = (.cotCx,c2,c3,c4,dx,d2,d3,d^r. We set /iote) = 1 and

4

4)te. <Id) =II (te +a)2 +af(s +a)+bf), so that qd £ (ax^A^a^bx MJ^M7- We set

e = 0 in (4.2.8a,b, 4.2.9).

Using pole assignment on the fourth order truncated model, we obtain the initial compen-

sator transfer function: Ge(pe,s) = 21044.8? +96356.5,* +88286.1, +858018 wmch
,4 + 2.94613? + 177.301? - 3333.83,-7930.13

stabilizes the truncated model. However, it fails to stabilize the truncated plant of orders 6 and

8 as well as the full precision model.

Using this compensator as the starting point for our semi-infinite optimization algorithm

and choosing qd =(0.8945,0.6322,0.4001,0.2828,10.008,7.0027,5.0006,3.0003), we

obtain in two iterations of a semi-infinite minimax algorithm the following transfer function of

the stabilizing compensator for our controlled flexible structure: Gc(pc,s) =

-12.5806/ + 20658.8? + 94255.7? + 87402.1, + 841483 ~
7 = = . The new qd

,4 + 2.12762? + 171.79? - 3262.91, - 7774.42

= (0.8945, 0.6324, 0.3998, 0.2828, 10.008, 7.0030, 5.0016, 2.9997). The critical frequency

interval for the evaluation of x(Pc»JV^bte» <Id)is [0-1 »200] and the number of sampling points

used is 50; 500 points are used to produce the plots in Figures 4.5 and 4.6 The plot

corresponding to X(Pc»s)/db(,,#d) for the initial value of the compensator is shown in Figure 4.5

and the plot for the final value in Figure 4.6.
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It is interesting to observe that the closed-loop system poles which result from the use of

this stabilizing compensator and the truncated plant of order 4 are 0.695414 ±j9.82352,

-1.4397 ±/7.04732, -0.128045 ± J4.91775, -0.238414 ±;2.99904. As we can see, there are

two unstable poles. However, when the plant model is truncated to orders 6 and 8, respec

tively, the closed-loop system is stable and has poles at -O.521081 ±fl6.3213,

-1.02523 ±y9.92591, -0.459227 ±/7.0698, -0.23843 ±;4.9936, -0.238574 ± ./2.99953; and

-9.75924 ±./43.1321, -0.51818 ±./16.3271, -1.09369±y9.94782, -O.411156±/7.04619,

-0.246175 ±;4.99733, -0.238581 ±;*2.99956, respectively.

4.7 Concluding Remarks

In this chapter, we have transformed design requirements, including exponential stability

with a certain stability margin and various frequency- and time-domain feedback-loop

specifications, into a semi-infinite programming form and discussed the problems of numerical

implementation. The design parameters are the elements of the state-space matrices of the

compensator, and the order of the compensator can be assigned by the designer. We have

given a numerical example in which a finite dimensional compensator was designed to stabilize

the bending motion of a flexible cantilever beam with a specified stability margin. One draw

back of the design approach proposed in this chapter is that it leads to semi-infinite optimiza

tion problems that have local minima. In the next chapter, we will use ^-parametrization for

the compensators that will lead to convex optimization problems and hence avoid the problem

of local minima.
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Appendix 4.A

Proposition 4.A.1: Ifwe assume that &[Gp(s)]U\(s) = 0(s~2), then \\f and V7 are Lipschitz

continuous in p^

Proof: Since the proof for \|f7() is the same as that for x^O), we only consider the case of

:lAr. /„! 2A/;/^ 1Let GJ i Gc(ft) and G£ § Ge(#). * Consider

iyVj-yV)!

^_1{[GPG?(/ +G^rW'^lteMte) - k\t)= I max <

- max «̂ {[GpG^/+G^GjrW-'tflteMte) - tf(0

£ max I(lTx{[GpG2(I + GpG2Tx(s)]x'xU\(s)}(t) - tf(*))

- (^{[G-G^/ + GpG\^\s)\x:iVx\sy\(t) - b\t))

£ max IIT1 [IV + GpGxTxGp(G2 - Gj)(/ +GpG2Tx}x'xU\(s)}(t) I

C0+/»

= max I-L f {[(/ +GpGxTxGp(G2 - Gxe)(I +G^rY'Wite)}^ I
«»* 2jc/Cb£

c0+/»

= max I^T J {[(/ +GpGjr1Gp(J(Gc'(pJ +T(p?-pJ)),p?-pJ)rfi)

(/ +GpG?)-1]1,V11(,)}er^l

*\

(4.A.1)

(4.A.2)

(4.A.3)

(4.A.4)

(4.A.5)

1It should be clear that Ge (and other transfer functions) are functions of the Laplace parameter j which wQl often beomit
ted for simplicity of notation.
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c0+j*> x

£lp?-pjl2 max eC(f\{-±- J W +GpGxyx](s) V[Gp(s)] JS[Gc'(pJ +t(p2 - px))]d<z
te[Ojjl ZKC jn 0

(4.A.6)

V[(I +GpG2rx(s)]\U\(s)\ds}\,

where c0 is chosen large enough in (4.A.4) so that all the functions are analytical on Ucj the

expression for the inverse Laplace operator L~x() shown in (4.A.4) can be found in [Chu.2]; in

(4.A.5), by examining Gc: Rm -+ «**, we see that G/() e fT**** is a well-defined

differential [Die.l]; (4.A.6) is obtained from (4.A.5) by taking the absolute value sign into the

integrand and noting that \MlJ\ £ "Q(M) and o(MN) £ &(My6(N), where M and N are complex

matrices and MiJ is the 0V)th component of M. Since ff[(/ +GpGx)~x](s), S[GC'()](,), and

**[(/ +GpG2)~x](s) can be shown to be 0(1) and V[Gp(s)]U\(s) is assumed to be 0(s~2), the

last integral is well defined. This completes the proof.



Figure 4.1: The feedback system 5(P, K).

> A(j)

\Gp(s) > .

• V/"—1—»

Figure 4.2: The perturbed plant, GJs) = (1 +Ate))GDte).
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Figure 4.3: A sampleof the function fc^O).
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Figure 4.4: Time-domain step response specification.
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Figure 4.5: Modified Nyquist diagram (initial design).
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Figure 4.6: Modified Nyquist diagram for the stabilized system.
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CHAPTER 5

OPTIMAL DESIGN OF FEEDBACK COMPENSATORS H: Q-PARAMETRIZATION

5.1 Introduction

In this chapter, we study the design of an optimal feedback system using Q-

parametrization. With this approach, the design problem can be transformed into a convex

optimization problem, allowing a global solution to be obtained. This approach has been

applied to the design of control systems for finite dimensional systems [Pol.5].

In Section 5.2, we derive the coprime factorizations for the infinite dimensional plant and

introduce the g-parametrization for the compensators. Since the g-parametrization introduces

infinite dimensional compensators, we have to apply an approximation result to obtain finite

dimensional stabilizing compensators. In Section 5.3, we transcribe the design requirements

introduced in Chapter 4 into the convex H°° semi-infinite inequality form. We show that under

reasonable assumptions, we can construct a minimizing sequence of finite dimensional compen

sators that converges to the global solutioa We also discuss the numerical implementation of

this approach, hi Section 5.4, we give a design example in which we design a compensator to

enhance the robustness of the feedback system to the modeling errors of the bending motion of

a flexible cantilever beam.

5.2 (2-Parametrization for the Compensators and Preliminary Results

Consider the feedback system S(P, K) introduced in Sections 2.2 and 2.4.

It follows from (2.2.6) that we can express the transfer function of the plant, Gp(-), as the

sum of unstable and stable parts as follows:
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Gp(s) = Cp(sI-AprxBp +Dp

=(C/»te/»+ - V)"1*/* +Dp>+ cp-(sL - V)"1V tf-2-1)
4 GJ(,) +G-(,),

where / and /_ are identity operators in Z and Z_ respectively, n+ is the dimension of Ap+,

Gj(,) 4 C^,/^ - V)"1*,, +Dp € £(/?(,)), and G£(,) 4 C^,/. - V)"1V By definition

of Ap_, there exists Oq >a and M>0such that lle '̂jlz. £ Me~°*, Vr>0. Therefore G£(,) is

analytical in f/^ [Paz.l, Theorem 1.5.3] and converges to 0,,^ at infinity in U^ [Jac.l, Fact

20]. Therefore we have proved the following result

Proposition 5.2.1: G^(,) e £(«/_«(,)). •

Since any matrix in E(R(s)) has coprime factorizations in E(R_a(s)) [Vid.l], Gj(,) can be

assumed to have the following right and left coprime factorizations

(5.2.2a)

(5.2.2b)

Gp'&NprD-} ; detDpr mo,

^D-JNpt; detD^O,
the corresponding Bezout ider

'Vpr Upr'
7NPl DPl.

K -Vpl
?Pr Vfi. - 'nfin, (5.2.3)

where Vs, Us, Ns and Ds all belong to E(R_a(s)).x According to [Net.2], the Vs, Us, Ns and

Ds in (5.2.3) canbe derived from the matrices Ap+, B^, Cp+, and Dp. The following result is

easily established from (5.2.3).

1Whenever it is clear that variables are functions of the complex variable s, wewill omit it for simplicity of notation.
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Proposition 5.2.2: (Npr + GrjD^, Dpr) and (Dph N^ +Dpfify arc respectively the right and

the left coprime factorizations of Gp =• Gj +G£ over £(W_a) with the Bezout identity

Vpr-U^ Upr

HNpt + Dpfip) Dpt
°pr -UPI

[Npr+GPpr Vpt-G-pUpt = /,n^n0
(5.2.4)

Next we restate Theorem 2.4.1 in terms of coprime factorization matrices of the plant and

the compensator. Suppose that the transfer function of the a-stabilizable and a-detectable com

pensator, Gc(-), has right and left coprime factorizations (Ncr, Dcr) and (Dch NeD, respectively,

with D's and N's belonging to E(R^a(s)). Define

Xite) ^ det ( Dcppr +N^Npr +Gp^) )

and

X2(,) d det ( DpPc, +(Npt +Dp/GpNc,).

Then Theorem 2.4.1 can be restated as follows.

Theorem 5.2.1: The feedback system S(P, K) is a-stable if and only if

Z( Xi ) <= £U,

or equivalently

Z(x2)<zD_a.

Proof: (i) It follows from (2.4.4) that

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)
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X(,) = dette/^ - Ap+) det(,/Be - AJ det(/^ +Ge(s)Gp(s))

=detteV - A^) det(,/„e - AJ det^ +D-}Ne£Npr +GPpJDp})
det(,/^. - A*) det(,/n - A^ ,. 2g.

_ —v_»+ ^ c te\mnm + NeKN„r + G3?nr)) (5#2#9)
detDpr(,) detDc/(,) ^^ cA ^ ^pr

dette/^-A^dette/^-A.)
detDpr(,) detD^,) XlW *

Suppose that the compensator has an a-stabilizable and a-detectable state-space realization

(Ae, Bc, Cc, Dc). Then there exist Ke e IR""*"' and Fc g JR"**1' such that

Z( det(,/ - (Ac + BJCJ) )cDh»M det(,/ - (Ac + FCCC)) ) c D_«. (5.2.10)

According to [Net.2], a left coprime factorization of Gc, (bcl, $d) can be chosen as follows:

4* ='«, " Cc(,/„e - 4: +VcT1/^ (5.2.11a)

#d =Q(,/„c ~Ac +F.Q"1^ +DCA- (5.2.1 lb)

It follows from [Vid.l, Theorem 4.1.43] that there exists an M(s) e E(R_a(s)) such that

M~x(s) e E(R_a(s)) and

Dc/ =M-4/» (5.2.12a)

Afc =M-ft* (5.2.12b)

Furthermore, we have (see [Vid.l, p. 393])

det M &det M~x e /?_«(,). (5.2.13)

It follows from (5.2.1 la) that

&ci =I* - Cc(slne -Ac+FCCXXFC

='„," (/«, +Cc(slne - AJT^CJfil., - AJ"1^ (5.2.14)

= (Ini + Cc(sIne-AcrxFc)-x.



Hence, for all, e U^, because of (5.2.10) and (5.2.13), we have

det(,/„c - AJ det(,/„c - AJ det(,/„c - A£ j

detD^> det(4/(^te)) de*%te) mm))

=det(,/Be - A} det(/„, +Cc(sltte - AjTlFJ-deWl(d)

=det(,/„e - AJ det(/nc +FcCc(sIne - A^det^,))

=det(,/„e- (Ac-F.C^deKAT^,)) *0 .
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(5.2.15)

det (,/„+ - A^)
A similar argument can be applied to show that —-—_ .. * 0 ,V , e {/_„. Hence

det Dpjis)

Z( x ) <= D^ if and only if Z( Xi) <= D^. It follows from Theorem 2.4.1 that the feedback

system is a-stable if and only if Z(Xi(,)) c D^.

(ii) It follows from (2.4.4) that xte) can be expressed in the following alternative way:

Xte) = dette/^ - A^) det(,/„c - Ae) det(/„a + Gp(s)Gc(s))

=det(,/n+ - Ap+) det(,/„e - Ac) det(/n<> +Dp}(Npi +Dp^p)NcrD^)
det(,/B+ -A.J det(,/„ -Ac) «91«

" de^) detDcr(,) d*D»D«+ <""+ D>W (5-2-16>
=dette/^-A^dette/^-A.)

detDp/te) detD^,) X2^}"

According to [Net.2], a right coprime factorization of Gc (fter, &cr) can be chosen as follows:

A* =Ino - Kc(slne -Ac +BJC^Bc, (5.2.17a)

K =Cc(slne -Ac +BJC^B, +DJDc, . (5.2.17b)

Following the steps in part (i), we can prove that the feedback system is a-stable if and only if

z( Xi) c D-*' The proof is therefore completed.



Now we define a set of feedback compensators, S(P), as follows

S(P) =« typr - UprG; - Q(Npl +DpfjJ Y(Upr +QDpj) IQeF(W^(,)),

det(Vpr - UprGp - fi(A^/ +0„/Gp) *0 .
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(5.2.18)

Define Dcl &Vpr - UpfiTp - £(Wp/ +Dpfty and Ncl &Upr + QDpl. It is straightforward to

check from (5.2.4) that

Dcppr +A^W,,. +Grp^) =/„,. (5.2.19)

The way we formulate S(P) in (5.2.18) is the so-called (2-parametrization for the compensator

in the factorization approach of control system theory. Note that the g-parametrization intro

duces infinite dimensional compensators.

Next, we derive a set of finite dimensional a-stabilizing compensators from S(P) defined

in (5.2.18). By Proposition 4.2.1, any function /: C -> C belonging to W^s) can be uni

formly approximated by a rational function which is analytic on (7_a. Suppose the Dcl and the

Nd in (5.2.18) are approximated by functions in /Late), say Dcl and Ncl, in the H_a(s) space

such that

Dc£s) ^ Dc/(,) +Aite), (5.2.20a)

Ncfa) ± NM +A2(,). (5.2.20b)

The following theorem provides a sufficient condition in terms of Ax and A2 so that the a-

stabilizable and a-detectable compensator with the transfer function DdxNcl stabilizes the plant.

Theorem 522: Suppose that a a-stabilizable and a-detectable compensator has a transfer

function DdxNcl with Dd and Nd defined in (5.2.20a-b). If A! and A2 in (5.2.20a-b) satisfy
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\\\(s)Dpr(s) + Wfflpr + GprMlL < 1 . (5-2.21)

then this finite dimensional compensator stabilizes the plant with a stability margin a.

Proof: According to Theorem 5.2.1, the proof is complete if we can show that

Z( x ) c £>_„. It follows from (5.2.20a,b) and (5.2.19) that

Xite) = deuT^V + NJNp, + Gppr))

=detj/^ +Al(s)Dpr(s) +A2(,)(A^r +GpT>pr)(s)} (5.2.22)

Now we prove by contradiction that

det{/„, + Al(s)Dpr(s) + A2(,)(A^r + GpT>pr)(s)} * 0 , V , e U^. Suppose that

det{/n/ + Al(s)Dpr(s) + A2(s)(Npr + GpT>pr)(s)} = 0 for some , e £/_«. Assume that

[Al(s)Dpr(s) + A2(,)(Jv*pr +Gppr)(s)] has the singular value decomposition UAV*, where Uand

Vare unitary complex npoi/ matrices, V* denotes the complex conjugate transpose matrix of V,

and A is a diagonal real n-xni matrix whose diagonal elements are positive but less than 1

because of (5.2.21). Then there exists a vector ue C*' such that (In{ + UAV*)u = 0. How

ever, this means that lul = \UAV*u\ = IAV*hI < IV*wl = lul, which is a contradiction. Hence

det{(/^ + Ax(s)Dpr(s) + A2(s)(Npr + GJDpr)(,))} * 0 , V , e £7^, which implies that

Z( Xi) <= D^. The proof is therefore completed. •

Next we show that the transfer function of any finite dimensional stabilizing compensator

can be expressed in the form of (5.2.18). In other words, the set of transfer functions defined

in (5.2.18) contains all the rational transfer functions of finite dimensional stabilizing compen

sators.

Theorem 5.23: For each finite dimensional stabilizing compensator which is a-stabilizable

and a-detectable and has the transfer function DdNd, we can find a Q e E(W^) such that
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Pdftfrf =typr - UprGp - Q(Npl +DpjGp") J\Upr +fiV .; (5.2.23)

Proof: Since we assume that the compensator stabilizes the plant, it follows from Theorem

5.2.1 that

Z(detM(,))cD_a, (5.2.24)

where

n{xn{M(S) £ DaDpr +N^ +GpDpr) c W^(sj (5.2.25)

It is easy to check that lim det(M(,)) = lim det(Dcppr + Nci(Npr + G~Dpr))(,)
S —* oo s —* oo

= co'det(/R{ + ZV?,,) * 0, where c<> e IR is some nonzero constant Combining this result with

(5.2.24), we obtain (detMte))"1 e W^(s) and

njxniM~x(s) e W_Js)

Now we rewrite (5.2.25) in the following form:

M-xDcppr +MT'N^Np, +GTpDp,) =/„,.

Therefore, we have

(M-xDd, M-xNci)
D -U"pr -"pi

Npr +G-pDp, Vpi-GTpUph =(/»'' Q) '

(5.2.26)

(5.2.27)

(5.2.28)

where Q4 -M-xDdUpl +h^NJYpi - G;Upl) e W_a(,)"/X"°. It follows from (5.2.4) that

(M-xDd, MTxNci) =(Itti, Q)
pr UprJp Upr

-<Npl + t>pP~) Dpl

Note that (5.233) does notimply that Dd= V^ - t/^ - QQI^ + DJ3Qand Nd= U^+ QD^



Hence,

(VPr - Upfi^ - Q(Npl + Dp/Gp

Upr+QDpl
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(5.2.29)

DdxNd = (M-^^M-Xi)

=typr-UprGp'-Q(Npl +Dp02y(Upr +QDpi) , (5.2.30)

and the proof is completed. •

In the next section, we obtain the input-output maps in terms of the parameter Q. We

show that the elements of input-output maps are affine functions of Q and then transform the

design specifications introduced in Chapter 4 into convex semi-infinite forms. Theorems 5.2.2

and 5.2.3 are applied to obtain a minimizing sequence of finite dimensional stabilizing compen

sators that converges to the global optimal solution.

53 Optimal Design of Feedback Compensators

53.1 Problem Formulation

We substitute Gc() in (4.3.1) with that defined in (5.2.18). By (5.2.4), we obtain the

corresponding achievable (stable) input-output maps, H, in terms of the parameter

Q e ^(WLate)) as follows

'-NprQDpi +VpPpt NprQNpt-NprVpr 'N^QD^-V^ NprQDpl-Vpppl
H = DprQDpl + DprUpr -DprQNpt + DprVp, -DprQDpl - DprUpr -DprQDpl - DprUpr

NprQD^ + NprUpr -N^QN^^N^Vp, -Np&Dpt+VpPpi -NprQDpl-NprUpr

where

Npr = Npr + GTpDpr, Dp, = Dpr, Up, = Upr, Vpr = Vpr - UprGTp,

Npl = Npl + Dp{rp,Dpl = Dpl, Upt^Upt, Vpl = Vpl-G-pUpl.

(5.3.1)

(5.3.2)
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The various design specifications considered in Chapter 4 can be reformulated as follows,

(i) Stability Robustness:

We define (j)1: W^te)"'*"0 -» R as

♦to ^ sup {<5[tf3,i(-<* +;©)] - l/b(®))
<Del^°°1 _ (5 33)

= SUP {GlWprQDpt +NprUprK-CL + j®)] - l/6(©)} .
CO € [0, oo] ' * ^ r

Then if

♦to * 0 (5.3.4)

holds, the compensator will stabilize not only the nominal plant but also the perturbed plant

whose transfer function is (l+A(s))Gp(s) with A(,) satisfying (4.3.3).

(ii) Disturbance Suppression and Good Command Tracking:

Let <|>2: W-aHs)*!**0 -^ IR bedefined by

<j>2(0 A sup {S[//3t3(/G»] - bM)coetfoo] _
= sup [Qi-NprQDpt + VpPptin)] - ^G))} ,

coe [a, oo] r ^ r r

where t%-) is a continuous bound function. Good command tracking and disturbance rejection

requires

♦2(0 * 0 . (5.3.6)

(iii) Plant Saturation Avoidance:

For plant saturation avoidance, we define the performance function <|>3; W_a(s)niXn° -»IR

by



4>to^ sup {*[H2x(jG>)]-bs}
CO € [0, oo]

= sup [Q[(DprQDpl + DprUpr)(j(0)] - bs)
CO € [0, oo] r r f r
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(53.7)

The saturation avoidance requirement can be formulated as

♦3G2) * 0 . (5.3.8)

(iv) HO Map Decoupling:

By defining (J)4: W_a(s)niXn° -» IR by

Jm\ Af(Q)£ sup {IC/^ifW-e}
C0€[0.oo]

l^i^Hf, 1 £/" £ n0, i #>

sup {KA^fiD,/ +NprUPr)iJmi - e} ,
CO 6 [O, oo] r ^ r r

1 £ t £ n,, 1 Sy£n0, i*y

(5.3.9)

the 1/0 map decoupling can be achieved by requiring

♦4(0 £ 0 . (5.3.10)

As in the finite dimensional case [Pol.5], it is easy to show that all the <j>'s defined above

are at least locally Lipschitz continuous in H^.

(v) Time Domain Response:

Referring to (4.3.15), (4.3.16), we define <|>5 and <J>6: W^sf*** -> IR by

4>5(0 ^ max \L-x{[H3A(s)]x'xU\(s)])(t) - k\t)

=max \L-x{[NprQDpl +NprUpr]x'x(s)U\(s)}(t) - bx(t)l
(5.3.11)

and

<|>to =max mt) - L~x{[NprQDpl +NprUpr]x\s)U\(s)}(t)\. (5.3.12)
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Then the following two inequalities

♦5(0 ^ 0 (5.3.13)

and

♦6(0 ^ 0 (5.3.14)

guarantee satisfactory time domain responses.

It can be shown that §5() and <|>6Q are Lipschitz continuous in the Hardy space H^ under the

assumption that <5[Npr(,)MZ^/]tyitl(s) = 0(s'2). The proof is similar to that given in [Pol.5].

It is easy to observe the following from the above examples:

Proposition 53.1: The functions ♦'; QV-atff**9, ||-||J -^ IR, 1£ *£ 6, defined above,

are affine and hence convex functions, where the IML is the /f°-norm in H_a. m

532 Optimal System Design

Suppose that we have transformed the various frequency- and time-domain design

requirements into the following optimization problem OP :

OP: min {<J>°(0 I<j>'G2) «S 0, i € /<>}, ,,- .-
fl.wUW** (5'3-15)

where I0= [1,2,'-, Icq) and k$ is the number of constraints. We assume that the functions,

$',, satisfy the following assumption.

Assumption 53.1: (i) Each <(>*(•), ke {0}^/, is an affine function and hence, Lipschitz

continuous and convex in the Hardy space //_«. (ii) There exist Qe W^te)"'*"' and 5 > 0

such that <J>'(J2) £ -6 for all i g /0. •

The second part of Assumption 5.3.1 guarantees that the feasible set of the optimization prob

lem OP, [Q e W_a(,)',,xn<, I#(Q) £ 0, / e /<>}, is not an empty set
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We parametrize the free parameter Q e W-a(s)n*en° as follows: Let p g IR+, and for

ng N, x g IRB"Bi'n°, define the matrices Xt g IR"^0, i = 1, 2, • • • , n, by filling them in

order, row-wise, with the components of x, i.e.,

[XJjy £ Wtf-1)^+ (*_ rx +/ , ke rii, le no, (5.3.16)

where $ 4 {1, 2, • • , /»,} and n,£ {1,2, ••• , n0). Let &,• JRl,'n'*° -*W^(s)n^° be

defined by

i s i , + p + a

The parametrization (5.3.16-17) has the following useful properties:

Proposition 53.2: The set [Qn(x) Ix e JRnni'n°t ng N) is dense in (W-^sf^0, INL).
•

The proof follows that of Proposition 4.2.1 line by line and is therefore omitted here.

Since the parametrization equation (5.3.17) is linear, it is easy to show that

Proposition 53.3: Each ♦to())'* : WLH'Hfl>° -> IR, k g {0}\jIq, is convex.
•

Now we consider the sequence of convex optimization problems,

♦°(G„te)) I♦tote)) *0,kgiX, (5.3.18)OPn: min «
xeTR "

where n e N. Then given any n e N, it follows from Proposition 5.3.3 that there exists an

\ g IR""*"* which achieves theminimum in (5.3.18) [Pol.5]. Define

y4 inf W) Im S0, iel0 (5.3.19)

to be the optimal value of the optimization problem OP in (5.3.15). If Assumption 5.3.1 holds,
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we have the following result:

Proposition 53.4: For all e >0, there exist p g (0, e), /ig g K and x^ g IR*8"1"* such that

♦°(Q^te^))^Y+e (5.3.20)
and

♦toete^-p.^/o. (5.3.21}

The proof is similar to that given in [Pol.5] and is omitted here.

We can now give the following main result by applying Theorems 5.2.2, 5.2.3, and the

above propositions.

Theorem 53.1: Suppose 2 solves the OP problem in(5.3.15). Then there exists a sequence

[Qn) c \V_ais) such that the corresponding stabilizing compensators axe finite-dimensional and

[Qn) is a minimizing sequence for the problem OP, i.e., each of Qn satisfies all of the con

straints and

.lim ♦0(fin) =Y (5.3.22)

and

112; - &U -> 0 (5-3.23)

where |HL is the /T°-norm in H^.

Proof: By Proposition 5.3.4, for a given e > 0, we can find nz g N, p g (0, e), and

x^ g jRyni'n° such that (5.3.20-21) holds. This x^ defines afi^e W^(s)niXn°. Substituting

this Q^ in (5.2.18), we get
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GCf£ =\Vpr - UprG~ - Q^Npt +Dp/G") V(Upr +£,,£>„)
^_ J (53.24)

where D^Vpr-UprG;-QthfNpl +Dpf^) and JV^ 4 tf^ +J2„/V Note that D^ is most

likely not arational function because of G^. Since D^ and A^g W_a(s)niXn°, it follows from

Proposition 4.2.1 that there exists DH and N^ g /?_ate)W> such that3

D^D^ + AD^, Nnz = Nni + ANn&, (5.3.25a)

and

HADJL <c^e, HAiVJL <028, (5.3.25b)

where a} and a^, are small enough such that

||AD„Dpr + AN„JiNpr +GJD^L <||ADJU|D,r|L +WAN^UWpr +G>DprIL < 1.

(5.3.25c)

We conclude from Theorem 5.2.2 that Gcfi 4 d£n% =(D^ +AD^"1^ +AAy is astabiliz

ing finite dimensional compensator. It follows from Theorem 5.2.3 that there exists a

QH g E(W-a) such that

Gc* =fa - UprG-p - Q^Npt +Z>p/Gp j'Vpr+fi^p/) • (5.3.26)

We have the following equations from the Bezout identity expressed in (5.2.4):

UprWpi - G;Upi) = (Ypr - UprGJUpt, (5.3.27a)

Dpfypl - GrpUpb = -(Npl + D^pt/^ + Ing, (5.3.27b)

-Upr(G-pDpr +iv^) = (Vpr - UprG^Dpr - /„,, (5.3.27c)

3 Even though N„ e E(R_^), it may have a very high order because of QH . For practical reasons, it is approximated by a
e e

one with a lower order.
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-DptGppr + NpJ^-Wpf + Dp/GJDp,. (53.27d)

It is then straightforward to show that'

(^+o*v(^/-G^-(^
(Upl + DprQ„J.

(5.3.28)

It follows from the above equation that Gce in (5.3.26) is equal to

Gcj, =(Upi +Dp&n)^ - G-pUpi - (GpDp, +Npr)Q^\ (5.3.29)

Therefore we have

GcJ^pi - GTpUpi - (GTpDp, +Npr)Q^ =Upl +D^, (5.3.30a)

which is equivalent to

\GCJf,(GpT>pr +Npr) +Npr) +D^]^ =GCtg(Vpl - G"tfp/) - Upl. (5.3.30b)

Hence it follows from (5.3.25a,b) that

Qn, =fccJPPpr +V +̂rJ"1 \fcfiWpl ~<W - tf,/]
=[(0^ +AD^N^+AN^Gp^+A^) +Dprj_1 [(D^ +AD^N^+AA^,,-G"^)

• [^Ar +Npr) +Dnppr +AD„Dpr +AA^G"1^+iv^)]"1 [iv^CVii -G^ -D^
- AD^+AA^- G-tf,,)].

(5.3.31a)

It follows from (5.3.27a-d) that N^G-Dp, +Npr) .+D^Dp, = In. and JV^ - G"f/p/)

-DnUpi^Q^. Therefore
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\-l//TQ^ = (Int + AD„Dpr + AN^GpVp, + Aiyr'Ga* - A*Vk + ^(ty" <W) • (5331b)

Hence

QH-Q^ = (Ini +AD^Dpr +AN^(Gppr +Npr^

- (/„, + AD„Dpr + AN^GPpr +A^))^

=(/„, +AD^+AN^GPr+A^))"1 [aD^-C^, -D^ +AA^V,, -G^- (Gppr +Npr)Q„j\.
(5.3.32)

We can choose ai and 02 in (5.3.25b) small enough that WAD^Dpr + AN^GpDpr +AyiL < 1/2.

Therefore ||/B| +AD^ +AN^Gppr +AyiL >1/2 and (/„, +AD„/V +ANnfL(Gppr +Npr)T1(s)

exists for $ g !/_<» with its /f-norm in //_<, bounded by 2. Also, there exists some M > 0 such

that max(||-0pi - l^S^U IIV,/ - G"^ - ((££>„. +Ay&gL) £ M. It follows from (5.3.32) that

IK2* - &JL * !!(/«,. +AD^ +AN^GPpr +Npr))'l\L

•[llAD^miht/pi -Di&jl+iiAAyuivi, -c^,, - (Gppr +JV^gju]
< 2Af(ax + 02)8.

(5.3.33)

Since every <j>* is continuous in Q for ke (0}^j/, by choosing ai and 02 small enough, we

have

4>°G2«B)£Y+2e (5.3.34)

$k(Q„)*-&,keI (5.3.35)

Hence [Q^) forms a minimizing sequence for the problem OP in (5.3.15) and the proof is

completed.
•

Remark 53.1: (i) The above theorem states that we can always find a finite dimensiona

stabilizing compensator that is as close as possible to the global optimal compensator (ii)
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According to (5.3.33-35), a suboptimal finite dimensional compensator with a prescribed

(McMillan) order can be obtained by finding Dd & Nd g E(R^a(s)) such that Dd and Nd have

prescribed orders, and \\Dd- DJL and ||/Vc/ - NJL. are as small as possible. •

533 Numerical Implementations

In the design process, we first evaluate the frequency responses of the infinite dimen

sional plant, Gp(), which are discussed in Chapter 4. We then find the matrices Ap+t Bp+, and

Cp+ and evaluate Gj(,) = <?,+(,/„+ - A^B^ + Dp and G~(s) = Gp(s) - G*(s). The

U*s, Vs, £>',, N's in (5.2.3) can be determined from (A^, Bp+, C^) [Net.2]. The simulations

of the inverse Laplace transform for time-domain specifications are discussed in Section 4.4.

The algorithm given in [Pol.5] can be applied to solve the optimization problem OPn in

(5.3.18). Suppose D^s^NJ^s) is the resulting optimal infinite dimensional compensators with

Dd and Nd defined as in (5.3.24). By Remark 5.3.1, we can find a suboptimal fixed-order

compensator with the factorization (Dd, Ncl) by solving the following non-convex optimization

problem:

min IPdte. *i) - DJs)\L, min ||/v"c/(,, Z2) - Wci(,)IL, (5.3.36)

where z\ and z2 are the vectors of design parameters which are the coefficients of the fixed-

order rational matrices Dd and Nd, respectively. Since Dd and Nd are required to belong to

£(A_ate)), there are constraints for the elements of i\ and z2. For example, if we parametrize

the (polynomial) denominators of the matrices Dd and Nd as we did for polynomials n§ and do

in (4.2.9), we get similar constraints, shown in (4.2.8a,b), for those elements of zx and z2 that

are the coefficients of denominators of the components of Dd and Nd. The optimization prob

lem can be solved by the algorithms developed in [Pol.3]. Suppose that the optimal solutions

z[ and z2 of (5.3.36) are obtained. The a-stability of the resulting feedback system can be
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checked

in two ways. The first way is to apply Theorem 5.2.2 to check whether the following

sufficient condition is satisfied:

IKPdte. *i) " DJtfPpM+ (Nc£s, zj) - Nc{s))(Npr + G-Dpr)(s)\L £ 1. (5.3.37)

The second way is based on the necessary and sufficient condition given in Theorem 5.2.1.

We plot the Nyquist diagram by evaluating the following complex-value function,

det( DJs, z\)Dptis) +Mate, zD(Npr +Gppr)(s) ), , g BU^. (5.3.38)

The feedback system is stable if the Nyquist diagram does not encircle the origin. If the above

stability criteria are not satisfied, we must increase the order of the compensator, go back to

solve (5.3.36), and perform the stability tests again.

5.4, A Numerical Example

This design example uses the approach of (2-parametrization. We consider again the

example of the flexible cantilever beam introduced in Section 2.3. We assume that

m = 2, cl = 0.01, EI - 1, M = 5, / = 0.5 and that the point force actuators and point displace

ment sensors are colocated at x = 1.

We can enhance the system's stability robustness by solving the following optimization

problem (see (5.3.3)):

We assume that the feedback system requires a stability margin a = 0.2 and that the critical

frequency range [©j, coj is chosen to be [0.01,10]. The number of sampling points used is

24 and the sampling points are chosen to be geometrically distributed in [0.01, 10]. We
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parametrize Q in the form of (5.3.17) with p = 1.0. We consider two cases of n = 2 and

n = 5. For each case, the initial condition is chosen to be X{ = I2 and X, = 0 for all other f s.

For n = 2, the value of <|>() decreases from 2533.36 to 727.1 in 20 iterations, which

means that the allowable value of b(<o) defined in (4.3.3) at these 24 sampling points increases

from 0.000395 to 0.00138. The final values are Xx = 640.02 and X2 = 850.34.

For n = 5, the value of <K) decreases from 2533.36 to 407.6 in 29 iterations, which

means that the allowable value of b(®>) at these 24 sampling points increases from 0.000395 to

0.00245. The final values are Xx = 851.19, X2 = 979.92, X3 = -606.2, X4 = -69.92 and

Xs = -683.47.

We plot these numerical results in Figure 5.1, where the jc-axis indicates the number of

iterations and the y-axis indicates the allowable value of max b(<o), which is equal to ,
q>(Gn)

at the 24 sampling frequency points.

We apply the scaling techniques in [Pol.4] in the above numerical experiments to speed

up the convergence.

53 Concluding Remarks

We have discussed optimal system design using g-parametrization. The various

frequency- and time-domain requirements are transformed into a convex semi-infinite optimiza

tion problem, and the numerical method of solving the optimization problem is presented.

Since the problem is convex, the global solution can be obtained. We show that we can con

struct a minimizing sequence of finite dimensional stabilizing compensators that converges to

the optimal solution. In a practical design, we solve the problem OPn defined in (5.3.18) with n

large enough that the optimal solution of OPn is close enough to the optimal solution. We

then solve (5.3.36) to obtain a suboptimal finite dimensional stabilizing compensator that is
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close to the optimal solution.

One drawback of using g-parametrization is the cumbersome and nonconvex model-

reduction problem given in (5.3.36).
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Figure 5.1: The value ofT/qT for n=2and n=5.

97

30



98

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

We have presented a design methodology for a class of infinite dimensional systems and

applied it to the control system design for the bending motion of a flexible cantilever beam. In

Chapter 2, we defined a characteristic function for the infinite dimensional feedback system and

related its zeros to the exponential stability of the feedback systems. This result was used

often in the later chapters to test the exponential stability of the closed-loop system. For

exponentially stable plants, we constructed simple proportional-plus-multi-integral stabilizing

compensators in Chapter 3 to asymptotically track polynomial-type inputs and suppress

polynomial-type output disturbances. In Chapter 4, we considered a more sophisticated feed

back system design to achieve various desirable system performances. We used the

parametrized state-space form for the compensator, allowing the order of the compensator to be

chosen in advance. We gave a computational stability criterion appropriate to the semi-infinite

form. We also transformed other frequency- and time-domain design requirements into a con

strained H°° semi-infinite optimization problem. However, because the resulting semi-infinite

optimization problem is not convex, the problem of local minima may arise.

In Chapter 5, we used the alternative approach of g-parametrization and transformed the

design problem into a convex semi-infinite optimization problem. This approach allows us to

find a global optimal solution. We constructed a sequence of finite-dimensional compensators

which converges to the global solution. To obtain a suboptimal finite dimensional compensator

with a prescribed order, we must solve a nonconvex order-reduction problem.

Some suggestions for future research are listed below.
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(a) Integrated control system design for infinite dimensional systems

Some parameters of the plant can be adjustable, and these can become the design parame

ters. Choosing optimum values for these parameters will relax many stringent requirements for

the feedback system. Such parameters may include the locations of the actuators and the sen

sors and various physical parameters, such as the beam sectional moment of inertia and beam

shapes. Solving this type of problem requires further study of problem formulations and

numerical algorithms.

(b) Numerical simulations

It would be interesting to do more numerical simulations for the two design approaches

proposed in Chapters 4 and 5 and to compare their results. The two approaches could be com

bined in a hybrid design, and we could compare it with the two individual approaches by

numerical simulations. Hybrid design might proceed as follows: First, use the approach of g-

parametrization to get an infinite dimensional compensator close enough to the optimal solu

tion, and approximate it by a finite dimensional one with a prescribed order. Next, switch to

using the parametrized state-space form for the compensator to do the minor adjustments, and

use the finite dimensional compensator obtained from the approach of g-parametrization as the

initial design.

Both the hybrid and g-parametrization approaches require approximation of the infinite

dimensional compensator by a finite dimensional one with a prescribed order. An efficient and

reliable algorithm for the approximation is therefore very desirable.

The idea of doing inverse Laplace transform with Fast Fourier Transform algorithms, pro

posed in Chapter 4 for time-domain requirements, needs to be justified by numerical simula

tions.
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(c) Extensions to a general interconnection configuration

The design methodology proposed in Chapter 4 could be extended to the design of

infinite dimensional systems with a general interconnection structure, such as two-degree-of-

freedom feedback systems. Similar work has been done for finite dimensional systems

[Wuu.1].
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