

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A VLSI WORDPROCESSING SUBSYSTEM FOR

A REAL TIME LARGE VOCABULARY

CONTINUOUS SPEECH RECOGNITION SYSTEM

by

Anton Stolzle

Memorandum No. UCB/ERL M89/133

14 December 1989

A VLSI WORDPROCESSING SUBSYSTEM FOR

A REAL TIME LARGE VOCABULARY

CONTINUOUS SPEECH RECOGNITION SYSTEM

by

Anton Stolzle

Memorandum No. UCB/ERL M89/133

14 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A VLSI WORDPROCESSING SUBSYSTEM FOR

A REAL TIME LARGE VOCABULARY

CONTINUOUS SPEECH RECOGNITION SYSTEM

by

Anton Stolzle

Memorandum No. UCB/ERL M89/133

14 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
Universityof California, Berkeley

94720

Abstract

Hidden Markov model based speech recognition for connected speech and

large vocabularies can be done with recognition accuracies of up to 99% [14, 11, 6],

but due to the complexity of the algorithms involved, general purpose computers need

several minutes to compute the results. For many applications however, it is essential

to have real time speech recognition. This paper presents a word processing system

that is based on two integrated circuits. It is part of a recognition hardware [12]

that gives real time performance to large vocabulary continuous speech recognition

systems. The integrated circuits perform the recognition algorithm (Viterbi algorithm

[7]) for 50,000 states in real time using a breadth first recognition search. Since the

bottleneck of the system is the acquisition of data (670 Megabits per second), an

architecture with dual ported cache memories is used. With this system applications

that require real time speech recognition can be implemented, for example automatic

typewriting or database query.

Contents

Table of Contents 3

1 Introduction 5

2 Algorithm 7
2.1 State probabilities 7
2.2 Backtracing 11
2.3 Multiple output probabilities 12
2.4 Difference from Viterbi in communication systems 13

3 Architectural tradeoffs 15

3.1 Hierarchical storage of output probabilities 15
3.2 Successor processing versus predecessor processing 16
3.3 On chip cache memories 18

4 Subsystem architecture 21
4.1 Representation of the HMM 21
4.2 Memories for intermediate results 24

4.3 Processing elements 24

5 Custom processors 25
5.1 Pipelining 25
5.2 Control logic 26
5.3 Testing strategy 27
5.4 Viterbi processor 28
5.5 Backtrace processor 30

6 Implementation Issues 33
6.1 Simulation of the Subsystem 33
6.2 Test Generation Program 34
6.3 Layout Issues 35

7 Conclusion 37

A Detailed Description of the Viterbi Processor 41
A.l Block Diagrams 41
A.2 Input and Output Pins 53

B Thor description of the Subsystem 57

List of Figures 62

Bibliography 63

Chapter 1

Introduction

It is generally accepted that Hidden Markov Models (HMM) are currently

the most efficient technique to model speech for use in automatic speech recognition

[7, 5, 1]. For large vocabulary connected speech recognition systems it has largely

replaced the technique of template matching, where speech templates are compared

to the speech that has to be recognized using the dynamic time warp algorithm

[4, 2]. HMM based speech recognition systems have proven to yield high recognition

accuracy even for speaker independent systems. For speaker dependent systems they

have the advantageous feature that only a small part of the speech model is speaker

dependent. This is important if the system has to adapt or switch to a new speaker.

The task in speech recognition is to recognize a sequence of utterances by

comparing it to a speech model. In HMM based speech recognition systems the model

is the following:

Speech is segmented into frames which are time intervals of typically 10 ms.

The characteristics of every frame is described with a set of features (o,- for the feature

values at frame i). These features could for example be the energy of the signal in

diiferent frequency bands. The states s of a HMM speech process correspond to

generic speech sounds (e.g. a phoneme or a part of a phoneme). To take into account

the variation in pronunciation, a probability distribution is obtained that gives the

output probability, P(o|.s), that the process outputs a set of features o when it is in

5. Speech can be considered as being generated by transitions between these states

yielding a state sequence, S = {$,}. These transitions occur according to transition

probabilities, A(s, t), which reflect the likelihood that state s follows state t.

The task that has to be performed during speech recognition is to find, for

a given HMM, the state sequence that most likely could have produced the speech

that has to be recognized. If the most probable state sequence has been determined,

it is possible to reconstruct the sequence of words that was spoken. A very efficient

search algorithm for the most likely state sequence is the Viterbi algorithm. Frame

for frame and for every state, this algorithm computes the probability of the most

probable state sequence that ends in this state.

This paper describes hardware which is able to perform the Viterbi equa

tion for up to 50,000 states in real time for frame durations of 10ms. [12, 13]. It

thus improves the performance for a class of HMM-based speech recognition systems

such as the BYBLOS system developed by Bolt Beranek and Newman [1] and the

DECYPHER system developed at SRI International [11].

The hardware is part of a recognition system that includes grammar pro

cessing by considering transitions between HMMs that describe words [12, 13]. This

constrains the possible word sequences thus increasing the recognition accuracy. How

ever, this paper focuses on the word processing subsystem which only considers state

transitions within words.

Chapter 2

Algorithm

Fig. 2.1 shows the graph of a HM chain typical for a vocabulary word.

The nodes represent the states in the HMM which correspond to periods of steady

behavior in speech. The arcs correspond to the transitions between the states which

have transition probabilities. This graph defines the topology of the HMM: for any

state the predecessors (states that have a transition to the state) and the successors

(states in which this state can transition to) can be determined. In order to find out

the values for the transition probabilities and the probability distributions that are

associated with the states, a large amount of speech data has to be analyzed. For

example, 4,000 sentences are needed to train SRPs speaker independent system for a

vocabulary size of 1000 words [11]. However, during speech recognition it is assumed

that all the probability values have already been determined so that a well trained

HMM is available.

The task in speech recognition is to find the state sequence that most likely

could have produced the incoming speech. If this state sequence is known, the word

sequence that corresponds to the incoming speech can be derived.

2.1 State probabilities

The joint probability of a sequence of N states , Sn = {si-.sjv}, and a

sequence of N values of speech features, On = {oi-.oat}, is called the path probability

A(mjn) A(njt)

A(l,n)

Figure 2.1: State transition graph of a typical HMM used in the word processing

subsystem

and is given by

p(SN,oN) = *(«o •/>(«, M- nw«wW^«iW] (2-1)
t=2

In this equation, ir(s) is a probability distribution that gives the probabilities

of the states in the first frame. The goal is to find the most likely state sequence given

Opf> Therefore, if the path probabilities of all the possible state sequences are known,

the sequence corresponding to the highest path probability represents the most likely

state sequence. However, it is impractical to compute all the possible state sequences:

among all the possible sequencesending in a certainstate s, it is sufficient to compute

only the probability of the most likely sequence, P(On, s) that leads to s. Is this

probability known for every state in the HMM, the state that maximizes P(On, s) is

the endpoint of the most likely state sequence.

Let us define the state probability, P(0,-,s), as the probability of the most

probable state sequence that ends in s and generates O,-, a sequence of i feature values.

This probability will be used to compute the desired state probability P(On, s) by

means of a dynamic programming scheme called the Viterbi algorithm [7]:

P(01,3) = 7r(5).P(o1|3) (2.2)

P(Oiys) = max[P(Oi_1,p) •A(p,s)]•P(oi\s) (2.3)

The states p stand for all the predecessors of state s, which are defined in

the topology of the HMM. Given these equations, P(0{, s) can be computed for all

states for Oi, then for all states for 02 and so on until all probabilities P(On,s) for

all states are computed. The state with the highest state probability then is the final

state of the most likely state sequence.

This computation can be visualized using the computation graph as shown

in Fig. 2.2a. Associated with the nodes in the left column are the state probabilities of

all the states at frame i —1, P(0,-_i,s). The task is to compute the state probabilities

P(0i,s) which are symbolized with the nodes in the right column. Two nodes on

the same line correspond to state probabilities of the same state, and probabilities

10

P(OI-l,n) now

A(n,n)

a)

O o

P(Oi-lJ)

b)

Figure 2.2: a) lattice structure for predecessor transitions b) lattice structure for

successor transitions

11

on neighboring lines correspond to states that are neighbors in the HM chain of Fig.

2.1.

To compute P(0{y s) for state s, the probability values of the predecessor

states have to be multiplied with the transition probabilities to s. The product

that represents the highest probability is then multiplied with the output probability

P(oi\s), which is defined in the HMM. This implementation will be called predecessor

implementation since all the transitions to a state are considered.

Another possible implementation is to compute the state probabilities based

on the successors z of a state s that has the state probability P(Oi-\, s) at frame 2—1.

This implementation is formalized in Eq. 2.4 and visualized in Fig. 2.2b:

P(Oi, z) = max[P(Oi,*), P(Oi-U*) • A(«, *)] •P(o{\z) (2.4)

There are several states that share the same successor state, and the goal is

to find the transition that results in the highest state probability at frame i for every

possible transition to the state. Therefore, the state probability of the successor is

only updated if the currently considered path results in a higher state probability

than a path that might have been considered previously (and that originated from

another state). For this implementation it is essential that all the state probabilities

for the successor states are set to zero before the computation starts for a new frame.

If Eq. 2.4 has been performed for the successors of every state in the vocabulary,

all the state probabilities have the right values P(0{, s) for frame i as if they where

computed using Eq. 2.3.

2.2 Backtracing

As discussed above, the state with the highest state probability in the last

frame is the endpoint of the most probable state sequence. The task that has to be

performed after the incoming speech pauses, is to recover this state sequence starting

from the endpoint.

This backtracing can be done if there is a list that, for every state in the

12

path, contains a pointer to the preceding state. However, during the generation of this

list the most probable state sequence is not yet known, therefore all state sequences

should be stored. Since every state in the HMM is the endpoint of a state sequence,

there are as many state sequences as there are states in the HMM. Storing this list

would result in a huge memory requirement since there would be an entry for every

state and for every frame.

However, it is not necessary to exactly recover the sequence of states, it is

sufficient to know the sequence of words by storing word transitions. To be able to do

this, it is important to know which word most likely preceded the current word. This

information is provided by the grammar processing subsystem. In every frame, the

first state in a word gets a tag from the grammar processing system that identifies the

most likely predecessor word. If, in the succeeding frames, the most probable state

sequence develops through the states in a word, the tag is transferred to the different

states. Thus, if the last state in the word has a high probability (which means it might

be the final state of the most probable path), it contains the tag that points to the

predecessor word. Using this scheme it is possible to reduce the memory requirement

by just storing the backtrace tags of final states with high state probabilities. The

generation and storage of the tags is not part of the word processing system, all it

does is to transfer the tag from one state to another according to Eq. 2.5:

TAG(s, i) = argmax [TAG(p, i - 1)] (2.5)

TAG(s, i) is the tag associated with state s at frame i. Eq. 2.5 defines that

TAG(s, i) is the copy of the tag associated with the predecessor state p of s that is

part of the most likely path to s.

2.3 Multiple output probabilities

The output probability is the probability that a certain speech segment is

generated while the speech process is in a certain state. In our system it is assumed

that the Markov process outputs a speech segment that is described using up to

13

four different representations, <M\.o^. In other words, every state has associated

with it up to four probability distributions that simultaneously output four different

representations of a speech segment. Therefore the output probability is the joint

probability of the individual outputs. This is formalized in Eq. 2.6:

P(o\s) = P(o™ \s) •P(o<2> \s) •P(o(3) \s) •P(o<4> \s) (2.6)

In the DECYPHER system developed at SRI International [11] the different

features are cepstral coefficients, the time derivative of the cepstral coefficients, the

energy and the delta energy of the speech signal. The individual outputs are vector

quantized or quantized using an 8 bit representation. Therefore the probability dis

tributions of the stochastic functions are discrete and every distribution is composed

of 256 probabilities.

If the HMM is set up that the process outputs only one representation of the

speech segment, this equation becomes obsolete and the output probability is defined

in the probability distribution of the (single) random function associated with the

current state.

2.4 Difference from Viterbi in communication sys

tems

Viterbi decoding is widely applied for various problems in communications,

such as decoding convolutional codes or trellis codes. The hardware available for

these appHcations can however not be used for speech recognition, and the intention

of this chapter is to show the reason for that.

A Hidden Markov Model that describes the process of speech production

typically has a large number of states and a large amount of transitions between the

states. The specifications for the system described in this paper allow for up to 256K

states with an average of three transitions per state within the word models. To store

the topology of a model of this size corresponds to a memory requirement of 3,6 Mbyte.

Storing the probability distributions of the stochastic functions that are associated to

14

each state takes another 64 Mbytes (8 bits per output probability, 256 probabilities

per function, 256K functions). Therefore, high density dynamic memories (DRAMs)

are necessary to store this information, and the hardware that performs the Viterbi

algorithm has to access all this information within a frame duration of typically 10ms.

Thus the bottleneck in performing Viterbi for speech recognition is the acquisition of

data.

On the other side, the Markov process that models the generation of a se

quence of data in a communication system [10] has at most 64 states. Also, there are

not very many transitions between the states, typically two or four per state. That

means, a processor that performs the Viterbi algorithm for this class of applications

can store on chip all the necessary data that describe the HMM. However, the bot

tleneck in this application is throughput. The "frame" durations (called stages) are

in the range of 100ns down to 5ns, therefore there is typically one processing ele

ment provided for one state in the HMM. Another difference is that, instead of using

precompiled, fixed probabilities to describe transitions between the states, a distance

measure between the received signal and the signal represented by the transition is

used. Therefore the hardware performing Viterbi has an arithmetic that can't be

used for speech recognition.

In summary, it is necessary to have a new dedicated architecture with custom

integrated circuits that is capable of accessing all the necessary off chip data. This

system is targeted towards a real time performance for a vocabulary size of 50,000

states, which means that 670 Mbyte/sec have to be accessed.

Chapter 3

Architectural tradeoffs

The intention of this section is to show different possible architectures and

implementations. The tradeoffs between the alternatives will be discussed and our

choice will be motivated.

3.1 Hierarchical storage of output probabilities

The storage of the output probabilities constitutes the most critical memory

requirement in the system. This system is targeted towards real time performance

for 50,000 states, but it is designed to be able to deal with 256K states with an

approximately five times slower performance than real time.

If the output probabilities are stored individually for every state, there are

64 Mbyte of memory required. (8bits per probability value, 256K states • 256 prob

abilities per state = 64 Mbyte) This requirement gets even bigger if every state has

several associated output distributions.

However, not all the states in the HMM are unique states, some of them

actually describe the same speech segment. Therefore it is possible to to reduce the

memory requirement by sharing probability distributions among several states. Con

ceptually, a single phoneme occurs in several words, and the states that describe this

phoneme in the different words can share one probability distribution. Our archi

tecture supports that feature in the following way: Only unique output probability

15

16

distributions are stored and to find the unique probabiUty distribution for a certain

state, a lookup table is used. Using this scheme, the memory requirement could be

reduced by a factor of eight with the cost of a lookup table (256Kxl4).

The tradeoff however is, that the memory containing the output probabilities

is now accessed in a random fashion even though the states in the HMM are processed

sequentially. Since this memory is a DRAM, this degrades the performance since now

the fast column access mode cannot be used. However, the reduction in memory size

was important enough to justify this decision.

3.2 Successor processing versus predecessor pro

cessing

In chapter 2 two different implementations of the Viterbi algorithm were

demonstrated: the computation of the state probabiHties based on the successors of

a state and the computation considering the predecessors of a state.

The advantageous feature of processing transitions to successor states is that

it is possible to save computations in a very straightforward way. States with very low

state probabiHties very unHkely terminate the most Hkely path. Therefore, it is suffi

cient to compute the probabiHties only for states that yield high state probabiHties.

This method is called pruning or beam search, states with low state probabilities are

just not considered. Performing the Viterbi algorithm using transitions to successors

(Eq. 2.4) makes it easy to implement pruning, because states with low state prob

abilities, P(0;_i,s), cannot contribute towards high state probabiHties P(Oi,z) for

the successor states z. Thus, if a state with low probability P(0{-\\s) is encountered,

all the computations for its successors can be dropped.

There are, however, drawbacks of this implementation. One is, that the

computations have to be performed sequentially for every transition to a successor

state because for each transition some P(0,_i,z) has to be accessed. A speedup by

performing this equationin parallel for several successors is not possible sinceit would

result in contention for the memory containing P(0,-, z) (i memory) and the memory

17

containing P(oj_i|s) (output probabiHty memory). The other drawback is, that the

i memory has to be accessed twice, for reading P(Oi, z) and for eventually updating

it if the current transition yields a higher probabiHty. This produces a bottleneck

which is the access of the i memory. Yet another drawback is, that to find out if a

state can be pruned, stiU some computation has to be done. jP(0,-_i,s) has to be

read and compared to a threshold value to make the pruning decision. Sorting the

states according to their state probabilities would be a way to avoid that, but sorting

the states is too time consuming.

This bottleneck can be eased if the Viterbi algorithm is done based on the

predecessors of a state (Eq. 2.3). For this implementation the i memory has to be

accessed only once per state for writing the new state probability. The memory con

taining P(Oi-i, p) (i-1 memory) on the other side has one read access per predecessor.

Now this memory constitutes the new (but faster) bottleneck.

However, implementing pruning for this method is not straightforward. Ev

ery state has to be processed since any predecessor state could have a high state

probability. This is however not known before every single transition from a prede

cessor has been processed.

Nevertheless, our decision was to implement the algorithm based on the

predecessors of a state (Eq. 2.3). There are two major reasons for this decision.

Firstly, the bottleneck to the i —1 memory could be eliminated using cache memories

on the custom processors (see chapter 3.3). Therefore, it is possible to simultaneously

perform the computations for several transitions from predecessor states. Secondly,

pruning is stiU possible on a higher level: the subsystem that considers transitions

between the words has the information if a word has a high probability to be the last

word on the most likely path. Based on this probability, it can prune the words with

low probabilities so that the word processing subsystem doesn't have to consider any

state within a pruned word. The tradeoff is, that even though a word has a high

probability, there might be states within a word that have a low state probabiHty (for

example, if the speech process just started with a word, aU the states at the end of

this word will have low state probabilities). However, the potential speedup in the

performance of the Viterbi algorithm justified this extra computations.

18

3.3 On chip cache memories

The system requirement is to compute the Viterbi equations for 50,000 states

within a frame duration of 10ms. This translates to a computation rate of one state

probabiHty per 200ns. This corresponds to the cycle time of the DRAMs that are

used throughout the system, therefore it is necessary to access within one memory

cycle all the data needed to perform the computations associated with one state (Eqs.

2.3,2.5).

The data that can be accessed in parallel are the locations of the predecessor

states of the current state and their transition probabiHties to this state. Therefore

the memory containing these informations keeps all these data in one single word.

The output probabiHty has to be accessed only once for the computation of one state

probabiHty, so this information is also easily accessible.

The bottleneck however is to access the state probabilities of the predecessor

states, P(Oi_i,p). Unless there are multiple copies of the memory that contains these

probabiHties (i-1 memory), accessing these data is not straightforward. Havingseveral

copies of the i-1 memory however is not desirable because of two reasons. Firstly, it

is a large memory (256Kx32bits) and having multiple copies of this memory would

be a waste. Also, in the next frame the memory that currently is the memory where

P(Oi,s) is written (i memory), becomes the i-1 memory in the next frame so that

this memory would also have to be replicated. The second reason not to replicate

the memories is that they all have to be interfaced to the processing element that

performs the Viterbi algorithm. However, since the number of pins per processor is

limited, this solution would not be feasible: every single memory would require both,

an extra address- and data bus.

The solution to this problem is to use multiple copies of only a subset of the

i-1 memory. This is possible because of two properties of HMMs at the word level:

every predecessor of a state is close to this state and certainly not the state of another

word, and every predecessor is situated to the left of this state or it is the state itself.

Thus, if there are multiple copies of the subset of the i-1 memory that contain all the

state probabilities P(0,-_i,p) of a set of states that are to the left of the current state

19

(see Fig. 2.1), aU the relevant information is replicated. Since the predecessors are

very close to the current state, this subset is small: 16 predecessor probabiHties are

sufficient, which corresponds to the fact that within a word no state has a predecessor

that is more than 16 states away. Therefore, this subset can be replicated on the chip

that performs the Viterbi algorithm.

The state probabiHties are entered in memory analogous to Fig.2.2 such

that consecutive memory addresses correspond to neighboring states in the HMM.

Therefore the state probabiHties that have to be replicated are the ones between the

current address corresponding to the current state and an address with a negative

offset of 16. This subset can be updated by sequentially reading the off chip i-1

memory into the on-chip memories. In this process the predecessor probability that

has the biggest offset to the current address is being overwritten. Fig. 3.1 shows the

principle:

In order to compute P(Oi,t), the state probabilities of the predecessors

P(Oi_i,/),P(Ot_i,e) and P(0,_i,6) have to be read simultaneously from the on-

chip cache memories. To update the set of probabiHties on these cache memories, a

new predecessor probability, P(Oi-\,g) is copied to the three memories. Thus, the

write address is sequential and can be generated using a modulo counter, so that the

oldest value in the memories is replaced with a new value. On the other side, the read

address is generated relative to the current write address using an offset that locates

a specific predecessor.

With this architecture the Viterbi algorithm can be performed simultane

ously for several predecessors without replicating off chip memory or stressing the

number of pins on the processor that does the computations.

P(Oi-l,g)

^i^iMS
P(Oi.ljn)

WOJ-lj)

•peeMjrt—

•

P(Oi-l,l)

iffiil
•$mmmmm

P(OJ.1ji)

—P(OMrt"

P(OM,m)

A(m,m)

MW

KOi-U)

mtm
mmmmmm

P-1*>

•

P(Oi-l,n)

20

At*A)

Figure 3.1: dual ported cache memories that keep three identical copies of a local

subset of the predecessor probabilities.

Chapter 4

Subsystem architecture

Fig.4.1 shows a block diagram of the word processing subsystem. It has three

major components. The first stores all the information associated with the HMMs

of the vocabulary words. Another component stores intermediate results (P(0t_i,p)

and P(Oi_i,s)). Finally, the third component is a processing element that is par

titioned into two integrated circuits, the Viterbi processor that computes the state

probabilities (Eq. 2.3) and the Backtrace processor that copies the backtrace tag (Eq.

2.5).

All the probabiHties associated with the HMM, A(s, t) and B(o\s), are rep

resented with their absolute logarithmic values using 8 bits. The state probabilities

P(Oi, s) have the same logarithmic representation using 14 bits. Therefore, all the

multiplications involved in computing P(Oi, s) can be implemented with additions,

and a maximum operation corresponds to a minimum operation since the absolute

value of the logarithm of a high probability is a small number.

4.1 Representation of the HMM

The part that stores the HMM has two major components, the topology

memory and the output memory. Every word in the topology memory is associated

with a state in the HMM and describes the location of three predecessor states relative

to the current state along with their transition probabilities to this state. There is also

21

sequential^
access

TOPOLOGY

MEMORY

<X1)

vector quantized
features

output

lookup

memory

0(2)

output

22

00) 0(4)

dlstri- button mems

Output Memory
Add/Mux

jtam

BACKTRACE

PROCESSOR

STATE

PROBAB.

MEMORY

1-1

VITERBI

PROCESSOR

STATE

PROBAB.

MEMORY

1

to grammar subsystem

from grammar subsystem

Figure 4.1: Block diagram of the Word Processing Subsystem

23

a control bit that indicates if the state can start a word (has a transition that comes

from another word) and a value that gives the probability that this state can end the

word (transits to another word). Finally, there are two more bits that indicate if a

state is the last state in the word or the last state in the frame. Three predecessors are

simultaneously described because of the fact that a state in the word models mostly

has not more than three predecessors. It is therefore sufficient to simultaneously

access the information related to three predecessors in order to compute P(0,-,s)

within one memory cycle. If a state has more than three predecessors, a control bit

indicates that the next memory location is dedicated to the same state where the

next set of predecessors is described. In this case two memory cycles have to be spent

to compute P(s, t).

The output memory is a combination of 5 memories and some discrete logic

to implement the computation of the joint output probability as defined in Eq. 2.6.

Addressed with the same address as the topology memory, the output lookup memory

(see Fig.4.1) provides the high address bits for the 4 output distribution memories. As

discussed above, this indirection is used because many states share the same output

distributions. The other part of the address for the individual output distribution

memories are the vector quantized features o^ through o^ of the current speech

frame. According to Eq. 2.6, the resulting output distributions P(oW\s) through

B\(s,0^\s) are either multiplied (added) or, if an output probability based on one

feature is desired, multiplexed to get P(o\s).

This operation has been implemented using discrete components. The ra

tionale not to implement it on one of the custom processors is to save pins: the inputs

to this operation are four output probabiHties, 8 bit each. The output is one output

probability represented with 8 bits, so implementing this function on the board level

saves 24 pins. Also, the operation is a straightforward addition/multiplex operation

which is easy to implement using off the shelf components.

24

4.2 Memories for intermediate results

The two state probabiHty memories contain the state probabiHties and the

backtrace tags for two consecutive frames, i — 1 and i. Using the same address

that the memories containing the HMM use, every location of the i-1 memory keeps

the state probabiHty and the backtrace tag of the state that is associated with this

address. In the case where a state has more than three predecessors (= occupies more

than on address location), only the location with the highest address describing that

state has meaningful values. In order to perform Eqs. 2.3 and 2.5, the system reads

P(Oj-i, p) and TAG(p, i —1) from the i-1 memory and writes the result, P(0{, s) and

TAG(s, i) into the i memory. After a whole frame has been processed, the memories

are "flipped" in such a way that the i-1 memory becomes the i memory and vice

versa.

4.3 Processing elements

The custom processors that perform the Viterbi equations are partioned

Into two processors: the Viterbi processor that computes P(Ot-,s) (Eq. 2.3) and

the backtrace processor that transfers the backtrace tag, TAG(s, i), from the best

predecessor to the current state according to Eq. 2.5.

It was necessary to make a partition into two processors because of the

Hmitation in the pin count. The partitioning we selected was natural in the sense that

each processor implements a different computation. Since the data needed for these

computations are different, this partition made it possible not to exceed 208 pins per

processor. Both processors are simultaneously working on the same state, therefore

all the input and output data of both processors can be stored in the same address

location throughout the system. The only communication between the processors are

some control pins that instruct the backtrace processor which predecessor state is

contained in the most probable path so that the proper tag can be selected.

Chapter 5

Custom processors

Both custom processors on the system, the Viterbi processor and the Back

trace processor, have some common architectural features that wiU be described before

the individual processor description.

5.1 Pipelining

The system architecture as described above makes it possible to access within

one memory cycle all data that are necessary to perform the Viterbi equations (2.2),

(2.3) and (2.5). To make use of this potential, an processor architecture has to be

defined that is able to cope with this throughput.

We decided to implement a pipelined structure with parallel data paths for

the computation of the transitions from the predecessor states, (P(Ot_i,p) • A(p,s)).

To minimize the design effort for the custom chips, the processor uses the same cycle

time that the memorys have (200ns). Therefore, the timing requirements for the

processors are manageable and the control can be implemented in a straightforward

way.

This basic clocking strategy has the consequence, that a memory access has

to be pipeHned: data can only be expected one cycle after the address has been put

out. This does not complicate the architecture since the address computation is not

dependent on data. Therefore it can be guaranteed that the processors can read and

25

26

write continuously.

In order to have the potential to increase the clock frequency in the case when

faster memories are used, we tried to avoid critical paths throughout the processors.

Since the latency introduced by the pipeHned processors is not an issue, we aUocated

a pipeHne stage for every operation like additions or comparisons. To avoid critical

paths due to wiring delays, also a pipeHne stage was allocated whenever there was

global communication on the chip. Thus, broadcasting data on the chips corresponds

to a pure register transfer operation. For example, this was done for the control

signals that are provided by the control unit and that have to be distributed to the

individual data paths and for data communication between data paths. Using the

strategy, the critical path could be reduced to the critical paths of the slowest logic

blocks, which in our design is a saturating 14 bit adder.

5.2 Control logic

We chose for the controller a data stationary control architecture. This

means that aU the necessary control for aU the different pipeHne stages is generated

simultaneously for one set of data. To have the right timing for the individual bits in

the control word, the controUer has pipeHne registers that delay the control bits so

that they foUow the data through the pipeHne. Whenever a control bit is required at

a certain pipeline stage, it is diverted from the control delay register that corresponds

to the pipeHne stage.

This architecture was chosen because it minimizes the size of the finite state

machine (FSM) that generates the control word. This is because the sequentiality

is reduced and therefore fewer states are required with respect to a direct imple

mentation using time stationary control: in time stationary control all control bits

are generated for a particular instance of time and directly routed to the individual

pipeline stages. Since for a heavily pipeHned structure data stationary control results

in a smaller FSM, it can be clocked with higher clock rates than time stationary

control.

27

Figure 5.1: Dynamic Scanpath Register.

5.3 Testing strategy

The pipelined architecture introduces a highly sequential behavior, which

makes it hard to control or to observe internal nodes solely using inputs or outputs

of the processor. Therefore we chose to use the scanpath test methodology. Every

register is implemented as a scanpath register so that the inputs and outputs of every

logic between registers are completely controllable and observable.

To minimize the overhead in area and pins introduced by using scanpath

registers throughout the design, we designed pipeline registers that have only one

additional transfer gate over a regular dynamic master slave register (see Fig. 5.1).

The register uses the same two phase clock for testing as well as for the normal mode

of operation. The input transfer gates of the register are driven by a signal that is a

combination of a conditional load signal, a signal indicating the scantest mode and

the master clock. Therefore only two additional pads had to be provided per scanpath

(scanin, scanout) plus one control pin that indicates operation in sequential mode.

28

The scanpath was partitioned into several smaller scanpaths so that in case

of an error in one part of the chip stiU other parts can be tested.

5.4 Viterbi processor

Fig. 5.2 shows a block diagram of the Viterbi processor which updates state

probabiHties according to Eq. 2.3. As discussed above, the processor has on chip

bidirectional cache memories to store 16 state probabiHties P(0,_i,p). We provided

3 dual ported memories so that the path probabiHties for three predecessors can be

computed in parallel. Since there are mostly not more than 3 predecessors for a state

in the word model, most states will be updated within one processor cycle. The

write address, which is the same for all memories, is generated by a modulo counter.

The read addresses are computed relative to the write address using offset addresses

that are provided by the topology memory. The three state probabilities at the

output of the memories then have to be multiplied with the transition probabilities,

A(p,s) (see Eq. 2.3), which is implemented with an addition of the logarithm of the

probabilities. After that operation, the probabiHty with the highest value is selected

corresponding to a minimum operation of the logarithmic values. Whenever a state

has more than 3 predecessors, this minimum operation is done sequentially on sets of

3 predecessor probabiHties to find out the overall best value. To this selected value the

output probability, P(o\s), provided by the output probability memory, is multiplied

(added) to finally compute P(0,-,s).

In order to minimize the wordlength of the probabiHty values the processor

performs a normalization based on the overall best probability of the previous frame.

Also, to support a pruning operation on the wordlevel, the highest state probability

of every word is computed.

ParaUel to the computation of Eq. 2.3, the Viterbi processor computes the

probability that a word ends. This probability is the overall maximum of the state

probabiHties of a given word multiplied (added) with their transition probabilities to

the end of the word. The implementation is such that potentially every node can end

a word, but only meaningful transitions have a non-zero transition to the end of the

29

WXrU)

dui ported

A \U
topology

trans prob.
to dest. gnode

destination
grammarnode

probability

dwl ported

£
w • r i •—I

dul ported

relative
predecessor

addresses
x

0*1 Qi q> A(x,s)

A&sL

Mz£_

output probability

stateprob(i)
•

wordmin

Figure 5.2: Architecture of the Viterbi Processor.

y

30

word.

The processor (Fig.5.3) has up to 11 levels of pipelining. The basic blocks

are 8 data paths, 3 bidirectional memories and a control unit with a data stationary

control architecture. The chip has been fabricated through MOSIS using a 2 /zm

CMOS technology. Including 204 pads, it has a die size of 11.6 x 9.8mm2 with 25,000

transistors.

5.5 Backtrace processor

The architecture of the Backtrace processor is shown in Fig. 5.4. It im

plements Eq. 2.5, the backtrace portion of the Viterbi algorithm. Like the Viterbi

processor, this processor has 3 on-chip bidirectional memories to store the backtrace

tags of 3 predecessors of a given state.

The tags are passed through a series of delay registers to synchronize them

to the associated probabiHty data that are simultaneously processed on the Viterbi

processor. Multiplexors are used to generate two different outputs based on control

signals that are suppHed by the Viterbi processor. The first output is TAG(s,i), the

updated backtrace tag for every state within a word, which is stored in the state

probability memoryalong with P(0,-,s). The second output is the backtrace tag that

is given to the grammar processing subsystem along with the probabiHty that the

word ends. There it is eventually stored in memory and later used to recover the

most likely word sequence.

The backtrace processor has a die size of 6.8 mm by 7.5 mm including 132

pads in a 2 micron technology and uses 12,000 transistors.

31

mi"11 JJ.'.1 •'V^-j-iJ^b^Ji^1^^
.. Scc&Ctqr:c,i,i4Mi-si-.t-i«-»>-J-LnL.,i.>..i-..,m^:.Lt-.t.'

Figure 5.3: Layout of the Viterbi Processor.

backtrace tag
ofsource

grammar

node

reg

reg

dmalparted

—a^

I mux

reg

reg I

reg.

TAG(s4)

C

C

du] ported

reg. [

reg

reg.] [

nmx)

reg

reg.

mux D

rea

JS8__I

dsal ported

reg

reg

TAG(s4-l)

mux

s
mux

I

relative
predecessor
addresses

D

)

Tag ofdestination grammar node

Figure 5.4: Architecture of the Backtrace Processor.

32

Chapter 6

Implementation Issues

6.1 Simulation of the Subsystem

The functionality of the system was simulated before the physical implemen

tation. The tool we used was THOR, a behavioral simulator developed at Stanford

University [3].

The behavior of the system was hierarchically described using two different

languages, CHDL and CSL. CHDL uses the C programming language with some

extensions to support the description of hardware. It is used to describe the behavior

of functional blocks on the lowest level of the system hierarchy. These functional

blocks are then interconnected using a pin oriented netlist description called CSL

which supports arbitrary levels of hierarchy.

One problem in the system description was to find the appropriate level of

detail in which the system should be described and to find the appropriate hierarchy

level where functional modules should be described using CHDL. The tradeoffs are

as follows:

If the description is too detailed or the hierarchy level where CHDL is used

is too low the description of the whole system gets very complex. This complexity

makes it difficult to change the description. It is however very likely that in this

initial system simulation phase the description has to be changed frequently. On

the other side, a detailed description is fairly easy to debug since every signal is

33

34

directly observable using the monitors that are part of the THOR simulator. Also,

the simulation description can be used directly for the actual implementation.

Choosing a description where the level of detail is very low, or where the

hierarchy level in which CHDL is used is very high, means that the hardware is

not described in every detail. Subsequently, a new design process has to be entered

to change from this high level description to the description using the SDL syntax

accepted by the LagerlV System [8]. Verifying the functionality of this high level

description is not straightforward, since in the functional CHDL description signal

values are coded as variables. To observe these values the signal monitoring support

offered by THOR can not be utilized, thus a standard software debugging tool has to

be used. However, changes can be made very easily which is important in this early

design process. Also, since the description is very compact, it can be accomplished

relatively fast.

The way the system was actually described was to use CHDL for describ

ing macro blocks on the hierarchy level of data paths, controllers, memories and so

on. The description however was detailed enough to reflect data transitions between

pipeline stages within these modules using variables that reflect the various registers.

To model a register, two variables were used so that distinct values for the master and

the slave state of a master slave register can be distinguished. This hierarchy level of

macrocells was the lowest level used in the simulation description (see appendix A).

The next higher hierarchies were then described using a hierarchical CSL

description that specifies the interconnection of these macrocells (see appendix A).

To minimize the amount of interconnections only logically necessary signals were used.

That means for example that the description of the clock consists only of the master

and the slave clock, there were no inverted master or inverted slave clock specified as

it is necessary for the actual description.

6.2 Test Generation Program

To automatically generate test vectors for processors following the scanpath

testing strategy the program tpgen has been written [15]. It uses a novel approach

35

to test pattern generation by using the functionality of basic logic blocks like adders

or multiplexors as opposed to the functionality of gates. The algorithm used is a

derivative of the classical D-Algorithm. It recursively generates input vectors by

using implication, that means by trying to ripple input test patterns of a certain

logic block in a bigger network of logic blocks to the primary inputs of the network.

The result vectors are generated using the propagation approach of the classical D-

Algorithm, that means, by trying to set the blocks at the outputs of a certain logic

block such that they propagate the result of this block to the primary output.

The program reads the hierarchical OCT Structure Instance View [9], which

is a detailed description of the processor designs. This description is automatically

generated in the process of generating a chip using the LagerlV Silicon Assembly

System [8]. In the first step the program extracts the topology of the scanregister

chain. Then, starting from the inputs of the individual scanregisters, it recursively

propagates through the logic blocks that are the sources of that register and generates

test patterns for testing the blocks along with the expected result vectors.

When the chips came back from fabrication, the state of the program was

not yet fully debugged so that the test patterns were actually generated manually.

However, the program took over the tedious and error prone process of recovering the

scanpath topology.

6.3 Layout Issues

This section gives a short discussion on some decisions that where made on

the layout level.

Due to the huge amount of pads needed to accomplish a high off chip com

munication bandwidth the area of all the chips is determined by the pad frame rather

than by the circuitry. To minimize the chip area narrow pads with a pitch of 175 /zm

have been used.

The registers used to delay control signals as well as data signals are imple

mented using a data path macrocell. This has the problem, especially when control

signals have to be delayed, that outputs of a single bit register can not be routed to

36

the periphery of the data path macrocell, only the N bit register bus as a unit. How

ever, since the registers are optimized for data path macros and due to the uniform

topology of the data paths this approach still results in reasonable area consumption.

The control logic for the data paths (see Fig. A.2) was implemented using the

standardcell design approach because of it's flexibility and ease of design. However,

the trade off is that due to hierarchical routing two routing ares are generated which

results in a substantial waste of area. The solution for this problem would be to

minimize the glue logic along with the number of connections needed by introducing

an additional slice with buffers to the bitsliced data path. This buffer slice would

be part of the data path where routing to the data path is done by abutment. To

minimize the area allocated for the routing channel it would be desirable to partially

flatten the design. However, since all the designs of this subsystem are pad limited

rather than circuit limited these solutions were nor pursued.

The topology of the clock distribution network is set up in such a way that

the clock is locally buffered at the registers. This is also done using standardcells.

With this approach, the clock scew is uniformly distributed along the chip since the

Branches of the clock network have the same capacitive load, which is the input of

the standardcell buffer. Also, only the master and the slave clocks are distributed

over the chips, while the inverted clocks are generated locally.

Chapter 7

Conclusion

The architecture and implementation of a word processing subsystem for a

real time speech recognition system using Hidden Markov Models has been described.

The bottleneck of this system, which is the acquisition of data, has been demonstrated

and an architecture that speeds up this bottleneck using on chip dual ported cache

memories has been presented.

I want to conclude this report by shortly reflecting about the following issues:

how much time was spent on the different design stages, what was done wrong and

what right.

• Where did the time go?

Most of the time was spent in defining the architecture of the system. This

design phase involved understanding the algorithm well enough in order to be

able to predict the influence of architectural decisions on performance figures

like computational speed or recognition accuracy. We spent a lot of time "ne

gotiating" with the algorithm experts, the objective was mostly versatility of

the system versa complexity of the hardware implementation. One outcome of

these negotiations is that the hardware only supports a statistical grammar and

not a variety of grammars like finite-state grammars or unification grammars.

The total time spent on this phase was roughly 6 months.

37

38

After this design phase, code for the behavioral simulation of the system had

to be written. This also involved the architectural design of the chips and

the coding of behavioral descriptions of every single functional module on the

system. All in all, this task took about 3 months.

Once the behavioral description was in place, the custom chips could be designed

and verified. Due to the use of sophisticated design tools (LagerlV) this stage

took only 2 months, even though it involved the design of basic library modules

(scan registers and dual ported RAMs). The verification of the chip designs

was also facilitated by the fact that the behavioral simulator that was used

to simulate the system behavior (THOR) could drive the simulator that was

used on the layout level (IRSIM). Thus, no additional test patterns had to be

generated an the correctness of the chip design was verified by automatically

comparing the outcome of the two simulations.

Finally boards had to be designed to test the chips: A general purpose board

that plugs into an IBM PC and has the task of writing and reading scantest vec

tors to the device under test (DUT) and a special purpose board that contains

a chip carrier and the necessary connections to test the DUT. This was a rather

time consuming task since the chips had many pins (208) that had to be wire

wrapped. In order to test the pads also discrete boundary scan registers were

implemented on the custom test board. The general purpose scantest board

had the problem that it shorted out portions of the microprocessor bus thus de

stroying the mother board. The reason of this failure was mechanically, caused

by bending the board. All in all, this design stage took roughly 2 months.

Finally, it should be noted that these times don't reflect "man months", but

rather "student months". This means, included in those time figures are tasks

like classwork and preliminary examinations.

• What went wrong?

In order to facilitate the board design for the first prototype system, we decided

39

not ot implement pruning on the word level: the state probabilities of all words

in the vocabulary were updated in every frame. On the other side, we made the

decision to use high density dynamic memories to store all the necessary data.

Both of these decisions substantially influenced the performance. But had we

implemented word pruning in conjunction with using fast static memories the

performance of the system would have been better by a factor of eight: the

system could have been operated with 20 MHz as opposed to 5 MHz and only

50% of all the words would have to be processed. Since the use of DRAMs

made the board design more complex than if we had used SRAMS, we could

have had a better system with presumably the same board complexity.

Another architectural decision that increased the board complexity was that all

the memories were implemented as dual ported memories: They can be accessed

by the host processor via the VME bus as well as by the custom chips on the

board. This required a vast amount of discrete components like multiplexors

and tristate buffers to properly select the address and data busses. The better

solution would have been to always access the memories via the custom chips.

If the host processor wanted to access a memory location he then had to do

it giving a control word and the address to the custom processor. Thus the

multiplexing circuitry could be part of the custom IC's, which complicates the

IC design but in return makes the board design a lot easier.

• what went right?

The decision to design the processors in such a way that they can operate with

higher speed (about 20 MHz) proved to be a lucky one: the next generation

system implements natural language processing to further constrain the number

of possible word sequences. However, this increases the task that has to be

performed by the word processing subsystem. Replacing the dynamic memories

with static memories already increases the system performance by a factor of 4

without the need to redesign the processors. The fact that the viterbi processor

also implements functions to support pruning on the wordlevel (computation of

40

the best probabiUty within a word and the possibility to stall the processors)

furthermore boosts the performance by a factor of two, again without changing

the custom processors. The testing strategy that was chosen also turned out to

be an important asset: once the scan test board used in conjunction with an

PC was in place, the task of testing the processors was a very easy one.

All the custom processors have been designed using the Berkeley LagerlV

SiHcon Assembly System. The architecture was described in a textual form and the

layout data were completely automatically generated. The chips have been fabri

cated through MOSIS using a 2/im CMOS nwell technology. The functionaUty of the

processors was successfully tested using the scanpath test methodology, and all the

processors were first time working siUcon.

Appendix A

Detailed Description of the
Viterbi Processor

A.l Block Diagrams

While the functionality of the processor as well as it's architecture was de
scribed in chapter 5, this chapter mainly gives block diagrams to show the physical
implementation of the Viterbi processor.

Fig.A.l gives an overview how the various blocks of the Viterbi processor are
hierarchically composed and interconnected. The hierarchy of the interlaced boxes
reflects the hierarchy of the textual description using SDL (structural description
language, [8]). The names of the blocks in Fig. A.l give the prefix of the corresponding
files of the textual design description. The meaning of the suffices of the filenames
are the foUowing:

7iame.sdl : description of the pure data path without control logic.

name.ctr.sdl : sdl file of the control logic associated with name. These files describe
a standard cell design that is used to generate control signals for data paths as
well as generating the clocks for the scanpath registers. Fig.A.2 shows a block
diagram of the circuitry used to generate these clocks.

namewctr.sdl : sdl file that combines name and name-ctr.sdl.

name.bds : BDSYN [9] description of logic (only used for the sequencer).

narae.eqn : Equations used to automatically generate the file narae_ctr.sdl using
Mani's program eqn2sdl.

Figures A.3 - A.8 show the detailed block diagrams of the various data
paths and controllers of the processor. It should be pointed out that the adders

41

42

shown in these diagrams are actually saturating adders that are implemented using a
2:1 multiplexor in series with an adder. Also, the diagrams don't show the low level
control signals Uke the clocks, the inverted clocks and the inverted control signals
for the multiplexors. Fig.A. 10 shows the state diagram of the finite state machine
"sequencer" that is used in the controller.

OH

srcndprob.daia

D

8tprobinL.data

D

predsel

bidirmeml bidirmem2 bidirmem3

srcnd_regl seconpn d2_data

firstpre 12_data thirdprei2_data

steady rob2_data<

fintUransptobdata.

secontransprob_data^

thirdtransprob_data^

dpi dpi dpi

\. seconpr< b5_data /
firstprobS data thirdra6W..data

•

outmindp

t seta

minpla
^ selb

outmindpwctr

piedecessor.data

writeadd_data

firstpredadd2_<ter

seconpredadd2_data

thirdpredadd2_data

fisecom

sethcom

thficotn

•

1

sequencer

control

i
predadd

^ moreprcd

gnsclect

cof

full

empty

startframe

reset

memorystall

stall

newfirame

popsourcetnv

eoflO

pushdestlO

newwordll

newwordl3

proc

Figure A.l: Block diagram of the Viterbi Processor

43

-a
•a

-o
-a
•a

-a
-a
-a
-a

to

phifinv

stal

phis

scant istinv

inv phii linv

AAAA
scantest

still phim

l>-01-{>

D-^1-^

£~-D>°1-{>

philinv5

phi5

Shiftinv5
—>

shift5

loadinvS
>

philinvl

phil

shiftinvl
—>

shiftlj»h>^
loadinvl

>

Figure A.2: Block diagram of the clock generation circuit

44

oo..

^
inaddcounterl

inaddcounter_regl

predecessor_data[ll .-0]

topologyl

topology„regl

[11:8] [7:4] [3:0]

^57- \ +

firstptedadd2 seconptedadd2 tbjrdpredadd2

writeadd_data[3.-0]

_&storedaddreg2 seconpredadd_reg2 thttdpredadd_reg2

seconpredadd2_data[3:0J

firstpredadd2_data[3.-0] thirdpredadd2_data(3:0]

Figure A.3: Block diagram of address computation unit

45

pred2 datallliOl

minvaluefll:01

newword2 con i o

muxl2

transprobjdata

transprobl

transprob regl

transprobl_data[ll:0]

transprobl

transprob reg2

transprob2_data[l 1:0]

prob2_data[ll:0]

prob3 transprob3

probree3 transprob reg3

prob3_out[ll:0] transprob3jout[l 1K)]

V±J
prob3_data[U.-0]

probA

prob reg4

< conpl2 >
probS

prob regS

prob4_out[ll:0] prob5_out[ll:0)

Figure A.4: Block diagram of the data path dpi

46

compin

compresultmm:

47

tkirthrauprob_data(llJ)]

lltam X
-• Utfcom

mimaltu[U.-0]

-Ii-IM J>

n
LU V

-• tktrdprobSjnalll.-O}

tkirttprtdlJatalll.-O] thirddpl

•TfiW

tUrdprob4_o*[llti]

secotarouprob_dctalll-§l

uninninm X
"• sttkcom

mi**eltu[ll.i>]

>♦

yUUJr; -• seconprobS_out[U .-0]

seconpred2_daXa[ll.-0/ secondpl

•TftW

ttconprob4j»d[ll.-0]

firaprcMjtutlll H>]

firsttrauprob_daalll4>]

linihm X
-> fist

srau^rob2_dtaa[JJ.-0J

flrstdpl

•>• firstprob5_out(ll:0]

firstprt&jlataiua]

"gXUfiZQ-

Figure A.5: Block diagram of the data path predcom

firstprob5_out[ll:0]

seconprobS_out[ll;Q]

thirdprob5_out[ll:0]

outprob data[ll:0]

I

sela. ^ "»
v pndnmx

ontptobi

e*prob m]

OBisnUL(titi(llK>]

otitproU

eutsrob rtt3

ootprot>3_dct*{ll:0]

eutproM

GtltDfOO ft8f

ooasoM.dattlllH)]

otiprobS

entomb r*a5

1
selb

J2_

morepn dmux?

morepred7S4
newword7

newframe7

irob7>prob8?

graft rwjtf

prob8_out[ll:0]

pwM.oalllH)] oaqirab5_atti(U:6]

V^7
proW.dtttJUKJ]

preb6

prob rtt

pnb6_ant(llH)]

XHZ7
pnb6jdttt[ll^t]

^rog/^

f«7

pnV7_oat(llrf)]

JEL pn b7>wonbitMT

D-C
WOfUtlttUg

wowiwiri nrafl

oldmin6 out[ll:0]

i00-00
• I

new

pn b7>flammun8f

J"'DHZ fitOfUMMX

fra*umin8

fiam*min n*8

wordmin8_out[ll:0] framemin8_out[ll:0]

Figure A.6: Block diagram of the data path outmindp

48

49

proM auWli*] ptrauprob_il*U[lI:0]

£
gHtrauprobl

gntrauprob rtgl

£iiti fnfprftft/_iwt

gntransprobl

gntrauprob rtsZ

gntrasprob2_aat

Siaratuprob3

gntrauprob res3

gDtmupnb3_out

gntransprob4

gHtrauprob rea4

gntmsprob4_out

gntrauprobS

gntrauprob regS

gUliwisprob5_oul

gHtrauprobl

gntrwuprob rtg/6

ffHim iiprob6_out

gntrauprob7

giitraupnb rtg7

fpSnosptoVfjoat

gntrauprobS

gHtrauprob rtg8

jpiliMuprohojonx

^
*«"<**

gndprob rt«9

JH_ gnpt ob9 > gnproblOT

3> gHOHWC

gnproblO

gndprob rtglO

gpdmwL.9 g«probIO_oot(ll:0]

Figure A.7: Block diagram of the data path dgndalu

newwofd9x

wordmin8_out

wordmin_r*g9

wonhnin9out

wordminjreglO

wofdminlOjoot

: SZ
1 •

wmux

wonfantnlO

•wordminjrtgll

wordminllout

gBpfOblOjOOt

newword9. l •
gmux

wcrdminlO

gnprobjregll

wordminllout

eoi9.

framemin8_out

JramnnM_reg9

feattwmtnO OQt

fram*min_nglO

fnmcmmlO_oat

/mux

p JIIWHtftllfl

framunuijtgll

frameminllout

prob8_out

prob_reg9

prob9_out

prob_nglO

problO_out

prob_r*gll

probll.out

Figure A.8: Block diagram of the data path taildp

50

giutUd2 4-

mcreprtd7 ^
ntwword? Jr

ruwfran*7

iuwword9

ptukdvtlO ^

tq/9
luwwordJ] $

iuwwordl3 ^-

mortprtd
giueltct

td tof tow

DDDD

•hiftrcgl

13
sfaift_rcg2

4r ilr 4r 1
ihifl_reg3

X X X Jr 4
ihlft_reg4

X X X X X

thift_rtg5

chtft_rcg6

tfaift_reg7

Jhift_reg8

X X X X

ihift_reg9

I
«hift_reglO

S
shiit_rcgll

i=T
shift_regl2

shift_regl3

4—

Figure A.9: Block diagram of the controller

mtmoryjtaU

presenutate[3:0l

—•

51

«o/70
o

dFlFO?
process 1

Figure A. 10: State diagram of the sequencer

52

emdtybar

53

A.2 Input and Output Pins

This is a listing of all the pins of the Viterbi Processor along with their logic
meaning:

stprobin-data 14 bit data bus that inputs the state probabilities at time 2—1 from
the state probabiUty memories.

outprob2_data 8 bit data bus, used to input the output probabilities 6j,& from the
output probability memory. The data on this bus have to be delayed by three
clock cycles. This takes care of the fact that the output probabiUty memory
with the output probabiUty memory lookup table introduces this delay.

srcndprob.data 14 bit bus that inputs the source grammar node probabilities from
the FIFO that interfaces the word processing subsystem with the grammar
processing subsystem.

morepredmux7 Control output that has to be connected to the Backtrace Proces
sor. It is active if a state has more than 3 predecessors and if the first set
of predecessors has probability values that are better than the second set of
predecessors.

dgnenable input control pin to indicate that a state has a non-zero transition prob
ability to the destination grammar node.

odpscanout scanout of the data path outmindp.

phis input of the slave clock.

phim input of the master clock.

udpscanout scanout of the data path upperdp.

scantest control input signal for scantest.

new control input signal, valid during the first frame of the recognition. The signal
should be asserted by the //processor to indicate that all the values read from
the state probability memories have to be disregarded.

sela control output signal that has to be connected to the Backtrace Processor.
Indicates (together with selb) which predecessor has to be selected.

selb control output signal that has to be connected to the Backtrace Processor.
Indicates (together with selb) which predecessor has to be selected.

odpscanin scan input for the data path outmindp.

54

gntransprob-data 8 bit input bus for the destination grammar node transition
probabiUties read from the topology memory.

gndmux9 control output signal that has to be connected to the backtrace processor.
It is used to select the overaU best destination grammar node probability within
a word.

dascanin scan input for the data path dgndalu.

dascanout scan output for the data path dgndalu.

gnprobll-out 14 bit output bus with for the destination grammar node probability.
This bus should be connected to the FIFO that interfaces to the grammar
processing subsystem.

probll-out 14 bit output bus for the state probabiUties at time t. This bus has to be
connected to the state probabiUty memories. The data on this bus are delayed
by 11 cycles relative to the current state (relative to the address counter).

wordminll-out 14 bit output bus for the best probabiUty value within a word.
* This value is needed by the Backtrace Memory Processor to generate a pruning

threshold.

startcounter control output signal used to reset the addresscounter in the Backtrace
Processor.

tdpscanout scan output for the data path taildp.

tdpscanin scan input for the data path taildp.

pcscanout scan output for the data path predcom.

pcscanin scan input for the data path predcom.

thirdtransprob-data 8 bit input bus for the transition probabiUty from the first
predecessor. This bus has to be connected to the topology memory.

secontransprob-data 8 bit input bus for the transition probability from the second
predecessor. This bus has to be connected to the topology memory.

firsttransprob-data 8 bit input bus for the transition probability from the third
predecessor. This bus has to be connected to the topology memory.

phil4 output signal to probe the slave clock generated internally on the chip.

startframe input control signal that indicates the start of a frame. This signal does
not have to be synchronized to the clock on the subsystem.

55

memorystall input control signal that indicates that one of the memories can not
be accessed. The action that the Viterbi Processor takes in this case is to stop
any operation by keeping the current states in aU the internal registers.

full input control signal that indicates that the FIFO containing the generated desti
nation grammar node probabilities is full. The action that the Viterbi Processor
takes in this case is to stop any operation by keeping the current states in all
the internal registers.

empty input control signal that indicates that the FIFO containing the source gram
mar node probabilities is empty. The action that the Viterbi Processor takes
in this case is to stop any operation by keeping the current states in all the
internal registers.

reset input control signal that puts the processor in the reset state.

popsourceinv output control signal that pops the FIFO containing the source gram
mar node probabilities.

newframe control output signal used to start the addresscounter. This synchronous
signal is generated as a result of the asynchronous startframe signal asserted by
the /^processor.

eof control input from topology memory. Used to indicate that all states of the
vocabulary have been processed (= end of a frame).

eow control input from topology memory. Used to indicate the end of a word. This
signal has to be valid one state before the final state of a word.

pushdestl3 control output signal to the backtrace memory processor. This signal
conceptually implements a slave clock since it is the delayed version of the
pushdestll signal.

load4 output signal to probe the master clock generated internally on the chip.

pushdestll control output signal to push a new destination grammar node prob
ability into the FIFO that interfaces with the grammar processing subsystem.
This signal is also used to trigger the Backtrace Memory Processor.

newword9 control output meant to interface with the Backtrace Processor.

eoflO control output signal used to reset and stop the address counter on the sub
system. This signal has to be still delayed by 2 clock cycles or, the last word in
the vocabulary has to be a dummy word.

controlscanin scanin signal for the controller.

56

controlscanout scanout signal from the controller.

gnselect control input signal from the topology memory. It is high whenever a state
in a wordmodel has the source grammar node as predecessor.

gnselect2 delayed version of gnselect. This signal is needed by the Backtrace Pro
cessor.

morepred control input signal from the topology memory. It indicates that a state
has more than three predecessors.

predecessor-data 12 bit input bus containing the three 4 bit offset addresses of the
predecessors. These offsets are coded using the two's complement notation. Bit
3 to 0 contain the (negative) offset address of the third predecessor, bits 7 to 4
the offset address of the second and bits 11 to 8 the offset address of the first

predecessor. Bit 0 is the least significant bit.

udpscanin scan input for the macrocell upperdp.

stall control output signal that indicates if the processor stalls its operation. It has
to be connected to the Backtrace Processor.

Appendix B

Thor description of the Subsystem

This appendix shows THOR descriptions of two different hierarchy levels in
the subsystem. The first example shows the lowest level of hierarchy, the description
of the behavior of the data path dpi (see Fig.A.l, Fig.A.4). The syntax of the
description is CHDL (C hardware description language), an extended C syntax [3].

MODEL(dpl)
{

IN.LIST

SIG(phim);
SIG(phis);
SIG(stall);

GRP(transprob.data, 14);
GRP(pred2.data, 14);
GRP(minvalue, 14);
GRP(compin, 14);
SIG(newword2_con);

ENDLIST;

OUT.LIST

GRP(prob4_out, 14);
GRP(prob5_out, 14);
SIG(compresult);

ENDLIST;

ST.LIST

GRP(transprobl, 14)
GRP(transprob2, 14)
GRP(transprob3, 14)
GRP(transprob.regl, 14) ;
GRP(transprob_reg2, 14);

57

GRP(transprob_reg3, 14);
GRP(prob3, 14)
GRP(prob4, 14)
GRP(prob5, 14)
GRP(prob_reg3, 14)
GRP(prob_reg4, 14)
GRP(prob_reg5, 14)

ENDLIST;

if (stall == ONE) EXITMOD(O);

if ((phim == UNDEF) || (phis == UNDEF)) {
fprintf(stderr, "dpi: phim II phis undefined\n");
EXITMOD(O);

}

if (phim ob ONE) {
/*

* PIPELINESTEP 1:

*/

if (fckbin(transprob_data,13,0) != PASSED) {
fprintf(stderr, "dpi: transprob_data[13:0] undefined\n");
EXITMOD(O);

}

transprobl[] = transprob.data[];
/*

* PIPELINESTEP 2:

*/

transprob2[] = transprob.regl[];
/*

* PIPELINESTEP 3:

*/

if (fckbin(pred2_data,13,0) != PASSED) {
fprintf(stderr, "dpi: pred2_data[13:0] undefined\n");
EXITMOD(O);

}

if (fckbin(minvalue,13,0) != PASSED) {
fprintf(stderr, "dpi: minvalue[13:0] undefined\n");
EXITMOD(O);

}

transprob3[] = transprob_reg2[];
if (newword2_con == ZERO) prob3[] = pred2_data[];

58

59

else prob3 [] = minvalue [] ;
/*

* PIPELINESTEP 4:

*/

if ((prob_reg3 [] + transprob_reg3[]) > 4095)
fsetword(prob4, 13, 0, ONE);

else prob4[] = prob_reg3[] + transprob_reg3 [];

/*

* PIPELINESTEP 5:

*/

if (fckbin(compin,13,0) != PASSED) {
fprintf(stderr, "dpi: compin[13:0] undefined\n");
EXITMOD(O);

}

if (prob_reg4[] <= compinC]) compresult = ONE;
else compresult = ZERO;

prob5[] = prob_reg4[];
}

if (phis == ONE) {
transprob.regi[] = transprobl []
transprob_reg2 [] = transprob2[]
transprob_reg3 • = transprob3[]
prob„reg3 [] = prob3 [] ;
prob_reg4[] = prob4[] ;
prob_reg5 [] a prob5 [] ;

}
prob4.out[] = prob_reg4[] ;
prob5_out [] = prob_reg5 [] ;
EXITMOD(O);

}

60

The second example describes the interconnection of blocks according to
Fig.A.5. The syntax used in this hierarchy level is csl [3] which supports a pin
oriented netUst description.

(sub « predcom)
(i=

phim,
phis,
stall,

nevword2,

gnselect2,
minvalueC0-13],
srcndprob2.data[0-13],
firsttransprob.data[0-13],
firstpred2.data[0-13] ,
secontransprob_data[0-13],
seconpred2_data[0-13],
thirdtransprob„data[0-13],
thirdpred2_data[0-13])

(o=

firstprob5_out[0-13],
seconprob5_out[0-13],
thirdprob5_out[0-13],
fisecom,

sethcom,

thficom)

{

(f=../dpl/dpl)(n=firstdpl)
(i= phim,phis,stall,

firsttransprob_data[0-13] , firstpred2_data[0-13],
srcndprob2_data[0-13], seconprob4_out[0-13], gnselect2)
(o= firstproM.out[0-13], firstprob5_out[0-13] , fisecom);

(f=../dpl/dpl)(n=secondpl)
(i= phim,phis,stall,

secontransprob_data[0-13] , seconpred2.data[0-13],
minvalue[0-13], thirdprob4_out[0-13], newword2)

(o= seconproM.out [0-13], seconprob5_out[0-13] , sethcom);

(f=../dpl/dpl)(n=thirddpl)

61

(i= phim,phis,stall, •
thirdtransprob_data[0-13] , thirdpred2_data[0-13],
minvalue[0-13], firstprob4_out[0-13], newword2)

(o= thirdprob4_out[0-13] , thirdprob5_out[0-13], thficom);

List of Figures

2.1 State transition graph of a typical HMM used in the word processing
subsystem 8

2.2 a) lattice structure for predecessor transitions b) lattice structure for
successor transitions 10

3.1 dual ported cache memories that keep three identical copies of a local
subset of the predecessor probabilities 20

4.1 Block diagram of the Word Processing Subsystem 22

5.1 Dynamic Scanpath Register 27
5.2 Architecture of the Viterbi Processor 29

5.3 Layout of the Viterbi Processor 31
5.4 Architecture of the Backtrace Processor 32

A.l Block diagram of the Viterbi Processor 43
A.2 Block diagram of the clock generation circuit 44
A.3 Block diagram of address computation unit 45
A.4 Block diagram of the data path dpi 46
A.5 Block diagram of the data path predcom 47
A.6 Block diagram of the data path outmindp 48
A.7 Block diagram of the data path dgndalu 49
A.8 Block diagram of the data path taildp 50
A.9 Block diagram of the controller 51
A.10 State diagram of the sequencer 52

62

Bibliography

[1] Y.L. Chow, M.D. Dunham, O.A. KimbaU, M.A. Krasner, G.F. Kubala,
J. Makhoul, P.J . Price, S. Roucos, and R.M. Schwartz. Byblos: The bbn con
tinuous speech recognition system. In Proc ICASSP 87: 1987 International
Conference on Acoustics Speech and Signal Processing, pages 89-92, April 1987.

[2] W. Drews, R. Laroia, J. Pandel, A. Schumacher, and A. Stolzle. A cmos pro
cessor for a 1000 word speech recognition system. In Proceedings of the IEEE
Custom Integrated Circuits Conference, pages 559-562, May 1987.

[3] VLSI/CAD Group. THOR. Stanford University, release 3.2 edition, 1986.

[4] Robert A Kavaler. The Design and Evaluation of a Speech Recognition System
for Engineering Wordstations. PhD thesis, University of CaUfornia at Berkeley,
May 1986.

[5] K.Lee and H. Hsiao-Wuen. Large vocabulary speaker-independent continuous-
speech recognition using hmm. In Proc. ICASSP 88: 1988 International Con
ference on Acoustics Speech and Signal Processing, pages 123-126, April 1988.

[6] K.Lee, H. Wuen, and M.-Y. Hwang, recent progress in the sphinx recognition
system. In Proc Speech and Natural Language Workshop, pages 125-130, Febru
ary 1989.

[7] B H Juang L R Rabiner. An introduction to hidden markov models. IEEE ASSP
Magazine, pages 4-16, January 1986.

[8] Electronic Research Laboratory. LagerlVDistribution 1.0 Silicon Assembly Sys
tem Manual. University of Claifornia at Berkeley, June 1988. Distribution 1.0.

[9] Electronic Research Laboratory. Oct Tools Distribution 2.1. University of
Claifornia at Berkeley, March 1988. Distribution 2.1.

[10] H.-D. Lin and D. Messerschmitt. High speed viterbi decoding. Submitted to
IEEE Trans, on Communications, 1989.

63

64

[11] H. Murveit, M. Cohen, P. Price, G. Baldwin, M. Weintraub, and J. Bernstein.
Sri's decipher system. In Proc Speech and Natural Language Workshop, pages
238-242, February 1989.

[12] J. Rabaey, R. Brodersen, A. Stolzle, S. Narayanaswamy, D. Chen, R. Yu,
P. Schrupp, H. Murveit, and A. Santos. VLSI Signal Processing III, chapter
A Large Vocabulary Real Time Continuous Speech Recognition System, pages
61-74. IEEE Press, 1988.

[13] J. Rabaey, R. Brodersen, A. Stolzle, S. Narayanaswamy, D. Chen, R. Yu,
P. Schrupp, H. Murveit, and A. Santos. Real-time large-vocabulary speech recog
nition. In Proc ICASSP '89, 1987 International Conference on Acoustics Speech
and Signal Processing, May 1989.

[14] R.M. Schwartz, C. Barry, Y.L. Chow, A. Derr, M.-W. Feng, 0. Kimball,
F. Kubala, J. Makhoul, and J. Vandegrift. The bbn byblos continuous speech
recognition system. In Proc Speech and Natural Language Workshop, pages 94-
99, February 1989.

[15] A. Stolzle. Tpgen: Automatic tespattern generation for pipeUned parallel pro
cessors. Final project report for eecs 244, University of California at Berkeley,
EECS Cory HaU, Fall '88 1989.

	Copyright notice1989
	ERL-89-133

