

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CAD FOR NONLINEAR CONTROL SYSTEMS

by

Andrew Teel

Memorandum No. UCB/ERL M89/135

11 December 1989

CAD FOR NONLINEAR CONTROL SYSTEMS

by

Andrew Teel

Memorandum No. UCB/ERL M89/135

11 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CAD FOR NONLINEAR CONTROL SYSTEMS

by

Andrew Teel

Memorandum No. UCB/ERL M89/135

11 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CAD for Nonlinear Control Systems

Andrew Teel

Department of Electrical Engineering
and Computer Science

261M Cory Hall
University of California

Berkeley, CA 94720

December 11, 1989

Abstract

A computer software package has been developed to assist in the
control design for a certain subclass of nonlinear systems. Much progress
has been made in the area of nonlinear control recently. The design
procedure that is a result of these advances has been automated in this
software package. Both single-input single-output (SISO) and multi-
input multi-output (MIMO) systems are handled.

1 Introduction

The first part of this report documents a computer software package that
has been developed to assist in the control design for a certain subclass of
nonlinear systems. Control design theory for nonlinear systems of the form

& = /(*) + 9i(x)ui + •••+ gm(x)um m
Vi = hi(x) W

lends itself readily to concise algorithms that can be easily executed using
symbolic manipulator software. Our package is written to run in a MAC-
SYMA environment.

•Research supported in part by the Army under grant ARO DAAL-88-K0572, NASA
under grant NAG2-243, and NSF under grant ECS 87-15811.

After the user has specified the dynamical equations of a system and
certain control criteria, our package will specify the appropriate control law
(under proper conditions) to achieve the desired performance. Also, all nec
essary information will be converted to fortran code which can then be easily
used within simulation software(eg. MATRIXx) to test the performance of
the chosen design.

Section 2 willdetail the theory and differential geometric tools that serve
as a basis for the design algorithms. Both the single input and multi input
theory will be covered. This section will serve to summarize the major
results of the theory. For a more detailed development, the reader should
consult [1].

Section 3 documents the specifics of our software package. The general
flow of the program will be explained along with what is expected from
the user and what is generated by the program. Also, the purpose of each
function and how it relates to the theory will be explained.

Section 4 will contain the documented MACSYMA code of all the ma
chinery necessary to produce the nonlinear control design results.

In section 5 we will present a brief summary of this work along with the
existing limitations of the package. Further, we will comment on features
that might be appropriate to add in the future.

2 Basic Theory

Our design packagefor nonlinear control systems implements basic lineariz
ing theory which we will review here (for more details see [1]).

2.1 SISO Systems

Consider a single-input single-output system

* = f{x) + 9(x)u (0s
y = h(x) W

with x € £n,u 6 ft and /, <j, h smooth. Differentiating y with respect to
time, one obtains

y = Lfh + Lghu (3)
Here Ljh, Lgh stand for the Lie derivatives of h with respect to /, g respec
tively. If Lgh(x) ^ 0 Vrc e ftn then the control law

u=zTgT{"Lfh +v) W

yields the linear system

y = v. (5)

If Lgh(x) = 0, one continues to differentiate obtaining

y = Ltfh + LgLtf1hu (6)

If 7 is the smallest integer such that LgLxAi = 0 for i = 0,..., 7 —2 and
LgV^Kx) ^ 0Vs € £n then the control law

^I^f^-^^ (7)
yields

yw = v. (8)
The preceding discussion assumed that the linearization conditions held

in all of 3ftn. Some completeness conditions on vector fields involving f,g are
sufficient for this (for details see [1]).

We can use the discussion above to define 7 as the strong relative degree
of system (2). (Cases where the relative degree is not defined, namely where
LgLj~ h(x) = 0 for some values of a?, are not handled very elegantly in the
theory and consequently are not dealt with in our package.)

For a system with a strong relative degree 7, it is easy to verify that at
each x° € 9£n there exists a neighborhood U° of x° such that the mapping

defined as

with

*i(s) = & = Kx)
$2(3) = & = L;h(x)

d$i(x)g(x) = 0 for 1= 7+1,

is a diffeomorphism onto its image.

(9)

n

If we set 77 = ($7+i,..., $n)T it follows that the system may be written
in the normal form ([1]) as

& = £2

6y.-i = £y (10)

y = &.

In equation (10), 6(f,7?) represents the quantity Ljh(x) and a(f,??) repre
sents Lglrjr h(x). We assume x = 0 is an equilibrium point of the system
(ie. /(0) = 0) and we assume h(0) = 0. Then the dynamics

V = q(0,n) (11)

are referred to as the zero-dynamics (see [1] for details). The nonlinear sys
tem (2) is said to be minimum phase if the zero-dynamics are asymptotically
stable. It is important to note that the condition

d$i(x)g(x) = 0 for i = 7 + 1,..., n

is not a necessary one for the diffeomorphism to be valid. It is merely
required that the Jacobian matrix of the transformation, d$/dx, is nonsin-
gular at a point x = x°. In general, this requirement will generate equations
of the form

£1 = 6

Vi = e, (12)

Imposing the condition that the output remains at zero we find that

0 = 6(0,r/(*)) + a(0, ??(*))«. (13)

If we solve for u(t) in (13) and substitute into the last equation of system
(12) we have

4-«<o,,)-rfo,,,)*&3> (H)

which describes the zero-dynamics in the new coordinates chosen.
Because of the nature of a diffeomorphism, the stability characteristics

of the zero-dynamics will be invariant with respect to the multitude of ways
the diffeomorphism can be completed.

2.1.1 SISO Stabilization

We now apply the system of equations given by (12) and the minimum phase
property to the stabilization problem. Suppose we choose the control law as

;(-K& V) ~ co& - ci6 - •••- c7_i^).u =

<*(&*?)
Under this control, system (12) becomes

£ = M
V = «(f^)+Jj|^(-Kf.i?)-co&-«i6-...-C7-ier)

with

A =

0 0 0 ... 1

m -Co —Ci -C2 ... -Cr_i

so that A has the characteristic polynomial

p(s) = c0 + cis + ... + c7_i57_1 + s^

(15)

(16)

(17)

If (17) is chosen to be a Hurwitz polynomial then f
know that

«-KM)-KM)^
represents the zero-dynamics of the system. Consequently, we can conclude
that if the zero-dynamics are asymptotically stable and (17) is a Hurwitz
polynomial then (15) asymptotically stabilizes the system.

2.1.2 SISO Bounded Tracking

We now examine the tracking problem in a similar fashion. We desire to
have y(t) track j/m(*)- We start by choosing

1

0 asymptotically. We

u =

«(&»?)

(18)

(-&(£, 77)+c0(yM-2/)+ci(3/M-£)+.. .+cT-i(yJr1)-y(T"1))+»i?)
(19)

Note that 3 '̂-1) = f,-. If we define e,- = j''-1' —y£[, then we have

e = Ae

V = «(?»»?)

+^(-6«•*) +c"(» -»)+••• +«r-i(A"'' " S^-1)) +»M)
= «f,i»)

6 = «« + »fi"1)
(20)

It is easy to see that this control results in asymptotic tracking and bounded

state f provided yjvf>ifMt •••»3$/" are bounded. It can be proved further,
using a converse Lyapunov approach, that 77 remains bounded as well, as
suming exponentially stable zero-dynamics and £(£,77) is Lipschitz in £,77.
Thus, under these conditions, this control yields bounded tracking. (See [2])

2.2 MIMO Systems

Multi-input multi-output systems fall into two categories. (The following
discussion is parallel to the discussion found in [1].)

2.2.1 MIMO - Nonsingular Decoupling Matrix

For a certain subclass of MIMO systems, the control design procedure is a
simple extension of the SISO procedure. This subclass is characterized by
the following definition.

A multivariable nonlinear system has a (vector) relative degree (ri,..., rm)
at x° if:

(i)
L8iL)hi{x) =0

for all 1 < j < m, for all 1 < i < m, for all k < r,* —1, and for all a; in a
neighborhood of a;0,

(ii) the m x m matrix:

A(x) =

Lg.Lj-^X) Lg^-^X) ... Lg^-^X)
Lg.Lj-^x) Lg.Lj-^x) ... LgnLj-^x)

LX^XJ-^M*) Lg.L^hUx) ... L9mLy-lhm(x) J

is nonsingular at x = x°.

Observe that rt- is equal to the number of times one must differentiate
y%{t) before a component of the input appears explicitly. Consequently, rj
can be thought of as the relative degree of the ith output of the system.

The assumption that A(x) is nonsingular is a fairly restrictive one, but
it allows us to proceed naturally to the normal form and zero-dynamics.
If we assume the system has vector relative degree (r,-,..., rm) and r =
7*1 + ... + rm < n, then it is easy to verify that at each a;0 € 9£n there exists
a neighborhood U° of x° such that the mapping

$: u° —• £n

defined as

$(a;) = col[<f>!(x),..., <£ri(a:), ^i(a-),..., ^(x), •. •, »?i(a-), •••, nn-r(x)]

with

<h(x) = hi(x)
<fa(x) = Ljhi(x)

<f>ri = LJ^hxiz)
4>i(x) = h2(x) (21)
tf)2{x) = Lfh2{x)

W2 = Lj~lh2{x)

and 77,- chosen so that $ has a nonsingular Jacobian matrix at x°.
To derive the normal form we will consider a system with two inputs

and outputs. First we define

2r = co/[^1,^2,...,^i,^2,...,r7i,...,77n_r].

Then observe that

0i = 4>2

4>tx-i = <j>rx-i
j>ri = LJhxix) +Z^Z^Ma-WKW +Lg^/^htixit^u^t)

(22)

and similar expressions are obtained for ^>i,^>2> Note that the terms
multiplying the inputs are the entries in the first row of the decoupling
matrix. Since x(t) = $~* (;?(*)) we have

A(z) =

and

an(z) a12(z)
a2\(z) a22(z) L^Ly-'h^-^z)) LnV^h2{<S>-\z))

(23)

»W = Hz) LJh2{i-\z)) .
Then, in the normal form, the equations appear as:

*1 =
^2 =

^ri =
^1 =
^2 =

<t>ri-\
bi(z) + an(z)ui + a12(z)u2
$2
4>3

^r2-l =
*» =

V

yi

y2

^r2-l
62(2) + 021(2)^1 + a22(z)u2
q(z) + Pi(z)ui + P2(z)u2

fa.

(24)

(25)

Normal forms for systems with more inputs and outputs have the same
structure.

We now proceed with determining the internal dynamics consistent with
the constraint that the output functions yi(t) are identically zero for all time.
We define

f = col[<j>u<j>2, ••.,^1,^2,...,...]

and

77 = CO/[771,772,...,77n_r]

so that

Observe that this constraint is then written as

m

o=y\ri\t) =&,(o,T7«) +X>ti(o,77(<)K«
t=i

1 < i < 771.

(26)

In vector notation

0 = 6(0,77(0) + A(0,77(*)M*)- (27)

Since A{x) is nonsingular at x = x° by definition, the matrix A(£,n) is
nonsingular at (£, 77) = (0,0) and (27) can be solved for u(t) if n{t) is close
to zero, yielding

«(<) = -[A(0,J?(*))]-16(0,^(t)) (28)

The zero-dynamics are then

VW = 9(0,^W)-^,^))^,^))]-1^, 77(*))
= <Zo(r?«).

(29)

Observe that in the original coordinates x, the necessary input is given by

u(t) = -[A(i(<))]-14(x(t)) (30)

where A(x) is the decoupling matrix in the definition of (vector) relative
degree and b(x) is the m-vector:

b(x) =

Ljhx{x)
Ljh2{x)

. L)mhm{x) .

In this expression for tt, x(t) is constrained to evolve on the subset

M= {x: hi(x) =Lfhi(x) =... =Lj^hfa) =0,1 <i < m} (31)

on which the zero-dynamics is defined.
This discussion of normal forms and zero-dynamics will be used later

when we discuss noninteracting control for MIMO systems.

2.2.2 MIMO - Singular Decoupling Matrix

There exist two basic design philosophies for handling multivariable systems
that do not have a (vector) relative degree. They are known as "prepro
cessing" and "postprocessing". Both strive to produce an extended system
which does have a (vector) relative degree. This package implements a pre
processing algorithm when extension is necessary.

The principle behind preprocessing is to add integrators on the appropri
ate input channels to delay their appearing in the output. This operation is
also known as dynamic extension, and the linearizing and decoupling feed
back law is referred to as a dynamic state feedback law, because an extra
state is generated in the compensator by each integrator that is added to
the system.

An efficient algorithm for completing the appropriate extension for a
multivariable system without a (vector) relative degree is given in [1] and is
repeated here:

1) From the given system information {/(aj),</(a;),/i(a;)}; construct the
decoupling matrix A(x). If the decoupling matrix is nonsingular at x°, the
procedure terminates.

2) Suppose the decoupling matrix has constant rank, p, at all x near
x°. Find a square and nonsingular matrix 0(x) such that A(x)/3(x) has the
following form:

A(x)/3(x) =

* *

1 0

* *

0 1

0 0

* 0

0 0

* 0

0 0

1 0

* 0

The nixni matrix /3(x) is chosen to annihilate the last n{ —p columns of
A(x)P(x), and to impose that, in the first p columns, a set of p rows (whose
position is not uniquely specified) coincide with the rows of the identity ma
trix.

Let ji,...,jq denote the indices of those columns of A(x)/3(x) in which
at least two entries are not identically zero. Note that q > 0 because, by con
struction, all rows of A(x) are not identically zero (by definition of relative
degree) and so are the rows of A(x)/3(x).

10

3) Modify the system by first changing g(x) into g(x)j3(x) and then
adding exactly one integrator on each of the inputs indexed by ii,...,jg.
It is easy to realize that this corresponds to implementing a dynamic state-
feedback having the following form:

i) the dynamics of the feedback has dimension q and is characterized by:

Zl(t) %(*)

dt
I *(*) J L**(*) J

i.e. by q independent integration channels.
ii) the input u to the system is expressed, as a function of the state x,

of the additional state variables zi,...,zq, and of the new inputs vi,..., vni
by:

«(*) = E &*(*(*))**(*) + £ /%(*(*))*;(*)

where Pj(x) denotes the jth column of P(x). The system obtained by com
posing the original system with the dynamic state feedback is denoted by:

x = /(«) + g(x)v
y = h(x)

where

x = (xi,...,xn,zu...,zq)

4) Replace {f(x),g(x),h(x)} by {/(«), 5(»),ft(a7)} and return to step 1.

Two important points should be made about this algorithm. First, the
algorithm yields, in no more than n iterations, a system with a decoupling
matrix nonsingular at x° orno other dynamic state feedback exists yielding
a system with a nonsingular decoupling matrix. In this sense, the algorithm
is exhaustive. Second, the original system and the extended system have
the same zero-dynamics. This is due to the fact that the zero-dynamics
of a system are invariant with respect to the operations in the dynamic
extension algorithm, namely the replacement of g(x) by g(x)/3(x) and the
addition of integrators on input channels. This fact allows us to calculate
the zero-dynamics after the system has been extended when we can proceed
as in the previous section with a nonsingular decoupling matrix.

11

In summary, this algorithm gets us back to the point where we can
proceed with the control design as if the system naturally had a nonsingular
decoupling matrix.

2.2.3 Noninteracting Control

The noninteracting control problem is to find a state feedback control law so
that in the closed loop, each input channel controls one and only one output
channel.

Consider a system with two inputs and two outputs and its normal form
as given in (25). If the following feedback law is used:

u2(t)
flnW 012(2)
a21(z) a22(z)

-1-1 r
-h(z) + vi
-b2(z) + v2

the closed loop system assumes the form:

-1= A -*(*)+

<h = <fo
4>2 = <f>3

^ri-1 zz <f>ri-l
<t>rx = Vi

^1 = i>2
^2 = V>3

^r2-l = ^r2-l
^r2 = V2

V = «(*)-
yi =r <h
y2 = i>i.

= &) - MA'^zMz) + pi(z)vi + p2(z)v2

Vi

v2

(32)

(33)

We see that the input vi controls only the output yi via a chain of 7*1
integrators. Similarly, the input v\ controls only the output y\ via a chain
of r2 integrators. If r\ + r2 < n the system contains an unobservable part.
Namely, the 77 states are effected by the inputs and all the states but do not
affect the outputs. Regardless, the input/output behavior of the closed loop
system has been made linear and is characterized by the following transfer

12

function matrix:

*« = A- ° (34)

It is apparent that this discussion extends easily to systems with more that
two inputs and two outputs.

2.2.4 MIMO Stabilization

We now examine the stability of a system that has been made noninteractive
using state feedback. Suppose we choose our control inputs to impose the
following additional feedback:

Vl = ~Co<£l - C\<f>2 ~ .••- Cri_i<£ri +101
v2 = -rfoV'i - diife - ... - dr2-ii/>T2 + w2

(35)

Then the input/output behavior of the closed loop system is characterized
by the transfer function matrix:

H(s) = co+cia+...+cri_i ari_1+ari
0

(36)
do+dia+...+dr2 _i «r2 -1 +sr2

By choosing the c\s and d^s so that the corresponding polynomials are Hur
witz, one can render the input/output behavior stable.

The internal stability of the system, however, depends also on the be
havior of the unobservable zero-dynamics. With w\ and w2 set to zero, the
system reduces to a system of the form

« =
At 0
0 A2

V = q(t,v)~P(t,v)A-\t,Ti)b((,ri) + pl({tTfiv1 + p2(ZiTi)v2
(37)

where A\ and A2 are Hurwitz matrices in canonical form. Consequently,
f —• 0 as t —• oo and the second equation of (37) reduces to

t) = g(0,77) - p(0,t?)A-1(0, 77)6(0,77) (38)

which is exactly the zero-dynamics of the system. We see that, if the zero-
dynamics are stable, the state feedback law has produced a linear noninter
active system that is internally stable.

13

2.2.5 MIMO Tracking

We now examine the MIMO tracking problem in a similar fashion. We
desire to have y,-(<) track yiM(t). We start by choosing in (32) the following
additional feedback:

vi = c0(y1M - yt) + cx{y\M - yx) + ... +Cn-i^fe"1* - y{ri-1)) + yifo
v2 = d0(y2M - y2) + dx(y2M - y2) + ... + dr2-i(2/2M _1) ~ S^"1*) + V^M

(39)
.(•-1) _ ,(«-!) _ _ J*-*)Note that y\ ' = <^,-,yJ } = fa. If we define eit- = y{ 3/im

e2t = y2 —V2m then we have

(t-i)

±
dt

e2

= ci

Ai 0
0 A2

q(Z,v)-p(t,v)A

(i-i)

ei

«2
-i

(£» »?)&(£»?) + pi(£, '/M + ft(€i ^

01 Af

C2t V2m

(40)
It is easy to see from the equations above that this control results in asymp
totic tracking and bounded state £ provided that the desired trajectories and
their derivatives are bounded. It can be proved further, using a converse
Lyapunov approach, that 77 remains bounded as well, assuming exponen
tially stable zero-dynamics and g(f, 77) is Lipschitz in £,77. Thus, under these
conditions, this control yields bounded tracking.

3 The Theory Automated

From our discussion of the basic linearizing theory, it is obvious that the
control engineer has a powerful set of design tools for nonlinear systems affine
in the input. However, it is apparent that the mathematical calculations
involved in using such tools can be cumbersome. Consequently, it would be
very useful to automate this machinery so the engineer can spend more time
refining his design.

The purpose of our package is precisely to automate the determina
tion of Lie derivatives, coordinate transformations, system relative degrees
and zero-dynamics characteristics. Furthermore, this machinery has been
coordinated into a module which progresses through the design procedure

14

systematically and requires minimal user input. Also, to save the design en
gineer more time, the details of programming the design result into Fortran
code for simulation has been automated (but at the time of this writing,
not yet tested.) Our package produces a Fortran program that can be easily
plugged into simulation software such as MATRIXx to simulate the pre
scribed design. Because of the similarities in the SISO and MIMO system
design theory, we were able to generalize one module to handle both cases.

3.1 Getting Started

To use this package, one must enter the MACSYMA environment, and load
in the defined functions that make up our package. When first entering the
MACSYMA environment, the system prompt will be "(cl)". (Subsequent
system prompts will be in the same form with the number that follows "c" in
cremented each time.) All commands to MACSYMA and within the design
module must end with a semi-colon. Loading the package is accomplished
in MACSYMA by typing the following next to the system prompt:

load(" nlcontrol");

After the package has finished loading, the complete design module can be
accessed by typing:

design();

At this point the user will be interacting with the design module which will
lead the user through the design procedure.

3.2 User Input

The first question the user will face is the following:

Save a transcript of this session? ("filename;" or n;)

This give the user the option of saving everything that will
appear on the screen as the design module is running. If a tran
script is desired, the file name must be included in quotation
marks and the line ended by a semi-colon. If a transcript is
not desired, the user should type the letter n without quotation
marks but followed by a semi-colon.

15

The design module begins by prompting the user for information concerning
the uncontrolled nonlinear system. The module assumes the system takes
the form

x = /(*) + 0i(aO«i + •••+ gm(x)um
yi = hi(x)

The user should be prepared to respond to the following prompts to provide
the system the information necessary to begin:

Type "y;" to retrieve previously saved equations. Otherwise type
"n;»

Each time the design module is run, the system of equations
is saved in a file called "systemeq". If you wish to redesign
your control for the last system you enter using different design
parameters, you can avoid reentering the system information by
typing "y;".

A square plant is required (# of inputs = # of outputs)
enter the number of inputs/outputs:

If the system is SISO, type "1;". Otherwise type the number
of inputs followed by a semi-colon.

enter the dimension of the state space:

This is simply the number of state variables of the system.

enter the column vector fasan(nxl) matrix:

You will be prompted for each entry individually. Enter the
(1,1) element followed by a semi-colon. The module will then
ask to the (2,1) entry. (Matrix representation makes internal
manipulation more straightforward.) Note also that the pro
gram assumes you will use state variables specifically denoted as
xl,

enter the column vectors g as an (n x ni) matrix:

Again, you will be prompted for each entry individually.

enter the scalar output h:
enter the output functions as an (no x 1) matrix:

16

Only one of the two proceeding prompts will be printed de
pending on whether the system is SISO or MIMO.

Type "yj" for an operating point other than 0. Otherwise type
"n;"

Linearizing design theory is a local theory and, therefore,
requires an operating point and a corresponding neighborhood
on which the theory is valid.

enter the operating point xO as an (n x 1) matrix
starting with the value of xl....:

This prompt will only be printed if the operating point is
being changed from zero.

3.3 Program Output

Once equipped with the necessary information provided by the user, the
module proceeds to call upon various functions to carry out the necessary
algebraic manipulations.

The first thing that is determined is the system relative degree. If the
system is SISO or MIMO with a nonsingular decoupling matrix, then the
relative degree is well-defined. If the system is MIMO with a singular de
coupling matrix, then a preprocessing algorithm is applied to the system to
generate an extended system that has a well-defined (vector) relative degree.

Next, a valid diffeomorphism between the original states and the states
of the normal form is obtained. No effort is applied to assure that the inputs
do not enter explicitly in the expression for the dynamics of the 77 coordi
nates. This would be time consuming and unnecessary. The 77 components
of the transformation can be chosen arbitrarily as long as the Jacobian ma
trix of the transformation is nonsingular at the operating point. This is
most easily accomplished using the following algorithm:

1) Produce an (r x n) matrix where the codistributions dh{, dL/hi,..., dLrJhi
are the r rows of the matrix. (It is a well known fact that the rank of this
matrix is r).

2)Seti= l,j = 1.
3) Append to the matrix in step 1 a row vector containing a "1" in the

jth column and "0" everywhere else.
4) Determine the rank of the augmented matrix.

17

5) If augmenting the row in step 3 increased the rank of the matrix, then
set rji = x{ and increment i.

6) Increment j and goto step 3.

If the system is not fully state linearizable then the stability of the zero-
dynamics must be checked. Because each of the 77 coordinates was chosen
equal to a different original state, the zero-dynamics corresponding to the 77
variables can be found in the following way:

1) Find the dynamic equation for the corresponding original state vari
able.

2) Substitute the unique input that holds the output(s) at zero into the
dynamic equation found in step 1.

3) Determine the inverse transformation.
4) Replace the original state variables with equivalent expressions in the

new state variables. These expressions follow from the inverse transforma
tion.

5) Set to zero the output(s) and the corresponding r; —1 derivatives of
the output(s). (ie. all of the new state variables except the 77,- fs.)

The stability of the zero-dynamics is then checked using a first order
(Jacobian) approximation. If the eigenvalues of the linear approximation
are all located in the left half plane (LHP) then the zero-dynamics are expo
nentially stable and the module proceeds. If the zero-dynamics are unstable
or the stability cannot be readily determined because those eigenvalues not
in the LHP lie on the imaginary axis, the module will want to stop.

Terminate design procedure? (y; or override;)

The user can override this decision by typing

override;

at this point. This may be done when the user has simulated the zero-
dynamics elsewhere and knows that they are asymptotically stable and/or
the user just wants to see simulation results under such conditions. In either
case, the stability claims of the subsequent controller should be taken with
a grain of salt and the simulation results should be carefully scrutinized. If
the zero-dynamics are stable, the module will produce a general feedback
law to render the input-output relationship linear.

18

If the system was fully state linearizable, the module will produce a
general feedback law that, in conjunction with the state transformation,
renders the entire system linear.

Next, the user is given the opportunity to specify the control law as an
output tracking control law or as a stabilizing control law.

Is the control objective to stabilize or track? (s; or t;)

If the control objective is tracking, the desired trajectory will need to be
specified by the user following the prompt:

enter desired time trajectory for output # i

In both the stabilizing and tracking cases the user will need to supply pole
location information for the dynamics of the linear portion of the system.
For a MIMO system, because the control law decouples the system as well,
the user will be asked for the pole locations of each subsystem (associated
with the different inputs) separately. As an example, the prompt may be:

Enter the rt- desired LHP pole location(s)
for the subsystem associated with the input i
in the form [pi,.. .,pr.]j

From the pole locations, the module produces the coefficients of the corre
sponding Hurwitz polynomial and uses these coefficients to specify v specif
ically.

Note that, especially for MIMO systems, the screen display can become
quite cluttered when trying to display a lengthy control law. In this case it
can be useful to be aware of the following system variables:

1) a_dc decoupling matrix
2) a^dcinv inverse of decoupling matrix
3) d_ determinant of decoupling matrix
4) b_ vector of Lie derivatives used in linearizing control law
5) u-cl linearizing control law
6) v_ component of control law to stabilize or track a trajectory

Any of these variables can be looked at independently, after the module
has finished, by typing the variable name and a semi-colon after the system
prompt. For example:

(clO) a_dc;

19

The individual entries of each of these variables (except for the scalar d_)
can be assessed by referencing the variable as a matrix:

(clO) a_dc[l,l];

If an individual entry is unruly, the user can attempt to simplify it in an ad
hoc manner.

Finally, if the user desires, the module will transfer all of the system and
control information to a Fortran program that can be used with MATRIXx
to simulate the design results.

Translate results into Fortran code for simulation? (y;
or n;)

The user will have to supply the name of the file in which to store the Fortran
code.

Enter a filename for the Fortran code:

Be sure to use a filename in the following form and include the filename in
quotations:

"filename.F;

3.4 Using Individual Functions Separately

The functions that make up this package are not designed to be used inde
pendently, however, it may be useful to know what they do independently.

set_eqs()

Prompts the user to enter the system of equations or loads
them from a file. Each time this function is called, the user
specified system of equations is saved to a file called "systemeq".
The operating point is automatically set to zero.

Variables used: none.

Variables affected: f_,g-,h-,no-,ni_,ns_,x-,z_,u_,v.-,w_,xO-

op()

Allows the operating point to be set to something other than
zero.

Variables used: none.

Variables affected: xO-

20

v_reldeg()

Determines the preliminary vector relative degree without
checking for the nonsingularity of the decoupling matrix.

Variables used: f_,g_,h_
Variables affected: r_

snglr_chk()

Produces the decoupling matrix and determines whether it
is nonsingular.

Variables used: f_,g_,h_,r_
Variables affected: a_dc,d_.

nonsing_dc()

Produces the inverse of the decoupling matrix and affirms the
relative degree.

Variables used: a_dc.

Variables affected: a_dcinv,b_.

preprocess()

Carries out the preprocessing algorithm to produce a dy
namic compensator that can be used to linearize the system.

Variables used: ajdc,f_,g_,ni_,ns_
Variables affected: f_,g_,ns_,x_,z_

diffeoQ

Determines the diffeomorphic coordinates transformation.
Variables used: L,h_,r_,z_,no_,ns_,xO-
Variables affected: phi.

control_law()

Generates the general linearizing control law.
Variables used: ajdcinv,b-,v_,d_.
Variables affected: u_cl.

check_zerodyn()

21

Determines zero dynamics and analyzes zero dynamics in the
first order approximation.

Variables used: f_,g_,h_,phi,rtotal_,a-dcinv,b_,ns_,x_,z_.
Variables affected: status.

stabilize()

Specifies components of the control law to allow for regulation
to zero.

Variables used: no_,r_
Variables affected: ym,w_

track()

Specifies components of the control law to allow for tracking.
Variables used: no_r_.

Variables affected: ym,w_

poles()

Compiles the specific control law from user specified control
criteria.

Variables used: nL,r_,ym,phi,w_
Variables affected: v_

make-fortran()

Writes fortran code to a file to enable later simulation.

Variables used: ns_,ni_,no_,x_,h_,v_,u_cl,f_,g_,u_.
Variables affected: none.

jacobian(v)

Given any column vector with number of rows equal to the
number of states, will determine the jacobian matrix of the vec
tor.

Variables used: ns_,x_
Variables affected: none.

lderiv(v,h)

22

Given a column vector and a scalar output, will determine
the Lie derivative of the output with respect to the vector field
specified by the column vector.

Variables used: ns_,x_
Variables affected: none.

klderiv(v,h,k)

Given a column vector, a scalar output, and an integer, will
determine the kth Lie derivative of the output with respect to
the vector field specified by the column vector.

Variables used: ns_,x_
Variables affected: none.

23

4 MACSYMA Code

/4e 4c4c 4c 4c 4c4c4c 4c4c 4c 4c4c 4c 4c4c 4c 4t4c 4c4c 4t4c 4c4c 4c4c 4c 4c4c 4c 4c 4c 4c4c 4c 4c 4c4c 4c 4c4c*4c4c4c*4c* 4c4e 4c 4e4c 4c 4c4c 4e 4:4c4c 4c 4c4c 4c4c/

/* Set flags and preload needed vaxima routines */

loadprint:false$

gcprint:false$
ratprint:false$

load(ndas/mstuff")$

load("share2/lrats,,)$

load("macrak/rpart")$
load("rat/result")$

resultant:subres$

/4c 4c4:4c4c4c4c4c4:4c4c*

/* Global variables: */

/* f.,g.,h.,f.old,g_old */
/* ni.,no.,ns. */

/* x»,xO_,z_,u_,v_,w_ */

/* r_,rtotal. */

/* a_dc,a_dcinv,d_,b_,u_cl */

designO :=
block(

transcript:read("Save a transcript of this session? (V'filenameV'X; or n\;)"),
if transcript#n then

apply(writefile,[transcript]) ,

set.eqsO,
op(),

loop,

v.reldegO,
check_s:snglr_chk(),
if check.s=singular then

(

status:preprocess(),
if status=failed then

24

go(endflag)
else

go(loop)

)

else

nonsing.dc(),

diffeoO,

rtotal.:rd_sum(),

if rtotal_=ns_ then

full_linear()

else

(

results:check.zerodyn(),
if results#stable then

(

termd:read("Terminate design procedure? (y\; or override\;)"),
if termd=override then

print("")
else

go(endflag)
),

io.linearO

).

obj:read("Is control objective to stabilize or track? (s\; or t\;)"),
if obj=s then

stabilize()

else

track(),

poles(),

simu:read("Translate results to Fortran for simulation? (y\; or n\;)"),
if simu=y then

make.fortran() ,

endflag,

if transcript#n and simu#y then

25

apply(closefile,[transcript]),
end

)$

/* Subroutine to establish system equations */

set_eqs():=
block([i],

oldeqtread("Type \"y\;\" to retrieve previously saved equations. Otherwise ty
print(""),
if oldeq=y then

loadfile(systemeq)
else

(

print("A square plant is required (# of inputs = # of outputs)"),
ni.tread("enter the number of inputs/outputst"),
no.tni.,

ns_tread("enter the dimension of the state spacet"),
print("enter the column vector f as an (",ns_," x 1) matrix:"),
f.:entermatrix(ns_,1),

print(""),
print("enter the column vectors g as an (",ns_," x ",ni_,") matrix:"),
g_tentermatrix(ns.,ni_),
if ni.=l then

(

htemp[i,l]tread("Enter the scalar output ht"),
h.tgenmatrix(htemp,1,1)

)

else

(

print("enter the output functions as an (",no_," x i) matrix:"),
h_tentermatrix(no.,1)

),
save(systemeq,f. ,g.,h.,no.,ni.,ns_)

),

x.ttranspose(makelist(concat(,x,i),i,l,ns_)),
z_ttranspose(makelist(concat('z,i) ,i,l,ns.)),

26

u_ttranspose(makelist(concat('u, i) ,i, 1,ni_)),
v_ttranspose(makelist(concat(*v,i),i,l,ni.)),
w_t transpose(makelist(concat(*w,i),i,1 ,ni.)),

x0_t zeromatrix(ns.,1),

print(""),
print("The system is described byt"),
print(""),
print(»diff(x.,t),"=",f_,"+",g_,"*u"),
print("y =",h_),
print("")

)$

/4c *4c4c*4'4<4c4<4c4<4<4'4'4c4c*4t***4<4c4c4c4c4c*4'*4t^^

/* Subroutine to establish operating point */

op()t=
block([newop],
newoptread("Type \"y\;\" for an operating point other than 0. Otherwise type
if newop=y then

(

print("enter the operating point xO as an (",ns_," x i) matrix,"),
print("starting with the value of xl.... t"),
x0_tentermatrix(ns.,1),
print("")

)

)$

/4c 4'*«4'4c4'*4c*4c4c4c4c*4c***4c**4c****4c4c*4c^^

/* Subroutines to determine (vector) relative degree */

v_reldeg()t=
block([i,rt],

print("Determining the system relative regree "),

for itl thru no_ do

(

27

rt[l,i]treldeg(f.,g_,h.[i,l]),
print(" ")

).
r_tgenmatrix(rt,i,no_),
print("")
)$

reldeg(f.,g.,h.)t=
block([j,i,a,b],

btzeromatrix(l,ni_),

j:0,
while b = zeromatrix(l,ni_) do

(

for itl thru ni_ do

a[l,i]tfullratsimp(lderiv(col(g_,i),klderiv(f_,h«,j-1))),
btgenmatrix(a,1,ni.)

),
return(j)

)$

/4c 4c4c4c4c4c4c4c4c4c4c4c4c4c4t4c4c4c4c4c4c4t*4c**4c4c4c4c4c4c4c4c4c4c4c4c4c4c4^

/* Subroutines to assure that decoupling matrix is nonsingular */
/* so that (vector) relative degree is defined. This may */
/* require preprocessing. */

snglr.chkO:=
block(

a„dc:decouple_m(f.,g_,h_,r.),
d„t fullratsimp(determinant(a_dc)),
if d.=0 then

return(singular)
else

return(nonsingular)
)$

nonsing.dcO t=
block([i,temp],

a_dcinv:a_dc -1,

28

for itl thru ni_ do

temp[i, 1] tklderiv(f.,h_[i, 1] ,r_[1, i]),
b_tgenmatrix(temp,ni., 1) ,

print("The relative degree of this system is ",r_),
print("")

)$

decouple_m(f_,g_,h_,r_)t=
block([i,j],

for itl thru ni_ do

for j11 thru no_ do

a[i,j]tfullratsimp(lderiv(col(g_,j),klderiv(f.,h_[i,1],r_ [1,i]-1))),
genmatrix(a,no.,ni.)
)$

preprocessO:«

block([p,a_dc_aug, axbx,bx,i,ptest,bad,mflag,j,status,k,
nonzero,jindex,f.bar,g.bar,newcolumn,m] ,

print("The decoupling matrix is singular"),
print("Determining dynamic extension..."),
ptrank(a_dc),
a_dc_augtaddcol(transpose(a.dc),ident(ni.)),
axbxttranspose(echelon(a_dc_aug)),
bxtaxbx,

for itl thru ni_ do

(

axbxtsubmatrix(ni_+l,axbx),

bxtsubmatrix(1,bx)

),

ptesttO,

badtO,

for itl thru ni_ do

(

mflagiZEROES,

for j11 thru ni_ do

if j>p and axbx[i,j]#0 then
badtbad+1

29

else

if axbx[i,j]#0 and axbx[i,j]#l then
mflagtNOTID

else

if mflag=ZEROES and axbx[i,j]=i then
mflagtONE

else

if mflag=0NE and axbx[i,j]#0 then
mflagtNOTID,

if mflag=0NE then ptesttptest+1,
if mflag=ZEROES then bad:bad+l

).

if ptest#p or bad#0 then

(

print("Algorithm didn't work"),
statustfailed,

go(endflag2)

),

ktO,

for j11 thru p do

(

nonzero 10,

for itl thru ni_ do

if axbx[i,j]#0 then nonzerotnonzero+i,
if nonzero1 then

(

ktk+1,

jindex[k]t j
)

),

if k=0 then

(

print("Algorithm didn't work"),
statustfailed,

go(endflag2)

30

),

status tsuccess,

x.ttranspose(makelist(concat(*x,i),i,l,ns_+k)),
z_:transpose(makelist(concatOz.i),i,l,ns.+k)),

f.bartf.,

for itl thru k do

f.bartf_bar+(g_.col(bx,jindex[k]))*concat(*x,ns_+i),
for itl thru k do

(
f.bar t addrow(f.bar,[0]),

xO.t addrow(x0_,[0])

>.

g_bartzeromatrix(ns_+k,l),
for itl thru ni. do

(

if i=jindex[j] then
(

newcolumntzeromatrix(ns.,1),

for mtl thru j-1 do

newcolumntaddrow(newcolumn,[0]),

newcolumnt addrow(newcolumn,[1]),
for mtl thru k-j do

newcolumntaddrow(newcolumn,[0]),

)

else

(

newcolumntg..col(bx,i),
for mtl thru k do

newcolumnt addrow(newcolumn,[0])

),
g_bart addcol(g_bar,newcolumn)
),

g_bartsubmatrix(g_bar, 1) ,

31

f.oldtf.,

g_oldtg.,

f.tf.bar,

g.tg.bar,

ns_tns_+k,

print(""),
print("The extended system has",k,"additional states"),
print("and is described byt"),
print(""),
print(,diff(x_,t),"=",f_,"+",g.,"*u»"),
print("y =",h.),
print(""),
print("This system is produced by setting u=",bx,"*u,n),
print("and adding integrators on input channel(s)t"),
print(makelist(j index[i] ,i, 1,k)),
endflag2,

return(status),

print("")

)$

/4c **4c*4t***4t4t4e*4c*4c4c*********4c**4e*4c**c4^^

/* Subroutines for diffeomorphic coordinates transformation */

diffeo()t=

block(

phitbasis(f.,h.,r.),
print("The coordinates transformation is given by",z.=phi),
print("")

)$

basis(f.,h_,r_)t=

block([b,db,i,j,k,l,m],
ktO,

for itl thru no. do

for j11 thru r.[1,i] do

(

32

ktk+1,

b[k,l]iklderiv(f_,h.[i,i],j-i)
),

for itk+i thru ns_ do

b[i,i]tO,

if k<ns_ then

(

dbtjacobian(genmatrix(b,ns.,1)) ,
dbtevaluate(db,x0_),

for itl thru ns.-k do

dbtsubmatrix(k+1,db),

ltO,

for mtk+1 thru ns_ do

(

itl+1,

for jtl+1 while rank(addrow(db,ematrix(i,ns_,l,l,j)))=rank(db) do
itj+1,

b[m,l]tconcat(*x,i),
dbtaddrow(db,ematrix(l,ns.,1,1,i)) ,
lti

)

),

genmatrix(b,ns.,1)

)$

rd.sumO t =

block([rtl,i],
rtltO,

for itl thru no. do

rtltrtl+r.[l,i],
rtl

)$

33

evaluate(m,xO.):=

block([i,mtemp],
mtemptat(m,makelist(x.[i, 1]=x0_ [i, 1] ,i, 1,ns_))

)$

/* Subroutines to determine linearizing control law */

full.linearO t=

block(

print("The system can be made full state linear using the"),
print("given change of coordinates and the following control lawt"),
control.lawO,

print("")

)$

io.linearO t=

block(

print("The system can be made input/output linear using the"),
print("given change of coordinates and the following control lawt"),
control.lawO,

print("")

)$

control.lawO t=

block(

u.clta.dcinv.(-b.+v_),

if ni_=l then

u_cl tematrixd, 1,u_cl,1,1),

print("u=",u_cl),

print("The region of validity for the proposed controller is "),
print("defined away from the singularities of the"),
if ni_>l then

(

print("determinant of the decoupling matrixt"),

34

print("det(A)=",factor(d.))

)

else

(
print("following expression:"),
print(factor(d.))

),

print("")

)$

/* Subroutine to analyze zero dynamics and stabilize system */
/* if zero dynamics are stable */

check.zerodynO t=
block([status],

zdztzerodynamics(f.,g_,h_,phi),
print("THE ZERO DYNAMICSt ",»diff(transpose(makelist(

concatCz,i),i,rtotal_+l,ns_)),t)=zdz),

status tanalysis(zdz),
if status=stable then

print("ARE STABLE.")
else

if status=unstable then

print("ARE UNSTABLE.")
else

print("have eigenvalues on the imaginary axis in the first order approxi

return(status)

)$

zerodynamics(f_,g_,h.,phi)t=
block([u.zero,i,j,k,zd,zdx,zdz],

scalarmatrixptfalse,
u.zerot-a.dcinv.b_,

scalarmatrixpttrue,

35

for itrtotal_+l thru ns. do

(
kti,

for j 11 while x_[j,1]#phi[i,1] do
ktj+1,

zd[i-rtotal.,l]tf.[k,l]+row(g.,k).u.zero

).
zdxtgenmatrix(zd,ns.-rtotal.,l),

zdz tIratsubst(solve(makelist(z.[i,1]=phi[i,1],i,1,ns.),
makelist(x.[i,l],i,l,ns_))[1],zdx),

Iratsubst (makelist (z. [i, 1] =0, i, 1, rtotal.) , zdz)

)$

analysis(zdz):=
block([i,j,temp,foa_zd,rootlist,realparts,maxrept,flag],

for itl thru ns.-rtotal. do

for j11 thru ns.-rtotal. do

temp[i,j]tdiff(zdz[i,1],z.[j+rtotal.,1]),
foa.zd:at(genmatrix(temp,ns.-rtotal.,ns.-rtotal.) ,

makelist(z.[i,1]=0,i,rtotal.+i,ns.)),

rootlist: solve(charpoly(foa.zd,lambda)),

realparts tmakelist(realpart(rhs(rootlist[i])),i, 1,length(rootlist)),
maxrepttapply(max,realparts),
if maxrept>0 then

return(unstable)

else

if maxrept=0 then

return(indeterminate)

else

return(stable)

)$

/* Subrountine to incorporate stabilizing or tracking feedback */

36

stabilize():=

block([i,j,wtemp],
for itl thru no. do

(

for jtl thru r.[l,i] do
ym[i,j]tO,

wtemp[i,1]10

),

w.t genmatrix(wtemp,no.,1),
print("")
)$

track()t=

block([i,j,wtemp],
for itl thru no. do

(

ym[i,l] tread("Enter desired time trajectory for output #",i,"t"),
for jt2 thru r_[l,i] do

ym[i,j]tdiff(ym[i,j-l],t),

wtemp[i,l]tdiff(ym[i,r_[l,i]],t)

),

w.t genmatrix(wtemp,no.,1),
print("")

)$

poles():=

block([plist,list1,i,j,c.eqn,c,vtemp],
for itl thru ni_ do

(

print("Enter the ",r.[l,i]," desired LHP pole location(s)"),
if ni.=l then

print("for the linearized portion of the system")
else

print("for the subsystem associated with input #",i),

37

plisttread("in the formt \"",makelist(concatCp,i),i, 1,r_[1,i]),"\;\""),
if length(plist)<r.[l,i] then

(

listltmakelist(plist(length(plist)),i,length(plist)+1,r_[1,i]),
plisttappend(plist,listl)

),

c.eqntl,

for jtl thru r.[l,i] do
c.eqnt c_eqn*('s-plist[j]),

c.eqn:ratexpand(c.eqn),

for jtO thru r.[l,i]-l do
c[i,j]tcoeff(c.eqn,s,j)

),

ktO,

for itl thru ni_ do

(
vtemp[i,i]tO,
for jtO thru r_[l,i]-i do

vtemp[i,i]tvtemp[i,l]+c[i,j]*(ym[i,j+l]-phi[j+k+l]),
vtemp[i,1]t vtemp[i,1][1],
ktr.Cl.i]

),

v.t genmatrix(vtemp,ni_,1),
v.t v.+w.,

print("The additional feedback required is given byt"),
print("v=",v.),
print("")

)$

/4c 4c4c4e4c4c4c4c*4'4(*4c4<4c4'4c4c4c4c4c4c*4'4c4'4c*4c*4c*^

/* Convert results to Fortran code for simulation purposes */

make.fortranO t=

block([xlist,vlist,H_TEMP,V.TEMP,U_TEMP,XDOT.TEMP,ffile] ,

38

ffile:read("Enter a filename for the Fortran codet"),

apply(closefile,[transcript]),
apply(writefile,[ffile]),

Routine to generate closed loop plant dynamics"),
SUBROUTINE USR01(INFO,X,XDOT,Y)"),

•"),

print(
print(
print(
print(
print(
print(
print(
print(
print(
print(
print(
print(
print(
print(
print(
print(
print(

print(

c "),
c

c I

c

closed loop plantt ",ns_,"states,",ni.,"input(s)/output(s) I"),

DOUBLE PRECISION X(*),XD0T(*),Y(*)"),

DOUBLE PRECISION h.temp(*,*)"),
DOUBLE PRECISION v(*),v.temp(*,*)"),
DOUBLE PRECISION u(*),u.temp(*,*)") ,
DOUBLE PRECISION xdot.temp(*,*)") ,
INTEGER INF0(4)"),

INTEGER ns.,ni_,no_,i"),

LOGICAL STATE, OUTPUT"),

"),

STATE = INF0(3).NE.O"),

OUTPUT = INF0(4).NE.O"),

"),

kill(x.),

xlisttmakelist(concat(,x,i)=X(i),i,l,ns_),

print(fortran(ntns.)),
print(fortran(ni tni.)),
print(fortran(notno.)),

print(" if (OUTPUT) then"),

H.TEMPtsubst(xlist,h.),

print(fortran(H.TEMP)),
print(" do 10 i=l,no"),
print(" Y(i)=h_temp(i,l)"),
print("10 continue "),

print(" endif"),

39

')

print(" if (STATE) then"),

V.TEMPtsubst(xlist,v.),

print(fortran(V.TEMP)),
print(" do 20 i=l,ni"),
print(" v(i)=v.temp(i,i)"),
print("20 continue "),

kill(v.),

vlisttmakelist(concat(,v,i)=v(i),i,l,ni.),

U.TEMPtsubst(xlist,u.cl),

U.TEMPtsubst(vlist,U_TEMP),

print(fortran(U.TEMP)),
print(" do 30 i=l,ni"),
print(" u(i)=u_temp(i,l)"),
print("30 continue "),

XDOT.TEMPtf_+g..u_,

kill(u_),

ulisttmakelist(concat(,u,i)=u(i),i,l,ni_),

XDOT.TEMPtsubst(xlist, XDOT.TEMP) ,

XDOT.TEMPtsubst(ulist,XDOT.TEMP),

print(fortran(XDOT.TEMP)),
print(" do 40 i=l,n"),
print(" XDOT(i)=xdot.temp(i,l)"),
print("40 continue"),

print(" endif"),
print(" RETURN"),
print(" END"),

apply(closefile,[ffile]),
print("")

)$

40

/* 4c4c4c4c4t4c4c4c4c4c4(4c4c*4c4c4c***4c4c4c4c4c4c4c4c4^4(4c4(*^

/* Necessary machinery for linearization calculations */

jacobian(v)t=
block([zz,i,j],

for itl thru ns. do

for j11 thru ns. do

zz[i,j]tdiff(v[i,l],x.[j,l]),
genmatrix(zz,ns.,ns_)

)$

lderiv(v,h_)t=

block([zz,j],
for j11 thru ns. do

zz[l,j]tdiff(h.,x.[j,l]),
genmatrix(zz,i,ns_).v
)$

klderiv(v,h.,k)t=

block(

if k=0 then h. else lderiv(v,klderiv(v,h.,k-l))
)$

41

5 Summary

We have documented a software package that carries out a complete con
trol design procedure based on well-known linearization theory for a certain
subclass of nonlinear systems. Programming the design algorithms using
a symbolic manipulator (MACSYMA) proved to be straight forward. This
package can be a useful tool to assist the design engineer in creating such
control systems.

The current version of this package is programmed to run on a version
of MACSYMA (known as "vaxima,,) that is apparently peculiar to UC-
Berkeley and is not completely compatible with the commercial version of
MACSYMA. Not much effort has been put into internal simplification and
"pretty" formatting. The user may need to examine variable values inde
pendently particularly for MIMO systems where expressions become unruly.
This may require a Umited amount of MACSYMA knowledge. Also, for some
MIMO systems where solving the inverse of the coordinates transformation
is necessary to generate the zero-dynamics, the equations may prove too
complicated for the internal functions of MACSYMA to handle. At the
time of this writing, the fortran code output of this package has not been
tested to see if it is compatible with such simulation software as MATRIXx.

One aspect of the linearization theory that has not been included is solv
ing for the output (assuming one exists) that will produce a system without
zero-dynamics after linearization. This was mainly a philosophical decision
based on the assumption that the outputs are usually already prescribed for
the engineer and he must design his control system accordingly.

42

References

[1] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag,
1989.

[2] S.S. Sastry and A. Isidori. Adaptive control of linearizable systems.
Technical Report UCB/ERL M87/53, Electronics Research Laboratory,
University of California, Berkeley, 94720, June 1987.

[3] A. De Luca and G. Ulivi. Full linearization of induction motors via non
linear state-feedback. In Proceedings of the 26th Conference on Decision
and Control, pages 1765-1770, December 1987.

[4] A. De Luca and G. UHvi. The design of linearizing outputs for induction
motors. In Nonlinear Control Systems Design, Preprints of the IFAC
Symposium, Capri, Italy, June 1989.

[5] Symbolics, Inc. VAX UNIX MACSYMA Reference Manual, 11th edition,
November 1985.

43

	Copyright notice1989
	ERL-89-135

