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Abstract

We have found that running electrostatic particle codes at relatively large wceAt in

some circumstances does not significantly affect the physical results. We first present

results from a single particle mover finding the correct first order drifts for large ufceAt.
We then characterize the numerical orbit of the Boris algorithm for rotation when

weeAt » 1. Next, an analysis of the guiding center motion is given showing why the

first order drift is retained at large wee At. Lastly, we present a plasma simulation ofa

one dimensional cross field sheath, with large and small wccAt, with very little difference
in the results.

1 Introduction

We have been using abounded two dimensional electrostatic particle code[l] to study cross

field sheaths[2] and electrostatic effects produced by nonuniform magnetic fields[3]. We
found that running with "unacceptably" large values of waA< (~ 4) did not appear to

cause any significant problems in these- simulations. Hence, we address the issue of why

plasma simulation with large u^At under certain circumstances can produce physically
acceptable results.

When numerically simulating a magnetized plasma with particle electrons, the limiting
time scale in some situations is the electron cyclotron period, with a constraint on a;,*A*.

However, under circumstances in which we are not interested in the short time scale physics,
this constraint can make simulation ofother effects at longer time scales very expensive.
In explicit simulations, the requirement that WpeAr be small for stability often determines

the limit on At rather then <*;«. However, in implicit particle simulations where the u^At
constraint has been relaxed, the requirement of small w^At can be especially restrictive.

Implicit simulations have been done with large u^At by decentering the particle advance

slightly which damps out the gyromotion[4]. Another method is to use the guiding center
equations for electrons[5] to remove the u^At timescale. It is also possible to use special
values of uj^At (with u^Ar > 1) that satisfy Eq. (3) below and use the rotation method

of Buneman[6,7]. The Buneman method has been analyzed previously in reference^] and
does not produce the correct drift motion for large, arbitrary u>ceAtf.



We have chosento explorethe feasibility of runningwith large u^At using the standard

v x B rotation scheme of Boris[8,9]. The reason for doingthis, besides simplicity, is that for

modelingsystems with a nonuniformmagnetic field, uj^At can vary greatly (e.g., at a field

null point), and At wouldneed to be restricted by the largest valueof w^.. In sucha problem

one cannot necessarily assume guiding center motion throughout the system because there

may be regions of weak magnetization.

We begin by showingsingle particle orbitsobtainedwith large &<*At and compare those

to more exact orbits obtained with small uj^At. Then, we discuss the orbit characteristics

when UccAt is large. Next, an analysis of the the guiding center motion is given obtaining

correct first order drifts. Finally, we show a collective model with many particles in which

the results appear to be only slightly affected by using large o^At

2 Results from a Single Particle Mover for o^Ai > 1

In order to study the errors introduced by using large o>ceA*» we used the Boris mover in

three dimensions on a single particle. The first four figures show single particle orbits with

both large and smallw^.At. The converged orbit {&<* At small) is the "thick" centerlineand

the large u^At orbit oscillates alternately above and belowthe true orbit each step. The

correct drift motion is retained but there is a numerically induced oscillation radius we will

call roa, and an oscillation frequency we will call u>OB, which is a numerical alteration of the

true gyroradius and gyrofrequency. We will discuss this oscillation further in the following

section. The charge to mass ratio was set equal to negative one for all the following runs

Figure 1 shows the E x B drift motionfor twocases: u^At = 0.5 and 50. The following

parameters are the same for both cases: v(t = 0) = (0.1,0.0,0.4), B = (250,0,0), and

E = (0,0,1). The E x B drift velocity is measured as 0.004 y, as expected from vv = EsjB,

and the total timeT = 100. For the run withu^At = 50; r^ « ~—, and ujprec « 0.4 as

expected from the calculation in Section 3.

Figure 2 shows two runs with u^At = 0.5 and 16. In these runs the magnetic field is

that caused by a line current along z, centered at (x, y) = (10,10). B is given by: B = 2°fi0

The initial position and velocity were: x(* = 0) = (0,10,0), and v(< = 0) = (0.16,1,0);
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and the total time was: T = 200. The particle has a parallel velocity component, v$i and
follows the associated field line in the x - y plane (circular motion). The curvature drift
velocity is measured to be 1.25 x 10""3z as predicted.

Figure 3shows the BxVB drift motion due to v± for u^At=0.5 and 50. The magnetic
field is: B = (100 - 25y)f, and the initial velocity is: v(z = 0) = (0,0,2), giving a drift
velocity of: vvs = 0.005i.

Figure 4 shows the polarization drift motion with w^At equal to 0.5 and 50. The fields

are: E = -2ty, and B = lOOx. The initial velocity is: v(t=0)=(0,0,0.1), giving a drift
velocity of: vp = 2 x 10~4y.

We have also tested bounce motion in a simple mirror field producing the correct drift

motion with large uwAt (see Reference [10]). Note that in all these examples the averaged

orbits (or drifts) are approximately equal. As long as roa is small compared to the scale

lengths ofinterest, then the drift plus the oscillatory motion may be acceptable in many
particle plasma simulations.

3 Orbit Characteristics with u;ccAt> 1

In this section we characterize the electron orbit when u^At is large. The following analysis

applies to single particle motion for any particle, but we focus on electrons since they have

the most limiting time and space scales in conventional plasma simulations. We assume

that the Lorentz equation is approximated with a finite difference equation similar to that

of Buneman[ll] having the following form:

^(vnH -v"-?) =L|e"+i(v«+r +v"-J) xB"} (1)

where En is difference operator approximating E(xn, rn) to second order in time, and like

wise for Bn. For example, the explicit Leap Frog method would use: En = E(xn,tn). An

implicit example is the Dl scheme[ll]: En = i(E(xn+1,tn+1) + E""1)). With the new

velocity, the particle is then spatiallyadvanced using:

^(xn+1 - xn) =vn+? (2)



The v x B rotation scheme of Boris gives the angle of rotation for one time step as[8]:

uosAt =9=2arctan fro>ceA< J (3)

As UceAt —• oo, 0 —• 7r. The orbit for u^At > 1 can be described as rapid bounce

back and forth motion (so called odd-even motion) with the perpendicular velocity, and

a slow precession about the guiding center axis. For large u^At^ the angle of rotation is

approximately:

*w,r--4w (4)
The precession is the result of the rotation angle being a small amount 6 less than ?r,

S =5 ff —0. The frequency of this precession is:

">"° =Tt*^ (5)
The rotation frequency is slightly less than ^ (much less than u^). We call this the

"oscillation" frequency:

"""M'-ZZSi) (6)
Note that Uprec goes to zero, and w05 goes to ^, for large Ua.At.

The gyroradius is also altered, we call this numerical gyroradius the oscillation radius.

The oscillation radius for all values ofu^At is given by (see Figure 4-3b in Reference [8]):

v±At ,„
r°» = . A,A = rfl« I1 +

2sm

For large u^Ai, Eq. (7) reduces to:
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(w <•»

roa « 2V±At (8)

Since roa ~ 0(vj.A<), not OfueeAt), the oscillation radius can still be small in strongly
magnetized systems where u^Af is large.

4 Guiding Center Motion with o;ceAt> 1

We now analyze the guiding center motion to see what error is introduced when u^At is

made large. We start with the difference scheme Eq. (1) and eliminate v using v""? =



^_(x»+, _2x„+x„-,) . ±J£„ +_^_(xn+1 _x„-1} xS„J (g)
Let the magnetic field B be in the x- yplane and define the following coordinates: ei = §•,
e2 = z, and e3^= ei Xe2. Let xn = xg +xj», where xf = r^sin^"^ +cos#ne3), and
<f>n =^o +At 2 w™. xo is the slowly varying guiding center motion, and Xi is the fast

m=l

gyration. Assume that woa and ros do not vary much between timesteps so we can use the

approximations: w£ « U&+1 and r£ « r£+1. Taking a Taylor series expansion ofEq. (9)

about xo, and then equating the slowly varying terms gives the guiding center equation:

-L (xs+i _2xg+^-i) =l {en(xS)+_|_^x _̂ -i) xfi„(xg) j
-fev^+o(ld) (10)

or2
where /i05 = -^sin(a;osAt). A more complete derivation of Eq. (10) is given in the Ap-

1 V\ 2pendix. Using Eqs. (3) and (7), we find fioa = -~- = p. Now, substituting x0(*n) for the

approximate solution xg and expanding about xo(tn) we obtain the differential equation

that the finite difference Eq. (10) approximates:

rf2x0(^) _ g_
dt2 m

{E(xo(t"),<") +̂ fl xB(xo(r),*")} - £vB(xo(t"),i")

The additional terms represented by O (%r2a) are the higher order terms that where ne

glected in deriving Eq. (10). The terms represented by O (At2) are from the finite difference

approximations for ^ and 4ij*a. that appear in Eq. (10).
The guiding center equation of motion given by Northrup[12] from which the first order

drifts are derived is:

IF =X*to.i> +§ xB(xo,0} - JWK*.0 +0(JUJ) (12)
These are the same equations except for thehigher order error terms. Assuming roa is small

compared to the field scale lengths, we expect the same first order drift motion.



5 Results from a Electrostatic Particle Code

In this sectionwe present results from a collective simulation to showwhat happens at large

u?ccAt. We choose as a test problem a bounded plasma slab with a cross-field sheath (see

figure 5). The model is one dimensional spatially with two velocity components (a?, vx> vy).

There is a perpendicular constant magnetic field (B = Bqz). The boundary is a conducting

wall parallel to the magnetic field. At the right boundary, all particles are absorbed that

come in contact to it, and the electrostatic potential is allowed to float. At the left is an

inversion symmetry plane where particles are reflected and the plasma potential is set to

zero. The code used was PDW1[13]. Table 1 gives the parameters used for the two test

runs. We use the MKSA units systembut with €0 set equal to one. Alternately, the units

can be described as dimensionless with length and time normalized by A/jc and w"1. We

chose the parameters such that u^ was small compared to ^ to avoid errors due to large
UpeAt. At was varied to see what errors were introduced.

For this problem, the potential drop in the sheath is dependent onthe disparity between

the ion and electron gyroradii. As long as rM for the electrons is much less than r^-
the results are not greatly affected. Figure 6 and 7 show results for two runs, one with

u^A* = 0.4 and the other withUceAt = 8. Figure 6 is a snapshot of the spatial variation of

the electrostatic potential at: t=1000. Figure 7 is a plot of the time evolution of the total

potential drop, V). The potential drop is affected slightly (-2%) for the large u^At case

due to the increase in rM causing more electrons to hit the wall. The numerical value of

roa using Eq. (7) is 1.02 rge for the a^At = 0.4 case, and 4.12 rge for the u^At = 8 case.

There is no significant total energy gain, hence we suspect there is no collective instability.
The change in the electron thermal energy and the total energy was very small for both
runs (less than 0.1% for the time period ofthe run lOOOWpe).

The time dependent behavior, Figure 7, shows an initial transient where particles within

~ rg of the wall are absorbed. This produces a net positive wall charge since rgi > rge.
There is also a regular oscillation seen later in time measured at w = 0.035. This measured



quantity compares closely to the lower hybrid resonance[14]:

u& + w,2-,2^ ,.,?„_
w = "i* = / j\ (13)

FD
With the parameters in Table 1: w^/wj, =6.25 x 10~4 < 1. For this range ofw|e/w« tae
lowerhybrid resonance is approximately:

w2 =u& +a& (14)

Eq. (14) can be also be interpreted as an ion Bernstein mode[15] with Jfex = 0, obtained

by assuming the electrons are fixed in the direction perpendicular to B due to the strong

magnetization.

In the results presented u>lhAt <C 1 whichallowed proper resolution of the lower hybrid

oscillations. Because rM is so small, the fluctuations associated with the electron cyclotron

oscillations are much smaller than that of the lower hybrid (or ion Bernstein) oscillations.

When Wee A* is large wearerestricted to modeling physics with r05/Ax < 1, whereAx is the

scale length of the electric field perpendicular to B. However, for large mass ratio the ion

gyro-orbit is fully resolved and therefore there is no restriction on rgi/\±. The good results

using large (*)<*At depend on roa < rgi. Increasing the mass ratio improves the results. For

example, reducing the mass ratio from 1600 to 100, and keeping T,- = Te, produces an error

of about -15% in the wall potential. The larger error for the case with smaller mass ratio

is the result of reducing the ratio of rffl- to roa (in this case by a factor of 4, r5l=0.25).

6 Discussion

We conclude that even with <*;«.At > 1 the Boris algorithm for v x B rotation still produces

very nearly the correct guiding center motion for a single particle. The error introduced

is to increase the oscillation radius (rge —• r^,), and decrease the oscillation frequency

(a;^ —• uoa). The single particle motion can be described as a rapid odd-even bounce

motion, bouncing ~v±At every time step, and having a slow precession (wprec) about the

guiding center.



This paper did not take into account the potential forcollectiveinstability. This has been

previously addressed (see Reference [8], p. 201-202). An electrostatic particle simulation of

a one dimensional cross field sheath was presented. This particular problem showed that

only slight errors resulted for large values of u^At. There was no significant energy gain,

thus no indication of collective numerical instability.
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Appendix

In the Appendix we derive Eq. (10) more explicitly. This calculation is very similar to the

derivation of Eq. (12) given in Reference [12], p. 5. The difference being that Eq. (9) is

discrete and we cannot gyroaverage over the phase. Instead, we separate the motioninto a

fast oscillating part Xi and a slowly varying part x0, then equate the slowly varying terms.

Except for this difference, the derivation of Eq. (10) and Eq. (12) are analogous. Using

Eq. (9) with xn = xfl+ x? and expanding about xg we arrive at:

—j (xS+1 - 2xg +xg"1 +xj*1 - 2x? +x?"*)

- £{£n(xS)+s* (*°n+1 -"S-1)x snw)}
+m {(x? *v)£n(*8) +5S? (xf+1 -xrl) xSn(xS>}
+m^+1"X^ XW'V)S(*5) +° (£*) . (15)

The third term on the right hand side (we will call it RHSZ) is not higher order and has a

slowly varying part as will be shown below. Substituting xj* = r£,(sin<£ne2 +cos<£ne3) into
RHS3 and assuming roa and uoa are slowly varying functions oftime so that rJ;-1 « r£a »



r^1 and u^1 « w£ « o&+1, we obtain:

*** S mi^-^^W'^W) (16)
= m2Zt(r~)2{ [sin(*n +A**> - *H<f>n - Atoft)] ej

+ [«*(*" + Afa&) - cos(«&" - Afe£)] e3}

X[(sin^e* +co$<£ne3) •V]fi(xg) (17)

This can be further simplified to:

RHSz =mSS"8in(a;?-A*)fe X<*3*v)fl(*5> "e3 X(e2 •V)S(xS)] +f{<j>n) (18)
where we have written f(<f>n) to represent terms that rapidly oscillate about zero. It is seen

from this equation that there is aslowly varying part ofRHS3. In Reference [12], p. 5 the
following result is obtained using V •B = 0:

e2 X(e3 •V)B - e3 x (e2 •V)B = -VB (19)

Substituting Eq. (19) into Eq. (18) and" using the definition of/zoa we obtain:

RHSZ = -/**VS(xg) + f(<f>n) (20)

Finally, we equate all the slowly varying terms in Eq. (15) and use Eq. (20) for RHS 3.
The resulting equation is Eq. (10).
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Figures

Figure 1: E X B drift, Two cases: u^At = 0.5 (thick line) and u^At = 50.
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Figure 2: Curvature drift. Two cases: waAi = 0.5 and 16.

Figure 3: Gradient B drift. Two cases: u„.At = 0.5 and 50.

Figure 4: Polarization drift. Two cases: w^At = 0.5 and 50.

Figure 5: Schematic of the test problem

Figure 6: Electrostatic potential vs. x, at t=1000, for two cases: w^At = 0.4 (upper
solid line), and u^At = 8 (lower dashed line).

Figure 7: Wall potential: V> vs. time for two cases: Lj^At = 0.4 (upper solid line),
and WceAt = 8 (lower dashed line).

Tables

Table 1: Parameters for the magnetized sheath test run
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Figure 1: E X B drift. Two cases: o^At = 0.5 (thick line) and w^At = 50
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Figure 3: Gradient B drift. Two cases: UceAt = 0.5 and 50.
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Figure 4: Polarization drift. Two cases: Wc-At = 0.5 and 50.



Symmetry plane: ^=0 Conducting wall: ^=V/
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Figure 5: Schematic of the test problem

Parameters: Aar=0.1 A<=0.01, 0.2 L=5.0 B=40.0

Electrons: q/m=-1.0 q=-l X lO"3 vj=1.0 JV « 5000

<*>p=l AD=1 wc=40.0 rfl=0.025

Ions: q/m=6.25xl0~4 q = 1 X 10-3 vr=0.025 JV « 5000

wp=0.025 Ad=1 wc=0.025 r„=l

Table 1: Parameters for the magnetized sheath test run
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Figure 6: Electrostatic potential vs. x, at t=1000, for two cases: u^At = 0.4 (upper solid

line), and o^At = 8 (lower dashed line).
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Figure 7: Wall potential: V) vs. time for two cases: Va-At = 0.4 (upper solid line), and
UceAt = 8 (lower dashed line).
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