

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ON THE INTERACTION OF FUNCTIONAL AND

TIMING BEHAVIOUR OF COMBINATIONAL

LOGIC CIRCUITS

by

Patrick C. McGeer

Memorandum No. UCB/ERL M89/137

11 December 1989

ON THE INTERACTION OF FUNCTIONAL AND

TIMING BEHAVIOUR OF COMBINATIONAL

LOGIC CIRCUITS

by

Patrick C. McGeer

Memorandum No. UCB/ERL M89/137

11 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

On the Interaction of Functional and Timing
Behaviour of Combinational Logic Circuits

Patrick C. McGeer

Ph.D. Computer Science Division

Abstract

We consider the elimination of false paths in combinational circuits. We demonstrate

that static sensitization, the classic conditionused to eliminate false paths, can incor

rectly eliminate some true paths, leading to dangerous underestimates of the delay

of a circuit. We introduce the property of monotone speedup, and argue that any

correct fake path procedure must not only accept all true paths but also satisfy this

property. We then introduce the concept of viable paths and show that every true

path is viable and that viability satisfies monotone speedup on symmetric networks.

We show that any network may be transformed into a symmetric network while re

taining the set of viable paths, and that this therefore gives us a correct false-path

elimination procedure. We demonstate that determining whether a path is viable is

equivalent to computing whether a logic function is satisfiable. We describe briefly

a dynamic programming procedure to compute the longest viable path. We give a

general approximation procedure and show that an algorithm due to Brand and Iyen

gar [10] is an approximation to the viability procedure. We give the single generic
algorithm that is used by all authors to solvethis problem, and demonstrate that it is

parameterized by a boolean function called the sensitization condition. We givetwo

criteria which we argue that a validsensitization condition must meet, and introduce

four conditions that have appeared in the recent literature, of which two meet the

criteria and two do not. We then introduce a dynamic programming procedure for

the tightest of these conditions, the viability condition, and discuss the integration of

all four sensitization conditions in the LLLAMA timing environment. We give results
on the IWLS and ISCAS benchmark examples and on carry-bypass adders.

We then consider the special properties of precharge-unate circuits. We

demonstrate that the only circuits which are hazard-free are those constructed us-

ing this technology. We then demonstrate that the dynamic sensitization criterion,

a tighter criterion than viability, satisfies the monotone speedup property on such

networks.

Prof. Robert K^Brayton
Thesis Committee Chairman

Acknowledgements
For some obscure reason, acknowledgements in a Ph. D. thesis always tend to be bland

lists of names, starting with the advisor, careening through the pther members of the

committee, continuing briskly with faculty-members-who-have-had-an-influence-on-

my-career, finally tailing off with a sort of grab bag of colleagues, friends, landladies,

lovers, and pets, and generally coming to a grinding halt with a mushy tribute to

Mom.

Now, I don't object to any of this. Those names should all be there, and (in

general) more, besides. But a mere recital hardly does justice to those being acknowl

edged. This section is an opportunity to leave a rollicking goodbye and valentine to

those who have made one's graduate careera pleasant time. Further, after 200 pages

of bland technical writing, I feel a need to let the rhetorical juices flow. It will take

a couple of pages more, but what the dickens. My thesis is done, school's out for

summer and I'm in a good mood. Finally, after eight years of graduate school at two

Universities with - my goodness - five different research advisers - I have a great

many thank-yous to give.

My first thanks go to my friend, mentor, and research advisor, Robert K.

Brayton. The work reported herein is very much our joint effort, and it seems to

me - as I look down the road to the research I'll be doing over the next few years -

that the seeds of all of it were planted in conversations with him. Our collaboration

has been enormously fruitful, and, more than that, tremendously pleasant. As we

walked down this trail of discovery together, Bob was always eagerly looking ahead,

shining a flashlight down interesting side paths, occasionally exploring some - and

was always delighted to look at any rock I'd dug up, checking to see if some nugget

of knowledge was contained therein. More than any mathematics or logic synthesis

(though I picked up plenty of both from Bob), Bob gave me two things which I shall

always treasure: the courage to follow that trail, wherever it leads, and to proclaim

boldly when it takes an unexpected twist, rather than simply hacking a path in the

expected direction; and, further, to revel in the joy of discovery and the thrill of

science. Too often all of us get caught in the importance of career and fame, and we

11

forget that what's really important is that unexpected vista that science affords to

anyone with the time to look. In sum, these past two years - has it really been so

long? - have been whacking great fun. I shall miss them, and shall always treasure

the memory. ,

Alberto L. Sangiovanni-Vincentelli is much more than the second reader of

this thesis. It was Alberto who kept me going in the dark days before Bob arrived

at Berkeley, persuading me, on the many, many occasions when I felt like trotting

off to the Valley, that I was able to do good research and that I should continue at

Berkeley (Believe me, when you've been a doctoral student for four years with no

smell of a thesis, the Valley starts to look awfully good). Further, Alberto recruited

and led the really remarkable team I've been privileged to work with over the past two

years (more on that below): if it weren't for him, there are a great many of us who

would be doing other, duller, and less productive things. I am grateful to Alberto for

many things, but one more deserves special mention. When I started in cadgroup, I

gave the world's worst seminars. Through many long, patient hours Alberto shaped

me into an acceptable speaker. I shall never hear the word "turkey" again without

thinking fondly of him. Intensely loyal, terribly generous, scrupulously honest: I am

deeply honoured to count him my friend.

It had been a number of years between math classes when I took graduate

topology from Professor Henry Helson, my third reader. I couldn't have picked a bet

ter time, or a better professor. Computer scientists don't get enough practiceon proof

techniques in general, and I was terribly rusty: I needed practice, especiallyinasmuch

as I was about to embark on some research that required some fairly nontrivial con

structions. That the results came out is due in no small part to the techniques that

Prof. Helson taught me that year.

Though not on my thesis committee, Professors Donald O. Pederson and A.

Richard Newton have been a constant source of help and inspiration. Prof. Pederson

kindly served on my qualifying exam committee. As for Prof. Newton, it seems

to me that some of the most illuminating conversations I've had in graduate school

have come at midnight in the lab with Richard. On those too-rare occasions when

he'd pop by to talk about intelligent televisions, or the world as a global network, or

m

engineering design environments, I'd remember that engineering is not fundamentally
about mathematics or electronics, but rather about creating miracles so that we may
all live longer, healthier, more fulfilling lives. I shall miss those conversations, too.
Richard always showed keen interest in this research, and encouraged Bob and I to
publish this material.

Here I should say something about the Computer-Aided Design research
group at UC-Berkeley, one of theWestern world's finer institutions (the group, not
the University - oh, well, maybe both of them make it...). In the time I've been
here, cadgroup has been home to over 60 graduate students and industrial visitors,
working on everything from behavioural synthesis to compaction to device simulation

to analog CAD, and a great deal (including me) in between. Of course, my closest
colleagues were in the logic synthesis group, and I'd like to say a particular thanks
to Rick Rudell, Albert Wang, Sharad Malik, Alex Saldanha, KJ Singh, Tiziano Villa,
Ellen Sentovich, Hamid Savoj, Cho Moon, Luciano Lavagno, Pranav Ashar, Herve
Touati, Yosi Watanabe, and Abdul Malik, with whom I shared that special elan that
comes to mark an active research team. At times it seemed that every day brought a
new discovery; each of you contributed to making these swift years a remarkable and
exciting time. Chuck Kring, Tom Laidig, Wendell Baker, Brian Lee, Peter Moore, Bill
Bush, Antony Ng and Brian O'Krafka were always ready to talk about any number of
interesting and diverting topics, and broadened my education beyond mathematics.
And thanks to Ruth Brayton for being a friend to all of us.

Cadgroup is largely a student-run group; almost all the software we use is

unsupported, kept going byone or more ofus - this includes the document processing
software that I'm using to write this thesis. There aren't any rewards for doing this,
aside from thanks in a thesis acknowledgement, and it's a great deal of effort. So
a big thanks to Rick Spickelmeier, Tom Quarles, Tom Laidig, Dave Harrison, Rick
Rudell, Beorn Johnson, Brian Lee, Chuck Kring and Don Webber for pitching in and
maintaining the software.

Cadgroup isn't entirely student-supported. Brad Krebs (somehow) keeps an
installation of three mainframe DEC products (two Vaxen and one MlPS-based mini)
and over fifty workstations up and running. It's a nontrivial task, and he handles it

IV

with good humour, grace and a couple of part-time student assistants. So thanks,

Brad, to you and your staff - Mike Kiernan, Valerie Walker, and Kurt Pires.

The grants we're on have a never-ending stream of paperwork, which keeps

our clerical and administrative staff busy - but never too busy to help a graduate

student out who's absolutely, positively gotta get a paper onto the Fed X truck today

- so thanks to Shelly Sprandel, Flora Oviedo, Irena Stanczyk-Ng, Maria Delgado-

Braun, Erika Buky, Susie Reynolds, Sherry Parrish and Deirdre McAuliffe-Bauer.

The other cadgroup students have been a constant source of inspiration and

friendship. Ciao, aloha, and see you soon to Bill Lin, Giorgio Casinovi, Dave Reilly,

Carl Sechen, Hyunchul Shin, Seung Ho Hwang, Lorraine Layer, Wayne Christopher,

Tony Ma, Srinivas Devadas, Young Kim, Jeff Burns, Tammy Huang, Ken Kun-

dert, Karti Mayaram, Theo Kelessoglou, Alan Kramer, Greg Sorkin, Linda Milor,

Umakanta Choudhury, Jaijeet Roychowdhury, Andrea Casotto, Mark Beardslee, Mitch

Igusa, Peter Simanyi, Arlindo Olivieria, Narendra Shenoy, Rajeev Murgai, Abhijit

Ghosh, Chris Lennard, Eric Tomacruz, Charmine Tung, Gregg Whitcomb, Fabio

Romeo, and Yoshi Nishizaki.

We've had industrial visitors, too, and their interaction has helped all of us

enormously. I am especially indebted to Kurt Keutzer of AT & T Bell Labs, Gary

Gannot of Intel and Ewald Detjens of Exemplar Logic.

Berkeley is the world's worst, most, unforgiving bureaucracy - absolutely

rigid, dreadfully incompetent, -missing even the leavening influence of corruption.

And I'm terrible with my paperwork. The only reason I made it through was due to

various Saints in Human Form, the principal one being Kat' Crabtree. Thanks, Kat'.

Inadequate, that, but you know what I mean. While I'm on the subject of saints

in human form, let's not forget Genevieve Thiebault and professors Mike Lieberman

and Dave Patterson.

I got into CAD on Prof. Al Despain's ASP project: Al got me started in

this business, and was kind enough to let me go elsewhere when it became clear that

my research had diverged from his area of expertise. The very, very best, Al. I shall

always treasure my association with you and with the other members of the ASP

team: Bill Bush, Jon Pincus, and Gino Cheng.

I came to Berkeley to work on a symbolic computation project with Prof.

Richard Fateman. If it weren't for him I wouldn't be here, and I learned a great

deal from him and from the other students on that project: Andy Lazarus, Clifton

Williamson, Carolyn Smith, Dave Barton, John Foderaro and Neil Soiffer; and, lest

we forget, Phil Colella, for reminding me that making a computer sit up and speak

isn't nearly as important as making it say something interesting.

Then there were the friends who didn't fit into any project that I did here,

but provided help, guidance, and a great deal of friendship, and continue to do so.

Gaetano Borriello, Bill Bush and DavidWood have superb research judgement and a

thorough knowledge of how academia and systems research works - and werealways

ready to lend an ear and a word of advice. Carl Ponder was always ready to Usten

to an idea and offer constructive criticism. And as for Antony Ng: well, I probably

learned more over innumerable lunchesand coffees talking to Antony than in the rest

of my career put together. And Antony has a mean overhead - I learned, painfully,

never to float a lob near the forehand wall. Also, let me not forget Scott Baden, Ben

Zorn, Doug Marinaro, Dain Samples, Brent Welch, Fred Douglis, Joan Pendleton,

Bob Mayo, Walter Scott, Barry Fagin, Peter Van Roy and Tep Dobry.

I've had tremendous help fromcolleagues at other institutions, in particular

Mike Lightner of Colorado and Louise Trevillyan of IBM T J Watson Research Center.

Thanks, too, to Prof. Randy Katz, for interesting me in VLSI by teaching

a fascinating Mead & Conway course and for constant help and advice thereafter;

to Prof. Carlo Sequin for pointing out which fields still had interesting research

problems; to Prof. John Ousterhout for an admonishment to stay broad and to Prof.

Paul Hilfinger for advice. And thanks to Prof. Velvel Kahan for a head-shrinking
lecture when I needed it.

I'd like to thank my Master's supervisor, Prof. Keith Geddes of Waterloo,

and his colleagues Prof. Bruce Char and Prof. Gaston Gonnet. In a Hfe full of happy
accidents, the Maple project was one of life's better breaks.

Thanks to Prof. Ron Harrop, Prof. Subrata Dasgupta and Prof. Ted

Edwards for inspiring me as an undergraduate; and thanks to my first CS professor,
soon to be my colleague, Prof. David Kirkpatrick. If CMPT 105 at SFU had been

VI

lousy...I might be an economist today. I'm not sure whether that's me or Wall Street

shuddering.

And thanks to my father and mother, who taught me by word and example

that the most important thing in life is to do something productive, and that science

is certainly productive. Perhaps if I'd fetched fewer live brains as a teenager for you

two I wouldn't have started working on brains made out of sand. And thanks to

my father for talking me out of going into physics, and to both of you for constant

support and advice.

Thanks to Medonte and Elora, Hobbes and Mustang, Danielle, Bruiser,

Luffra and Tucker, for reminding me about what's really important in life.

For Karen: the best poets in the English language have tried to capture

what I have to say succinctly, and they haven't got it right. And a list of everything

you've done over the past eight years would quintuple the length of this book, which

is already too long. So...

Thanks to Karen for absolutely everything.

Money. First rule: always thank people for money. Thanks to the Digital

Equipment Corporation for the hardware I'm currently typing on, and to the Semi

conductor Research Corporation for supporting me throughout this thesis. Thanks

to the other sponsors I've had throughout a chequered graduate student career: the

Defense Advanced Research Projects Agency, the Naval Space Warfare Command,

the Office of Naval Research, the Department of Energy, the System Development

Foundation and the Natural Sciences and Engineering Research Council of Canada.

There. We're done. The whole list is there, save the landladies, but I think

you'll agree it's more entertaining my way. The last words are not mine: Roger

Zelazny finished off a novel this way, and I admired it...

Goodbye and Hello, as always.

Contents

Table of Contents vii

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Timing Analysis of Circuits .' 6
1.1.1 Delay Models 7
1.1.2 Graph Theory Formulation 8

1.2 Logic Notation 10
1.2.1 Cubes 11

1.2.2 Cofactors 11

1.2.3 A Family of Operators 12
1.3 The General False Path Problem 17

1.3.1 Explicit Recording of False Paths 19
1.3.2 Case Analysis 19
1.3.3 Directionality Tags on Pass Transistors 21

1.4 Outline 22

2 The False Path Problem 24

2.1 Introduction 24

2.2 Dynamic Timing Analysis 27
2.3 Viable Paths 34

2.4 Symmetric Networks and Monotonicity 37
2.5 Viability Under Network Transformations 41
2.6 The Viability Function 45

3 False Path Detection Algorithms 48
3.1 Generic False Path Detection Algorithm 49

3.1.1 Depth-First Search 50
3.1.2 Best-First Search 54

vu

Vlll

3.1.3 Generic Procedure 59

3.2 Variants on the Problem 60

3.2.1 Modifying the Generic Procedure to find Every Longest True
Path 60

3.2.2 Varying Input Times, Output Times, and Slacks 62
3.3 Dynamic Programming Procedure for Viability 66
3.4 Dynamic Programming Algorithm Example 82
3.5 Modifying the Dynamic Programming Procedure to find all the Longest

Viable Paths 85

4 System Considerations and Approximations 87
4.1 Approximation Theory and Practice 87
4.2 "Weak" Viability 90
4.3 The Brand-Iyengar Procedure 95
4.4 The Du-Yen-Ghanta Criteria 99

4.5 More Macroexpansion Transformations 103
4.6 Biased Satisfiability Tests 104
4.7 Axes of Approximation • 105
4.8 The Lllama Timing Environment 107
4.9 Experimental Results 108

5 Hazard Prevention in Combinational Circuits 110
5.1 Introduction 110
5.2 Hazards Ill

5.3 The Boolean n—Space 112
5.4 The Satisfiability Don't-Care Set and Restricted Cubes 121
5.5 Ordering The Inputs . . 124

6 Timing Analysis in Hazard-Free Networks 130
6.1 Introduction 130

6.2 Dynamic Sensitization is Robust on Precharge-Unate Networks 131
6.3 The Dynamic Sensitization Function 134
6.4 Algorithms 142
6.5 Conclusion 148

A Complexity Results 149
A.l A Brief Introduction to the Theory of Polynomial Reducibility 149
A.2 Sensitizability of the Longest Path is AfP-hard 152
A.3 Longest Statically Sensitizable Path is AfV-covaplete 154
A.4 Longest Dynamically SensitizablePath is .AfP-complete 155
A.5 Longest Viable Path is AfP-complete 156

B A Family of Operators 158

IX

C Fast Procedures for Computing Dataflow Sets 161
C.l Introduction 161

C.2 Terminology 163
C.3 The New Approach 163
C.4 Computations 165

C.4.1 Basic Algorithms . . 165
C.4.2 Transitivity 166
C.4.3 When Cx = 0 168
C.4.4 Evaluation Algorithms 169

C.5 Correctness 171

C.6 Complexity Analysis 173
C.7 Efficiency 174
C.8 Sparse Matrix Implementation 175
C.9 An Improvement 175
CIO Results 176

C.ll Extensions 177

C.ll.l Extending Arbitrary Cubes 177
C.11.2 The Fanout Care Set and the Test Function 179

D Precharged, Unate Circuits 180

Bibliography 190

List of Figures

1.1 A False Path 18

2.1 A Sensitizable "False" Path 25

2.2 A Fully Testable Example 32
2.3 Monotone Speedup Failure 33
2.4 Timing Diagram of Monotone Speedup Failure 34
2.5 "Viable Fork" Lemma 39

2.6 Viable Paths in N and N' 40

2.7 And/Or Transform of / = ab + eb 45

3.1 Recursive Depth-First False Path Detection Algorithm 51
3.2 Depth-First False Path Detection Algorithm 53
3.3 Procedure Calculating the Longest Path from Every Node 54
3.4 Best-First False Path Detection Algorithm 57
3.5 Generic False Path Detection Algorithm 61
3.6 Procedure Returning All Longest Paths 63
3.7 Auxiliary Procedure to Procedure Returning All Longest Paths ... 64
3.8 Naive Algorithm to Find the Longest Viable Path 67
3.9 Naive Algorithm to Find All the Long Viable Paths . 68
3.10 Viable Set Algorithm 69
3.11 Naive Algorithm to Find the Longest Viable Path 70
3.12 Viability Algorithm Variables 72
3.13 Underestimation of Viability Function 73
3.14 Correct Calculation of Viability Function 74
3.15 Dynamic Programming Procedure to Find the Longest Viable Path . 77
3.16 Viability Function for Dynamic Programming Procedure 78
3.17 Improved Dynamic Programming Procedure to Find an LVP 80
3.18 Viability Function for Improved Dynamic Progranuning Procedure . . 81
3.19 Circuit on Algorithm Entry 82
3.20 Circuit After {a,u,x,z}Explored 83
3.21 Circuit After {a,v,y,z}Explored 84

XI

3.22 Circuit After {a,v,y,z}Explored 84
3.23 Dynamic Programming Procedure to Find All the Long Viable Paths 86

4.1 Axes of Approximation 106

5.1 The Boolean 3 Cube 112

5.2 A Function on the Boolean 3 Cube 113

5.3 Valid and Invalid Walks on the N-Cube 114

5.4 Hazards Arising from a Walk 116
5.5 Only Function on the 3-cube Satisfying Corollaries 5.3.3-5.3.4 118
5.6 Illustration of theorem proof on 4-dimensional cube 128

6.1 Generic Precharged-Unate Gate 135
6.2 Generic DCVS Gate 140

6.3 Dynamic Programming Procedure to Find the Longest Sensitizable Pathl43
6.4 Procedure Updating Dynamic Programming Information 145
6.5 Sensitization Function for Dynamic Programming Procedure 146

A.l Generic Problem Transformation 150

A.2 LPS Transformation from 3SAT 154

D.l Generic Dynamic Gate 182
D.2 DOMINO AND Gate 184

D.3 Generic NORA Gate 185

D.4 BDD and DCVS Representation of / = xz + xyz 187
D.5 Full DCVS Implementation / = xz + xyz 188

List of Tables

1.1 Basic Graph Notation 10
1.2 Basic Logic Notation 17

4.1 Critical Delay of Benchmark Circuits 108
4.2 Critical Delay of Carry-Bypass Adders 109

B.l Dyadic Boolean Functions 159
B.2 Dyadic Boolean Functions and their Corresponding Operators 159
B.3 Duality Table of Operators 159

xu

Chapter 1

Introduction

The two classic parameters of integrated circuit design are speed and area.

The cost of an integrated circuit is linearly related to the yield (that is, to the per

centage of instances of the circuit which function correctly). In turn, yield is inversely

related to the probability of a fatal defect in the material substrate, which is expo

nentially related to active area of the circuit. Hence, to a first approximation, the

cost of an integrated circuit is a function of the area of the circuit.

Speed and its correct measurement affect both the performance and correct

ness of an integrated circuit. Performance goes without saying. Correctness follows

from the observation that a circuit takes time to settle at a final value. Consider a

generic integrated circuit: this consists of networks of combinational logic partitioned

by storage elements called latches or registers. Such latches are typically controlled

by a load line. When a load Hne is high, a latch changes state in response to changes

on its input. During these periods, the latch is said to be open. When the latch is

not responsive to changes on its input, the latch is said to be closed. If the load line

is a clock line (as is typical in conventional designs), the circuit is said to be syn

chronous. Further, one can see that the effective value of the combinational network

feeding a latch is the last value on the output of the network before the clock line

goes low. Hence, if the correct value of the combinational network is to be computed

in response to some input vector, the controlling clock must be high for long enough

to permit the circuitry to arrive at a final value. This is called a timing constraint

on or a timing specification of the circuit. A critical question concerning integrated

circuits is whether they meet their timing specifications, and answering this question

- and coercing circuits to meet their specification - is a major focus of research in

computer-aided design.

Measurement of area is trivial at low levels of design, and is easily and

accurately estimated at various higher levels through the use of abstract metrics

which have been observed to correlate well with final layout area 1. Speed - or, more

precisely, delay - is far harder to measure. At the mask level, the circuit forms a

network of transistors. Each transistor, when conducting or "on", acts as a resistor

through which the gate on a succeeding transistor can charge or discharge, and so turn

on and conduct. Analyses of this form yield a system of ordinary linear differential

equations, which in turn may be solved by any number of numerical methods; in

particular, the SPICE family of circuit simulators [62] [68] has enjoyed wide popularity

over the last 15 years in performing this calculation. More recently, relaxation-based

techniques such as RELAX [82] have been introduced to perform this calculation.

Circuit simulation techniques of this form are highly accurate, but have one

drawback. Each signal contributes one differential equation to the system. Since

circuits of 100,000 or so signals are fairly common, the computation task involved

even for the most naive simulation technique (SPICE was originally a backward-Euler

method) is herculean. Much recent work has addressed this problem through the

use of specialized hardware or massively parallel computers [23] [79], with some suc

cess. However, in many CAD environments the use of hardware-intensive solutions is

impractical, and software solutions are still much desired.

The software approach to this problem involves dealing with circuits at a

higher level of abstraction. Conceptually, circuits may be thought of as networks of

discrete components. These components may be arbitrarily large or small, though

the utility of timing analyzers which work on large components is problematic, since

the delay characterization of such components is usually fairly inaccurate. The most

common abstraction is at the level of an atomic boolean function. With each such

1for example, logic synthesis tools estimate area by counting the number of literals which appear
in the factored-form description of a circuit

component, or gate, a specific delay is associated. In this abstraction, both the

waveforms and the static values associated with the various predecessors of the gate

are ignored. The circuit is then isomorphic to a weighted, directed, graph, where the

nodes of the graph are the gates of the circuit and the weights on the nodes are the

delays of the gates. The delay of the circuit is simply the longest path in this graph.

Finding this longest path is relatively easy; indeed, if the network is acyclic (as it

is in the case of a combinational circuit), the algorithm to find the longest path is

the well-known topological sort procedure [49], which is known to be 0(\V\ + \E\).

Programs of this sort are called Timing Verifiers or Timing Analyzers.

Timing Analysis is a good idea; and, like other good ideas, it has many

parents. The idea of timing analysis dates as far back as the PERT project at IBM,

and the original idea to use topological sort for the problem of timing analysis of logic

circuits appears to have originated with Kirkpatrick and Clark [47]. Interest was re

newed with the advent of the VLSI era in the early 1980's, and research focussed on

two major areas. First, the computation of the delay associated with each discrete

component (the so-called delay model) became a major topic of research; work on de

lay models was a central focus of the programs CRYSTAL [64] and TV [40]. CRYSTAL

also broke circuits down not by logic gate, as was the common practice among timing

analyzers, but into units called stages. A stage was defined as a path between the

gate of a transistor or an output node and a single source. Second, the restriction

to combinational (acyclic) circuits of boolean gates was thought too restrictive; both

CRYSTAL [64] and TV [40] used event-driven simulators of the sort introduced by

Bryant[19] in MOSSlM. In these programs, the transistors were explicitly modelled

as bidirectional switches. Other innovations of the period included the introduction

of slacks (differences between the time a signal was required and the time it arrived)

by the TIMING ANALYZER [37].

Early timing analyzers were handicapped by poor delay models. Over

the next several years, research continued into both scheduling procedures for non-

combinational (i.e., cyclic)networks and into improved delay models. In 1984, Ouster-

hout [65] contrasted the accuracy of CRYSTAL under a lumped vs slope delay model.

The lumped model (so-called because the capacitance is summed or lumped into a

single large capacitor of value C which is presumed to discharge through a similarly-

lumped resistor of resistance R, yielding a delay of RC) was shown to yield an error

of 25% when compared to a SPICE simulation; using the delay models of Penfield,

Rubinstein and Horowitz [70][67], in which a series of linear equations were derived

for each delay2, led to an estimate within 10% of the benchmark SPICE estimate. The

relative accuracy of the latter model made the use of CRYSTAL and similar programs

attractive for finding the relative ordering of paths in a circuit. Those paths found

to be critical: those which took the longest to complete, or had the smallest slacks,

or both - could subsequently be extracted and simulated in isolation, and the delay

estimate refined. Later programs such as E-TV [46] took this approach to its logical

conclusion, incorporating the relaxation-based circuit simulator ELOGIC [45] into the

program and using the simulator to derive accurate values for the delays down the

long paths.

Similarly, in 1987 Bauer, et. al, [5] introduced a new timing analyzer called

SuperCrystal. SuPERCRYSTAL's two distinguishing features were, first, that the

waveform over any capacitor in the circuit was approximated by a piecewise exponen

tial waveform, and, second, that the effective resistance across a conducting transistor

was determined by the voltage across the transistor, as opposed to being a single num

ber given by the mean. In 1988, an improved version of SUPERCRYSTAL, renamed

XPSlM, was announced [4]. XPSlM had been modified to explicitly simulate each

stage using the approximate exponential function method [26] with a multirate time

step. These improvements led XPSlM to demonstrate SPICE-level accuracy in a

fraction of SPICE's runtime, making it suitable for use in timing analysis.

A difficulty with these efforts was that, in general, each timing verifier used

either only a single delay model or a small set ofmodels, which was in general only

useful for one level of abstraction; timing verification was run at various levels of

abstraction, each of which required a different model. In an effort at standardizing

and parameterizing earlier work, Wallace and Sequin introduced an abstract version

of a timing verifier, a programcalled ATV[77][78]. ATV's principle attraction was that

2Actually, the Penfield-Rubinstein model contained a logarithmic term as well as a linear term

a user could verify a design at varying levels of abstraction through the selection of

parameters to Wallace's single, abstract, model. Further, since many existing models

corresponded to a specific selection of such parameters, in some sense ATV represented

many timing verifiers in one.

Though the use of accurate delay models has removed one source of sys

tematic inaccuracy in timing verifiers, another remained. The purpose, after all, in

discovering the delay down the longest path in a circuit is to determine how long a

signal travelling down this path will take to reach the terminus. This information is

irrelevant if no signal will travel down the circuit. This phenomenon is generically

known as the false path problem.

The false path problem fundamentally arises because timing verification is

value-independent; the states of the various wires into a node are ignored, and so

presumed to always propagate the value of the preceding node on any path of interest.

This is in contrast to simulators, which are value-dependent. Hence, in any mixed-

mode simulation, where the critical path is identified by timing verifiers and whose

length is determined to great accuracy by simulators, an essential problem is to find

an input vector which exercises the long path identified by a timing analyzer. This

is a particularly acute problem when one is using a simulator capable of simulating

an entire circuit, such as XPSlM. If no such vector exists, then the path is said to be

false.

We draw on the following observation in the analysis of the false path prob

lem. Each node in a circuit can only propagate values from one of its inputs to its

output if the other inputs are in a sensitized state; in the picture of a network of tran

sistors, that the excitation of the transistor corresponding to the input must open a

single conducting path from the output capacitor to ground (power). This forces the

other transistors in the network to either unexcited or excited states; if one associates

a boolean variable with the control on each transistor, it is easy to see that the set

of such states represents a boolean function; this function is a function of the other

inputs to the gate, called the side inputs to the gate. Indeed, if the excitation, or not,

of the relevant transistor forces the output node to discharge or not, one can see that

the boolean value represented by the output node is entirely determined by the value

of the input control.

At a higher level of abstraction, if one views the circuit as a set of gates, the

relevant states of the side inputs may be deduced from the logic function represented

by the gate. In this sense, the false path problem is not merely a problem encountered

in MOS VLSI designs but in all level-sensitive boolean logics; the scale and complexity

of VLSI design makes the problem especially acute, however. Further, as we shall see

below, the uncertainties of delay in integrated circuit design make the problem rather

more rigid in this technology than in others.

The remainder of this chapter is organized as follows. In 1.1, we will discuss

an abstract picture of a circuit and formulate the circuit timing analysis problem. In

section 1.2, we will introduce some notation of modern logic synthesis which will aid

in the analysis of the false path phenomenon. In section 1.3, we will formally.define

the false path problem. Finally, in section 1.4 we outline the remainder of the thesis.

1.1 Timing Analysis of Circuits

In this section, we formulate the timing'analysis problem on circuits as a

path-finding problem on weighted graphs. One can picture a circuit as a graph of

nodes, each of which computes some function. The choice of node is arbitrary, and

represents a trade-off between accuracy and efficiency. A convenient choice is the

representation of a transistor group[4\, which is a generalization of a boolean gate. A

transistor group is a maximal collection of transistors and control connections such

that, for every transistor in the group, its control connection lies outside the group.

If there axe no pass transistors or transmission gates in the design, this definition

simplifies to that of a boolean gate. It is this definition that we adopt for the purposes

of our discussion here. The edges of the circuit represent the interconnections of

modules; since by construction each terminus of an edge represents the control of

some transistor, and since signal flow is always to the control of a transistor, each

edge in the graph is directed. If we assume that the circuit is combinational, as we

do in this thesis, the circuit is further acyclic.

1.1.1 Delay Models

Once a network of nodes is chosen, delay is conventionally represented by

weights on the nodes (or, equivalently, the edges) of the circuit. The derivation of

these weights is called the delay model of the circuit. Delay models are variously

derived, but basically break down into static and dynamic models. Static models

have the property that the delay across each node is statically determined by the

graph. The delay across a node is not then a property of the waveform emanating

from an input. These are used in HUMMINGBIRD [80], and comprise the simplest

(and, perhaps, the most commonly-used) of Crystal's delay models. These can be

represented by a graph with numeric weights on the edges.

Dynamic delays, on the other hand, are functions not only of the graph

but also of the input waveforms. In general, timing analyzers using dynamic models

compute for any node not only the delay across a node, or its arrival time, but also a

waveform of the form V = f(t, I), where V is the voltage across the node, * is time, I

is an input waveform, and where / is a continuous, monotone function. The "delay"

across the node is generally defined as {<|V"(<) = T}, for some threshold value T.

Dynamic models vary from very crude (CRYSTAL simply had a table of delays) to

highly sophisticated (SUPERCRYSTAL used explicit simulation).

In general, dynamic models are more accurate than static models. Various

refinements have been made to the basic static model to improve it. First, it was

realized that CMOS gates are composed of dual networks of PMOS and NMOS transis

tors. Due to differences in electron mobility through the PMOS and NMOS transistors,

and/or differences in the length of series chains through these networks, the effec

tive resistance through the PMOS and NMOS sides can be unequal; this is reflected in

unequal delays in transitioning the output node from 0 to 1 (the pullup transition)

than in transitioning the output node from 1 to 0 (the pulldown transition). This is

represented in the graph by assigning a pair of weights to each node, one in response

to a rising edge, and one in response to a falling edge. This delay model may be

thought of as an extremely crude waveform model.

Further enhancements to the static model are possible. In general, the

8

delay response of a gate to one input may be different than that of another; the

transistors corresponding to the inputs may be of different sizes, may be driven by

differently-sized gates, be attached to nets of varying capacitance, or may appear in

different positions in the transistor network that corresponds to the gate. Any of

these factors may affect the delay across a node, and so it is natural to separate the

delay across a node into delays across each input. This can be modelled by attaching

the delays to the incoming edges of a node, not to the node itself3. Alternately, one

can consider adding to each edge in the graph a node called a static delay buffer with

the appropriate weight; in this way the delays across the edges can be modelled by

delays across nodes in an isomorphic graph.

For convenience, when the theory and algorithms underlying the false path

problem are developed in the sequel, a static delay model with one delay across each

node is assumed. Nevertheless, the results hold.for all static delay models unchanged

through the isomorphisms developed above. We'll remind the reader of these and

develop this theme more fully later.

1.1.2 Graph Theory Formulation

The static timing analysis problem is therefore to find the longest acyclic

path in a weighted, directed graph. Consider the special case where the graph is

acyclic. The sources of such a graph are called the primary inputs of a circuit. Some

nodes, including all sinks of the graph, are designated as primary outputs of the

circuit. We can transform the graph by attaching formal terminal output nodes to

each primary output; such a transformation does not affect the timing properties

of the circuit if the formal terminals have 0 weight, but permit us the convenience

of treating the primary outputs and sinks as identical, so, for the remainder of this

thesis, on such graphs the primary outputs are designated as the sinks. Each node n

not a primary output has some set of successor nodes in the graph; these are called

the fanouts of n, and are designated FO(n). Similarly, each node n not a primary

output has some set of predecessor nodes in the graph; these are called the fanins of n,

3This is TV's "dynamic" model

and are designated FI(n). The transitive closure of FJ is called the transitive fanin

of n, and is denoted TFI(n). The transitive closure of FO is called the transitive

fanout of n, and is denoted TFO(n). Each node n in the graph has a level, denoted

S(n). 6(n) is defined as follows:

{0 n is a PI

max 6{p) + 1 otherwise
p€F/(n) Kr'

Note that 6(n) > 6(p) Vp € TFI(n) and 6(n) < 6(p) Vp € rFO(n). The maximum

level over all nodes in the graph is called the diameter of the graph, and is denoted

D.

If the graph is acyclic and the weights are static, the longest-path problem is

easily solved. The nodes are ordered by level by a very famous linear-time algorithm,

topological sort [71] [49]. The maximum distance of a node n from a primary output

Di(n) is thus defined:

{0 n is a sink

max D\[p) + w[n) otherwisepeFO(n) uv w

and the maximum distance of n from a primary input is defined:

{0 n is a PI

max D2(p) + w(n) otherwise
p€FI(n)

and a longest path is then a sequence of nodes, {/o,..., fm} such that

D1(fi) + D2(fi)-w{fi) = K

where:

K = # max D\(n) -
n is a node in the graph

If the graph contains cycles, then the problem of finding the longest path is

AfV-haxd [28], and in practice is solved by a techniquecalledswitch-levelsimulation.

Note that if w(f) = 1 for each /, we have D\(f) = 6(f) for every /.

Since D\ is the relation conventionally referred to as the delay d of a node,

we also write d(f) for D\(f) for a node /. Since the delay of a node is equal to the

length of some path, we also write d({fo,..., /TO}) for the length of a path.

Notation Definition

w(n) Weight (delay) of node n
FI(n) fanins of node n

FO(n) faiiouts of node n

TFI(n) Transitive closure of FI(n)
TFO{n) Transitive closure of FO(n)
l/0» ♦..» fmj path of nodes /o to fm

«*({/o,...,/»}) EEo«(/0
S(n) Level of node n in the graph
D Diameter of the graph (maximum level number)
Di(n) maximum distance of node n from a primary output
D2(n) maximum distance of node n from a primary input

Table 1.1: Basic Graph Notation

1.2 Logic Notation

10

In this section, we summarize basic switching theory notation. A summary

appears in table 1.2 at the end of this section.

The most common method for representing a logic function is as a sum of

terms, / = tt + ... + tn, and is read / = 1 when ti = 1 for some t. Each term is a

product of literals; a literal is an ordered pair (v,p) where t; is a boolean variable and

p G {0,1} is the phase of the variable. The term t = (t>i,pi)...(vm,pm) = 1 whenever

V{ = pi for every i. The notation (v,p) is thought too clumsy, so by abuse of notation

the common notation for the positive phase (v, 1) is simply v, and for the negative

phase (v, 0) it is simply v".

f = xyz + fz

indicates that / = 1 whenever either x = y = 1 and z = 0 or when y = 0 and 2 = 1.

11

1.2.1 Cubes

In general, one can derive a geometric picture of the boolean n-space as

an n-dimensional cube as follows. Consider the n-dimensional Cartesian co-ordinate

system. Sinceeachvariable can only assume the values 0 and 1, the dimension of the

space represented by the variable x can be restricted by planes at x = 0 and x = 1.

Once this has been done in every dimension, the resulting object is an n-dimensional

cube.

It is clear that a point in the Boolean n-space is a vertex of the cube; for

historical reasons, a vertex is also called a minterm. Moreover, any subspace of the

n space is simply another cube, albeit one of smaller dimension. Such a subspace

corresponds to a specification of some variables of the space, and hence to a term.

Terms are therefore generally referred to as cu6es[13]. The size of a cube is therefore

inversely proportional to the number of literals of the term; a term with m literals

specifies a cube of size 2n~m.

1.2.2 Cofactors

In much of the sequel we will be discussing the projections of boolean func

tions on a subspace; this corresponds to a partial evaluation of the function. If one

views a function as a set of points on the n-cube (the set of points where / = 1),

then the cofactor of a function with respect to a literal /, written //, is simply the

collection of points on the n —1 dimensional cube represented by the literal /. This

can be either viewed as a function over this n —1 dimensional space, or (simply by

projecting each point on this space onto its neighbour on the n —1 dimensional cube

7) as a function over the boolean n—space.

Since the subspace represented by the cube l\l2 is the same as that rep

resented by J2/1, it is trivial to see that (/rjj2 = (fh)i^ a^d, more generally, fc is
well-defined for any cube c.

Operationally, it is easy to take a cofactor of an m term function over the

boolean n—spacein time 0(nm), assuming some order on the variables. Further, the

size of the cofactor of a function in the common function representations (disjunctive

12

and conjunctive normal forms, factored forms, and boolean decision diagrams) is

smaller than the size of the original function.

Cofactors derive their importance in logic synthesis due to the following

theorem, which is variously credited to Shannon[73] and to Boole:

Theorem 1.2.1 (Shannon Cofactor Expansion) Forany booleanfunctionf, any

variable x,

f = xfs + x-f*

1.2.3 A Family of Operators

In this thesis, a pair of linear operators over the set of functions on the

boolean n— space will be extensively used.

One question that arises in the testing of networks and in the false path

problem is the following. Given a function /, and a variable x, what are the assign

ments to the remaining variables such that the value of / is completely determined

by the value of x, i.e., / = x or / = x~ (i.e., / changes phase whenever x changes

phase; in such a case, we say that / is sensitized by x)7

If / = x, from the cofactor expansion we must have that:

/* = 1, /ir=0

i.e., the logic function:

fJw

must be satisfied. Similarly, if / = x~, we must have that:

/sr/x

putting the cases together, we have:

g£ = fxfs + fxfx

or, more compactly:

U = f*®fr (i.i)

13

|£ is described in the testing literature [1] [72], and is referred to there as the boolean
difference. From that literature, there is the following classic theorem, due to Sellers,

et. al. [72].

Theorem 1.2.2 A network N is testable for a stuck-atfault on nodex through output

fiff

%**

Further, Sellers and his co-workers proved a variety of properties on the

boolean difference, which we give without proof here:

£J- = _a7
Sydx dxdy

dx Qx ' 8x

Another question arises in considering the false path problem. Consider an

arbitrary function /, an arbitrary variable x. Under which assignments of the other

variables is there an assignment of x s.t. / = 1? 4

Now, we must have x = 1 or x = 0. If xc is a satisfying assignment of /

(i.e., f(xc) = 1) then, by the Shannon cofactor expansion, we can say that c is a

satisfying assignment of fx. Similarly, if xci is a satisfying assignment of /, then c\

is a satisfying assignment of /y. Hence, if c is a cube such that either xc or x~c is a

satisfying assignment of /, then c satisfies fx + /y. Hence we define the smoothing

operator, Ssf as:

S*/= /* + /? (1.2)

and we have:

Theorem 1.2.3 Let c be a minterm ofSsf. Then either xc orxcisa minterm of

4this is also called a satisfying assignment of/

14

Proof: The discussion above. •

Intuitively, we are interested in determining whether some function / is sat-

isfiable, but we have no knowledge as to the value of the variable x. If the satisfiability

of the function is dependent upon the value of x, then we clearly will be unable to get

a precise answer to this question. Several questions that may be answered precisely

arise, which are detailed in appendix B. One is worth detailing here.

Under what assignments of the other variables does there exist a value of x

that gives rise to a satisfying assignment of /? Theorem 1.2.3 demonstrates that the

answer to this question is the set of satisfying assignments of Sxf. In fact, if we take

the answer to the question "Does there exists a satisfying assignment of Sgfl" as the

answer to the question "Does there exist a satisfying assignment of /?", then this is

an example of a biased satisfiability test. It is certainly the case that if there is no

satisfying assignment of Sxf, then there is no satisfying assignment of /. However, if

x is not an independent variable, as is often the case, then there is a case where there

is a satisfying assignment of Sxf but no satisfying assignment of / (consider the case

where f —xy and y implies x~). It is in this context that we will be using Sxf: in the

sequel we will be deriving a function that is satisfiable only if a path is true; since

we want to reject only false paths, we want to bias this test positively, i.e., smooth

out variables whose value is unknown and ask whether such a smoothed function is

satisfiable.

Theorem 1.2.4 Let f,g be any Junctions, x,y any variables. Then:

(i) SxSyf = SvSxf

(H) Sx{f + g) = Sx(f) + Sx(g)

(Hi) Sxf D f

(iv) Sx(fg) C Sx(f)Sx(g)

Of these properties, we will be using (i) extensively.

15

Proof:

(i) SxSvf = Sx(fv + fg)

= (fv + fv)* + {fv + fvh
= fyx + fyx + fyx + /$«

= /«v + /«y + fxtt -r fsfr

= ((/. + /»), + (/«+ /.)*)

= Sy(f* + f*)

(H) S9(f + g) = (/ + *). + (/ + $).

= fx + gx + fs + gs

= *(/) + *(*)

(tit) 5X/ = fx + fs

= */« + xfx + a:/*+ 5/s

= f + xfx + xfs

2 f

(iv) Sx(f)Sx(g) = (/x + /*)(<7x + <fe)

= fx9x-rfxgx + fx9x + fxgx

= S*(f9)+fx9x + fx9x

2 SJJg)
•

By induction on ft) wemay write, for a set U = {a?i, ..,a;n} of variables

5Xl5X2...5affl/ = SXl„jgnf

or, more compactly, as $£//, and, by induction on (ii) and (Hi).

Su(f + g) = Mf) + ftfo)

r(/) S Su(f)Su(g)

Since the smoothing operator is thus impHcitly defined for a set U, it is
important to define its behaviour when the set U = 0. We choose the obvious
definition:

s»(f) = /

16

We have two important, though trivial, lemmas on the smoothing operator:

Lemma 1.2.1 Let V be the set of inputs to a function f, and U QV. For any vector

c of the primary inputs, let c\ be the assignment of the variables inV —U induced by

c. Then c 6 Suf iff there exists some assignment 02 of the variables in U such that

C\c2 is a satisfying assignment off.

Proof: The only if part is trivial, since Suf 2 /• If part. Let c G Suf* Induction

on \U\. If U = 0, then Suf = /, and hence c satisfies /, i.e., the trivial assignment

satisfies /. Suppose the statement holds for \U\ < N. If \U\ = N, let U = W + {x}.

We can write:

Suf = SxS\yf

We can write the left-hand-side as:

(Swf)x + (SWf)x

Since C\ satisfies Suf, it must satisfy at least one of (Swf)x and (Swf)s> K (S\vf)x,

by induction, there is some vector C3 satisfying (S\yf)x, and hence we set c2 = xc$

and done. Otherwise, there is some vector C3 satisfying (S\yf)x, and hence we set

c2 = xcz, and done. •

Lemma 1.2.2 Let U be any set of variables, and c be any cube where every variable

inU is set to a value by c. Let c* = c—V, i.e., the variables outside U set to a value

by c. Then (Svf)c = (Suf)<~.

Proof: If 9 is independent of any variable x, then gx = gs = g. It follows inductively

that if g is independent of the variables set in a cube c, then gc = g. Since Suf is a

function independent of all the variables in U, it follows that (Suf)c = Suf- •

The smoothing operatorand the boolean difference arepart of a moregeneral

family of such operators, where fx and /y are combined in various ways. For the sake

of completeness we detail them in appendix B.

Notation

x(x~)
Cube c

fc
§1
Bx

Suf

Definition

Literal representing the value x —1 (x = 0)
product of literals
Evaluation of / on the subspace represented by cube c
Boolean Difference of / wrt x (fx ® /F)
fx-rfx
Su-<x\(fx) +5y.fg>(/3r)

Table 1.2: Basic Logic Notation

17

1.3 The General False Path Problem

Timing verifiers are typically quite fast; indeed, for fully-restoring combina

tional logic the problem is simply that of finding the longest path through a directed
acyclic graph, which is well known to be 0(\V\ + \E\). However, these programs
will always identify the longest path as the critical path of the circuit. This path,
however, is not the path of real interest: the path of interest is the longest path down
which a signal can propagate. Paths down which no signal can propagate are called
false paths, and the problem ofidentifying them, and so finding the longest true path
through the circuit, is known as the false path problem.

Consider, for example, the circuit in figure 1.1. For x to propagate to a, we
must have y = 1. For a to propagate to b, we must have z = 1. But for bto propagate
to c, we must have y = z = 0. Hence the path {x,a,b, c, d} appears to be false.

The false path problem has been known for some time. The earliest com

plete discussion in the literature appears to be due to Hrapcenko [39] 5. Hrapcenko
demonstrated that, for every integer n, there exists a logic function for which the
actual delay of the minimal network is n+8 but for which the longest path is 2n +8.

5Hrapcenko's manuscript was kindly brought to the attention ofthe author by Prof. N. Pippenger
of the University of British Columbia

_y
r >

z H>-~

[y^- yf.
Figure 1.1: A False Path

18

r>

Hrapcenko further observed that false paths arise naturally in the design of carry-

acceleration adders, and suggested that the longest path through a carry-acceleration

adder will be on the order of 2n nodes, while the delay will grow approximately as

n. This observation correlates well with the experimental evidence of [6], and of this

thesis.

Given the interest in accurate timing verification, considerable importance

has been attached to the solution of the false path problem. Early facilities provided

for this problem were largely user-oriented, either because the problem was felt to be

intrinsicallyhard or because the authors of the softwarehad an exaggerated respect

for designers' intuition. These facilities fell into three major classes.

19

1.3.1 Explicit Recording of False Paths

Hitchcock's seminal timing analyzer TA [37] contained a facility, called delay

modifiers, which indicated to TA that, in the opinion of the designer, certain paths

would never be exercised. This approach was widely adopted; as recently as 1988,

newly-reported timing analyzers includedsuch a facility [20]. The difficulty, of course,

is that a very large number of paths might eventually be indicated as false; further,

there was also the unhappy possibility that the designer's intuition might fail him,

though early writers evidently did not feel obliged to discuss this.

1.3.2 Case Analysis

If designer elimination of false paths was tedious, and involved an exhaustive

enumeration of many separate paths, then perhaps examining the behaviour of the

circuit under assumptions about the input will help. This general technique goes

under the rubric of case analysis.

Ousterhout, in the descriptionofhis widely-used switch-level analyzer, CRYSTAL[66]

describes the false path problem and this solution technique perhaps as wellas anyone

in the early literature:

The value-independent approach is also responsible for the main problem
in timing verification. When a timing verifier ignores specific values, it
may report critical paths that can never occur under real operating con
ditions. These false paths tend to camouflage the real problem areas,
and may be so numerous that it is computationally infeasible to process
them all. In practice, all timing verifiers include a few mechanisms that
designers can use to restrict the range of values considered by the pro
gram, usually by fixing certain nodes at certain values. This process is
called case analysis; it is used to provideenough information to the timing
verifier to eliminate false critical paths.

Case analysis was not a panacea, however:

Case analysis must be used with caution. When the user specifies par
ticular values, he restricts the timing verifier from considering certain
possibilities; this may cause critical paths to be overlooked [italics mine].
Case analysis generally requires several different runs to be made, with

20

different values each run, in order to make sure that all possible states
have been examined.

Case analysis was used in both CRYSTAL and in TV. The underlying as

sumption behind such case analysis is not stated explicitly in either Jouppi's or

Ousterhout's work, but the discussions of both, taken together with the technological

environments surrounding both projects, make the original motivation clear. Both

CRYSTAL and TV were conceived and implemented in co-operation with groups de

signing VLSI microprocessors 6. In such processors, which employ two or more non-

overlapping (or underlapped) clock phases, the most glaringly obvious false paths are

those which run through two transparent latches7 which are active on opposite phases.

Hence the original underlying assumption of case analysis was that the signals set to

a value would remain constant during the period under evaluation, and, further, that

the set of nodes whose values are fixed by the assignment of such constant values

would have already been set to their assigned values and remain constant throughout

evaluation. In other words, case analysis was never designed to account for tran

sient effects during analysis; the false path of figure 1.1, for example, should not be

detectable through case analysis, for none of the signals is constant throughout the

evaluation period.

Nevertheless, case analysis can detect the false path in figure 1.1, by choosing

x = y == 1; this is an abuse of case analysis, since it violates the underlying assumption

of the analysis; namely, that the signal set to a value remains at that value for the

entire period of analysis. Nevertheless, case analysis has probably been widely abused

in precisely this fashion by designers since the introduction of timing verifiers. The

consequences of this abuse we shall see later.

McWilliams, writing before Ousterhout, included case analysis in the SCALD

timing verifier[61]. His justification for the use of timing analysis makes clear the un

derlying assumption that the signals specified by case analysis remain fixed during

evaluation of the circuit; however, he permitted signals other than clocks to be spec

ified for the purpose of case analysis:

6in Ousterhout's case, the RISC-II/SOAR/SPUR line of processors; in Jouppi's, the MIPS line
7A so-called transparent latch is a storage element which acts as a pass-through while it is active

21

If the timing of the circuit never depended on the values of signals, but
only on when they were changing or stable, the Timing Verifier would be
relatively simple...The signals which are difficult to treat are those whose
values affect the circuit timing, and which have different values during
different clock cycles. For example, a control signal which determines
whether a register is clocked dSiring a given cycle affects whether the output
of the register might change during that cycle.[italics mine]

Such control signals generally remain stable throughout the clock period;

the underlying assumption of case analysis is therefore that the signals set to values

during analysis are presumed not to change throughout the period.

1.3.3 Directionality Tags on Pass Transistors

If one considers a network primarily made up of relay-like pass transistors

(such as, forexample, so-called barrel shifters), false paths arise from the fact that pass

transistors, though nominally bidirectional, are in fact often unidirectional. There

are a variety of ways that these can be handled. The CRYSTAL approach relied on

user tagging of directionality. Jouppi's analyzer attempted to derive the signal flow

direction through a series of rules; his experiments [41] suggest that upwards of 90%of

transistors can be correctly categorized by such derivation. SUPERCRYSTAL attaches

pass transistors to the nearest stage, and explicitly solves each such stage through

the use of a circuit simulator. Cherry, in PEARL adopted both the TV and CRYSTAL

approaches, using rules to automatically detect pass transistors; Cherry's ruleset was

different from Jouppi's. Regarding the efficacy of the rule-based approach, Cherry

notes:

One circuit that these rules 8 are unable to cope with is a barrel shifter
constructed with pass transistors. In general, the only way to determine
signal flow in this type of circuit is to know what select nodes9 are mutually
exclusive.

In other words, the complete solution to this problem is derived directly from

the solution to the problemoutlined in figure 1.1. It is this problem- the problemof

8a la TV, but a non-identical ruleset
9i.e., which nodes on the gate terminal of the pass transistors

22

finding an automated solution to the false path problem - that is addressed in this

thesis.

The general conclusion that one can draw from this discussion is that the

timing analysis of an integrated circuit cannot be made accurately without considering

the functional nature of the signals. Further, as we shall see later, the function

computed by a signal cannot be accurately determined without taking the timing

properties of the circuit into account. The analysis of their interaction is non-trivial,

and must be done carefully and correctly in order to solve the false path problem.

1.4 Outline

The remainder of this thesis is organized as follows. In chapter 2, we outline

the theoretical basis of a correct solution to the false path problem. The basic problem

is that of determining when a path is true, or sensitizable, and is so referred to as

a sensitization criterion. In the course of this analysis, we will demonstrate that a

criterion which fails to take the dynamic nature of the signals in a circuit into account

can lead to a timing analyzer which ignores the true critical paths of a circuit, and

hence violates the basic correctness condition of a timing analyzer. Further, we argue

that, since any delay model necessarily overestimates the delay across a node, that a

timing analyzer must fulfill a robustness condition: namely, it must return an answer

that is correct for every functionally and topologically identical circuit with identical

or possibly lesser delays across individual nodes. We outline a criterion - the viability

criterion - after demonstrating that the two most obvious criteria are either incorrect

or non-robust, and prove that viabiUty is both correct and robust. In chapter 3, we

demonstrate that eachprogram in the literaturewhich purports to solve the false path

problem is a variant on a single, parameterized algorithm, and that the sensitization

criterion is but one of the parameters to this function. We demonstrate that to every

criterion corresponds a logic function, and give the logic function both for one of

the criteria rejected in chapter 2 and for the viability criterion. We then modify

the generic algorithm to correctly compute the viability function. In chapter 4, we

explore system considerations. We fully outline the parameter space: in addition to

23

sensitization criterion, the others are the search method, the satisfiability test, and

the function representation (the search method is fully developed in chapter 3). We

give a general theorem of approximation, a weak - and hence correct and robust,

but less tight - version of the viability function, and then demonstrate that two

criteria which have appeared in the literature are approximations to weak viability,

and so to viability. At an orthogonal axis of approximation, we discuss weak forms

of satisfiability. We give experimental results on conjured circuits and on public

benchmarks. In chapter 5, we consider hazard-free boolean functions, and show that

these are isomorphic to the class of precharged-unate functions. In chapter 6 we show

that dynamic sensitization - a sensitization criterion tighter than viability but non-

robust on general circuits - is a correct and robust criterion on these circuits. Hence

timing analysis on such circuits can yield tighter delay estimates than viability.

The appendices are organized as follows. In appendix A, we examine the

complexity of the problem of finding the longest true path by various criteria, and

demonstrate that each such problem is a member of the class of jV'P-complete prob

lems: loosely, the hardest problems whose solution may be verified in polynomial

time. In appendix B, we review the family of operators of which the smoothing op

erator and the boolean difference are the most prominent members, and in appendix

C we discuss a fast algorithm for a positively-biased SAT test. In appendix D we

review the properties of precharge-unate logic gates.

Chapter 2

The False Path Problem

2.1 Introduction

In this chapter the false path problem is formally treated as a theoretical

problem in combinational logic circuits. We begin by reviewing briefly the genesis

and practical import of the problem.

Timing analysis and timing optimization of digital circuits is currently recog

nized as a key area. Optimization requires correct timing behavior, i.e. identification

and accurate estimate of a circuit's true critical paths. Typically, critical paths are

detected using static timing methods. While these methods are extremely fast, they

often lead to serious overestimates of a circuit's delay due to false paths. A path is

false if it cannot support the propagation of a switching event. In estimating the

timing behavior of a circuit, we would like to find the slowest true path.

Several papers have appeared recently in which "false'' paths are detected.

The classic criterion, most often seen in user-supplied "case analysis" of "incompat

ible paths" in programs such as Crystal[64] and TV[40], is usually based on static

sensitization. Under this criterion, a path is false if there exists no input condition

such that all gates along the path are sensitized to the value of the previous gate

on the path. This approach has recently been formalized in the SLOCOP timing

environment[6].

Unfortunately, not every true path is statically sensitizable, so the delay of

24

25

the longest statically sensitizable path is not necessarily an upper bound on the delay

of the circuit. In this chapter we demonstrate that the use of static sensitization as a

criterion for the truth or falsity of a path can lead to underestimates of circuit delay,

possibly causing the circuit to behave incorrectly.

Figure 2.1: A Sensitizable "False" Path

Example: We illustrate this with a small example, taken from [10]. Consider the
circuit shown in figure 2.1. Assume that all inputs arrive at t = 0, and that the delay
on all gates is 1. Consider the path {a,d,f,g}, of length 3. For a to propagate to
d we must have 6=1. For / to propagate to g we must have e = 1, which implies
a = b= 0. Hence a static analysis would conclude that this path is false. Similarly,
the path {b, d, f, g} requires a = 1 and a = 0, and so a static analysis would conclude
that this path is false. Since these are the only paths of length 3, a static analyzer
concludes that the longest true path through this circuit is of length at most 2.

Nevertheless, one can see that holding c at 0 while toggling both a and 6
from 1to 0 at t = 0 forces the output g to switch from high to low at t = 3. Hence one
of the two paths of length 3 must be sensitizable, in the sense that a switching event
can travel down it; further, if the clock delay is set to the value (2) of the longest

26

statically sensitizable path, the circuit will behave incorrectly on this input. •

Our first task is the derivation of a criterion for sensitization such that the

longest sensitizable path in the circuit is an upper bound for the delay of the circuit.

This task alone, however, is insufficient. Another problem must be dealt

with by any algorithm which attempts to compute critical delay. The delay model

used in timing analysis methods is a worst case model; it is intended to provide an

upper bound for the delay of all circuits which may be manufactured and operated in

particular environments. A real circuit is not the idealized circuit of timing models;

it is a circuit with the same topology, but with possibly smaller delays at some of the

nodes. Hence the estimate provided by the algorithm must hold for an entire family

of circuits, the "slowest" of which - in the sense of having the slowest components - is

typically the one under analysis. In order to use the slowest circuit it is necessary that

any critical delay algorithm be robust in the following sense: if the delays on some or

all gates in the network are reduced, then the critical delay estimate provided by the

algorithm is not increased. When the algorithm is applied to the worst-case circuit, a

robust criterion thus guarantees that the estimate obtained is valid for any circuit in

the family. Colloquially, we refer to this robustness property as the monotone speedup

property.

In this chapter, we develop a theory which correctly classifies true paths

and can be used to provide a correct upper bound for the critical delay in all circuits

with the same topology and with equal or less delay at each gate. In section 2.2, we

develop our timing model, introduce the concept of event propagation and formally

define sensitizable (or true) and critical paths. In section 2.3, the definition of a viable

path is given and it is shown that every true path is viable. In section 2.4, it is shown

that viability obeys monotone speedup on symmetric networks. In section 2.5, it is

shown that every network may be transformed into a symmetric network, and retain

all of its viable paths, and thus the longest viable path in the transformed circuit

provides the upper bound we seek for the correct timing behaviour. In section 2.6, it

is shown that determining the viability of a path is equivalent to computing a logic

function.

Thus by finding the longest viable path in the symmetric worst-case delay

27

circuit, we have the correct upper bound required. Of course, the longest path of a

circuit also satisfies the above two criteria and so is a correct bound. However, we

believe that the longest viable path is a tight bound, although we have not yet been

able to show this. We have used our theory to demonstrate that the bounds given in

[10] are correct; this theory also demonstrates that those bounds are looser than the

bounds developed here. This construction is given in chapter 4.

2.2 Dynamic Timing Analysis

For purposes of clarity, we outline a very simple timing model here. The

results of this chapter, however, do not depend on the precise characteristics of this

model; we can show that they hold for slope delay models, models with separate rise

and fall delays, and different delays on each pin.

Definition 2.2.1 A path through a combinational circuit is a sequence of nodes,

{go,...,#m}; such that the output of gi is an input of <ft+i.

Definition 2.2.2 Each node g in a combinational circuit has a weight w(g). The

value of node g at time t is that determined by a static evaluation of the node using

the values on its inputs att —w(g).

Definition 2.2.3 We define delay as follows:

1. The delay through a path P = {go,..., <7TO} is defined as d(P) = \{go, •••»5rm}| =

T^Qw(gi)- This is also called the length of the path.

2. Thedelay at a gate d(f) = w(f)-\-max{d(i)\i € inputs(f)} for all non-primary

inputs f. For all primary inputs x, we define d(x) = 0. The weight of a primary

input is 0.

3. When delays in more than one network are under consideration, the notation

djq(f) denotes the delay at node f in network N.

The restriction that the delay at the primary inputs is identically 0 is a

notational convenience, and does not restrict the body of applicability of this theory.

28

Primary inputs which arrive at t = T > 0 can be modelled by assuming that the

input arrives at t = 0 and that a static delay buffer of weight T is the sole fanout of

the primary input. The buffer's fanout is the fanout of the primary input. Primary

inputs that arrive ay t = T < 0 can be ignored by a simple translation of the time

axis.

We assume that the wires of a circuit act as ideal capacitors; that is, once

assigned a value the wire holds that value until changed by a computation at its

source node. Further, for all negative values of t, the wires of the circuit hold the

static values determined by some input vector c\. Notationally, we capture this

assumption by speaking of the value of function / at time t, f(c\,c2,t), where c\ is

the input vector from —oo < t < 0, and c2 is the input vector from 0 < t < oo.

Clearly we have:

/(-,<*,*) = /(c2) for «><*(/) (2.1)

since after time t = d(f), f has assumed its static (final) value.

As we develop the theory, we will use the concept of the "delay" of a func

tion which is not explicitly computed in the network; specifically, of various functions

which arise from the boolean difference. These functions do not have a delay within

the model developed above. However, it is convenient to assign them a delay. The

most reasonable choice is to assume that the computation of these functions is in

stantaneous. Hence:

Definition 2.2.4 Letg be any node not in a network N. Then w(g) = 0.

Hence, for any such node g,

d(g) = . max d(h)
h is an mput of g

Definition 2.2.5 An event is the transition of a node from a value of 0 to 1, or

vice-versa.

We envision a sequence of events {e0, ...,ero}, each et- occurring at node /,-,

and each event e,- occurring as a direct consequence of event e,vi. We say that event

e0 propagates down path {/o,..., /m}.

29

Definition 2.2.6 A path P = {/o,—,/m}, /o o, primary input, is sensitizable if

some event Cq may propagate down this path to the output fm.

Definition 2.2.7 The critical path of a network is its longest sensitizable path.

This permits us to consider the boolean conditions for a path to be sensitiz

able. Let event c,- be the transition of node /; from 0 to 1. Event ef+i is the transition

of fi+i from either 0 to 1 or 1 to 0. In the former case, we have that /t+i tracks /,-,

in the latter, /l+i tracks Ji. The conditions under which this is possible is a boolean

function, the arguments of which we call side inputs.

Definition 2.2.8 Let P = {/o,...,/m} be a path. The inputs to /,• that are not /,_i

are called the side inputs to P at /,-. We denote the set of side inputs as S(fi,P).

Now, clearly we must have ^- = 1when event e;_i is propagated through
/,-. We denote the time of event e,-, t(e,), as r,-.

Lemma 2.2.1 Let e0 propagate down path {f0, ...,fm}, /o &primary input. Then

Proof: Induction on i. For i = 0, we have Co is a change in a primary input and

this clearly occurs at t = 0 = w(fo). Assume for i < j. For j + 1, we have that

eJ+i occurs as a direct consequence of e,*, whence t^e^i) = t(ej) + w(fj+i), hence

<(e,+1) = E&5«(/«). •

Theorem 2.2.1 A path {/o,..., fm}, /o a primary input, is sensitizable iff 3 input

vectors ci,c2 9 Vz •§j^(cx,c2,Ti-\) = 1.

Proof:

=^ {/o»...»/m} is sensitizable. By lemma 2.2.1 we have that event e,- occurs at r,-

occurring as a result of the event at t,_i on /,_i. This requires that either fi(c\, c2,r,)

tracks /$vi(ci,c2, Tj-i), in which case we musthavethat fif._x is satisfied (so that /;_!

going high forces /,- high), and that fij^ is satisfied (so that /,»i going low forces

30

fi low). Further, the value on /,• at r,- is statically determined by the values on its

inputs at rt- —w(fi), i.e., at t,*-i. This is summarized in the expression:

(/•7.-i/»'7TT)(ci'c2'r«-i) = X'

The other case is that fi(c\, c2, ri) tracks /i-i(ci, c2, r,-i), in which case we must have

that /»7j3j"is satisfied (so that /j_i going low forces fi high), and that /,y._1 is satisfied

(so that /j_i going high forces /,- low). Further, these conditions must occur r,_i, as

before. This is summarized in the expression:

Putting the cases together, we must have g?£-(ci,C2,Ti_i) = 1, as required.
<$= There exist input vectors ci,C2 3 g7^-(ci,C2,rt_i) = lVi. Therefore, for every i,
we must have that either

(fifi.Jijizr)(ci, c2, r,-!) = 1,

in which case fi(c%, c2,r,-) = /i-i(ci, C2, r,-i) and the rising (falling) edge which is e,_i

is the rising (falling) edge as e, at r,-, whence the event e0 propagates along the path,

or

in which case /;(ci, C2, r,) = /t_i (cj, C2, r,-i) and the rising (falling) edge which is ej_i

is the falling (rising) edge as e,-, at rt-, whence the event eo propagates along the path.

These are the only two cases, and in either case eo propagates, whence {/o,..., /ro} is

sensitizable. •1

The basic distinction between the current theory and the previous attempts

may now be made clear. The previous theory required that gfA-fe) = g|^-(ci,C2,oo) =
1, a much stronger condition than ^-(c\,c2,Ti^\) = 1. Paths for which the former
condition holds are called statically sensitizable. Paths for which the latter condition

holds are called dynamically sensitizable, or (in light of theorem 2.2.1) sensitizable. It

is easy to show that:

1In the case where the value of^j{\ is changing at r,-_i, to be conservative, we choose £?' = 1
at n_i.

31

Theorem 2.2.2 Every statically sensitizable path is sensitizable.

Proof: A path is statically sensitizable iff, for all i, gf^(c) =1&>r some c. Clearly
then gf^-(c, c,<) = lVf> 0, giving the result. •

Remark: This proof is obviously trivial in the sense that applying identical

vectors will not generate any event to propagate. However, it is clear that if the

cube c does not specify /o, then one can obtain c\ and C2 by toggling the /o bit.

Remark: Note that the converse to this theorem is false: not all sensitizable paths

are statically sensitizable. Indeed, by appropriate adjustment of the internal delays

it appears that one can make almost any path in any circuit sensitizable (of course,

the timing characteristics of such adjusted circuits vary considerably). Moreover, one

can demonstrate fully-testable circuits whose longest dynamically sensitizable path

is not statically sensitizable; this statement demonstrates that static vs dynamic

sensitizability can be an issue in the timing verification of non-contrived circuits.

Indeed, in the circuit of figure 2.1, though the connections of both a and b to the

AND gate are non-testable, and d is untestable for stuck-at-zero, the circuit is made

fully testable through the addition of a second output, as shown in figure 2.2.

Algorithms which attempt to discover whether a given path is sensitizable

must determine whether or not input vectors Ci,C2 satisfying theorem 2.2.1 exist.

There is a wide range of freedom permitted these vectors. However, we may say

immediately.

Theorem 2.2.3 Let {/o,...,/m} be a sensitizable path. Ifd(^—) < r,_i, for some
i, then ^(c2) = 1

Proof: Since {/o,...,/m} is sensitizable, g7^-(ci,C2,Ti_i) = 1. But since r,_i >
<£(g|£-), we have jnb—(ci,c2,Ti-i) = ^-(c2) by equation 2.1, whence the result.
•

Corollary 2.2.4 The longest path in a circuit is sensitizable iff it is statically sensi

tizable.

32

Figure 2.2: A Fully Testable Example

Proof: The if part is given by theorem 2.2.2. For the converse, observe that the

premise of theorem 2.2.3 holds for every fi on the longest path •

Recall that every valid criterion must meet the monotone speedup property:

if the delays on some or all gates in the network are reduced, then the critical delay

estimate for the network is not increased. This guarantee cannot be given by the

dynamic sensitization criterion, because the sensitizability of a path is inherently

determined by the precise internal delays of the circuit. Hence, one can speed up a

circuit and thus make a previously-unsensitizable path sensitizable. This path may be

arbitrarily long (though not the longest in the circuit if such is unique); in particular,

it may be longer than the longest-sensitizable path in the slower network.

An example which illustrates this phenomenon is detailed below.

Example: Consider the single-input circuit in figure 2.3. Assume the delay on all

gates are as marked. Note when a is toggled from 1 to 0 at t = 0, from t = 2 to t = b

there is a 0 on both u and w, so x = 1 from t = 4 to t = 5. However, in this case

y = 0 throughout, so out = 0 throughout. Similarly, when a toggles from 0 to 1, from

t = 0 to t = 2 there is a 1 on each input of y, so y = 1 from t = 2 to t = 4. However,

33

Figure 2.3: Monotone Speedup Failure

in this case x = 0 throughout, so out = 0 throughout. This circuit therefore has no

dynamically sensitizable paths and its delay is 0.

If we now speed the circuit up by removing the delay buffer between 6 and

u, so that u now arrives at t = 1, but all other delays are unchanged, when a is

toggled from 0 to 1 we have a zero on each input to x from t = 1 (when u turns from

1 to 0) to t = 2 (when w turns from 0 to 1). Hence x = 1 from t = 3 to t = 4. But

y = 1 from t = 2 to t = 4, so out = 1 from t = 5 to t = 6. Hence there is at least

one dynamically sensitizable path in this circuit of length 6; by reducing the delay on

the wire from the inverter to u from 2 to 0, we have increased the critical delay on

this circuit from 0 to 6. A full timing diagram of the situation appears in figure 2.4.

In this diagram, the solid fines represent the behaviour of the "slow" original circuit;

the dotted lines the behaviour in the sped-up, or "fast" circuit. •

This phenomenon - that one can demonstrate circuits where the longest

true path of a circuit increases length as components are sped up - appears to hold in

0 12 3 4 5 6 7 8

a—J
1

i |

m

i

Y i i
J

out
ri

Figure 2.4: Timing Diagram of Monotone Speedup Failure

34

every level-sensitive logic where each wire holds its value until the value is changed.

In fact, given that the exact delay times at the nodes in a circuit are only determined

up to some given tolerance, the sensitizability of a path within a given circuit may

vary between two "identical" but separate realizations. Hence the longest sensitizable

path appears to be an inherently nondeterminate property of logic circuits.

2.3 Viable Paths

Since the longest sensitizable path does not satisfy monotone speedup, we

cannot use this criterion to derive a correct upper bound on our family of circuits.

We attempt to find a condition on circuits weaker than dynamic sensitization but one

that is as strong as possible, certainly tighter than that given by a simple longest-path

procedure. The condition C that we seek must possess two properties:

• Every sensitizable path must satisfy C

• C must satisfy the monotone speedup property; if network Nf is obtained from

N by reducing some or all delays, then the longest path satisfying C in Nf must

be no longer than the longest path satisfying C in JV*

35

One property that satisfies these constraints is simple longest path. However,

this is too weak a condition, and we can do better. A strong property that satisfies

these constraints is viability. Before we formally introduce the concept of viability,

we wish to introduce its motivation.

Fundamentally, a node /,• is dynamically sensitized to an input /,_i at t,_i

but not statically sensitized to /,*„i only if the value of the function *J} changes

value at rt_i or later. This can only occur if there are events on some set of inputs

to &{* at or after rt_i; these are called late side inputs. Under these conditions,

we may assume that each of these inputs are at any value at r,-_i, and hence (to

be conservative), we assume that they are set to any value which will propagate the'

event. Mathematically, we do this by "smoothing" the function ^ffl over the late
inputs (see 1.2).

Definition 2.3.1 Consider a path P = {/o»—t/m}» Q is said to be a side path of

P at fi ifQ terminates in g, a side input to P at fi.

Definition 2.3.2 A path P = {/o»...»/m} is said to be viable under an input cube

c if, at each node fi there exists a (possibly empty) set of side inputs U = {gi, ...,gn]

to P at fi, such that, for each j,

1. gj is the terminus of a path Qj,

2. d(Qj) > Ti-i and Qj is viable under c

Intuitively, at each node we find the conditions which simultaneously permit

a set of side inputs U (a subset of the late side inputs) to undergo events later than

rt_i, and the remaining side inputs to statically sensitize the node. It is important

to note that this can only occur if there is some assignment to the variables in U

which statically sensitizes the node; the effect of the smoothing operator is to permit

this assignment to be made, independent of conditions elsewhere in the network.

Effectively, the variables in U are made independent variables by the smoothing

operator. Note that the case U = 0 corresponds to static sensitization.

36

The intuition behind smoothing off late side inputs may be grasped by con

sidering the case where /,• is an AND gate, fi = fi-\a\...an. In this case, g^- =
ai...an. If the inputs a,- and aj are smoothed off the boolean difference, however, the

resulting expression is
i

ai...a,_iat+i...aJ_iaJ+i...an

We demonstrate that the criterion of viabiUty under a cube has the two

properties we seek; namely, it is weaker than sensitizability, and it has the monotone

speedup property. We do so by induction on the maximum distance (in nodes, not

node weights) of a node n from the primary inputs, denoted 6(n), and called the level

of n. Note for every node m in the transitive fanin of n, we have that 6(n) > 6(m),

and that the only nodes p for which 6(p) = 0 are the primary inputs. Hence inductive

proofs on 6(m) are really proofs on the structure of a graph; we will be showing that,

given that a property holds for each node in the transitive fanin of some node, then

it holds at that node.

We check our two conditions, first checking that every sensitizable path is

viable.

Theorem 2.3.1 LetP = {/o?...5/m} be apath. IfP issensitizable with -£k-(c\,c2,Ti-i)
1 V», then P is viable under oi.

Proof: We prove by induction on 6(fm). If /m is a primary input then trivial. So

suppose true for all paths terminating in some fm such that 6(fm) < •£• Now, consider

a path terminating in fm such that S(fm) = £• Let ffi-(c2) =0 for some /,• i < m.
(if no such i exists, then the path is viable under c2 by (1) of the definition, and done).

Now, since gf^-(ci, C2, r,-i) = 1, and g??*-(ci, C2, oo) =0, there were events on inputs
to -M*- at some t > r,_i. The inputs to -$*— are the sideinputs to P at /,-. Let U =

{<7i»•••> gn} be the side inputs where the events occurred. Each event propagated under

c2 to gj from some primary input hoj, whence Qj = {hoj, h\j, ...,£,} is a sensitizable

path and d(Qj) > tj_i. Further, 6(gj) < 5(fm) = L, and hence by the inductive

assumption Qj is viable under C2. Finally, the side inputs where no events occurred

37

after r,_i is the set S(fi, P) - U. These are precisely the inputs to Stfgf£-> whence we
must have Sv^^(c2) =Su$^(ci,c2,oo) =5£;g|gr(c1,C2,rl-1). Since f(c) =1=>
Sxf(c) = 1, and since g^-(ci,C2,r1-i) = 1, we have that 5tf3^(ci,c2,Tt_i) = 1,
whence Su^-(c2) =1and done. •

The converse to this theorem is false; not every viable path is sensitizable.

Clearly the converse cannot hold since viability is robust and dynamic sensitization

is not robust.

2.4 Symmetric Networks and Monotonicity

Viability does not possess the monotone speedup property on general net

works; however, it does possess this property on networks composed of symmetric

gates. The objective of this section is to prove this. The"proof must be approached

indirectly, for the set of viable paths changes as one changes the internal delays of

the network. Hence the proof of the monotonicity theorem for symmetric networks is

given by a construction: if N' is obtained from N by reducing some delays, and if P'

is a viable path in N', then we construct a viable path P in N with dj^(P) > dw(P').

Thus N always contains a viable path at least as long as the longest viable path in

N'. Having done this, in the sequel we shall show how to apply this result to networks

containing asymmetric gates.

Definition 2.4.1 A function f is said to be symmetric in some set of variables U

if, for every permutation of U, there exists a phase assignment to the variables in U

such that f is invariant.

Example: / is symmetric in the variables x, y if one of the following holds:

j{...,x,y,...) = j\...,y,x,...)

f(...,x,y,...) = /(..., Jf,x,...)

f(...,x,y,...) = f(...,y,x,...)

f(...,x,y,...) = /(..., y,x,...)

38

Example: f(x,y) =x+$ is symmetric in xand y, since /(frS) =$+ f =/(s,y)
•

Lemma 2.4.1 J// ts symmetric in aset of variables Uthen for every V CUwhere
\V\ >2 andx,ye V:

Proof: Without loss of generality, assume that each variable is assigned the positive
phase in the phase assignment of the symmetry definition. If \U\ = 2, and since
/(».,*,IS...) =/(-..,y,*,...), we have fx(y) =/„(*), My) =/^ar), J,(y) =Jy(x),
My) =/?(*), whence we have §£(x) =%L(y) and so:

which gives us the result. Now Let \U\ = L. Consider any V C U. We have:

= Su-{x,y}Sy%L (from the base case)

- SV-i*)$lx-

•

Symmetry is important because we can show monotone speedup for networks
composed ofsymmetric nodes. Further, as is evident from the definition above, most
networks are largely symmetric, and thus this theorem has some practical importance.

For proving monotone speedup, we need a technical lemma concerning the
existence of viable paths when presented with a set of viable partial paths which
conjoin. This is presented in the "viable fork" lemma. Reference to the diagram in
figure 2.5 is helpful when analyzing this situation.

Lemma 2.4.2 (Viable Fork) Let V= {g0, ...,gn} be asubset of the inputs to some
node ho. Let each gi be the terminus of a path P{, a viable path under c. Let c C
Sv-i9i}^ for each i. Let Q={h0,..., hp} be any path, such that cC^L for every
j. Then for some i, {P4, Q] is a viable path under c.

Po
go

Pi
g\ \

Pn-1
— 9n-l

ho

/
Pn

gn

1

yip —| K j

Figure 2.5: "Viable Fork" Lemma

39

Proof: Since c C dfyl for every i, all that must be shown is the viability under c
of one of {Pi, ho}. This is trivial if h0 is statically sensitized for any of the gi by c,

so assume not. For some i, d(Pi) is minimal among the Pi, and since by assumption

c C 5y_ff(.^-, and since for each gj, Pj is viable under c with d(Pj) > d(Pi) we have
that {Pi, h0} is viable under c by the definition of viability. •

In the monotone speedup theorem, we will be conjoining various partial

paths which are known to be viable under some cube c onto the common "tail", in

this lemma given by {hi,...,hp], and we will want to show that one of the resulting

paths is viable under c, whence at least one path is viable under c.

Note that by lemma 2.4.1, for symmetric h0, any V, c C Sv-gi%& for some

g{ e V iff cCSv-*f£ for each gt € V.
We now turn to the main theorem of this section, which demonstrates that

viability has the monotone speedup property in symmetric networks. We proceed

in this proof as follows: given a path P' viable under c in a "fast" network Nf, we

demonstrate the existence of a slower path P in the "slow" network N viable under

40

c

In the proof, the diagram in figure 2.6 is helpful.

Theorem 2.4.1 Let N' be any network obtained from a symmetric network N by

reducing some internal delays. For every viable path P = {/b,..., fm} *» N't 3 P =

{A?o,...,/m} a viable path in N with d(P) > d(Pt).

Po

- - Pi
Pi

- - A'

9o

k

— 1

9i \
a*

\
\\

U-l h

/.-2 /

//
gn-i /

*

gn

ao

A

P'

Pn-l

Pi
Pn

Figure 2.6: Viable Paths in JV and N'

h

Proof: Let {/o, ...,/m} be a viable path in JV'. We proceed by induction on 6(fm).

The base case is trivial, so assume for £(/m) < L. Consider the case £(/m) = L. If

{/o,..., fm} is statically sensitizable under c, then done, since this path is viable in

every network in the family, and so in N. If not, let fi be the last node that is not

statically sensitized to/,«i byc. Since g?^- is not satisfied bye, then since {/o,..., fm}
is viable in N' by the definition of viability there exists a set U = {go,—<,gn}

2By "fast" and "slow" here we mean that N* has been obtained by reducing some delays in N

41

of the side inputs such that for each gj there is a Pj viable under c in N* with

dw(Pj) > dN,({f0,...,fi-i}) and with c C Su-ffl^. Now, since 6(gj) < L, by the
induction hypothesis for each j3a Pj, viable under c in N and terminating in #j,

with dN(Pj) > dN,(P<). Further, since {/o,...,/i-i} is viable under c in N', and

S(fi-i) < L, by induction there is a path {a0, ...,a*,/t_i}, viable under c in JV, with

^({ao, •••> a*> /«-i}) >^N'({/o?...»/i-i})« Since N is symmetric, and cCSu-^- the
set of inputs UU{/,_i} satisfies the assumptions for the set V of lemma 2.4.2, with

{h0,..., hp} = {fi,..., fm}. Therefore one of the {Pj, fi,..., /m}is viable under c in N,
or {a0,..., a*, /f-i, /,-,..., /ro} is viable underc in TV.

<M{ao,...,«*,/i-i,/t,...,/m}) = ^({ao,...,ajb,/.-i}) + ^iv({/,-,...,/m})

> <M{/0, ...,/.-l}) + **({/<. -,/m})

> ^'({/o,..., /t-1, fi,..-, /m})

and:

^({Pi,/,V..,/m}) > ^(^i) + ^({/.V..,/m})

> ^N'({/0i ».» /t-1, /«,.-, /m})

So all paths have greater delays in N than the path {/0,..., /m} in N', and
since one must be viable under c in JV, we are done. •

One might wonder at the utility of this theorem, since it is easy to exhibit

asymmetric gates: the gate xy+ z is clearly symmetric only in x and y. However, we

can transform any networkof asymmetric gates into a symmetric network, at some

increase in the number of viable paths. We develop this in the next section.

2,5 Viability Under Network Transformations

It iswell-known that anyboolean function maybe writtenin sum-of-products

form. Now, we may consider any gate in an arbitrary network to be implemented in

this way: for each term, there is a single and gate realizing the term, and the and

42

gates are the inputs to a single or gate which realizes the function. Now, if we assign

the internal and gates to have weight 0, and the or gate realizing node / to have

weight w(f), we will not have changed the timing characteristics of the network in

any way. Our purpose in this section is to show that the set of viable paths of the

network is not decreased by this transformation. In practice, the and/or transform

is one of a large class of such transforms, which we call macroexpansion transforms

(since each gate is macroexpanded). Formally, wecan write the definition this way:

Definition 2.5.1 Let N be a network of arbitrary gates. A transform T is called a

macroexpansion of N ifT(N) has the properties:

1. Each gate in T(N) belongs to precisely one subnetwork T($).

2. Foreach fi € N, T(/t) is an acyclic digraph consisting ofzero or more internal

nodes, each of which has weight 0 and whose fanouts are nodes ofT(fi), and
one output node, designated O(fi), whose weight is w(fi) and whose fanouts are
the fanouts of fi.

S. For each fi € N, T(fi) realizes the logic Junction fi.

Informally, each gate in the network is replaced by a subnetwork implement
ing it.

The example of the and/or transform is instructive. If T is the and/or
transform, and if / = cx + c2 -f-... + cn, each Cj a cube, then O(f) is an or gate whose

inputs consist of n and gates, T(a),..., T(cn). w(T(a)) = 0 V i, w(0(f)) = w(f).
Our purpose is to show for any generic macroexpansion transform T, and

for every viable path P in N, there is_at least one corresponding viable path T(P)
in T(N), with dN(P) = dT{N)(T(P)). This shows immediately that the critical path
delay returned by the viable pathalgorithm on a macroexpanded network is anupper

bound on the truecritical path delay. Moreover, since we can certainly macroexpand

any network into a symmetric network, we can apply the monotonicity theorems to

the symmetric network and be assured that the critical delay obtained is not only
upper-bounded in the network N, but also in any faster network N'.

43

This theorem is a little difficult, and rests heavily on the relationship between

the boolean difference, static sensitization, and testing, and on the properties of

the smoothing operator. First, note that since the operations of cofactoring and

complementation are independent of the implementation of a function, then so to is

the boolean difference. Hence we have that

dQ(fm) _ dfm
0O(/m-l) ~ 57nTT

The next piece of this puzzle comes from a technical lemma. We wish to

show that for every gate in the macroexpanded network, if c satisfies Su &Jm , then
there is a path viable under c from fm-\ to 0(/m). Now, recall that for any /, and

any cube c* 3 U, we have:

($uf)f = f<*-u>

Using this identity, wecanconsider the macroexpanded subnetwork for /m. Since the

inputs for fm not in U may be taken as specified by some cube cm, we wish to consider

the network T(fm)c*- Since the function tJt^ has asatisfying assignment, a test
exists for both stuck-at-0 and stuck-at-1 on the input lead 0(fm-i) for this network.
Now we must show:

Lemma 2.5.1 A shortest path through any node f in a non-trivial network is viable
under the cube 1, and hence under any cube c.

Proof: Induction on 8(f). If / is a primary input, trivial. Assume for all / s.t.

6(f) < L. If 6(f) = L, let {{P,h},f} be a shortest path through /. By induction,
the path {P, h} is viable under 1 and there is a path viable under 1 through each
input of /. Since each such path must be at least as long as {P,h}, each side input
of / is late under every cube, and so under 1. Now, it is trivial that for anynon-zero

function g, sfanins(g\g =1, and hence when Uis equal to the entire set of side inputs
of / we have that Sc/§£ = 1, thus {P, h, /} is viable under 1. •

Theorem 2.5.1 Let N be any network, T(N) be the network obtained by any trans
formation T satisfying definition 2.5.1. Then for every viable path P in N termi
nating in fm, there is at least one viable path T(P) in T(N) terminating in 0(fm),
with d(P) = d(T(P)).

44

Proof: Consider some viable path P = {/0, ...,/m} in N, its viability cube c and its

transformation, {T(f0),...,T(fm)}. Induction on 8(fm). For 8(fm) = 0, the result is

trivial, since /0 is then a primary input. Assume for a path with 6(fm) < L. Suppose

a path with 6(fm) = L. Then by assumption there is. a path « in T(N), viable under

c, of length d({f0, ...,/m-i}) terminating in 0(/ro_i). All that must be shown is the

existence of an extension v of k of length w(fm), viable under c, from C(fm-i) to

^(/m). Since {/0,..., /m} is viable underc, thereis a set of late inputs U underc such

that Su df^x ls satisfied by c. By induction, each of the viable paths to these side
inputs in the originalnetwork producesa viablepath within the transformed network,

so the sameset U of inputs maybe chosen to be late in T(N). The remaining inputs

to T(fm) have delays smaller than r,_i in the initial network, and so we must take

their values as their static values under c. These values form a cube, c*. This cube

may be taken to propagate through thenetwork T(fm) producing T(fm)c*i and hence
there is a viable extension of « from 0(fm-i) to 0(fm) in T(/m) iff there is a viable

path from 0(fm-i) to 0(fm) in the cofactored network (T(fm))<*. Each path through
the (T(/m))c. has its length given by the arrival timeof the input at its head. Since

the only inputs to the cofactored network are 0(fm-i) and the late side inputs, if

any path from 0(fm-i) to 0(fm) exists it is a shortest path. Hence by lemma 2.5.1

if such a path exists it is viable. We know that such a path exists since Su a9Jm is

satisfied by c, and so /mc. is a non-trivial function of /m_i. Let v be this path. By

construction, v is. of length w(fm). By construction, the delay to 0(fm) through ac

and the prefix of v is rm_i, and {/c, v} is viable under c in T(N). m
The converse to this theorem is false. Consider the circuit in figure 2.7. This

is the and/or transform circuit of / = ab + eb. Now, suppose the variable b is late,

and the value of e is set to 1. The function of the original gate is now ab + 6, which

simplifies to b: the reader can easily verify that 5&§£ = e", and so this gate is not
sensitized to a when e = 1. However, in the transformed network, the path {a,x,/}

is viable when e == 1, since the variable y at the or-gate is late.

The fact that the converse is false has an important consequence: wecannot

conclude that monotone speedup holds for arbitrary networks. However, we are guar

anteed correctness of our algorithms if we transform the network N into a symmetric

45

Figure 2.7: And/Or Transform of / = ab+ eb

one, since theorem 2.5.1 guarantees that for each viable path in the original network

we will find a viable path of equal length in the transformed network.

In the next chapter, we shall turn to algorithms. The general method is

quite clear; transform the network into theand/or network, and then find the longest
viable path in this network. We first introduce a mathematical tool that permits us

to view viable paths as the satisfying set of a logic function; this in turn permits the

development of a dynamic programming procedure to compute viable paths.

2.6 The Viability Function

At some very fundamental level, any set condition may be expressed as a

multiple input logic function. We are interested in making explicit the logic function
that underlies viability, because the computation of the viable paths may be made
more efficient through explicit computation of this function, because various prop
erties may be proved through use of this function, and because we shall develop a

powerful theorem which permits us to quickly establish the correctness of approxi
mation procedures.

The viability function t/>p on a path P is easy to define: x/>p(c) = 1 iff P is

46

viable under c. This hardly gives more insight than the viable path definition. We

prefer to define ipp in terms of some function rj)p at each node /,-. We develop this

function intuitively, then justify its definition in a theorem at the end of this section.

Intuitively, we expect that the function i/>p will be the product of the viability

conditions at each node /,- along the path P, which in turn are captured in the function

;=o

Since time plays an important part in the definition of viable path, it is convenient

to capture it in the definition of the viability function. For any node g, let V9tt be

the set of paths terminating in g of length at least t. Define

Letting U be any subset of S(/;, P) we can express the viability condition on the

subset as:

(^aKr) n r^
since this condition must be satisfied for one subset, we may write:

+$ = e (^sjfc-) n ^•n-1
UCS(fi,P) g&J

In summary, we define:

Definition 2.6.1 The set of paths which terminate in g of length > t are denoted

Definition 2.6.2 The viability function (also viable set,) ofa pathP = {/0,..., /m}

is defined as:

p«n$ (2-2)
where

and

i=0

*£= E (*jffe) II ^'"-, (2.3)
fCS(/i,P) 9&J

**- E *Q (2-4)
Qev,,,

47

We have immediately:

Theorem 2.6.1 P = {/o»...»/m} is viable under some minterm c iff c satisfies xj)p.

Proof:

==• P = {/o,..., fm} is viable under c. Induction on 6(fm). The base case is trivial,

so assume for all paths with 6(fm) < L. Let 6(fm) = L. We must show that for each

/,-, c € V'p* Now, if c € gf£-» done. Otherwise, since the path is viable under c, we
must havethat there is a subset U = {gt, ...,gk} of 5(/j, P), where each gj terminates

a path Qj which is viable under c and d(Qj) > r,-i. Since 6(gj) < L, by induction

then cG^Qj whence c€ ip9*'*-1 for every j. Further, c e £tf gf£-, and done.
•4= c € i/>p. Induction on 6(fm). The base case is trivial, so assume for all paths

with 6(fm) < L. Let 6(fm) = L. We must show that the definition of viability holds

at each node fi on the path. Now, if c G gf^-* done. Otherwise, we must show
that there exists a set of side inputs U meeting the conditions of the definition of

viable path with Su$j£z =? c- Since cGipp*, then we must have that there is asubset
U = {gi> —> gk} of the side inputs, and for each gj, c € il>9*'ri-1. Now, by the definition
of ^ffi'^-i, we must have

Since c is a minterm, for each,; it must be in tpQjt for some k, and since 6(gj) < L,
by induction Qjt is viable under c, and c€ Suffi-, and so done. •

Observe that tfrp is a series, with one term for each subset U of the side

inputs. The flaw in using static sensitization is that only one term of this series is

taken (the term for U = 0).

Chapter 3

False Path Detection Algorithms

Once a correct, robust sensitization criterion has been found, there remains

the task of incorporating this criterion in an algorithm which finds the longest path

satisfying this criterion; sucha path is often called a longest true path. The develop

ment of such an algorithm is the subject of this chapter and the argument that is to

be made is twofold. First, the methods that have appeared in the literature thus far

which claim to solve this problem may be viewed as different parameterizations of a

single algorithm, and, second, that this algorithm can be modified to compute the

viability procedure corresponding to the viability criterion devised in the last chapter.

All of the algorithms that have appeared in the literature to date are of one

broad, generic, parameterized class. A collection of partial paths, each of which is

known to be true, is maintained. At each step of the algorithm, one such partial

path, say P = {/o,..., /m} is removed from the structure. If /m is an output of the

circuit, then this is a full true path, the fact is recorded and (if this is a so-called

best-first procedure) the procedure terminates. If this is not an output, then some

unexamined fanout of fm, say g, is selected to extend the path. A boolean function

7(P, g) is computed. If y(P, g) is satisfied, then P, g is a true path and is inserted into

the structure of true paths. This procedure continues until a termination criterion is

met.

The unity of the algorithms which address this question is not generally

recognized; in particular, the identification of the sensitization criterion with a logic

48

49

function is not usually made. Procedures based on the D-Algorithm (e.g., [10] [6])

compute this function implicitly. Nevertheless, it is important to recognize that such

a function exists for each algorithm, and indeed, in the case of the papers cited, has

a simple explicit form, which we shall divulge in the sequeL

The parameters to this generic procedure are:

1. The search method, which is expressed in terms of the maintained data structure

of true paths and in the termination conditions;

2. The definition of what constitutes a true path, the so-called sensitization con

ditions, which expresses itself in the choice of the boolean function 7; and

3. The method used to determine whether the sensitization function is satisfiable.

The choice of these parameters are largely independent. The choice of search method

affects the computational complexity of the procedure, while the choice of sensitiza

tion condition and satisfiability test affect the tightness and also the correctness of the

procedure: a false-path procedure is tight if it provides a least upper bound on the

delay of the longest true path; a false-path procedure is incorrect if it underestimates

the delay before a circuit output settles to its final value.

3,1 Generic False Path Detection Algorithm

We begin our discussion of the single, generic, procedure by mentioning that

most authors in the field would argue that there are at least two different methods,

depth-first and best-first search[6]. To a large extent whether one considers these dif

ferent parameterizations of a generic procedure or two different procedures is a matter

of taste; one can, after all, view any algorithm as an appropriate parameterization of

a Universal Turing Machine. We hope to show that the two search procedures can be

viewed as the same basic routine, differing only in termination condition and in the

data structure used to store the partial paths.

The best-first procedure maintains the partial true paths in a priority queue

ordered by the potential full length, or length of the longest extension, of the partial

50

path; this quantity is named the esperance of the partial path[6]. The best-first
procedure terminates when an output is reached, since by construction no longer
true path can exist. The depth-first procedure maintains the partial paths on a LIFO

stack. When a full path is reached, the path is examined to see if it isofgreater length
than the longest full true path found so far; if it is, then this is recorded. When the

stack is empty, the procedure terminates, and the best path found is returned.

The best-first procedure is slightly more complex than the depth-first pro

cedure, and must be carefully implemented. If it is, then at most KD paths are

examined by the procedure, where K is the numberof long false paths and D the di

ameter of the graph. The depth-first procedure will in general examine an exponential
number of paths.

3.1.1 Depth-First Search

Depth-first search is a classic graph search algorithm. The central idea is

that the fanouts of everynode in the graph are ordered, and the subgraph headed by

each fanout of a node is explored in its entirety before the succeeding fanout in the
order is examined.

The basic, recursive depth-first procedure is depicted in figure 3.1. The basic

routine in this code is the function f ind_path_dfs. This function takes oneargument,

the current true partial path, and returns the longest true full path containing this
partial path as a prefix.

The code is fairly self-explanatory. If the partial true path is a full path,

then simply return. Otherwise, if there is a longest true full path containing this

partial path as a prefix, then this path must be obtainable through some output of

the last node of the path, named node in this code. Hence, for each such output,

attempt to extend the current partial path; if such an extension succeeds, then the

answer is to be found by calling the procedure recursively on the obtained successor

partial path; finding the longest path over all fanouts yields the solution.

Of course, any recursive procedure can be phrased as an iterative procedure

by keeping a last-in, first-out (LIFO) stack; the stack maintains the information that

find_longest_true_pathO {
max_length <- 0;
long-path <- 0
foreach primary input p {

path <- find-path_dfs(p);
length <- length(path);
if(length > maxJLength) {

max_length <- length;

long4>ath <- path;

>
}

}
find_path_dfs(path) {

node is the last node on path;

if(output(node)) return path;
else {

max_len <- 0;

long-path <- 0;
foreach fanout p of node {

if(7{p, path} ^0) {
longl <- find_path_dfs({p, path});
lengthl <- length(longl);
if(lengthl > maxJLen) {

maxJLen <- lengthl;

long_path <- longl;

}
}

}

Figure 3.1: Recursive Depth-First False Path Detection Algorithm

51

52

otherwise is impHcitly maintained by the sequence of outstanding function calls (in

fact, this is preciselythe way a machine keeps track of the various function arguments

to a procedure). A push onto this stack is equivalent to a recursive call; a pop to

a return. For the basic depth-first search procedure, this rephrasing is well worth

doing. First, exposing the underlying stack structure inherent in a recursion yields

insight into the unity of this approach with the best-first approach; and, second, this

permits the search to be easily pruned. We give the code for the iterative version of

the depth-first procedure in figure 3.2.

The items which need to be stackedarethe explicit argument to f ind_path_df s,

namely the current partial path, and some local variablesof that routine. In this case,

the only suchvariable is the fanout next to be explored (the variable p). We represent

this as a counter (path, next jfanout) associated with the partial path.

An improvement is possible to this routine. In general, this procedure will

explore an exponential (in the number of nodes of the graph) number of paths, and

so take a very long time to perform the computation. In practice, the search space

can be pruned. We are only interested in the longest true path, or in a set of such

true paths. If the longest possible extension of a given partial path is shorter than

the longest path already found, then there is no point in exploring any extension

at all of this path, and one might as well terminate the search immediately. This

is easily accomplished. The longest possible extension of a given partial path path

which terminates in node is given by the conjunction of path with the longest path

originating in node. The length of this path is deduced easily in linear time for all the

nodes in the network, and may be stored at each node. The code for this calculation

is given in figure 3.3.

Once the calculation of the longest path from every node is done, pruning

the search space is easy. In figure 3.2, the Hne

if(7({path, g})^0)

is replaced by the line

if(((length(path) + best_path_from(g)) > max_length) and (7({path,
g}>*0»

find_longest_truejpath() {
Initialize stack to primary inputs of the circuit
maxj.ength <- 0;

long_path <- 0;
while(path <- top(stack) ^ 0) {

k is the last node on path;

if(k is an output) {
if(length(path) > max.length) {

max.length <- length(path) ;
longjpath <- path;

}
}
if(path, next.fanout > k.numjfanouts) {

pop path from stack;

} else {
g <- k.fanouts[path.nextjfanout] ;
path,nextjfanout = path,nextjfanout + 1;
if(7({path, g})^0) {

newjpath <- {path, g} is true;
push newjpath on stack;

newjpath. nextjfanout <- 0;

}
}

}
return longjpath;

Figure 3.2: Depth-First False Path Detection Algorithm

53

longestjpathjfromjaodesO {
nodes <- array sorted in topological order;
for i <- |nodesIdownto 0 {

length <- 0;

foreach fanout p of nodes[i] {
if(length < bestjpathjfrom(p))

length <- best.pathjfrom(p);

}

bestjpathjfrom(nodes[i]) <- length + weight (nodes [i]) ;

Figure 3.3: Procedure Calculating the Longest Path from Every Node

54

to obtain the variant of the algorithm with pruning.
Pruning is an effective heuristic technique. Despite this, however, the com

plexity of depth-first search is stiU exponential in the number of nodes; there is no
guarantee that the pruning technique will eliminateasubstantial fraction of the paths.
It would be better if only the longest true path and the longer false paths are exam
ined. Since these paths must be examined by any algorithm which purports to solve
this problem, this procedure is quite efficient.

3.1.2 Best-First Search

The inefficiency in the depth-first procedure arises from the fact that the
path removed from the stack at each iteration is the last path shoved on the stack;
this makes both the push and pop operations 0(1), but gives a deleterious effect on
the performance of the algorithm as awhole. It would be better ifthe partial path of
maximum potential length were removed from the stack at every iteration. Indeed,
if this were done one might expect a polynomial bound on the complexity of the

55

algorithm if there were not an exponential number of long false paths.

This assurance can be given by revising the data structure underlying the

iterative construction. If a priority queue is used instead of a LIFO stack, then this

guarantee can in fact be given.

A priority queue is a data structure with two major properties.

1. At each iteration, the maximum element of the queue (with respect to some

standard order) is at the head of the queue

2. A sequence of n enqueue and dequeue operations takes 0(n log n) time.

Priority queues are typically implemented on top of heaps. A heap is defined as

a full binary tree with the property that every element is greater than each of its

descendants. A full discussion of priority queues and heaps can be found in any good

sophomore or junior algorithms text; we took our implementation from [71].

The priority queue is ordered by the esperance of a minimal extension of a

partial path.

Definition 3.1.1 An extension of a partial path P = {/o,..., fn} is a partial path Q

such that P is a prefix ofQ.A minimal extension ofP is an extension {P,f} where

f is a single node. A full extension of a path P is any extension of P terminating

in a primary output.

Definition 3.1.2 The esperance of a partial path P denoted E(P), is defined as

the length of the longest full extension Q of P.

Definition 3.1.3 The set ofunexplored extensions of a path P with respect to a

priority queue, denoted UE(P), is the set of minimal extensions QofP such that no

extensions of Q appear on the queue.

Note that the esperance of a partial path P is greater than or equal to the

esperance of any extension of P.

The operation of the best-first procedure is that, at each iteration, the path

with the longest fuU extension is popped off the queue and extended through the min

imal extension with the greatest esperance. Since there is Httle point in extending a

56

partial path through the same minimal extension twice, the list of minimal extensions

through which a given partial path has not been extended is crucial; this is the set

of unexplored minimal extensions. Similarly, the metric of interest for determining

which path should be extended on the next iteration is not its longest full extension,

but rather its longest full extension through an unexplored minimal extension (other

full extensions have already been "covered" by preceding extensions). Hence the pri

ority queue is ordered by the esperance of a path through an unexplored minimal

extension.

Theorem 3.1.1 For every partial path P, we have:

E(P) = i
d(P) P terminates in an output

d(P) + max D(hQ) otherwise
ho€FO(P)

Proof: If P terminates in an output, then trivial. Otherwise, let Q be the longest

full extension of P. Since every full extension of P is obtained through some minimal

extension {P, h0} of P, and since D(h0) is the length of the longest path from h0 to

a primary output, we must have:

E(P) = d(P) + D(ho)

for some fanout h0 of P. u

Note that this theorem impHcitly requires that the fanouts of a node be

explored in order of decreasing maximum distance from a primary output. Hence

we assume that the fanouts of each node have been sorted in decreasing order by

maximum distance from a primary output.

We show the code for the best-first procedure in figure 3.4.

We now prove that the algorithm of figure 3.4 is correct, i.e., returns the

longest path true by the sensitization criterion 7. The technique used in the proof

of this theorem is the classic loop invariance technique[32]. In some sense, this is

the program correctness version of induction. In this proof technique, a statement is

shown to hold on the N + 1st iteration of the loop if it holds on the JVth, and is also

shown to hold upon entry into the loop.

find_longest_true_path() {
Initialize queue to primary inputs of the circuit
while((path <- pop(queue)) ^ nil) {

k is last node on path;
if(k is an output) return path;
if(path, nextJfanout < k.numjfanouts) {

g <- k.fanouts[path.next_fanout] ;
if(7({path, g})^0) {

new_path <- {path, g} is true;
insert new.path. on queue;
new_path.next_fanout <- 0;

}
path. next_fanout = path,next_fanout + 1;

if(path,nextjfanout < k.num_fanouts) {
E(path,path.next_fanout) <- (f(path) +

best_path_from(k.fanouts[path. next_fanout]);
insert path on queue;

}
}

Figure 3.4: Best-First False Path Detection Algorithm

57

Theorem 3.1.2 Through each loop of the algorithm every true path Q has a prefix

P on the queue such that E(P) > d(Q).

Proof: Loop invariance. As the main loop of the algorithm is entered, this is clearly

true, for the set of esperances of the partial paths consisting of only the inputs is

equal to the lengths of the longest paths from each input, and one of these is clearly

at least as long as the longest true path. Suppose true through N iterations. On

the N + 1st iteration, if the condition is violated then let Qi be the true path. Since

the condition held through N iterations, then Qi = {Puho,...yhn} for some Pi, and

58

Pi was on the queue through the JVth iteration with E(Pi) > d(Q). Further, on

the N -\- 1st iteration either Pi is no longer on the queue, or E(Pi) < d(Q). The

latter case can only occur if every extension of Pi with esperance > d(Q) has been

rejected as false; but the extension {Pi,/k>} is true and has esperance > d(Q), and

so this cannot occur. Similarly, if Pi has been removed from the queue, then every

extension of Pi through one of its fanouts has been processed, and those found to be

true inserted on the queue; this set includes {Pi, ho}, and this has esperance > d(Q);

hence we conclude the statement holds through N + 1 iterations •

Corollary 3.1.3 f ind_longest_true_path() finds a longest true path.

Proof: Let Q be a longest true path, Q\ the longest true path reported by the best-

first procedure. All we must show is that d(Q) = d(Qi). By the theorem, Q has a

prefix P on the queue through each loop with E(P) > d(Q). But since Q\ was at

the top of the queue on the last iteration, we must have that E(Q\) > E(P) > d(Q)y

and, since E(Qi) = d(Qi), we have that d(Qi) > d(Q), hence Q\ is a longest true

path. •

For the efficiency of this algorithm, we note the following. Let Q be the

longest true path reported by algorithm 3.4. If there are K full false paths longer

than Q, and if the diameter of the graph is D, then at most KD partial paths have

esperance greater than Q. (This upper bound is obtained through the observation

that each full path has at most D prefixes, and the onlypaths with esperances greater

than Q are the false paths and their prefixes). At each loop of the algorithm, one

of these partial path or some prefix of Q was examined and extended or rejected as

false. There are at most D(K +1) such paths, and hence at most D(K +1) iterations
of the algorithm. For the general algorithm, the cost of each iteration is dominated

by the determination of whether or not a new partial path is true, which we denote
by S1; this cost is therefore

O(KDS)

The remainder of the cost of the algorithm is dominated by the insertions and dele

tions from the priority queue. The cost of a single insertion or deletion on a priority

•1As we see in appendix A, this problem is .A/^-complete for most definitions of7

59

queue containing n elements is well-known to be O(logn). There are at most 0(D)
elements on the queue at any time, and hence for O(KD) insertions and deletions we
have a cost of:

0(KD log D)

and hence the cost of the algorithm is:

0(KD logD + KDS)

The depth-first and best-first procedures have been compared [6] [83]. The

former experiments concluded that the depth-first procedure with pruning outper

formed the best-first procedure by a wide margin; this result is surprising and anoma

lous, given that a complexity analysis would indicate that the overhead of the best-first

procedure is at most logarithmic, while the overhead of the depth-first procedure is

in general exponential.

The latter set of experiments [83] concluded that the best-first procedure

outperformed the depth-first procedure in the related problem of finding the n longest

paths in a directed acyclic graph. This result one would expect; however, their

experiments also concluded that the margin was very slight, much less than one

would expect.

The variance in the best- vs depth-first procedures reported in [6] offers one

possible explanation. A minor error in the implementation of the best-first procedure

can lead to a large number of paths being searched. If, when a path P is found true,

every one-node extension of P (as opposed to merely the best) is placed on the queue,

then if every node has an average fanout of k, tracing a single path to the output will

result in kD nodes being placed on the queue. Note in the best-first procedure given

above only one extension of P is explored when P is found true, and hence only D

paths are placed on the queue as P is explored.

3.1.3 Generic Procedure

Now, notice that the code in algorithms 3.4 and 3.2 are very similar; the

principal distinction is in the data structure used to represent the set of active partial

60

paths. A second difference is in the termination condition used and in the steps the

algorithm performs when it finds a full true path. The distinction between priority

queue and stack has been treated adequately above. The difference in termination

condition and action on finding a full true path is an artifact of the fact that the best-

first procedure is so constructed that first true path found is also a longest true path;

the depth-first procedure offers no such assurance, so the search must be continued,

after recording the fact that a new long path has been found.

Nevertheless, the two procedures are similar enough that one can consider

them a single generic procedure, parameterized by search method. The code is shown

in figure 3.5.

The generic procedure can easily be modified to permit pruning under depth-

first search.

3.2 Variants on the Problem

Two related problems to the basic timing verification problem are also ad

dressed by timing analyzers: viz., finding every longest true path, and the problem of

finding the true path of minimum slack. It is the purpose of this section to demon

strate that the generic procedure is capable of solving either of these problems.

3.2.1 Modifying the Generic Procedure to find Every Longest

True Path

In some applications (for example, resynthesis for timing) it is desirable not

only to find the longest true path, but also every true path within some c of the

longest true path; the rationale is that if the longest true path fails to meet timing

specifications, and the circuit must be resynthesized for timing [74], then it is of little

use to modify only the critical pathif another series of paths remain true and equally

long. Another variant on this procedure is to report every true path of length greater
than some threshold, which represents the maximum allowable delay of the circuitry.

These two problems require the same modification to the basic algorithm;

find_longest_true_path() {
Initialize paths to primary inputs of the circuit
if(depth_first_search)

long_path <- 0; maxlen <- 0;
while(path <- pop(paths)) {

k is last node on path;

if(k is an output) {
if(depth_first_search) {

if (d(path) > maxlen) {
maxlen = d(path);
long_path <- path;

}
}
else return path;

}
if(path. next_fanout < k.num-fanouts) {

g <- k.fanouts [path, next_fanout] ;
path.next_fanout = path.next_fanout + 1;
if(path, next-fanout < k.numjfanouts) {

£(path) <- d(path) +
best_path.from(k.fanouts [path. next.fanout]);

insert path on paths;

}
if(7({path, g}) =£0) {

new_path <- {path, g} is true;
insert new.path on paths;
new4>ath.nextjfanout <- 0;

}
}

}
if (depth_first_search) return long_path;
else return 0;

Figure 3.5: Generic False Path Detection Algorithm

61

62

a threshold T is computed, and all paths oflength > T are reported; in the case of
the first variant, T = L- e, where L is the length of the longest path and e is the
user-supplied tolerance. In the case of the second variant, T is user-supplied.

The modification to the generic procedure is conceptually fairly simple; the
routine merely maintains a list of paths oflength > T, and returns this list once it is
clear that no further paths will be found oflength > T; in the case of the best-first
procedure, this occurs when the top path on the queue has esperance < T; in the case
of the depth-first procedure, this is simply when the stack is empty, though pruning
can be used effectively here, as well.

A little bookkeeping is required when the threshold is set dynamically to
L- 6. Again, in the case of the best-first procedure, this is a fairly simple matter;
the threshold is initially set to 0, and when the longest path is found the threshold
is set to L- e. In the case of adepth-first search, the threshold is recalculated every
time anew longest path is found. The code is shown in figure 3.6

One interesting note here is that the time of the best-first procedure to find
all paths of length greater than the threshold is determined simply by the number
of paths, false and true, of length greater than the threshold. This may or may not
be greater than the total number of long false paths in the circuit, if the threshold is
fixed

3.2.2 Varying Input Times, Output Times, and Slacks

In practice, system requirements often dictate that inputs to acircuit arrive
at differing times, or that outputs are required at varying times, or both. Timing
analyzers often take this into account by computing the arrival and required times
for asignal separately (using the analogous formula for required time), and then
compute the slack for each node as the difference between the required and arrival
time; it is easy to show that there is at least one sequence of nodes with the minimum
slack, and this is defined as a critical path of the circuit.

Wedefinethe*Zac*ofapathi^/ac*(P) as follows. LetP ={ik,f0,...,/„,<,,.},
input arrival time of i„ is it, output required time of oj is tj. Then the slack of Ph '

find_longest_true_path() {
Initialize paths to primary inputs of the circuit
long-paths <- 0;
if(depth_first_search) maxlen <- 0;
if(searchJjyjepsilon) T <- 0;
while(path <- pop(paths)) {

k is last node on path;

if(k is an output)
outputjreached(path, T, long_paths, €, maxlen);

if(best_first_search and £(path) < T) return long_paths;
if(path, nextjfanout < k.num_fanouts) {

g <- k.fanouts[path, nextjfanout] ;
path. next_fanout = path.next_fanout + 1;
if(path,next_fanout < k.numjfanouts) {

E(path) <- <f(path) +
best^>ath-from(k.fanouts [path. next_fanout]);

insert path on paths;

}
if(7({path, g}) ^0) {

new_path <- {path, g} is true;
new_path.next_fanout <- 0;
insert new.path on paths;

}
}

}
return long_paths;

}

Figure 3.6: Procedure Returning All Longest Paths

63

64

output.reached(path, T, long_paths, c, maxlen) {
if(<f(path) >T) long-paths <- long-paths U {path};
if(depthjfirst-search and rf(path) > maxlen and searchJ>y_epsilon) {

must update the threshold and determine which paths still
are longer than the threshold
T <- J(path) - e; new_long.paths <- {path};
foreach path pi on long_paths

if d(pl) > T newJ.ong_paths <- {pi} U newJLong-paths;
maxlen <- <f(path); long-paths <- new_long.paths;

}
else if(T = 0) {

long.paths <- {path};
T <- d(path) - e;

}
}

Figure 3.7: Auxiliary Procedure to Procedure Returning All Longest Paths

defined:

slack(P) =tj -[<* +£) w(fi)].
i=o

Intuitively, the slack of P is the difference between the required time of Oj and its

arrival time down the path. The critical pathof a circuit is the true path of minimum

slack.

It is possible to perform an analogous calculation and eliminate false paths,

but this would require a significant restructuring of the algorithm given above. All

things being equal, it would be better to adapt the existing algorithm by appropriate

manipulation of the graph structure of the circuit.

Fortunately this adaptation is trivial. If inputs arrive at different times, we

might as well consider the time when the earliest input i\ arrives to be 0 (to avoid

the inconvenience of negative weights). Let each input i j arrive at t = tj\ we can then

65

consider ij as an internal node of the circuit, the output of a static delay buffer of

weight tj whose input is a new input *J, which arrives at t = 0. The resulting circuit

has the property that every path originating in ij has a corresponding path in the

original circuit originating in ij of identical delay.

Similarly, if outputs have differing required times, let tmax be the maximum

required time of all the outputs. To each output Oj with required time tj attach a

static delay buffer of weight tmax —tj, input Oj, output o'j. Hence the required time

of Oj in the resulting circuit is tj. The resulting circuit has the property that every

path in the original circuit terminating in Oj with delay d has a corresponding path

in the resulting circuit terminating in oj of delay d + tmax —tj. Ideally, we wish to'

show that this transformation of the circuit graph preserves the set of critical paths

of the circuit; in particular, we wish to show the following:

Theorem 3.2.1 Let P = {z*, /o,..., /m, Oj} be any path in the original circuit. Then

P' = {ik, /o,..., /m,o'j} is the corresponding path in the resulting circuit, and slack(P) =

slack{P').

Proof:

slack(P) = tj-[tk +jrw(fi)]
i=o

m

= tmax - (tmax ~ tj) - [tk + £ w(fi)]
t=0

m

= tmax - [tk + QTw(/0) + (tmax - *>)]
t=0

= slack(P')

•

Now, note that P' is true iff P is true, and, hence, if P is a critical path then

P' is a critical path. Further the primary inputs in the resulting network all have

arrival times of 0, and the primary outputs all have required times of tmax- Hence

the critical path in the transformed circuit is the longest true path, as desired.

66

3.3 Dynamic Programming Procedure for Viabil

ity

The assumption underlying the generic procedure was that the function 7

was a function only of the path being extended. An examination of the viability

equations (2.2)-(2.4) and the surrounding discussion demonstrates that this assump

tion is unfulfilled by the viability function. The viability function of a path is not

only a function of the path itself, but also of all adjoining paths at least as long; this

dependence expresses itself in the subfunction tl>g,Ti-1. Correct computation of the

viability function requires that this function be computed for each side input to each

node on the candidate path as that node is encountered. Conceptually, this could be

done by recursively tracing the set of viable paths terminating in each side input as

a node is encountered on the candidate path.

Our first algorithm is designed to find a viable path of length at least L,

terminating in some target node /,-, with a prefix on a given stack. Conceptually, it

is based on the iterative version of the depth-first procedure explored earlier in this

chapter. It is shown in figure 3.8.

If we assume for the moment that the viable_set computes the function:

E <*aKr) II V*-*
UCS(fi,P) g&J

then the correctness of this algorithm is easily established. A partial path is popped

off the stack; if it is complete, then we are done and return. Otherwise, each successor

node is examined to see if it may extend this path fruitfully; if it can, the extended

path is pushed on the stack. Those nodes which cannot possibly extend this path to

the desired length at the target node, and those which are not viable, cannot extend

this path. This process continues until either no paths may be extended (the stack

is empty), or one path is complete. Note that in addition to returning a viable path

of the appropriate length terminating in target_node, this routine also returns the

final stack; this is to permit this routine to be called iteratively by a procedurewhich

finds all the viable paths of the appropriate length.

find_viable.path(stack, network, target.node, length)

{
while((path <- pop(stack)) # 0) {

if(last.node(path) = target jiode) return(path, stack);
foreach fanout c of last.node(path) {

if(path_length(path)+longest_path(c,target_node)<length)
continue;

if (c = target.node) psi <- 1;
else psi <- viable_set(c, last jiode (path), network,

pathJLength(path));
new_psi <- psi * pathosi (path) ;
if (new_psi ^ 0) {

new«path <- c.path;

pathJLength(new_path) <-weight (c) +path.length(path) ;
path_psi(new_path) <- new_psi;
push(new_path, stack);

}
}

}
return (0,0);

}

Figure 3.8: Naive Algorithm to Find the Longest Viable Path

67

It is now time to write the function which computes all the viable paths

of length at least L, and which terminate in node targetjiode. It is shown in

figure 3.9. Note this procedure consists simply of calling f ind.viable_path repeat

edly until the stack is exhausted. The mechanism of passing the stack into and

out of f ind_viable_path is simply a means of preserving the stack over calls to

find_viable_path.

The correctness of this routine is easy to establish, given the correctness of

»»

find_all_viable_paths(node, network, length)

{
list <- • ;

stack <- [] ;
foreach primary.input p of network {

P <- a new path of node p, length 0, psi <- 1;
push P on stack;

}
/* Initialize path and stack */
(path, stack) <- find_viable.path(stack, network, node, length);
while(path ^ 0) {

list <- list, path;
(path, stack)<-find_viable.path(stack,network,node,length) ;

}
return list;

}

Figure 3.9: Naive Algorithm to Find All the Long Viable Paths

68

f ind_viable_path, simply by observing that the correct set of initial paths are the

paths consisting of only the primary inputs. These paths have viability function 1,

and length 0.

With these procedures in hand, viable jet falls out easily from the defi

nition above, and is shown in figure 3.10. This procedure simply finds all the viable

paths of length rt-_i terminating in each side input k to c, and sums up their viabiHty

functions in the field k.psi. The function ^^-i is thus computed and stored in
k.psi, and the viable set falls out easily by equation 2.3.

The algorithm to find the longest viable path is similarly easy (assuming we

have made the obvious trivial change to f ind_viable.path so that the target node

may be any one of a set). It is shown in figure 3.11

viablejset(c, prevjiode, network, length)

{
psi <- 0;
foreach input k of c, k ^ prevjiode {

k.psi <- 0;

list <- find_all_viable_paths(k, network, length);
foreach path p on list

k.psi = k.psi + path-psi(p);

}
foreach subset U of the side inputs {

new_psi <- gt;apre^ode;
foreach k in U

new_psi <- new_psi * psi[k];
psi <- psi + new_psij

}
return psi;

}

Figure 3.10: Viable Set Algorithm

69

This, however, may cause the same partial path to be traced potentially

many times, each time it is encountered as an abutting path to a shorter candidate

path. A second alternative is to store the viability functions for each traced path,

and only trace side paths recursively when these are known not to have been traced.

A still better alternative would be to avoid the recursive path tracing at all. This can

be done if:

1. It is known that every longer side path to the candidate path has been traced;

and

2. The function 0*»T»-» is maintained in a variable attached to g and is known to

be correct, i.e., is known to contain the sum of the viability functions of all such

70

findJ.ongest_viable_path(network)

{
foreach primary_input p of network {

P <- a new path with nodelist <- {p}, length <- 0, psi <- 1;
push P on stack;

}
(path, stack) <-

find_viablej3ath(stack, network, primary-outputs (network), 0);
while(path ^ 0) {

oldpath <- path;
length <- path-length(path);
(path, stack) <-

find_viable.path(stack, network, primary-outputs(network), length);

}
return oldpath;

}

Figure 3.11: Naive Algorithm to Find the Longest Viable Path

longer side paths.

These assurances can be given by a dynamic programming procedure based on the

best-first procedure. Recall that the best-first procedure examines partial paths in

decreasing order of their esperance, which is also their potential full length.

Simply using an ordering on esperance is insufficient to our purposes, how

ever. If we are examining a node /,• and attempting to extend a path P of length

Ti_i, we must ensure that all side viable paths of P at /,- of length > t,_i have been

examined. However, a side path of length precisely r,_i may well have esperance

equal to E(P). We must break this tie in favour of the path whose last node is of

lesser level. With this in mind, we can define a successor relation >- on partial paths.

71

Definition 3.3.1 Let Q = {g0,...,g„}, P = {/o,...,/m}. Q V P iff E(Q) > E(P) or

E(P) = E(Q)andS(gn)<6(fm).

Lemma 3.3.1 Let P = {/o, ••.>/«} be a partial path. Let Q = {goi...ign} be a side

path to P at fi. Ifd(Q) > r,_i then QyP.

Proof: Let P, Q be as stated in the premise of the lemma, d(Q) > r,_i. Then

E(P) = 7v_i + w(fi) -r K, where K is the maximum distance from P to a primary

output. But E(Q) > d(Q) + w(fi) + K, whence E(P) < E(Q). Since 6(f>) > S(gn),

QyP. m

This result gives us the tool we need to avoid excessive computation of the

viable sets if we replace the stack in f ind-.viable.path with a priority queue of

extensions ordered in descending order under >-; thus, at each iteration, we attempt

the extension that is maximal wrt >-, and we are guaranteed that we have examined

all partial paths Q such that QyP. Note that this procedure is very similar to the

best-first procedure, differing only marginally in the function by which the priority

queue is ordered.

We need variables in which to keep the sums of the viability functions of the

paths traced thus far. At each connection, from a node g to some node / we keep

a field f[g].psi. Each such field is initially 0. As we pop an extension {P, /} off the

queue, ending in node g, we set f[g].psi = f[g].psi + t/>p The rationale is that the

path P is certainly true, and since it was on the top of the queue it is certainly longer

than any other path on the queue that may be extended through /. A depiction of

the dynamic programming variables appears in figure 3.12.

One other minor modification is necessary: all unexplored minimal exten

sions of maximal esperance of a true partial path P must be placed on the priority

queue, not merely any unexplored minimal extension. This must be done to correctly

handle the case of extensions which have equal esperance.

At first glance, it would appear that this procedure is sufficient to ensure

that /,•[<?].psi is equal to ^*»*-» when the best-first procedure attempts to extend

{/oj—j/i-i} through fi. In fact, this procedure underestimates ^fl,r»-1. Certainly if

Q is a path terminating in g such that d(Q) > t,_i then the procedure forces fi[g]. psi

72

f(g].psi

Figure 3.12: ViabiHty Algorithm Variables

to contain i/?q, for then {Q,ft} >- {fo,»;fi} and hence Q was popped off the queue

and extended through fi before {fo,...,/i-i} was. However, there remains the case

where d(Q) = r,_i. In particular, consider the case where a number of paths of equal

length conjoin at /,-, each path Pj terminating in gj. Before any Pj can be extended

through fi, the field /{[&].psi must be updated for ea.ch.gj. But the field for an

arbitrary gj is not updated until the attempt is made to extend Pj, i.e., when we

attempt to extend the first Pj none of the relevant fields have been updated. The

problem is iUustrated in the diagram in figure 3.13. In this figure, go,gi, and g% all

terminate viable paths of length 10, with the viabiHty cubes shown underneath each

path. If Pq is picked to extend first, the viabiHtyfunctions kept at g\ and ^2 are both

0, even though g\ and <ft both terminate viable paths as long as P0.

The solution is to sum the viabiHty functions for the Pj into fi[gj].psi when

we attempt to extend anyof the Pj. The difficulty is in finding the Pj. We have the

following.

73

Figure 3.13: Underestimation of Viability Function

Lemma 3.3.2 Let Q, P be paths such thatd(Q) = d(P), and such that {P,fi} is an

extension on the queue maximal undery. Then if{Q,fi} is unexplored, it is also on

the queue and maximal under y.

Proof: Note that E({Q,fi}) = d(Q) -rw(fi) + D(fi), and since <f(P) - d(Q), we have

E{{Q,fi}) = -^({^/«})• Further, since the paths {<?,/;} and {P,/,} have the same

terminal node, the levels of their terminal nodes are equal. Hence {Q,fi} >/- {P,fi}

and {P,fi} ^ {Q,fi}- Hence if {<?,/$} is on the queue, it is maximal under >-, for

{P,fi} is maximal under >- by assumption. Since {Q,fi} is unexplored, then either

it is on the queue or some prefix is. Every prefix Qf of {Q,/,} (excepting {Q,/i}) is

such that Q' y {Q,fi}, and hence Q* y {P,fi}. Hence Q' is not on the queue, for

that would violate the assumption that {P,fi} is maximal under >-. •

It is important to show that the converse holds as well.

Lemma 3.3.3 Let Q, P be paths such that {P,fi},{Q,fi} are extensions on the

queue maximal under y. Then {Q,fi}, {P,fi} are both unexplored, andd(Q) = d(P).

74

Proof: Both P and Q are viable paths such that {P,/,}, {Q,fi} are unexplored, by

construction of the queue. Further, since both are maximal under >-, we must have

E({QJi}) = E({P,fi}), and hence

d(Q) + w(fi) + D(fi) = d(P) + w(fi) + D(fi)

hence d(Q) = <f(P) and done. •

Figure 3.14: Correct Calculation of ViabiHty Function

The picture the above two lemmas gives us is of a frontier of paths, maximal

under >-, each of whose viabiHty functions must be summed into the relevant dynamic

programming variable before any can be extended. If this is done, then for the

previous example we have the correct calculation shown in figure 3.14.

We now restate, operationaUy, how the field f[g].psi is maintained for nodes

/ and g.

-{
. ,0 initiaUy

f[g\.psi = \
f[g].psi + i>{pfg} {P, f-,g} is popped off the queueand found to be viable

(3.1)

75

Let QgJi be the set of paths {Q,g} such that {Q,g,fi} is an extension on
the queue maximal under >-. The computation ofviablejset({P,/t}) is then given
by

viable_set ({p,/.}) = E («rjg£r)Ilf/iW.i^+ E +q) (3.2)
ucsu{tp) g&j \ QeQ8,fi J

We can now state the main result of this section, which proves the dynamic
programming algorithm, detailed intuitively above and given in detail in figure 3.15,
is correct.

Theorem 3.3.1 viablejset (/,-) = V>£

Proof: Induction on £(/,). For the base case, /,- is a primary input, whence -M- = 1
and done. Assume for 6(f{) < L. Now, for 6(ff) = L the theorem holds if we can
show that:

fi\g].psi+ E ^Q = ^9,Ti"1

for the general case. But:

^-l= E *Q
d(Q)>n-i

where Q is a partial path ending in g. Now, if d(Q) > r^, or if the level of g is
less than that of the last node of P, then Q y P, and hence has been examined
previously by the algorithm. Since 6(g) < L, by the induction hypothesis for each
such path Q x/>Q was correctly calculated. Further, as each such Q was popped off
the path for extension through /,-, ^Q was added into fi[g].psi by equation (3.1) and
hence fi[g].psi DVq for aU such paths Q. There remains the case where Q and P
are incomparable under y. In this case, by lemmas 3.3.2-3.3.3, Q and P are on the
same frontier, and hence the viabiHty function of Q is added into fi[g].psi before P
is extended through /,-. Hence

For equaHty, aU we must show is that no path Q either

76

1. has had its viabiHty function %I>q summed incorrectly into fi[g].psi; or

2. is incorrectly in Qgjt

The first can only occur if the algorithm has examined some path Q before P with

d(Q) < d(P). But then E({P,fi}) > E({Q,fi}), contradiction. The second is

forbidden by lemma 3.3.3, and done. •

The code for the formal procedureis given in figure 3.15 and in figure 3.16.

Much care is taken in this procedure to ensure that the scheduHng assumptions of

theorem 3.3.1 are met. In particular, when a path is found to be viable, every minimal

extension of maximal esperance of that path is added to the queue; this is used to

enforce the assumption that every unexplored path of maximal esperance terminating

in minimal level (that is, every unexplored path maximal under the relation >-) is

present on the queue at all times; this is a requirement for lemmas 3.3.2-3.3.3 to hold.

Similarly, when the last extension of a path of some fixed esperance is found to be

viable, or not, then the set of extensions of that path of the next higher esperance

must be added to the queue.

While this algorithm finds every viable path of maximal length, it does so

at great expense. Recall that the relation >- required that we break ties in esperance

in favour of the path whose terminus is of lesser level. This forced the best-first

procedure ordered on esperance into what is almost a breadth- first procedure, and

leaves us open to the possibiHty that a larger number of paths will be explored than

really need to be. In fact, if there are K\ paths longer than the longest true path, and

Kv paths as long as the longest true path, this procedure explores 0((K\ + K%)D)

paths, as opposed to the 0(K\D) paths that strictly need to be explored.

What we would Hke is some way to break ties in favour of the path whose

terminus is of greater level. We can do this if we guarantee that if we reject any viable

path incorrectly, we will subsequently accept one at least as long. This is obtained

as a consequence of the following theorem and coroUary: in a symmetric network, if

there are a set of partial paths of equal length conjoined at a single node and if one

may be extended to a full path, then all may. This theorem also shows that we need

not add the sum of the viabiHty functions of the maximal paths on the queue into

77

find_longest-true-path(){
Initialize queue to primary inputs of the circuit
while(queue ^ nil) {

frontier <- set of paths on queue maximal under >-;
foreach extension (path.g) on frontier {

k is the last node of path;

g[k] .psi <- g[k] .psi + V(path);

}
while(((path, g) <- pop(frontier)) ^ nil) {

tj? <- viability_function(path, g)
if(V^O) {

new_path <- {path, g};
if(g is an output) return nev_path;
V»(new4>ath) <- ^>;
foreach extension np <- {new_path, h} of new_path

if(£(np) » E(new-path))
insert np on queue

}
if every extension ext of path s.t.

2?(ext) a 2£(new_path) has been explored {
extl is next best extension of path

push extl on queue;

foreach extension ext2 of path with .E(extl) = £(ext2)
push ext2 on queue;

}
}

Figure 3.15: Dynamic Programming Procedure to Find the Longest Viable Path

viability_function(path, g) {
k is the last node of path;
sense-fn <- 0;

esp = £({path, g});
foreach subset U of the side fanins of g {

product <- Sujfe;
foreach j € U while product ^ 0 {

sum <- g[j].psi;
product <- product * sum;

}
sense_fn <- sense-fn + product;

}
return ^>(path) * sense_fn;

}

Figure 3.16: ViabiHty Function for Dynamic Programining Procedure

78

the field f[g].psi when computing the viable set for extending a path from g through

f. We now prove this statement.

Theorem 3.3.2 Consider a symmetric network. Let Pi, P2 be partial paths, viable

under c, with d(Pi) = d(P2), Pi terminates in gi, P2 terminates in g2, gi and g2 are

fanins to a node h, such that {Pi,h} is viable under c. Then {P2,h} is viable under

c.

Proof: Suppose gi =p£ g2. Since {Pi, h} viable under c, there is some set U of the

fanins of h such that:

g&J

since there is a path terminating in g2 of length d(P\) (namely P2), c C xj)92td{Px)

79

Hence we can choose g2 € U, for certainly if g2 & U:

geu g€U+{g2}

Since, by symmetry, <St7-{02}+{pi}^" = ^u§^~ ^ c, and since ^a^C*) 3 c, we have:

and so {P2, /i} is viable under c. Now, if (71 = g2, and we have the set U such that

that:

<= s *£ n ***"

since ^1 = g2 and d(Pi) = d(P2), a simple substitution shows that:

g€U

and hence {P2,h} is viable under c. •

Corollary 3.3.3 In a symmetric network, i/{Pi,..,P„} are partial paths, viable un

der c, each terminating in a fanin to some node ho, such that d(Pi) = d(Pj) for all

i,j, and if one of the Pi is a prefix (through h) to a path Qi = {Pi,ho,hi,...,hr},

viable under c, then each Pj is a prefix through h to a path Qj = {Pj, ho,hi,..., hr},

viable under c, such that d(Qi) == d(Qj).

Proof: Induction on r. If r = 0, immediate from theorem 3.3.2. Assume for r < R.

If r = R, let the Pi of theorem 3.3.2 be {Pi, fto» ...fcr-i}» and h of that theorem be

hR. Result follows immediately. •

This gives us the tool we need. We can only incorrectly reject a path if it

is of the form P,- in the above the theorem. However, of the set {Px, ..,Pn}, we will

examine one last, and if we have accepted no other prior to that we shaU accept that

one. Note that this wiU not give us the list of all viable paths of delay equal to the

delay of the longest viable path; that must be accompHshed by a close variant of the

original algorithm, detailed below.

find_longest_true.path(){
Initialize queue to primary inputs of the circuit
while(((path, g).<- pop(queue)) ^ nil) {

k is the last node of path;
gCk] .psi <- gCk] .psi + ^(path);
t\> <- viability-function(path, g)
if(^^O) {

new_path <- {path, g};
if(g is an output) return new.path;
^>(new_path) <- ij>;
np <- {new.path, h} is best extension of new_path
insert np on queue

}
ext <- {path, f} is the next best extension of path

if ext is not nil push ext on queue;

}
}

Figure 3.17: Improved Dynamic Programming Procedure to Find an LVP

80

The improved dynamic programming procedure is given in figure 3.17. Note

that this procedure is much closer in form to the best-first procedure demonstrated

above.

The correctness of this procedure is easy to estabHsh.

Theorem 3.3.4 Let P = {/o,..., fm, ho,..., hp} be a viable path under c. Then either

P is reported as viable by the algorithm, or some path Q = {go, •••> 0n» ^o? •••> hp}, with

gn ^ fm and d({f0,...,fm}) = d({go,...,gn}) is reported as viable by the algorithm.

Proof: If P = {/0,..., fm, ho,..., hp} is rejected by the algorithm, then at some node

the computed viabiHty function of the path as computed is a proper subset of the

viability_function(path, g) {
k is the last node of path;

sensejfn <- 0;

esp » £({path, g});
foreach subset U of the side fanins of g {

product <- Sc/gf;
foreach j € U while product =^ 0 {

sum <- g[j].psi;
product <- product * sum;

}
sense_fn <- sense-fn + product;

}
return V>(path) * sense_fn;

}

81

Figure 3.18: ViabiHty Function for Improved Dynamic Programming Procedure

viabiHty function of the partial path to that node. Let ho be the first such node. The

viabiHty function to that point is

4mtE5cf^ II 0*dH/o-"'/->)]
U mg&J

Now, by assumption, ipp has been correctly calculated by the procedure, and hence

we must have that

U -m g&J

is undercomputed. Hence

^K,<Wo,...,/m}) ^ holgil .psi

for some set of side inputs gi, and each gi ^ fm. Hence there exist viable paths,

terminating in one of the gi, of length > d({f0,..., fm}) that had not been traced

when P was extended. Each path of length > d({fo,...,fm}) had been traced, and

82

hence each such path is of length d({f0,...,fm}). Let Qj = {goj,...,gi} be the set of

such paths. Now, by theorem 3.3.2 one of the paths {Qj, ho,..., hp} is the long viable

path reported by the algorithm. This path satisfies the assumptions of the path Q of

the theorem, and so done. •

3.4 Dynamic Programming Algorithm Example

We now demonstrate an example of the dynamic programming procedure in

action.

Figure 3.19: Circuit on Algorithm Entry

Consider the circuit of figure 2.3. We analyze this circuit using the algorithm

of figure 3.17 and figure 3.18. For this circuit, we have §| = §* = 0, §£ = §J = a,
— = |£ = a, |^=|j = l- Since each gate in this circuit is one or two input, note
that the viability equations reduce to

We represent the variable g[k] .psi at the k input connection of gate g. For example,

in figure 3.19 the variable x[w] .psi is expHcitly indicated. The value of each such

83

variable is 0 at the entry of the algorithm, as indicated in the figure. For convenience

we have explicitly represented the delay buffers in this example.

Figure 3.20: Circuit After {a,u,x,z} Explored

The algorithm first attempts to extend the path a through u, ORing the

viability function of the partial path {a} (1) into the variable u[a] .psi2; as the

extension through u succeeds with viabiHty function 1, the algorithm sets x[u] .psi

= 1. The extension through x succeeds with viabiHty function a, and z[x] .psi is set

to a. The extension through z fails, and the circuit now appears as in figure 3.20.

The algorithm now explores the path {a,v,y,z}. Again, {a,v,y} is a viable

path with viabiHty function a. The algorithm now attempts to extend y to z. The

function i>[a^y) is §* + a; hence ^{a^.y,*} = a(0 + a) = 0, and the extension fails,
leaving the circuit in figure 3.21.

The algorithm now explores the path {a,w,x,z}. {a,w,x} is a viable path

with viability function 1. The algorithmnow attempts to extend x to z. The function

^{a,t«,x} 1S If+a5 hence V>{a,u;,*,z} = l(0+a) = a, and the extension succeeds, reporting
the longest viable pathas {a,w,x,z}, a pathoflength 6. The final circuit isasappears
in figure 3.22

2for convenience, u[a].psi and v[a].psi are represented in the same variable

84

a

Figure 3.21: Circuit After {a,v,y,z} Explored

Figure 3.22: Circuit After {a,v,y,z} Explored

85

3.5 Modifying the Dynamic Programming Pro

cedure to find all the Longest Viable Paths

The improved dynamic programming procedure described in the preceding

sections has the flaw that only one of the longest viable paths is reported; if all

the longest viable paths are to be reported, then the original dynamic programming

procedure is preferred. As mentioned above, we often wish a procedure which returns

all the longest paths at or above a given length. This procedure can be easily obtained

by a simple modification of the first dynamic programming procedure, given in figure

3.23.

This procedure returns all viable paths of length > T, for some T. T is

either directly set, or is chosen to be some c less than the length of the longest viable

path; hence choosing 6 = 0 finds all the longest viable paths.

If search-by-€ is selected, the initial threshold is set to 0; this simply ensures

that no path will fail to meet the threshold test. When a viable path is found, if the

threshold is still 0 then this is the first viable path found; the threshold is set to the

length of this path —c.

Whenever a fuU viable path is found, it is added to long_paths. By con

struction, this path is viable and is of length > T. When no more paths of potential

full length > T remain to be explored, the algorithm terminates and long_paths is

returned.

By construction it is easy to see that only viable paths of length > T are

returned. To see that all such paths are returned, the similarity of this procedure and

the procedure of figure 3.15, together with theorem 3.3.1 suffice.

The complexity of this algorithmis 0(KDS log/?), where D is the diameter

of the graph, 5 is the cost of a SAT caU, and K is the number of paths, false and

true, of length > T. It is easy to see that this is the minimum number of paths which

must be examined by any procedure which purports to solve this problem.

86

find.longest_true_path(){
Initialize queue to primary inputs of the circuit
long_paths s 0;
if searchJbyjepsilon T = 0;
while((((path, g) <- pop(queue)) ^ nil) and CE(path, g) > D) {

k is the last node of path;
g[k].psi <- g[k].psi + ^(path);
%j) <- viability_function(path, g)
if(^O) {

new.path <- {path, g};
if(g is an output) {

if (searchJbyjepsilon and T = 0)
T = length(new_path) - e;

long_paths = long_paths (J {g};
}
else {

^(newjpath) <- ip;
foreach extension np <- {newjpath, h} of newjpath

if(£(np) = £(new.path))
insert np on queue

}
}
if every extension ext of path s.t.

.£7(ext) = 2?(new_path) has been explored {
extl is next best extension of path
push extl on queue;

foreach extension ext2 of path with i£(extl) = i2(ext2)
push ext2 on queue;

}
}

return longjpaths;

}

Figure 3.23: Dynamic Programming Procedure to Find AUthe Long Viable Paths

Chapter 4

System Considerations and

Approximations

The theory and algorithms described to this point capture the nature of the

problem. Nevertheless, the viability procedure is enormously expensive; the inner loop

of the procedure is a general satisfiability problem, and hence is strongly suspected

to be of exponential complexity; further, there appears to be no polynomial upper

bound on the size of the viability function. In general, some applications may prefer

a faster answer and a poorer approximation to the longest viable path, so long as the

assurance is given that such an approximation will not underestimate the length of the

longest viable path. In this section we explore such performance/quality tradeoffs,

and end by giving a polynomial approximation to viability.

4.1 Approximation Theory and Practice

The algorithms developed in the previous chapter removed the unnecessary

inefficiencies in computing the viable set. However, the necessity of computing a

sum over the power set of the inputs at each node remains a potentially expensive

operation. This operation appears unavoidable for exact computation of the viable

sets for the network. However, approximate solutions may be found. Of course, these

approximations must be conservative: each approximation, to be valid, must be shown

87

88

to upper bound the delay down the longest (dynamically) sensitizable path, and must

be shown to obey monotone speedup. In this section we explore such approximation

techniques.

In previous chapters, we have noted the duality of network or path conditions

and some boolean functions, to which we should give a name; let us call these path

logic functions. Since every algorithmwhichattempts to solve the false path problem

explicitly or implicitly associates a logic function Tp with each path P and computes

its satisfying set, it seems that one way to validate (or not) such algorithms is to

consider the properties of its associated family of logic functions. The most clearly

interesting property is whether or not the function is correct in the obvious sense: if

one accepts the critical delay as the longest path P such that Tp is satisfiable, then

no longer path P' may transmit an event in this or any faster network. We formalize

this in the following definition.

Definition 4.1.1 A family of path logic functions Tp on a boolean network N is

said to be critical path correct iff the longest path P such that Tp is satisfiable is

longer than the longest dynamically sensitizable path in any network N, where Nf is

obtained from N by reducing some or none internal delays.

Our familiar properties of dynamic sensitizability and monotone speedup

may be expressed as properties of path logic functions:

Definition 4.1.2 A family of path logic functions Tp on a boolean network N is

said to have the dynamic sensitization property iff Tp is satisfiable for every
dynamically sensitizable path P.

Definition 4.1.3 A family of path logic functions Tp on a boolean network N is said

to have the monotone speedup property ifffor each satisfiable Tp> in a sped-up
network N' there is a path P in N such that djsf(P) > dw(P') and Tp is satisfiable.

These definitions may seemlike old wine in new bottles, inasmuch as these

are merely near-repetitions of our earlier definitions. However, most find old wine

89

highly palatable, and occasionally new bottles permitus to seethe body more clearly.
We wiU try to peer through the new clear glass now.

Onefact that is immediately apparent is that the twoenumerated properties

on a family ofpath logic functions are notrequired for critical path correctness. While

it is true that monotone speedup and dynamic sensitization together imply critical

path correctness (as we have seen), the converse is not true. The foUowing theorem
gives us the fanuly of counterexamples.

Theorem 4.1.1 (Approximation Theorem) LetTp be a critical path correctfam
ily of path logic functions. Every family of path logic functions fp .s.t. at least one
of the following holds:

1. Tp D Tp, for every P or

2. for every satisfiable P s.t. Tp is satisfiable there is a P' with d(P) < d(P') s.t.
Tpi is satisfiable

is also critical path correct.

Proof: The proof is almost a triviality. Iffp DTP for every P, and Q' is the longest
sensitizable pathinany ofthefamily ofnetworks (Q' is sensitizable insome N'), then
we must have some Qs.t. dN(Q) > dN,(Q') and TQ is satisfiable. Since fj DTQ, we
have that Tq is satisfiable, and so fp is critical path correct. For the second item,
we have Q,N,Q',N' and Tq satisfiable as before. Since Tq is satisfiable, there is Q"
s.t. d(Q") > d(Q) and fj, is satisfiable, and since dN(Q") > dN(Q) > dN,(Q') we
have that Fp is critical path correct. •

Examples of functions which are critical path correct but whichdo not have

one, or both, of the two critical properties abound. For example, the (trivial) family
of functions

P is the longest path in the network

otherwise

obviously does not have the dynamic sensitization property, but is critical path cor
rect. Similarly, it seems likely that there are families of functions which do not obey
monotone speedup but which are critical path correct.

H:

90

On the other hand, function families which do not satisfy the two properties

but which are critical path correct seem to be fated to be relatively weak upper

bounds, unless there is some further theory to be discovered here. The only tool one

has for proving such a function family correct is theorem 4.1.1, for which one must

have shown the existence of another correct function famUy which yields a better

result, and so one can always do better by computing the latter. This theorem has its

uses, however. First, we may analyze and prove correct existing algorithms. Second,

though we have no rigorous proof, this theorem and its associated discussion leads us

to the belief that one can do no better than viability. Third, the viability function is

expensive to compute, since it involves computing a sum over the power set of the side

inputs at every node; indeed, even if the sum-of-products expression for the viabUity

function at each node involved only two terms, it is easy to see that the function on

some path P could grow as large as 2D, where D is the diameter of the graph. This

theorem permits us to consider other, easier-to-compute functions which satisfy the

assumptions of theorem 4.1.1. We turn to the first of these, an analysis of the weak

viability procedure.

4.2 "Weak" Viability

RecaU the viabiHty equations (2.2)-(2.4)

t=0

+$ = E (*fjj£r) II **n-1
VCSVi,P) g&J

Q&g,d{Q)>t

The heart of the definition is equation (2.3)

91

The power-set sum in this equation is also the heart of the inefficiencies inherent in

the definition. The expression cannot be immediately simplified, for no term of

£ (*«&) II ^•"•1
UCS(fitP) g&J

inherently covers any other. Indeed, for V C U, we have:

Svjfc CSafe

but also:

geV g&J

However, if we weaken the definition of viability slightly:

Definition 4.2.1 The weak viability function of a pathP = {/o,..., /m} w defined

as:

«=0

where

l7CS(/ifP) j€t/

' o £ vq =o
<^«'s= < <?€?„,. (4.3)

1 otherwise

Paths P suck that (pp ^ 0 are said £o 6e weakly viable.

We have immediately:

Theorem 4.2.1 For every path P, (pp D xj)p.

Proof: Let P —{/o».-»/m}. Induction on 6(fm). If /m is a primary input, trivial.

Suppose (pQ D ipQ for paths Q = {go, •••> <7n} with S(gn) < N. U6(fm) = N, the result

holds if we can show:

<pfpm Di/>pm

92

But this is immediate, for we have that:

4m= e (^st^t) n ^•rm-1
UCS(fm,P) g€U

Since by induction we have that:

for each Q terminating in a fanin of fm, we must have that:

E V>Q 2 E ^Q
QCPg,* Q€Tg,t

Hence if ^>0»r"*-i ^0 we must have ^r*»-i = 1, whence <pO*T™-i D ^>0»r««-i for each g,

and hence we may write:

<psp^ e (^fe)n^'rm-1
tfC5(/m,P) fl€tf

and the right-hand side is obviously tj)pm, whence the result. •

This serves to show that (p is a critical-path correct path function on sym

metric networks, by the approximation theorem. The attractive thing about tp is the

following observation:

Theorem 4.2.2 Let P = {/0, ...,/m}« LetV be the maximal set ofg s.t. (p?**-1 = 1.

Then

sy^rx=^p

Proof: From (4.2):

*>£= E (^^r)II^-1
UCS(fi,P) g&J

Now, we have that

svsfk- n v"5-

is a term of this series, and since tpo**-*- = 1 for all g 6 V this is

93

whence

Svffi. C*,*

Further, consider an arbitrary term of (4.2), say:

(*aS£r) n **"-
g€U

Now, ifUC V, this is certainly CSv-gfi-. However, ifUDV, then by construction
there is some g €U such that y '̂7*-1 = 0, by choice of V. Hence we must have that:

(*jgfr) n ^'n-1=o

and so

(*^r) II v*** s svjjfc

and hence:

and therefore:

In other words, only a single term of the series (4.2) (the last nonzero term)

need be taken. While this can still lead to an exponential blowup in the size of

the function, it seems far less likely. Further, under some circumstances one can

guarantee that the size of (pp wiU remain bounded (in fact, one can guarantee that

(pP will consist of a single cube). We detail these circumstances here.

Theorem 4.2.3 Let N be any network such that for any node f, any input x of f,

|£ is a single cube. Then for each path P through the network, (pp is a single cube

Proof: For the proof, we note that:

m

«=0

94

where

*>£= E (*i8£r) II v"1"*
UCS(fitP) g&J

now, from theorem 4.2.2, we know that this last can be written

*p=5"3^r

Where V be the maximal set of g s.t. ipa**-* = 1. Further, for any function h, any set

of inputs V, if h is a single-cube function then so is Syh, hence (pp is a single-cube

function for each /,-. The product of single-cube functions is a single-cube function,

and so done. •

Weak viability is an attractive alternative to viability when computation

time is at a premium, and can be used in conjunction with other approximation

techniques. For example, the weak-viabiUty function is therefore a single cube for a

network consisting only of NOR, NAND, OR, AND, and NOT gates, or some subset

thereof. One can always transform any network into such a network, through a variety

of macroexpansion transformations, and guarantee correctness through theorem 2.5.1;

one can then use weak viabiHty on the transformed network.

It is interesting to formally define the set of paths P for which (pp ^ 0. We

give these here.

Definition 4.2.2 A path P = {/o, ...,/m} is said to be weakly viable under an

input cube c if, at each node fi there exists a (possibly empty) set of side inputs

U = {<7i, ...,gn} to P at fi, such that, for each j,

1. gj is the terminus of a path Qj,

2. d(Qj) > Tv_i and Qj is weakly viable

Notice that the definition of weakly viable paths differs only marginElly from

that of viable paths; the principle difference is that no record is kept of the cube under

which the side path is viable (item 2).

We must formally show the equivalence of the function and the definition.

95

Theorem 4.2.4 P = {/o,..., fm} is weakly viable under some minterm c iffc satisfies

\pp

Proof: => P = {/o, ...,/m} is weakly viable under c. Induction on S(fm). The base

case is trivial, so assume for 6(fm) < L. Let 6(fm) = L. We must show that for each

fh c € (pp. Now, if c€ 57^-» done. Otherwise, since the path is weakly viable under
c, then we must have that there is a subset U = {jfi,..-,£&} of S(fi,P), where each

gj terminates a path Qj with d(Qj) > t,_i and Qj is weakly viable. By induction,

(Pqj ^ 0. Hence tpOi***-*- = 1 for every j by 4.3. Further, c € <Si/gf^-> and done.
•$= c G v?p. Induction on 6(fm). The base case is trivial, so assume for 6(fm) < L.

Let 6(fm) = L. We must show that the definition of weak viabiHty holds for each

fi. Now, if c 6 gf^-j done. Otherwise, we must show that there exists a set ofside
inputs V meeting the conditions of the definition of weak viabiHtywith Su•££- 5 c.

Since cG^J, then we must have that there is a subset U = {^i, ...,gk} of the side
inputs, and for each gj, (pH**-* = 1. Now, by the definition of <^i'T«'-i, we must have

for each j there must be a path Qj terminating in gj weaklyviablewith d(Qj) > r,-_i.

6(gj) < L, so by induction Qj is weakly viable, and c€ £i;gy^-, and so done. •
The dynamic programming procedure of figures 3.15-3.16 is easUy adapted

to compute the weak viabiHty function. For the line:

g[k] .psi <- g[k] .psi + ^(path);

is replaced by

gCk].psi <- 1;

Further, the improved dynamic programming procedure of figures 3.17-3.18 is adapted

in precisely the same fashion.

4.3 The Brand-Iyengar Procedure

Brand and Iyengar havepubHshed a solution to the false path problem[10].

We have not discussed this approach in much detail yet, since we wished to have the

96

mathematical tools in place to establish the correctness of their procedure, and to

show that it gives an upper bound on the procedure developed in this paper.

The Brand-Iyengar procedure is much Hke the later procedure of Benkoski,

et al, save that the paths are traced depth-first from the output, rather than from the

inputs. A further and more important difference is the sensitization criterion. Brand

and Iyengar realized the difficulty with static sensitization, referring to the errors that

a straight static sensitization approach would yield as due to "a sort of circularity".

Though they did not fuUy analyze this difficulty, they used a strategy which returns

correct, though suboptimal results.

At each node /, Brand and Iyengar number the inputs to the node; for

purposes of iUustration, let us caU these xi, ...,xk. If the current path under consid

eration proceeds from input Xj, then inputs Xi,...,Xj-i are ignored. Effectively, the

Brand-Iyengar sensitizing function at node / may be written:

*»xj "~" ***i »...»*i-i dxj

and for the path P = {/o, ...,/m}«

ro

t=i

We caU paths P for which fp is non-zero Brand-Iyengar paths.

Now, note that the Brand-Iyengar function is not a cover of the weak viabil

ity function. Nevertheless, we may show that this procedure is correct using theorem

4.1.1. We do this by showing:

Theorem 4.3.1 For each path P = {/o,..., fm} weakly viable underc in a symmetric

network N, there is a Brand-Iyengar path P' = {<7o> •••»/»n} with £p'(c) = 1 and

d(P) < d(P').

Proof: Induction on 6(fm)* The base case is trivial, so assume for 6(fm) < L.

Consider the case 6(fm) = L. Now, consider the set of paths weakly viable under c

which terminate in an input to fm of length at least Tm-i- These paths terminate in

a set of inputs to /m, U = {ho,...,hk}. Now, by induction, each such hi terminates

97

a Brand-Iyengar path of length > rm_i. One of the hi is /m-i, and one is maximal

under the Brand-Iyengar ordering. (The Brand-Iyengar ordering is any ordering of

the inputs at aU). Let h be the maximal element of U under the ordering, and V be

the set of inputs to fm which precede h in the standard order, including h. We claim

that c satisfies f£m. Now, if h= /ro_i, then V DU, and

Since V —{/m_i} 3[^- {/m-i}> and since Siif D Ssf for any sets R, S such that

RD S and any function /, we have that:

and since c satisfies <pPm, c must satisfy (j^-i = $[m- If /m-i ^ &, then we can do a
similar calculation: the set U —{/m-i} Q V —{h}, since h is the maximal element

of U under the ordering, and hence every other element of U must precede it in the

ordering. Since fm is symmetric, we have that

and since V D U, we therefore have

and since this function is satisfied by c, we have that £jjm = Sv-{h}^fr 1S satisfied
by c, and so in either case the claim is shown. Once the claim is given, done, since

we have by the inductive assumption a Brand-Iyengar path P" terminating in h s.t

ip»(c) = 1, of length > rro_i. The path P' = {P",h} clearly has £Pi(c) = 1, and

d(P') > Tm-i + w(fm) > d(P), and done. •

From this, we may immediately conclude from theorem 4.1.1 that the Brand-

Iyengar procedure is critical-path-correct for aU symmetric networks, since it is an

approximation to weak viabiHty, a known critical-path-correct criterion. This is a

somewhat stronger result than Brand and Iyengar proved in their paper (their proof

was only vaHd for gates whose values could be controUed by a single input); further,

98

the Brand-Iyengar proof of correctness reHed on an induction whose base case was

both non-trivial and not properly established, and so there is some doubt as to the

correctness of their proof. This result firmly establishes the correctness of their pro

cedure. Further, Brand and Iyengar made no mention of the robustness requirement

for false path elimination, and hence did not prove that their criterion was robust.

This proof demonstrates that. It also, however, guarantees that the critical delay

reported by the Brand-Iyengar procedure wiU be an upper bound on that returned

by the weak viabiHty procedure.

The bound returned by the Brand-Iyengar procedure is highly dependent on

the variable ordering chosen. Consider the path in the graph that runs through the

last fanin (in the standard order) to each node. The Brand-Iyengar function for this

path {/o,...,/m} is
m

n55(/.-.p)^7
1=1

Now,

ss{h,P)$fc; =1
for every i, whence the Brand-Iyengar function for this path is 1; i.e., the path is

always true by the Brand-Iyengar criterion. If the standard order is increasing in

the maximum distance of a node from the primary inputs, then this path will be the

longest in the graph. In other words, for every network, there is a variable order such

that the longest path is true by the Brand-Iyengar criterion. This order is the worst

possible for this criterion.

Better orders may be chosen; in fact, a good order is probably the reverse

of the bad order for this path. This order (decreasing in distance from the primary

inputs) is the one recommended by Brand and Iyengar in their paper; however, they

seemed to view this as an efficiency issue rather than an issue of quaUty of results.

They used a depth-first search with pruning, and pointed out that if an algorithm had

explored the long paths first and found one true, then the search space is drastically

trimmed.

In any case, the best order for this function - whatever it may be - wiU at

best equal the weak viabiHty criterion.

99

4.4 The Du-Yen-Ghanta Criteria

Other work on this phenomenon has recently emerged, most notably the

work due to Du, et. al. [24]. These authors considered networks composed of simple

gates, for which each input can assume either a control value (a value which determines

the value of the gate), or a non-control value (broadly, an identity for the gate - e.g.,

0 for OR or NOR, 1 for AND or NAND). Static sensitization can be viewed, on such

networks, as asserting a non-control value on each side input of each gate along the

path.

When tracing a path P = {/o,—,/m}> Du et. al split the side inputs of /,-

into two sets:

1. Early-arrive-signals(/i): Those inputs g such that the length of the longest path

terminating in g is < r,-_i; and

2. Late-arrive-signals(/,-): Those inputs g such that the length of the shortest path

terminating in g is > r,_i.

Note that while the intersection of these sets is always empty, their union is not

necessarily equal to the set of side inputs to /,*.

These two sets may be thought of as follows: Early-arrive-signals is the set

of signals that have settled to their final value before the event propagates to /,•;

late-arrive-signals are those signals which undergo events only after r,_i.

The Du criterion encompasses two rules:

1. If g G Early-arrive-signals(/j), assert a non-control value on g.

2. If Late-arrive-signals(/j) ^ 0, assert a controlvalue on /;_i

The rationale behind the first rule is by now familiar to most readers. The

side inputs g € Early-arrive-signals(/;) have already settled to their final values at

r,_i, and hence must satisfy $* ; i.e., must have assumed non-controlHng values.

Note that this rule is equivalent to taking the static boolean difference and then

smoothing off all the side inputs not in Early-amve-signals(/j).

100

It is the second rule that distinguishes this transformation. Du et al reasoned

that if the path {/0, ...,/m} was a longest true path, then every longer path through

fi must have been rejected as false. If g 6 Late-arrive-signals(/j), then every path

through g must have been rejected as false. In this case, they reasoned, a controlling

value must have been asserted on the wire /,_i.

Now, notice that every connection in Late-arrive-signals(/,) must be untestable.

For suppose g € Late-arrive-signals(/;) is testable. By definition, if g € Late-arrive-

signals(/,) then no event on g can propagate to the primary outputs, otherwise there

would be a longer sensitizable path running through g (since every path through g is

longer than the current path). Now, if g is testable, then the value of some primary

output is determined by the value of g under c; i.e, the value of g has propagated

to the primary output. The value of g is also its last event, and so the last event

on g has propagated to the primary output. This event must have travelled down

some sensitizable path from g, contradiction. Hence g must be untestable. In a fuUy-

testable network, therefore, only rule (1) need be considered. We caU this the weak

Du criterion.

Lemma 4.4.1 Consider the Brand-Iyengar criterion, with the inputs to every gate

ordered in decreasing order by static delay (length of longest path). Every path true

by this criterion is also true by the weak Du criterion, and hence the delay estimate

produced by this procedure is a lower bound on the delay estimate given by the weak

Du procedure.

Proof: Let P = {/o,..., /m} be a path true by the Brand-Iyengar criterion under this

ordering. We claim that P is true by the weak Du criterion. Induction on 8(fm)-

Trivial for S(fm) = 0. Now suppose the claim holds for 8(fm) < N. U 6(fm) = N,

by induction the statement holds for {/d, ...,/m-i}- We must show that it holds for

{/o, ...,/m}. Let fm-i be the fcth input of n to fm under the ordering. Now, each

input of order < k terminates a path of length > rm_i by the definition of the order,

no such input is in Early-arrive-signals(/m). Hence under the weak Du criterion each

input in the range l,...,k is left unspecified, i.e., smoothed off. Hence the set of

signals left unspecified by the weak Du criterion is a superset of those left unspecified

101

by Brand-Iyengar under this order; i.e., the path logic function corresponding to the

weak Du criterion contains the Brand-Iyengar function under this order, giving the

result. •

Note that lemma 4.4.1 tells us that Brand-Iyengar is a lower bound on

the strong Du criterion (that using both rules) only on fully-testable networks. On

networks with redundant connections, the delay estimate given by the strong Du

criterion may be unequal to that given by the weak Du criterion. In any case, it

may be shown that the strong Du criterion is weaker than viability; this is shown

in the foUowing theorem, which demonstrates that, if there is a longest viable path

•P = {/o?—>/m}> viable under c such that for node /,• Late-arrive-signals(/,) is non-'

empty, then c sets /,_i to a controlHng value. This suffices to show that the strong

Du criterion is an approximation to the viability criterion, and hence the strong Du

criterion is a correct, robust criterion by the approximation theorem.

Theorem 4.4.1 Let N be a symmetric network. Let P = {/(>>•••>/m} be a longest

viable path through fi, P viable under c. Let g be a side input to fi such that every

path through g is longer than Tj_i. Then either /i_i is set to value a by c such that

W|/,._1=a

or there is another viable path under c at least as long as P.

Note that if simple gates are assumed, this simplifies to the statement that

fi-i is set to a controUing value for /,• by c.

Proof: Assume that

Then we claim that for each %< k < m we can construct a path Pk at least as long

as P, viable under c, terminating in fk. Induction on k. For k = i, let U be the set of

inputs to /,- terminating viablepaths under c of length > t,-_i. Now, consider the set

of paths viable under c terminating in an input to /,- of length > tj_i, excluding the
path {/0, ...,/,_i}. Note this set is nonempty since the set ofshortest paths through
g are aU viable under 1, and are oflength > r,-_i. Since the set is nonempty, it has an

102

element of least length, Ph, and Ph terminates in h. We claim that {Ph, fi} is viable

under c. Consider the term of the viability series for P/,:

-«!& n '̂,|p'
h'£U-{h)

Since P/, is chosen to be minimal in the set, every member of U aside from h terminates

a viable path of length > Ph, i.e. ^*M^I is satisfied by c for every h' in U —{h}.
Now, all we must show is that

is satisfied by c. Since /,- is symmetric, we have three cases:

1.

is satisfied by c; or

2.

M>§£

*i8£r

is not satisfied by c; or

3. /,_i is set to a value a by c such that

Case 1 proves the claim, so we must dispose of (2) and (3). (2) is false, since if it were

true, P wouldnot be viableunderc, contradiction. For case 3, since Syf = 0=»/ = 0,

we have that:

nu--°
But then, since /,• is symmetric:

9S l/,--i=o

Contradiction. We are left with case (1), which proves the claim: {Ph.fi} is viable
under c. Hence the statement of the theorem holds for the case k = i; the path

103

{Phyfi} is viable under c, is of length > t,- and is not equal to {/o,--,/t}- Assume

inductively that the statement holds for k < K. Consider the case k = K. By

induction, we have a path Pa'-i terminating in /jr-i viable under c at least as long

as {/o, ...,/a-i} that is not {/0, ...,/a-i}. Now, we have two cases:

1. fjc is statically sensitized to /a-i by c, in which case the claim holds for /#;

2. There are a set of paths Uk at least as long as {/o, •••)/a'-i} terminating in

some side inputs to /a. Of the set of paths Uk U {{/o, ...,/a--i}} at least one

had a viable extension under c through /a. Hence the set of paths UkU{Pk-i}

met the assumptions of lemma 2.4.2, and so by the terms of that lemma at least

one of these paths has a viable extension under c through fy. This path is not

{/o, ...,/a'} and is of length > ta, proving the theorem.

•

This theorem suffices to demonstrate that the strong Du criterion is an

approximation to the viabiHty criterion, since it demonstrates that the use of Du's

second rule does not affect the viabiHty of the longest viable path. Further, in practice,

only a few connections wiU be untestable, and the second rule need not apply to all

of those. Hence the second rule wiU be invoked only rarely. Hence, the strong Du

and weak Du algorithms should only rarely give different bounds.

4.5 More Macroexpansion Transformations

Theorem 2.5.1 is vaHd for any macroexpansion transformation. We have

only used it for the and/or transform, since it appears that this introduces the fewest

spurious viable paths, and hence yields the lowest bound on the critical delay. How

ever, it is possible that other transforms, though yielding poorer results, might weU

entail much less expensive computation. In particular, consider the two-input nand

transform.

It is well-known that any function can be realized by a network of two-input

nand gates. The two-input nand transform of a node / is any transform of / meeting

104

the conditions of definition 2.5.1. This transform is attractive when one considers

that there is at most one side input to a gate on any path P = {/o, ...,/m} in a

two-input network, and (if we represent the side input to node /,- as gi), then the

only subsets of the set of side inputs to /,- are 0 and #. Hence gi is the only possible

input to £fo , and thus Sgi qJ* = 1. Given this, we can simplify the definition of
the viability function for a path in such a network as:

t=0

*** = E V>q

This function is much simpler to compute than the viability function of defi

nition 2.6.2, since the power-set sum in i/>p has disappeared. Moreover, the network is

symmetric, and hence its correctness is guaranteed by the theorems previously proved.

The reader is cautioned, however, that an increase in the number of paths may be

expected in such a network, in which case some percentage of the gains reaUzed may

be offset.

This observation suggests that the algorithm presented above may be con

sidered a family of algorithms, with different performance and result characteristics.

The members of the family may be distinguished by the transform taken.

4.6 Biased Satisfiability Tests

Given that the algorithms enumerated so far all have a satisfiability test

in the inner loop, it is unsurprising that these procedures take a very long time.

Nevertheless, one may hope to use the approximation theorem to yield up a hint

of polynomial-time approximations in this domain as well. Consider any positively-

biased satisfiabiHtytest; i.e., a procedurewhich guarantees to report that a function /

is nonzero when it is not identicaUy zero, but may occasionaUy report that a function

is nonzero when it is identically zero. Such a procedure may be considered an exact

satisfiabiHty test on a function / D f. This consideration yields immediately the

105

conclusion that if 7 is any critical-path correct path logic function, then a procedure

using 7 as the sensitization criterion with a positively biased satisfiabiHty test will

also yield a critical path correct family of logic functions.

There are undoubtedly many such biased tests. We detail one here, and

more fully in appendix C. Conceptually, one can think of such a test on a multi-level

network as follows.

The functions we have enumerated above are, in general, functions of not

only the primary inputs but also of the intermediate nodes in the network. From a

theoretical point of view, this is a distinction without a difference; since the interme

diate nodes themselves reaUze functions of the primary inputs, the functions we have

been describing above must necessarily be functions of the primary inputs; moreover,

that function may be (conceptuaUy) reaHzed by substituting the function (in terms of

the primary inputs) for each intermediate node. This process is known as collapsing.

Mechanically, the way that functions are discovered to be 0 in the collapsing

process is that for each cube of /, there is some x such that both x and x appear in

the cube; i.e., for the cube to be satisfied we must have x = 1 and x = 0. Since this

is clearly not possible, the cube is unsatisfiable. More generally, each such cube of

the function is found to be inconsistent; no primary input vector gives rise to such a

cube.

This gives us a clue as to how to proceed. Consider a procedure that directly

simulates the effect of attaching values to the various wires in the circuit. Such a

simulation will not be entirely complete, in the sense that the effect of the assertions

wiU not be carried back to the primary inputs. Under such a simulation, a function

is determined to be 0 if for each cube there is some x such that both x and x appear

in the cube; i.e., each cube is explicitly inconsistent. Now, it is obvious that every

cube that is explicitly inconsistent is inconsistent; however, the converse is not the

case. Hence this is a positively-biased satisfiabiHty test.

Such simulations appear to be done by Benkoski et al [6]; he uses a "D-

Algorithm without justification", which presumably means computing implications.

Brand and Iyengar also compute impHcations, and refer specifically to the NOR-gate

rules formulated by Trevillyan, Berman, and Joyner[7]. We have reformulated those

106

rules for general gates, and present an efficient algorithm for computing these in

appendix C; this algorithm features a quartic preprocessing phase and a quadratic

main phase. The difference in order is important, for only the quadratic main phase

is called during path tracing.

4.7 Axes of Approximation

The theory developed above leads us to the conclusion that there are sev

eral dimensions of approximation, more or less orthogonal. Along one axis lies the

sensitization criterion; along a second lies the satisfiability test. Along a third lies

the macroexpansion transform. Because few other procedures use macroexpansions,

we omit them in this picture.

The two major axes of approximation - sensitization criterion and satisfi

ability test - are depicted in figure 4.1. The x dimension represents sensitization

criterion, and ranges from too restrictive (no paths sensitizable) to too loose (every

path sensitizable). Similarly, the SAT test axis ranges from negative bias (aU func

tions reported unsatisfiable) to positive bias (aU functions reported satisfiable). Both

dimensions increase in the direction of safety. The origin of the graph is the exact,

minimum criterion. Note that no known sensitization criterion is at the origin.

Hence, programs depicted in the upper-right quadrant are known safe; they

wiU always return an upper bound on the true delay. Programs in the lower-left

quadrant are known unsafe; they wiU always return a lower bound on the true delay.

Programs in the other quadrants give no guarantees at all.

4.8 The Lllama Timing Environment

The observation of section 2 that the false path detection procedures were

all parameterized variants of the same algorithm led to the development of a program

which serves as an experimental testbed for these procedures. This system, the Ll-

LAMA timing environment, has been built on top of the MIS II logic synthesis system

at UC-Berkeley [14,12], and uses the underlying facilities of MIS for boolean function

Positiive Bias

Sensitization

Criterion

No path
Sensitizable

SAT Test

Brand-Iyengar
Algorithms

Negative Bias

Shaded Region is Safe; Striped is Known to be Wrong.
Clear Regions are uncertain. Best Method is the origin.

Figure 4.1: Axes of Approximation

107

Longest Pa
Algorithm

108

manipulation and for the extraction of delay information at the nodes. Further, the

MIS II command interpreter is used to permit user-level experimentation with the

parameters of LLLAMA.

LLLAMA is parameterized on five distinct axes: search method (best-first

or depth-first), sensitization criteria(static, viabUity, or Brand-Iyengar), satisfiability

test (test to determine whether the sensitization function is 0), representation of

functions (Bryant's graph-based representation^8][53] vs sum-of-products form), and

delay model. The selection of the various parameters is made at the beginning of a

timing run by the user through MIS II command-line switches.

To date, we have experimented extensively with function representation and

the various sensitization criteria. We have used two delay models in the calculations,

a unit delay model, under which each gate has unit delay, and a library delay model.

Under the latter, the network has been mapped to a network of standard cells, each

of which has a weU-characterized delay.

Before the main loop of the algorithm is entered, LLLAMA goes through a

pre-processing phase. During this phase, a static delay trace is done to compute the

delays and the esperance of each node, the static sensitization and Brand sensitization

functions for each input of each gate are computed, and the variables g[k] .psi are

set to 0 for each input k to gate g. Further, asymmetric gates are macroexpanded

into subnetworks of symmetric gates, if necessary. The data structure of partial paths

is initialized to the set of primary inputs of the circuit.

4.9 Experimental Results

LLLAMA has been run on two broad classes of circuits: the public benchmark

circuits, and parameterized circuits which are known to contain false paths. For each

circuit, we report the critical delay according to the longest path procedure and the

static, Brand-Iyengar, and viability conditions. We also report whether the circuit was

optimized by the MIS-II standard script (0), and whether the circuit was mapped

to the MSU standard-cell library (M). Mapped circuits have delays reported by the

mapped model; unmapped circuits have delays reported by the unit model.

Ckt O/M Long Brand Viable Static

5xpl OM 21.80 21.80 20.40 19.20

5xpl M 19.80 19.80 18.40 18.40

C7552 43.00 43.00 42.00 42.00

Des 0 11.00 11.00 10.00 10.00

Des OM 68.20 68.20 66.40 64.00

Rot 0 10.00 10.00 9.00 9.00

Rot OM 29.60 28.60 27.20 27.20

Table 4.1: Critical Delay of Benchmark Circuits

Bits Block O/M Long Brand Viable Static

8 2 13.00 13.00 8.00 8.00

8 2 M 17.80 15.40 15.40 15.40

8 4 11.00 11.00 10.00 10.00

8 4 M 14.80 13.60 13.60 13.60

16 2 25.00 25.00 12.00 12.00

16 2 M 35.40 27.40 27.40 27.40

16 4 21.00 21.00 12.00 12.00

16 4 M 29.20 20.00 20.00 20.00

32 4 41.00 41.00 16.00 16.00

32 4 M 58.00 32.00 32.00 32.00

Table 4.2: Critical Delay of Carry-Bypass Adders

109

Two sets of pubHc benchmark circuits were run: the Iwls and ISCAS bench

mark suites. Of the Iwls circuits, only the benchmark circuit 5xpl showed any false

paths under any criterion. The benchmarks DES and ROT were also run. Though

not part of the Iwls benchmark suite, these circuits are available from UC-Berkeley

in BLIF format. Of the ISCAS circuits, C880, C432, C499, and C17 aU had no false

paths. C7552 is shown in the table. The remainder not shown failed to complete.

It has long been known that carry-bypassadders exhibit false paths.1 A final

set of experiments involvedthe generation of carry-bypass adders of varying sizes, and

block sizes for the bypass chain. Integers N and M in the first two columns of table

4.2 represents an N-bit adder, with M bits in the bypass chain. BLIF descriptions of

these circuits, and a program to generate the BLIF description from arbitrary N and

M, are available from the author.

1Prof. H. De Man kindly brought this fact to the attention of the author

Chapter 5

Hazard Prevention in

Combinational Circuits

5.1 Introduction

Previous research into timing properties of circuits has led to considering
the problem of hazards or glitches in combinational circuits. One can demonstrate

that in the absence of hazards, a variety of strong properties hold which are not

vaHd in the general case: in particular, in the next chapter we wiU show that timing
analysis can obtain tight bounds on the critical path of a circuit, which was shown
to be impossible for a hazardous circuit.

Given these desirable properties, it is worth considering whether certifiably

hazard-free circuits may besynthesized. It is weU-known that the class of precharged
unate circuits (e.g., NORA, DOMINO, and DCVS) are hazard-free; indeed, these
circuits can only function if they are hazard-free. The characteristics of these circuits

are reviewed in appendix D. What we wish to discover is whether any fuUy-restoring
circuits are hazard free.

The remainder of this chapter is organized as foUows. In section 5.2, hazards

wiU be defined and a set of assumptions concerning the way that signals change. In
section 5.3 werelate function evaluation withwalks on the Boolean n-cube, and show

that every hazard-free circuit is precharged-unate, under our assumptions. In sections

110

Ill

5.4-5.5, we relax two of the initial assumptions and show that the results of section

5.3 hold even if either, or both, of these assumptions are relaxed.

5.2 Hazards

A hazardat a node is a multiple change in its value during an evaluation

period (typically, say, a clock cycle or phase). StaticaUy, we view a logic functions

as an ideal switch, which remains at a value until some input has switched and then

immediately switches to the new, output value. Further, in analyzing hazard-free

circuits, we make the foUowing assumptions about the behaviour of the inputs to the

node:

1. The inputs to a node begin in some initial steady state and change, one at a

time, untU they reach some final steady state.

2. Each input to a node may change at most once during the evaluationof a node;

this condition is assured if everynode in, and every primary input of, the circuit

is hazard-free

3. Each input to a node may change during evaluation.

4. The order in which the inputs change is unpredictable.

5. No combination of the inputs is forbidden as either the initial nor the final

steady state.

These assumptions are strong in the sense that they enhance hazards. AU

but the last two are easily justified. The last is not only unjustifiable, it is generaUy

false. In practice, only a few states can occur. Indeed, multi-level logic optimization

makes heavy use of such forbidden states, which are vectors covered by the satisfia

biHtydon't-care set[3]. We wiU be relaxing this assumption later.

The fourth assumption is also a Httle shaky. In practice, some rough guesses

can be made, though, as we shaU see below, due to the statistical nature of delays in

a MOS circuit, precise orders on variable arrival can only be guaranteed at some cost

112

(0,1,1) (1,1,1)

(0,0,0)

Figure 5.1: The Boolean 3 Cube

in circuit speed. However, as wiU be demonstrated, neither redundancy information

nor information on variable order affect the major results of this paper.

Eichelberger [25] attempted to characterize hazard-free circuits, and detect

hazards. He concluded that function hazards were unremovable, whereas M-hazards

were removableby adding redundancy to a two-levelreaHzation of a circuit. Function

hazards are those inherent in the cube representation of the function, and occur in

every non-trivial Boolean function. M-hazards are those that occur due to differences

in arrival times of wires attached to the same net (so, for example, a variable y may
show a 1 on one lead of the net and a 0 on another lead).

Breuer and Harrison [17] attempted to design tests that would not excite

hazards of a circuit. They designed a multivalue calculus to detect necessary and

sufficient conditions for tests to not excite hazards in a circuit. Their results for

hazard-free circuits required that all the gates in the network be unate, and that the

initial input vector on each gate be 0 or 1.

5.3 The Boolean n—Space

In general, an n input boolean function can be described as a set of points in

n-space. Sinceeach coordinate of each point in the space is either0 or 1, it is natural

113

f= xyz + xyz + xyz

Figure 5.2: A Function on the Boolean 3 Cube

to view each point as a vertex of an n-dimensional cube. Each vertex of the cube

represents a unique combination of input values, and hence there is a value of the

function at that point. In the diagrams in this paper, the vertices where the function

is 1 are shaded. The initial values of the inputs form one vertex of the cube; the final

values of the inputs are at the furthest vertex from the initial vertex1. The initial

value of the function is its value at theinitial vertex; As the inputs change (assuming
each input undergoes exactly one change), wemove to a corresponding vertexon the

cube, terminating finally at the final vertex. Since the inputs change one at a time, we

move a distance one along the cube for each change; since each input changes exactly
once, wemake precisely n moves. (If an input does not change, we may consider that

there are only n —1 variables for the purposes of this discussion).
As we makeeach move, the value of the function changes to the value of the

visited vertex. A hazard exists iff the value of the function changes more than once.
We formalize these intuitive notions as foUows.

Definition 5.3.1 A sequence (or "walk") ofvertices v0,...,Vj is said to be valid iff

1. dist(vi,Vi+i) = 1 Vi; and

2. dist(v0,Vj) =j.

JWe can assume that if any variable does not change, then it is not a dimension of the n-cube;
hence we can assume that all variables change value

l ,

ilid Walk

y

X

Va Invalid Walk

114

Figure 5.3: VaHd and Invalid Walks on the N-Cube

If j = n, the sequence is said to be a full walk, and Vn is said to be vo's off-vertex,
denoted vo

Given the assumptions under which we are working, we can make some

observations about thenumber ofdifferent walks on then— cube. At distance exactly
k from t>0 there are 2min(*'n-*) unique vertices. Now, on awalk oflength k, k variables
change, and since theycan change inany order theygive rise to k\ distinct sequences.
Hence there are precisely 2min(*'n-*)fc! sequences of length k, and so

n

y 2mMfct"-fc)£{
fc=o

valid sequences beginning at some vertex v0. We are particularly interested in the

set of length n sequences. There are 2nn! such sequences, and each such sequence
terminates at the unique vertex v~o.

We consider vaUd walks and their properties. Assumptions 1-5 guarantee
that every evaluation of a function corresponds to some vaHd sequence. The value
of the function wiU change at least twice during the walk iff the walk corresponds to
a hazard. We can then characterize walks in terms of the number of times that a

function changes value.

Definition 5.3.2 A valid sequence of vertices {v0,...,vn} is said to be monotone
iff, for every 0<i<n, f(vi) = /(v0) implies f(vj) = f(v0) Wj < i.

115

Non-monotone walks and hazards are equivalent. We can immediately say,
when assumptions 1-5 hold:

Theorem 5.3.1 Let v be any vertex on the n-cube, f any function with its inputs
hazard free, f undergoes a hazard during the transition from initial input state v to
final input state v iffthere is at least one non-monotone walk from v tov

Proof: Let / undergo a hazard. Now, the transition from v to v for the inputs
involves some walk on the n-cube, {v,vu..., v„_!, v}, and / assumes the value /(«,-)
as the walk transits through w,\ Since / undergoes a hazard, there is some least j
such that /(vj-i) = f(v), f(Vj) ^ /(vy-i) (the first transition of /), and there is
some least k > j, such that f(Vj) = f(Vj+1) = = /(vu-i) ? f(Vk) (the second
transition, inducing the hazard). Such a walk is non-monotone. Conversely, suppose
there exists a non-monotone walk. To each vaHd walk there corresponds an order on
the arrival time of the variables, and we have assumed that any variable order may
occur, so choose the variable order that corresponds to the non-monotone walk. This
order induces the non-monotone walk, and so induces a hazard. •

Given this, the set of functions which contain only monotone walks is of
interest.

Definition 5.3.3 Alogic function is said to be statically hazard-free iff each valid
sequence on the cube is monotone.

An interesting question that arises is the determination of necessary and
sufficient conditions for a function to be staticaUy hazard-free. Intuitively, we expect
that a necessary condition is that the ways in which it can change value are highly
restricted. We examine the conditions for which walks are monotone.

Lemma 5.3.1 Let u be any arbitrary point on Ike n-cube. Then for every point v
there is a valid sequence, {v,...,u,...,tf}.

Proof: Induction on n, the dimensionaUty of the cube. For n = 0, trivial. Now
suppose true for n < N, and consider the problem on the iV-dimensional cube. If

116

(x,y,z) (x,y,z) (x,y,z) (x,y,z)

Figure 5.4: Hazards Arising from a Walk

u^v,u^v2, then there is an JV - 1 dimensional face of the N- cube, distance 1
from v, containing both u and F. Let w be the unique point on this face distance 1

from v. Now, every vaHd sequence {w,..., F} is asuffix ofavaHd sequence {v, w,..., v},
and is confined to theiV -1 dimension face containing w, uand v. Now, by induction
there is at least one vaHd sequence {w,.., u,..., v}, and hence there is a vaHd sequence
{v,w,..,u,...,v}. m

This lemma leads immediately to strong characterization of the statically
hazard-free functions.

Theorem 5.3.2 Let f be a non-trivial statically hazard-free function on the n-cube
2The problem is trivial ifu = voru = v

117

c. Then for each vertex Vi of c, f{v{) ^ /(W)«

Proof: Suppose /(t?,-) = /(177) for some v,-. Since / is non-trivial there exists some

vertex u such that f(u) ^ f{vi). By lemma 5.3.1, there is some vaHd sequence

{vi,...,u,..., F7}, and since /(ut) = f(vj), this is non-monotone. •

Corollary 5.3.3 On the n-cube, f = 0 on precisely half of the 2" vertices for all
statically hazard-free f.

Proof: FoUows immediately, for there is exactly one F for each vertex v. m

Corollary 5.3.4 // / is a statically hazard-free function of n > 1 variables, then
each face ofthe n-cube ofdimension n —1 contains at least one vertex where f = 0,
and at least one where j = 1.

•Proof: Each face of dimension n —1 contains half the points on the n-cube. If one

such face consists entirely ofzeroes (ones), the opposing face must consist entirely of
ones (zeroes). The face containing aU ones corresponds to a Hteral x, and hence the
function / is isomorphic to the one-variable function x. m

The set of functions satisfying the above theorem and coroUaries is very
small. Indeed, on the three-cube there are precisely two, one the complement of the
other. One of these is shown in figure 5.5. Note that the walk {xyz, xyz, xyz} is
non-monotone. Hence we conclude that no (non-trivial) function on the 3-cube is

statically hazard-free, for this is the only possible statically hazard-free function on

the 3-cube. In fact, this statement appHed to the n—cube is true for every n > 1. We
show this now.

Consider again the function in figure 5.5. Note, first, that every path be-
ginning at 0 is monotone, and, second, that the function is nondecreasing in each

variable; there is no place on the cube in which changing a variable from 0 to 1
changes the value of the function from 1 to 0. We now prove that every hazard-free
function must be either nonincreasing or nondecreasing in each variable. The proof
foUows, but we state the intuition clearly here. If one considers the function as im

posing a topography on the cube, then if we begin a walk at some vertex v, then v

118

f=xz + yz + xy

Figure 5.5: Only Functionon the 3-cube Satisfying CoroUaries 5.3.3-5.3.4

must be in a single basin of this topography (if f(v) = 0), or on a single plateau (if

Definition 5.3.4 Afunction f isnondecreasing (nonincreasing) in avariable Xj
iffchanging Xj from Oto 1 (1 to 0) does not change f from 1to 0 (0 to 1). Iff is either
nonincreasing or nondecreasing in Xj, then f is said to be unate in Xj. Otherwise f
is said to be binate in xj. If f is nondecreasing (nonincreasing) in every variable,
then f is said to be nondecreasing (nonincreasing). If f is either nondecreasing or
nonincreasing in every variable, then f is said to be unate. Otherwise f is said to be
binate.

Theorem 5.3.5 Let f be any function, and v = (xi,...,xn) be any vertex of the n-
cube such that every valid sequence beginning atv is monotone. Let f(v) = 0. Then
ifxj = 0 atv, f is nondecreasing in Xj, and ifxj =1 atv, then f is nonincreasing
in Xj. Similarly, if f(v) = 1, then if Xj = 0atv,fis nonincreasing in Xj, and if
Xj = 1 atv, then f is nondecreasing in Xj.

Proof: We prove for the case f(v) = 0; the case f(v) = 1 foUows by symmetry.
Let xj = 0 at v. If / is not nondecreasing in Xj, then there is some vertex u =
(..,Xj = 0,...) such that f(u) = 1 and its neighbour vertex u' = (..,Xj = 1,...) such

119

that f(u') = 0. There is a vaHd walk {v, ...,u,u', ...,F}, and, since f(v) = /(it') =

05/(w) = 1> {u,...,u,u',..., F} is non-monotone. Similarly, if Xj = 1 at v, then if/
is not nonincreasing in Xj, then there is some vertex u —(..,Xj = 1,...) such that

/(it) = 1 and its neighbour vertex u' = (..,Xj = 0,...) such that /(it') = 0. There is a

valid walk {v,...,v,u',...,F}, and, since/(v) = /(«') = 0,/(w) = 1, {v,...,u,uf,...,v}
is non-monotone. •

Corollary 5.3.6 If f is statically hazard-free, then f is nondecreasing or f nonin

creasing in every variable.

Proof: Immediate, since if /(0) = 0, then by the theorem/ is nondecreasing in every

variable, or /(0) = 1, in which case / is nonincreasing in every variable. •

It is almost immediate now that there are no non-trivial staticaUy hazard-

free functions of greater than one variable. Consider vertices v and 0, v ^ 0, f(v) =
/(0), where every walk from either v or 0 is monotone. Note that / must remain

nondecreasing (nonincreasing) on the cube obtained by rotating v into 0, which in

turn impHes that / is independent of at least some dimensions of the n—cube. We

formalize this argument below, showing that v must be indistinguishable from 0.

Webegin by demonstrating a sufficient condition for / to be independent of
x.

Lemma 5.3.2 /// is both nonincreasing and nondecreasing in some variable x, then
f is independent of x

Proof: Changing the value of x from 0 to 1 cannot change the valueof the function

either from 1 to 0 or from 0 to 1. Hence changing the value of x cannot change the
value of the function, and done. •

Lemma 5.3.3 Let v be any vertex, f(v) = /(0), s.t. every valid sequence {0,..., 1}

and every valid sequence {v,...,v} is monotone. Then f is independent of every
variable Xj in which v differs from 0.

Proof: WLOG, /(0) = f(v) = 0. Bythe previous theorem, since Xj = 0 at 0 / must
be nondecreasing in Xj. However, since Xj = 1 at v, f must be nonincreasing in Xj.
Hence / is independent of Xj. •

120

Lemma 5.3.4 Let v be any vertex, f(v) = /(l), s.t. every valid sequence {1,..., 0}

and every valid sequence {v, ...,v} is monotone. Then f is independent of every

variable Xj in which v differsfrom 1.

Proof: FoUows exactly the proof of lemma 5.3.3 •

Theorem 5.3.7 Let f be a non-trivial function ofn>l variables. Then f is not
statically hazard-free.

Proof: Induction on n. Kn = 2, foUows by case analysis on the functions xy, x ©

y»x -r y (the other 7 true two-variable functions are isomorphic to one of these three

for this purpose). Suppose theorem holds for n < N. If n = N, consider the set of

N-variable functions which are not isomorphic to N —1 variable functions. If / is a

statically-hazard-free function, then for every vertex v every vaHd sequence {v,..., v}
is monotone. In particular, every sequence {(1,0,..., 0),...,(0,1,..,1)} is monotone.
By lemma 5.3.3, therefore, / is independent of x0, contradicting the assumption that
/ was not isomorphic to a function of N —1 variables. •

Theorem 5.3.8 Let f be a non-trivial function of all of its variables. Then there is
atmost one vertex v such that every walk commencing atv is monotone and f(v) = 0,
and at most one vertex v' such that every walk commencing at vf is monotone, and
f(v') = 1. Further, if such a vertex v exists, then v' exists and v' = F.

Proof: That at most one such v and one such t/ exist is immediate from lemma

5.3.3, so aU that must be shown is that if v exists, v' exists and v' = F. For this,

suppose t; exists. By appropriate change of variables we can ensure that v = 0, and

hence that the function is nondecreasing in all its variables. But immediately, then,

we have that /(l) = 1, and that every walk from /(l) is monotone, and of course
1 = 0, and so done. •

The preceding theorems show that if a function is not to have a hazard

under evaluation, then the function mustbeunate, and, further, (after some rotation
of the cube) the evaluation must begin at the state 0 or 1. The practice of setting
each variable to a known state before evaluation is known as precharging.

121

Thus precharging and unateness are necessary for hazard avoidance. The

question is, are they sufficient? The foUowing theorem provides this final pieceto the

puzzle.

Theorem 5.3.9 If f is nondecreasing, then every sequence {0,..., 1} is monotone.

Proof: / is nondecreasing. Let P = {0,ui,...,v,-,...,1} be any valid sequence. We
must show it is monotone.

Let Vi be the first node such that /(ut) = 1. Then we must show f(vj) =
1Wj > i. We proceed by induction. For v,-+1, observe that the onlydifference between

Vi and Vi+i is that some variable, say xfc, was changed from 0 to 1. This cannot

change / to 0, since / is nondecreasing. Similarly, if f(vj) = 1Vi < j < N, the only
difference between vpj and ujv-i is that variable xr for some r was changed from 0 to
1 and hence, f(vN) = /(i>at-i) = 1, and done. •

In sum, in this section we have shown that the family ofhazard-free circuits,
under our initial assumptions, is identical to the famUy of precharged unate circuits.
In the next two sections, we wiU explore two ofour base assumptions, and show that

relaxing either or both assumptions has no effect on the results, and in the second
case that the assumption cannot be easily relaxed in a VLSIenvironment.

5.4 The Satisfiability Don't-Care Set and Restricted

Cubes

The preceding arguments rested on assumption (5): any starting or ending
vertexwas permitted. In practice, this is not the case. If the input variables to a node

are themselves functions of the primary input variables, then various combinations of

the input variables (typicaUy caUed faces or cubes) may not be possible static values
of the input vertices, and if so, are not appropriate terminal vertices of a walk. The

coUection ofsuch impossible cubes is generaUy known as the Satisfiability Don't-Care
(SDC) Set[Z]. Now, even for non-precharged logic one can view the set of allowable
starting and terminal vertices to reside in SDC. However, it would be an error to

122

consider that all walks across a cube must avoid the SDC set, for the vertices within

these cubes are only forbidden as static values; there is no reason to believe that the

vertices within these cubes may not occur as transient values as the inputs change.
Nevertheless, certain cubes may beforbidden. Given anystart vertex u(any

vertex from which aU walks are monotone), any cube of the SDC set containing the
terminal vertex F wiU not be entered on any valid walk from v, sincesuch a walk wiU

not exit the cube of the SDC set and hence wiU not terminate at a statically valid

vertex. We call these cubes the restricted cubes of vertex v, denoted R(v).

Definition 5.4.1 A cube cis a restricted vertex ofv iffc C SDC and FG c. The
set of all restricted vertices ofvis denoted R(v).

The essential point about the vertices contained within the SatisfiabiHty
Don't Care set is that the value of the function may be chosen arbitrarily on these
points, since these values wiU never be realized staticaUy. The implemented function,
of course, is completely specified; there is a real, concrete value attached to each

point on the n-cube. The concrete value is a matter of concern for those vertices

inside the SDC set but outside R(v), since these wiU be visited in transit. Within

R{v), however, we can choose values arbitrarily, since these vertices wiU never be

visited. The strategy we use to prove results in this section is to demonstrate that a

single "good" assignment of function values exists for vertices in R(v), and that by
making that assignment wedo not impose any restrictions on the hazard freedom of

thereaHzed function. We then show that the results ofthe preceding sections hold for
suchfunctions; this in turn shows that redundancy information in the form ofthe SDC

set does not yield any significant loosening of the precharged, unate requirements of
the previous sections. The "good" assignment simply forces values in the unreachable

parts of the cube (R(v)) to be the value opposite that of the function at v.

Theorem 5.4.1 Let v £ SDC and every walk from v terminating outside R(v) be
monotone. If f(u) = f(v) for all u € R(v), then every walk {v,...,v} is monotone.

Proof: Note that every walk {v,..., w, w',..., F} is composed of a prefix {v, ...,w} lying
outside R(v) and a suffix {w',..., F} lying inside R(v). Since f(w') = ... = /(f) = /(vj,

123

/ changes value more than once over the walk iff it changes at least twice on the prefix

{v,...,w}. But {v,...,w} is monotone, and done. •

Definition 5.4.2 The function CjtV obtained by setting C/(V(u) = f{u) for all u

outside R(v), and CftV(u) = f(v) for all it G R(v) is called the Completion of f

with respect to v.

We show that C/fW is monotone under evaluation beginning at v iff / is.

FoUowing this, we use the results of the previous section to draw conclusions about

/.

Theorem 5.4.2 Every walk {v,..., v} is monotone under CftV iffevery walk {v,..., w}
is monotone under f for each w outside R(v).

Proof: If {v,..., F} is monotone under C/f„, thensome w is the last vertex on the walk

outside R(v). {v,...,w] is monotone under C/fW, and for each u in the walk {v,..., w},
u is outside R(v) and so C/,„(w) = f(u), and so {v,...,w} is monotone under /. For

the converse, note that every walk from v terminating in w under / (and so under
CjtV is monotone, and for each it GR{v) we have C/,„(u) = Cf~v(v). Hence C/,„ meets
the premises of / for the preceding theorem, and hence everywalkis monotone under
CUv. m

Corollary 5.4.3 Every walk {v, ...,w] is monotone under f for each w outside R(v)
iffCjtV is unate in every variable.

Proof: Immediate from theorem 5.3.5 and the fact that C/,„ is a completely specified
function. • _

The matter of precharging remains. This foUows immediately from lemma
5.3.3.

Theorem 5.4.4 Assume that 0 outside SDC. Let v be any vertex outside SDC,

f(v) = /(0), s.t. every valid sequence {0,..., 1} and every valid sequence {v,...,v} is
monotone in CftV. Then f is independent of every variable Xj in which v differs from
0.

124

Proof: Given two start vertices v and u, with f(u) = f(v), C/,„ and C/,„ have the
unateness properties specified by theorem 5.3.5. These properties may vary, since C/ftt
and CftV need not be identical functions over the set R(v) UR(u). However, let u and
v differ insome Xj. Then C/|tt is nondecreasing in Xj, and hence / is nondecreasing in
Xj over the care set; similarly, CjtV is nonincreasing in Xj, and so / is nonincreasing
in Xj- over the care set. Hence C/ftt and C/f„ differ in the unateness of X,, and / is
independent ofXj over the care set and so is independent ofXj. m

Thus the results of this section show that the (unrealistic) assumption that
no input states were forbidden had no effect on the major result of the section 5.3.

5.5 Ordering The Inputs

If assumption (5) (that all input vertices are possible) does not affect the
hazard-free status ofthe function, we should examine the assumption that the order in

which the inputs change is arbitrary. Clearly the results of the previous twosections
are heavUy dependent upon this assumption. The objectives of this section are

1. to demonstrate that this assumption (4) is reasonable under most circum
stances;, and

2. to demonstrate that assumption (4) has no effect on the major results of this
paper.

In an abstract timing environment, each function is treated as a node in a

directed acycHc graph. The edges represent the connections between functions; each
edge is given a positive weight, which represents the delay between the time that the

edge source switches value and the time that the value reaches the edge sink.
The value at either the source or the sinkat any time is a function both of

the initial state of the edgeand of the current partial evaluation of the function at its

source. We have been representing this partial evaluation asa walk along thefunction
at the source of the edge, and ignoring the mechanism by which the variables to that

function changed value. Of course, these input variables are represented by other

125

edges in the graph, and the changes in their valuereflect the changes in state of those

edges. These edges in general changevalue in response to changes in the function at

the edge source. Tracing back thesechanges in function, or events, we arrive naturally

at the concept of events traveUing down paths from the primary inputs. Since each

edge has a weight, the delay down any path is simply the sumof the edge weights. If
the edge weights model delay precisely, then one can time the arrival of an event at

some node. Further, one can adjust the arrival time of an eventat a node by adding

nodes (caUed static delay buffers) to the graph at appropriate points along the path.

The purpose of these nodes is merely to delay the arrival of signals at a point.

In practice, delays, even those generated by static delay buffers, are not

known so precisely. RecaU that delays of the various edges are dependent upon

the precise sizes of the capacitors and resistors that make up the physical circuit,

which in turn are heavily dependent upon the precise physical layout of the circuit

in sfiicon, upon variations in the various doping steps of the fabrication process, and

finaUy upon thermal and electrical factors in the operating environment. Through
careful measurement of the mask-level design, one can obtain the needed information

concerning the physical layout, but parameters of the fabrication Hne and operating
environment can only be given probabiHsticaUy. As a result the edge weights are

typically given as a range of figures, and the maximum of the range is taken as the

edge weight. Further, the edge weights cannot be taken to scale uniformly throughout
thecircuit; it is entirely possible that some instance ofthecircuit wiU have some edges
operating at ornear their minimum delay values and others operating at ornear their
maximum delay values.

Hence when one considers an abstract circuit, one is in fact considering a
family of circuits. The distinguishing characteristic of the circuit under analysis is
that it is the slowest in the family. Asa result, a partial order on the inputs of a gate
is invaHd unless it can be shown to hold for every member of the family. We examine
the conditions under which this may be shown.

Definition 5.5.1 The circuit obtained by assigning the maximum value to every edge
is called the slow circuit, and the circuit obtained by assigning the minimum value to

126

every edge is called the fast circuit.

A node has settled to its final value only when its last event has propagated

through the node. In chapter 2 weshowed that this can in general be bounded above

by the length of the longest viable path terminating at that node. The upper bound

on a node settHng is therefore the length of the longest viablepath in the network in

the slow circuit. A lower bound on a node settHng is the length of the shortest path
in the fast network. Since the condition on imposing the order x switches later than

y is that the upper bound on y is less than the lower bound on x, we have:

Theorem 5.5.1 An input x to afunction f can be said to switch earlier than y if the
longest viable path terminating in x in the slow network is shorter than the shortest

path terminating in y in the fast network.

If the delay of eachedge in the fast network is taken to be 0, wehave:

Theorem 5.5.2 If the minimum edge weight for every edge is 0, then no partial
order exists on the inputs to anyfunction

For the remainder of this section, we presume that the minimum weight of
the range at each edge is 0. Under these circumstances, one can prove the foUowing
theorem.

Theorem 5.5.3 If two events e\ and e2, arrive at node fm, it cannot be determined
which arrivedfirst.

Proof: If ei and e2 travel down disjoint paths to fm, either can be made to arrive

before theother byreducing the delays along therelevant path to 0. If the two paths
conjoin, then the event which arrives first at the junction arrives first at fm, but the
paths have disjoint prefixes and hence by the first case the event which arrives first

at thejunction cannot bepredicted. If the two paths diverge, and then reconverge at
fm, then the shorter of the two disjoint reconvergent segments carries the first event,
but either of the reconvergent segments can be made shorter by reduction of edge
delayalong the chosen piece to 0. These are all the cases, and so done. •

127

Even though one can order the inputs on a node if one has nonzero minimum

delays for each edge, it is not clear that this loosens the restrictions on hazards. The

fact that these restrictions stiUapply is a consequence of the two final theorems.

Now, clearly if a total order doesn't helpus in loosening the precharged/unate

restrictions, then no partial order wiU. Let us consider the case where xt- switches

before Xj for j > i. We show in this case that every hazard-free function must be

both unate and have the starting vertex fixed.

Assume a total variable order and consider the case of the three dimensional

cube. Any attempt to construct a hazard-free function on this 3-dimensional cube

with a 0 at both 0 and 1 fails, even though only one valid walk from 0 need be

considered, due to the variable order. However, the fact of the variable order puts no
restrictions on either the start or terminal vertices of a walk, merely on the internal
structure of the walk once initial and terminal vertices have been selected. Since

every walk of distance n involves n + 1 points, a distance n walk originating and
terminating on vertices where the function is 0 gives n + 1 points where the function

is 0. From then+ 1 given 0 points on thecube derived from the walk, and from the
fact that one could construct a single walk from any point to any point, we were able
to fill the 3-dimensional cube with zeroes at each vertex. It developed that this is
true of every cube, a fact we provenow.

Theorem 5.5.4 Let f be a hazard-free function on the N-cube, with a total order on
the arrival of the input variables. Let f = 0 on any two points distance N apart on
this cube. Then f = 0 on the entire cube.

Proof: Without loss of generaHty, we assume that the variables change in the order
xi, ...,x„; i.e., xt- switches before Xj iff i < j. We show by induction on n. The case

is trivial for either the 0 or 1 dimensional cube, so suppose this is true for aU cubes
of dimension < N. For the case n = N, without loss of generality assume /(0(=
xT,..., x77)) = /(1(= xu...,xN)) = 0. Now, the walk from 0 to 1 therefore induces a

0 on every point along the walk, and these points include the point u = (1,..., 1,0).
0 and u form extrema points ofthe N-1 dimensional cube xj?, and so by induction
/ = 0 everywhere on this cube. Hence / = 0 at the point u' = (1,0,....,0). Now,

128

Figure 5.6: IUustration of theorem proof on 4-dimensional cube

it' and 1 form extrema points of the N —1 dimensional cube xi, and hence / = 0

everywhere on this cube. Hence / = 0 at the point w = (1,..., 1,0,1), and so 0 and

w form extrema points of the cube xjv_i, and so / = 0 everywhere on this cube, and

in particular at w' = (0, ...,0,1). FinaUy, w' and f form extrema.points of the cube
xjv, and so / = 0 everywhereon the cube xjv. Now, / = 0 everywhereon x]v as weU,

so / = 0 everywhere on the entire cube, and done. •

An illustration of the proof on the four-dimensional cube is given in figure

5.6.

With this in hand, we can immediately prove as a coroUary the analogue to

theorem 5.3.5

Theorem 5.5.5 Let f be anyfunction and the total order in which the inputs switch

is given, v = (xi,...,x„) is any vertex of the n-cube such that every valid sequence

beginning in v is monotone. Let f(v) = 0. Then ifxj = 0atv,fis nondecreasing in

Xj, and if Xj = 1 at v, then f is nonincreasing in Xj. Similarly, if f(v) = 1, then if
Xj = 0 at v, f is nonincreasing in Xj, and ifxj = l at v, then f is nondecreasing in
x,
'j*

Proof: We provefor the case f(v) = 0, x,- = 0 at v only. If / is not nondecreasing

in Xj, then there is some point it with f(u) = 1, Xj = 0 at u, with a neighbour it',

Xj = 1 at u', /(it') = 0. But now v,u' are extrema of a cube, and / = 0 at both

129

extrema. Hence / = 0 on the entire cube. But /(it) = 1, and u is a point of this

cube, contradiction. •

Lemma 5.3.3 foUows this theorem with exactly the proof with which it foUows

theorem 5.3.5, which suffices to prove the point of this section: imposing any order

on the variables does not relaxthe requirement that the functions be precharged and

unate in order to be hazard-free.

The final question that naturaUy arises is whether a denial of both assump

tions together is sufficient to loosen any of the restrictions imposed in the general

case, given that neither separately is sufficient. We wiU not repeat the arguments of

the previous section here. However, if we assume both a total order on the inputs

and the existence of forbidden states, we can use the results of this section to argue
that the function must be unate exclusive of the don't care set, and then use the

completion construction of the previous section to argue that precharging is required.

Chapter 6

Timing Analysis in Hazard-Free

Networks

6.1 Introduction

Chapters 2 and 3 centered around algorithms which found the longest path

down which an event could propagate in a combinational network. Such a path is

called the true critical path, and is of great interest in timing verification.

Due to the uncertainties in the actual delays of the various circuit elements

mentioned in the above chapters, we argued that true critical path procedures must

not only report the longest true path, but must also report a path whose length

is no less than the length of the true critical path in aU the faster networks in the

famUy (since such a faster network wiU bethenetwork actuaUy fabricated and inuse).
This robustness constraint was called the monotone speedup property, one could not

lengthen the critical path of the network by speeding up some of its components.

RecaU from chapter 2 that in general networks simplytracing the setof paths

which actuaUy propagate events is not a robust procedure, in the sense of monotone

speedup, since onecanconstruct networks in which reducing the delays of some circuit

elements causes signals to propagate down longer paths than the longest true path in

the original network. Indeed, one can construct networks with no fuU true paths in

the original networkbut havearbitrarily long true paths in some faster network. This

130

131

is a particularly unfortunate state of affairs, since it ensures that any correct, robust

criterion for true path tracing wiU be loose in the sense that it is possible that some

paths down which events cannot propagate wiU be reported as true. Hence one is

guaranteed to overestimate the critical delay in a network. Indeed, one can construct

circuits in which the difference between the critical delay that one obtains by tracing
the true paths and the critical delay that one must report is arbitrarily large.

It would be pleasant if there were an identifiable class of circuits for which the

true longest path delay criterion were robust, and as the reader has certainly guessed

by now, hazard-free circuits are such a class. It is the objective of this chapter to
prove this, and to derive an algorithm which returns the length of the true critical
path.

6.2 Dynamic Sensitization is Robust on Precharge-

Unate Networks

We begin this discussion by observing that the results of the previous sec
tions are assumed, and hence when we speak of hazard-free networks we also mean

precharged, unatecircuits, since wenow know these concepts are equivalent. Hence at

every time t > 0, each node / is either in its initial precharged state, or its evaluation

state; the two, of course, might be the same. If one considers a function evaluation

as a walk along the cube, as above, then a change in value of the function occurs in

response to a change in value of one of its inputs; we caU such a change in value an

event, and say that the event has propagated from the input to the output of the
function. It is natural to extend this notion of propagation from input to output to
propagation along a whole sequence of nodes, {/0, ...,fm}, where each /,• is an input
to /<+i.

RecaU from chapter 2 that for a node /,- to respond to an event on /t+i, the
other inputs (also caUed the side inputs) to /,+i must be at the appropriate values
when theevent propagates through /• inorder to propagate through fi+1; for example,
if /l+1 is an OR or NOR gate, the side inputs must all hold the value 0 in order for

132

the value of /,- to determine the value of /t+1, and if /i+1 is an AND or NAND gate,

the side inputs must aU hold the value 1. In general, one can show that these values

form a satisfying set to a logic function, the boolean difference of /+1 with respect to
fi, and is denoted ^fo2-.

In chapter 2, it was presumed that a set of inputs (called an input vector
or an input cube c\ was appHed to the primary inputs at t = —oo and determined

the initial state of the wires in the network. A vector c2 was then applied at t = 0

and permitted to propagate through the network. Under these circumstances, it was
shown that:

Theorem 6.2.1 A path {fo,...,fm} is sensitizable by primary input cubes Ci,c2 (an
event propagates under cuc2) iff ^j-(ci,c2,rl_1) = 1

Now, the cube c\ was present in that formulation since the cube cx deter

mined the state of the networkat t = 0. Now, however, the initialstate of the network

is determined by precharging, and so wemay dispense with the vector c\, rename c2
as simply c, and write:

Theorem 6.2.2 A path {/0,...,/m} is sensitizable by a primary input cubes c iff

Our task is to show that the dynamic sensitization criterion is robust on

hazard-free networks. Such a network may be presumed to consist exclusively of
AND, NAND, OR and NOR gates; more complex gates maybe macroexpanded into
subnetworks composed of these, and the set of dynamicaUy sensitizable paths not
decreased by the macroexpansion. Now, note for each such gate the sensitization
conditions are either a 1 on aU side inputs (for AND and NAND), or a 0 on aU
side inputs (for OR or NOR). Now, we presume that every input to one such gate is
precharged to either 0 or 1; indeed, this is a requirement for the gate to behazard-free.
In general, then, either each input to a gate is precharged to its sensitizing value, or
each input is precharged to its desensitizing value. In the former case, the first input
to change state propagates, since each other input is stiU at its sensitizing value, and

133

in the latter case, the last input to change state propagates, since each other input

must have already changed to its sensitizing value. Informally, then, if we speed the

network up, neither the first nor the last event on an input wiU be slowed down, and

hence the event that propagates wiU not be slowed down. We formaHze these notions

below.

Lemma 6.2.1 Let N be a hazard-free network. Then for each node f, input cube c,

the set of dynamically sensitizable paths under c through f are all of the same length.

Proof: This is immediate. Each dynamicaUy sensitizable path through / propagates
an event. But there is at most one event at /, and hence each separate dynamicaUy
sensitized path must propagate its event through / at the same time. •

Definition 6.2.1 We denote the time that an event propagates under c through f as
<(/>c)- If we are discussing the time that the event arrives at f in the context ofa
specific network N, we denote this as <n(/,c).

This leads immediately and naturaUy into the speedup, or robustness, the
orem. Suppose we speed network N up into N' by reducing some internal delays.
What we'd Hke to prove is that the longest dynamicaUy sensitizable path in N* is no
longer than the longest such path in N; in other words, tN(f, c) > rjv(/, c).

Theorem 6.2.3 Let N be any network, N' be any network obtained from N by re
ducing delays at some nodes. Then for each f, fo/(/, c) < tN(f, c)

Note the proof of this theorem gives us the result we want, for the delay
reported by a dynamic timing analyzer onthe original circuit under this sensitization
criterion is the max over aU primary outputs Fj and cubes c of the t(Fj, c).
Proof: Induction on the level of/, 6(f). For / a primary input, trivial. Assume true
for aU nodes of lesser level than /, and so, in particular, assume the result for the
inputs gt of /. Now, for each input gt of /, we have tN,(gi, c) < tN(gi, c). Now, since
we have restricted our attention to AND, NAND, OR and NOR gates we may write:

f(f c\= (f\ , J mmW0i>c)) 0i's are precharged to the sensitizing value
\ max(t(gi,c)) otherwise

134

without loss of generaUty, we presume the first case, and since min(<^/(^, c)) <
min(tN(gi,c)) and wN*(f) < wN(f) we have that <#/(/, c) < tN(f,c), as required.
The reader can easily verify that the proof for the other case foUows. •

6.3 The Dynamic Sensitization Function

We now have the proof, and aU that we desire is an algorithm to compute

the longest dynamicaUy sensitizable path in such a network. Fortunately, we can

adopt the dynamic programming procedure developed previously to calculate this.

First we must derive a logic function Xp with the propertythat:

Ap(c) = 1 iff P is sensitized by c

In general, wewish to write a series of equations similar to (2.2)-(2.4). The
first equation, the analogue to (2.2), we can write immediately:

m

Xp = U4 (6.i)
i=o

RecaU that V9tt denoted the set of paths of length > t terminating in g. It is

also convenient to denote the set of paths of length exactly t terminating in g; denote
these as 7^.

The equation for Xp stiUmust be derived.

We first consider DOMINO networks only; this suffices to encompass NORA

networks as weU, since DOMINO and NORA networks are isomorphic through the

translation of appendix D. Note that for DOMINO networks, it suffices to consider

only the set of rising events at a node. Note further that since DOMINO networks

consist only of noninverting gates, a rising edge through a fanin of a node produces

a rising edge at the output of the node (we neglect primary inputs for the moment).
Consider the generic picture of the pulldown network of a precharged-unate

function, presented in figure 6.1.

In this diagram, q consists of the puUdown network feeding through /,_i
and r consists of the network which does not feed through /_i. Each path through
a subnetwork corresponds to a cube of the subnetwork.

Figure 6.1: Generic Precharged-Unate Gate

The boolean difference jjjf^ may be written, in terms of qand r,

(q + r)@r

which simplifies to:

qr

135

or, in other words, q is conducting and r is nonconducting. This is also the condition
under which a rising edge on /,_i forces a rising edge on /,-.

136

Denote as A{'* the condition that there is arising edge on / atT > t. Denote
as A2* the condition that thereis a rising edge on / at t < T. Since everysensitizable
path produces a rising edge, we have:

A{'= £ *Q (6.2)

We can then write the expression for X{* in terms of X{'*, by noting that there can
be only one event on / for each input combination. The condition on A{'* is that this
event occurs no eariier than t, and hence A '̂A '̂* is equal to thedynamic sensitization
functions of the paths terminating in / of length precisely t:

Q&g.t

further, Xf +A '̂ = /, since / must rise at some time if / = 1. Hence we must have:

A2>'* = /(aF+ £ Xq) (6.3)
Q&g,t

We are now in a position to determine when a rising edge on /;_x forces
a rising edge on /,-. Basically, we must have q conducting at t^u r nonconducting
before n^. Now, for q to beconducting, we must have that some path through q is
conducting. We may write

q = ci + c2 + + c„

where each Cj is a path through qand a cube in thesum-of-products expression for q.
The identity between these two must be exact, and can always be arranged through
the appropriate choice of sum-of-products expression for q.

The requirement that q be conducting is therefore that some path Cj be
conducting, i.e., must be identically 1. Further, since the precharge state of every
variable is nonconducting, we must have that every variable g in Cj rise and arrive no
later than r,_i. This requirement is expressed in thecondition gX2r%~1 i.e.

n sAi'*-'
gGcj

»•»

137

Since Cj = X\g^Ci g-> the condition for Cj to be conducting is:

c, n ^-i
g€ej

and since the condition for q = ci + ... + cn to be conducting is that some Cj be

conducting, we have that the condition for q to be conducting is:

E <* II A?"- (6-4)

The equation for r to be nonconducting is somewhat simpler. Every cube

Ck £ r must be nonconducting. Hence for some transistor controUed by g in cjt,

the final value of g must be nonconducting (0), or g must be late and so be at its

precharged, nonconducting value. This condition can be expressed:

g€cu

and the condition for r to be nonconducting is that this be true for every cube:

n(E*r-,+» (6.5)
c*€r ff€efc

Putting (6.4) and (6.5) together, we get:

4! =(Ec, II AT-1) fII (E Af"5-1 +7)) (6.6)
In sum, we define:

Definition 6.3.1 The dynamic sensitization function (also sensitization set^ of a
path P = {/0,..., /m} in a DOMINO or NORA network is defined as:

XP =f[Xpi (6.7)

where

#=fE ÎI Af"-) fII (E Af-+7)) (6.8)
\cj€g ff€c,- / \ck£r g£ck J

and

and

138

Af'= £ Aq (6.9)

Af =/(Af+ £ Ag) (6.10)
where, as before, fi = qfi-i + r.

The case of primary inputs should be treated carefuUy. Primary inputs can

be treated simply as DOMINO nodes, with the case that:

Af*= 5 Vr > 0

and

t* <= 0

8"\o t >0

This captures the behaviour that there is a rising edge on g iff g is true, and that g
arrives at t = 0 for aU g. This impHes that the two phases of each primary input are
treated as separate variables for the purpose of analysis.

We have immediately:

Theorem 6.3.1 A path P = {/0,...,/m} in a precharged/unate network N is dy
namically sensitized by input cube c iff Xp(c) = 1.

Proof:

«£= P dynamicaUy sensitized by c. Induction on 6(fm)- Trivial if S(fm) = 0. Assume
for 6(fm) < N. Now, if P is dynamically sensitized by c, then we have fm and fm-i
as in figure 6.1, and q, r defined as in the figure and subsequent discussion. By

induction, we have that for each g € FI(fm), and for each dynamicaUy sensitizable
path Q terminating in g, Q is dynamically sensitized byciffc C Xq. Now, since there
is a rising edge on /m in response to a rising edge on /m-i, wemust have that thereis

a conducting path through q at rm_i. Hence for some cube Cj in the sum-of-products
expression for q we must have that Cj is on at rm-i. In this case, the static value for

each £ € C; is 1, and, further, g musthave achieved its final value nolater than rm_i;

139

i.e., some path Q of length < Tm-\ terminating in g must be dynamicaUy sensitized

by c. By induction, therefore, c C Af,Tm""1, for Af,Tm"1 is the sum of the dynamic

sensitization functions for such paths. Hence c satisfies

e et n Ar-1
Cj€q gecj

Further, r is nonconducting at rm_x, i.e., r = 0 at rro_i. There are two cases. In the

first case, the static value of r is 0. In this case the static value of every cube Ck € r
is 0, i.e., for each cube c* there is some g Gc* such that g is true, and we have that

U£*
c*€>0€c*

is satisfied. Otherwise, for some ck, the static value is 1, i.e. every Hteral has its
static value as 1. If every gGc* has achieved its final value before rm_i, then a rising
edge on fm has occurred before rm, i.e., we have that cdynamicaUy sensitizes a path
through fm oflength < rm. But we know that every path through fm sensitized byc
must be ofthe same length, and P is a path oflength rm sensitized byc through /TO,
contradiction. Hence for some g 6 ck, g settles to its final value at or after rm-i, i.e.,
there is a path Q of length > rm-\ terminating in g sensitized by c. By induction,
cC AQ. Now, Xq C A**»-», hence cC A*T»»-i. Hence cC £ff€cfc **—i +g for each
cfc, and hence is contained in the product. Hence cC XfPm. By induction, cC A£ for
every i < m, and so c C XP.

=> c C AP. Induction on S(fm). For 6(fm) = 0, trivial. Assume for £(/TO) < N.
If 6{fm) = N, we have by induction that {/o,...,/m-i} is sensitized by c. We must
show that a rising event propagates from fm-i to fm under c. Write fm =qfm-i +r,
as usual. Since c C XfPm, we have for some Cj € q, c satisfies the right-hand side of
(6.8), and so must satisfy:

Cj n at-
g€cj

By induction, the final value of each g GCj is 1, and g arrives no later than rm_!.
Hence when /m_! toggles to 1, there is aconducting path through fm-i and Cj. Hence
if there is not a rising edge at fm in response to a rising edge on fm-u there must
be aconducting path through r before Tm^. But in this case, for some cube ck in r,

140

we must have that each g in c* is turned on by c and, further, arrives before rm-i.
By induction, therefore, we must have that c C g, and, further, that c C Afrm_l
(since the one sensitizable path to g under cwas oflength <rm_i. But then (6.5) is
unsatisfied by c, and so too must be (6.8), and hence Xpm is unsatisfied, contradiction.

h

«»

r<3
jT~)H-

-H(~Ht &

H

Figure 6.2: Generic DCVS Gate

Sensitization for DCVS circuits must be handled more carefuUy. A generic

DCVS circuit can be mathematically analyzed as two DOMINO gates back-to-back,

as in the diagram in figure 6.2. (In practice, the two puUdown networks of the

two gates are often combined, for space reasons). Once again, the only cases that

141

need be analyzed are rising edges on the inputs to a gate producing rising edges on

the outputs of a gate. For such networks, equations (6.7) and (6.9)-(6.10) remain
unchanged. Equation (6.8) spHts into four equations, corresponding to the cases:

(i) a rising edge on /,-_! produces a rising edge on /,-;

(ii) a rising edge on /,_i produces a rising edge on /j;

(Hi) a rising edge on JTT produces a rising edge on /,•; and

(iv) a rising edge on fimml produces a rising edge onJi.

We analyze case (i) expHcitly; the others are exactly analogous. For a rising edge on
/,•_! to produce a rising edge on /,-, we must have that at Tt_! there is a conducting
path through qx and no conducting path through n. The other blocks may be ne
glected, since the presence of a rising edge on /,_i assures us that there wiU be no
conducting path to ground through J~^ (and hence the possible presence of conduct
ing paths through sx and s2 is irrelevant). Similarly, the presence of a conducting
path through qx ensures that there is no conducting path through either q2 or r2, since
the mutual presence of such conducting paths through qx and either q2 or r2 would
imply simultaneous rising edges on both /,• and Ji, forbidden. Hence, note that (6.8)
fits this situation exactly, with ?i substituted for q and rx substituted for r.

$=(E cj n A?*-') (n(E Af"- +7)) (6.11)
\cjeqi g€cj) \cfc€r! g€ck J

The equation for case (ii) is:

^ =f.E n̂>rA (n (e a?-*-* +$) (6.i2)
\Cj692 g€cj j \cker7 g€ck J

The equation for case (Hi) is:

^=(£ <> nA?"-') (n(E Af"' +7)) (6.13)
The equation for case (iv) is:

^ =(Ecj nAf""') (n(E Af"- +J)) (6.14)
\Cj€22 gGcj j \cfc€r2 fl6cfc /

142

6.4 Algorithms

We now turn to algorithms. Again, the DOMINO case largely suffices, and

only a few remarks need be made to cover the DCVS case.

As in the viabiHty procedure, the basic algorithmis a dynamic programming

procedure adapted from the best-first path tracing algorithm. The difference between

V>£ and A£ requires that here both A{'* and A{'* be maintained for every node /.
Note that A{* is the analogue to */>*'*, and hence can be kept up to date in

the same manner that V^*' was in the initial version of the viabiHty procedure. To
keep A2 up to date we need a Httle extra bookkeeping.

At the connectionof node g into node f , we keep not one but two variables;

f Cg] .Aa and f [g] .Xp, and a variable f Cg] .t. The semantics of the variables are

that f [g] . Att holds the sensitization functions of aU paths extending through g to

f of length > f [g] .t, while f [g] .Xp holds the sensitization functions of aU paths

extending through g to f of length = f Cg] .t. Hence

Af' = /[<7].A« + /[<7].A/3

and'

Af = f[g].Xa

If we adapt the procedure of figure 3.15 to this problem, we have the proce

dure of figure 6.3.

The priorityqueue in this procedure is ordered by the relation >- developed

in definition 3.3.1. The only difference betweenthe two procedures is the name of the

sensitization function (A instead of if?) and some details of the mechanismby which

the dynamic programming information is computed. The order in which paths are

examined is unchanged, andhence the scheduHng theorems concerning algorithm 3.15

hold; in particular, lemmas 3.3.1-3.3.3 hold for this procedure. On this basis, we must

derive the mechanism by which the dynamic programming information is updated.

From the scheduHng theorems, it is clear that whenwe are extending a path

find_longest_true_path(){
Initialize queue to primary inputs of the circuit
while(((path, g) <- pop(queue)) / nil) {

k is the last node of path;
update_lambda(g, k, path);
A <- sensitizationjfunction(path, g)
if(A §6 0) {

new_path <- {path, g};
if(g is an output) return new^ath; .
A(new_path) <- A;
foreach extension np <- {new_path, h} of new-path

ifCE(np) o ^(new-path))
insert np on queue

}
if every extension ext of path s.t.

E(ext) = E(new_path) has been explored {
extl is next best extension of path
push extl on queue;

foreach extension ext2 of path with iS(extl) = £?(ext2)
push ext2 on queue;

}
}

143

Figure 6.3: Dynamic Programming Procedure to Find the Longest Sensitizable Path

P from /,-_! through fi, it must be the case that, for each g GS(fi,P):

/.MA« + fi\g].Xfi = £ AQ+ £ XQ
QePifoP,/.) Q€Pi(g,PJi)

where Pi(g, P, /,•) is the setof paths through g and /• that have aheady been explored
and P2(g,P,fi) is the set of paths through g and /• on the queue and of maximal

esperance, for these are the set of paths which are of length > d(P). Further, from

lemmas 3.3.2 and 3.3.3, we know that the set of paths in P2(g,P,fi) is a superset of

144

the paths through g to /• of length = d(P). Hence we must have:

/.[<7].A« = E Ag
QePi(g,PJi)AQ)>d(P)

and

/.•[^= E a0+ E Aq
Q€Pi(g,PJi)AQ)=d(P) Q€P2(g,PJi)

Further, those paths in P\{g,P,fi) of length d(Q) = d(P) must be the paths of
minimal length in Px(g, P, /,-), and also must be the last explored. The variable fi[g].t
is used to record this minimal length. As a new path Q is traced through g to /,-,
it moves from P2(g,P,fi) to P^PJt), and must be a path of minimal length in
•PlU, P) fi)- Hence the length ofQ is checked; if it is less than fi[g].t, we have a new
lower bound length on P2(g,P,fi), and we set:

fil9U = \Q\

/<M.A. = fib].X* + fi\g].\fi

/•M-Afl = Xq

otherwise, |Q| = fi[g].t, we set

/1MA/3 = /tfa].Aj + AQ

The code for update_lambda is given in figure 6.4.

updateJ.ambda suffices to partition the sensitization functions of the paths

Q € Pi(g,Pifi)- There remains the matter of assigning the sensitization functions
of the paths Q G P2{g,P,fi). As in the procedure of figure 6.5, this is done in the
procedure which computes the sensitization function.

Theorem 6.4.1 sensitization_function(P,/,) = XP{

Proof: Induction on 6(fi). For the base case, /,• is a primary input, and A$ = 1 for
/,- a primary input. Assume for 6(fi) < L. Now, for £(/,) = L the theorem holds if
we can show that:

fi[g]-K + fi\g].x$ = Af-

update_lambda(/j, g, Q) {
if (<f(Q) = fi\g\.f)

/.•[s].A/3<-/i[5].A^ + A(j;
else {

fi[9].*a <- fi{gU« + fi[g].\0
/.•[<?].< <-<*(Q);
/.[s].Aj3 «- A<j;

}
}

Figure 6.4: Procedure Updating Dynamic Programming Information

for the general case, and, further, that:

145

9fi[g].XQ = A?'*-1

For the first:

Ar-i= e aq
<*(<?)>n-i

where <? is a partial path ending in g. Now, if (f(Q) > n.u or if the level of the last

node of Q is less than that of the last node of P, then {<?,/;} >- {P,fi} by lemma
3.3.1, and hence has been examined previously by the algorithm. Since 6(g) < L, by
the induction hypothesis for each such path Q Xq was correctly calculated. Further,
as each such Q was popped offthe queue for extension through /•, An was added into
fi[g].Xp. Now, either it remained in fi[g].X0 or was later transferred to ft[g].Xa and
hence fi[g].XQ + fi[g].Xp D An for aU such paths Q. There remains the case where

Q and P are incomparable under >-. Now, if Q has been previously examined by
the procedure, then An was added into fi[g].Xp and hence fi[g].Xp + fi[g].XQ D An.
If not, by lemma 3.3.2, these are precisely the set of cases where {Q, fi} is on the
queue and maximal under the order. These are the paths directly summed into

fi[g]'XQ -r fi[g].Xp in sensitization_function. Hence fi[g].Xa + fi[g].X0 D Xq for

sensitization_function(path, g) {
if g is a primary input return 1;
k is the last node of path;
sensejfn <— 0;

esp <-£({path, g});
foreach path p on queue of esperance esp {

if p ends in j,g
update_lambda(g, j, p) ;

}
foreach side input j to g {

if gCj].t > d(path) {
flt/l-Aa «- g[j].X* + g\j]-Xp;
0[i].A/3<-O;
g[j].t = d(path);

}
} g = qk-\-r;
foreach cube c,- G q {

sense <- ctU^e*g[ki].*al
sensejfn «— sensejfn + sense;

}
foreach cube c,- G r

sensejfn <- sensejfn * Eg€ci{g +g[h].Xa +glk^.Xp);
return sensejfn;

Figure 6.5: Sensitization Function for Dynamic Programming Procedure

146

147

each such path Q. For equality, all we must show is that no path Q has had its

sensitization function Xq summed in incorrectly into fi[g]'Xa+fi[g].Xp. This can only

occur if the algorithm has examined some path Q before P with d(Q) < d(P). But

then E({P,fi}) > £({£,/,}), contradiction.

To show that:

all we must show is that:

fi[g]'Xa = 2 AQ

We already know that:

/.[<7].A« + fi\g].\fi = E ^
d(Q)>Ti-i

By inspection of the code for the routine update-lambda, it is easy to see that fi[g].Xp
is the sum of the functions Aq for thoseQ of minimal length, and fi[g].XQ is the sum

of the functions Xq for those Q of strictly greater than minimal length. Now, either

the minimal length is r,_i or it is greater than r,_i. In the former case, the statement

is proved, and in the latter the line

if gCj] .t > d(path)

of procedure 6.5 is triggered, and we have that

/.•[$].A« = /,[$P« + /.[$].Aj9

fibr].*fi = o

and hence

gfi[g].\a = A?"-

and we are done. •

For DCVS, the same algorithm works; the sensitization functions for /,• and

fi must be separately maintained. Note, however, that since a rising edge on /,_i

can produce a rising edge on either fi or Ji, each iteration potentiallyadds two new

paths to the queue, and hence the number of paths potentially grows verylarge. The

148

bound in terms of the number of long false and true paths remains the same, and

so the nominal complexity of the algorithm for DCVS remains as it is for DOMINO.

However, the fact that a potentially larger number of long paths exists in a DCVS

circuit should indicate that timing verification on such circuits may be in general

somewhat more time-consuming. This effect may be somewhat mitigated by the fact

that, in general, a DCVS circuit may require only half as many gates to realize the

same function as a DOMINO circuit. Only experiment can answer these questions

satisfactorily.

6.5 Conclusion

In this chapter, we have demonstrated that every dynamic sensitization is a

robust, correct criterion on precharge-unate circuits and that the dynamic program

ming algorithmdeveloped in chapter 3 can be modified to compute the critical paths

of these circuits. These facts are a potential attraction of this design style, and in

particular to the DCVS technology. These facts also meanthat circuits designed with

this style are less vulnerable to certain classes of stuck-at-fault, and hence may be

considered, at least in this sense, somewhat more reliable than full static MOS.

Appendix A

Complexity Results

A.l A Brief Introduction to the Theory of Poly

nomial Reducibility

The infant science that wetodaycall Computer Science canbe fairly said to

have three recurrent, dominant themes: abstraction, consistency (often, incorrectly,
called correctness) and efficiency. It is this last consideration which most strongly
differs Computer Science from most other branches of mathematics. Other branches

of mathematics are concerned with abstraction and consistency, but virtually never
with efficiency.

Efficiency, in turn, has two sides, algorithm design and complexity. Algo
rithm design (also known as "upper bound theory") is concerned with finding good
algorithms to solve a problem, and with characterizing the number ofoperations that
those algorithms perform to solve an instance of a problem; complexity, or "lower
bound theory" is concerned with demonstrating that any algorithm restricted to a
class ofoperations (e.g., binary comparisons for sorting and searching) must require
some number ofthose operations to solve an instance ofa given problem. Both parts
of the theory quote performance as a function of the problem size; e.g. 0(n log n)
binary comparisons are required to sort n items.

Lower bound theory is far less developed than upper-bound theory. While

149

150

some problems (e.g. sorting n items, searching an ordered set of n items for a given
item) have well-defined lower bounds that are "sharp" (i.e., there is aknown algorithm
that perforins as well as the lower bound), these are very much the exception rather
than the rule. Further, the mathematical techniques used to prove lower bounds are
still very much in their infancy.

w

P Solution
n

Q •Q Solution

Figure A.l: Generic Problem Transformation

One technique that has gained much currency over the past 15 years is the

use of reducibility, or of problem transformations. The use of a problem transformation

is shown graphically in figure A.l. Broadly, algorithms are found to transform an

instance of problem P into an instance of problem Q, and the solution of the instance

of problem Q into the solution of the instance of problem P; if a lower bound for

problem P is known, a lower bound for problem Q can then be derived in terms of

the lower bound for problem P and the cost of the transformation, since the use of

the transformation and an algorithm for Q is an algorithm for P.

In the early 1970's, the use of problem transformation was to formalize

research in a class of problems for which neither any good algorithm nor lowerbound

was known. The paradigmatic problem for this class was the travelling salesman

problem: given a set of n cities, and, for each pair of cities i,j an integer cost w^

associated with a transit from city i to city j, and an integer K, is there a tour of the

n cities, in which each city is visited only once, such that the total cost of the tour is

<ia

151

The interesting thing about travelling salesman (TS) is that, given a pro

posed tour, one can easily validate whether or not the proposed tour is in fact a tour

and one can easily determine whether its total cost is < if; in fact, one can do so in

time linear in the number of cities. However, discovering a solution is believed to be

much harder. Currently, the best-known algorithm is still believed to be exponential

in the number of cities.

In the early 1970's Cook observed [21] that the convolution product, and

sum of polynomials all produced polynomials; hence, referring to the diagram in

figure A.l, if the transformation from P into Q and from Q's solution to P's solution

were polynomial1, then the existence of a polynomial-time algorithm for Q would

imply the existence of a polynomial-time algorithm for P. Conversely, the existence

of an exponential-time lower bound for P would imply an exponential-time lower

bound for Q.

Cook then considered the class of problem whose solution could be veri

fied in polynomial time (e.g., travelling salesman), a class we now call AfV. He

demonstrated that every problem in MV could be polynomially transformed to the

problem of determining whether or not there was a satisfying assignment to a logic

formula in conjunctive normal form; a problem call SAT. Hence SAT was the "hard

est" problem in AfP, in the sense that a polynomial-time solution for SAT would

imply a polynomial-time solution for any problem in AfV, and. conversely, that an

exponential-time lower bound for. some problem in MV would imply an exponential-

time solution for SAT. Cook further speculated that other problems in AfV might

be as hard as SAT, i.e., there might be problems in AfV into which SAT could be

polynomially transformed.

In 1972 Karp [43] presented a fairly comprehensive set of such problems.

Since then, a fairly rich set of such problems has been compiled. In 1979, the basic

text on the area [28] presented a list of 320 problems known to be AfP-complete; i.e.

as hard as SAT and polynomially-verifiable.

It is clear that the class of problemswhich may be solved in polynomial time

1Both in the sense that the transformation from P to Q takes polynomial time and in the sense
that an instance of P of size n produces an instanceof Q of size p(n) for polynomialp

152

(V) is a subset of theset of problems which may be verified in polynomial time (AfV),
i.e., it is clear that V C MV. It is not known whether this containment is proper,

though it is widely believed to be the case. If the containment is in fact proper, then

all the A/^-complete problems must be super-polynomial in complexity.

A/^-complete problems are not thelast word incomplexity. There is a large
class of problems known to be intractable - that is, a class of problems for which any

algorithm must take exponential time. A further interesting class are those problems

polynomially reducible to an Af'P-complete problem but whose verification procedures

are not known to be in V (and, in general, are known not to be in V unless V— J/V).
Procedures polynomially reducible to SAT are called //V-h&id: they are as hard as

any problem in MV. Af'P-hard problems which are also known to be polynomially
verifiableare called A^-complete.

Proofs of A/'T'-hardness of a problem,are in some sense lower bound results:

they demonstrate that a lower bound on the problemis polynomially related to the

maximum lower bound of the problems in JsfV. Similarly, a proof of membership in

MV is an upper bound result: it shows that an upper bound for this problem is
polynomially related to an upper bound on SAT. With this in mind, we proceed to
the complexity results.

In the remainder of this appendix, we will often be using the phrase "poly

nomial time" or "linear time". Of course, either phrase is meaningless without a

referent: polynomial means polynomial in what? The size measure we will be using

for instances is the sum, over all the nodes, of the number of literals appearing in the
disjoint normal form of each node.

A.2 Sensitizability of the Longest Path is -JtfV-

hard

We go now to our basic complexity result, which shows that all the prob

lems associated with path sensitization are AfP-hard; i.e., that this problem is not

significantly easier than any problem in MV. The specific subproblem that wechoose

153

to show is Af'P-hard is Long Path Sensitization: given a network JV, is the longest

path through JV sensitizable? Since this is obviously a special case of the general false

path problems we have been addressing, and since the fact that a generalization of an

AfP-hard problem is another Af'P-hard problem, showing this result suffices to show

that all the problems of significance that we are addressing are A/P-hard.

In order to show that the problemLong Path Sensitization is Af'P-hard,

we need an Af'P-hard problem which we can transform into this problem. We choose

the well-known AfP-complete problem 3SAT

3SAT is SAT restricted to three literals per clause; i.e., given a formula:

(un + uu + ui3)(u2i -r u22 -r u23)...(umi + um2 + um3) (A.l)

where each txy is a literal of some boolean variable {xi,..., x*}, is there an assignment

to the variables {xi, ...,x*} such that formula A.l is satisfied, i.e., evaluates to 1?

3SAT was shown to be Af'P-complete, and hence also Af'P-hard, in [43]; it

is one of the original classic AfP-complete problems.

We now transform 3SAT into Longest Path Sensitization.

Problem A.2.1 [Longest Path Sensitization] Instance: A network iV", with a unique

longest path P.

Question: Is the unique longest path P € N sensitizable?

This will suffice to show that all problems investigated in this thesis are Af'P-hard,

since we will show that this is a special case of each such problem.

Theorem A.2.1 LPS is AfV-hard

Proof: Reduction from 3SAT. Given an instance of 3SAT:

(tlU + U12 + «13)(W21 + «22 + U22,)...(uni + Un2 + U^)

where each utJ- is a literal drawn from the set {x0,..., x*,xo,..., xT}, we construct the

circuit shown in figure A.2. If the delay on each gate is 1, and the delay on the static

154

>^ n+l

Figure A.2: LPS Transformation from 3SAT

delay buffer is 2 as marked, then the longest path through this graph is {a0,..., an+i}-

Since the longest path is unique, we have that its dynamic sensitization function is:

n+l
n_dai_

i=l

Further, we have:

§1^7 = a.ai_l ©a«37zr = Ct- 0 0= d = («,! + ui2 + ui3)

Hence the path is sensitizable iff the instance of 3SAT is satisfiable. Further, the

transformation is obviously polynomial (in fact, linear). Since this was an arbitrary

instance of an AfP-hard problem, LPS is A/^-hard. •

We now use this basic result to demonstrate that longest statically sen

sitizable path is Af'P-complete, as is longest viable path and longest dynamically

sensitizable path.

A.3 Longest Statically Sensitizable Path is AfV-

complete

Problem A.3.1 [LongestStatically Sensitizable Path] Instance: A network JV, real

K.

155

Question: Is there a path P G AT, input minterm c, P statically sensitized by c,

d(P) > KI

Theorem A.3.1 LSSP is AfV-hard.

Proof: Immediatefrom the fact that LPS is AfP-hard, sincea networkwith a unique

longest path oflength K\ has a statically sensitizable path of length K\ iffthe longest
path in such a graph is sensitizable. •

Further, LSSP clearly 6 AfP, since, given an input minterm c and a path

P = {/o, —, fm}, one can easily verify in linear time that d(P) > K and that -M- is
statically satisfied for every i by direct simulation. Hence LSSP is A/^-complete.

A.4 Longest Dynamically Sensitizable Path is J\TV-

complete

Problem A.4.1 [Longest Dynamically Sensitizable Path] Instance: A network AT,
real K.

Question: Is there a path P € TV, and input minterms cx,c2, P staticallysensitized
by cx and c2, d{P) > KI

Theorem A.4.1 LDSP is MV-hard.

Proof: Immediate from the fact that LPS is AfP-hard, since a network witha unique
longest path of length K\ has a dynamically sensitizable path of length K\ iff the
longest path in such a graph is statically sensitizable. •

Further, LDSP clearly GAfV, since, given an input minterm c and a path
P = {/o,.»,/m}, one can easily verify in linear time that d(P) > K and that ffi-
is dynamicallysatisfied at t,-_i for every i by direct simulation. Hence LDSP is MV-
complete.

156

A.5 Longest Viable Path is AfP-complete

This result is quite surprising. LVP is obviously AfP-hard, since LPS is a

special case of LVP. However,few (including the author) would have been prepared to

believe that a polynomial verification procedure existed for LVP. The proof that such

a verification procedure exists is interesting, as well; generally, proofs of this nature

involve the construction of an algorithm, which is then proved correct and polynomial

time. The proof herein, however, merely demonstrates that such a procedure exists,

and does not give details of the construction.

Problem A.5.1 [Longest Viable Path] Instance: A network N, real K.

Question: Is there a path P, minterm c, such that P is viable under c and d(P) > KI

Problem A.5.2 [Longest ViablePath Verification] Instance: A network AT, minterm

c, node g, real K.

Question: Is there a path P = {g0, —,#}, d(P) > K, viable under c?

Lemma A.5.1 LVP Verification is eV.

Proof: Induction on 6(g). If 6(g) = 0, then trivial, for every path consisting only of

a primary input is viable under any minterm c, and is of well-defined length. Assume

for 6(g) < L. If 6(g) = L, then there is such a path P = {<70>..., gr,g} iff

1. d({gQ, ...,gr}) >K- w(g) and

2. {<7o, ...?£r} is viable under c and

3. For each input gj ^ gr of <j, either c sets gj to its sensitizing value or gj termi

nates a path, viable under c, of length at least d({go,...,^r})

Now, by induction, for each input yj of </, wecan determine whether there is a path of

length > K —w(g) viable under c terminating in y^ and we can do so in polynomial

time. There are only a polynomial number of inputs to #, and hence in polynomial

time one can determine the existence of the set V of inputs to g with the property

that, for each yj € V, yj terminates a path of length > K —w(g) viable under c. A

157

viable path under c terminating in g of length at least K therefore exists iff, for the

yj € V terminating a path of minimal length, we have that csatisfies Sv-yj J^-- Now,
by the viable fork lemma, if c satisfies Sv-yj §*: for some yj it does so for each y^-,
and hence one can choose the yj to test arbitrarily. This test can certainly be done

in polynomial time. •

Theorem A.5.1 LVP 6 MV

Proof: Suppose we are given a path P = {/o,...,/™}, minterm c. We can easily

verify that d(P) > K, so all wemust do is demonstrate that it is polynomial to verify

that c € ifrp. For this, all we must do is show that it is polynomial to verify that

c € ipp for every i, for there are only a polynomial number of such functions. Now,

if c € Vp, c must satisfy some term of:

£ (*$r)n**n-1
UCS(fi,P) g&J

Now, let V be the unique maximumsubset of 5(/,-, P) such that c 6 ip0'**—1 for each

g € V. By lemma A.5.1 the fact that c € ^ff,Ti-1 can be determined in polynomial

time for each g, and hence the determination of V is polynomial by the boundedness

of 5(/,-, P). It is easy to demonstrate that c satisfies

iff c satisfies

and hence iff c satisfies

UCS{fitP) g&J

(*a8£r) II ^"l
ff€V

The calculation of Sv-jj^ is easily made in polynomial time, and, further, the deter
mination that c satisfies Sv-fft~ *s eas^y nra.de in polynomial time by direct simula
tion. •

This theorem, together with the theorems which demonstrate that LVP is

AfP-hard, demonstrates that LVP is AfP-complete.

Appendix B

A Family of Operators

The Boolean difference and the smoothing operator, explored earlier, can be

thought of as two members of a family of operators involving the cofactors. Each of

these operators reduces the dimension of the space by one variable, but the semantics

of the operators vary. The character of this family can be divined by examining the
formulae for the boolean difference:

g£ = fx © h

and of the smoothing operator:

.The hint here is that for each of the 16 two-variable boolean functions, there should

be a separate cofactor operator. The purpose of this appendix is to enumerate these

operators, describe their function and their interrelationship. This taxonomy is not

particularly useful, but it does serve to beautify science.

The sixteen dyadic boolean functions are as described in table B.l. these

functions correspond to operators as described in table B.2, letting fx stand for x and

fx- stand for y Now, it is relatively clear through an examination of these operators

that theseoperators are related in a fairly rich way. In particular, consider the duality

relation: an operator O is the dual of an operator O' iff Oxf = 0'XJ. Clearly duality

is a symmetric relationship. We can write the duality table in table B.3, omitting
trivial operators:

158

159

X y 0 l X y xy x + y xy x + y x>y x > y x <y x < y x@y x®y
0 0 0 l 1 l 0 0 1 1 1 0 1 0 1 0

0 l 0 l 1 0 0 1 1 0 0 0 1 1 0 1

1 0 0 l 0 l 0 1 1 0 1 1 0 0 0 1

1 l 0 l 0 0 1 1 0 0 1 0 1 0 1 0

Table B.l: Dyadic Boolean Functions

Function Operator Semantic

X /. / evaluated at x = 1

y h / evaluated at x = 0
X %]T evaluated at x = 1
y

0 0

7 evaluated at x = 0
0

l

xy

i

L'xJ = JxJx

1

/ = 1 for each value of x
x + y S*/= /* + /* / = 1 for some value of x
xy sxf / = 1 for no value of x
x + y cxf / = 0 for some value of x
x>y x.f Set of points where / is monotone increasing in x
x>y XVtf Set of points where / is strictly monotone increasing in x
x <y VPxf Set of points where / is strictly monotone decreasing in x
x <y T>xf Set of points where / is monotone decreasing in x
x@y BJ

Bx Set of points where / is determined by x
xWy Bx Set of points where / is independent of x

Table B.2: Dyadic Boolean Functions and their Corresponding Operators

Operator Dual

Cxf Sxf
Ixf T>xf
TPaf VPmf

J£
57 57

Table B.3: Duality Table of Operators

160

Note that only eight of the 16 operators are mentioned in the duahty table.

This follows from the observation that the operators 0, 1, /x, /*, /y, ~fe are trivial,

and that the duahty properties of the operators Sxf and Cxf are adequately captured

elsewhere in the table.

Appendix C

Fast Procedures for Computing

Dataflow Sets

C.l Introduction

In computing whether paths are true by some sensitization criterion, we

assert values of nodes in a multi-level network .and then determine whether some

input vector can justify the assertions that we make. If such a vector exists, we say

that the multi-level function implicitly expressed by these assertions is satisfiable.

In previous appendices, we have seen that in general this is a hard problem.

Now, it is clear that any function which requires both that y and y be true

for some variable y cannot be satisfiable; such a function is said to have an explicit

incompatibility. Hence one approach to the satisfiability problem is simply to de
termine whether a function has an explicit incompatibility, and delare it unsatisfiable

only if it does. Note that this is an inexact procedure: a function may not have an
explicit incompatibility but still be unsatisfiable. Hence this is a biasedSAT test: all

satisfiable functions are reported as satisfiable, but some unsatisfiable functions may
be reported as satisfiable. However, referring to the approximation spectrum in 4.1,
it is clear that this is a positively-biased SAT test, which, as we reported there, is

a safe approximation to SAT: using this in a false-path detection algorithm will not

result in a true path being reported as false. This appendix details a fast (0(n4))

161

162

procedure for computing such a safe approximation. It computes the impHcations of

any assertion.

Dataflow computations for optimizing Boolean logic networks are well known

[15, 7, 76, 35]. Such analysis computes inferences of the form yi = &,- =» yj = bj for

nodes y,-, yj and bi,bj in {0,1}. In the literature, the set ^%j(x) is used to represent

the set of nodes yk s.t. j/* is set to ,; when x is set to i.

Now, a polynomial algorithm to compute these sets exactly for general net

works obviously implies a polynomial solution to the co-AfP-complete problem of

tautology (setting any primary input to either 1 or 0 sets the output g to 1 iff the

network is tautologous, and hence x G ^ii(yjk) H ^bi(yib)Vyjb, where y* is a primary

input iff the network is tautologous).

For this reason, the sets Tij are not computed. Berman, Trevillyan and

Joyner [7] havedefined, on networks of NOR gates, the interesting subsets Cij(x) C

Fij(x). These are defined by the rules:

y G Cl0(x

y G Cio(x

y G Cio(x

y G Cio(x

y € Cio(x

y € C10(x

if 3*€ C,n(x) and y is a fanout of t (C.l)

if 3t € Cu(x) and y is a fanin of t (C.2)

if 3t G Cio(x) and y is the only fanin of t not in Cio(x) (C.3)

if 3t £Cu(x) and y e C10(t) (C.4)

if 3t G C1Q(x) and y G Coo(*) (C.5)

if *€C10(y) (C.6)

The subsets are computed by finding the least fixed point of the recurrence

relations given by these rules and the analogous rules for Cn, Cbo, and C0i. Initially,

Cn(x) = x, Cqq(x) = x, and C0i(a?) = Ci0(x) = 0 for all x.

The four rules are generally self-explanatory. The first rule (the fanout rule)

captures the fact that in a network of nor gates, setting t = 1 sets all fanouts of t to

0. The second fanin rule is derived from the observation that if * is set to 1, then

all of its fanins are set to 0. The third (another fanin) rule captures the fact that if

t = 0, at least one of its inputs must be 1. Rules 4 and 5 transitively close the sets.

163

Rule 6 captures the well-known rule of deduction x ^ y is equivalent to y ==> x

While this approach has demonstrated some power, nevertheless some im

provements are desirable. First, it is tedious to develop new rules for each sort of

gate, and for combinations of gates. Second, one wishes an explicit algorithm for the

computation of these sets, with some hope that it is efficient.

This appendix develops a fast procedure to compute these sets, and a gen

eralization to all boolean networks.

C.2 Terminology-

Recall from chapter 1 that a product of literals is called a cube. A cube may

also be viewed as a set of literals; the cubexyz is equivalent to the set {x,y, z). This

equivalence of sets and cubes permits us to regard the sets C^x) as cubes CtJ(x).

This permits a new, generalized approach to the derivation of C-sets.

In the derivation, we will be using the cofactor notation a great deal; we

remind the reader here that fc refers to the function / evaluated on the spacedefined

by the cube c.

C.3 The New Approach

The traditional division of the dataflow implications into four sets is an

artifact of the traditional nor- or nand-gate formulation. In fact, for each x, the sets

of interestare the sets of literal values implied by choosing either x = 1 or x = 0. By

using both phases, onecan takethe union of Ci0(x) and Cn(x) as the set Cx (the set

of values implied by x = 1), and the union of Coo(x) and C0i(x) as the set C7 (the
set of values implied by x = 0).

We define Cx (CF) as the fixed points of the set sequence Cx (C£), where

C° = {x}, C§ = {x}, and CJ+1 is obtained from C» by the relations:

yeCZ ^ 2/ct-1 = 1 (C-7)

yeC; if 3< GC;-1 and *c»-i = yf some /

yeC£ if 37G C"_1 and *c«-i = jT+ / some

yeC? if 3* GC^-1 and yGC^

y€CxB if 3TGC£ (C.ll)

And, of course, the symmetries obtained by substituting y, and/or 7 for t,

and/or x for x. Relation (C7) is the usual fanout rule; relations (C8) and (C.9)

capture the fanin rule; and relation (CIO) is transitive closure. Relation (C.ll) is

the contrapositive. Note that these rules simphfy to the well-known nor-gate rules

for networks consisting only of nor gates.

Lemma C.3.1 Let y(y) G Cx, Cx is obtained as a fixed point of relations (C.7)-

(C.ll). Then y is set to 1 (0) whenever x is set to 1, and the similar observation

holds for Cy.

Proof: WLOG, we consider y only in the positive phase, and x in the positive phase;

the other three cases follow by symmetry. We prove by induction on n, the level at

which y is added to the set Cx (that is, y GCJ - CJ"1. The base case is trivial (x is

clearly set to 1 when x is set to 1), so suppose the statement holds for all z G CJ"1,

Vw. Now, y is added at n, and must be added by one of (C7)-(C.ll). If by (C.7),

then yen = 1, and since the settings are correct in C" by the inductive assumption,

y is certainly set to 1 when x is set to 1. If by (C.8), then 3* GC""1 and tCn-i = yf.

By the inductive assumption t is set to 1 when x is set to 1, and tcn-i = yf, hence

for t = 1 we must have y = 1, whence wemust set y to 1. If by (C.9), then 3t GCJ""1

s.t. tCn-i =y + f. For t = 0, as required, we must have y = 0, whence y must be set

to 1. If by (CIO), then we have w = 1 from x = 1 and y = 1 from w = 1, whence

x = 1 implies y = 1. If by (C.ll), we have that y = 0 => x = 0. Hence if x = 1 we

must have y = 1, for if y = 0 then x = 0, and so done. •

We now turn to the computation of the sets. The details of this computation

are important for the efficiency of the algorithm.

164

(C.8)

some / (C.9)

(CIO)

165

C.4 Computations

The preliminary observation that we make before we begin the algorithms

is the duality between cubes and sets. Using this duahty, we can store the sets C£

and C§ as cubes, and use the logic operations of cofactoring for node evaluation and

boolean AND to find the union of two sets.

In this and subsequent code, it is important to understand precisely the

difference between a variable and a literal. Strictly speaking, a literal is the instance

of a variable in either of its phase; it may be thought of as a pair (variable, phase),

where phase is in {0,1}. By abuse of notation, a Kteral is generally represented by-

the appropriate variable in its positive phase; thus is brevity the enemy of precision.

We keep to this convention here. Except where explicitly noted, all argu

ments to the functions developed below are literals, and hence may be in either phase,

though they will always appear, by convention, in positive phase. Further, the sets

C", which will be represented by the variables Cx, are indexed by literals and not

variables.

C.4.1 Basic Algorithms

The two fundamental procedures are the fanout and fanin evaluation pro

cedures. The former attempts to discover nodes that are set to a constant under the

cofactoring operation; the latter attempts to discover nodes which have non-trivial

cube factors under the cofactoring operation.

The fanout evaluation procedure returns 0, 1, or 2, according as to whether

y is set to 0, 1, or neither by the cofactoring process, y in this code is a node, not a

literal. -

evaluate_node(y, x)

{
dfjcube = Cx;

eval_node = cofactor(y, df_cube);

if(eval_node ==1) return 1;

}

else if(eval_node == 0) return 0;

else return 2;

166

i

The fanin procedure returns the common cube dividing the cofactored cube.

The process is relatively straightforward: the literal y is known to be set when the

literal x is set. For the moment, assume that the phase of y is positive. If y is set to a

product of a cube and some function by the cofactoring process (in other words, when

the cubes of the cofactored node have a non-trivial intersection), then the hterals of-

cube must be set appropriately to set cube to 1.

Now consider the case where y is in its negative phase. Hence we must have

y = 1 under Cx, and using the fact that (/c) = Jc, wecanrun the described algorithm

on y

evaluate.fanin(y, x)

{
if(y is in positive phase) eval-node « ycxl

else eval_node = yCg;

faninxube = get_common_cube(eval_node);

return commonjcube;

C.4.2 Transitivity

The results of the preceding section suffice to capture the fanin and fanout

rules, respectively. There remains the matter of transitive closure. Immediate tran

sitivity can be guaranteed by rewriting the fanout and fanin rules as follows:

c;+1dcb" if s/c» = i (c.i2)

C;+13C; if 3t € C; and tcs = yf some / (C.13)

167

(with the usual symmetries). The contrapositive rule is rewritten:

C^DC] if 3T€C5 (C.14)

Put bluntly, the entire set of hterals CJ is included in C£+1, rather than
simply y. The reader can easily verify that this is correct as an immediate consequence

of the previously-given transitive closurerules. This is accomplished by the following

code:

merge_df_cubes(x, y)

{

if(Cx2Cy) return 0;

else {

**x = *"x *~ ^y»

return 1;

}

}

Note that merge_dfjcubes returns 1 only if C£+1 ^ C£.

Let us quickly consider the matter of the contrapositive. This can be handled

most naturally by merging Cy into Cy whenever Cy is merged into Cx, as implied by

(C.14).

There remains the matter of further transitivity. Certainly C£+1 is transi

tively closed by the operations given above. However, if x appears in the positive

phase in CJ for some z, then the transitivity closure rules require that CJ+2 D C£+1.

Now, if C; = C;+1, this is assured inductively. The difficulty arises if C;+1 has

changed. In this case, we must propagate its change to all of the dataflow cubes

where x appears in the positive phase. This is done by maintaining sets of cubes Dx

and Dg- for each node x, where Dx is the set of cubes Cy containing x, and D? the

cubes Cz containing x.

propagatejiataflow(x)

{

t

168

foreach y € Dx {

mergejifjcubes(y, x);

merge_dfjcubes(x,y);

}

}

The maintenance of the sets Dx requires a change to mergejif.cubes; for if

z is in CJ* and is not in C£, then C£+1 must be added to Dx.

merge jif jcubes(x, y)

{

if (Cx D Cy) return 0;

else {

c»x = Cx u Cy;

f oreach z € Ctf

D, = £>, U {Cx}

return 1;

}

}

C.4.3 When Cx = 0

There remains the matter of the interpretation of zeroing one of the Cxs. This

occurs iff, for some variable y,y € C*s and y € C%s', hence x = 1 =» y = 1 and y = 0.

This is impossible, henceif C£ = 0, then x cannot be set to 1. Since x cannot be set

to 1, then all of the other variable settings which imply x = 1 are also impossible,

and hence their corresponding cubes must be set to 0. These are the cubes contained

in the transitive closure of Dx.

propagate_zero (x)

{
stack = tfo_collect(x);

169

vhile((z = popjstack(stack)) != nil)

C, = 0;

}

The transitive-fanout collection procedure is a standard graph traversal

through the edges implied by the sets Dy. propagate_zero is called from propagate jiataflow

if the propagated cube is ever found to be 0.

C.4.4 Evaluation Algorithms

There remains the question of evaluation. Literals may be added to a C set

either through propagation or evaluation. Propagation has been adequately covered

above. We turn to evaluation. The core of the evaluation strategy is in the following

lemma and definition.

Definition C.4.1 If some variable y is set to 1 (0) by either the routine evaluatejiode

or the routine evaluate.fanin, under the implications of some dataflow cube C£, we

say that y is implied by C".

Now, clearly, at each iteration of the evaluation algorithm, we only wish

to examine the variables which may be implied by C". We isolate these potential

implicants of C" by the following lemma.

Lemma C.4.1 Let y be an implicant ofC£, y is not an implicant ofC""1. Then y

is a fanin or a fanout of some literal in C£ —C""1, or a fanin of some literal in C£

which has a fanin in C$ —CJ"1.

Proof: y is an impHcantof C" only if it is set to some value under C£ by evaluatejiode

or by evaluatedanin. In the former case, it must be a fanout of some node in C£,

since cofactoring by a cube only may set the values of fanouts of that cube. Further,

if y is not a fanout of some literal in C" —C""1 yen = ycn-i, a contradiction since y

is not an impHcant of CJ"1. In the latter case, then there is some Hteral z € C" s.t.

zen = yf, some / (or z € C£, zen = y + f. Now, since y not an impHcant of C""1,

170

either z not in CJ"1 in which case z € C; - CJ"1, or zCn-i ^ *c«, in which case at
least one fanin of z in CJ - CJ"1. •

With this in hand, we can proceed with the evaluation algorithm. The

previous lemma suggests an event-driven approach. We maintain a stack of records,

each record containing a dataflow cube and a Hteral newly added to the cube. At each

iteration, one such record is popped off the stack and the potential new impHcants of

the dataflow cube are examined. These are, by lemma, the fanouts of the new Hteral,

the fanins of the new Hteral, and the other fanins of the fanouts of the new Hteral.

This is captured by the following code:

while((Cx, y) • popjstack(evaluationjstack)) {

if Cx = 0 continue;

foreach fanout w of y {

if ((w has a literal wl 6 Cx) { (wl is either w or u7)

new.cube * evaluate_fanin(wl, x) ;

foreach literal z in nevjcube

merge jif.cubes(x, z);

mergejif jcubes(z~,x*);

}
phase = evaluatejiode(w, x);

if(phase != 2){

wl is the literal suggested by w and phase;

mergejif.cubes(x, wl);

mergejif_cubes(wT, X");

}

}
new.cube = evaluate_fanin(y, x);

foreach literal z in new_cube

mergejif.cubes(x, z) ;

mergejdf_cubes(z,x) ;

propagatejiataflow(x);

171

}

mergejdf jcubes is modified to add new elements to this stack, as Hterals

are added to the dataflow cubes. The stack is initially a set of records of the form

(Cx, x) for each node x. The algorithm terminates when the stack is empty.

C.5 Correctness

We now turn to a proof of correctness of the algorithms given above. The cor

rectness of evaluatejiode, evaluate_fanin, mergejif jcubes, propagatejiataflow,

and propagatejzero is evident, or has been adequately treated above. We now es

tablish the correctness of the package.

Lemma C.5.1 Let x € C„. Then either Cv 3 Cx orCx is on the stack.

Proof: We construct a loop invariance argument. Clearly on the Oth iteration the

statement holds. Suppose it holds through k iterations. Now suppose x € Cy on the

k + 1st iteration. If the statement of the lemma does not hold through this iteration,

then either Cx was popped off the stack, or Cx grew and Cy did not grow to contain

it, or Cx was added to Cv and not all of Cx was added to Cy. In the first case, at

the end of the iteration propagate jiataflow(x) was caUed. Since Cu € Dx, when

propagatejiataflov(x) Cv is updated to contain Cx. In the second case, when Cs

grows so that it no longer is contained Cy, Cx is shoved on the stack. In the third case,

there is someCx,z^x such that x € Cx, Cx g Cx was added to Cy. But hence, on the

fcth iteration, we must have had Cx on the stack by the invariance assumption. •

Corollary C.5.1 At the completion of the algorithm, ifx € Cy, Cy D Cx.

Theorem C.5.2 Let Cx be the fixed points of relations (C.7)-(C.ll). Then the final

value of Cx —Cx Vx

Proof: Cx D Cx. We construct an inductive argument on n, and show that Cx D C"

for everyn. Since Cx = C£ for some n, this gives the result. Clearly Cx D C°(= {x}).

172

Assumethat C» "3 C? Vn < N. Let y € C*+1. Now, either y € C*, and done, or y

was added by oneof relations (C.7)-(C.ll). Hby(C.7), then ycs = 1. Since Cx D C?

by assumption, we must have that ycm = 1 for all iterations through the algorithm

after the last element oifanins(y)DCg (caU this z) was added to C». However, once z

was added to Cz, then (z, Cx) was pushed on the evaluation stack by merge jifjcubes.

When it was subsequently popped, all the fanouts of z were examined, including y.

Since yc, = 1 for that value of Cz, Cy is merged with Cx. Since y 6 Cy, we are done

for this case. The cases of (C.8)-(C9) are shown by similar arguments. For the case

where y is added by (CIO), let t be the Hteral in the statement of the relation (C.10).

By assumption t € Cx and y € Ct. Now, either t is added to Cx after y is added to

Ct, in which case y is added to Cx when Ct is merged into Cx in the main loop of the

algorithm, or y is added to Ct after t is added to Cx, in which case Cx G JD* when y is

added to Ct, and so y is added to Cx when Ct is merged into Cx in propagatejiataflow.

For the case where y was added by (C.ll), then on some iteration x* was added to Cy-

(by induction, since x € C$ C Cy), and Cy was added to ZV, and (2*,Cy) was pushed

on the stack. When it is popped, propagatejiataflow(y) will merge C?into Cy, and

then Cy into Cx, adding y to Cx, and done.

Cx C Cx. We show this by a loop invariance argument. Clearly Cx C Cx through 0

iterations of the loop. Suppose that Cx C Cx through k iterations of the loop; we

must show that Cx C Cx through the k + 1st iteration. Suppose that y, Cx is the pair

popped off the evaluation stack at the k + 1st iteration. Now, if at the end of the

k + 1st iteration there is a z such that Cx £ CM, we have two cases. Case a, z = x. In

this case, either evaluatejiode or evaluateJ^anin returned an incorrect result, or

some cube Cv was merged into Cx and Cy £ Cy. The correctness of evaluatejiode and

evaluate jfanin has been established, and Cy C Cy by the invariance assumption, so

the proof holds if z = x. If z ^ x, we have two cases. Either Cx was changed by the

action of propagate jiataflow, ard the item incorrectly added to C, was in Cx But

we must have then that Cx € Dx, i.e., that x € Cx. Since Cx C Cx through the k + 1st

iteration from above, and since Cx is correct and contains x through the fcth iteration,

we must have that Cx C Cg. In the second case, z = Tj, where y is the Hteral popped

off the stack with Cx, and we know from (C.ll) and (CIO) that CxDCy=>Cy-D Cy,

173

and so done. 1 •

C.6 Complexity Analysis

There are two separate analyses: zero propagation and evaluation. Each

literal can have its dataflow cube zeroed at most once, and so the cost of zeroing

the cubes is 0(n), where n is the number of cubes in the network, plus the cost

of traversing the transitive fanout of each node in the the dataflow graph, which is

bounded above by the number of edges of this graph. This in turn is the total number

of impHcations discovered, m, which is bounded above by 0(n2) but should in the

usual case be 0(n). Hence we argue that this is 0(n + m).

If we denote the maximum number of fanins of the nodes in the network as

fi, and the maximum number of fanouts as f2, and the maximum number of cubes as

c, and the maximum number of impHcants in any dataflow cube (the maximum size

of any \CX\) as d\, then we see that evaluatejiode(x, y) and evaluate_fanin(y,

x) are both 0(cf\+d\). Clearly f\, f2, and d\ are all < n, but in general this provides

a very loose bound. Similarly, if we denote the maximum size of any Dx as d2, this is

bounded above by n but is in general small. Dataflow propagation is 0(d\d2). Simple

cube merging is 0(d\). Since we have a new impHcation for each iteration through

the loop, we have at most 0(m) iterations. There are 0(f2) evaluations in each loop,

and one propagation. Hence the total cost, of finding m impHcations is bounded above

by 0((cf\f2 + f2d\ + d2di)m). Note that each of these quantities should be in general

small, and so we expect the average-case running time to be linear in n, though the

worst-case running time, obtained in the case of a flat network (a network where

every node is a primary input or a primary output), is 0(n4). Of course, for such a

network, one would hardly wish for dataflow analysis.

lA careful reader will note that this argument is not quite valid, since both Cx and Cx can
change during the k + 1st iteration in the backward evaluation loop. However, it is easy to extend
this argument by arguing that one of the C variables must be the first to violate the containment
condition; these break down to the two cases above, and are dispatched in the fashion shown; the
invalid argument given above has been retained, since it is somewhat clearer than the similar, valid
argument.

174

C.7 Efficiency

A loose lower bound for the problem is clearly Ct(m), which is considerably

less than the 0((cf\f2 + f2d\ + d2d\)m) upper bound derived in the previous section.

Both are loose to some degree, but that the 0 bound is Hkely to be closer to the

upper than the lower bound. However, further research is required to derive a tighter

lower bound for this problem.

It is easy to see that the algorithms derived here are more efficient than a

naive implementation suggested by the recurrence relations:

while(changing)

changing s 0;

foreach node x

C =C •^x v'*»

foreach y ^.Cx

c; = c;ucy;

foreach fanout z of y

if zCm = ic; = c;uc,;

if 2rc. = oc; = c;ucr;

if yc. = :/c; = c;uc,;

if(C;^Cx) changing- 1;

foreach node x

C = C •^x — *"x»

There are potentiaUy 0(m) iterations through the outer loop, since one can

have as many as one iteration per impHcation. There are clearly 0(n) iterations of

the second loop. There are 0(d\) iterations of the third loop. The union operation

is also 0(d\). There are 0(f2) fanouts of y, and each evaluation is 0(cf\ + d\). This

implementation is clearly 0(mnd\f2(cf\ + d\)), or 0(n6) in the worst case.

175

C.8 Sparse Matrix Implementation

When these algorithms were implemented in MisII, it was found that the

implementation was excessively slow. Given a CPU time limit of one hour on a

Vax 8800, only the circuit C17 of the iscas benchmarks completed, in roughly 10

CPU minutes. Profiling revealed that the vast majority of time was spent in the

low-level cofactor routines, which ideaUy should be 0(cf\ + f\ + d\), but which may

be 0(cf\d\) in an implementation not designed with this appHcation in mind. As a

result, a sparse matrix implementation was done. In this implementation, an index

is assigned to each Hteral. The row of the matrix corresponding to x represents

Cx and the column corresponding to x represents Dx. The cofactoring process is

simulated in a straightforward manner. Though the complexity is left unchanged

by this implementation, the actual running time of the algorithms are substantially

reduced.

C.9 An Improvement

A consistency equation may be considered. If x => z, y =*• J, it must follow

that x =4> y and y =* 2", for if x and y, then z and 7, absurd. This gives the equation:

x € CJ if 3z e C;-1 and 7 € C^'1 (C.15)

This equation can actually be deduced from (C.10) and (C.ll), and as a

result is embedded in the procedure discussed so far. However, there is an interesting

corollary. When Cx = 0, then x = 1 is impossible: x is stuck at 0. Hence every node

may imply x = 0. We write:

*ec; if cj-l = o (c.ie)

This may be incorporated in the algorithm by modifying propagate_zero

as foUows:

propagate_zero (x)

{

stack = tfo_collect(x);

while ((z • pop-stack(stack)) !» nil) {

C,=0;

foreach literal y ^ 2

Cy = Cy U CY

}

}

Note this does not affect the complexity of the algorithm.

CIO Results

176

The algorithms were implemented and tested on the weU-known ISCAS

benchmarks. The number of impHcations discovered is given, as weU as the num

ber of dataflow cubes that went to 0. This latter number is of very great interest, for

the Hterals corresponding to these cubes cannot occur and hence the corresponding

variable can be set to the opposite value in the circuit (for example, if Cy = 0, then

every occurrence of y can be replaced by the constant 0; if Cy- = 0, then y can be

replaced by the constant 1. If both Cy and Cy- = 0, the circuit is trivial. Run times

are given in seconds on a Vax 8650.
Results and Times for the ISCAS Benchmarks

Circuit ImpHcants Zeroed Dataflow Cubes Seconds

C1355 26400 0 445.1

C17 25 0 0.4

C1908 35951 0 354.9

C2670 47514 3 614.0

C3540

C432 1826 0 18.8

C499 6040 0 56.4

C5315 70750 1 535.2

C6288 16070 17 158.9

C7552

C880 5071 0 32.9

177

C.ll Extensions

C.ll.l Extending Arbitrary Cubes

The relations (C.7)-(C.ll) may apply to any sets of asserted Hterals; the sets

which begin with the initial assertion of a single Hteral is an interesting seed subcase.

In general, however, we are interested in the behaviour of a circuit in response to a

set C of asserted literals, not merely a single Hteral, and there is no reason to restrict

C to satisfy the condition C C Cx for some x. The problem is this: given some initial

cube C° we wish to find some maximal cube of impHcations from the set of assertions

contained in C°.

Now, clearly one method is to take the union of the data flow sets impHed

by the cube:

C = (J Cx (C.17)
x€C<>

with of course the caveat:

C = 0 if 3x € C° such that Cx = 0 (C.18)

where Cx is, as before, the fixed point of relations (C.7)-(C.ll). However, we can

in general do somewhat better if C° g Cx for some x. The union relation merely

reflects the dataflow propagation of the Cx sets into the new cube. However, other

impHcations may be derived from analogues to (C.7)-(C9). From this we derive the

equations:

y 6 Cn if yc»-i = 1 (C.19)

yeCn if 3t € Cn_l and ic»-t = yf some / (C.20)

yeCn if 3?€ Cn"1 and tCn-i =f+f some / (C.21)

y€Cn if 3t € C""1 and y € Ct (C.22)

which are fairly clearly analogues of equations (C.7)-(C.10). An analogue

to equation (C.ll) is not required, since the contrapositive is only closed under the

action of individual literals and hence is closed by the existing sets Cx.

178

Theorem C.ll.l Consider any C°. Let C be obtained as a fixed point of relations

(C.ig)-(C22). Then ify(y) eC,y is set to 1(0) when the cube C° is set.

Proof: Attach a node n = C° to the network, where 77 does not fan out. Observe that

the relations (C.19)-(C22) are identical to those obtained by relations (C.7)-(C.ll)

for such a new node, and apply the results of Lemma C.3.1. •

The code to implement this is quite straightforward. One merely adds an

extra row to the sparse matrix developed above, and implements a modified version

of the main loop developed above; this modified version simply removes extraneous

code relating to dataflow propagation of the cube C, whose dataflow impHcations

clearly do not fan out.

while ((C, y) « pop_stack(evaluationstack)) {

if Cx = 0 return 0;

foreach fanout v of y {

if ((w has a literal wl € C) { (wl is either w or W)

new.cube « evaluatedanin(vl, x) ;

foreach literal z in newjcube

merge Cj into C;

>

phase * evaluatejiode(w, x) ;

if(phase !- 2){

wl is the literal suggested by w and phase;

merge Cw^ into C;

}

}

newjcube s evaluatedanin(y, C);

foreach literal z in new.cube

merge C$ into C;

}

179

C.11.2 The Fanout Care Set and the Test Function

For some applications, (e.g., testing), one not only wishes the circumstances

under which some Hteral may be set, but also the circumstances under which the

setting of that variable may propagate to the output. This function, known variously

as the fanout carecondition or the boolean difference, maybe written, for each variable

x:

£/;e.& (c.23)
i

and the impHcations which this required may be found by assigning the node

r\ of the previous section to this value and performing the implications in the manner

above.

Appendix D

Precharged, Unate Circuits

CMOS circuitry comes in two basic flavours: dynamic and static. Static

circuitry, also called restoring logic, is fully complementary. Each gate consists of a

pulldown network of NMOS transistors connecting the gate output to ground, and a

pullup network of PMOS transistors connecting the output to power, or, as it is better

known, V44. The pullup network is the dual of the pulldown network; hence exactly

one of the two networks is conducting at any time, and so the output is affirmatively

driven to its logic value. Hence a static gate is responsive to values on its inputs at

all times; in logical terms, the gate may be thought of as an ideal logic switch.

Static CMOS gates obviously involve some redundancy at the transistor

level, since either network is sufficient to compute the logic function. In the very

early days of CMOS design (the late 1970's and early 1980's), a fairly dubious Hne

of reasoning held that this wasted area, due to the large separation required between

the p- and n-regions in CMOS technology1.

The immediate idea was to eliminate one of the two transistor networks;

the problem, therefore, was how to drive the logic to the appropriate value when

the missing transistor network was putatively active. In 1982, Krambeck, Lee and

Law [50] proposed to use the capacitive properties of the gate terminal of the MOS

switch and of interconnect to reaHzeits function; i.e., the fact that the wires and gate

Hhis separation is required to avoid an electrical problem known as laichup; this problem is not
germane to the subject of this thesis-for details, see [81]

180

181

terminals of MOS transistors act as storage elements when disconnected from either

power or ground.

Consider the case where the pullup network is eliminated. In this case, the

gate cannot be driven to a logic 1 when required, though it can still be driven to a

logic 0. Krambeck and his co-workers reaHzed that in the case where a static gate

would be driven to 1, the gate missing the pullup network would be disconnected

from either power or ground and so would retain the value left on it. Hence if this

value was 1, the gate would compute its correct value in this case. In the case where

the pulldown network was active, the gate would be set to 0 as usual.

This design leads to the picture of a two-phase design. During the first or

precharging phase, the puUdown network is disabled and the output of the gate is

connected to power, so the storage element inherent in MOS logic is set to logic 1.

During the second or evaluation phase, the network is enabled and the connection to

power disabled.

The enabling and disabling of the relevant connections is fairly easy, as is

shown in figure D.l. In this figure, a single PMOS transistor, controlled by <p, runs

between power and the output. Similarly, a single NMOS transistor, also controlled

by y>, runs between ground and the puUdown network.

Now, when y> is low, the PMOS transistor is conducting and the NMOS

transistor is not; hence the output is connected to power and the puUdown network is

disconnected from ground, i.e., is disabled - tp is low on the precharge phase. When

tp is high, the PMOS transistor is not conducting and the output is isolated from

power, and the pulldownnetwork is connected to ground - i.e., the pulldown network

is enabled.

Note that there is only a finite amount of charge stored on the output of any

gate; hence, it is critical that the puUdown network only be conducting during the

phase if its final state is conducting; otherwise, during the period it is conducting,

the output can be driven to ground; this is a fatal error if the final value is 1, as it is

if the pulldown network is nonconducting.

This has three immediateconsequences. First, the initial state of the puU

down network must be non-conducting - all the transistors that may change during

<P

At

Pulldown

Network

_̂ ^^Output

Figure D.l: Generic Dynamic Gate

182

evaluation must be initiaUy off. Further, no transistor may turn on during evaluation

unless its final value is on; i.e., the gate must be hazard-free to function correctly.

FinaUy, since aU transistors that may change must be precharged to their off state,

and since the primary inputs may not be precharged, the evaluation phase may not

begin until the primary inputs have all reached their stable value.

The hazard-free property is assured by construction. For the other, note

that NMOS transistors are conducting for logic 1, nonconducting for logic 0. Hence

the inputs to a gate must be precharged to 0. However, the precharge state of this

gate is 1; if the inputs are gates Hke it, this will not do.

In Krambeck et. al.'s work, this is handled by attaching a static inverter

to each gate; the gate itself fans out only to the static inverter, which is the real

183

output of the gate. The gate is therefore precharged to 0 (since the precharge state

of the inverter is obviously the inverse of that of the gate proper), and the gate

can only undergo 0 —• 1 transitions during evaluation. If this is done, this logic is

called DOMINO. Now, since the basic MOS gate is inverting, the basic DOMINO

gate is non-inverting; for the puUdownnetwork wiU in general realize the complement

of some (smaU) AND/OR network; the static inverter forces the DOMINO gate to

realize the complement of the puUdown network, i.e. the AND/OR network. Note

that adjustments need be made to the logic to reaHze an arbitrary function, since

only the primary inputs of the circuit may appear in inverted form. However, it is

easy to transform an arbitrary network into a network consisting of only AND and

OR gates, where the primary inputs appear in both inverted and noninverted form.

We illustrate the basic properties of DOMINO logic with a simple example,

shown in figure D.2. This gate realizes the function ab when (p is high.

It eventuaUy developed that DOMINO logic saved Httle area, at least when

laid out with an automated synthesis tool [38]. However the same work also showed

that DOMINO logic switched about 30% faster than static CMOS.

The lack of inverting devices was a difficulty with DOMINO logic, since the

technique used to transform an arbitrary network into a network of only AND and

OR gates could potentially double the gate count, resulting in a circuit unacceptably

large. Another approach, was devised by Goncalves and De Man and detailed in [31]

and [27]. In their circuit style, called NORA, only inverting gates were permitted.

NORA circuits consist of alternating n- and p-type gates. An n-type gate is simply

a DOMINO gate sans the static inverter. A p-type gate is a gate consisting of a

pullup rather than a pulldown network. The precharge transistor on a p-type gate

is an NMOS transistor; -the evaluate transistor is a PMOS transistor. Since the

PMOS transistor is active when its control is at logic 0, if the precharge and evaluate

transistors on the n-type gate are controlled by ip, the corresponding transistors on

the p-type gate is controUed by ^>. Static inverters are classed as p-type gates if

they are fed by an n-type gate, and n-type gates if they are fed by a p-type gate.

Hence one may say that the output of a p-type gate is precharged to logic 0, and the

output of an n-type gate is precharged to logic 1. Further, the same rule that input

184

A
J

9 _̂ ^^QpUtpUt

Figure D.2: DOMINO AND Gate

transistors must be precharged to their off state appHes to NORA logic; the off-state

for p-type gate inputs is logic 1, the off-state for n-type gate inputs is logic 0; this

argument leads to the conclusion that n-type gate outputs can feed only p-type gates,

and vice-versa.

Note that any NORA circuit can be transformed into an equivalent DOMINO

circuit by adding inverters to the output of each gate and moving the puUup trees in

p-type gates to the puUdown n-type well.

An example of a generic NORA network is shown in figure D.3.

A disadvantage of NORA circuits is that p-type transistors are typically

slowerto switch than n-type, due to decreased electronmobiHtyin the p-weU. Further,

<P

At

Pulldown

Network

1

9

<
Pullup
Network

[

Figure D.3: Generic NORA Gate

9

185

At

Pulldown

Network

c

the fact that p-type gates can only feed n-type gates and vice-versa makes NORA

circuits very hard to design.

A final type of precharged circuit was introduced by HeUer et al [36]. In
this form of logic, called Differential Cascode Voltage Switch or, more simply, DCVS,

the puUdown trees for both a function and its complement are implemented; a DCVS

gate is simply two merged DOMINO gates back-to-back. This form of logic has the

advantage that both complemented and uncomplemented logic is available, without

NORA's slow p-type gates and difficulty. However, naive implementations of DCVS

require as many transistors as fuU static; further, both eachsignaland its complement

must be routed throughout the network in every DCVS implementation. These two

factors indicate that the resulting circuit must be approximately twice the area of a

186

static implementation; however, the flexibility of the DCVS design style and clever

physical design have combined to offset this penalty[84],

In general, one can do somewhat better than naive implementations of

DCVS. It was reaHzed that DCVS circuits mapped nicely onto Bryant's graph-based

representations of Boolean functions, caUed Boolean Decision Diagrams or BDDs. A

BDD is a rooted, binary, directed acychc graph with two leaves, where each non-leaf

node is labeUed with the name of a variable, and eachedge is labeUed either 1 or 0.

The leaf nodes are labeUed 1 and 0.

A BDD is intended to model the computation of a boolean function, given

assignments of the variables, as a traversal of the graph. At each node, the edge

labeUed i is followed when the variable that labels that node is set to i. The value of

the function is the label on the leaf at which the variable terminates.

Consider the edge labeUed 1 originating in node labeUed x to be a transistor

that is active when x = 1; this clearly corresponds to an NMOS transistor controUed

by x. Similarly, the edge labeUed 0 corresponds to an NMOS transistor controUedby

x. In this case, there is a path from the node labeUed 0 to the root iff / evaluates

to 0, and a path from 1 to the root iff / evaluates to 1, i.e., / evaluates to 0. If the

root is then directly connected to ground, it is clear that the function is correctly

implemented (that is, there is a connecting path from ground to the appropriate

node) if the node labelled 1 is replaced by a node labeUed /, and the node labeUed 0

is replaced by a node labeUed /. The derivation of this connection tree is shown in

figure D.4. The fuU DCVS implementation, with the appropriate precharging logic,

is shown in figure D.5. Note that, as with DOMINO implementations, the DCVS

nodes must aU be precharged low.

Note that each form of logic shown here has the property that the resulting

gate can only change from 1 to 0 or from 0 to 1. Such gates are caUed unate. From

the discussion above, it is clear that this is an inherent property of dynamic logic.

Interestingly, though the DCVS gate is unate is may reaHze any boolean

function; e.g, the function xz + xyz is easily reaHzable by a DCVS gate. The reason

that this is possible is that the Hterals x and x are carried on independent wires and

hence are indistinguishable at the gate level from independent variables. The central

187

rxz TVa

A\ /I

X X
GND

Figure D.4: BDD and DCVS Representation of / = xz + xyz

188

Vdd

r 7J

<p

<
-<

>

>•
H

Figure D.5: Full DCVS Implementation / = xz + xyz

189

attraction of DCVS technology is that it combines the strong timing properties of

DOMINO demonstrated in this thesis and the full power of the static boolean gate.

Bibliography

[1] S. B. Akers. On a Theory of Boolean Functions. J. SIAM, 1959.

[2] K. A. Bartlett, D. G. Bostick,G. D. Hachtel, R. M. Jacoby, M. R. Lightner, P. H.

Moceyunas, C. R. Morrison, and D. Ravenscroft. BOLD: A multi-level logic opti

mization system. In IEEE International Conference on Computer-Aided Design,

1987.

[3] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. RudeU,

A. Sangiovanni-VincenteUi, and A. Wang. Multi-level logic minimization using

imphcit don't cares. IEEE Transactions on CAD, 1988.

[4] Romy L. Bauer, Jiayuan Fang, Antony P-C Ng, and Robert K. Brayton. XPSim:

A MOS VLSI circuit simulator. In IEEE International Conference on Computer-

Aided Design. 1988.

[5] Romy L. Bauer, Antony P-C Ng, Arvind Raghunathan, Mark W. Saake, and

Clark D. Thompson. Simulating MOS VLSI circuits using SuperCrystaL In

VLSI '87,1987.

[6] J. Benkoski, E. Vanden Meesch, L. Claesen, and H. DeMan. Efficient algorithms

for solving the false path problem in timing verification. In IEEE International

Conference on Computer-Aided Design, 1987.

[7] L. Berman, L. TreviUyan, and W. Joyner. Global flow analysis in automated

logic design. IEEE Transactions on Computers, January 1986.

190

191

[8] Daniel Brand. Redundancy and don't cares in logic synthesis. IEEE Transac

tions on Computers, October 1983.

[9] Daniel Brand. Personal communication, 1988.

[10] Daniel Brand and Vijay S. Iyengar. Timing analysis using functional analysis.

Technical Report RC 11768, IBM Thomas J. Watson Research Center, Yorktown

Heights, New York, 10598, 1986.

[11] Daniel Brand and Vijay S. Iyengar. Timing analysis using functional analysis.

In IEEE International Conference on Computer-Aided Design, 1986.

[12] R. K. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L. Pei, N. PhiUips,

R. Rudell, R. Segal, A. Wang R. Yung, and A. L. Sangiovanni-VincenteUi. Mul

tiple level logic optimization system. In IEEE International Conference on

Computer-Aided Design, 1986.

[13] R. K. Brayton, G. Hachtel, C. T. McMullen, and A. L. Sangiovanni-VincenteUi.

Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publish

ers, 1984.

[14] R. K. Brayton, R. L. RudeU, A. L. Sangiovanni-VincenteUi, and A. Wang. MIS:

A multi-level logic synthesis system. IEEE Transactions on CAD, 1987.

[15] R. K. Brayton, F. Somenzi, and E. M. Sentovich. Don't cares and global flow

analysis of boolean circuits. In IEEE International Conference on Computer-

Aided Design, 1988.

[16] M. A. Breuer. The effects of races, delays, and delay faults on test generation.

IEEE Transactions on Computers, 1974.

[17] M. A. Breuer and R. Lloyd Harrison. Procedures for eHminating static and

dynamic hazards in test generation. IEEE Transactions on Computers, October

1974.

192

[18] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, 1981.

[19] R. E. Bryant. MOSsim: A switch-level simulator for MOS LSI. In Design
Automation Conference, 1981.

[20] James J. Cherry. PEARL: A CMOS timing analyzer. In Design Automation
Conference, 1988.

[21] S.Cook. On the complexity of theorem-proving procedures. In ACMSymposium

on the Theory of Computing, 1971.

[22] Ewald Detjens, Gary Gannot, R. L. Rudell, A. L. Sangiovanni-VincenteUi, and

A. Wang. Technology mapping in mis. In IEEE International Conference on

Computer-Aided Design, 1987.

[23] J. T. Deutsch and A. R. Newton. A multiprocessor implementation of relaxation-

based electrical circuit simulation. In Design Automation Conference, 1984.

[24] David H. C. Du, Steve H. C. Yen, and S. Ghanta. On the general false path

problem in timing analysis. In Design Automation Conference, 1989.

[25] E. B. Eichelberger. Hazard detection in combinational and sequential switching

circuits. IBM Journal of Research and Development, March 1965.

[26] Jiayuan Fang. The approximate exponential function method for circuit simula

tion. Technical report, Electronics Research Laboratory, UC-Berkeley, 1987.

[27] V. Friedman and S. Liu. Dynamic logic CMOS circuits. IEEE Journal of Solid

State Circuits, 1984.

[28] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[29] C. Thomas Glover and M. Ray Mercer. A method of delay fault test generation.

In Design Automation Conference, 1988.

193

[30] Prabhakar Goel. An implicit enumeration algorithm to generate tests for com

binational logic circuits. IEEE Transactions on Computers, 1980.

[31] Nelson F. Goncalves and Hugo J. DeMan. NORA:a racefree dynamic CMOS

technique for pipelined logic structures. IEEE Journal of Solid State Circuits,

1983.

[32] David Gries. The Science of Programming. Springer-Verlag, 1981.

[33] G. Hachtel, R. Jacoby, K. Keutzer, , and C. Morrison. On the relationship

between area optimization and multifault testabiHty of multUevel logic. In In

ternational Workshop on Logic Synthesis, 1989.

[34] G. Hachtel, R. Jacoby, and P. Moceyunas. On computing and approximating

the observabihty don't-care set. In International Workshop on Logic Synthesis,

1989.

[35] G. Hachtel, R. Jacoby, P. Moceyunas, and C. Morrison. Performance enhance

ments in BOLD using "impHcations". In IEEE International Conference on

Computer-Aided Design, 1988.

[36] L. G. HeUer, W. R. Griffin, J. W. Davis, and N. G. Thoma. Cascode voltage

switch logic: A differential CMOS logic fanuly. In IEEE International Solid State

Circuits Conference, 1984.

[37] Robert B. Hitchcock. Timing verification and the timing analysis program. In
Design Automation Conference, 1982.

[38] Mark Hofmann. Automated Synthesis of Multi-Level Logic in CMOS Technol

ogy. PhD thesis, Department of Electrical Engineering and Computer Science,

University of California at Berkeley, 1982.

[39] V. M. Hrapcenko. Depth and delay in a network. Soviet Math. DoH., 1978.

[40] N. Jouppi. TV: An nMOS timing analyzer. In Third Caltech VLSI Conference,
1983.

194

[41] N. Jouppi. Deriving signal flow direction in MOS VLSI. IEEE Transactions on

CAD, July 1987.

[42] N. Jouppi. Timing analysis and performance improvement of MOS VLSI designs.

IEEE Transactions on CAD, may 1987.

[43] R. M. Karp. Reducibility among combinatorial problems. In ACM Symposium

on the Theory of Computing, 1971.

[44] Kurt Keutzer, Sharad Malik, and Alexander Saldanha. Is redundancy necessary

to reduce delay? In Submitted to Design Automation Conference, 1990.

[45] Y.H.Kim. Accurate Timing Verification for VLSI Designs. PhD thesis, Depart

ment of Electrical Engineering and Computer Science, University of California

at Berkeley, 1989.

[46] Y. H. Kim, S. H. Hwang, and A. R. Newton. Electrical-logic simulation and its

apphcation. IEEE Transactions on CAD, January 1989.

[47] T. W. Kirkpatrick and N. Clark. PERT as an aid to logic design. IBM Journal

of Research and Development, 1966.

[48] T. W. Kirkpatrick and N. Clark. PERT as an aid to logic design. IBM Journal

of Research and Development, 1966.

[49] D. Knuth. The Art of Computer Programming. Addison-Wesley, 1973.

[50] R. H. Krambeck, C. M. Lee, and H-F. S. Law. High-speed compact circuits with

CMOS. IEEE Journal of Solid State Circuits, 1982.

[51] Jean Davies Lesser and John J. Shedletsky. An experimental delay fault test

generator for LSI logic. IEEE Transactions on Computers, 1980.

[52] Chin Jen Lin and Sudhakar M. Reddy. On delay fault testing in logic circuits.

IEEE Transactions on CAD, 1987.

197

[76] L. TreviUyan and L. Berman. Improved logic optimization using global flow

analysis. In IEEE International Conference on Computer-Aided Design, 1988.

[77] D. E. WaUace and C. H. Sequin. Plug-in timing models for an abstract timing

verifier. In Design Automation Conference, 1986.

[78] D. E. WaUace and C. H. Sequin. ATV: An abstract timing verifier. In Design

Automation Conference, 1988.

[79] D. M. Webber and A. L. Sangiovanni-VincenteUi. Circuit simulation on the

connection machine. In Design Automation Conference, 1987.

[80] N. Weiner and A. L. Sangiovanni-VincentelH. Timing analysis in a logicsynthesis

environment. In Design Automation Conference, 1989.

[81] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design:

A Systems Perspective. Addison-Wesley, 1985.

[82] J. White and A. L. Sangiovanni-VincenteUi. Relaxation-based Circuit Simulation.

Kluwer Academic Publishers, 1985.

[83] Steve H. C. Yen, David H. C. Du, and S. Ghanta. Efficient algorithms for

extracting the k most critical paths in timing analysis. In Design Automation

Conference, 1989.

[84] EUen J. Yoffa and Peter S. Hauge. ACORN: A local customization approach to

DCVS physical design. In Design Automation Conference, 1985.

195

[53] S. MaUk, A. Wang, R. K. Brayton, and A. L. Sangiovanni-VincentelH. Logic

verification using binary decision diagrams in a logic synthesis environment. In

IEEE International Conference on Computer-Aided Design, 1988.

[54] Hugo De Man. Personal communication, 1988.

[55] Patrick C. McGeer and Robert K. Brayton. Efficient algorithms for comput

ing the longest viable path in a combinational network. In Design Automation

Conference, 1989.

[56] Patrick C. McGeer and Robert K. Brayton. Provably correct critical paths. In •

Decennial CalTech VLSI Conference, 1989.

[57] Patrick C. McGeer and Robert K. Brayton. Hazard prevention in combinational

circuits. In Hawaii International Conference on the System Sciences, 1990.

[58] Patrick C. McGeer and Robert K. Brayton. Timing analysis on precharged-unate

networks. In Submitted to Design Automation Conference, 1990.

[59] Patrick C. McGeer, Robert K. Brayton, Richard L. Rudell, and Alberto L.

Sangiovanni-VincentelH. Extended stuck-fault testabiHty for combinational net

works. In Submitted to MIT Conference on Advanced Research in VLSI, 1990.

[60] Patrick C. McGeer, Robert K. Brayton, and Alberto L. Sangiovanni-VincenteUi.

Performance enhancement of combinational circuits through the introduction of

r-irredundant faults. In Preparation, 1990.

[61] T. M. McWiUiams. Verifiction of timing constraints on large digital systems. In

Design Automation Conference, 1980.

[62] L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits.

Technical Report UCB/ERL M75/520, Electronics Research Lab, University of

CaHfornia at Berkeley, 1975.

[63] A. R. Newton and A. L. Sangiovanni-VincentelH. Relaxation-based electrical

simulation. IEEE Transactions on Electronic Devices, 1983.

196

[64] John K. Ousterhout. Crystal: A Timing Analyzer for nMOS VLSI Circuits. In

Third Caltech VLSI Conference, 1983.

[65] John K. Ousterhout. Switch-level delay models for digital MOS VLSI. In Design
Automation Conference, 1984.

[66] John K. Ousterhout. A switch-level timing verifier for digitial MOS VLSI. IEEE

Transactions on CAD, July 1985.

[67] P. Penfield, Jr. and J. Rubinstein. Signal delay in RC tree networks. In Design

Automation Conference, 1981.

[68] T.Quarles. The SPICE3 Circuit Simulator. PhD thesis, Department of Electrical

Engineering and Computer Science, University of CaHfornia at Berkeley, 1989.

[69] J. P. Roth. Diagnosis of automata failures: A calculus and a method. IBM J.

Res. Develop, 1966.

[70] J. Rubinstein, P. Penfield, Jr., and M. A. Horowitz. Signal delay in RC tree

networks. IEEE Transactions on CAD, July 1983.

[71] Robert Sedgewick. Algorithms. Addison-Wesley, 1983.

[72] Frederick F. SeUers, Jr., M. Y. Hsiao, and L. W. Bearnson. Analyzing errors

with the Boolean difference. IEEE Transactions on Computers, 1968.

[73] C. E. Shannon. The synthesis of two-terminal switching function. Bell System

Technical Journal, 1948.

[74] Kanwar Jit Singh, Albert R. Wang, Robert K. Brayton, and Alberto L.

Sangiovanni-VincentelH. Timing optimization of combinational logic. In IEEE

International Conference on Computer-Aided Design, 1988.

[75] G. L. Smith. Model for delay faults based upon paths. In International Test

Conference, 1985.

	Copyright notice1989
	ERL-89-137 (1 of 3)
	ERL-89-137 (2 of 3)
	ERL-89-137 (3 of 3)

