

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A PERFORMANCE STUDY OF OPTIMIZATION

ALGORITHMS ON A DATABASE SYSTEM

SUPPORTING PROCEDURES

by

Anant Jhingran

Memorandum No. UCB/ERL M89/15

23 January 1989

A PERFORMANCE STUDY OF OPTIMIZATION

ALGORITHMS ON A DATABASE SYSTEM

SUPPORTING PROCEDURES

by

Anant Jhingran

Memorandum No. UCB/ERL M89/15

23 January 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A PERFORMANCE STUDY OF OPTIMIZATION

ALGORITHMS ON A DATABASE SYSTEM

SUPPORTING PROCEDURES

by

Anant Jhingran

Memorandum No. UCB/ERL M89/15

23 January 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Performance Study of Optimization Algorithms on a Database
System Supporting Procedures

Anant Jhingran

Computer Science Division
University of California at Berkeley, CA 94720

ABSTRACT

POSTGRES allows fields of a relation to have procedural (executable)

objects. POSTQUEL is the query language supporting access to these fields, and

in this paper we consider the optimizing process for such queries. The simplest

algorithm for optimization assumes that the procedural objects are executed in

full, whenever needed. As a refinement to this basic process, we propose an

algorithm wherein cost savings are achieved by modifying the procedural queries

before executing them. In another direction of refinement, we consider the cach

ing of the materialized results. Two caching strategies—caching in tuples, and

separate caching—are considered. The fifth algorithm is flattening, where a

POSTQUEL query is modified into an equivalent flat query, and then optimized

through a traditional optimizer. We study the relative performances of these

algorithms under varying conditions and parameters. Our results show that cach

ing wins when updates do not occur with a high frequency, and that separate

caching is, in general, better than caching in tuples. We further show that when

the composition of the objects in the procedural field is predictable and

parameterizable, flattening is a good option.

1. INTRODUCTION

Query optimization in relational database systems has been a traditional research problem.

A number of algorithms for optimizing queries have been proposed (e.g., [WONG76,SELI79]).

They are based on a variety of paradigms [JARK84], and work well for the traditional relational

model.

However, a number of recent proposals which enhance Codd's [CODD70] model require

the modification of the existing algorithms to optimize the new set of queries that were not possi

ble before. In this paper we study the query optimization problem in one such extended relational

model, namely POSTGRES. We present a number of algorithms for optimization of queries in

This research was sponsored by die Defense Advanced Research Project Agency (DoD), Arpa Older No.
4781, monitored by Space and Naval Warfare Systems Command under ContractN00039-84-C-0089.

such an environment, and do a performance study of each.

The rest of the paper is organized as follows. In Section 2 we present the extensions in

POSTGRES relevant to our study. We also discuss the previous work on optimization of queries

on procedural objects. The optimizing paradigm and the details of the algorithms under con

sideration are then discussed in Section 3. In Section 4 we present a simulation framework in

which we compare the various algorithms. Section 5 presents the results of our study. Finally, this

paper ends with the conclusions on the viability of each algorithm.

2. PROCEDURAL OBJECTS AND POSTQUEL SYNTAX

The relational model has been found deficient in many areas of database applications (e.g.,

knowledge management [ZANI85], and engineering applications [STON83]). As a result, there

have been several proposals to enhance the relational model. These extensions either address

specific deficiencies (e.g., ADT INGRES [STON83]), or a broad spectrum of inadequacies (e.g.,

Starburst [MCPH87], EXODUS [CARE87], GENESIS [BAT087], DASDBS [SCH087], AIM-P

[DADA86] and POSTGRES [STON86]).

POSTGRES, a new relational database system currently being developed at Berkeley,

extends the relational model in several ways. The one relevant to this study is the addition of pro

cedural data types. Thus, in addition to the standard data types permitted by all systems (integer,

real, character etc.) and abstract data types (ADTs) permitted by some systems [STON83], fields

of the relations in POSTGRES can contain procedural objects.

Procedural objects are executable programming constructs. In this paper we restrict our

selves to those procedures that are queries on the underlying database. The fields containing such

queries are called POSTQUEL fields. The presence of procedural objects lends a high degree of

flexibility to the design of a database schema and allows many complex problems (e.g., storage of

query plans, representation of hierarchical information, and sharing of subobjects by complex

objects) to be naturally addressed [STON87].

Consider the following relations in a database schema:

DEPT (number = clO, name = clO, mgr = clO)

EMP (name = clO, hobbies = POSTQUEL, dept = POSTQUEL)

SOFTBALL (name = clO, day = clO, position = clO)

FOOTBALL (name = clO, day = clO, position = clO)

MUSIC (name = clO, instrument = clO)

The field day in SOFTBALL and FOOTBALL refers to the day the person plays that game. Each

employee has zero or more hobbies. The field EMP.hobbies consequently contains up to three

POSTQUEL queries, one for each hobby. Each employee belongs to exactly one department For

example, the relation EMP may look like:

name hobbies dept

John
retrieve (SOFTBALL.day, SOFTBALL.position) retrieve (DEPT.all)

where SOFTBALL.name = "John*' where DEPT.number = 9086

retrieve (FOOTBALL.day, FOOTBALL.position)

where FOOTBALL.name = "John*'

Mary
retrieve (SOFTBALL.day, SOFTBALL.position) retrieve (DEPT.all)

where SOFTBALL.name = "Mary" where DEPTjiumber = 8765

retrieve (MUSIC.instrument)

where MUSICname = "Mary"

Table 1 gives a set of queries which would be used to illustrate the optimizing algorithms.

Query Number Query Description

1
retrieve (EMP.hobbies.day) where

EMP.name = 44John"

The days John

plays something

2
retrieve (EMP.name) where

EMP.dept.name = 'TOY"

Names of all

employees who

work in "TOY"

department

Table 1: Example POSTQUEL queries

The POSTQUEL fields can contain arbitrary POSTQUEL queries. To distinguish between

the POSTQUEL queries present in the procedural fields (such as those in EMP.hobbies) and the

queries used to access these fields (such as those in Table 1), we refer to the former as objects and

the latter as queries.

POSTQUEL extends QUEL in many ways [ROWE87]. The extension which deals with the

procedural objects is the multiple dot notation (like GEM [ZANI83]). The execution of the

queries in the procedural fields in a multiple dot notation is implicit For example, in Query 1, the

target field EMP.hobbies.day can only be determined after the queries in EMP.hobbies are exe

cuted.

The depth of a field is one less than the number of dots in its multiple dot representation.

Thus EMP.name is at depth zero, and EMP.hobbies.day is at depth one. Clauses containing fields

with depth greater than zero are called extended clauses. The rest are called ordinary clauses.

The two POSTQUEL fields in EMP are fundamentally different in terms of the nature of the
objects they contain. EMP.hobbies contains objects ofunpredictable composition. For example,
as the database evolves, employees may take up new hobbies, and give up old ones. As a result
the set ofqueries that occupy EMP.hobbies may change dynamically. Incontrast, the composi
tion ofobjects inEMP.dept is fixed—each tuple ofEMP contains exactly one object ofthe form:

retrieve (DEPT.all) where

DEPTjnimber = $dept-number

where$dept-numbermay differ across the tuples.

In the case ofEMP.dept, it makes sense tostore only the parameter $dept-number instead of
the entirePOSTQUEL query. The relation EMPwould thus contain:

name hobbies dept

John retrieve (SOFTBALL.day, SOFTBALL.position)

where SOFTBALL.name = "John"

retrieve (FOOTBALL.day,FOOTBALL.position)

where FOOTBALL.name = "John"

9086

Mary retrieve (SOFTBALL.day, SOFTBALL.position)

where SOFTBALL.name = "Mary"

retrieve (MUSIC.instrument)

8765

where MUSICname = "Mary"

Now consider Query 2. It can be converted into the following ''flattened" query:

retrieve (EMP.name) where

EMP.dept = DEPT.number and

DEPT.name="TOY"

This sort of query modification, which removes the extended clauses in a POSTQUEL query, is
generally possible if the structure of the objects in a POSTQUEL field is the same across all the
tuples. Such query modificationis referred to asflattening.

2.1. The Optimizing Paradigm

The existing POSTQUEL optimizer is discussed in [STON87, SELL87]. This optimizer,
based onthe decomposition andtuple substitution strategy in [WONG76], postpones the evalua
tion of the extended clauses to the very end of the query plan. This greeJy approach may not
always be the best It is therefore necessary to design an optimizer for POSTQUEL based on an
exhaustive search approach as used in System R, and integrate the extended clauses into sucha

framework. We have shown the viability and advantages of such an approach [JHIN87].

22. Previous Work

Procedures as data types achieve several objectives. For example, they are a natural

representation for complex objects. In that environment, there have been other proposals for

representing complex objects, and optimizing the queries which access (parts of) such objects

[DEPP86, BANE87, DADA86]. However, none of these studies uses the procedure as a data type

facility for representing complex objects.

Optimization of queries on procedural objects has been studied from a perspective different

from ours in [SELL87] and [HANS87]. [SELL87] is an overview of the preliminary ideas on

optimizing POSTQUEL queries. It discusses the issues related to the decomposition strategy and

suggests some improvements. A significant part of the paper is devoted to discussions on the

caching strategies for materialized objects. Both finite and infinite cache space are considered.

However, the discussion is exploratory in nature and fails to reach specific conclusions.

Hanson [HANS87] studies the relative performance of three algorithms for dealing with

procedural fields—Always Recompute, Cache and Invalidate, and Update Cache. The last two

algorithms differ in the ways in which the cached set of objects is kept current An elaborate

parameterized model is presented, which is then used to compare the three algorithms. The study

assumes the availability of infinite cache space and concludes that caching strategies win if the

probability of update to the cached objects is low.

Our study has points in common with Hanson's, but is more extensive in many aspects. We

study two Cache and Invalidate strategies (as opposed to just one in [HANS87]), and make the

realistic assumption of bounded cache space. Furthermore, we discuss the actual query optimiza

tion problem. In [HANS87] the objective function for the optimization algorithms is the expected

cost of accessing one procedural object. A similar assumption is made in [SELL87] when the

caching alternatives are discussed. We, however, have the objective function as the cost of an

entire POSTQUEL query, which may involve processing many objects. In particular, we identify

two different classes of POSTQUEL queries which result in very different algorithm perfor

mance. We also discuss query modification strategies which reduce query costs substantially

under some circumstances.

3. QUERY OPTIMIZATION ALGORITHMS

We have developed five basic algorithms for optimizing POSTQUEL queries. These algo

rithms treat ordinary clauses similarly; they differ only in their handling of the extended clauses.

Each algorithm assumes a different query processing strategy. Accordingly, the discussion of the

optimization algorithms is also a discussion of the corresponding query processing strategies.

3.1. The Basic Strategy

The System R query optimizer looks through most of the viable query plans and estimates
the cost of each. It thenselects the planwith the least estimated cost [SELI79]. To do so, it needs
the estimates of the selectivities of the clauses in the query. The cost of a plan is a function of the

selectivities and the costs of relational accesses and joins.

The functions used for selectivities and costs must be modified in order to be applicable to

extended clauses [JHIN87]. To discover if a tuple satisfies an extended clausemay involve exe
cution of one or more procedural objects. Determining the cost and selectivity of this process
requires some statistical information about the queries in the procedural fields. The execution of
procedural objects is also termed as materialization.

Ordinary clauses can be used to reduce thecostofrelational accesses if suitable indexes are
available [SELI79]. In other words, tuples can be tested against ordinary clauses sometimes
through the access methods. The same is not true for extended clauses, which can only be tested
forafter thetuples have been fetched. Foroptimization purposes, extended clauses can be treated
likeordinary clauses, provided themodified cost and selectivity functions areused, andthe above
limitation (of when extended clauses can be tested for) is kept in mind. All our algorithms
(except FLAT) use this approach, but differ in their cost functions for evaluating extended
clauses. They use an exhaustive search strategy, and evaluate the extended clauses from left to
right For example, in Query 2 (having the extended clause EMP.deptname = "TOY"), a plan
would involve fetching a tuple of EMP and materializing theobject in the deptfield of thattuple
to determine the matching tuple of DEPT. In case the extended clause is deeper, this process
would continue further.

The first algorithm, Complete Materialization with No Caching (CM) is the simplest one.
CM assumes that the cost of executing an object has to be paid in full every time materialization
is needed. There is no concept of storing these materialized results for future use. For example,
in Query 2, thecostof the plan in CM includes the cost offetching the tuples ofEMP, the costof
executing theprocedural object in each of these tuples, and thecostof checking for each of these
materializations if the result has the name field as "TOY".

3.2. Restricted Materialization (REST)

Materialization returns all the subobjects of a procedural object Sometimes we are not
interested in the entire relation returned by the materialization of a POSTQUEL object; a subset
of the tuples might suffice. Under these circumstances, it is possible that cost savings may be
achieved by modifying the POSTQUEL object(s) before executing them so that they only return
the tuples of interest In Query 2, the plan in REST pays thecostof fetching the tuples of EMP,
and for each tuple e in EMP, the cost of the following restricted materialization:

retrieve (DEPT.all) where

DEPTjiumber = "emp-dept-number" and

DEPT.name = "TOY"

-7-

where "emp-dept-number" is the actual value of the parameter $dept-number in e. Note that
under such aplan, then is no need to check if the tuple(s) returned by the (restricted) materializa
tion have their name field(s) as "TOY".

It is thus possible that the extended clause in a query can beused tomodify some orall the
objects that need to be materialized. REST checks if such an object modification is semanticalfy
valid. If this is the case, the plan includes restricted materialization of these objects. Otherwise, it
is similar to CM in all aspects.

3.3. Caching Strategies

The two algorithms mentioned above keep no history. Consider the case where the employ
ees "Mary" and "John" belong to the same department, and therefore contain identical objects
intheir corresponding dept field. Moreover, assume that the tuple for "John" is accessed before
that of "Mary" in answering Query 2. The POSTQUEL object in John's tuple will beexecuted
first If the result of this query execution could be stored, then the execution of the object in
Mary's tuple could be avoided. It is thus clear that caching ofmaterialized objects might help in
reducing the cost of executing a POSTQUELquery.

There is another important benefit ofcaching. Consider a sequence of queries, Q\,...,Qn%
which are not submitted as a batch (and hence global query optimization algorithms suchas in
[SELL88, KJM84] do notwork). The processing ofany query would involve materializing some
objects. It is possible that the execution of a query Qj can utilize one or more of the objects
materialized by the queries {Q, :i<j}.Ofcourse, updates will invalidate materialized objects, but
where they are infrequent caching is likely tobebeneficial [STON87, SELL87].

Caching strategies can be broadly classified into result caching and plan caching. In this
study, only the former is considered since our model does not take into account the cost ofgen
erating a plan. Even result caching can be accomplished in various ways. Here we discuss two
result caching strategies, which lead to two different optimizing algorithms. Both these algo
rithms materialize an object only if itscurrent version does notexist incache. In all other aspects,

they are similar to CM.

3.3.1. Complete Materialization—Cache Separately (CS)

In CS, the materialized objects are cached in a separate cache relation on the disk. Each
object in the database has a uniqueJd which is a function ofthe query_block (the structure of
the object), and list_of_parameters (the set of parameters that uniquely identify a particular
object within the objects that have the same query block). The uniqueJd is the input to a hash
function that determines the slot in the cache relation where the object should be cached.

Whenever an object needs to be evaluated, CS determines its uniqueJd and then hashes
into cache. If a current version of the materialized object is found, it is retrieved and the cost of
executing the object is avoided. If such a version does not exist, the object is materialized and
stored in cache if space permits. Note that under these assumptions, one page access is required
to check if a result is cached. The number of page accesses to retrieve a cached relation, of

course, depends on its size.

3.3.2. Complete Materialization—Cache in Tuples (CT)

In this approach, the materialized objects are stored in the tuples themselves. Since materi

alized objects may be of arbitrary sizes, the variable length tuples might overflow to additional

pages. However, when the results are small and there is some free space in each page, the materi

alized result can be cached in the same page as the tuple containing the object. As a result if an

object is cached, it can often be retrieved without paying any extra cost of I/O. Under these

assumptions, it follows that the number of page accesses required to retrieve a cached object in

CT is one less than the number of accesses required in CS. We refer to the extra cost in CS as the

cost of cache lookup.

On the other hand, if the fraction of all objects that are cached is cachedjraction, then CT

may need to cache many more objects (and hence require much more space) to achieve the same

cachedJraction as CS. This happens because objects may be repeated across tuples. For exam

ple, consider the objects in EMP.dept If there are 100,000 employees, and 500 departments, then

to achieve a cachedjraction equal to one, CS would need to cache 500 objects, whereas CT

would need 100,000.

3.4. Flattening of the POSTQUEL query (FLAT)

Flattening as a means of evaluating a POSTQUEL query has been discussed in Section 2. A

flattened version of a POSTQUEL query can be passed through a traditional optimizer and a plan

generated. This plan can be no worse than the plan of CM and REST. The other algorithms evalu

ate an extended clause in a top down approach (i.e., from left to right). This order of relational

accesses is just one of the many options available in FLAT query. If the other options are

cheaper, then FLAT would do better.

Consider Query 2, and its flattened version

retrieve (EMP.name) where

EMP.dept = DEPT.number and

DEPTjiame=*TOY"

The other algorithms pick a tuple of the EMP relation, and for each tuple, fetch the 4'matching"

tuples of DEPT. This is equivalent to a nested loop join in a FLAT strategy with EMP as the

outer relation, and DEPT as the inner relation. The cost of an inner fetch in FLAT corresponds

exactly to the cost of a (restricted) materialization in REST. FLAT is likely to win if a merge join

(i.e., join after sorting EMP and DEPT on the fields EMP.dept and DEPT.number respectively),

or a bottom up evaluation (i.e., using DEPT as the outer and EMP as the inner relation) is

cheaper.

There are two factors that mitigate the seeming superiority of FLAT. The first is that there

is no hope of caching materialized objects. Thus, while FLAT would certainly be better than

REST or CM, it may be worse than CS or CT. The second is a more practical reason. If the

number of objects in a tuple is large, and/or their composition is unpredictable, then flattening is
unviab'e. For example, consider Qury 1. Since the set of queries in EMPJiobbies may change
dynamically, it is not possible to store the parameters of these objects in the field, EMPJiobbies.

Techniques for flattening a POSTQUEL query parallel various view modification algo
rithms [STON75], and their discussionis beyondthe scopeof this paper.

4. SIMULATION MODEL

To simplify our evaluation task, we have made certain assumptions and parameterized some
conditions. These parameters characterize the POSTQUEL query and other system and database
characteristics. In this section we discuss our simulation model in detail.

4.1. Structure of the POSTQUEL queries

We restrict our study to the POSTQUEL queries of two types:

Type General Form Example

1
retrieve (RELJ>rocfield.Ordfieldi) where

REL.Ordfieldi operator value

Query 1:

retrieve (EMP.hobbies.day) where

EMPjiame = "John"

2
retrieve (REL.Ordfieldi) where

RELJ>rocfield.Ordfield \ operator value

Query 2:

retrieve (EMP.name) where

EMP.deptname = "TOY"

Ordfieldi is an ordinary field in the target fist of the POSTQUEL queries in the POSTQUEL

field RELJ>rocfield. Ordfieldi is an ordinary attributeof REL. The relative performanceof the
algorithms is highly dependent on the type of the query involved.

Apart from the Type, there is one more parameter associated with the POSTQUEL queries.

Selbot is the selectivityof the clause in the qualification. It is an importantparameter that deter
mines the relative performance of both FLAT and REST vis-a-vis the other algorithms, and hence
has been included in our study.

4.2. Update Model

Updates to the underlying database invalidate some or all of the objects materialized by the

POSTQUEL queries. This section discusses the model for studying the performances of the cach

ing algorithms in the presence of updates.

10

4.2.1. Object Invalidation

When an object is materialized and cached for the first time, I-locks (Invalidation locks) are

set on the tuples and index intervals read during the execution of that object Updates to the

tuples and index intervals involve invalidation of all those objects which have I-locks on them.

Updates do not remove the I-locks set on the tuples, and hence only the first materialization and

caching of an object requires the setting of I-locks. However, all updates do involve paying the

extra cost of invalidation over the case where no caching is done.

With the passage of time, the number of objects that have been materialized and cached at

least once increases. We make the simplifying assumption that all the objects have been cached
at least once before we begin comparing the performances (in other words, we ignore the tran

sient behavior). Thus the cost of setting I-locks does not enter our calculations.

4.2.2. Query Sequence

Consider a random sequence of queries, where each query is an update with probability

Pr (UPDATE) and a retrieve with probability 1 -Pr (UPDATE). All retrieve queries are POST

QUEL queries made solely of either Type 1 or of Type 2 queries (depending on the experiment

under consideration). All updates are POSTQUEL replace commands (without any extended

clauses, though) which update a fraction of the tuples in the relation(s) touched during the materi

alization of POSTQUEL objects. This fraction is fixed at 0.01 for the remainder of the study. The

tuples that are updated are selected at random.

The fundamental nature of the caching algorithms is best brought out by their average case

responses; and not the responses to some particular query sequence. Therefore, for a fixed set of

parameters, we have used query sequences of length hundred, and then averaged the behavior

over a hundred such sequences. The average responses are fairly stable at this point.

43. Database Structure

The relations in the database contain the fields required to make the objects and the queries

syntactically correct The indexes on the various fields can be of the type Primary (PRIM),
Clustered Secondary (C-SEC), Non Clustered Secondary (NC-SEQ or non-existent (NEXIST).
In the absence of any index of these types, a relation can be accessed through a SEGMENT scan

[SELI79].

The POSTQUEL field contains objectsjperjuple POSTQUEL objects in a tuple of REL.
These objects are simple selections and projections on a (set of) relation(s) such that the POST

QUEL queries of Type 1 and 2 are syntactically valid. Each object is a single relation querycon
taining exactly one qualification clause—a selection. Thus its structure is:

retrieve (ObjRel.Ordfield i) where

ObjRel.Ordfield-i operator value

(Note that within the same column, ObjRel may not be the same in all the objects. For example,
EMPJiobbies contains objects with ObjRel as SOFTBALL, FOOTBALL and MUSIC.) A top

-11

down query plan accesses the tuples of REL, and for each such tuple, determines the matching

tuples of ObjRel by materializing (if necessary) the object(s) in RELJProcfield. A bottom up

plan accesses ObjRel before REL. Such a bottom up plan is possible only in a flattened query.

Even with this simple structure, we can make the objects cover a wide spectrum of material

ization costs by varying the selectivity of the one clause they contain, and the presence or absence

of index on the attribute in the qualification. The index on ObjRel.Ordfield$ is called

ObjectJndex. Its type determines the cost of the objects:

[1] Easy: These objects have ObjectJndex as C-SEC, and typically cost 2-3 page accesses for

their materialization.

[2] Hard: These objects have ObjectJndex as NEXIST, and cost a complete SEGMENT scan

for materialization.

A PROCJdIX fraction of the objects in each POSTQUEL field are hard, and 1 -PROCJdIX

are easy. Thus a PROCJdIX near zero represents a majority of easy objects, and a PROCJdIX
near one, a majority of hard objects. Use_Factor is the expected number of times each object is

repeated in a column. In the schema given in Section 2, if there are 100,000 employees, and 500

departments, then the UseJFactor for the objects in EMP.dept is 200.

There is one more parameter of interest—FlatJndex. This is the index on the fields that

store the parameters for FLAT. The bottom up plan in FLAT is aided by the presence of indexes

on these fields. For example, a FlatJndex = C-SEC means that there exists a clustered secon

dary index on EMP.dept when it stores the parameter $dept-number. In a bottom up query plan

for the flattened version of Query 2, a tuple e in EMP that matches a tuple d in DEPT satisfies the

following condition: e.dept = "particular-dept-number". Here "particular-dept-number" is the

value in the field d.number. A nested loop/merge join is facilitated by the presence of FlatJndex.

4.4. Parameters of Study

Table 2 shows the parameters of the study, along with their default values. On the basis of some

fixed parameters (not shown above), the size of the database relation is about 50 MBytes.

5. PERFORMANCE RESULTS

In this Section, the results of the performance analysis of the optimizing algorithms is

presented. The cost of an algorithm is the estimated cost of the plan it generates. The lower this

cost the better the algorithm is. We first discuss the cost characteristics of the algorithms as

functions of some of the important parameters—PROCJdIX, Pr {UPDATE), SizejCache and

UseJFactor. In the accompanying graphs, all costs have been normalized such that

Cost (CM) = 1 at the smallest x coordinate. We next study the behavior of these algorithms as

functions of pairs of these parameters. Finally, the effects of the other parameters not included in

the list above are discussed.

12

Type Name Description Default

QUERY
Query Type See Section 4.1 lor2

Selbot See Section 4.1 0.1

DATABASE

objectsj?erjuple Number of objects

per tuple in

RELProcfueld

1

PROCJdIX Fraction of hard

objects

0.0001 or 0.4

UseJFactor See Section 4.3 2

Objectjndex See Section 4.3 If Easy object, then

C-SEC else NEX-

IST

Flatjndex See Section 4.3 NC-SEC

Others

SizejCache Size of the Cache

Space on disks

10 Mbytes

Pr(UPDATE) Fraction of updates

in a query se

quence

0.2

Table 2: Parameters of Study

5.1. PROCJdIX

Figure la plots the normalized costs as a function ofPROCJdIX for queries of Type 1, while
Figure lb does the same for queries ofType 2. Note that PROCJdIX is anindicator of the cost
of materialization of the procedural objects.

5.1.1. Type 1 Queries

For these types ofqueries, a top down plan involves restricting REL using the qualification,
and then executing the objects in the selected tuples to determine the target field values. No
modification of the objects (as desired in REST) is possible, and hence REST performs identir
cally to CM. CT and CS are better than CM for all choices ofPROCJdIX. Thus caching is a
clear winner under these circumstances.

Atlow PROCJdIX, the extra cost ofcache lookup isa significant fraction ofthe total cost
As a result CT performs better than CS, in spite ofhaving a lower cachedJ>action. Athigher
PROCJdIX, the lookup cost isnegligible, and the higher cachedJTaction for CS makes itwin.

As mentioned before, the cost of an inner fetch in a top down, nested loopjoin in FLAT is
the same as the cost of a materialization in REST (and hence, the same as CM). Thus if

1000*

-13

1000

CM and REST

CS

FLAT

0.00001 0.0001 0.001 0.01 0.1 1.0

PROCJdIX

Query Type 1

0.00001 0.0001 0.001 0.01 0.1 1.0

PROCJdIX

Query Type 2

Figure 1: Normalized Costs as a function of PROCJdIX

PROCJdIX is low, then this plan is the cheapest for FLAT. Since this plan is identical to CM's,

FLAT follows the curve of CM. When PROCJdIX becomes sufficiently large, nested loop join

is no longer the cheapest, and fiat switches to merge scan, while maintaining a top down access of

relations. For higher values of PROCJdIX, it abandons the top down approach altogether, and

does a bottom up query evaluation. Under these circumstances, the cost of FLAT becomes

independent of the cost of the objects.

5.1.2. Queries of Type 2

In a flattened version of a query of Type 2, there is a restriction on ObjRel. This, together

with the presence of a default secondary index on RELProcfield (FlatJndex - NC-SEQ,

makes the bottom up plan the best for a FLAT query. Since this plan is unaffected by

PROCJdIX, the curve for FLAT is a horizontal line, which is substantially lower than the other

curves. Thus FLAT is definitely superior for queries of Type 2, especially for high PROCJdIX.

CS and CT show a behavior similar to Type 1 queries.

For queries of Type 2, REST is always cheaper than CM. This is primarily due to the fact

that the cost of materializing modified objects is never more than that of the corresponding

objects. The extra clause (a selection on ObjRel.Ordfieldi) helps in reducing the cost of materi

alization if an index exists on ObjRel.Ordfieldi, and if the access of ObjRel through such an

index is cheaper than the other indexes. The default parameters provide for an NC-SEC on

ObjRel.Ordfieldi. At low PROCJdIX, a scanof ObjRel through this index is not the cheapest,

but beyond a certain PROCJdIX, this is the best plan. From the figure we note that for

PROCJdIX > 0.1, materialization of a modified object is cheaperthan the corresponding object,

and is independent of PROCJdIX. For very high PROCJdIX, REST is even better than the

caching algorithms.

14

52. Updates

Figure 2 plots the curves for Type 1 query as a function ofPr (UPDATE). It can be seen
that as Pr (UPDATE) increases, the two caching algorithms deteriorate. With an increase in the
frequency ofupdates, there is an increase in the number ofobjects being invalidated. This has a
two-fold effect First, invalidation costs increase. Second, a retrieve query sees fewer cached
objects on the average; and hence has to do more materialization, and pay a higher processing
cost

10-i

9 4 \ t

8 4 }•••-!•

7 4 4 I
6 \ \ |

3 4 i 1

2 4 i \
ciiandR^ST !

•r••—•i—i—t......f.

•«T"

i ii i i i i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr(UPDATE)

Figure 2: Costs vs. Pr(UPDATE) for Type 1
queries and PROCJtiX=QA

»

0.01 0.10 1.00 10.00

SizejZache (MBytes)
Figure3: Costs vs.Size_Cache forType 1

queries andPROCJtIX =0.0001

An update in a query sequence invalidates a higher number of cached objects if they are
being cached in tuples compared to when they are cached separately (in an approximate ratio of
Use_Factor). Asa consequence, updates penalize CT more than CS.

53. Size of the Cache

According to the parameters, CS requires a cache space of = 12.5 MBytes to achieve a
cachedjraction of one. At sizes more than this, only CT benefits. Figure 3 plots the cost
characteristics of the two caching algorithms and CM as a function of SizejCache. The curves
for REST and FLAT are omitted for the sakeof clarity. CT is better than CS for eithervery small
SizejOache (where the performance penalties of extra lookup are more than the extra caching
benefits of CS); orfor a very large SizejCache (= 22 Mbytes), where thecachedjraction inCT
is close to one.

15-

5.4. Effects of Use Factor

An increase in Usejactor has a two-folc effect on the cost of CS. First for a given
SizejCache, the cachedjraction increases. Second, anupdate causes a lowernumber of invali
dations. Thus it is obvious that as UseJ actor increases, CS wouldbe moreandmore appealing.

Figure 4 plots ^^&D as afunction of the Use_Factor for the four possible choices of
PROCJdIX and query type. The significant point of note is the earlier flattening in low

PROCJdIX queries. Thus for inexpensive objects, CT gives a comparable performance to CS,
for all values of Use Factor.

1000.0? 1000.0*

JdIX
PROCJdIX.

100.0

1 2 4 8 16 32 64

Usejactor

Figure 5: Dependence of Cost(CT)/Cost(CS) on
SizejOache and Pr(UPDATE) for Type 1

queries, high PROCJdIX

Usejactor

Figure 4: Cost(CT)/Cost(CS) vs Usejactor

We have seen various reasons why CT, in general, performs worse than CS. In Figure 5 we

attempt to capture these reasons for a high PROCJdIX query of Type 1. Note how the ratio falls

as SizejOache is raised to 25 MBytes (which is sufficient to cache all objects in CT). Even with

this SizejCache, the curve of Cost(CT)/Cost(CS) is above one. The reason for this is the extra

penalties of updates in CT. When Pr (UPDATE) is made zero (and SizejOache is still 25

MBytes), the ratio of costs drops to below one. This curve represents the ideal conditions for a

caching algorithm—enough cache space, and no updates. Under these circumstances, CT is

definitely superior.

From now on, we restrict ourselves to SizejOache £ lOMBytes. This is in keeping with our

assumption of a bounded cache space. The larger sizes which we encountered so far were used

only to bring out the fundamental differences in the algorithms.

16

5.5. Regions of Optimal Performance

We now turn to the behavior of the algorithms as functions of pairs of the above parameters

by plotting the regions where each algorithm performs the best.

In Figures 6(a) and 6(b), the regions as functions of Pr(UPDATE) and Usejactor are
shown for queries of Type 1. It is clear that for a sufficiently high Pr (UPDATE), the caching
algorithms would prove to be non-competitive. Referring to Figure 6(a), consider a horizontal
line drawn through Usejactor = 2. CT is thebestalgorithm until Pr(UPDATE)- 0.4. ThenCS
becomes the best As Pr (UPDATE) increases further, even CS fails to be better than the other

algorithms. Note that for Usejactor < 1.5, CS never wins.

lOOn

U

10-

i i i' i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

jCMjREST
and FLAT

100i

u
s

e

F
a

c

t

o

r

10« -

i i i i i i i i i i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr(UFDATE) Query Type 1 Pi(UPDATE)
PROCJ1DC =0.0001 PROCJdIX =0.4

Figure 6: Regions of best performance as functions of
Use Factor W&Pr (UPDATE)

When the objects are expensive (Figure 6(b)), CT is never preferred. CS is the best for high

Usejactor and/or low Pr (UPDATE). From both the figures, it is clear that if the

Usejactor > 100, CS is extremely competitive unless Pr (UPDATE) ~ 1.

Figure 7 plots the regions as a function of the two most important parameters for the cach

ing algorithms—Pr (UPDATE) and SizejOache. It can be seen that for low Pr (UPDATE), CT is

better than CS for low cache sizes. Taking a vertical slice, (say at SizejOache = 10 MBytes), for

Pr (UPDATE) <0A, CT is the best for 0.4 <Pr (UPDATE) < 0.6, CS is the best, and for

Pr (UPDATE) > 0.6, the non-caching algorithms perform the best This result is similar to what

was obtained in Figure 6(a) along the line Usejactor = 2.

The next figure (Figure 8) captures the behavior as function of PROCJdIX and

Pr (UPDATE). In the upper left comer, note how an increase in PROCJdIX makes CS more and

more competitive. This is because as PROCJdIX increases, so does the cost of materialization.

17

1.0 10.0

SizejCache (MBytes)

Figure 7: Regions of best perfromance as functions of
SizejOache and Pr(UPDATE) for Type 1 query,

highP/JOCJfff

0.00001 0.0001 0.001 0.01

PROCJdIX
Figure 8: Regions of best performance as functions of

PROCJdDC and Pr(UPDATE) for
Type 1 queries

Consequently, the benefits of caching go up. This continues until the bottom up algorithm for

FLAT beats any caching approach (also see Figure la).

5.6. Other Parameters

In this subsection we briefly discuss the other parametersof our study.

5.6.1. objectsjterjuple

FLAT has been shown to be distinctly superior in case of queries ofType 2 and under some

circumstances for queries of Type 1. This is partly a result of the default choice of

objectsjterjuple -1. We now discuss the implications of objects_perjuple > 1 on FLAT.
Consider the following schema:

PAIRS (seed = i4, partners= POSTQUEL)

MEN (seed = i4, name = clO, age = i4, country = clO)

WOMEN (seed = i4, name = clO, age = i4, country = clO)

which describes the players taking partin a tennis tournament PAIRS contains the data about the

mixed double tournament and MEN and WOMEN about the singles tournament for men and

women respectively. PAIRS.partners contains two queriesof the form:

18

retrieve (MEN.all) where

MEN.name = $paraml

retrieve (WOMEN.all) where

WOMERname = $param2

The POSTQUEL query

retrieve (PAIRS .seed) where

PAIRS.partner.seed < 5

returns the seeds of the mixed double teams where either partner has a seed better than 5 in

his/her respective tournament Assume that we store the parameters of these objects (instead of

the full queries) in the fields PAIRS.male and PAIRS.female. We have seen before that FLAT

performs similar to REST if it chooses a top down approach. This holds even if

objects_perjuple > 1, as is in this case.

In contrast, in a bottom up plan (i.e., accessing MEN and WOMEN before PAIRS), FLAT

needs to execute (an equivalent of) the following two queries:

retrieve (PAIRS .seed) where

PAIRS.male = MEN.name and

MEN.seed < 5

retrieve (PAIRS .seed) where

PAIRSiemale = WOMEN.name and

WOMEN.seed < 5

Assuming the availability of indexes on PAIRS.male and PAIRS.female, the best plan for each

subquery is bottom up. If the total cost of these two subqueries is more than a top down plan, the

latter is chosen. Otherwise, FLAT chooses the option of executing these two subqueries.

In general, for low objects_perjuple, a sequence of subqueries performing an equivalent

task would be cheaper. As objectsj>erjuple increases (and so does the number of subqueries),

the bottom up approach is no longer the best, and then FLAT switches to top down and performs

similar to REST. This is confirmed in Figure 9.

5.6.2. FlatJndex

Figure 10 plots the curve for FLAT and CM as a function of Selbot for different choices of

FlatJndex. In queries of Type 2, FLAT has a bottom up plan if the clause on ObjRel is highly

selective. As this selectivity increases, so does the cost of the bottom up plan, and after a point

FLAT switches to top down. As we have seen before, a FlatJndex helps lower the cost of a bot

tom up plan. Consequently, FLAT maintains a competitive edge till a high value of Selbot if

FlatJndex is C-SEC. On the other hand, the absence of this index makes FLAT switch to a top

down plan at low values of Selbot.

objectsperJuple
Figure 9: Effect of objects_perjuple
(Query Type 2, PROCJdIX=0.0001)

19

1.00000

0.10000^

0.01000^

0.00100^

0.00010 <

0.00001 < » « n i

0.000010.000100.001000.010000.100001.00000

Selbot

Figure 10: Effect ofFlat Jndex on FLAT
(QueryType 2, PROCJdIX=0.0001)

As objectsjperjuple increase, a FlatJndex is needed on each field that stores a parameter,

if FLAT is to perform better than other algorithms.

6. CONCLUSIONS

We have shown that the caching algorithms arecompetitive in situations of low to moderate

update probability. In this, our conclusions are similar to [HANS87]. Moreover, it has been

demonstrated that separate caching is better than caching in tuples under most circumstances.

This is especially true when the cache size is limited and Usejactor is high because separate

caching is able to achieve a higher cachedjraction. Furthermore, updates penalize CT more

than they do CS. There are two factors that may mitigate this superiority of CS. First if the

objects are cheap, then CS would suffer because of the extra lookup costs. The second factor is

the implementation problems of CS. We have assumedthe availability of "hashing" into a cache

relation. As the objects become more complex, so would the hashing strategy. Since our model

does not take this into account, its effects have not entered the picture.

In cases where the number of objects in a tuple is near one and their composition is predict

able and easily parameterizable, it has been further shown that flattening is a good option. This is

especially true if the query is best solved by a bottom up approach. As the number of objects per

tuple increases, FLAT loses its competitive edge. Flattening is not possible when the composi

tion of the objects is unpredictable.

It is clear that CM is the preferred alternative in presence of frequent updates, and where

flattening is not viable. REST is never worse than CM, but its marginalutility is often negligible.

20

Moreover, if the cost of generating the plans (which has not entered our picture) is also a cri
terion, then REST would perform worse than it does in our studies.

A real query optimizer will, in general, bebased onone ormore of theabove strategies. The
actual choice(s) of the strategies will depend strongly on the factors discussed in this study. It is
necessary to determine these parameters before such a choice can be made.

Though we have discussed the optimizing algorithms in a specific environment, the discus
sionon the various strategies shouldextend to any system supporting procedural objects.

7. REFERENCES

[BANE87] Banerjee, J. et al., "Queries in Object-Oriented Databases," Proc. Int'l Conf.
on Data Engineering, Feb. 1988.

[CARE87] Carey, M., and DeWitt, D., 4,An Overview of the EXODUS Project", Data
base Engineering, June 1987, Computer Society, IEEE.

[CODD70] Codd, E. F., "A Relational Model of Data for Large Shared Data Banks",
Comm. of ACM, June 1970.

[DADA86] Dadam, P. et al., " A DBMS Prototype to Support Extended NF2 Relations: An
Integrated View on Flat Tables and Hierarchies," Proc. ACM-SIGMOD Intl.
Conf. on Management of Data, 1986.

[DEPP87] Deppisch, U. et al., "A Storage System for Complex Objects," Proc. Intl.
Workshop on Object OrientedDatabase Systems, 1986.

[HANS87] Hanson, E., "Processing Queries againstDatabase Procedures: A Performance
Analysis", Memo No. UCB/ERL M87/68, University of California, Berkeley,
1987. (To appear in ACM-SIGMOD 1988 Conference.)

[JARK84] Jarke, M., and Koch, J., "Query Optimization in Database Systems", ACM
Computing Surveys, June 1984.

[JHIN87] Jhingran, A., "A Compile Time Optimizer for Database Systems Supporting

Procedures", Master's Report, University of California at Berkeley, May
1987.

[KIM84] Kim, W., "Global Optimization of Relational Queries: A First Step", in
Query Processing in Database Systems, W. Kim, D. Reiner and D. Batory,
Eds., Springer-Verlag, New York, 1984.

[MCPH87] McPherson, J., and Pirahesh, H., "An overview of Extensibility in Starburst' \
Database Engineering, June 1987, Computer Society, IEEE.

[ROWE87] Rowe, L., and Stonebraker, M., "The POSTGRES Data Model", Proc. 13th

VLDB Conf., Brighton, 1987.

[SCH087] Scholl, M H. et at, "Supporting Flat Relations by a Nested Relational Ker
nel," Proc. 13th VLDB Conference, 1987.

[SELI79] Selinger, P. et al., "Access Path Selection in a Relational Database Manage

ment System", Proc. ACM SIGMOD Intl. Conf. on Management of Data,

1979.

21

[SELL87] Sellis, T. "Efficiently Supporting Procedures in Relational Database Sys
tems," Proc. ACM-SIGMOD Conference, May 1987.

[SELL88] Sellis, T. *'Multiple-Query Optimization,'' ACM Trans, on Database Systems,
13.1, March 1988.

[STON75] Stonebraker, M., "Implementation of Views and Integrity Control by Query
Modification", Proc. ACM SIGMOD Intl. Conf. on Management of Data,
1975.

[STON83] Stonebraker, M., et al., "Application of Abstract Data Types and Abstract
Indices to CAD Databases", Proc. ACM SIGMOD Conf. on Engineering
Design Applications, 1983.

[STON86] Stonebraker, M., and Rowe, L., "Design of POSTGRES", Proc. ACM SIG
MOD Intl. Conf. on Management of Data, 1986.

[STON87] Stonebraker, M., et al., "Extending a Database System with Procedures",
ACM Trans, on Database Systems, Sept. 1987

[WONG76] Wong, E., and Youssefi, K., "Decomposition—A strategy for query process
ing", ACM Trans, on Database Systems, Sept 1976

[ZANI83] Zamolo, C, "The Database Language GEM", Proc. ACM-SIGMOD Intl.
Conf. on Management of Data, 1983.

[ZANI85] Zaniolo, C, "The Representation and Deductive Retrieval of Complex
Objects," Proc. Int'l Conf. on VLDB, 1985.

	Copyright notice1989
	ERL-89-15

