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Abstract

In the study of multifingered robot hands, the process of manipulating an object
from one grasp configuration toanother is called dexterous manipulation. In this paper.
we studycontrols for dexterous manipulation by a multifingered robot hand. We use the
basic building blocks developed by previous investigators to formulate the kinematics of
a multifingered robot hand system. For finger contact with an object, we classify three
useful types ofconstraints: fixed point ofcontact, rolling contact and sliding contact.
Then, we propose control laws for dexterous manipulation of the object under these
contact constraints. We show that the control laws realize both the desired position
trajectory andthedesired grasp force simultaneously. We also provide simulation results
based on a planar manipulation system.
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1 Introduction

A new avenue of progress in the area of robotics is the use of a multifingered robot hand

for fine motion manipulation. The versatility of robot hands accrues from the fact that

fine motion manipulation can be accomplished through relatively fast and small motions of

the fingers and from the fact that they can be used on a wide variety of different objects (

obviating the need for a large stockpile of custom end effectors). Several articulated hands

such as the JPL/Stanford hand (Salisbury 1982 [12]), the Utah/MIT hand (Jacobsen et.

al. 1985 [5]) have recently been developed to explore problems relating to manipulation of

objects. It is of interest to note that the coordinated action of multiple robots in a single

manufacturing cell may be treated in the same framework as a multifingered hand.

Manipulation of objects by a multifingered robot hand is more complicated than

the manipulation of an object rigidly attached to the end of a six-axis robotic arm for two

reasons: the kinematic relations between the finger joint motion and the object motion are

complicated, and the hand has to firmly grasp the object during its motion.

The majority of the literature in multifingered hands has dealt with kinematic design

of hands and the automatic generation of stable grasping configurations ( see for example

Salisbury 1982 [12], Kerr 1985 [6], Li and Sastry 1988 [8]). A few control schemes for

the coordination of a multifingered robot hand or a multiple robotic system have been

proposed by Nakamura et. al. [11], Zheng and Luh [13], Arimoto [l] and Hayati [4]. The

most developed scheme is the master-slave methodology ([13] and [1]) for a two-manipulator

system. The schemes developed so far all suffer from the drawback that they either assume

rigid attachment of the fingertips to the object or are open loop. The schemes do not

account for an appropriate contact model between the fingertips and the object.

In this paper, we study control laws for coordinated manipulation by a multifingered

robot hand under the following contact constraints: (1) Fixed points of contact and (2)

rolling contacts. In [7], a robot hand manipulating an object with fixed points of contact is

called coordinated manipulation, and is called rolling motion with rolling contacts.

A brief outline of the paper is as follows: In Section 2, we review some basic concepts

concerning rigid body motion and kinematics of contact. In Section 3, we formulate the

kinematics of a multifingered robot hand system, and develop the force/velocity transfor

mation relations. In Section 4, we propose the corresponding coordinated control laws. We



also present simulation results on a planar example. In Section 5, we conclude this paper

with several important remarks.

2. Preliminaries

In this section, we discuss concepts concerning rigid body motion and kinematics of contact.

For further treatment of this subject see (Li, Hsu and Sastry [9]) and (Montana [10]).

Notation 1 Let Ci and Cj be two coordinate frames of 9ft3, where i, j are arbitrary sub

scripts. Then, rij and Rij denote the position and orientation of Ci relative to Cj. Fur

thermore, gij = (rij,Rij) G SE(Z) denotes the configuration of Ci relative to Cj, where

the Euclidean group, SE(3), denotes the configuration space of an object.

Definition 1 The velocity of Ci relative to Cj is defined using left translation by

V;

where the map S

S : ft3 —-> 50(3)
wx

w2

W3

s-\RijRij)

0 —tl>3 IU2
1U3 0 W\

—W2 W\ 0

(i)

identifies 3ft3 with so(3), the space of 3 by 3 skey-symmetric matrices (or the Lie algebra of

SO(3)).

Proposition 1 Consider three coordinate frames C\, Ci and C3. The following relation

exists between their relative velocities:

V3tl

™3,1
= Ad -1

^3,2

^2,1

™2,1
+

*>3,2

U>3,2

where Ad -1, the Adjoint map of SE(3), is a similarity transformation given by

Ad-1 =
03,2

#3,2 -^3,2^(^3,2)
XLq3,2

(2)

The proof is rather straightforward, see for example [9],

Corollary 1 Consider three coordinate frames C\, Ci and C3. Suppose that C3 is fixed

relative to Ci. Then, the velocity of C3 relative to C\ is related to that of Ci by a constant

transformation, given by

-.._.! T r>t _T>t c(~-.\ 1 r

(3)
V34 •^3,2 -#3,2^3,2) " »2,1

«>3,1 0 £3,2 U>2,1



In this paper, we will assume that the object in consideration is smooth and convex.

This assumption also applies to the fingers of a robot hand.

Definition 2 The boundary of a smooth rigid object is an embeded 2-dimensional manifold

S C 3ft3, which can be expressed as the union of finitely many open sets {S},, such that 5,

is the image of a diffeomorphism

<p:UC&2 —- 5; C 3*3.

The pair (<p, U) is called a coordinate system of S. The coordinates of a point s G 5,- are

u = (tt, v) = <p~1(s).

We assume that an object in consideration has an orthogonal coordinate system, in

the sense that

^u(u) • 9w(u) = 0, Vu e U,

where 9u(u) denotes the partial derivative of v? with respect to u. When (<,?, U) is orthogonal,

we define the Gauss frame at a point u G U as the coordinate frame with origin at <^(u)

and coordinate axes

x(u) = 9o(u)/||9u(u)||, y(u) = <A,(u)/||<A,(u)|| and z(u) = x(u) x y(u).

Definition 3 Consider a manifold S with an orthogonal coordinate system (<p, U). At a

point s G Si, the curvature form K is defined as the 2x2 matrix

K = MuJ.ylujnzuCuVlbuCuJH.z^uVll^u)!!],

the torsion form T as the 1x2 matrix

T = y(u)«[x.(u)\||Wl(u)||,x.(u)\||v.(u)||],

and the metric as the 2x2 diagonal matrix

M = d{ag(\\ipu(u)UVv(u)\\).

Example 1. Consider the sphere of radius 22, with the following coordinate system

U = {(u,v) G&2| - 7T/2 < U< 7T/2, -7T < v < it}

and the map

<p : U —• ft3 : (w,v) i—* (Rcosucosv,—Rcosusinv,Rsinu).



The coordinates u and v are known as the latitude and longitude, respectively. The Gauss

frame is defined by

x(u) =
— sin u cos v — sinv

sin u sin v ,y(u) = — cost; ,z(u) =
cost* 0

cos ucos v

— cos u sin v

sinn

The curvature form, torsion form and metric are, respectively,

A' =
1/R 0

0 l/R
,T= [0, - tanu/R],M =

R 0

0 R cos u

We now consider two objects, called objl and obj2, that move while maintaining

contact with each other (Figure 1). By the earlier convexity assumption the objects will

make contact over isolated points. We wish to describe here motion of the contact points

in response to a relative motion of the objects.

Let Cri and Cri be the coordinate frames fixed relative to objl and obj2, respec

tively. Let Si and Si be the embeded 2-manifolds representing the boundary of objl and

obj2. S\ and 52 can be expressed as the union of open sets, S\ = \Jj S{, and 52 = [JS2,

where S{ has orthogonal coordinate system (y>j, U{) and S2 has orthogonal coordinate sys

tem (^2,^2)- Let ciM e ^i» ajl^ c2(*) e ^2 be the positions at time t of the point of

contact relative to Crl and Cri, respectively. We will restrict our attention to an interval I

so that c;(r) belong to a single coordinate system of 5,-,i = 1,2.

The coordinate system (<^J,l7/),i = 1,2, induces a Gauss frame at all points of 5,-,

which will be denoted by Cc,-,i = 1,2. We also define a continuous family of coordinate

frames, two for each t G /, as follows. Let the local frames at time r, Cn(t) and Cu(t) be

the coordinate frames fixed relative to Cr\ and Cr2, respectively, that coincide at time t

with the Gauss frames at c\(t) and c2(t).

The five parameters that describe the 5 degrees of freedom for the motion of the

points of contact are: the coordinates of the point of contact relative to the coordinate

system (<f{,U{) and (fi.U^), given by, respectively,

M*) = (^i)_1(ci(0) 6 0?,and u2(t) = (Arl(c2(t)) GU(.

arid the angle of contact, <£(t), defined as the angle between the z-axes of Cc\ and Cc2. We

chose the sign of <j> so that a rotation of Cc\ through angle —<f> around its z-axis aligns the

ar-axes.



Figure 1: Coordinate frames for two objects which are in contact.

We describe the motion of objl relative to obj2 at time r, using the local coordinate

frames Cn(t) and Cn(t). Let (vx, vy,vz) and (wx, wy,wz) be the translational and rotational

velocities, respectively, of Cn(t) relative to Cn(t). These provide the 6 degrees of freedom

for the relative motion between the objects.

The symbols K\,T\ and M\ represent, respectively, the curvature form, torsion form

and metric at time t at the point c\(t) relative to the coordinate system (^\,U\). We can

analogously define K2,T2 and M2. We also let

R<t> =
cos <f> —sin <j> 0

—sin <p —cos <f> 0
0 0-1

R
0

* 0

0 0-1

K2 = RqKiRq.

Note that R$ is the orientation matrix of Cc\ relative to CC2- Hence, Ki is the curvature

of obj2 seen from objl. By the convexity assumption, the relative curvature form A'i + A*2

is invertible. The following equations that relate motion of the points of contact to the

relative velocity of the objects are due to Montana ([10]).

Theorem 1 The point of contact and the angle of contact evolve according to

-lux = Mil{Kl + K2)

-1u2 = M2-1^(A-1+A*2)

<j> = wz + TiMilli + T2il/2ll2,
{ 0 = v2.

-wl

W*
- A-

v„

•w,

w3
+ A;

Vx

v..
(4)

Montana ([10])calls the first three equations of (4) the kinematic equations of contact, and

the last equation the constraint equation.



We define three special modes of contact in terms of the relative velocity components

(vx,vy,vz) and (wxywy,w2) by

(1) Fixed point of contact:

(2) Rolling contact:

(3) Sliding contact:

vx

vz

vx

v.,

= 0, and
w3

w.
= 0;

= 0, and wz = 0;

VJX

Wy

. WZ

= 0.

(5)

(6)

(7)

We have from (4) that

Corollary 2 The kinematic equations of contact correspond to each of the contact modes

are

for fixed point of contact,

for rolling contact, and

for sliding contact.

ui =0,

U2 = 0,

<£ = vjs,

Ul =M1-1(A'1 + A'2)-1

u2 = M2-1i^(A'1+A-2)-1

( 0 = riMiU! +T2Jl/2U2.

-w.

w.

ii1 = -M{-1(Kl+K2)-1K2

xi2 = M21R<t>(K1+Ii2)-lK1

k 4> = TiMiiii + T2M2u2.

wx

(8)

(9)

(10)

When a robot hand manipulates an object with its fingers contacting the object by

one of the above contact modes, it defines, respectively, coordinated manipulation, rolling

motion and sliding motion ([7]).



fineer*

Figure 2: A hand manipulation system

Kinematics of a Multifingered Robot Hand

In this section, we derive the kinematics of a multifingered robot hand system and formu

late the the velocity/force transformation relations so that control schemes for coordinated

manipulation and for rolling motion can be studied easily in the section that follows. See

[3] for the control of sliding motion.

Consider the hand manipulation system shown in Figure 2, which consists of an

object and a A:—fingered robot hand.

We denote by m,-, i = 1, ...k, the number of joints of finger i, and by 0,-, r, G 3tm\ the

vector of joint angles and the vector of joint torque, respectively, of finger i. We define a

set of coordinate frames as follows. The reference frame of the system is Cp, which is fixed

to the hand palm. The body coordinate frame is C&, which is fixed to the mass center of

the object. At time t the local frame of the object at the point of contact with finger i is

C6,(t), which by our earlier convention is fixed relative to Cb. The reference frame of finger

i is Cfi, which is fixed to the last link of finger t, and the localframe of finger i at time t is

Cu(t), which is fixed relative to C/, and has origin at the point of contact with the object.

Let c0i(t) G S0 and c/,(r) G 5,- be the positions at time t of the point of contact of

the object with finger i relative to Cb and C/,-, respectively. Here, 50 denotes the boundary

of the object and 5,- the boundary of the last link of finger i. We assume that the contact

point relative to finger i occurs only over the last link. We will restrict our attentions to a

time interval I so that cot(<) belongs to a single coordinate system (v>>, Ul) of 50, and c/,(t)



belongs to a single coordinate system (<#[,#/) °f ^»» * = I>--^* The coordinates of cQi(t)

relative to (<^,£/£) will be denoted by uol(r) G ft2, and the coordinates of c/,(r) relative

to (v?J, Uf) by u/t(r) G ft2. Let </>t(t) be the angle of contact of the object at time t with

respect to finger i.

Let (u£, vy, v\) be the components oftranslational velocity ofCbi(t) relative to Cu(t),

and (wx, wy, w^) the components ofrotational velocity (to apply the results ofthe previous

section, let the object be objl, and finger t be obj2.). Since the local frames Cbi{t) and

Cu(t) share a common origin (i.e., r^ji = 0), we obtain from Proposition 1 the following

velocity constraint relation:

where

" K ]

vbi,p ' R*t o Vli,p +
v\

Ubi,p 0 R+.
w'«>

W'y
. wlg .

cos <j>i sin <f>i 0

R<t>i = —sin <j>i —cos 4>i 0

0 0 -1

(id

is the orientation matrix of Cw relative to C/;. Note that by the constraint equation of (4),

we have in (11) that v* = 0.

On the other hand, by Corollary 1, the velocity of Q,, is related to the velocity of

Cb by a constant transformation

vbi,p

wbi,p 0 Ki,b
vb,P
wb,p

= Ad -i
9bi,b

Vb,p
Wb,p

(12)

and similarly for finger i one has

vU,p

0 Rhi
vfi,P

wfi,P
= Ad -i

9ti,/i
Vfi,P

Wfi,P
(13)

Moreover, the velocity of the finger reference frame, C/,-, is related to the velocity of the

finger joints, 0,-, by the finger Jacobian,

vH,p

wH,p
= Ji(9i)0i. . (14)

Substituting (12), (13) and (14) into (11) yields the constraint equation relating



velocity of the object to the joint velocity of the fingers.

where

Ad -i
9bi.b

Jfi

Vb,p

wb,p
= Jfi&i +

0

<
wy
w\

0 R*
Ad i .Jiifii).

(15)

For a point contact with friction, a finger can exert linear forces upon the object

about the point of contact. Thus, only contact constraints in the directions of the transla

tional velocities can be re-enforced. When finger i contacts the object with a fixed point of

contact, substituting (5) into (15) yields the following specialized constraint equation

where

B\Ad-i
1 9bi,b

Vb,p
Wb,p

= B{Jfi9i,

B5 =

10 0 0 0 0

0 10 0 00

0 0 10 0 0

(16)

Note that if finger i is a soft finger as in (Salisbury [12]), which enables the finger to exert an

additional torque upon the object about the contact normal, or if finger i is rigidly attached

to the object as in (Zheng [13]), which enables the finger to exert all six components of

forces and torques upon the object, B\ can be modified accordingly as in (Li, Hsu and

Sastry [9]), and (16) still holds.

When finger i contacts the object with rolling constraint, the corresponding con

straint equation remains the same form as in (16), except that the contact coordinates uot(i)

and \ifi(t) are no longer stationary and evolve according to (9).

When finger i slides across the object, the corresponding constraint equation be

comes

B\Ad-i
1 9bi,b

Vb,p

Wb,p
= B\JSidi +

K
(17)

and the contact coordinates evolve according to (10).

We now examine briefly contact constraints in terms of contact wrenches. For a

contact model, let n,- denote the total number of independent contact wrenches that finger

i can apply to the object. For a point contact with friction, n,- = 3 (i.e., a force in the

10



normal direction and two components of frictional forces in the tangent directions) but for

a soft finger n; = 4 (i.e., in addition to the three contact wrenches of a frictional point

contact, a torque about the contact normal.). The resulting body wrench from applied

contact wrenches of finger i can be expressed as

fb
nib

= Ad1-i BiXi
9bi,b

(18)

where fb Gft3 is a linear force and me, Gft3 is a torque about the origin of Cb, and x; Gft"*'

is the magnitude vector of applied contact wrenches along the basis directions of Bi. For a

frictional point contact, x; is constrained to lie in the frictional cone AT,- specified by

Id ={xi Gftn',z,-,3 <0,x2(1 +xjti <fi2xl3]

where \i is the coefficient of static Coulomb friction. Note that when finger i slides across

the object, contact wrenches are restricted to the boundary dKi of the friction cone, given

by

8Ki ={xi Gftn'\x,-,3 <0,ar?tl +x\2 =/i2x2,3}.
By the Principle of Virtual Work, the joint torque required for maintaining static

equilibrium in the presence of contact wrench Xi G ft"*', is given by

Ti = JjiBiXi. (19)

Finally, for the hand manipulation system, we define by m = Et=i m»> the to

tal number of joints; n = £{Li n,-, the total number of constraints; 9 = (9[,...9tk)t, r =

(ri»—rJfc)' ^ ftm, respectively, the hand joint variable and the hand joint torque vectors;

B —diag(2?i,...2?fc) the basis matrix; x = (x^,..^^)1 Gft" the magnitude vector of contact

wrenches along the directions of B, and A* = K\ © ... © ATjk the force cone. Then, the

contact constraint equation (16) for both fixed points of contact, and rolling contacts can

be concatenated for i = !,...& to give,

where

Gl Vb,p
wbtP

= Jh9,

G= [Ad\' i ,...Adl , ]B and Jh = Btdi<Lg{Jfu..-Jfk}

is called the grip Jacobian and the hand Jacobian, respectively.

11

(20)



Force/Torque
Space

Velocity

Space

Joint Contact Object

J 1(e)

Jje)

Figure 3: Force/velocity transformation for a hand manipulation system.

It is important to observe that (1) for fixed points of contact G is constant, but J/,

is not necessary constant unless wl = 0. (2) For rolling contact both G and Jh depend on

the contact coordinates, which are not stationary.

The equation that relates the resulting body wrench to the applied contact wrenches

is

= Gx (21)fb
TRb

and the equation that relates contact wrenches to the required joint torques for maintaining

static equilibrium is

(22)T = JlhX.

The relations have been summarized in Table 1, while Figure 3 illustrates transfor

mation of forces and motion in a hand manipulation system. Note that the vector A G ft"

is called the contact velocity.

Force Torque Relations Velocity Relations

Body to Fingertip ' fb •
mb

= Gx \ = G< vb,P
wb,p

Fingertip to Joints T = Jl(9)x Jh(9)9 = A

Table 1. Force/velocity transformation for a robot hand system.

12



Remarks; (1) The null space of the grip Jacobian G, denoted as 77(G), is called the space

of internal grasping forces (Kerr [6]). Any applied finger forces in 77(G) do not contribute

to the motion of the object. However, during the course of manipulation a set of nonzero

internal grasping forces is needed to assure that the grasp is maintained. Both Kerr and

Roth ([6]); Nakamura et. al. ([11]) have presented detailed discussions on the optimal

selection of internal grasping forces.

The following dual definitions are now intuitive.

Definition 4 (Stability and Manipulability of a Grasp) Define a grasp by a multifingered

hand by Q = (G, AT, J/,) (see Figure 3). Then, for K —Rn we have:

1. The grasp Q, is said to be stable if, for every body wrench (/^mj)*, there exists a

choice of joint torque r to balance it.

2. The grasp Q, is said to be manipulable if, for every body motion (vj p, Wb,PY, there exists

a choice of joint velocity 9 to accommodate this motion without breaking contact.

Remarks; (1) A stable grasp has been called a force-closure grasp by Salisbury (1982). It

is important to note that stability is not to be understood in the sense of Lyapunov since

we are not discussing stability of a differential equation. (2) A manipulable grasp is called

a grasp with full mobility by Salisbury (1982).

Grasp stability and manipulability are now easily characterized for a given position

of the fingers by

Proposition 2 (1) A grasp is stable if and only if G is onto, i.e. the range space of G

is the entire ft6. (2) A grasp is manipulable if and only if R( Jh) D •#(£'), where R( •)

denotes the range space.

We remark that the conditions (1) and (2) superficially appear to be distinct, but

they are related. In particular, a stable grasp which requires zero joint torque to balance

a non-zero body wrench will be non-manipulable. Conversely, a manipulable grasp which

requires zero joint motion to accommodate a non-zero body motion will be non-stable.

Figure 4 (a) shows a planar two-fingered grasp, where each finger is one-jointed and contacts

the object with a point contact with friction. Clearly the grasp is stable and a force fy can

be resisted with no joint torques. But the grasp is not manipulable, since a y-direction

velocity on the body cannot be accommodated. Figure 4(b) shows a grasp of a body in

13



Figure 4: (a) A stable but not manipulable grasp, (b) a manipulable but not stable grasp.

ft3 by two three jointed fingers. The contacts are point contacts with friction. The grasp

is manipulable, though the object can spin around the y-axis with zero joint velocities 9.

However the grasp is not stable since a body torque r„ about the y-axis cannot be resisted

by any combination of joint torques.

In view of the preceding remarks, we will require a grasp to be both manipulable

and stable, i.e.,

J2(G) = ft6, and R(Jh) D R(Gl). ' (23)

Condition (1) suffers from the drawback that the force domain is left completely uncon

strained. As we have seen earlier that the forces are constrained to lie in a convex cone A",

taking into account the unidirectionality of the contact forces and finite friction al forces,

in which case the image of A' n R(Jh) under G should cover all of ft6. Thus, we have

Corollary 3 A grasp under unisense andfinite frictional forces is both stable and manip

ulable if and only if

G(K n R(Jh)) = ft6, and R(Jh) DR(Gl). (24)

4. Control Algorithms for Dexterous Manipulation

In this section, we develop control algorithms for dexterous manipulation. The objectives

for each of the manipulation modes are:

1. Coordinated Manipulation: Control the fingers, with fixed points of contact, so that

the object can be manipulated along a prescribed trajectory in 5£(3) while exerting

14



possibly a set of desired contact forces on the environment.

2. Rolling Motion: Control the fingers, with rolling contacts, so that the object can be

manipulated along a prescribed trajectory in S2?(3), while exerting a set of desired

contact forces on the environment.

We will first propose the control scheme for coordinated manipulation, and then

show that, after minor modifications, it also applies to rolling motion.

4,2 A Control Algorithm for Coordinated Manipulation

We assume that the desired trajectory of the object is

flO*) = (<P(<Mb,pW) € SE(3),t G[to,*/]. (25)

Since 50(3) is a three dimensional manifold, we may choose pitch-roll-yaw variables, or the

exponential coordinates to parameterize it. Let <f>b,p = (<£i, 02,03)' be one of these locally

nonsingular parameterization. Then, we can express a trajectory of the object in terms of

the parameterization variables

<76,p(*) = Kp(*M&,P(<M<))) e SEW>

and the body velocity in terms of the derivatives of the parameterization variables

vb,P

wb,P
= U{n,P,4>b,P) rb,P

0*>,p
(26)

Clearly, U(rb,p,<pb,P) is a nonsingular 6x6 matrix. Differentiating (26) with respect to time

t, yields the acceleration relation

vb,P
Wb,p

= U(rb,P, <t>b,P)
rb,p

0b,p
+ U(rb,p, 4>btP)

\b,p

06.P
(27)

Note that to realize a desired trajectory of the object it is important that contact

constraints be retained. On the other hand, validity of the contact constraints depends on

if a proper set of internal grasp forces can be maintained. Thus, the second goal of the

control algorithm is to regulate the internal grasp force to the following desired value

xdo(t)er)(G),t€[t0,tf], (28)

where 77(G) is the null space of G. For fixed points of contact G is time independent, and a

set of constant internal grasp forces suffices to guarantee contact constraints. Nevertheless,

one may choose xjj(t) to realize any other criteria.

15



We now proceed to formulate the control algorithms with (25) and (28) as our

objectives.

From Section 3, the finger joint velocity 9 and the object velocity (w^p,*^)' are

related by the following constraint equation

_ ntJh{9)9 = G Vb,p

wbtP
(29)

(29) is valid regardless of rolling or fixed points of contact. Differentiating (29) with respect

to time t, yields the following acceleration constraint equation

MO)!+ Jh(B)i = & Vb,P
WbtP

+ & V6,p

Wb,p
(30)

Note that for fixed points of contact G is constant and the second term to the right hand

side of (30) vanishes.

We will need the following assumption about the grasp.

Al. The grasp is both stable and manipulable.

Generation of object/finger trajectories so that assumption (Al) can be satisfied is

discussed in (Li, Canny and Sastry [7]).

By Assumption (Al), we have that R(Jh) D R(Gl) and we may express the joint

acceleration 9 in terms of the object acceleration by

9 = J£G1 vb,p

Wb,p
+ KG* vb,p

WbtP
- J+Jh9 4- 90. (31)

Here j£ = Jlh(JhJh)~l is the generalized inverse ofJh, and 9q € n(Jh) is the internalmotion

of redundant joints not affecting the object motion.

Remarks: (1) Using (31) will lead to a control algorithm in the task space. But if we

express the object acceleration in terms of 9 by

vb,P

^,p
= (GGt)~1G [Jh9+ ih6-& vb,P

wb,P

a control algorithm in the joint space of thefingers can be developed. (2) When J/, is square,

its generalized inverse j£ is just the usual inverse, and 90 disappears from (31). This also

implies that the joint motion is determined uniquely by the motion of the object.

The dynamics of the object are given by the Newton-Euler equations

(32)
771 0 Vb,p

+
Wb,p X mvb,p fb

0 1 wb,p wbtP XIwb,p mb
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where m G ft3*3 is the diagonal matrix with the object mass in the diagonal, J G 9ft3x3 is

the object inertia matrix with respect to the body coordinates, and [/£,m£]' is the applied

body wrench in the body coordinates which is also related to the applied finger wrench

x G ftn through

Gx =
fb
m.b

(33)

Notice that gravity and interaction forces from the environment can always be added to the

right hand side of (32), and corresponding contact wrenches will be generated to counteract

them.

Assumption Al also implies that G is onto, and we can solve (33) as

= G+ fb
7Ub

+ z0, (34)

where G+ = G^GG1)'1 is the left inverse of G, and x0 G 77(G) is the internal grasping

force. The second control goal is to steer the internal grasping force x0 to the desired value

4M € rj(G).

Combining (32) and (34) yields

= G+
771 0

0 X

Vb,P

Wb,p
+

wb,p x rhvbtP
Wb,p X Iwb,p

The dynamics of the ith finger manipulator is given by

Mi(9i)9i + Ni(9i,9i) = Ti - Jt(9i)BiXi.

+ xt (35)

(36)

Here, as is common in the literature, M,(0,) G 3?m''Xm'" is the moment of inertia matrix of

the ith. finger manipulator, Ni{9i,9{) G ftmf is the centrifugal, Coriolis and gravitational

force terms, 77 is the vector of joint torque inputs and J?,-!,- Gft6 the vector of applied finger

wrenches. Define

Mx{$i)

M(9) =

0

,N(9,9) =

Mk(9k) J

Then, the finger dynamics can be grouped to yield

M{9)9+ N(9,9) = r- J'h(9)x.

Ni(0uii)

and r = (37)

. Nk(9k,0k) . 7-Jb

(38)

The control objectives are to specify a set of joint torque inputs r so that both the

desired body trajectory (25) and the desired internal grasping force (28) can be realized.

17



The first main theoremof the paper is the following control algorithmforcoordinated

manipulation by robot hands with non-redundant fingers .

Theorem 2 Assume that (Al) holds and the fingers are non-redundant, i.e., mi = n,, for

i —1,...k. Denoting the position trajectory tracking error by ep G ft6, and the internal

grasping force error by ej Gft6,

ep(t) = rb,PW
06,pM

<P(t)

Then, the control law specified by (40) realizes, with fixed points of contact, not only the

desired trajectory of the object but also the desired internal grasping force.

<mdej(t) = x0(t) - i„(t).

t = N(9,9) + JlhG+

+ JU4-Ki jes) +MhU

vJb,P X mvbfP
Wb,p X Iwb,p

-M(9)J£lJh9 + MhU

- Kvep - Kpep\,

where

r*n.p
4>db,P

Mh = M(9)J;lGt + JthG+

and K[ is a matrix such that the null space of G is A*/-invariant.

771 0

0 1

Note that

GJ^Mh = GJ^M{9)J^Gl +

is called the generalized inertia matrix of the hand system.

Remark: The first four components in (40) are used for cancellation of Coriolis, gravita

tional and centrifugal forces. These terms behave exactly like the nonlinearity cancellation

terms in the computed torque control for a single manipulator; the term J^x^- A'/ / ej) is

the compensation for the internal grasping force loop, and the last term is the compensation

for the position loop. We will see in the proofthat the dynamics of the internal grasping

force loop andthat of the position loop are mutually decoupled. Consequently, we can design

the force error integral gain Kj independently from the position feedback gains Kv and Kp.

Proof.

The proof is very procedural and straightforward. First, for nonredundant fingers

with fixed points of contact, internal motion of the fingers reflected by 90 in (31) disappear

and G is constant. Thus, the acceleration constraint equation (31) simplifies to

771 0

0 1

flW^G* Vb,p

Wb,p
-JhlJh9.
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06.p

(39)

(40)

(41)

(42)



Substitute (42) and (35) into (38) we have

771 0

0 J

Vb,p

Wb,p
+ G+

Wb,p x mvb,p

Wb,p x Twb,p
-Jix

Linearizing (43) with the following control

T= N{9,9) + JlhG+

where t\ is to be determined, we have that

v)b,P x mvblP
wb,p XIWb,p

or

771 0

0 I }

-1 T-M(9)Jj;1Jh9 + Tl

<P
Wbyp

= rl - ^h^o,

Mh Vb,p

wb,P
= n - Jix/l^O-

Substitute (27) into the above equation, we have

Mjtf
h,P

06,P

Further, let the control input T\ be

+ tf *>,p
06.P

= n- JhX0.

(43)

(44)

(45)

(46)

n = AffcCT-
0d

- A'„ep - A*pep > -f MhU
vb,p J

and apply it to (46) to yield:

h,P

06,p
+Jth(xd0-KIJef} (47)

MhU{ep +Kvep +Kpep} =-Jlh{es +Kt Je,).
Multiply (48) by GJ^', we obtain the following equation.

GJ^MhU{ep +Kvep +A>p} =-G(e/ +KrJef) =0
where we have used the facts that 77(G) is constant and the internal grasping forces lie in

the null space of G, i.e.,

G{ef +KIJef) =0. (50)
rr> O 1

Since GJ^Mh = GJ^tM(9)J^lGt 4- _ is positive definite and U is non-singular,

(49) implies that

ep + A\,ep + A'peP = 0. (51)

Thus, we have shown that the position trajectory tracking error ep can be driven to zero

with proper choice of the feedback gain matrices Kv and A"p.
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The last step is to show that ej also goes to zero. If we substitute (51) into (48)

and notice that Jh is nonsingular, we have the following equation.

ef +KIJef =0. (52)
With proper choice of A"/, the above equation implies that the internal grasping force error

ej converges to zero.

Q.E.D.

Theorem 2 provides a control law for coordinated manipulation by robot hands with

non-redundant fingers. This implies that, for a point contact with friction, each finger of the

hand has exactly three joints. But, in many industrial applications, several robots which

often have more than three degrees of freedom are integrated to maneuver a massive load,

or to perform a sophisticated task. Under the point contact model assumption the system

has redundant degrees of freedom. It is desirable to have a control law that works for a

robot hand with redundant degrees of freedom.

The control law of Theorem 2 can be modified for this purpose.

Corollary 4 For a robot hand with redundant degrees of freedom, i.e., mi > n,-, i = 1, ...&

assume that assumption Al holds. Then, the control law given by (53) will realize both the

desired object trajectory and the desired internal grasp force, with fixed points of contact.

T= N{9,9) + JlhG+ wbfP X rhvb<p
Wb,p X Iwb,p

- MJ+Jh9 + MJ+{JhM-'J*x)MhU

rr &

MJ+iJnM-'JlXxi - Kife,) + MJJt(JhM-lJ'h)Mh

rb,p

4>b.P
+

where

Mh = (JhM-1J'^G' + G+

4.2 A Control Algorithm for Rolling Motion

Controls for dexterous manipulation with rolling constraints have been studied in (Cole,

Hauser and Sastry [2]), and (Kerr [6]). Here, we modify Theorem 2 to give a control law

for rolling motion. The main difference of rolling motion from coordinated manipulation is

that the grip Jacobian G, which depends on the contact coordinates given by (9), is time

20
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0 I

b,p

ip J0d
— l\.v€p — l\.p€p >,

(53)

(54)



varying. Consequently, the null space of G(t), denoted by V(t) C ftn, is also time varying.

In general e/(r) = x0(t) —xd(t) GV(t) does not imply, unless V(t) is time independent,

that /J ef(r)dr GV"(r), nor ej(t) GV(t). Thus, we can not introduce dynamic feedback in

the force loop, as we did in Theorem 2, to create linear force error equation. But,

G{t)ef(t) = 0 implies that G(t)ej(t) + G(t)e/(t) = 0. (55)

Lemma 1 Consider the following differential equation

x(t) = A(t)x(t). (56)

Let fi(A(t)) = Xmax(Am(t) -rA(t))/2 be the matrix measure of A(t), where Amax stands for

the maximum eigenvalue value. Then,

HOII<W«o)||exp/V(A(r))di

In other words, if f*(A(t)) < 0,Vt, and A(t) is sufficiently slow time-varying, then, the

system (56) is exponentially stable.

Proposition 3 Assume that Assumption (Al) holds for a robot hand with non-redundant

degrees of freedom. Then, the following control law, along with the kinematic equations of

contact given by (9), realizes both the desired position trajectory and the desired internal

grasp force, for rolling contacts.

t = N(9,9) + J'hG+

+ Jlh(xd0 - e,/6 - G+Gef/6) + MhU<

where

wb,p x mvb,p

Wb,p x lwb,p
r-l f-M(9)J^Jh9 + MhU rb,p

06.P

6.p

0?
- A\,ep - A*pep*-p (•>

b,P J

Mh = M(9)J;lGt + JthG+

and 6 is a sufficiently large number so that the force error equation can be made to be

exponentially stable.

Note that in order to compare the control law with that of Theorem 2, we have underlined

the terms which are different here.

Proof.
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0 I

-\M+ M(9)J^lG vb,P

wb,p

(57)

(58)



The proof is very similar to that of Theorem 2 and an outline of it is given here.

Under rolling constraints, (31) becomes

§=J£l<? ^>,p
wbtP

+ KlG vb,P

wb,p
- Jh Jh9. (59)

Substitute (59) and (35) into the system dynamic equation (38) and linearize the resulting

equation with the appropriate terms in the control inputs (57), we get

Mh Vb,p

Vb,P
- n - JhX0. (60)

Substituting (27) into the above equation and applying the rest of the control inputs yield

Mh{ep +Kvep +Kpep} =-J'h{ef +ef/6 +G+Ge//<$}. (61)

Multiply (61) by GJ^1 and notice that because

Gej = 0, and (Ge/ 4- Gef)/6 = 0.

we have

G(e/ + ef/6 + G+Gef/6) = 0

which implies that

ep 4- A'vep + A"pcp = 0. (62;

This shows that the position error goes to zero. On the other hand, substituting (62) into

(61), and using the fact that J^ is of full rank, we conclude that

(6I + G+G)ef + ej = 0. (63)

Let -4(r) = -(614- G+G). It is easy to see that by choosing 8 sufficiently large, n(A(t)) is

negative for all t G [*o>*/]- Consequently, by Lemma 1 force error e/ also goes to zero.

Q.E.D.

Combining Proposition 3 with Corollary 4 produces a control law for rolling motion

by a robot hand with redundant degrees of freedom.
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Figure 5: A two-fingered planar manipulation system.

4.3 Simulation

Consider the two-fingered planar manipulation system shown in Figure 5, where the two

fingers are assumed to be identical. We model the contact to be a point contact with

friction. Let the object width and the finger spacing be 2 units. The grip Jacobian and the

hand Jacobian are

G =

and

where

Ji =

and

J2 =

cos a — sin a

sin a cos a.

— cos a sin a

— sin a — cos a

-1 0 1 0

0-10 1

0-10 -1

=

' Ji 0
0 Ji

- sinflu - sin(9n 4- 9u) - sin(0n 4- 0i2)
cosflu + cos(0n 4- 9\2) cos(0n 4- #i2)

- sin 02i - sin(02i - 922) sin(02i - 022)
COS 021 + COS(021 - 022) - COs(022 + #22)

The grasp will be stable and manipulable for the object along the following trajectory

x(i) = ci sin(r), y(t) = ci + ci cos(t),a(r) = C3 sin(t).

With the control law of Theorem 2, we have simulated the system using a program designed

to integrate differential equations with algebraic constraints. Figure 6 shows that the initial

position error diminishes exponentially as predicted by (51).
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Figure 6: Position error from simulation.

5. Conclusions

In this paper, using the basic building blocks developed by previous investigators, we have

formulated the kinematics of a multifingered robot hand system. For finger contact with

an object, we have classified three types of useful contacts and developed control laws for

dexterous manipulation by a robot hand under these contact constraints. We have shown

that the control laws realize not only the desired position trajectory of the object, but also

the desired internal grasp force.
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