

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A CIRCUIT DISASSEMBLY TECHNIQUE FOR

SYNTHESIZING SYMBOLIC LAYOUTS

FROM MASK DESCRIPTIONS

by

Bill Lin

Memorandum No. UCB/ERL M89/21

27 February 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A CIRCUIT DISASSEMBLY TECHNIQUE FOR

SYNTHESIZING SYMBOLIC LAYOUTS

FROM MASK DESCRIPTIONS

by

Bill Lin

Memorandum No. UCB/ERL M89/21

27 February 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

A new tool called a circuit disassembler has been developed to transform a mask-level layout

into an equivalent symbolic layout. This technique has been implemented in a program called

KAHLUA that can handle mask layout containing arbitrary Manhattan geometries. Circuits

designed using physical layout systems can be disassembled automatically independent of the

circuit technology into a symbolic environment. Once converted, the disassembled cells can be

manipulated further by any existing symbolic design or verification tools. In particular, these

cells can be automatically remapped for a new technology. Our formulation of the problem

consists of two major stages: device extraction, and net decomposition. In the first stage, the

transistors and contacts are extracted from the layout to form leaf cells. In the second stage a

set of symbolic wires is derived from the remaining interconnect geometry.

Acknowledgments

I would like to acknowledge members of the Berkeley CAD group for their support during the

course of this work - I wish to especially thank Dr. Ulrich Lauther for his assistance during

his stay Spring semester of 1986 at Berkeley, Peter Moore for his early work with artwork

analysis routines, Jeff Burns for his work with SPARCS and his patient help with tool integra

tion, and Srinivas Devadas for reviewing this report and the many stimulating conversations

we've had about various research topics.

I would like to thank my research advisor A. Richard Newton for suggesting the project

and providing support throughout the course of this work, and I would like to thank Professor

Carlo Sequin for being my second reader and for taking the time to read this report carefully.

Both Professor Newton and Professor Sequin gave me many helpful suggestions for improving

this report

This research was supported in part by DARPA under contract N00039-83-C-0107, by

the Hughes Aircraft Company, and by the Digital Equipment Corporation. Their support is

gratefully acknowledged.

Contents

1 Introduction 1

2 Symbolic Layout 5

2.1 Existing Symbolic Layout Systems 7

2.1.1 Cell Level Compaction , 7

2.1.2 Hierarchical Compaction 9

2.2 A General Hierarchical Representation 10

2.2.1 Protection Frames 10

2.2.2 Terminal Frames 11

2.2.3 Hierarchical Objects 13

3 The Circuit Disassembly Problem 14

3.1 Formulation of the Problem 15

3.2 Layout Extraction Techniques 16

3.2.1 Bin Based Methods 17

3.2.2 Tree Based Methods 18

3.2.3 Comer Stitching 19

3.2.4 A Planesweep Algorithm 20

3.3 Routing Algorithms 22

3.3.1 Wave Propagation Method 23

3.3.2 Line Search Method 24

3.3.3 Pattern Matching 25

3.4 Issues in Circuit Disassembly 26

4 KAHLUA: A Circuit Disassembler 28

4.1 Overview 29

4.2 Device Extraction 30

4.2.1 Extracting Transistors 30

4.2.1.1 RepresentingNon-LinearTransistors 31

4.2.1.2 KAHLUA'S Representation of Non-LinearTransistors 34

4.2.2 Extracting Contacts 35

4.3 Net Decomposition 36

4.3.1 Alternative Approaches to the Net Decomposition Problem 37

4.3.2 KAHLUA'S Approach to the Net Decomposition Problem 39

4.3.2.1 Global Partitioning 41

4.3.2.2 The Routing Procedure 41

4.4 Disassembling Hierarchical Designs 45

4.5 Experimental Results 48

5 Circuit Extraction For Symbolic Layout 52

5.1 Circuit Models 53

5.2 Information Extracted 55

5.3 Examples 57

6 Conclusions 59

A Manual Pages 64

in

Chapter 1

Introduction

Full custom physical design systems have been used extensively for the layout of VLSI circuits

(eg. [Ous81,Kel82a,Ous85]). Such systems represent the circuit as a collection of geometric

objects (rectangles, polygons, etc.) at the mask layout level. A serious drawback of describing a

design only at the mask-level is that once a cell has been designed, it is generally very time-

consuming to modify the layout, even for minor changes in design rules. Many of the difficulties

stem from the fact that even seemingly small changes to a mask layout can have dispropor

tionately large effects. These effects occur because area is at a premium, so cells are designed

with little room to spare. Hence, when anything in the cell moves or gets bigger, its neighboring

information must be moved as well, so as to ensure that the layout rules are satisfied. Modifying

mask layouts is a tedious and error-prone process. Simply performing a uniform "shrink" to

accommodate new design rules is usually very area inefficient. But more importantly, it does not

work in advanced technologies due to non-linear scaling effects.

Because of the large investment in design time involved in the design of highly optimized

VLSI circuits, it is important that such effort is not wasted when design rules change. For exam

ple, it would be quite desirable to be able to reuse existing cell libraries for new process

technologies. For high-performance, high-volume, circuits (eg. advanced microprocessors) that

are extremely expensive to develop, it is critical that such designs be able to migrate through a

numberof process improvements over their lifetime. In addition, because of the evolutionof the

ASIC market, multiple-source "foundries" have become essential for many companies. This

requires that a component be retargetable for different fabrication processes. If all circuits are

designed with technology remapping in mind at the outset, data structures can be used to aid in

this process. However, there are many designs that have been developed at the mask-level that

the designers would like to be able to map to new technologies.

One solution to technology independence is through the use of symbolic layout systems

[Lar71,Cho77,Hsu78,Dun78,Wes81,Bur86,Boy87]. These symbolic layout systems promise to

overcome some of the problems associated with technology dependence by maintaining explicit

connectivity and structural information about the the circuit. These systems areusually accom

panied by a compaction tool that allows the designer to be more concerned with actual design

rather than detailed mask artwork. Because structural information is stored explicitly, symbolic

layouts can easily be converted to final layout wheneverthe process layout ruleschange. In addi

tion to the advantage of technology independence and design flexibility, there are many CAD

applications that rely heavily on the existence of explicit connectivity information for carrying

out their objectives. Forexample, the task of generating input forcircuit simulation is simplified

considerably when extracting from a symbolic format - the only task involved is the computation

of parasitics since the connectivity information is storedexplicitly.

Despite the advantagesof symbolic layout, there is still considerable resistance in the indus

try to use symbolic design systems. In part, this is because most companies have already

expended tremendous investments in the use of mask-level systems. Since mask layout systems

have been used extensively in the past, there are many existing circuit layouts and library cells

available in these environments. Particularly important are libraries of standard cells, datapath

slices, and module generator templates, which can potentially be re-used in new designs. How

ever, these cells must be converted in order to fully integrate them into a symbolic design

environment

In this report, anew technique called circuit disassembly is introduced. This technique is

used to synthesize equivalent symbolic layouts from mask-level descriptions and has been imple

mented in a technology-independent program called KAHLUA that can transform layouts con

taining arbitrary Manhattan geometries into a symbolic format. Once mapped into symbolic

form, these cells can be parameterized for new technologies and can bemanipulated by avariety

of existing symbolic design and verification tools. In practical circuit examples, we have obtained

good results within modest execution times. An additional feature of KAHLUA is its ability to

disassemblehierarchical designs, as described in laterchapters.

Our approach begins with acollection of mask-level polygons associated with the different

mask layers. The actual meaning of the mask layers isdefined bythe user and thus is independent

of the particular technology. From these mask geometries, transistors and contacts are derived to

form leafcells in thesymbolic layout Theremaining interconnect geometries are then converted

into symbolic wires for connecting the leaf instances. While this process is similar to net list and

parasitic extraction, the final output of the analysis isa symbolic layout which can beinverted to

re-generate the mask layout data. There are many problems associated with maintaining the

geometric form of the original layout that arise during this transformation that are not present in

the case of extraction. For example, to decompose a diffusion polygon, used to interconnect mul

tiple transistors, general area routing techniques are used. The eventual result of the analysis isa

complete symbolic design suitable for use in a symbolic design system without further manual

modification.

The procedure described in this report is targeted for digital CMOStechnologies. However,

the algorithms presented canbe extended to operate on othertechnologies.

The organization of Otis report is as follows. In me next chapter, an overview of symbohc
lay0ut is presented. Chapter 2is avery important chapter because it describes the symbolic lay
out representation used for the circuit disassembly procedure. To alarge extend, the prem.se of
our work is set by the features and limitations of this representation.

in Chapter 3. aformulation of the circuit disassembly problem is presented, along with a
Hussion of some of the inherent diff.culties.me problem of circuit disassembly is formulated
as two separate but related problems, namely, device extraction and net decomposition. The pu,
pose of the device extraction procedure is to extract transistor and contact information from the
mask description in onier to generate symbolic circuit elements. After the circuit element have
been created, the net decomposition procedure is invoked to derive symbolic wires from the
^aininginrerconnect geometry that isn^^^

rithms for solving these problems are also presented in this chapter.
to Chapter 4. Ote implementation of the program KAHLUA is described. In particular.

KAHLUA uses extraction and routing techniques described in the two previous chapters to
cement the circuit disassembly procedure. The application of these algorithms and specal
considerations specific to the circuit disassembly problem are presented. Fatally, experimental
results are presented on various examples.

An important advantage of symbolic layout is that certain CAD problems are simplified
wnenthe input description is already in the symbolic form. For example, the task of conveninga
.ayout description into an electrical network suitable for circuit simulation is greatly simphned
starting from asymbolic representation since explicit circuit elements and connectivity are
already known. Asimple circuit extractor is described in Chapter 5.

•n* ideas and results presented in this report are summarized in Chapter 6. Suggestions for
future work are also given.

Chapter 2

Symbolic Layout

The increasing complexity of Very Large Scale Integrated (VLSI) circuits has made the used of

computer aided layout tools for capturing custom designs anecessity. Traditionally, custom lay

outs are generated using mask-level layout system. The user enters the design via agraphics edi

tor for drawing boxes and polygons. These mask-level layout systems have been used exten

sively in the industry for the layout of VLSI circuits since the mid 1960*s. For example, com

mercial systems from CALMA and Applicon have been inusesince 1965.

Although mask-level layout systems are still widely used today, generating custom layouts

using these systems is a tedious and error prone process. Once the artwork is captured, it is usu

ally very time consuming tomodify the layout even for minor changes. For major changes such

as new design rules, it is usually infeasible to modifylarge mask-level designs manually.

The use of abstractions, or symbols, to represent components (eg. transistors and contacts)

of a circuit can help reduce the complexity of the design process. In the symbolic layout design

style, designers create full custom layouts using symbolic circuit elements and wires rather than

actual maskgeometry. Thus, some of pains associated withmask-level details are alleviated.

Symbolic design has been in use since the early 1970's [Larsen71]. Since then, the sym

bolic layout design style and methodology has evolved considerably. In most ofthese symbolic

design systems, a spacing procedure is integrated for translating the symbolic layout to the

mask-level. The purpose ofthe spacing tool is two fold. One is to generate adesign rule correct

mask description given aprocess technology. This capability simplifies the design task since the

designer does not have to worry about design rule correctness when creating the layout, which

can be quite tedious. The second purpose is to compact the design such that the layout is as small

as possible without violating any design rules for the target IC process. This is accomplished by

relocating the circuit elements so that unnecessary empty space is eliminated.

Over the years, anumber of symbolic design systems have been developed. These systems

can be classified by the way they represent the layout and their compaction method. In this

chapter, various existing symbolic design systems are reviewed. In particular, their layout

representation and compaction methods are examined. They can be classified into four categories:

fixed grid systems, virtual grid systems, relative grid systems, and hierarchical systems. The

algorithms presented in this report can be used to synthesize symbolic layouts in any of these

representations. The hierarchical representation is the most general and complicated to syn

thesize. It will be described in much greater details at the latter part of this chapter. This

representation sets the basis for the circuit disassembly procedure presented in this report.

2.1 Existing Symbolic Layout Systems

2.1.1 Cell Level Compaction

Earlier systems were based on fixed grids. These systems have been inuse within industry since

the early 1970's [Lar71]. The spacing in these systems is between grid lines rather than circuit

elements. In fixed grid systems, the worst case design rule is used toset the spacing between grid

lines uniformly. Significant area can be wasted as aresult. The SLIC program from AMI [Gib76]

and the MASKS system from Rockwell International [Laf78] are examples of these earlier sys

tems.

Virtual grid systems were later introduced to address some of the limitations from the fixed

grid approach. Like the fixed grid approach, symbolic circuit elements are placed at grid loca

tions. In a virtual grid layout, the relative placement of the circuit elements is determined by

their location onthe input grid. This grid serves only to delineate the relative ordering of the cir

cuitelements. The spacing between grid lines is dependent on the actual spacing required by the

circuit elements on the grid lines. Different pairs of adjacent grid lines may have different spac

ing. Therefore, the spaced grid lines may not beuniformly distributed. The resulting compacted

layout is more dense than could be attained with fixed-grid layout. One major disadvantage of

virtual grid systems is that the circuit elements originally placed on a single grid line will remain

aligned after compaction whether theyneed be ornot. This restriction can potentially costa not

able amount of wasted area that could otherwise be removed via a more general compaction

method. Hence, a layout density penalty may be incurred. The MULGA system [Wes81]

developed at BellTelephone Laboratories is an example of a virtual grid system. Another not

able system is the VIVID system [Rog83] developed at the Microelectronic Center of North

Carolina (MCNQ. Even today, these and other reported systems are being used to design

integrated circuits.

Relative grid systems are yet more flexible than their virtual grid counterparts. In these sys

tems, the circuit elements are not restricted to lie on some arbitrary grid lines. But rather, com

paction strategies have been developed to exploit the additional empty space byallowing the cir

cuit elements to slide pass each other. The final spacing is determined by spacing rules between

circuit elements rather than grid lines. In principle, true relative grid systems should produce lay

outs with the densest areas.

One of the first systems to use the relative grid method is the FLOSS program from RCA

[Cho77]. Another system that uses arelative grid model isthe STICKS program developed at the

Hewlett Package Company [Wil78]. This program compacts the symbolic layout by starting

from one side of the layout and sequentially placing elements as far tothe side as possible, given

the positions ofthe previously placed elements and the spacing rules on different mask layers.

The CABBAGE system [Hsu78] developed at Berkeley used the critical path method

(CPM) to compute the locations of the circuit elements. The CPM approach has the advantage

that it can handle other more complex constraints than simple minimum distance rules (eg. max

imum distance). A more recent relative grid system is the DASL system [Boy87] developed at

Bell Communications Research. In the DASL system, the design is captured using a "virtual

grid" like editor, but ignores the virtual grid lines during compaction. The internal data structure

is a sparse matrix where explicit pointers are stored between adjacent circuit elements. There

fore, searching through the data structure is very fast. Like the STICKS system, the compaction

procedure inDASL compacts asymbolic layout bystarting from one end to the other while plac

ing elements as close together as possible.

Other relative grid systems include the SLIP and SLIM systems described in [Dun78] and

[Dun801, respectively. In these systems, critical path analysis, similar to the method used in

CABBAGE, is used along with a local-compaction method for spacing the layout.

8

2.1.2 Hierarchical Compaction

There are two common ways of supporting hierarchy in symbolic design systems. The first is to

treat flat design and hierarchical design as separate problems. These systems have a different

representation for the cell level design and the block level design. The compaction at the cell

level is also handled differently than at the block level. These compactors are typically referred

to as cell compactors and block assemblers, respectively. At the cell level, circuit elements such

astransistors and contacts are hard-wired into thesystem. Hence cell compactors can makeuseof

this special information in the spacing procedure. However, these cell compactors cannot be used

tocompact black boxes along with cell level elements such as transistors. At the block level, the

representation and compaction techniques are tailored for handling hierarchical objects, such as

macro cells, rather than cell level circuit elements.

For example, in the MULGA system, avirtual grid compactor isused tooptimize layouts at

the cell level. At the block level, clusters of cells are assembled by abutting them together.

These blocks are then forced to be pitch-matched to maintain connectivity.

An alternative paradigm is to treat cell level objects, such as transistors and contacts, in the

same manner as hierarchical objects, such as macro cells. Thus, no distinction is made whether a

design is flat or hierarchical. A generic abstraction can then be used to represent the design at all

levels of the hierarchy. This is the approach taken by the PYTHON [Bal82] and SPARCS

[Bur861 systems. These systems are based on a general constraint mechanism for representing

spacing relationships between objects. These objects have a generic abstraction regardless of

what the object is. Therefore, these systems can beused to represent and compact circuits other

than digital CMOS. In the PYTHON system, the ideas of protection frames and terminal frames

were introduced. The protection and terminal frames can be automatically generated using an

abstraction tool [Moo82]. These frames are used to represent the interior of the object and the

legal connection area, respectively. Relationships between objects can be specified in terms of

minimum constraint andmaximum constraint. The compaction step is performed using a general

critical path analysis procedure.

The system SPARCS is the successor to the PYTHON system. The fundamental represen

tation and compaction method are very similar to PYTHON'S. However, several new features

were added. One is the ability to detect overconstraints quickly. Another is the ability to

represent and handle active constraints. Active constraints can be used to represent as functions

of other constraints. This can be used to maintain symmetry between objects during compaction.

For example, symmetry may benecessary for compacting analog circuits.

2.2 A General Hierarchical Representation

The circuit disassembly procedure described in this report is intended to be used with the

SPARCS symbolic design system. Therefore, it must support hierarchical designs in a general

object oriented representation environment. However, the algorithms presented can be used to

synthesize symbolic layouts in other symbolic representations. In this section, the symbolic lay

out representation used in the SPARCS system is described in greater details. In particular, the

concepts of protection frames, terminal frames, and hierarchical objects are elaborated.

2.2.1 Protection Frames

Protection frames are used represent a simplified interface abstraction of acell. In compaction,

for example, protection frames may be used to abstract away some unnecessary details of acell

for compacting at the next level of the hierarchy. Protection frames may be defined as a single

polygon or as anumber ofpolygons corresponding to the mask layers. The only restriction isthat

the protection frames must contain all the geometry inside them. The geometry inside a protec

tion frame is "protected" against interaction withother geometry onthe same mask layer.

10

For example, the protection frame might simply be a single bounding box of the cell.

Although it is easy and efficient to derive, a single bounding box does not provide a true

representation of the internal geometry that it bounds. A more general model is to bound the

geometry with bounding rectangular polygons on aper-layer bases. This is in fart what isdone

in PYTHON and SPARCS. The rectangular polygon approach appears to be a good tradeoff

between simplicity andefficiency. ,

For example, the protection frames for aMOS transistor might beapolysilicon frame and a

diffusion frame corresponding to the size of the active area.

2.2.2 Terminal Frames

The complement to protection frames is terminal frames. The terminal frames define the allow

able area of interconnection for the cell object One of the key differences between terminal

frames and other simpler symbolic representation is that wire connections can bemade anywhere

along the terminal area rather than just a single point connection. However, the wire must ter

minate within the boundaries of the terminal frame. This added flexibility is most apparent in the

case where the terminal frame is much wider than the width of the wire. In which case, the com

paction program can take advantage of this by sliding the wire along the terminal area for max

imum density. Another feature is the ability to connect more than one wire to the same terminal,

which may be difficult to do in point-based terminal representations.

In the PYTHON and SPARCS system, the definitions of terminal frames have two restric

tions. One is that at least one edge of the terminal frame must be coincident with a protection

frame edge. The second restriction is that the terminal frames mustbe defined in terms of a sin

gle rectangle. At present, PYTHON and SPARCS onlysupport single rectangle terminal frames.

The issue of complex terminal frames is a difficult one. Ideally, rectangular polygon termi

nal frames should be supported. One way to represent polygon terminal area is simply by several

11

non-overlapping rectangle terminals. For example, in Figure 2.1, the polygon terminal region is

represented with three rectangle terminals. One disadvantage of this approach is that the wire

connected to one of these terminals is only free to move within that particular terminal area.

However, if the wire is free to move along the entire polygon terminal area, then potentially

denser results can be achieved. Another problem with representing rectangular polygon terminal

frames with only box terminals is that awire cannot beconnected to the entire polygon terminal

area with asingle connection. Therefore, the width of the wire is limited by the width of box ter

minal that it connects, asshown in Figure 2.2. InICdesign, it is often desirable to connect asin

gle wire the width of the polygon terminal area to the polygon terminal. However, this would

require the representation of both polygon terminal frames and wires with "jagged" ends. This

limitation makes representing non-linear transistors translated from mask layouts extremely

difficult, as examined in greater details in Chapter 4. To be fair, the complex terminal frame

problem is notunique to this symbolic layout representation. Most systems simply do not allow

circuit elements with rectangular polygon terminals, or they have ad hoc ways of representing

them with similar limitations.

HE

K—N> 1
Figure 2.1: This figure shows the spacing savings possible resulting from the use of complex
terminal frames. Potentially denser results can be obtained if a wire is free to movealong theen
tire polygon terminal area ratherthana box terminal area.

12

Figure 2.2: This figure shows the difficulty with connecting awire tothe entire polygon termi
nal area using only a single connection.

2.2.3 Hierarchical Objects

The concepts of protection and terminal frames combine together to form the basis of a general

hierarchical representation. From the point of view of the compactor, objects are defined in terms

of their protection and terminal frames, and hence, nodistinction is made whether the object is a

simple transistor ora complex macro cell. Thus, hierarchical objects are represented and treated

in the same manner as cell level objects. Symbolic wires are used to interconnect these generic

objects. During compaction, these objects are relocated to minimize area while satisfying aset of

complex constraints. The symbolicwires are thenreadjusted accordingly.

13

Chapter 3

The Circuit Disassembly Problem

In this chapter, the problem of circuit disassembly is presented. The problem of circuit disassem

bly is defined in the next section and then a formulation of the circuit disassembly problem is

presented inSection 3.2. In particular, the circuit disassembly problem can be cast inthe form of

other CAD problems, namely circuit extraction and routing. The elegance of the formulation

stems from the synergy of these steps. The following two sections are dedicated to reviewing

previously developed techniques for solving the extraction and the routing problems.

Finally, in the last section, the issues involved in circuit disassembly are presented. In par

ticular, two major complexities are inherent. The first is the fact that there is no one-to-one

correspondence between symbolic and mask layouts. Hence, some heuristics are required to

make aesthetic decisions and approximations where necessary. Second, the problem is compli

cated by performance considerations. That is, it is crucial that the transformed symbolic layout

have similar performance characteristics asits original mask counterpart.

14

3.1 Formulation of the Problem

The starting point of circuit disassembly is amask-level description. In amask description, the

circuit is described by a set of associated polygons onthe different mask layers. Other than this

information, noother explicit information is given. In particular, circuit elements, liketransistors

and contacts, are not specified explicitly. These circuit elements can be inferred by performing

geometric analysis on the relationships between the polygons. For example, simple MOS transis

tors can be inferred by the intersection of two mask layers, namely polysilicon and diffusion. In

addition, connectivity information in amasklayout is also implicit

In symbolic layout, on the other hand , the definition of acircuit is given in aconsiderably

more explicit form. In particular, transistors and contacts are defined explicitly as symbolic cir

cuit elements. For example, the location of a transistor, the size and shape of the active channel

region, the location and definition of its device terminals are all specified directly. In addition,

connectivity information is given. Not only mere connectivity, butthe exact structure and topol

ogyof the interconnects are specified explicitly. This is accomplished by specifying the intercon

nections with individual symbolic wire segments.

The task of circuit disassembly is, therefore, to synthesize from a mask level description,

where little information about the circuit structure is given, to a detailed symbolic layout with

considerable amounts of added information.

While the problem of circuit disassembly perse is new, considerable work has been done in

the area of circuit extraction [Fit82,Tar83,Gup83,Sco85]. The problem of circuit disassembly

differs from that of circuit extraction because in the latter case only transistor dimensions and

connectivity are considered. In particular, connectivity information alone is inadequate for pro

ducing a symbolic layout. A circuit disassembler mustin addition derive a set of symbolic wires

for connecting the symbolic circuit elements to form a complete circuit These symbolic wires

must correspond to the original topology of the mask layout

15

In order to solve both the problems of extracting circuit elements and synthesizing symbolic

wires, the circuit disassembly problem is formulated into two separate tasks. The first task is

called device extraction. This procedure corresponds to the extraction of circuit elements from a

mask layout The second task is called net decomposition, which corresponds to the need to

decompose interconnect geometry into symbolic wires. The former problem is related to circuit

extraction while the latter is related to the routing problem.

3.2 Layout Extraction Techniques

The purpose of alayout extraction tool isto extract electrical information from alayout descrip

tion for simulation and verification purposes. For example, the extracted output may be used for

net list comparison between the layout and the original schematic. Another usage would be to

perform adetailed circuit simulation using aprogram like SPICE [Nag73]. Among its tasks, an

extractormust extract the transistors in the circuit andestablish their connectivity.

The techniques developed for layout extraction can be applied to solve part of the circuit

disassembly problem, namely the device extraction step in the disassembly process. The layout

extraction problem requires several basic operations for analyzing VLSI artwork. These opera

tions are commonly called Boolean mask operations. One of the most commonly used operation

is the Boolean AND operation for finding theintersections of polygons. Another common opera

tion is the MERGE operation. This is basically a variation on the AND operation where two

polygons are considered merged if they belong to interacting mask layers and they intersect.

Other operations such as ORand NOT are also variations of the AND operation.

For large designs, finding the intersections between all polygons indifferent mask sets (ie.

layers) isavery time-consuming task. Over the years, several algorithms for finding intersections

havebeenreported. In this section, someof these techniques are examined.

16

3.2.1 Bin Based Methods

The simplest method is to store the polygon inalinked list data structure. To perform an inter

section operation, every polygon must be compared against every other polygon. Surprisingly,

this method has been used in many systems. Although this method is simple to implemented, it

is too slow for most applications. Therefore, more sophisticated data structures have been

developed for storing and manipulating the geometry. One popular approach is to break upthe

layout area into bins. For example, the layout area can be divided into square bins [Ben80], as

shown in Figure 3.1. Associated with each bin are the polygons that intersect it Therefore, for

most geometric operations with a polygon, the search is localized to the bins that it intersects. In

practice, the search time is good. One problem with this scheme is that the efficiency is very

much dependent ondata. At the floorplan level of an IC layout, the objects vary substantially in

size, ranging from a simple contact to an entire macro cell. If the bins are too small, cell

instances can potentially intersect a number of bins. If they are too large, then they are little of

use.

These problems lead to more sophisticated bin data structures based on rectangles rather

than squares. In [Ous82], a data structure based on vertical and horizontal bins was described.

This data structure allows for more flexibility in the bin sizes so that geometry with different

shapes and sizes can bebetter supported. A variant to this data structure was proposed in [Kel84]

called OSL (Orthogonal Scan-Lines). In OSL, the geometry is partitioned into non-overlapping,

horizontal, rectangular bins termed logs, and non-overlapping, vertical, rectangular bins termed

poles. To answer a rectangular range query, all bins that intersect the query rectangle are

searched.

17

HP
n

":

H

Figure 31: This Figure illustrates the binning technique. BasicaUy, the layout area is divided
into a number bins. The search islocalized to only the relevant bins.

3.2.2 Tree Based Methods

As an alternative to rectangular bin based data structures, tree based techniques have been pro

posed. One such tree based data structure is called QUAD trees [Ked82]. It is based on the same
idea as binning, but with some variations. The basic idea is to successively divide the layout area

into quadsections. The root node in the QUAD tree is the entire layout. The root node branches
into four children representing the quadsections. Each child node will in turn have four children
nodes of its own until the lowest level of the tree which is the leaf level. The number of levels in

the tree is typically demand-driven. For example, the algorithm may stop dividing anode into
smaller nodes if the total geometry area in that node is less than some threshold amount. In Fig
ure 3.2 the QUAD tree data structure is illustrated. Again this method works well in practice but

is very dependent on data. Other tree based methods have been proposed. In [Lau80] and
[Ben80], 4-d tress and k-d trees were proposed. They are based on similar ideas. The basic ideas
is to maintain abalance tree so that geometry can be searched efficiently. Good results using

18

prf '

•ft

Figure 3.2: This figure illustrates the QUAD data structure. The layout area is successively di
videdintoquadsections. The search is localized to thecurrent nodeand allitschildren.

these data structures have been reported [Lau80].

3.2.3 Corner Stitching

Corner stitching is a data structure where the polygons are stored as non-overlapping rectangles

called tiles [Ous84,Scot85]. It appears to be anefficientdata structure for a variety of geometric

search operations. A special property of comer stitching is that even empty space is represented

explicitly by tiles whose type is "space". In Figure 3.3, a corner stitched plane is illustrated.

The tiles in a plane are linked to their neighbors attheir comers with four pointers, called stitches,

two at eachof the lower-leftand upper-right comers. A unique feature of comer stitching is that

adjacency information between neighboring tiles is stored explicitly. This information allows for

very efficient searching operations. Thus, rather thancomparing every polygonwith every other

polygon, the search is only limited to neighboring polygons. The basic searching algorithm

involves traversing the comer stitch plane.

19

Figure 3.3: This figure shows a simple example of comer stitching. In corner stitching, po
lygons are represented as tiles, which are maximum horizontal strips. This tile plane data struc
ture is efficient for various search operations since tile adjacencies are given explicidy as stitches
on the comers of the tiles.

3.2.4 A Planesweep Algorithm

The algorithm [Bai77,Lau81] has been successfully used in many layout systems

[Fit82,Tar83,Gup83] for extracting circuit devices from VLSI layouts. This technique also aims

at reducing the complexity of the search operation by localizing the comparisons to neighboring

geometry. The basic idea in this approach is to sweep avertical scan line from one end of the lay

out to the other. In this planesweep motion, polygons are only analyzed when the scan line inter

sects them, thereby localizing the search to only those polygons with intersecting horizontal coor

dinates.

To simulate the planesweep notion, the data in the layout is first organized by sorting the

edges of the polygons in the increasing horizontal coordinates. Asweeping action is then simu

lated by scanning through this data structure in its sorted order. In actual implementation, three

data structures are constructed. The first one is called the STARTLIST. This is a list of all the

20

horizontal edges in the entire layout. These edges are sorted according to their starting horizontal

coordinates. The second data structure is the ENDLIST. This is also a list of all the horizontal

edges, but they are sorted according to their ending horizontal coordinates. These two data struc

tures together represent the plane of the layout. The third data structure is the vertical scan line

SCANLINE. The purpose of the vertical scan line structure isto store current horizontal edges as

it sweeps through the plane. Initially, the vertical scan line isempty. Ateach significant horizon

tal location, all the edges on top of the STARTLIST that begin there are removed from the

STARTLIST and inserted into the SCANLINE. At the same time, all the edges on top of the

ENDLIST that end there aredeleted from both the ENDLIST and the SCANLINE. This way, all

the edges that have been passed are deleted from the STARTLIST and ENDLIST, and only the

current edges are stored in SCANLINE.

A variation that is more efficient is to build the ENDLIST incrementally. Initially, the

ENDLIST is empty. As new edges are inserted into the SCANLINE, they are also inserted into

the ENDLIST. When an edge is no longer active in the current SCANLINE, it is removed from

both the SCANLINE and the ENDLIST. Therefore, this approach is more efficient since only

activeedges are storedandconsulted in the ENDLIST.

At each scan location, the edges on the current scan line are compared for analysis. This is

accomplished by scarining thedata structure SCANLINE from topto bottom. Hence, theSCAN

LINE data structure must be kept sorted. An efficient implementation of this algorithm was

reported by Lauther in 1981 [Lau81]. Also, the planesweep technique has been successfully used

in computer graphics since the mid 1970's [Ham77]. The planesweep method is illustrated in Fig

ure 3.4.

21

verticil sctn line active edges

Figure 3.4: The planesweep method is illustrated in this figure. The basic idea in this approach
is tosweep avertical scan line from one end of the layout to the other. In this planesweep mo
tion, polygons are only analyzed when the scan line intersects them, thereby localizing the search
toonly those polygons with intersecting horizontal coordinates.

3.3 Routing Algorithms

The purpose of routing is to implement the physical interconnect among aset of terminals that

are electrically connected (ie. on the same net). Over the years, numerous routers have been

developed to solve the different routing problems of maze routing, global routing, switchbox

routing, and channel routing [Lee61 ,Hig79,Ree85,Shi86]. In the general case, a router must

worry about a constrained routing region and obstacles within the region. For the purpose of

solving the net decomposition problem in circuit disassembly, the router must be able to handle

an arbitrary routing region, much like amaze routing problem. In this section, some applicable

routing techniques are reviewed for solving this problem.

22

3.3.1 Wave Propagation Method

Lee's algorithm is perhaps the most widely used algorithm for solving maze routing or similar

problems [Lee61]. The basic idea is to expand awave front from aterminal until another terminal

is found. The procedure begins by mapping the routing area and terminal locations onto atwo-

dimensional grid. In Figure 3.5, a simple routing problem is shown. Starting from aterminal

location, a wave is propagated outwards until another terminal is reached. The algorithm then

backtracks to find a feasible solution. This process is repeated until all the terminals are con

nected. In actual implementation, a queue is maintained to determine which terminals still

require connection. This algorithm has aworst case time complexity ofO(p) for connecting two

terminals, where p is thenumber of grid points in the twodimensional grid.

&V
m

m
mm

ILl © ©

I

(a) (b)

Figure 3.5: This figure isan example of a routing problem solved using the wave propagation
algorithm developed by Lee [Lee61]. The routing problem is mapped onto a two-dimensional
routing grid. A wave is propagated outwards from terminal "A" until another terminal, say
4,B" is reached. The shortest path canbe found be backtracking, as shown in the gray area.

23

This algorithm is very attractive for several reasons. One is that it is very general. Any

general area routing problem can be cast into this form. The two-dimensional routing grid can

process irregular routing regions as well as obstacles. A nice feature of the algorithm is that it is

guaranteed to find the shortestpathif a pathexists.

3.3.2 Line Search Method

The line search method [Hig79] is similar to Lee's wave propagation algorithm except that a ray

isexpanded rather than awave front In Figure 3.6, apictorial description of the line search tech

nique isgivea Starting from aterminal, aray ispropagated in each of the four directions. When

a boundary is encountered, the ray gets diffracted in the two orthogonal directions. A path is

found when aray intersects another terminal. The basic advantage of this technique over Lee's is

two fold. First, since the algorithm isbased on acontinuous plane, there is theoretically nolimit

to the degree of precision that can be used to describe the coordinates ofarouting problem. This

is important for very large routing problems requiring a high degree of accuracy. The second

advantage is that the algorithm only stores line segments. Therefore, only segments currently

being defined need to be investigated, whereas conventional Lee style algorithms must examine

imnimal paths. In practice, modifications on Lee's algorithm can achieve similar efficiency.

However, a disadvantage of Hightower's algorithm is that it is does not guarantee the shortest

path.

24

0

Figure 3.6: This figure gives a pictorial description of the line search routing method by
Hightower [Hig79]. Starting from a terminal, say "O", aray is propagated ineach of the four
directions. When aray hits aboundary, the ray gets diffracted in the twoorthogonal directions.

3.3.3 Pattern Matching

For averylimited number of unconstrained routing problems, theoptimum Steiner tree solutions

are already known. In particular, thenumber of solutions to routing problems with only two or

three terminals is finite. Hence, a set of templates can be stored in a database for laterlookups.

These templates can be enumerated to find a solution. In practice, however, there are obstacles

and other constraints making some of those solutions infeasible. In addition, quite often much

more than three terminals must be routed together. Nonetheless, the template lookup technique

can be quite useful. This is particularly useful when therouting problem can be cast in this sim

ple form. If more than three terminals require connections, then they can be heuristically parti

tioned into smallerproblemswith threeor less terminals.

25

3.4 Issues in Circuit Disassembly
The main difficulty in circuit disassembly is that there is no one-to-one correspondence between
arbitrary polygons in amask layout and the symbolic wires in asymbolic description. Therefore.
they cannot simply be translated. Consider asmall example in Figure 3.7. An interconnect
region is shown that connects four terminal locations (eg. transistor terminals, or contacts).
Given this geometric description, the disassembler must derive the four wires that connect the ter-
mmals as shown. To generate this kind of information optimally from ageneral polygon region
with an arbitrary number of connection points is equivalent in complexity to aSteiner tree prob
lem [Li84], which is known to be NP-complete [Li84]. Fortunately, we can apply known heuris
tic routing techniques to solve this problem, but perhaps suboptimally. For example, the Lee
algorithm [Lee61] is guaranteed to find the shortest pa* between two terminals if one exists. The
problem is further complicated by the fact that VLSI layouts are quite large. Thus, careful
decomposition ofthe problem into manageable pieces is essential.

Arelated issue is performance considerations. Since it is not always possible to have a
one-t<K>ne mapping from amask description to asymbolic layout, the two may not be identical.
Consequently, their perfonnance characteristics may also change. Therefore, some clever heuris
tics are required to make the final result behave as close as possible to its original counterpart.

26

<p

V

o

0

Figure 3.7: This figure illustrates some ofthe issues in circuit disassembly. The purpose of this
figure is to show that there is no one-to-one correspondence between arbitrary polygons in a
mask layout and the symbolic wires in asymbolic description. The polygon represents a typical
interconnect mask region. The centeriines drawn represent desirable symbolic wires for the same
connections.

27

Chapter 4

KAHLUA: A Circuit Disassembler

In this chapter, an implementation ofthe circuit disassembly technique introduced in the previous

chapters is presented. The program, called KAHLUA, has been used to convert avariety ofmask

descriptions into symbolic layouts. The mask description is given to the program as acollection

of boxes associated with different mask layers. This information is stored inan integrated object

oriented database called OCT [Har86,Moo86]. The meaning of the layers and the geometry is

abstracted from the programs in order to allow KAHLUA to be parameterized for different MOS

technologies. The output ofKAHLUA is asymbolic layout stored back into the OCT database to

allow other symbolic analysis tools to manipulated the layout further. In particular, the symbolic

layout generated can be processed by a spacing program such as SPARCS [Bur86,Bur87] for

respacing thelayout according to given design rules.

28

4.1 Overview

The program KAHLUA performs the following tasks. First, technology information is read to

determine the meaning of the mask layers. The technology information can be parameterized to

describe how different transistors andcontactsarecreated. Forexample, in a typical CMOS tech

nology, the NMOS transistor is usually determined by the intersection of the polysilicon layer

and theN-diffusion layer. In addition, thetechnology information describes theminimum feature

sizes for transistors, contacts, and interconnects. Second, the mask description is read from the

OCT database, and the appropriate internal data structures of KAHLUA are constructed. Then,

KAHLUA proceeds to the main procedures in the circuit disassembly process. The first one is

the device extraction procedure. In this step, the transistors and contacts are extracted from the

mask description to create symbolic circuit elements. A different circuit element is created for

each unique transistor pattern and contact pattern. The second procedure is called netdecomposi

tion. In this step,the remaining mask geometry after device extraction are decomposed into sym

bolic wires. Particularly, the routing techniques, similar to those described in the previous

chapter, are employed to synthesize the structure of the symbolic interconnects. Eventually, the

disassembled symbolic layoutis stored backintotheOCT database for further processing.

In addition to the basic processing stepsin the disassembly process, KAHLUA has anextra

procedure for processing hierarchical designs. This procedure is used to handle hierarchical

interactions between cells. Processing in KAHLUA begins at the lowest level of the hierarchy

and moves upwards. The device extraction procedure is followed by the net decomposition pro

cedure. The process is repeated through the hierarchy.

The basic algorithms and techniques for the disassembly procedures were described in the

previous chapters. In the following sections, KAHLUA'S implementations of these methods are

described. Particularly, the device extraction step is described in Section 4.2. In Section 4.3,

KAHLUA'S implementation of the net decomposition procedure is presented. In Section 4.4, the

29

problem ofdisassembling hierarchically is addressed. Finally, experimental results are given in

the last section.

4.2 Device Extraction

The device extraction procedure employs known circuit extraction techniques for synthesizing

symbolic transistor and contact elements from the mask layout. In particular, a planesweep

implementation is used for this process. While the problem ofdevice extraction is similar to the

standard circuit extraction problem, several complexities mentioned in the previous chapter are

introduced that are notencountered inthe circuit extraction case. The implementation of the dev

ice extraction step along with these complexities are described in the next two sections.

4.2.1 Extracting Transistors

KAHLUA recognizes MOS transistors. The active area ofatransistor is assumed to be defined

by the intersection of two mask layers. This active area derived represents the channel of the

transistor. The regions adjacent to the channel area are assumed to implement the device termi

nals of the transistor. The device terminals of atransistor are the two gate terminals onboth sides

of the channel and the source and drain terminals. The particular mask layers involved are tech

nology dependent This information is abstracted from the extraction procedure so as to allow it

to be parameterizable.

The primary operation in extracting the symbolic transistor elements is a Boolean mask

operation for finding the intersections between two layers, namely, the AND operation. This

operation is accomplished by using a planesweep technique described earlier. KAHLUA first

finds the intersection of the layers involved tocreate the active transistor layers. Then, a separate

30

transistor element is created for each unique shape. In creating asymbolic transistor element, the

regions adjacent to the active areas are examined to determine terminal implementations for the

devices. For example, inap-well CMOS process, the polysilicon regions adjacent to the active

area represent the gate terminals, while the diffusion regions form the source and drain tenninals.

In order to avoid creating unnecessary transistor elements, ahash table is kept with entries

based ontransistor dimensions and shapes. If a transistor element with the same features exists

already, then that particular transistor element is used instead of creating anew element. Other

wise, a new transistor element is created and a new entry is entered into the hash table. There

fore, only unique transistor elements are created.

4.2.1.1 Representing Non-Linear Transistors

Although extracting transistors may appear to be quite straightforward, there are a number of

complicated issues that must be addressed. In general, non-linear transistors are very difficult to

represent in symbolic layouts. In fact, most symbolic layout systems either do not support them

orhave adhoc ways for representing them. Thus far, no satisfactory representation has emerged.

Consider the simple example shown in Figure 4.1. Here, we see two non-linear transistors adja

cent to each other. The active area for each transistor can be determined using the planesweep

method. Once the active area has been extracted, a symbolic element must be created to

represent the transistor. The difficulty in creating the new transistor element is determining the

correct terminal implementations forthe source and drain terminals.

There are anumber of possible alternatives. One alternative is to simply represent the termi

nal with a polygon rather than a rectangle, as shown in Figure 4.2(a). However, this would

require connecting asymbolic wire toajagged terminal. This implies that the ends of wires must

also be jagged. The problem with this approach is that it is unclear how jagged wire ends and

jagged terminals should betreated during spacing. It appears that representing jagged terminals

31

Figure 4.1: This figure shows two non-linear transistors adjacent to each other. In general,
non-linear transistors are very difficult torepresent insymbolic layouts.

and wire ends may not be possible since currendy no symbolic layout system can support such a

representation, and it is unclear whether jagged ends can be supported elegandy.

Another alternative is to represent the source and drain terminals with multiple rectangular

terminals. For example, in Figure 4.2(b), the source terminal ofthe non-linear transistor shown is

represented with five rectangular terminals. In this representation, asymbolic wire can connect to

any one ofthese terminals. However, the width ofthe wire is constrained to be no larger than the

width of the designated terminal. Therefore, this solution is unsatisfactory since typically the

width of the wire is the same as the width of the channel area.

A variation on this approach is to use multiple wires to represent a single thick wire, as

shown in Figure 4.2(c). However, this would require that a symbolic spacing program under

stands about merging parallel wires that are electrically connected. The spacing program

SPARCS that we use does not support net merging ofthis type and therefore will force the paral

lel wires to be separated by the minimum design rule distance. One reason why a symbolic

32

w

Apaih

(a) (b)

5 paths

(c) (d)

Figure 4.2: This figure shows some different ways of representing non-linear transistors. In
part(a), mesource and drain terminals are represented using polygons rather than rectangles. The
problem with mis approach is that wires with jagged ends cannot berepresented. In part(b), the
source and drain terminals are represented using multiple rectangular tenninals. The problem
here is that the width of the wire is limited by the width of the terminals. In part(c), thick wires
are represented with multiple parallel wires. The problem with this approach is that a symbolic
spacer may to force the wires apart. In part(d), the non-linear transistor isrepresented using mul
tiple rectangular transistors. This approach is not desirable since the individual transistors may
move apart during spacing.

spacing program should not support net merging of parallel wires is because merging nets is

33

sometimes dangerous, particular with bus lines where they have been designed to support certain

current flow.

A fourth alternative is to represent each "bend" of a non-linear transistor with a separate

transistor, as shown inFigure 4.2(d). Wires are then used to connect the proper device terminals.

However, this approach does not seem to be feasible either. Again, as with the previous alterna

tive, the width ofthe wire isconstrained to be no larger than the width ofthe designated terminal.

A more serious danger is related to the fact that the individual transistors can separate during

spacing. Since they are only grouped together by wire connections, aspacing program may move

them apart and result in a much wider transistor than expected. This is very dangerous since

changing transistor sizes can significantiy alter the behavior ofthe design.

4.2.1.2 KAHLUA'S Representation of Non-Linear Transistors

The symbolic representation used in the SPARCS symbolic design system does not allow

polygon terminal frames. Therefore, in extracting non-linear transistors, KAHLUA tries to

represent the device terminals ofnon-linear transistors with asingle box for each terminal. In this

approach, the bounding box ofthe active area is first determined. Then the source and drain ter

minals are implemented with rectangles that extend from the bounding box, as shown Figure 4.3.

This approach has the advantage that the symbolic wire can be as wide as the width ofthe chan

nel area. Also, wedo not have to worry about the "jagged end" problem described early. How

ever, this approach does have one major drawback. The problem is that the symbolic element for

anon-linear transistor isnow larger, and thus some area penalty may be forfeited. In very dense

mask layouts, there may not be any extra area to fit alarger transistor. Ultimately, the problem of

representing non-linear transistors must be properly addressed.

34

drain

bounding box

Figure 43: This figure shows KAHLUA'S approach for representing non-linear transistors. In
this approach, the bounding box of the active area is first determined. Then the source and drain
terminals are implemented with rectangles that extends from the bounding box.

4.2.2 Extracting Contacts

Contacts are formed by intersecting contact cuts between two overlapping mask regions. In a

symbolic layout, contact elements of different sizes can be represented. A larger size of contact

element can be used to represent a collection of contact cuts that are adjacent to each other rather

than having many small ones. KAHLUA exploits this feature by grouping clusters of contact

cuts into larger contact elements. The technology information defining the interacting layers for

contacts is parameterized.

By default, the grouping procedure is achieved by growing the cut area by half the

minimum cut separation requirement and merging together any abutting or overlapping area.

However, using the default merging distance may not work well enough. There may be cases

where the contact cuts are separated by slightly more than the minimum cut separation. In these

cases, it is still desirable to group them together. Therefore, in KAHLUA, the user can control

35

the merging distance by specifying it as a parameter. To prevent any illegal merging, the contact

cuts that are grouped together are checked to make sure that they are indeed electrically con

nected. If a cluster of contact cuts are not all electrically connected, then only those that are

electrically connected will be grouped together.

The grow and merge operations used for grouping contact cuts are also implemented using

the planesweep algorithm. In creating a symbolic contact element, the two interacting layers

along with the cluster of contact cuts are implemented. A rectangular terminal the size of the

contact element is then defined to representthe connection point for the contact.

Before creating a new contact element, a hash table is first checked to see if a new element

is needed. The hash table is organized with entries based on the dimensions of the contact ele

ments and the number of cuts each contact contains. If a contact element with the same features

exists already, then that particular element is used instead of creating a new one. Otherwise, a

new contact element is created and a new entry is entered into the hash table. Therefore, only

unique contact elements are created.

4.3 Net Decomposition

After device extraction, the active areas of transistor elements are subtracted from the original

masklayout The remaining geometry is assumed to be used for interconnection and is therefore

decomposed into symbolic wires. These symbolic wires are used to interconnect the symbolic

elements discovered in the device extraction phase. This is the task of the net decomposition pro

cedure. In this section, we will first considervarious possible alternatives for solving this prob

lem and discuss their limitations. Next, we will describe KAHLUA'S view of the problem which

is equivalent to finding Steinertrees. The Steiner tree problem is solvedusingconventional rout

ing methods with several minor enhancements. Then, we will present an overview on how

36

KAHLUA implements the net decomposition procedure. Finally, we will describe the various

steps involved in solving the net decomposition problem.

4.3.1 Alternative Approaches to the Net Decomposition Problem

Before describing KAHLUA'S approach to the problem, let us first consider several possible

alternatives and examine their deficiencies. Consider a simple example shown in Figure 4.4.

Here, the net decomposition procedure must derive a set of symbolic wires for connecting the

three device terminals as shown. Ideally, the set of wires derived should resemble the topology

of the original mask region while avoiding the introductionof any unnecessary symbolic wires or

jogs. This is required partly for aesthetic reasons. Designers frequendy want the converted

designs to look as closely as possible to the original mask layout But more importandy, it is usu

ally critical to maintain similar performance characteristics to the corresponding mask design.

Therefore, the choice of net composition method should support these criterions. Below, we will

describe several possible alternative solutions and show why their drawbacks.

One naive approach would be to simply "shrink" the polygons in hopes of discovering

some kind of centeriines. However, it should be obvious that this approach would not work since

a uniformly reduced polygon will not give any additional hints about the topology of the inter

connects than the original polygon. A more sophisticated method of shrinking might be to itera-

tively shrink parts of the polygon. In any case, even if centeriines can be discovered, they do not

necessarily connect the terminals. Effectively, a routing procedure must follow to connect the

terminals to the centeriines.

Another possible approach is to first decompose the polygons into rectangles, as shown in

Figure 4.5. In this approach, we try to use the centeriines of the rectangles to represent symbolic

wires. However, determining which direction of the rectangle to draw the centerline is very

37

©

©

©

(>)

©

•©

©

(b)

Figure4.4: This figure illustrates a net decomposition example. The purpose of thenet decom
position procedure is to derive a setof symbolic wires for representing a netregion. In this ex
ample, symbolic wiresmustbe derive for connecting the three tenninals asshown.

difficult This depends very much on what terminals need to be connected and the direction of

current flow. Assumingthatwe can determine whichcenteriines to use,we stillhavethe problem

of joining the terminals and thecenteriines together to form avalid setof symbolic wires. This is

not obvious. In fact, to derive the solution shown in Figure 4.4, some kind of ad hoc routing

method would need to be employed. In any case, no systematic solution based on this idea

appears to be feasible.

In a third alternative, we can try to trace the contour of the polygons to determine the sym

bolic wires. In fact, this may be done during the device extraction step using the planesweep

algorithm. At first glance, this appears to be an attractive solution. Consider theexample shown

in Figure 4.4. The basic idea here is to start at the leftmost terminal and sweep a vertical scan

line across the polygon. Between the two parallel edges that the vertical scan line intersects, we

try to trace a centerline. As the vertical scan line sweeps across the polygon, the separation

between the parallel edges will change in distance. To follow the contour of the polygon, we can

try to trace the path along thecenters of these separations. When aterminal is encountered by the

38

©

<*

Ik

© <- " "

©

— centeriines

Figure 4.5: This figure illustrates the approach of first decomposing into rectangles and then try
ing to use the centeriines of die rectangles to represent die symbolic wires.

scan line, a path can be drawn from the current centerline to the terminal in order make a connec

tion. The final solution for the example shown in Figure 4.4 is given in Figure 4.6. The advan

tage of this approach is that it works and it is quite efficient Effectively, it is doing some kind of

routing. However, the solution that it tends to produce is not very aesthetically pleasing. In partic

ular, the solutions tend to have many unnecessary symbolic wires and jogs. Although a

"cleanup" procedure could be employed, it was felt that a more systematic solution would be

preferable. In fact, known efficient routing methods can be employed to solve this problem. This

is indeed what KAHLUA tries to do, as described in the next section.

4.3.2 KAHLUA'S Approach to the Net Decomposition Problem

KAHLUA tries to solve the net decomposition problem by using conventional routing methods

with some minor enhancements. KAHLUA views the problem as equivalent to finding Steiner

trees for representing the symbolic wires. The tree solution is used to connect the terminals of a

39

£
©

Figure 4.6: This figure illustrates theapproach of tracing the contour of the polygon to discover
symbolic wires.

given net while being constrained to the area defined by the original mask geometry. However,

since VLSI layouts are oftenquite large, finding the Steiner trees for connecting all theterminals

in the circuit can be very complex. Therefore, it is necessary to partition the problem into more

manageable tasks.

In KAHLUA, the net decomposition procedure is implemented in two steps. The first step,

called global partitioning, is used to partition the geometries on the different mask layers into

smaller manageable regions. In this step, the partitioner also determines the terminals that each

region intersects. The second step is a routing procedure for finding a Steiner tree solution for

each partitioned region. The routing solution mustbe confined to the boundaries of the original

mask geometry. The implementation of these two stepsare described in the sequel.

40

4.3.2.1 Global Partitioning

A natural partition exists between thegeometry ondifferent mask layers. Interacting layers form

ing active circuit structures were already extracted in the device extraction step. The remaining

interconnect layers only interaa through contact vias. Therefore, the geometry on the different

interconnect layers can be decomposed independendy. This planarization of the problem

simplifies considerably the net decomposition procedure. For each interconnect layer, KAHLUA

further partitions the geometry by fracturing them into non-overlapping polygons. In some cases,

these regions are quite small. As with other geometric operations, this fracturing step is con-

sistendy implemented using a planesweep algorithm.

For each partitioned region, the terminals that the area intersects are extracted. Each region

along with the corresponding list of terminals defines a separate routing problem, which can be

stated as follows:

Given an arbitrary rectilinear region R, with corners defined by a set of vertices, V,, for

i'=1,2,...,r , implement the connections specified by the terminal list 7}, for j=12,.../n. where

Tj is contained within the boundaries of/?.

4.3.2.2 The Routing Procedure

The primary objective of the routing procedure is to find a feasible rectilinear tree for connecting

the terminals in a given region. This step is implemented using well-known routing algorithms.

Although the task of finding symbolic wires is formulated as a routing problem, there are several

subde differences that introduce some complexities not encountered in the traditional problem.

One of these differences is that the tree solution should resemble the topology of the original

mask region while avoiding the creation of any unnecessary symbolic wires or jogs. This is

41

desirable for both aesthetic and performancereasons. Hence, specialcareneeds to be taken when

implementing the routing algorithm.

The first step in KAHLUA'S routing procedure is to map the routing area and the terminal

locations onto a two-dimensional grid. This mapping is extremely crucial to the quality of the

final solution. Consider the routing region illustrated in Figure 4.7. A normal grid representing

the coordinates of the routing area is shownin Figure 4.7a. Between two adjacent vertices, there

are fl+1 grid lines shown along the x axis, where n is the Euclidean distance between the two

points. In the traditional routing problem, a path solution can potentially be along any one of

those grid lines. However, we are interested in solutions where the paths ideally represent the

centeriines of the routing region.

We can heuristically encourage such solutions by using the idea of a virtual routing grid

instead of the standard coordinates. In a virtual routing grid, only significant x and y locations

are constructed onthe grid. In particular, thelocations of terminals and thevertices of the routing

®

©

®

(t)

<J>
T

-L-
©

(b)

Figure 4.7: This figure illustrates the idea of a virtual routing grid. A normal grid representing
thecoordinates of therouting area is shown in Figure 4.7a. The corresponding virtual grid map
ping is shown is Figure 4.7b. The virtual routing grid only contains significant coordinates,
which enables heuristically bettersolutions andachieves higher efficiency.

42

region are considered. The polygon region is first decomposed into rectangles. For each rectan

gle, we consider the x and y coordinates for all four vertices as well as the center of the rectangle.

Also, we add the coordinates of the terminals contained in the polygon. The corresponding vir

tual grid mapping for part(a) in Figure 4.7 is shown in part(b). These virtual coordinates are

sufficient to guarantee that a Steinertreesolution canbe found forconnectingthe terminals.

Another benefit of the virtual routing grid approach is that it avoids any unnecessary search.

Since the complexity of the routingalgorithm is proportional to the number of grid points, the run

time on the reduced routing space is significandy improved. Moreover, the limited search space

helps the router to avoid inserting any unnecessary jogs.

Once the virtual routing grid has been constructed, the next step is to find a routing solution.

The routing region is defined by boundaries of the polygon. Therefore, the routing solution must

be confined to the interior of the polygon. The routing approach taken by KAHLUA is primarily

based on a single growth wave propagation technique developed for general area routing [Lee61].

This algorithm can be shown to have a worst case time complexity of 0(p) for connecting two

points, where p is the number of grid points in a two-dimensional routing grid. In this method, we

begin by starting at a terminal location. The basic idea is to expand a wave front from this termi

nal until another terminal is found. Next, the algorithm backtracks to find a feasible path. This

path represents a simple tree for connecting the two terminals. Then, a wave is propagated from

the current tree until yet another terminal is reached. This process is repeated until all the termi

nals are connected. The advantages of this method are its inherent generality and high quality

results.

In addition to the wave propagation technique, a special template lookup router is also

implemented in KAHLUA to efficiently solve the trivial routing problems. It attempts to route

regions by matching the problem with a set of predefined lookup templates. For instance, in a

two terminal case, a "L" shape route or a straight line route is tried first In the three terminal

43

case, a *'T" shape structure is attempted (see Figure 4.8).

In KAHLUA, only the four templates shown in Figure 4.8 areimplemented. Empirically, a

reasonable number of the routing regions can be solved using these simple templates. This is par

ticularly the case for abutting symbolic elements where only a simplewire is needed. The lookup

table is organized with entries defining the number of terminals that each template supports. In

each template, the routing solution is stored in terms of edges and their relative position.

KAHLUA tries to match the pattern to the current routing problem and determines if the pattern

can fit within the boundaries of the polygon. For more complicated problems that cannot be

solved using this simple technique, the general routing strategy is used.

As a final step, after a tree solution is obtained, actual symbolic wires must be generated.

Ideally, the paths are located relatively in the center of the region. For each branch in the tree, a

symbolic wire is generated. A symbolic wire is defined to be asegment between two points with

a given width. The width of each wire is determined by examining the perimeter of the routing

region and selecting the maximum possible width that satisfies the constraints enforced by the

region boundary. An example illustrated in Figure 4.9 demonstrates this problem. In addition,

jogs are inserted corresponding to each Steiner nodein the tree. As a final step, global connec

tivity between all electrically connected symbolic wires and circuit elements mustbeestablished.

The routing step just described will create a set of netclusters each corresponding to a different

partitioned routing region. The connectivity between the netclusters can be determined by merg-

1
1 ZJr +

Figure 4.8: This figure illustrates some predefine routing templates for simple cases. A quick
lockup strategy is used to solve trivial routing problems.

44

ing multiplenet clusters connected to the same terminals.

4.4 Disassembling Hierarchical Designs

In VLSI layouts, the design is typically captured hierarchically. For example, in a microproces

sor, the design is usually defined in terms of macro blocks such as data paths and control paths.

These macro blocks are in turn defined in terms of smaller components such as functional units

and registers, and these components are in turn defined in terms of yet smaller components like

logic gates, and so on. Therefore, using hierarchy is a natural way of capturing a design. In fact,

most VLSI designs are highly regular in nature, containing many instances of the same cell. For

example, data paths are typically two dimensional arrays with only a few unique cells replicated

many times. Thus, it is often possible to improve the performance of a CAD tool significandy by

.-I.

x
x

Figure 4.9: This figure shows how wire widths are determined after their centeriines have been
derived. The basic idea is to make them as wide as possible while not violating the boundary
constraints.

45

processing each cell definition only once. In addition to the savings in computation such an

approach offers, it is important for circuit disassembly to maintain the hierarchy during the

conversion process so that the cells can be used separately once they have been disassembled.

Moreover, it is usually desirable to maintain the structure of the original layout as it was

intended. In Figure 4.10, a hierarchical example is shown.

In a mask layout, connections between cells are defined by their overlap or by creating

pieces of geometry for connecting them. In a symbolic layout, formal terminals are defined for a

cell so that it can be used in a hierarchical design [Bal82,Kel84]. Formal terminals can be thought

of as connection ports for the cell. To use a cell in a hierarchical design, connections to the cell

Figure 4.10: In this figure, a hierarchical example is shown. Both hierarchical objects and cell
level circuit elements are represented using the same abstraction.

46

must be made only to the formal terminals. In most symbolic layout systems, these formal ter

minals arerequired to lie on the borderof the cell. This restriction simplifies the spacing problem

considerably. In general, KAHLUA expects the user to define the formal terminals for the cells.

Once defined, KAHLUA treats these terminals like any other terminal. Thus in a hierarchical

design, KAHLUA will generate symbolic wires for interconnecting these terminals. However, if

the formal terminals are not specified, then the user can optionally ask KAHLUA to synthesize

them.

In general, the problem of synthesizing formal terminals from a mask-level design is

extremely difficult The problem is difficult partly because what constitutes a formal terminal for

a cell depends very much on the usage of the cell. Particularly, a formal terminal is needed for

every overlap or abutment that occurs between interacting cells. Since connections between cells

in a mask layout are done by overlapping geometry, the locations of formal terminals can be arbi

trary, even somewhere in the center of the cell.

Therefore, KAHLUA does not try to synthesize all formal terminals. Instead, it will only

heuristically examine the border area for possible implementations. Hence, it does not guarantee

that all the necessary formal terminals will be discovered. For the ones missing, the user can

interactively define them. The basic idea is to search around the boundary of the cell to deter

mine what pieces of geometry are potential candidates for implementing formal terminals. This

is done by creating a frame around the borderof the cell. Each rectangle bordering the boundary

is checked for its aspect ratio. If the shorterside of the rectangle is bordering the boundary, then

KAHLUA will assume that a formal terminal is needed there, as shown in Figure 4.11. For

example, the ends of the power rails shown in Figure 4.11 would be considered as formal termi

nals.

For processing hierarchically, KAHLUA recursively disassembles the hierarchy by depth-

first traversal. This is accomplished by first disassembling each subcell and then registering all

47

Vdd Vdd

IN OUT

Gnd

Figure 4.11: This figure illustrates die problem of synthesizing formal terminals. Formal termi
nals mustbe generated for symbolic layout conversion. The basic idea is to search the boun
daries of the cell for likely candidates.

the connection terminals of the subcells at the parent level so that KAHLUA can generate sym

bolic wires for connecting them. In addition, theimplementations of these terminals are added to

the parent level as possible routing area. Experimental results show that hierarchical disassembly

significandy reduces CPU expenditure, as illustrated in thenext section.

4.5 Experimental Results

In this section, performance measurements for the program KAHLUA are presented. A set of

disassembled examples before and after spacing are shown. These examples are used to illustrate

that the spaced layouts are able to maintain reasonable density as compared with the original

highly-tuned mask layout onmostof the examples tested. This is important since many designers

still do not trust symbolic design systemsto produce dense layouts. Next, a set of examples to

48

Before and After Spacing

width

unspaced
height area width

spaced
height area

area

ratio

Dff

DT540

DT509H

DT522

154

93

663

427

158

170

241

236

24,332
15,810

159,783
100,772

128

97

665

421

144

178

238

238

18,432
17,226

158,270
100,198

0.76

1.09

0.99

0.99

Table 4.1: This table presentsresults for symbolic layouts before and after spacing. The sym
bolic layouts were generated from mask descriptions using KAHLUA. The purposeof this ex
periment was to determine the area penalty, if any, that would be incurredas a result of spacing.
On the examples tested, the size of die spaced layout is about the same as the original mask lay
out as shown in column eight Note that it is not expected that the spaced layout will be much
smaller than the original layout since the originalwas highly tuned by an experienced designer.

evaluate the performance of KAHLUA on flat disassembly and hierarchical are described. These

examples illustrate the improvements obtained by exploiting hierarchy.

Results on other examples are summarized in Table 4.1. The name of the circuit the size

measurements for each example before the spacing and after are given. On most of the examples

tested, the size of the spaced layout is about the same as the original layout, as shown in last

column of the table.

The execution times for flat disassembly on some typical library cells are given in Table

4.2. The name of th cell, the size of the cell and the corresponding execution times are given.

These examples were drawn from an industrial cell library. Typical disassembly time is about 30

CPU-seconds.

If the mask layout was originally captured hierarchically, KAHLUA can take advantage of

this hierarchy to reduce computing requirements. The performance of KAHLUA on a set of

hierarchical examples is presented in Table 4.3. The execution times for both disassembling

hierarchically and flat are given. The speed improvements are dependent on the nature of the

design examples. These examples demonstrate that performance improvements can be achieved

49

Cell Level Designs

cell #fets #contacts #connectors #wires cpu-time

DT509H 40 70 227 362 40.0

DT509L 40 78 122 261 33.2

DT510H 41 77 136 277 37.5

DT510L 41 77 135 275 36.0

DT511HE 24 48 76 158 14.9

DT511H0 24 47 71 152 13.8

DT511LE 24 49 76 160 14.8

DT511L0 24 47 71 152 14.0

DT518H 32 65 106 233 20.7

DT519H 32 61 111 236 21.5

DT519L 32 62 109 235 21.5

DT522 24 51 135 239 15.3

DT540 4 15 35 57 2.6

Table 4.2: This table presents the flat execution times of thecircuit disassembly process using
KAHLUA on a number of industrial examples. These results were collected on a DEC VAX
8650 running ULTRIX. The area figures are reported in Xand dietimes are incpu-seconds. The
time figures also includeall database related processing.

Hierarchical Designs

cell #fets #wires

instances/
#cells

hierarchical

cpu-time
flat

cpu-time
speed
ratio

hexl

hex2

hex3

hex4

hex5

532

392

392

210

168

4,767
3,080
3,571
1,860
1,494

38

28

28

15

12

700

151

495.6

123.3

83.4

9,244.3
3,306.4
4,996.3
1,341.2
923.1

0.08

0.04

0.10

0.09

0.09

Table 43: This table presents the execution times of the circuit disassembly process using
KAHLUA on hierarchical examples. Both hierarchical execution times and flat execution times
were measured. These results were collected on a DEC VAX 8650 running ULTRIX. The area
figures are reported in Xand thetimes are incpu-seconds. The time figures also include all data
base related processing.

by exploiting hierarchy.

All the CPU times given in this section are on a DEC VAX 8650 running ULTRIX. The

area figures are reported in square Xand the times are in CPU seconds. The times expended also

50

include all database related processing.

51

Chapter 5

Circuit Extraction For

Symbolic Layout

The problem of circuit extraction is to convert a layout description into an electrical network of

transistors, resistors, capacitors, and interconnecting wires, suitable for use by avariety of electri

cal simulation and verification tools.

The problem of extracting from a symbolic layout rather then from a mask-level layout is

considerably simplified because connectivity and transistor locations are already known. The

remaining task is to derive the parasitic resistance and capacitance in the layout. Hence, the exe

cutiontime required to extract from a symboliclayoutis faster than from amask-level layout. In

fact the savings in executiontime canbe significant since most mask-level layoutextractors typi

cally spend over 50%of the time extracting connectivity and transistor information. This is one

of the major advantages of symbolic layout. Since circuit extraction is frequendy done during the

verification cycle of the design, execution speed is of critical importance.

52

In this chapter, asimple circuit extractor called OCTEXTRACT written for use onsymbolic

layouts represented in the OCT database isdescribed. Theinput to OCTEXTRACT is asymbolic

layout rather than amask-level description. The purpose of OCTEXTRACT is twofold. First, it

demonstrates how the problem of circuit extraction is simplified whenthe starting layout descrip

tion is symbolic rather than mask-level. Second, it provides a reasonably powerful, but simple,

extractor that can execute quickly. The electrical network generated by OCTEXTRACT is stored

back into the OCT database. Another translation program called OCTEXT2SPICE is used to

convert the OCT database format into the SPICE format for simulation purposes [Nag73].

The remainder of this section is organized as follows. First, different circuit models for

various simulation and verification tasks will be examined (ie. what information is present in the

circuit description produced by an extractor). Second, the extraction procedure is described.

Finally, examples arepresented and performance measurements aregiven.

5.1 Circuit Models

The purpose of a circuit extractor is to extract pertinent information from a layout necessary for

simulation and verification. For example, one possibleapplication is to use the extracted connec

tivity of a layout and compare it with an independendy drawn schematic to verify that the two

circuit descriptions are the same [Spi85]. For logic verification, the extracted transistor net list

can be simulated to ensure that the circuit functions as intended [Bry81,Ter83]. For performance

analysis, a timing analyzer can be used to compute the delays through a circuit to determine

whether it meets the performance requirements [Ous831. Finally, for an in-depthcircuitanalysis,

a detailed simulator can be used to analyze the waveforms propagating through the circuit

[Nag73,New83].

53

The amount of information that an extractor should produce depends on the simulation or

verificationtask that needs to be performed. In the caseof logic simulation or net list comparison,

where only a transistor net list is required, the information is adequately contained in a symbolic

layout itself, and thusno additional extraction is required. In the case of a timing analysis toolor

a detailed waveform simulation tool, resistance and capacitance of interconnecting wires must

also be obtained.

Two basic circuitmodels canbe used to represent anelectrical network of transistors, resis

tors, and capacitors. One approach is to describe the circuit as a detailed RC network where a

resistance and a capacitance value is computed for each individual symbolic wire in the layout as

shown in Figure 5.1. For example, thisdetailed model isused in [Bas83,McC84]. The advantage

of thisapproach is accuracy, but it is unnecessarily bulky for some verification requirements.

A simpler approach is to lumpeach group of symbolic wires that are electrically connected

into a single electrical node. Each node includes a "lumped" parasitic resistance and a lumped

parasitic capacitance to ground, as shown in Figure 5.2. This simple lumped model has been

used by a number of extractors, such as MEXTRA [Fit82] and MAGIC [Sco851, and simulation

WW-

-vW-

r

o

•wvw-

Figure 5.1: This Figure illustrates the detailed RC network model. A resistance and a capaci
tancevalue is computed for each individual wire segment associated with a net This approach
has the advantage ofaccuracy, but is unnecessarily bulky forsome verification requirements.

54

tools, such as CRYSTAL [Ous83] and ESIM [Ter831. Though quicker simulation and more con

cise representation is possible usingthe lumped model,accuracy may be forfeited.

Both models are useful depending on verification needs. The tradeoff between the two

models is accuracy versus storage size andsimulation time. Therefore, the extractordescribed in

this chapter can optionally produce either circuit model.

5.2 Information Extracted

In this section, the extraction procedure, which includes extracting transistors, resistance, and

substrate capacitance from a symboliclayout stored in OCT, is described. In general, the task of

circuit extraction is a complicated problem.

R/2 R/2

AAA/ wv •o

Figure 5.2: This Figure illustrates the simplified lumped RC model. In this model, all the resis
tance and capacitance values on a given net are lumped together into a single lumped parasitic
resistance and a single lumped parasiticcapacitance. Though quicker simulation and more con
cise representation is possible using the lumped model, some accuracy is forfeited.

55

Since transistors are already represented in the symbolic layout they are simply translated

to transistor elements in the extracted output with widths andlengthsin actual microns (asoppose

to database units). For the "non-coupling'* parasitics, OCTEXTRACT computes a parasitic

capacitance to ground and a resistance value for each symbolic wire in thelayout Thus, ahighly

detailed RC network is produced. If theuser desires the simpler lumped model, thenthe parasitic

values for a groupof wires in a singleelectrical node is accumulated.

For substrate capacitance, OCTEXTRACT computes both the area capacitance and the per

imeter capacitance. Each type of mask material has a different capacitance to ground per unit

area and a perimeter capacitance per unit length. Resistance is computed using the length to

width ratio of a wire and multiplying it to the sheet resistance value associated with the

corresponding mask layer.

Cell Level Designs

cell #fets #wires cpu-time

DT509H

DT510H

DT518H

DT522

DT540

40

41

32

24

4

367

277

233

239

57

12.0

8.5

7.1

7.3

2.0

Table 5.1: Thistable presents theexecution times of thesymbolic extraction process using OC
TEXTRACT on a numberof cell level designs. These results were extracted on a DEC VAX
8650running ULTRIX. The times are in cpu-seconds. The time figures also include alldatabase
related processing.

56

5.3 Examples

In this section, performance measurements for the program OCTEXTRACT are given. The times

presented are CPU seconds collected on DEC VAX 8650 running ULTRIX. The reported times

include transistor conversion, parasitic resistance extraction, substrate capacitance extraction, and

all database related processing.

Several cell level design examples were extracted and the results are summarized in Table

5.1. The name of the circuit the number of transistors and symbolic wires in the circuit and the

execution time required for each example are given. Since transistors and connectivity informa

tion areexplicitly represented in a symbolic layout most of the time is spent on extracting parasi

tics. On average, the execution time was about 32 wires per CPU second.

If the symbolic design was captured hierarchically, OCTEXTRACT can take advantageof

this hierarchy to reduce computing requirements. In Table 5.2, several hierarchical design exam

ples are presented. The name of the circuit the number of transistors and symbolic wires in the

circuit the ratio between the number of instances to the number of unique cells, and the CPU

Hierarchical Designs

cell #fets #wires instances/
#cells

hierarchical

cpu-time
flat

cpu-time
speed
ratio

hexl

hex2

hex3

hex4

hex5

532

392

392

210

168

4,767
3,080
3,571
1,360
1,494

38

28

28

15

12

27.4

14.0

22.6

12.1

10.3

104.7

63.1

73.7

40.2

30.7

0.26

0.22

0.31

0.30

0.34

Table 5.2: This table presentsthe execution times of the symbolic extraction process using OC
TEXTRACT on hierarchical designs. Both hierarchical execution times and flat execution times
were measured. These results were collected on a DEC VAX 8650 running ULTRIX. The times
are in cpu-seconds. The time figures also include all database related processing.

57

times for hierarchical and flat extraction are given. The speed ratio of extracting hierarchically

versus flat is given in the last columa Note that the speed improvement is dependent on the

nature of the experimental circuit. The purpose of these examples is merely to demonstrate that

performance improvement canbe achieveby exploitinghierarchy.

58

Chapter 6

Conclusions

In this report, a new technique called circuit disassembly that is used to convert mask-level

descriptions into the equivalent symbolic layouts has been presented. Among its contributions,

this technique provides an important link between mask level design systems and symbolic lay

out systems. Now layouts generated from one environment can be converted to the other. In

addition, once converted into a symbolic form, the layout can be further manipulated by other

symbolic layout and analysis tools. In particular, a compaction program, such as SPARCS, can

be invoked to respace the layout accordingto new design rules.

The circuit disassembly problem was formulated as two separate but related problems,

namely, device extraction and net decomposition. These two topics were the main focus of the

report The first was the problem of extracting devices from mask layouts. The device extraction

procedure is performed on the layout using known geometric manipulation algorithms. These

algorithms have been previously applied to circuitextraction and design rule checking problems.

A detailed discussion on these techniques was given in Chapter 3. Of the algorithms, the

planesweep method was chosen and implemented in KAHLUA. This technique allows for flexi

ble mask operations such as finding intersections of layers, as well as GROW and MERGE

59

operations. In addition, the computation complexity is equal or better than other known algo

rithms for performingcomplex mask operations.

The second topic addressed was the problem of net decomposition. Net decomposition is

performed on interconnect mask regions todecompose them into symbolic wires. The problem is

similar to finding a Steiner tree for interconnecting terminals in a given constrained region.

Hence, known routing strategies were employed to solve the problem. Several general routing

procedures were examined in Chapter 3. Themethod implemented in KAHLUA is avariation on

thewellknown Lee Algorithm [Lee61] based on single growth wave propagation. Though simi

lar, netdecomposition is different from thetraditional routing problem in that the objective func

tions are not entirely the same. The differences stem from the need to maintain performance

characteristics when converting from a mask layout to a symbolic layout These considerations

are taken into account by heuristically optimizing for solutions that most resemble the original

mask regions as well as avoiding anyunnecessary wires and jogs. In addition, a template lookup

technique was used to solve simple routing problems. Since VLSI layouts are often very large,

partitioning the problem into smaller manageable tasks is a necessity. Therefore, a global parti

tioning procedure was implemented to perform that role.

Several areas remain for future research on the circuit disassembly problem. In this report,

a formulation of the circuit disassembly problem based on the synergy of known extraction and

routing algorithms has been described. In particular, a framework for circuit disassembly has

been developed. With this framework, different extraction and routing techniques other than the

ones implemented in KAHLUA can be explored. Forexample, a fast algorithm for circuit extrac

tion based on the comer stitching data structure [Ous84] was described in [Sco85]. This technique

has the potential of increasing the efficiency of the device extraction step.

Forthe net decomposition problem,other routing schemes such as the line search algorithm

described in [Hig79] can be applied. Using the comer stitching representation, the routing algo-

60

rithm can be implemented on the same data structure as the extraction procedure, and hence

potential savings in execution time and storage requirements can be achieved, by not creating dif

ferent data structures for each operation. Also, it would be interesting to see if the net decompo

sition problem can be solved in conjunction with the device extraction step. In particular,

perhaps symbolic wires can be derived during the planesweep procedure as interconnect

geometry are examined.

Another problem that requires further examination is the disassembly of complex circuit

structures. KAHLUA has been designed for converting standard CMOS layouts. In particular, it

currently only understands MOS transistors andbasiccontacts. Forexample, othercreativestruc

tures such as MOS capacitors, contacts stacked on top of gates, and bipolar/ECL components are

not currendy recognized by KAHLUA. To identify and extract these structures, the device

extraction algorithm may be extended by incorporating special "rules'*. In general, identifying

such structures in free-form manual designs is a complex pattern recognition problem, and

KAHLUA does not solve this problem today.

Another area that offers interesting research is the representation of rectangular polygon ter

minal frames. Althoughthe planesweep method described in this report is capable of recogmzing

them, representing rectangular polygon terminals frames in a symbolic form is still an issue.

Currendy, terminal frames must be represented with boxes. This limitation makes representing

non-lineartransistors translated from mask layouts extremely difficult. Besides being inefficient

at times, it is impossible in some cases to represent non-linear transistors without rectangular

polygon terminal frames. Developing a robust representation along with a compaction procedure

that can support and exploit complex rectangular polygon terminal frames represents a major,

engineering challenge in this research area.

In addition, the problem of disassembling hierarchical designs still represent some interest

ing challenges. In particular, the problem of synthesizing formal terminals for hierarchical

61

objects such as macro cells should be further explored. This isstill relatively an open problem. If

formal terminals are not already specified in the database, KAHLUA currendy only attempts to

find terminals along the cell borders. A more uniform treatment of this problem is desirable.

62

Appendix

Manual Pages

Following are the UNIXmanualpages for the programs developed for this Masters Thesis. They

are as follows:

• kahlua: A hierarchical circuit disassembler as described in the text of this report. It

accepts an OCT mask layout and synthesizes an appropriate OCT symbolic layout.

• octextract: Circuit extraction program for symbolic layouts as described in the text of

this report. It generates input descriptions to circuit simulators for debugging and

verification.

• octext2spice: OCT database format to spice input format translator.

64

KAHLUA(l) UNIXProgrammer's Manual KAHLUA(l)

NAME

kahlua - A Hierarchical Circuit Disassembler

SYNOPSIS

kahlua [options] cell[:view]

DESCRIPTION

Kahlua is a hierarchical circuit disassembler program for synthesizing symbolic layouts from mask level
descriptions. Its input is an oct cell of viewtype physical, and its output is another oct cell of viewtype
symbolic. To represent the necessary transistors, contacts, and connectors in the symbolic layout a set
of physical leaf cells is created. In addition, a statistics file is created at the end of execution that sum
marizes the program's output characteristics. Once a mask layout is disassembled by kahlua, it can be
used with a rich collection of available symbolic design and verification tools.

The command line options are:

-o cell[:view]
Specifies an alternate output The default output cell name is inherited from the input cell.
The default output view name is symbolic.

-I leafview

Specifies a different view name for the leaf cells. The default view name for the leaf cells is
physical.

-ttechfile

Specifies an alternate technology file for design rules (see below for default).

-e expand
Expands the design rules by expandfactor.

•p directory
Specifies an alternate directory to store the leaf cells. The default directory is
<outcelt>/<outview>.

-a Specifies a maximum aspect ratio for the paths.

•sstatname

Specifies an alternate statistics file. The default is a file named kahlua.stats located in the
primitivedirectory (see above).

•g Ignores explicit formal tenninals.

-m Forces all path widths to be the minimum allowable by the design rules.

-v Enables verbose debugging output

FILES

"cad/lib/technology/<technology>/design_rules technology file
<outcell>/physical/contents input facet
<outcell>/symbolic/contents output facet
<outcell>/symbolic primitive directory

SEE ALSO

sparcs(l), octextractO), octext2spice(l)
oct symbolicpolicy document

AUTHOR

BUI Lin

Berkeley CAD Software 1 Oct 1987

OCTEXTRACT(1) UNIX Programmer's Manual OCTEXTRACT (1)

NAME

octextract - A Hierarchical Circuit Extractor for Symbolic Layouts

SYNOPSIS

octextract [options] cell [:view]

DESCRIPTION

Octextract is a hierarchical circuit extracting program for symbolic layouts generated in the OCT/VEM
environment Its input is an oct cell of viewtype symbolic, and its output is an extracted electrical net
work stored back into OCT.

If no options are specified, octextract will expect the input cell to have the view name "symbolic" and
will produce an output with the same cell name but with the view name "extracted".

The default extraction mode is to produce a simplified electrical network using the lumped RC circuit
model. A more accurate, but also more bulky, circuit description using the detail RC network model
could be generated using the -d option. In addition, the user can specify resistance and capacitance
thresholds to screen out negligible parasitic values.

The command line options are:

-o cell[:view]

Specifies an alternate output The default output cell name is inherited from the input cell.
The default output view name is extracted.

-t techfile

Specifies an alternate technology file for design rules (see below for default).

-e expand
Expands the design rules by expand factor.

-p directory
Specifies an alternate directory for the library of primitive electrical elements (see below for
default).

-r threshold

Sets the resistive threshold to be threshold ohms. Only resistive values greater than or equal to
this amount will be represented in the extracted outout.

•c threshold

Sets the capacitance threshold to be threshold farads. Only capacitance values greater than or
equal to this amount will be represented in the extracted outout

-d Specifies a detailed extraction using the detailed RC network model. The default mode is to
produce a simplified circuit using the lumped model.

-v Enables verbose debugging output

FILES

"cad/lib/technology/<technology>/octextract.tech technology file
"cad/lib/technology/<technology>/octextract primitives directory
<outcell>/symbolic/contents input facet
<outcell>/extracted/contents output facet

SEE ALSO

kahlua(l), octext2spice(l), spice(l)
oct symbolic policy document

AUTHOR

BUI Lin

Berkeley CAD Software 1 Dec 1987

0CTEXT2SPICE(1) UNDC Programmer's Manual OCTEXT2SPICE (1)

NAME

octext2spice - A tool for converting from oct formatto spice format

sisSYNOPSIS

octext2spice [-o filename] cell [:view]

DESCRIPTION

0ctext2spice is a tool for converting an extracted output from the oct database into a spice format The
extracted output is assumedto have been generated by the circuitextraction problem octextract. The spice
node numbers corresponding to the formal terminals of the cell are documented in the spice output. The
default outputfile nameis the input cellname appended witha .spice suffix.The usercan use the -o option
to specify a different output

SEE ALSO

octextract(l), spice(l), oct symbolic policy document

AUTHOR

BUI Lin

Berkeley CAD Software 18August 1987

Bibliography

[Bai75] H.S. Baird and Y.E. Cho, "An Artwork Design Verification System", Proceedings on

the ACM IEEE 12th Design Automation Conference, pp.414-420,1975.

[Bai77] H.S. Baird, "Fast Algorithms for LSI Artwork Analysis", Proceedings on the ACM

IEEE 14th Design Automation Conference, pp.303-311, June 1977.

[Bal82] M.W. Bales, "Layout Rule Spacing of Symbolic Integrated Circuit Artwork", ERL

Memo No. UCB/ERL M82/72, University of California, Berkeley, December 1982.

[Bas83] J.D. Bastian and C.E. Huang and M. EUement and L.P. McNamee and P.J. Fowler,

"Symbolic Parasitic Extractor for Circuit Simulation (SPECS)", Proceedings of the

ACM IEEE20th Design Automation Conference, pp.346-352,1983.

[Ben80] J. Bendey, D. Haken, and R. Hon, "Fast Geometric Algorithms for VLSI Tasks",

ACM Computing Surveys, TEEE COMPCON, 1980.

[Ben79] J.L. Bendey and J.H. Friedman, "A Survey of Algorithms and Data Structures for

Range Searching", ACM Computing Surveys,Vol 11, No.4,1979.

66

[Boy87] D.G. Boyer, "Split Grid Compaction for a Virtual Grid Symbolic Design System",

IEEEICCAN Conference, November 1987.

[Bry81] R.E. Bryant, "MOSSIM: A Switch-Level Simulation for MOS LSI", Proceedings on

theACMIEEE 18thDesignAutomation Conference, 1981, pp.786-790.

[Bur83] M. Burstein and R. Pelavin, "Hierarchical Wire Routing", IEEE Trans, on

Computer-Aided Design, Vol CAD-2, No.4, pp.223-234, October1983.

[Bur86] J.L. Bums and A.R. Newton, "SPARCS: A New Constraint-Based IC Symbolic Lay

out Spacer" Proceedings on the Custom Integrated CircuitConference, May 1986.

[Bur87] J.L. Bums and A.R. Newton, "Efficient Constraint Generation for Hierarchical Com

paction", Proceedings on the IEEE International Conference on Computer Design",

October 1987.

[Cho77] . Y.E. Cho, A.J. Korenjak, and D.E. Stockton, "FLOSS: An Approach to Automated

Layout for High-Volume Designs", Proceedings of the 14th Design Automation

Conference, June 1977.

[Dun78] A.E. Dunlop, "SLIP: Symbolic Layout of Integreated Circuits with Compaction",

Computer-Aided Design, Vol 10, No. 6, pp. 387-391, November 1978.

[Dun80] A.E. Dunlop, "SLIM: The Translation of Symbolic Layouts into Mask Data",

Proceedings ofthe 17th Design AutomationConference, pp. 595-602, June 1980.

67

[Fit82] D.T. Fitzpatrick, "MEXTRA: A Manhattan Circuit Extractor", ERL Memo M82/42,

Electronics Research Laboratory, University of California, Berkeley, January 1982.

[Gib76] D. Gibson and S. Nance, "SLIC: Symbolic Layout of Inteegrated Circuits", Proceed

ings ofthe 13thDesignAutomation Conference, June 1976.

[Gre86] J.W. Greene, "Layout-to-Layout Compaction forTechnologyConversion", VLSI Sys

tems Design, pp.46-51, November 1986.

[Gup83] A. Gupta, "ACE: A Circuit Extractor", Proceedings on the ACM IEEE 20th Design

Automation Conference, pp.721-725,1983.

[Ham77] G. Hamlin, C.W. Gear, "Raster-Scan Hidden Surface Algorithm Techniques", Com

puter Graphics (Proceedings on Siggraph 77), Vol. 11, No. 2, pp.206-213, Summer

1977.

[Har86] D. Harrison, P. Moore, R. Spickelmier, A.R. Newton, "Data Management and Graph

ics Editing in the Berkeley Design Environment" Proceedings on the IEEE Interna

tionalConference on Computer-Aided Design, Nov. 1986.

[Har86b] D. Harrison, "Vem User's Guide" Internal Memorandum, University of California,

Berkeley, 1982.

[Hig69] D. Hightower, "A Solution to the Line Routing Problem on the Continuous Plane",

Proceedings onthe ACM IEEE Design Automation Workshop, pp.1-24,1969.

68

[Hsu78] M.Y. Hsueh, "Symbolic Layout and Compaction of Integrated Circuits", ERL Memo

No. UCB/ERL M79/80, University of California, Berkeley, December 1979.

[Ked82] G. Kedem, "The Quad-CIF Tree: A Data Structure for Hierarchical On-Line Algo

rithms", Proceedings on the ACM IEEE 19th Design Automation Conference,

pp.352-357, June 1982.

[Kel82a] K.H. Keller and A.R. Newton "KIC2: A Low-Cost, Interactive Editor for Integrated

Circuit Design" Proceedings on the Spring COMPCON Conference, pp.305-306,

1982.

[Kel82b] K.H. Keller and A.R. Newton, "A Symbolic Design System for Integrated Circuits",

Proceedings on theACMIEEE 19th Design Automation Conference, June 1982.

[Kin84] C. Kingsley, "A Hierarchical, Error Tolerant Compactor", Proceedings on the ACM

IEEE 21st Design Automation Conference, 1984, pp.136-132.

[Lar71] RP. Larsen, "Computer-Aided Preliminary Layout Design of Customized MOS

Arrays", IEEE Transactions on Computers, Vol C-20, No.5, pp.512-523, May 1971.

[Lar78] R.P. Larsen, "Versatile Mask Generation Techniques for Custom Microelectronics

Devices", Proceedings ofthe 15th Design AutomationConference, June 1978.

[Lau80] U. Lauther, "A Data Structure for Gridless Routing", Proceedings on the ACM IEEE

17th Design Automation Conference, June 1980.

69

[Lau81] U. Lauther, "An 0(N log N) Algorithm for Boolean Mask Operations" Proceedings

on the ACM IEEE 18th Design Automation Conference, June 1981.

(Lee61] C.Y. Lee, "An Algorithm for Path Connection and its Applications", IRE Trans, on

Electronic Computers, Vol EC-10, pp.346-365, September 1961.

[JJ84] J.T. Li snd M. Marek-Sadowska, "Global Routing for Gate Array", IEEE Transac

tions on CAD, Vol CAD-3, October 1984.

[Lin87] B. Lin and A.R. Newton, "KAHLUA: A Hierarchical Circuit Disassembler",

Proceedings on theACMIEEE 24thDesign Automation Conference, June 1987.

[McC84] S.P. McCormick, "EXCL: A Circuit Extractor for IC Designs", Proceedings on the

ACM IEEE 21st Design Automation Conference", pp.624-628,1984.

[Mea80] C. Mead and L. Conway, Introduction to VLSI System, Addison-Wesley Publication,

1980.

[Moo82] P. Moore, "Fang User's Guide" Internal Memorandum, University of California,

Berkeley 1982.

[M0086] P. Moore, "The General Structure of OCT" Internal Memorandum, University of

California, Berkeley, January 1986.

[Nag73] L.W. Nagel and D.O. Pederson, "SPICE: A Simulation Program with Integrated Cir

cuit Emphasis", Electronics Research Laboratory University of California,

Memorandum No. UCB/ERL M382, April 1973.

70

[New83] A.R. Newton and A.L. Sangiovanni-Vincentelli, "Relaxation - Based Circuit Simula

tion", IEEE Transaction on ED, Vol ED-30, No.9, September 1983, pp.1184-1207.

[Oct88] "Octtools Version 2.0", University ofCalifornia, Berkeley, 1988.

[Ous81] J.K. Ousterhout, "Caesar: An Interactive Editor for VLSI Layouts" VLSI Design,

Vol.II, No.4,4th Qtr, pp.34-38,1981.

[Ous82] J.K. Ousterhout and D. Ungar, "Measurements of a VLSI Design", Proceedings of

the 19th Design Automation Conference, June 1982.

[Ous83] J.K. Ousterhout "Crystal: A Timing Analyzer for NMOS VLSI Circuits", 3rd Cal-

tech Conference on VLSI, March 1983, pp.57-70.

[Ous84] J.K. Ousterhout, "Corner Stitching: A Data-Structuring Technique for VLSI Layout

Tools", IEEE Transon Computer-Aided Design, Vol CAD-3, No.l, January 1984.

[Ous85] J.K. Ousterhout C.T. Hamachi, R.N. Mayo, W.S. Scott, and G.S. Taylor, "The

Magic VLSI Layout System", IEEE Design and Test of Computers 2, 1 (February

1985), pp.19-30.

[Ree85] J. Reed, A. Sangiovanni-Vincentelli, and M. Santomauro, "A New Symbolic Chan

nel Router: YACR2", IEEE Trans, on Computer-Aided Design, Vol CAD-4, No.3,

July 1985, pp.208-219.

[Rog85] Rogersa and Rosenberge and Daniels, "MCNC's Vertically Integrated Symbolic

Design System", Proceedings on the ACM IEEE 22nd Design Automation Confer

ence, 1985, pp.62-68.

71

[Rub74] F. Rubin, "The Lee Connection Algorithm", IEEE Trans, on Computers, Vol. C-23,

pp.907-914,1974.

[Sco85] W.S. Scott "Compaction and Circuit Extraction in the MAGIC IC Layout System",

Report No. UCB/Computer Science Dpt 86/269, Computer Science Division

(EECS), University ofCalifornia, Berkeley, November 1985.

[Shi86] H. Shin and A. Sangiovanni-Vincentelli, "MIGHTY: A 'Rip-Up and Reroute*

Detailed Router" Proceedings on the IEEE International Conference on Computer-

Aided Design, November 1986.

[Spi85] R.L. Spickelmier and A.R. Newton", "Connectivity Verification Using a Rule-Based

Approach", Proceedings on the ICCAD, 1985, pp.190-192.

[Sza76] L. Szanto, "Network Recognition of a MOS Integrated Circuit from its Masks", Tesla

Electronics, pp.67-75, September 1976.

[Tan87] D. Tan and N. Weste, "Virtual Grid Symbolic Layout 1987", Proceedings on the

IEEEInternational Conferenceon ComputerDesign, 1987, pp.192-196.

[Tar83] G. Tarolli and W.J. Herman, "Hierarchical Circuit Extraction with Detailed Parasitic

Capacitance", Proceedings on the ACM IEEE 20th Design Automation Conference",

pp.337-345,1983.

[Ter83] C. Terman, "ESIM Reference Manual" Internal Memorandum, UCB/MIT, 1983.

72

[Wes81] N. Weste, "Virtual Grid Symbolic Layout", Proceedings on the ACM IEEE 18th

DesignAutomation Conference", pp.225-233,1981.

[WU78] J. Wflliams, "STICKS: A Graphical Compiler for High-Level LSI Design", AFIPS

Conference, Vol.47,1978, pp.289-295.

[Yam72] M. Yamin, "Derivation of All Figures Formed by the Intersection of Generalized

Polygons", The Bell System Technical Journal, Vol. 51, No. 7, pp.1595-1610, Sep

tember 1972.

73

	Copyright notice1989
	ERL-89-21

