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Abstract

Diffusion is explored in a two-dimensional phase space characterized by a connected

separatrix layer (web) of intrinsic stochasticity bounding regions of regular motion (tiles). In

the presence of weak extrinsic noise there is local diffusion across the tiles. Given parameters

for which the web diffusion dominates, the noise slows the web diffusion rate by creating

reservoirs for diffusing phase points within the tiles. If the extrinsic diffusion dominates, the

structure of the phase space plays an important role in enhancing the diffusion. In either case

the diffusion is characterized by two space and time scales: the large space scale ofthe tile size

coupled with the long time scale for diffusion across the tile separatrix, and the small scale of

the intrinsic or extrinsic step size at the short time scale of the mapping period. For a "quasi-

equilibrium" model in which the web and tiles are in local equilibrium, analytic calculations

can be performed, which agree well with numerical results.

PACS numbers: 05.45.+b, 05.60.+W, 05.40.+J



An important phenomenon in nonlinear dynamics is the diffusion through a divided phase

space in the presence of extrinsic stochasticity. In two degrees of freedom the divided phase

space generically separates into regions of connected intrinsic stochasticity and regions dom

inated by KAM curves on which the intrinsic motion is regular.1,2 For systems periodic in a

phase variable, if phase spanning KAM curves exist, the diffusion in the presence of extrinsic

stochasticity can be characterized by regions of the action for which slow extrinsic stochasticity

diffuses phase points across KAM curves in series with regions of the phase space in which

the-more rapid intrinsic diffusion prevails.2,3 The global diffusion rate is the slow extrinsic rate

but over a reduced phase space. In contrast, over a primarily connected intrinsically stochastic

region with imbedded KAM surfaces (islands) the intrinsic rate is slowed by the extrinsic

diffusion in and out of the island regions.2,4 Usually this latter effect is of minor importance,

but, as we shall see below, it is closely related to the phenomenon to be examined.

If a Hamiltonian system is constructed by resonantly perturbing a linear oscillator a new

phenomenon appears in two degrees of freedom, that of a connected stochastic web.5,6 Further

more, if the perturbation is a periodic 5-tuncuon with a low order resonance, the resulting sto

chastic web is globally uniform over the phase space.6 The tiling of the phase space into a con

nected stochastic web surrounding tile regions bounded by KAM curves creates a simple topol

ogy for studying combined intrinsic and extrinsic stochasticity. Of particular interest is the

interaction of the large space scale at which phase points cross separatrices between tiles and

the small space scale diffusion within each web or tile.

An estimation of this two-space-scale diffusion was made in Ref. 6, where it was recog

nized that the diffusion rate should be proportional (in some limit) to the ratio of phase space

of the web to the total phase space. However, an explicit calculation of the intrinsic web

diffusion was not made, so that a complete treatment of the two-space-scale diffusion could not



be made. In Ref. 7 we have explicitly calculated the global rate of web diffusion, Dweb. We

then reasoned qualitatively that the inclusion of extrinsic noise would lead to an asymptotic (in

time) diffusion in which "the overall diffusion rate is a product of the global separatrix rate

CPweh) and me ratio of phase space areas of intrinsic to extrinsic stochasticity." It is the pur

pose of this letter to numerically confirm this assertion, to determine what is meant by asymp

totic in terms of the two space scales and two time scales involved, and to examine the

diffusion on the non-asymptotic transition timescales.

We use the mapping representation for the kicked oscillator6,7

"«+i = ("n + Ka sin v„)cos a + vn sin a

vn+i = -(un + Ka sin vB)sin a + v„ cos a

where a = (oT is the rotation angle of the oscillator between kicks, Ka is the maximum kick

amplitude, and u and v are the normalized velocity components. The mapping is composed of

a product of two involutions, a step change in u followed by a rotation, and is therefore meas

ure preserving. At a resonance we have a = 2np/q. For this study we take p =1 and q =4,

giving four kicks per oscillation period. The twist can then be removed by iterating the map

ping four times, keeping only the lowest order terms in Ka, to obtain a reduced mapping.

Adding random changes in u and v to the reduced mapping we obtain

v«+i = vn - 2Ka sin un + Kr

u„+l =un+2Ka sin vrt+1 +vr (1)

where ^ and vr are the extrinsic stochastic components. A piece of the resulting phase space

is shown in Fig. 1, for Ka =0.5 and ur =vr =0, for a few initial conditions, showing both

the KAM surfaces within atile, and the stochastic continuous web surrounding the separatrix

given to lowest order by



v = ±(w + k) + lion, m integer (2)

In terms of the normalized action w, which goes from zero on the separatrix to unity at the tile

center, the following results were obtained, valid near the separatrix, with no extrinsic noise.7

The rotation period within the tile, in units of the mapping period, is

x(y») = 2(2-\nw)IKa (3)

The thickness of the stochastic web is

wx =(27i/tf 2) expHi2/^ (4)

Integrating (3) over w i we obtain the average x over the web

*ave = tflKl) +(6-21n20rc +61n K^IK^ (5)

The number of rotation periods per separatrix crossing is found from the solution of a local

diffusion mechanism within the web, assuming nearly uniform local phase space, to be

n = j?/4Ka. (6)

We shall see that this local uniformness is also characteristic of the asymptotic diffusion over

the entire tile in the presence of noise. Assuming normal random walk diffusion through the

web with a Gaussian distribution on the large tile space scale

W(L) = (TC/VLTife)-1 exp[-L2/A/LTilJ

then the root mean square spreading L^ is given by

*<nns =(£>webA01/2 (7)

where N is the number of mapping periods, and

£>Web =^TUe^Tfle = 27C2/rtXave (8)

where LTiie =^2 n is the distance between adjacent tile centers. Equation (8) has been verified,



numerically, over a range of ATa.7

We now introduce extrinsic noise, as a uniformly distributed random variable between ±/,

and numerically examine the result. We first examine, directly, the expansion of Lms with N

for a range of Ka's and noise coefficients / in Fig. 2. The steeper slopes of Vi, on log-log

coordinates give the usual proportionality for random walk diffusion Lma o* Nl/2. With no

noise, after an initial transient representing spreading within the web away from initial condi

tions near the unstable fixed point, all Ka's follow, this proportionality, with the proportionality

constant given by Dwcb in (8). With a relatively large noise coefficient of / = 1/20, and for the

larger intrinsically stochastic webs, Ka = 0.5, 0.7, after an initial transient period between 104

and 105 iterations with slower than random walk diffusion, the L^ <* #1/2 reestablishes

itself, but with a lower proportionality constant For these Ka values, and a smaller noise

coefficient of / = 1/200 the random walk proportionality has approximately established itself

by N=106 (only Ka =0.5 is shown over this N). For asmaller noise coefficient / =1/2000,

we obtain a different result in which the diffusion at first follows more closely to the random

walk diffusion slope and then falls to a lower proportionality, over the time of observation

(illustrated for Ka =0.5 in the figure). To understand these results we show, in Fig. 3, the

fraction ofphase points in the web fm versus iteration number, for the values ofKa and noise

discussed above. For a noise coefficient of / = 1/20, after an initial few iterations in which all

phase points are in the web, there is a transition to an asymptotic value which occurs for both

Ka =0.5 and 0.7 at about the same number of iterations between 103 and 104, but with

different asymptotes. Referring back to Fig. 2, we see that sometime after the asymptotic ratio

of web to tile phase points is reached, the diffusion behaves as a random walk. For the case of

Ka =0.7, comparing noise / = 1/20 case with the no noise diffusion we find the ratio of itera

tions for agiven L^, DID^, to be the asymptotic fN, found to be 0.3 in Fig. 3. We con-



elude that the tile particles, in equilibrium with the surrounding web, act as a local source for

the web diffusion, as we had previously postulated. A numerical measurement of the area ratio

gives / =.29, in good agreement. The diffusion calculation for Ka =0.5 with a noise

coefficient of / = 1/200, at a asymptotic value near N=106, gives D/DW(A) =0.07 in good

agreement with fN = 0.07 found from the asymptotic value in Fig. 3. The measured area ratio

is / = 0.065, again in good agreement

The transition time to the asymptotic state, is related to the extrinsic stochastic filling time

for the tile. We use the usual random walk argument to compute the time to diffuse from the

web to the center of the tile, adistance of n/^2. For noise amplitude / = 1/20, the average step

across KAM surfaces LnoUe =tjtt=. giving adiffusion time N=(20rc)2 =4•103. For noise

amplitude / = 1/200 the time is a factor of 100 larger, or N = 4 • 105. These times are con

sistent with the numerical observations of Fig. 3.

The dynamics, however, includes some additional subtleties. The edge of the distribu

tion, i.e., that part created on a time-scale shorter than the extrinsic diffusion time across a tile,

is clearly not asymptotic. This accounts for the near approach of fN to the asymptotic value

while D/Dweb has not yet reached its asymptotic value, i.e., while the diffusion rate is not yet

Nm.

While we have concentrated our attention on the cases dominated by the large space scale

(web) diffusion, the web diffusion is not always dominant Since the random steps at the small

space scale take place at each mapping step the extrinsic noise can dominate the diffusion

when the noise step is sufficiendy large and the time for the intrinsic large space scale step is

sufficiently slow. In fact the extrinsic diffusion is itself a two space and time scale process,

when acting upon a phase space topology of the type considered here (e.g. Fig. 1). Local

diffusion within each tile results in separatrix crossings. Due to the rotation of particles within



each tile on a fast time scale the result is to step the crossing particles effectively the distance

between tile centers. The global extrinsic diffusion, D^ is then governed by the step size of a

tile and a characteristic time for the exchange of tile phase space across the bounding separa-

trices

Dcx = L$nsHex (9)

we can characterize t^ by

*«= tfex PcxT1 (10)

where /« is the fraction of phase space that is accessible to crossing the separatrix on each

mapping step due to the extrinsic stochasticity, and Pa is the probability for that phase space

to actually cross. We use simple geometric arguments to calculate these quantities. As men

tioned earlier, for our numerical investigation we have chosen v^ and vr to be uniformly distri

buted random variables between ±/. The accessible phase space consists of 4 edge strips of

length tt/2 and width /V2, while the entire tile phase space is 2JC2. The fraction of accessible

phase space is then

/« =4//K (11)

For uniformly distributed Mr, and vr, the probability of a step a distance 8 across curves of

constant Hamiltonian can be directly calculated to be

S(5) =-^(V2/-5)
2/z

The phase space crossing probability in the accessible layer is then

<>«=^>£^=±
Substituting (11) and (12) in (10)
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*ex =3ltf/ (13)

Extrinsic diffusion dominates the intrinsic diffusion for x„<nxave//, with the rate of diffusion

then characterized by (9).

The competition is illustrated numerically in Fig. 4, in which, for a fixed N, L^ is plot

ted against Ka, with noise as a parameter. The case with no noise has the expected dependency

^ims °° Ka • The diffusion with extrinsic noise lies above the diffusion without noise for

values of Ka at which the extrinsic diffusion is larger than the web diffusion. For Ka =0.1,

we expect the diffusion to be governed by the extrinsic noise alone. For noise / = 1/20, using

(9) and (13) we calculate after 216 iterations that Lms =82. This is significantly higher than the

numerical value Lms = 60, found numerically, which indicates a hidden missing factor that

increases x^ over the simple analytic estimate. One possibility is a nonuniformity in the phase

that may develop if the rotation frequency near the separatrix (see Eq. 3) is too slow. The gen-

tie upward slant of Lms as a function of Ka in the cases dominated by extrinsic stochasticity

may be indicative of this. The lower noise case / = 1/200 does not lie a factor of 10"l/2 below

the / = 1/20 case at Ka =0.1 because after 216 iterations it is not yet asymptotic; the occupied

phase space within the tile regions is therefore smaller. The other interesting feature of Fig. 4

is the break in the slopes of Lms with noise. These should occur when xrde =x^, i.e., when

7C4 37C

4Klf(Ka) l (M)

which we have verified, numerically, by the positions of the slope changes in Fig. 4.

In conclusion, we are able to understand two time step diffusion in terms of establishing

a local quasi-equilibrium. The technique can be used to calculate the diffusion through a

divided phase space consisting of both intrinsic and extrinsic diffusion, provided the structure

of the phase space is sufficiently uniform on the length scale Lms over which the diffusion is



to be calculated.
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Figure Captions

Figure 1 Aportion of the phase space with a 4:1 resonance, showing the stochastic web

and a few curves of constant Hamiltonian within a tile.

Figure 2 Diffusive spread of the distribution versus iteration number for a representative

sample of values ofperturbation parameter Ka and random step /. The 1000 ini

tial conditions are within the stochastic web in the neighborhood of an unstable

fixed point.
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Figure 3 The fraction of phase points within the web vs. iterations, with Ka and / as

parameters; 10000 initial conditions in the web.

Figure 4 Diffusive spread of the distribution versus Ka, with / as a parameter, after 216

iterations for 1000 initial conditions in the web.
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