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Abstract

Pictures are auseful medium for communicating abstract information. Pictures exploit a
person's natural abilities to recognize and understand visual patterns. However, the differences
between an effective and a confusing presentation of the same data can be subtle, and often
depend on the layout

This paper discusses methods for automatic presentation of relational information in the
form of directed graphs. An overview of the graph-layout problem is presented, along with a
summary of several different layout algorithms. A new divide-and-conquer layout algorithm is
described in detail. This algorithm produces especially good results on large graphs of several
hundred vertices.

1. Introduction

The increasing acceptance of the bit-map display and mouse paradigm for user-interfaces
(e.g., on an X-Windows workstation or an Apple Macintosh) allows information to be presented
to users in pictorial, as opposed to textual, representations. An advantage of these pictorial
representations is that they exploit a user's natural ability to recognize graphic patterns
[Rob87b]. Acommonly used form ofgraphic representation is avertex and edge graph.

Many computer applications allow the direct manipulation of human generated graphs.
For example, Batini, et. al, have developed asystem for creating and editing database schema
through the manipulation of Entity-Relationship Diagrams [BTT84a]. Other graph systems
automatically display application-generated graphs, such as compiler-generated parse trees
[AHY88]. Lastly, several interactive systems, such as MacProject [APP84] allow a user to
manually draw and manipulate graphs, such as PERT Charts or organizational trees.

Although the electronic-manual approach to graph layout offers asmall improvement over
actual paper-and-pencil drawing, two problems are very evident. First, experience has shown
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that people find it difficult to lay out graphs with many vertices and edges. Second, it is difficult
for auser to produce a layout when the data is generated by an application (e.g., a parse tree
generated by acompiler). An algorithm isneeded toproduce graph layouts automatically. That
is, given a formal vertex and edge set representation of a graph, an algorithm is needed that
automatically assigns planar coordinates tothevertices and edges.

In making these coordinate assignments, one must keep in mind that the layouts are
intended for visual consumption, and thus must be easily "read" and aesthetically pleasing to
the eye. Recent work on automatic layout algorithms has focused on graph-syntactic and
geometric aesthetics (or constraints) such as minimized edge crossings and balanced distribu
tion of graph elements in the plane. Tamassia, Batini and Di Batista [TOD87] and Messinger
[Mes88] have each produced surveys of the field and derived taxonomies of layout criteria from
them.

This paper describes a new layout algorithm, called COMPOZE, that uses a divide-and-
conquer approach to graph layout. Our motivation for studying graph layouts was borne from a
need to examine program call-graphs. We produced an implementation of Sugiyama, Tagawa
and Toda's algorithm (henceforth referred to as the STT algorithm) [STT81], called GRAB. [5]
GRAB combines the automatic layout of the STT algorithm with an interactive graphical inter
face, andruns on a Sun Microsystem workstation [RDM87].

Afterdevising several improvements to the basic STT algorithm [Dav85] and conducting
several experiments to measure its performance (both layout time and layout quality), we con
cluded that the algorithm was ineffective on graphs larger than 50-100 vertices [Mes88].
Graphs of a few hundred vertices required several minutes of layout time on a single-user Sun-
3/75. Additionally, the layout quality for large graphs was generally unacceptable, containing
numerous edge crossings and no overall structure.

These two problems motivated the development of the divide-and-conquer scheme. By
subdividing alarge graph into subgraphs, laying them out separately? and pasting them together
to create alayout of the total graph, COMPOZE is able to produce layouts of higher quality (as
measured by objective constraints) in as litde as 20% of the time used by the STT algorithm.
Additionally, the partitioned nature of the final layouts is preferred by users, who suggest that
the geographic separation of subgraphs allows the eye to break down a complex graph into
manageable pieces. Finally, the partitioning of the layout process suggests ways to perform
incremental layout changes and todevelop aparallel version ofthe algorithm.

The remainder of this paper is organized as follows. Section 2 surveys related work. Sec
tion 3 describes the COMPOZE layout algorithm. Section 4 presents the results of a series of
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experiments conducted to compare COMPOZE and GRAB. Finally, section 5 summarizes the
results presented in this paper andsuggests directions for future research.

2. Related Work

This section presents a brief overview of previous work on graph layout algorithms.
Comprehensive surveys are given elsewhere (e.g., Tamassia et al. [TBD87] or Messinger
[Mes88]). Readers unfamiliar with graph terminology are referred to basic graph theory books
[BoM76,Har69].

Many automatic layout algorithms have been developed, reaching back at least as far as
Knuth's suggested system for automating the layout offlow charts [Knu63]. Most layout algo
rithms have been developed for special subclasses ofgraphs, and with particular application-
dependent layout constraints in mind.

For example Reingold and Tilford's algorithm for trees [ReT81] works only for directed
tree graphs, and ensures a number of customary constraints, such as the alignment of equal
depth vertices on a horizontal level, and centering parent vertices between their children hor
izontally. Table 2-1 lists several notable layout algorithms.

This paper describes an algorithm to produce hierarchical layouts of directed graphs. A
hierarchical layout of a graph divides the graph's vertices into a number of subsets called lev
els. The vertices in each level are laid out on a horizontal line, and the levels are stacked verti
cally. Figure 2-1 depicts one hierarchical layout of a directed graph.

The goal of the hierarchical layout is to clearly display the ancestral relationships between
vertices. This goal is accomplished by selecting the level subsets so as to maximize the edge-
flow in a particular direction (e.g., downwards in figure 2-1). This positioning allows a reader
to identify ancestor/descendant relationships by identifying physical above/below relationships
between connected vertices. That is, in a perfect hierarchy, all of. a vertex's ancestors appear
physically above it, and all ofa vertex's descendants appear physically below it.

Many algorithms have been developed to solve the hierarchical layout problem. Warfield
published an early algorithm that assigned vertices to levels to insure hierarchical positioning
(i.e., all ofthe graph's edges directed in one direction) [War76]. The algorithm starts by finding
the subset of vertices with no successors and assigns them to the bottom level. These vertices
are removed from the graph and the process isrepeated to find the next level up. The algorithm
continues until all vertices havebeen placed.
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Table 2-1 — Selected Automatic Layout Algorithms
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Level 3

B Level 2

Level 1

Figure 2-1 — A Hierarchical Layout of aDirected Graph

For cyclic graphs Warfield described a method that identifies maximal-cycles and
compresses them into proxy vertices. These proxies act as super-vertices, taking on all of the
predecessors and successors ofthe cycle's vertices, and reducing the graph to an acyclic graph.
Carpano discussed a post-processing step in which the proxies are expanded in a three-
dimensional layout [Car80]. Meyer suggested using pre-determined canonical forms to draw
proxies of different sized cycles [Mey83]. Davis devised an alternate method that involved
removing cycles by temporarily reversing selected edges Pav85].

After assigning the vertices to levels, the next problem is to reduce the number ofedges
that cross other edges. Warfield developed aheuristic method for 2-level graphs that is based
on alternately permuting the vertices ofthe top and bottom levels [War77]. Eades and Kelley
showed that the crossing minimization problem is NP-hard for 2-level hierarchies with the ver
tices on the second level held fixed [EaK86], so Warfield's use ofheuristics was warranted.

Delarche developed a faster crossing reduction heuristic for 2-level hierarchies [Del79],
which was also described by Carpano [Car80]. This algorithm combined Warfield's permuta
tion strategy and asorting measure called abarycenter [Tut63]. The barycenter ofavertex is
the average ordinal position ofthe vertex's neighbors. For example, in figure 2-2 the barycenter
ofvertex A is the average position ofits neighbors E and G, or 1. Similarly the barycenter of
vertexH is the average position of vertices B and C, or 1.5.

Delarche's crossing-reduction algorithm alternately sorts the top and bottom levels accord
ing to their baiycenters. As each level is sorted, the barycenters of the opposite level are
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Figure 2-2 — Computing the Baiycenters

recalculated. This process continues until a stable configuration is reached. Carpano reported
that Delarche showed convergence "under the usual convergence assumptions"
[Car80, pp. 710].

The idea is that the barycenters tend to align connected vertices vertically, to create verti
cal edges that do not cross. Although the convergence results do not show that the final

configuration will be minimal in terms of the number of edge crossings (or in fact better than
the starting configuration!), Delarche was able to reduce the number of crossings by 30 to 50
percent across several sample graphs.

Carpano generalized Delarche's 2-level sorting to reduce crossings in it-level hierarchies.

Generalizing the algorithm involved three steps: 1)reducing the it-levelhierarchy to a series of
connected 2-level hierarchies, 2) generalizing the barycenter measure, and 3) generalizing the
sorting iterations.

The first transformation reduces long-edges that span non-adjacent levels to a series of
connected single-level spanning segments. This is accomplished by inserting new dummy ver
tices at intermediate levels. For example, in the hierarchy of figure 2.1, the edge A -» C would
have a dummy vertex inserted at level 2.

The second generalization replaces the single barycenter with a pair of measures, the up-
barycenter and the <fow/z-barycenter. The «p-barycenter is the average ordinal position of a
vertex's predecessors, while the down-barycentei is the average ordinal position of a vertex's
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successors.

The third generalization modifies the order in which levels are sorted. Carpano's it-level
algorithm iteratively sorts levels 1 and 2 as described above, andthen sorts levels 3,4, •••,/! in

ascending order. For 3<i£k, the vertices in level i are sorted according to their up-
barycenters. After level i has been sorted, the new vertex positions are propagated back
through the graph by sorting level j (j ranging from i -1 down to 1) according to the down-
barycenter of each vertex.

Sugiyama, Tagawa and Toda extended Carpano's algorithm in two ways [STT81]. First,
they altered the sorting order so that the levels are sorted 2,..., it by their K/?-barycenter and then
they are sorted k -1,..., 1by their <knwi-barycenter. And second, they added a third phase to
the algorithm that attempts tominimize edge lengths and straighten long-edges.

Meyer [Mey83] and Davis [Dav85] further extended the algorithm. They generalized the
barycenter measure by introducing an up-down-bsaycenteT. This measure averages the position
of avertex's predecessors and successors. As noted earlier, they also introduce aheuristic for
handling graph cycles without resorting to proxy vertices. This algorithm was used in an
interactive graph browser, called GRAB, developed by Rowe et al. [RDM87]. Experience with
GRAB motivated the development of the compositional layout system described below in sec
tion 3.

Other researchers have investigated various aspects of this algorithm, including alterna
tives to barycentric sorting [EaK86,GNV88,Mak88a,Mak88c], an improved version of
Sugiyama's first-phase level-assignment problem [GNV88] and an exact solution to Sugiyama's
third-phase edge-length immunization problem [GNV88].

Several other approaches to hierarchical layout have been investigated, including Robins'
USP-based ISI Grapher [Rob87a, Rob87b], May, Iwainsky and Mennecke's hierarchical circuit
layout system [MIM83] and Majewski, Krull, Fuhrman and Ainslie's schematic layout system
[MKF86]. '-.

3. COMPOZE: A Compositional Graph Layout Algorithm
Experience with the GRAB implementation of the Sugiyama algorithm showed that the

layout scheme was too slow for interactive applications. Graphs ofonly afew hundred vertices
required several minutes oflayout time on aSun-3/75 workstation. Dynamic profiles ofthe sys
tem showed that over 95% of the total layout time was spent sorting and resorting the levels ^
during the crossing minimization phase (i.e., phase 2). After several failed attempts to find a

'"j February 17,1989
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faster heuristic solution that would produce layouts ofequivalent quality, we decided to utilize a
divide-and-conquer algorithm.

The COMPOZE system lays out graphs by partitioning them into subgraphs, laying out the
subgraphs separately, and composing the constituent sub-layouts into a layout of the original
graph. To design COMPOZE, four problems had to be solved: 1) how to partition the input
graph into subgraphs, 2) how to layout the subgraphs, 3) how to position the subgraph layout
relative to each other in the composition phase, and 4) how to layout graph edges that span
between different subgraphs.

The input toCOMPOZE isagraph, G =(V, E), and apartition of the graph into subgraphs
specified as non-overlapping subsets (Vx, ••• ,Vn). These subsets induce a partition of the
entire graph:

«V1E1),...,(VnEn)}vEnmm

where Et are the edges connecting vertices in vertex subset Vh and Ejj^^ are the inter-
subgraph edges connecting vertices in different vertex subsets. The COMPOZE algorithm
operates in three phases:

1.Subgraph Layout. Each subgraph is laid out using a modified version of the
Sugiyama algorithm.

2. Composition. These subgraph layouts are positioned inthe final layout plane.

3.Interedge Routing. The interedges, those edges with endpoints in two different
subgraphs, are added to the final layout

Figure 3-1 shows an example of this process. In the top figure the subgraphs are laid out
individually. Using the bounding boxes of these layouts and the inter-subgraph edges listed in
the center figure, a metagraph is computed as shown in the bottom figure. This metagraph,
when laid out, acts as atemplate for the composition of step 2. After composing the subgraphs,
the inter-subgraph edges are added, using the metagraph edges as aguide.

The remainder of this section is organized as follows. Section 3.1 describes several graph
partitioning techniques that weinvestigated. Section 3.2 discusses the technique used byCOM-
POZE to recombine the subgraph layouts into alayout of the input graph. Section 3.3 describes
thetechniques used to route the inter-subgraph edges.
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3.1. Graph Partitioning

In preparing agraph for layout with the COMPOZE system, the graph's vertex set must be
partitioned in some manner. Two types of partitions were investigated: 1) application-specific
partitions suggested by the semantics of the input graph (e.g., a module-based partition of a

i-2- February 17,1989
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function call-graph) and 2) graph-theoretic partitions based on syntactic partitioning algorithms
such as Kernighan and Lin's [KeL70].

Each type of partition has its own set of advantages and disadvantages. In looking at
semantic partitions it is clear that the primary advantage is the semantic coherency of the
induced subgraphs. These groupings can be of great value in displaying graphs, especially
when different partitions are used to provide contrasting views of the same graph. For example,
a call-graph might be partitioned according to module-membership, data-bindings or paging
behavior. The relationship between the different partitions might be used to learn more about
the staticand dynamic structure of a program.

On the other hand, semantic partitions are often very poor from the standpoint of display.
Module partitions, for example, are often very uneven, with module size ranging from one or
two to hundreds of functions. Uneven partitions produce poor layouts because they do not play
to the strength of the compositional strategy, which is to use the underlying subgraph layout
algorithm to layout out graphs ofmoderate size (e.g., 20-40 vertices).

A second problem withuneven partitions is that they increase layout time. Layout time is
the sumof the times to layout the subgraphs, route the inter-subgraph edges, and recombine the
subgraphs (i.e., composition overhead). An uneven partition often has an increased number of
subgraphs, whichincreases the overhead component. Similarly, the polynomial running timeof
the subgraph layout algorithm is larger on unevenly sized subgraphs. For example, the algo
rithm takes longer to lay out two unevenly sized subgraphs of 1 and n -1 vertices than two
evenly sized subgraphs ofnil vertices.

Finally, many semantic partitions contain a large number of inter-subgraph edges.
Although not inherently a problem in a divide-and-conquer layout scheme, experience with
COMPOZE has shown that the routing of these edges is difficult, and that a large number of
them quickly makes a layout unreadable.

The second type of partition that was considered is based on"graph syntactic algorithms
such as Kernighan and Lin's [KeL70]. The goal of this algorithm is to partition a graph of kn
vertices into k evenly divided subsets of n vertices each, with a minimal number of inter-
subgraph edges. The obvious advantage of such a partitioning scheme is that the goals directly
relate to the requirements of thedivide-and-conquer layout scheme, as discussed above.

For graphs with no natural, semantic partition, the syntactic partitioning scheme is ideal.
On the other hand, for graphs with a semantic partition (e.g., a call-graph with amodule parti
tion), repartitioning the graph syntactically might be misleading. That is, a layout based on a
syntactic graph, with vertices grouped by their degree of connectivity, might imply some non-

,-> February 17,1989
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existent semantic relationship to the user.

Several other semantic graph partititioning schemes are available, including clustering
algorithms (HuB85, SCC77] in which new clusters of highly connected vertices are "grown,"
or algorithms based onthe technique of simulated annealing [JAM87,KGV83,Rom86]. Each
has disadvantages when compared with the Kernighan and Lin scheme in this context. In par
ticular, clustering algorithms have a tendency to trade subgraph evenness for minimized inter-
subgraph edges, andsimulated annealing is too slow.

For applications in which overall layout quality, in terms of layout time, number of edge
crossings, evenness ofvertex distribution, etc. is the primary concern, then asyntactic partition
ing algorithm is, at this point, amust. Future divide-and-conquer layout schemes might handle
uneven partitions more gracefully than COMPOZE, but likely never as well as they will handle
higher quality syntactic partitions.

3.2. Composition

After the subgraphs have been laid out, the subgraph layouts are composed into alayout of
the total graph. COMPOZE achieves this through the use ofametagraph. The metagraph con
sists of ametavertex for each subgraph of the partition, and ametaedge for each set of edges
directed from one subgraph to another. The original input edges underlying the metaedges are
called actual edges.

Each metavertex is sized to match the dimensions of the underlying subgraph layout
Similarly, each metaedge is width-scaled to represent the number ofunderlying actual edges.
The metaedges are essentially channels in which the actual edges are later routed, as shown in
figure 3-2.

The metagraph is laid out by a modified version of the Sugiyama algorithm. The
modifications allow the algorithm to handle vertex-icons ofarbitraiy heights (the original for
mulation assumed that each vertex was represented by adimensionless point-icon) and insures
that edges enter at the top and exit from the bottom ofvertex-icons. Further details are given
elsewhere [Mes88].

Once the metagraph has been computed and laid out, the composition involves three steps:
1) copying the subgraph vertices, 2) merging the level structures, and 3) copying the intra-
subgraphedges.

The first step copies the vertices ofeach subgraph into the total graph, using the coordi
nates of the vertices within their subgraph layouts, and the subgraph's coordinates within the

,-a February 17,1989
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Subgraph-1

Metavertex

Metaedge

Metavertex

Subgraph-2

Figure 3-2— Encoding aMultigraph withWidth-Scaled Edges

metagraph layout. Figure 3-3 shows an example. Vertex A has its center placed at the point
(10,25)+(0,40), or, (10,65) in the total graph. This location represents the vertex's offset
within the subgraph, and the base (lower-left) coordinates of the metavertex within the meta

graph, respectively. Similarly, vertex F i? centered at (15,25)+(50,30) or (65,55).

The second composition phase merges the individual level structures of the subgraph lay
outs into acoherent level structure for the layout of the entire graph. In doing soit is often use
ful to combine nearby levels from horizontally adjacent subgraphs, so as to align more vertices
in the total layout, and simultaneously to reduce the number of levels. For example, as shown
in figure 3-4 the leftmost figure represents the level misalignment that can result from apros
cribed metagraph placement. The rightmost figure shows an adjusted placement that allows the
first two levels in each subgraph to be combined. The heuristic for coalescing levels is very
simple, merging closely spaced levels that do not overlap horizontally.

Finally, once the vertices have been copied and the level structures merged, the intra-
subgraph edges are copied. This copying is a trivial matter, since the edge endpoints (Le., the
vertices) are already fixed in place.

February 17,1989
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3.3. Interedge Routing

The next step in producing a layout of the total graph is to add the inter-subgraph edges.
This task is performed in two steps: 1) inserting the two intra-subgraph segments and 2) insert
ing the connecting inter-subgraph segment Figure 3-5 shows this breakdown pictorially.

Although this routing problem is similar in some respects to VLSI routing problems (e.g.,
the obstacle avoidance routing schemesof Hamachi andOusteihout [Ha084] and Larson andLi

[LaL81]), there are also some key differences. First, these VLSI solutions produce rectilinear
routings that may include edges that do not flow monotonically downwards. Second, the algo
rithms do not necessarily attempt to minimize edge bends. Neither of these problems rule out
using a VLSI algorithm for the interedge routing problem, but in the case of COMPOZE, a
simpler solution was chosen. The rest ofthis section describes the method used byCOMPOZE.

The initial method used by COMPOZE to add an intra-subgraph segment was toweave the
segment into any available space in the corresponding finished subgraph layout. This method
proved inadequate, as the subgraph layouts were rather compact, and left little space for later
insertions. The current method involves inserting the intra-subgraph segment into the subgraph
before it is laid out. This allows the layout algorithm to position the edge. Inserting the intra-
segment requires the addition of dummy vertices to the subgraph, along with the connecting
edge-segments. The dummy vertex nearest the subgraph border iscall a. port vertex, or simply a
port. For example, figure 3-6 shows the intra-segment insertions needed to accomodate the
inter-subgraph edge (A, C ).
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This scheme quickly revealed a new problem: the positions of the ports, relative to the
positions of the subgraphs, could cause further problems, as shown in figure 3-7.

The solution to this problem is to bias the placement of the port vertices, and hence the
underlying subgraph layouts, using the known positions of the subgraphs. This biasing is
accomplished by adding an extra level to the subgraph with anchored bias vertices, as shown in
figure 3-8. The effect of these anchored bias vertices is to pull the attached port vertices in the
desired directions. This, in turn, influences vertices A and B to swap positions. Note that the
ports themselves are not locked in place, as considerations internal to the subgraph layout may
outweigh those external to it

Atthis point the reader may have noticed acircularity in this method: the subgraph layouts
depend on the intra-segments, the intra-segments depend on the metagraph, and the metagraph
depends on the subgraph layouts. COMPOZE breaks this circularity by estimating the meta
graph, and using this estimate as the basis for inserting the intra-segments. Details of this pro
cedure can be found elsewhere [Mes88].

Notice also that certain types of crossings will still not be eliminated by the bias vertex
techmque. Because the subgraphs are not laid out in any predetermined order (and may in faa
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Subgraph-2
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Figure 3-8 — Biasing Port Vertices to Accomodate Inter-Subgraph Connections

be layed out in parallel), a situation such as theone shown in figure 3-9might occur. In such a
case, the bias heuristics would be unable to communicate the relative positions of each pair of
vertices. This problem can be avoided if the subgraphs are laid out sequentially and the internal
vertex positions are usedin biasing connected subgraphs.

Once the intra-segments are inserted, the subgraphs are laid out and composed according
to the metagraph template, all that remains is to insert the inter-segments of the inter-subgraph
edges. This insertion is accomplished by connecting the appropriate pairs of port vertices.
Each inter-segment isrouted along the channel cut by its representitive metaedge, as depicted in
figure 3-2.

4. Comparative Experiments

This section summarizes the results of experiments conducted to compare the performance
of COMPOZE and the GRAB implementation of the Sugiyama algorithm. The algorithms were
compared both objectively, using several layout measurements such as the number of edge
crossings, and subjectively, using apanel of expert users. Section 4.1 discusses the graphs used
to compare the algorithms, as well as the objective measures that were used. Section 4.2
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presents the results of the objective comparison, and section 4.3 summarizes the results of the
subjective evaluations.

4.1. Sample Graphs and Objective Measures

The objective experiments examined dual layouts (i.e., one computed by GRAB and one
computed by COMPOZE) of acollection of fourteen graphs, four of which are discussed inthis
paper. These graphs are characterized in table 4-1.

The graph shortlist is atype hierarchy from the Newspeak algebraic manipulation system
[Fod83]. The graph worldl is a version of the World Dynamics graph created by Forrester
[For71] and used by Sugiyama, Tagawa and Toda to illustrate their algorithm [STT81]. The
final two graphs, grabst2 and ui2, are function call-graphs taken from the GRAB system.
Grabst2 represents the call-graph of the layout subsystem and ui2 represents the call-graph of
the user-interface.

The objective evaluations compared ten different layout measures, four of which are dis
cussed in this paper. These four measures are:
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Graph Name

shortlist

woridl

grabst2
ui2

Vertices Edges
37

43

342

63

60

233

685

Graph Type

Type Hierarchy
Geographic Map
Function call graph
Function call graph

Table 4-1 — Graph Set For Statistical Tests
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1. Layout Time. The number of seconds for the graph tobelaid out (not including
input-output time) on an unloaded Sun-3/75 workstation with 8-megabytes of
main memory andalocal swapping disk.

2.Number ofCrossings. The number of edge crossings.

3. Total Edge Length. The sum of the length of all edge segments. The measure
ment scale is the underlying graphic coordinate system in which vertex-icons
have a height of 1.0.

4. Number ofLevels. The number of distinct graph levels.

These four measure were chosen from the full-set as they seemed to best predict subjective
quality. Other measures are analyzed in detail elsewhere [Mes88].

4.2. Objective Experiments

A number of factors must be held constant to compare GRAB and COMPOZE. First, as
each algorithm uses hill-climbing heuristics to niinimize edge-crossings, the starting
configuration of the input graph can greatly influence the final configuration. A hill-climbing
heuristic can be envisioned to be moving along a cost curve, always trying to move from a
higher cost configuration (i.e., larger number of crossings) to a lower cost configuration (i.e.,
smaller number of crossings). When a local minimum is reached, and all of the available
transformations lead tohigher cost configurations, the algorithm halts. The difficulty in evaluat
ing the performance of this type of heuristic is that the local minimum that is eventually found
isadirect product of the starting point on the cost curve, and hence the initial configuration.

Experiments with both GRAB and COMPOZE show that widely differing final results can
be produced by randomly permuting the starting configuration of the graph. Thus, to judge the
true nature of each algorithm, and to derive numbers that might usefully be compared, the tests
in this section compare the mean statistics over 100 randomly permuted starting configurations
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of each graph.

The second factor to be considered is the actual graph partition itself. As discussed in sec
tion 3.1, some graphs have application-specific partitions, while others have no such natural
partition. In the cases where no semantic partition exists, or where the semantic partition is
unimportant or produces especially poor results, a graph-syntactic algorithm such as that of
Kernighan and Lin is employed.

In this study (i.e., in which partitioning was not a primary focus of the research), each
COMPOZE graph is partitioned using amodified &-way version ofthe Kernighan and Lin algo
rithm [KeL70]. Each input graph is partitioned into k subgraphs, each of which has a max
imum of 30 vertices. This partitioning is handled by recursively dividing large subgraphs in
half, until the maximum subgraph size requirement is satisfied. Although it does not produce
optimal fc-way partitions, the partitions itproduces are ofsufficient quality for this study. Table
4-2 shows the mean partitioning statistics for each ofthe four sample graphs. The Subgraphs
column gives the mean number of subgraphs in a partition. The Min Subgraph Size and Max
Subgraph Size columns give the mean minimum and maximum subgraph sizes, respectively.
Finally, the Intra Edges and Inter Edges give the mean numbers ofintra-subgraph and inter-
subgraph edges, respectively.

Table 4-3 shows the mean layout time for each ofthe four sample graphs. Comparing the
means, COMPOZE reduces layout time by 22% (i.e., worldl) to78% (i.e„ ui2). Overall, COM
POZE reduces the layout time by an average of47%. Notice that the improvements increase

Table 4-2 —Mean Statistics for 100 Partitions ofSample Graphs

#of #of Min Max #of #of
Graph Name Vertices Subgraphs Subgraph Subgraph Intra Inter

Size Size' •-: Edge Edges

shortlist 37 2 18 19 55 7.9

world! 43 2 21 22 51 9.1

grabsi2 109 4 27 28 170 66

ui2 342 16 21 22 420 270
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with graph size, indicating that the overhead of the compositional process is small in com
parison to the polynomially increasing layout time of the underlying Sugiyama, Tagawa and
Toda algorithm.

Although COMPOTE produces layouts several times more quickly than GRAB, it still
remains to be seen how the quality of the layouts compare. Table 4-4 shows the comparative
edge crossing statistics for the two algorithms. As with the comparison of layout times, COM
POZE shows improvement over GRAB, with the improvements increasing along with graph

Graph Name
Min

Table 4-3 —

GRAB

Mean SD

•Layout Time (Seconds)

COMPOZE

Max Min Mean SD Max

Change

in Mean

shortlist

worldl

grabst2

ui2

6.0

4.0

36

410

6.9 0.4

5.1 03

42 2.6

470 26

8.0

6.0

49

530

3.0 4.2 0.6

3.0 3.9 0.5

17 21 1.9

80 100 15

Avg. Change \

6.0

5.0

27

150

in Mean

-39%

-22%

-49%

-78%

-47%

Graph Name
Min

Table 4-4 — Number of Edge Crossings

GRAB

Mean SD Max

COMPOZE Change

Min Mean SD Max in Mean

39 59 •^9.1 81 85%

32 53 15 107 -1.9%

850 1100 150 1600 -39%

5800 7000

Avg.

790

Change

10000

in Mean

-43%

0.0%
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size. Over the original fourteen graph test set COMPOZE reduces crossings on eleven by an
average of 35%. Across the eight sample graphs with more than 100 vertices this improves to
45%, and across the three graphs with more than 200 vertices, the reduction incrossings is53%.

The last two measures to be considered reflect aspects of the layout size. First, the total
edge length, compared in table 4-5 demonstrates the ability of each algorithm to place con
nected vertices close together. Over the four graph test set COMPOZE produces layouts with
an average of 66% smaller total edge length. This reduction is due in large part to the clustered
nature of the partitioned layouts. By grouping highly connected vertices into subgraphs, the
numberof long-edges, andhencethe total edgelength is reduced.

Secondly, the number of levels in the layouts, compared in table 4-6, demonstrates the
ability of each algorithm to organize the vertices into a smallnumber of levels. Across the four

graph sample set, COMPOZE shows an average increase of 210%. This figure is reduced
slightly to 170% across theentire fourteen graph testset.

The enormous increase in the number of levels is produced by two factors. First, new
heuristics, implemented to handle variable-height vertex-icons, often introduce extra levels that
are used tobend problem edges around icons. These bend levels do not contain any input graph
vertices and are essentially invisible inthe rendered layout. Secondly, the simple strategy used
to compose the subgraph layouts does not coalesce as many levels as possible. For example,
given two subgraphs, such as the ones shown in figure 4-la, COMPOZE makes no use of the
internal structure of the subgraphs to determine their placement Thus, COMPOZE produces

Table 4-5 — -Total Edge Length

Graph Name
Min

GRAB

Mean SD Max

COMPOZE

Min Mean SD Max

Change

in Mean

shortlist 710 1100 290 2300 410 550 ^120 950 -51%

woridl 370 700 250 1400 290 370 36 480 -47%

grabst2 14000 34000 11000 58000 4600 7100 1400 12000 -79%

ui2 190000 400000 79000 610000 37000 53000 8800 83000

Avg. Change in Mean

-87%

-66%
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Table 4-6 — Number of Levels

Graph Name

shortlist

woridl

grabst2

Min

GRAB

Mean SD

—

--A--

Subgraph-1

-e-

Subgraph-2
v/

.... -D-

(a)

Max

COMPOZE Change

Min Mean SD Max in Mean

11 15 0.9 18 2.5%

8.0 12 1.3 14 71%

20 26 1.7 30 160%

95 110 4.7

Avg. Change in

120

Mean

620%

+210%

A-
<

- •€-.--

Subgraph-1 Subgraph-2

•B- •D~

(b)

Figure 4-1 —Non-Coalescing Subgraph Levels
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the four-level layout of figure 4-1 a, instead ofthe more compact two-level layout of figure 4-lb.
This strict adherence to the partition structure causes COMPOZE to create many extra levels, as
connected subgraphs are notallowed to overlap vertically.

A final measure that can be used to compare the two programs is their actual code size.
Both programs are written in C [KeR78], and operate in the SunWindows environment
[SUN85b] . Each system is fairly cleanly divided into a layout module and a user-interface
module. Table 4-7 shows the relative sizes of each module in both GRAB and COMPOZE. The

increased size ofthe layout module is due to the increased complexity ofthe compositional lay
out scheme. The increased size of the user-interface module isdue tothis increased complexity
and the less-than-perfect division of the program into two modules. -3fie extra lines of code in
the header files define new data structures used by the comDositional scheme.



Table 4-7 — Comparative Program Size of GRAB and COMPOZE

Lines of C Code
GRAB

Layout 4,100
User-Interface 11,000
Header Files 1,000

COMPOZE

7,200
11,500

1,100
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4.3. Subjective User Comparisons

This section briefly summarizes ahuman factors study that compared layouts produced by
GRAB and COMPOZE. The experiment used dual layouts of seven graphs from the original
fourteen used in the objective experiments, including graphs on which each algorithm produced
better objective measurements.

The layouts were shown to apanel of six users, three Computer Scientists, and three non-
Computer Scientists who used graphs in other disciplines (e.g., planning, document preparation,
etc.). In preparing this experiment it was decided that the GRAB/COMPOZE browser was not
sufficiently powerful to usefully display large graphs, so the layouts were printed on 32-inch
wide paper by aVersatec printer.

Each test subject performed their evaluations separately, and did not have any prior
knowledge of the particular graphs or layouts. For each pair oflayouts, asubject was asked to
identify which, if any, ofthe two layouts was preferred. The subject was then asked to provide
a general reason for this selection. Finally, the subject was asked to give specific comments,
both positive and negative, about the layouts. Both singular and comparative comments were
solicited. Users were encouraged to be especially critical about the layout they choose as better.

Over the seven graph test set the subjects strongly preferred the COMPOZE layouts. On
only one graph did the subjects prefer the GRAB layout, and this preference was predicted by
the objective statistics.

The subjects found the COMPOZE layouts to be "more balanced'* and read as adiagram
of related vertices. Most found the clustered nature of the COMPOZE layouts to be an aid to
understanding the graphs. Particularly, for the large graphs, the clustering allowed the subjects
to focus on subsections, without the distraction ofthe entire graph. One subject noted that the
clustering would be misleading if the physical vertex groupings did not represent semantic
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groupings. This observation suggests possible conflicts in repartitioning graphs for COMPOZE,
such as program-call graphs. [6] Although one subject disliked the physical separation of the
subgraphs, the remaining subjects all expressed positive opinions about the juxtaposition of
semi-dense subgraph layouts with sparse inter-subgraph spaces. That is, they suggested that
white-space can be used strategically to improve layout readability.

On the negative side, several subjects pointed out that the large number ofparallel edges
that flow between subgraphs quickly become impossible to separate visually. Figure 4-2 shows
an example of such alayout Although the edges are physically distinct, they cannot be traced
without the use of apointer (e.g., the subject's finger). Several subjects also pointed out that
many edges have unnecessary bends and flow in circuitous routes between subgraphs, also evi
dent in the layout shown in figure 4-2. These effects are primarily aproduct ofthe simple meta
graph modeling that is used by COMPOZE, and not endemic to a divide-and-conquer layout
scheme.

Lastly, as the sample graphs became larger, several problems of scale became evident,
most notably overlapping edge labels and vertex labels that do not fit within their icon. These
latter problems wereequallyevidentwith GRAB.

For most of the test graphs the subjects found the GRAB layouts to be "disorganized."
These problems became more evident as the sample graphs became larger, with subjects noting
that the layouts were virtually unusable. Subjects noted that the larger layouts had "edges all
over the map," "large, unnecessary spaces" that made it "hard to trace the connectivity" and
had in generalbecome "muddled" and "too dense."

When the subjects were queried about the value of specific objective measures, such as
edge crossings, they did not seem to feel these layout attributes universally affect graph reada
bility. Instead, they indicated that attributes such as crossings are highly context sensitive, and
that edge crossings in sparse layout areas impair readability much less than crossings in dense
areas. Similarly, edge crossings appeared to be aproblem mainly when their number reaches a
certain threshold, relative to other layout attributes. A secondary aspect ofedge crossings that
the subjects felt affects readability is the angle of crossing. Edges that cross perpendicularly
were easier for the subjects to comprehend than edges crossing at acute angles.

Similarly, edge bends, as an objective measure, appeared to have context sensitive impor
tance. The subjects felt that extra edge bends, in an edge running through asparse area ofthe
layout, did not severly impact readability. On the other hand, the subjects said they found
straight edges easier to trace visually. This preference for straight edges appears to be due to a
subject's ability to extrapolate the opposite end of a straight edge without having to visually
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Figure 4-2 — A Sample COMPOZE Layout with Merging Parallel Edges

trace its entire length. As noted above, however, this ability is severly hampered when several
straight edges are laid close together in parallel.
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4.4. Summary

The objective comparisons show clearly that the COMPOZE algorithm outperforms the
GRAB algorithm on a number of layout measures. Most importantly COMPOZE is shown to
produce graph layouts several times faster than GRAB, while simultaneously improving most of
the objective measures that were calculated. Thus, from a purely statistical viewpoint, COM
POZE provides an example of the promise of divide-and-conquer strategies for graph layout
algorithms.

From a subjective perspective, the comparison is not quite as clearly drawn. There is agap
between the magnitudes ofthe objective statistics and the enthusiasm ofthe subjective evalua
tions. Although the objective measures appear to predict the corresponding subjective evalua
tions, they do so with too large an emphasis, making it unclear whether the correspondence is
real or coincidental. What is clear is that the objective measures do not fully capture the subjec
tive measures. The test subjects rarely mentioned notions such as edge crossings or edge
length. The actual subjective concerns have yet to be discovered, as has any real link between
these concerns and the objective constraints currently inuse.

It is easy to see that each objective measure, taken by itself, leads to an improved layout.
Thus, if all other layout attributes are held fixed, removing an edge crossing will improve the
layout This hypothetical situation is unfortunately unlikely to occur. In shifting graph ele
ments to alter one layout attribute other attributes will change. These ancillary attributes may
be stated layout constraints, or, more likely they will be unstated subjective constraints. What
this demonstrates is that the user's perception of a graph is based on both the selected con
straints usedin computing thelayout andthe user's ownunstated constraints.

5. Conclusions and Future Work

Graphs are a useful notation for relational information. Many applications manipulate
relational information either explicitly or implicitly, and would benefit from the ability to
display this information to the user in graphic form. As the number of relational applications
increases, sodo the class and size ofthe graphs they manipulate. These increases create aneed
for automatic graph layout algorithms.

The current generation ofalgorithms generally use one oftwo approaches to graph layout:
1) general algorithms such as the that ofSugiyama, Tagawa and Toda's system for hierarchical
drawings of directed graphs [STT81], or 2) application specific algorithms such as Batini,
Talamo and Tamassia's system for entity-relationship diagrams [BTT84a].

..-z February 17,1989



Page 29

Application-specific algorithms produce layouts that most closely reflect the customary
drawing constraints of the application. For example, alayout algorithm designed to draw finite
state automata will automatically follow the conventions of placing the start state on the left,
final state(s) on the right, and maximizing edge flow from left to right. A disadvantage of the
application-specific approach is that these algorithms rely on special properties of the limited
input domain and are thus noteasily transferred tonew application areas.

General layout algorithms present the opposite balance. The strategies used in these algo
rithms are applicable toamuch wider class of graphs, and can more easily be transferred to new
input domains. However, by not utilizing special knowledge about the input domain and the
output conventions, the final layouts do not conform as well to the customary drawing con
straints of a specific application.

An intermediate approach worth exploring are general algorithms that are easily custom
ized for different applications. Tamassia, Batini and Di Battista refer to this as the need to
develop parametric algorithms [TBD87].

More research is also needed to understand the gap between the objective layout con
straints that are currently inuse, and the subjective criteria used in the human interpretation of
graph layouts. The current generation of layout algorithms are built ontop of an unproven col
lection of objective constraints.

Most noticeably, as graph size increases, user concerns appear to hinge on a changing set
of criteria. Where in a small graph a reduction from 20 edge crossings to 10 might greatly
improve readability, alarger graph's reduction from 2000 to 1990 crossings isnot likely tohave
any impact Further, users note that they interpret most layout attributes in the context of the
actual layout For example, users generally regard edge crossings as unimportant when they are
located in sparse areas of alayout The current use of constraints in acontextual vacuum pro
duces less than optimal results.

More thought also needs to be put into what a graph layout it itheant to communicate, and
how this isbest displayed. Present display technology does not allow large graphs (e.g., 1000's
of vertices and edges) to be displayed in their entirety, and so some sort of display/browser
interface must be used. This leads again to the dichotomy between general algorithms for wide
classes of graphs, and application-specific algorithms for very narrow classes of graphs, with
much the same trade-offs as with the layout algorithms themselves. In either case, browsers
will have to effectively deal with issues of scale, including powerful navigational functions
(e.g., overviews, multiple-views, view-histories) andhierarchical abstractions.
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Another interesting problem is providing incremental graph layouts. With this function, a
user could specify afocus vertex, and the layout system would incrementally add neighbors,

ancestors and descendents to the layout. This has the advantage of keeping extraneous informa
tion off the screen, and allowing a user to incrementally develop a model of the graph. It
appears to be a very difficult problem to solve, as the need to keep graph elements stable
between incremental insertions oftenconflicts with thedesired layoutaesthetics.
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Footnotes

[1] Manuscript received:

[2] Current address: IBM—Almaden Research Center, 650 Harry Road, San Jose, CA 95120-
6099.

[3] Current address: Computer Science Division—EECS Department, University ofCalifornia,
Berkeley, CA 94720.

[4] Current address: Computer Science Department, University of Washington, Seattle, WA
98195.

This research was sponsored in part by the U.S. Defense Advanced Research Projects Agency
(DoD) under Arpa Order No. 4871 and monitored by the Naval Electronic Systems Command
under Contract No. N00039-84-C-0089.

[5]AG/MphBrowser.

[6] One subject suggested that secondary cues, such as color, could be employed in reparti-
tioned graphs to designate the original partition. This idea has some interesting applications in
studying the logical and physical partitions ofgraphs.

February 17,1989



Page 32

Bibliography

[SUN85b] —, Programmer's Reference Manual for SunWindows, Sun Microsystems, Inc.,
Mountain View, CA, April 1985.

[AHY88] K. Andrews, R. R. Henry and W. K. Yamamoto, "Design and Implementation of
the UW Illustrated Compiler", Technical Report88-03-07, March 1988.

[APP84] MacProject, AppleComputer, Inc., Cupertino, CA, 1984.

[BTT84a] C. Batini, M. Talamo and R. Tamassia, "Computer Aided Layout of Entity
Relationship Diagrams",Journal of Systems andSoftware 4 (1984), 163-173.

[BoM76] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American
Elsevier, New York, NY, 1976.

[Car80] M. Carpano, "Automatic Display of Hierarchized Graphs", IEEE Transactions on
Systems, Man, and Cybernetics SMC-10,11 (November 1980), 705-715.

[CYN84] N. Chiba, T. Yamanouchi and T. Nishizedi, "Linear Algorithms for Convex
Drawings of Planar Graphs", in Progress in Graph Theory, J. A. Bondy and U. S.
R. Murty (editor), Academic Press, Orlando, FL, 1984,295^305.

[Dav85] M. B. Davis, "A Layout Algorithm for a Graph Browser", Master's Project
Report, Computer Science Division, EECS, UCB, Berkeley, CA, May 1985.

[Del79] M. Delarche, "Quelques Outils Infographiques Pour 1'Analyse Structurale de
Systemes", Dr. Ing. Thesis, University Grenoble, June 1979.

[EaK86] P. Eades and D. Kelley, "Heuristics for Drawing 2-Layered Graphs", Ars
Combinatoria 2I-A (1986), 89-98.

[Fod83] J. K. Foderaro, "The Design of a Language for Algebraic Computation Systems",
Ph.D. Dissertation, Computer Science Division, EECS.'UCB, Berkeley, CA, 1983.

[For71] J. W. Forrester, World Dynamics, Wright-Allen Press, Cambridge, MA, 1971.

[GNV88] E. R. Gansner, S. C. North and K. P. Vo, "DAG—A Program that Draws Directed
Graphs'', Software—Practice &Experience, (To Appear).

[Ha084] G. T. Hamachi and J. K. Ousterhout, "A Switchbox Router with Obstacle

Avoidance", IEEE 21st Design Automation Conference, 1984,173-179.

[Har69] F. Harary, in Graph Theory, Addison-Wesley, Reading, PA, 1969.

Bibliography



Page 33

[HuB85] D. H. Hutchens and V. R.Basili, "System Structure Analysis: Qustering with Data
Bindings", IEEE Transactions on Software Engineering SE-11, 8 (August 1985),
749-757.

[JAM87] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon, Optimization by
Simulated Annealing: A& Experimental Evaluatio (Part 1), (Unpublished
Manuscript).

[KeL70] B. W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning
Graphs",BellSystem Technical Journal, February 1970,291-307.

[KeR78] B. W. Kernighan and D. M. Ritchie, The CProgramming Language, Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[KGV83] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, "Optimization by Simulated
Annealing", Science 220,4598 (May 1983),671-680.

[Knu63] D. E. Knuth, "Computer-Drawn Flowcharts", Communications of the ACM 6, 9
(September 1963), 555-563.

[LaL81] R. C. Larson and V. O. K.Li, "Finding Minimum Rectilinear Distance Paths in the
Presence of Barriers", Networks 11,3 (1981), 285-304.

[LNS85] R. J. Upton, S. C. North and J. S. Sandberg, "A Method for Drawing Graphs",
Proceedings 1st Symposium on Computational Geometry, Baltimore, 1985, 153-
160.

[MKF86] M. A. Majewski, F. N. Krull, T. E. Fuhrman and P. J. Ainslie, "Autodraft:
Automatic Synthesis of Circuit Schematics", IEEE International Conference on
Computer-Aided Design, SantaClara, CA, 1986,435-438.

[Mak88a] E. Makinen, "Experiments on Drawing 2-Level Hierarchical Graphs", Report A-
1988-1, Department of Computer Science, University of Tampere, Tampere,
Finland, January 1988.

[Mak88b] E. Makinen, "On Circular Graphs", International Journal on Computer Math 24
(1988), 29-37.

[Mak88c] E. Makinen, "A Note on the Median Heuristic for Drawing Bipartite Graphs",
Report A-1988-4, Department of Computer Science, University of Tampere,
Tampere, Finland, May 1988.

[MIM83] M. May, A. Iwainsky and P. Mennecke, "Placement and Routing for Logic
Schematics", Computer Aided Design 15,3 (May 1983), 115-122.

Bibliography

V



Page 34

[Mes88] E. B. Messinger, "Automatic Layout of Large Directed Graphs", Ph.D.
Dissertation, University of Washington, 1988.

[Mey83] C. Meyer, "A Browser for Directed Graphs", Master's Project Report, Computer
Science Division, EECS, UCB, Berkeley, CA,December 1983.

[ReT81] E. M. Reingold and J. S. T&ford, "Tidier Drawings of Trees", IEEE Transactions
on Software Engineering SE-7,2 (March 1981), 223-228.

[Rob87a] G. Robins, "TheISI Graphen a Portable Tool for Displaying Graphs Pictorially",
Symboliikka '87, Helsinki, Finland, August 1987.

[Rob87b] G. Robins, The ISI Grapher, Information Sciences Institute, Marina Del Ray, CA,
June 1987.

[Rom86] F. I. Romeo, "Probabilistic Hill Climbing Algorithms: Properties and
Applications", Master's Project Report, Computer Science Division, EECS, UCB,
Berkeley, CA, December 1986.

[RDM87] L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis and A. Tuan, "A
Browser for Directed Graphs", Software—Practice & Experience 17, 1 (January
1987), 61-76.

[SCC77] A. Sangiovanni-Vincentelli, L. Chen and L. O. Chua, "An Efficient Heuristic

Cluster Algorithm for Tearing Large-Scale Networks", IEEE Transactions on
Circuits andSystems CAS-24,12 (December1977).

[STT81] K. Sugiyama, S. Tagawa and M. Toda, "Methods for Visual Understanding of
Hierarchical System Stmctures", IEEE Transactions on Systems, Man, and
Cybernetics SMC-11 (February 1981), 109-125.

[Tam87] R. Tamassia, "On Embedding a Graph in the Grid With the Minimum Number of
Bends", Siam Journal onComputing 16,3 (1987).

[TBD87] R. Tamassia, C. Batini and G. DiBattista, "Automatic Graph Drawing and
Readability of Diagrams", IEEE Transactions on Systems, Man, and Cybernetics,
To Appear 1987.

[Tut63] W. T. Tutte, "How to Draw a Graph", Procedeings of the London Mathematical
Society3rdSeries, 13,52 (1963), 743-768.

[War76] J. N. Warfield, Societal Systems, John Wiley & Sons, New York, 1976.

[War77] J. N. Warfield, "Crossing Theory and Hierarchy Mapping", IEEE Transactions on
Systems, Man, andCybernetics SMC-7,7 (July 1977), 505-523.

Bibliography



to Page 35

[W008I] D. R. Woods, "Drawing Planar Graphs", Ph.D. Dissertation, Computer Science
Department,Stanford University,June 1981.

Bibliography


	Copyright notice1989
	ERL-89-23

