
 

 

 

 

 

 

 

 

 

Copyright © 1989, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



SIMULATED ANNEALING: THEORY AND

APPLICATIONS TO LAYOUT PROBLEMS

by

Fabio I. Romeo

Memorandum No. UCB/ERL M89/29

13 March 1989



SIMULATED ANNEALING: THEORY AND

APPLICATIONS TO LAYOUT PROBLEMS

by

Fabio I. Romeo

Memorandum No. UCB/ERL M89/29

13 March 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Simulated Annealing:
Theory and Applications to Layout Problems

Fabio I. Romeo

Pk.D. Department of Electrical Engineering
and Computer Science

Abstract

Simulated Annealing (SA) is a probabilistic algorithm to solve combinatorial opti
mization problems. SA generates new solutions randomly andevaluates the relative

cost. If the cost decreases, the solution is always accepted. If the cost increases,
the solution is accepted according to a probability distribution whose shape is con
trolled by a parameter. The number of solutions generated at each value of the
temperature, the rule to update the temperature, and the stopping criteria com

prise the annealing schedule. The annealing schedule determines the quality of the
solution and the computer time necessary to obtain it. A mathematical analysis of
SA is essential to understand the features which make it to work well. A model is

also necessary to study the effects of different annealing schedules on the quality
of the solution and on the required amount of computer time. A model based on

Markov chains, has been used to studythe behavior of SA . Using this model, it has
been proved, under rather general assumptions, that SA produces asymptotically
the optimum solution of the combinatorial optimization problems with probability
one. Unfortunately, the results require that an infinite number of iterations must

be performed for the algorithm to converge to the global optimum. The finite-time

behavior of the algorithm has also been investigated. A bound on the departure of
the state probability vector from the optimum probability vectorafter a finite num

ber of iterations has been found. The results are interesting since they guarantee
that the algorithm, if given enough time, will provide a solution which is arbitrarily
close to the global optimum. However their utility in practical implementations of
the algorithm is limited and heuristics which approximate the asymptotic behavior

have to be implemented. One such heuristic is presented in this thesis. It consists



of a new problem-independent, adaptive annealing schedule. The parameters of

the schedule are determined automatically from measures of statistical quantities

collected while the algorithm is being executed. The results obtained applying the

new schedule to solve placement problems, show that the CPU time can be sig

nificantly reduced with respect to implementations of the algorithm which feature

naive annealing schedules.

Prof. Alberto Sangiovanni-Vincentelli
Thesis Committee Chairman
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Chapter 1

Introduction

Optimization problems are very common in almost every field of science,

economy, engineering etc.. Typically an optimization problem arises every time it

is necessary to select, among a set of possible solutions, the best one according to

a specified cost or reward function. A couple of examples will clarify the concept a

little further;

Consider a manufacturing plant with several multi-purpose machines. The

plant is capable of producing several products. Each one of the products requires

a different sequence of operations that can be performed by the plant's machines

provided that some re-tooling operations are performed on the machines. Of course

the machines are flexible but, for each given set-up of their tools, they can operate

only on a limited number of different products. On the other end, the product can

be manipulated by only one machine at a time.

The optimization problem consists in scheduling the production such that

the plant produces the "best" mix of products in a given time. In this case the

possible solutions are all the feasible mixes of products given the type and the

number of machines. The value of each one of the solutions, its reward in this case,

is simply the monetary value of the corresponding product mix.

Another example: Consider the problem of finding the optimal layout

for an integrated circuit realized with the macro-cell design style. The layout of

integrated circuits is completely determined once a position is found for each of the



macro-cells and a path is selected for each one of the connections. In practice a

number of constraints is imposed on the layout. For example the macro-cells cannot

have any overlap, the propagation delay along some critical connections has to be

within specified bounds, etc..

The bulk of the problem is to select among the solutions which satisfy the

constraints, the feasible solutions, the best one according to some performance index.

A suitable performance index for integrated circuits is proportional to two factors:

Circuit area and total length of interconnections. The circuit area is inversely

related to the yield of the fabrication process and therefore the smaller the area,

the higher the yield, the lower the economic cost of the integrated circuit itself [1,2].

The length of interconnections is inversely related to the speed of operation of the

circuit. In practice short connections and hence fast propagation times reduce the

need for fast and expensive circuitry therefore reducing the cost of the integrated
circuit.

The description of the problems given above is meaningful but it is too

vague to be used by an algorithm to compute its solution. It is necessary to describe

more precisely what it is meant by constraints and cost function. We will use one

of the examples introduced above to see how a description in english is translated
into a mathematical model.

Recall the layout problem and concentrate on the placement phase. As

sume that the macro-cells can only be placed, for the sake of simplicity, on a one-

dimensional grid. Suppose that any of the acceptable placements has to comply
with the following constraints:

• Each module can occupy at most one position on the grid;

• Each position on the grid can contain one module at most.

Furthermore, assume that the t-th macro-cell is connected to the j-th one

by Cij connections. The length of each connection is proportional to the absolute

valueof the difference between the positions on the grid occupied by the two mod

ules. The performance index used to rank the solutions is given by the sum of the



length of all the connections. The contribution of the area to the performance index

does not appear explicitly because of the simplifying assumptions that module can

only be placed on a predefined grid.

The mathematical model of the problem is as follows: Let u;tJ- be a binary
variable such that

f 1 if the t-th
[ 0 otherwise.

macro-cell occupies the j-th. position on the grid,

With the above definition of wtJ-, the constraints described earlier become

i ) Each of the grid locations may be occupied by at most one module, i.e. for
allj

£".-;<!; (i.i)

ii ) Each of the module can be in only one grid location, i.e. for all i

IX = 1; (1.2)

iii ) For all the connections

E^u^lfc-^EJ; (1.3)

The performance index is given by

]C cijVikUji\k-l\ . (1.4)

A feasible solution is represented by a choice of variables o>y which satisfies the con

straints (1.1), (1.2) and (1.3). The best solution is the choice ofwy which minimize
(1.4). Equations (1.1)-(1.4) represent anarbitrary one-dimensional placement prob
lem. The number of slots on the grid, the number of macro-cells, and the number of

connections are the parameters of the problem. Once the parameters are assigned

values, we have an instance of the problem.

Of course not any arbitrary combination of the parameters leads to a legal

instance of the problem. For example, given the above defined constraints on the



solution, the number of available positions on the grid has to be at least as large as

the number of cells to be placed. Apart from this trivial limitation, any reasonable

combination of parameters gives rise to a legal instance of the problem.

To find the best solution to the problem, one can think to explore the

feasible solution set, check the value of the performance index for each one of the

solutions encountered and retain the best one. The procedure followed to explore

the solution set is called algorithm. An algorithm is said to solve a problem V if the

algorithm can be applied to any instanceof V and is always guaranteed to produce,

in finite time, a solution.

Summarizing, any optimization problems can be represented by the fol

lowing generic mathematical model:

minc(u>)
u/€fl

subject to

H&) < 0 ,

»= 1,2,.... CI and u denote the solution set and a generic solutionrespectively, c(.)

the performance index, and fTt-(.) the constraints determining the feasibility region.

Optimization problems can be classified in several ways. One such way,

perhaps the most natural, classifies them according to the characteristics of the

solution space: i.e. continuous or discrete. In continuous problems, the solution

space is a sub-set of the euclidean space, namely CI CRn. In discrete problems, the

solution space CI is a collection, usually finite, of isolated points. Discrete problems

with finite solution space are usually termed combinatorial optimization problems.

In general, in combinatorial optimization problems the distinction between solu

tion set and feasible solution set is absent in the sense that constraints are taken

into account by the definition of CI. Consequently, an instance of a combinatorial

optimization problem is completely defined by the pair (CI, c).

The structure of CI together with the characteristics of c and H determine

the type of algorithm necessary to solve the problem.

In general, the more is known about the problem, the more efficient is the

algorithm that can be used to solve it. For example if both c and H are known



together with their derivatives as analytic functions of u and CI ci", then efficient

algorithms based on Kuhn-Tucker conditions can be used [3,4,5]. Moreover, if, in
addition, both c and H are linear functions of a;, the "famous and efficient" simplex

algorithm can be used [6]. The power of these methods derives from the fact that

the knowledge of c and H as functions of u; gives the algorithm a global information

about the solution space at once and hence enables it to find the optimal solution
exactly.

If c and/or H are known only locally and not as a function of the solution

or they are non differentiable or the derivatives can only be computed numerically,
the situation becomes more complex and one has to resort to more sophisticated

techniques [7]. Algorithms to solve these type of problems have only a local un

derstanding of the solution space and as such, unless the cost function and the

feasibility region are both convex, they find a solution which is only locally optimal.

The following example will make the the difference between local and global more
clear.

Example 1.0*1 Suppose the optimization problem to be solved has no constraints

and that the performance index is the one reported in Figure 1.1. Consider two

cases. In the first one, the algorithm "knows" the analytic expression of the perfor
mance index which is given by

c(u;) = 5c*;2 + 10sin3(5w) .

Furthermore the derivative of c(u) with respect to u

dc(u) «—£-!- =10a; +150 sin2(5u;) cos(5u>) ,

is also known analytically. The value of u which maximizes c(u) is determined
exactly by finding, among the t*>» that satisfy

dc(<J)

the one for which c(um) is minimum.

Consider now the case in which the algorithm can only evaluate the cost

function and its derivative once it is given a value of w, and suppose it uses a
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Figure 1.1: Performance Index. On the x axis it is represented the solution space

CI. On the y axis is reported the value of the performance index.

steepest descent method to find the optimum. It is clear from figure 1.1 that the

algorithm will terminate with a solution which is a minimum for the function but

it will find the global minimumonlyif the starting solution is "close enough" to it.

In conclusion, the first algorithm always finds the global optimum because

it has a global information about the performance index. The second one has only
local information on the performance index and this translates into the fact that

the minimum it finds depends on the value of u;0 from which it started.

As a final remark, noticethat the occasions in which both the performance

index and its derivatives are known analytically are rather unusual. Furthermore,
even if they are known, it is very unlikely that the solution to equation (1.5) is
known in closed form. •

In combinatorial optimization problems, the function c is defined only on

isolated points and, as a consequence of the characteristics of CI, any algorithm can
only make use of the values attained by the cost function on the elements of CI.



It is clear from what precedes that, combinatorial optimization for which the only

available information comes from evaluations of the cost function are in general

difficult to be solved "exactly" l. Aim of the next section is to make the notion of

"problem difficult to solve" more precise.

1.1 Classification of Combinatorial Optimization

Problems

Combinatorial optimization problems are classified according to the com

putational complexityof the "best" known algorithm used to determine an optimal

solution. A first classification partitions the totality of combinatorial optimization

problems into decidable and undecidable. A combinatorial optimization problemis

said to be undecidable, if it is impossible to find an algorithm that can solve it.

Example 1.1.1 Here is an example of an undecidable problem. Given an arbitrary

computer program and an arbitrary input to it, is it possible to specify any algorithm

that can decide whether or not the program will terminate when applied to that

input? Other examples of undecidable problems can be found in [8]. D

Among decidable problems there are two classes of problems that are of

particular interest: The first class consists of the problems for which there exist a

deterministic algorithm whose worst case complexity is polynomial in the size of
the input. The class is called P.

The second class contains the problems for which it is possible to verify
in polynomial time the correctness of a proposed solution. For the problems in

the second class, the algorithm comprises a guessing stage in which a solution is

proposed and a checking stage in which it is verified. Because of the existence

of the guessing stage, algorithms such as the one described above are called non-

deterministic. Problems for which there exist a non-deterministic algorithm whose
worst case complexity in the size of the input is polynomial belongto the NP class.

Problems in the NP class are often referred to as intractable.

*An exact solution isa solution which corresponds to the global optimum ofc



While it is clear that P C NP, no formal proof of P C NP has been found.

However the conjecture P C NP is commonly accepted.

If it is possible to find a problem V which is not P, if it is assumed that

P C NP, and ifall the other problemsin NP can be polynomially reduced to V, then

to solve V in polynomial time is equivalent to solvein polynomial time any problem

which is in NP. In other words, a problem with the characteristics of problem V

is the "hardest" problem in NP. In 1971, Cook proved that the "satisfiability"

problem is in fact a problem with the characteristics of V [9]. In 1972, Karp [10]

proved that there are many other combinatorial optimization problems that share

with the satisfiability problem the burden of being the hardest ones in NP. The

class of these problem has been named the NP —complete class.

Summarizing, NP —complete is defined as the subclass of NP with the

property that every element in the NP class can be reduced to any one of the

members of NP —complete by means of a polynomial time transformation.

The existence of the NP —complete class is of remarkable importance

since the discovery of a deterministic algorithm with polynomial worst-case com

plexity that solves one of the problem in the class will solve in polynomial time all

the other problems in the class and hence all the other problems in NP.

The theory of NP— completeness has been developed for a subset of com

binatorial optimization problems, the decision problems, i.e. problems in which the

answer is simply yes or no. For example recalling the placement problemintroduced

above, its decision version would be: Given a number of macro-cells to be placed
on a grid and a bound C, is there a placement with cost less or equal to C ?

It is clear that in general the decision version of the problem is simpler since

it does not require to compute the actualsolution but only to answer an "existence"

question. For this reason, a further class has been introduced to complete the

classification ofdecidable problems: All theproblems whose decision version belongs
to the NP — complete class are said to be NP — hard.

Unfortunately the great majority of problems that are of interest in prac

tical applications belongs to the NP —complete class (See Garey and Johnson for
an extensive survey of the theory of NP —completeness [8]).



1.2 Algorithms for Combinatorial Optimization

Problems

Because of the NP nature of many of the interesting problems, the com

putation time necessary to solve them exactly may grow exponentially fast and the

size of problems of practical interest is usually large enough to require prohibitive

computing times. For this reason, to use exact methods such as branch and bound

or integer programming is not feasible in practice for several problems.

The solution is to replace exact algorithms with approximate ones or with

heuristics. These methods are not guaranteed to produce the optimal solution but

require an execution time which is faster, usually polynomial in the size of the

problem. Heuristics, in essence, trade speed for quality and, in fact, the difference

in cost between the obtained solution and the best one establishes the quality of
the heuristic method.

Heuristics are of two different types: Methods that compute the solution

constructively starting from raw data and methods that iteratively improve an
existing solution 2.

Constructive methods are tailored to the characteristics of the problem to

be solved, and therefore are difficult to export to different applications.

Iterative improvement algorithms are more general. They all exhibit the

following common structure: Starting from an initial solution, u>0 G CI with CI the
set of solutions, a sequence of solutions is generated until a satisfactory one is
found. The rules according to which a new solution is generated and the algorithm
terminates, specify the algorithm.

Iterative algorithms have a number of drawbacks:

• The search terminates with alocal minimum, i.e. with aconfiguration ay such
that if we denote by c(u/j) the cost of u>j and by Clj the set of configurations
that can be generated from ljj by the algorithm in one step, c(uj*) < c(wj) ,

2The distinction is conceptual more that factual since it is uncommon to find a practical impl
mentation of an heuristic method which features one only of the two strategies
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Figure 1.2: Example of a problem with local minima.

for all Uj 6 CI j*.

• The final solution is dependent on the starting solution and on the rule used

to generate the next solution.

Often heuristic algorithms have only a "local" view of the problem and

the strategy they implement is to select moves which reduce "maximally" the cost.

These algorithms implement the so called greedy strategy. An example of such
behavior is reported in Fig. 1.2 where the cost of each solution is symbolically rep
resented by the ordinate of the corresponding box and an arrow is present between

two solution if the algorithm can generate one from the other. Assume the algo
rithm starts from solution uz and selects the best solution from Cl3 = { u;2,u>4 }
namely w2. Solution u2 is a local minimum and the algorithm terminates giving u2
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as final solution, while the best solution is clearly u>6-

Several strategies can be used to improve the behavior of iterative im

provement heuristics. For example, repeated executions of the algorithm starting

from different initial conditions would reduce the possibility of being trapped in

a local minimum. The introduction of more general "moves" to explore the state

space modifies the topology of the solution space such that the number of local

minima is, in general, reduced. Notice however that more general moves require a

more detailed knowledge of the particular problem and, as a consequence, reduce
the portability of the algorithm to other applications.

A completely different approach to avoid the above mentioned behavior,

is to resort to randomizing algorithms, i.e. algorithms which generate the next

configuration randomly (See e.g. [11]). The configuration is recorded as a new

temporary solution if its cost is lower than the present temporary solution. The

algorithm terminates after a certain number of moves has been carried out. Since

the probability of stopping at an optimum is proportional to the ratio between the

number of optimal configurations and the number of total configurations, random
izing algorithms perform well if the number ofoptimal solutions is fairly high. Note
that randomizing algorithms canclimb hills, i.e., moves that generate solutions with
cost higher than the present one are accepted.

Simulated Annealing (SA ) as proposed independently by Kirkpatrick
et al. [12] and Cerny [13], allows hill climbing moves, but moves are accepted
according to a criterion which takes the cost into consideration and not blindly
as randomizing algorithms. The mechanism which controls the acceptance of new
solutions is based onthe observation that combinatorial optimization problems with
a large solution space exhibit properties similar to mechanical systems with many
degrees of freedom.

In particular, bringing a mechanical system into a low energy state such
as growing a crystal from a melted substance, has been considered in [12] simi
lar to the process of finding an optimum solution of a combinatorial optimization
problem. Annealing is the well-known process to grow crystals and the Metropolis
Monte Carlo method [14,15] has been proposed to simulate the annealing process
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in physical sciences. Similar procedures has been proposed as an effective method

for finding global minima of optimization problems [16,17,18].

SA when applied to combinatorial optimization generatesmoves randomly

and checks whether the cost of the newconfiguration satisfies an acceptance criterion

based on a parameter, X, sometimes called "temperature" in analogy with the

physical case. If the cost decreases, the moveis accepted. If the cost increases, then

a random number r, uniformly distributed in the interval [0,1], is generated and

compared with the value of a function

0 < /T(AC|J) < 1,

where ActJ- is the variation in cost obtained by moving from solution u;,* to Wj.
T, the temperature, is the controlling parameter. If the random number is larger

than fx(Ac{j), the move is accepted, otherwise the move is discarded. / is directly

proportional to T and inversely proportional to Acy. Hence, fixed Ac,y, the higher
the value of T, the more likely an hill-climbing move is accepted. Conversely, fixed

T, the higher Ac^, the less likely it is that the move will be accepted.

For each given value of T, a certain number of moves are generated and

checked before T is decreased. The initial value ofT, the number of moves generated

at each fixed value ofT and the rate of decrease of T and the criterion used to decide

when to terminate the algorithm comprise the annealing schedule.

1.3 Questions About Simulated Annealing

Since its introduction in 1983, SA has been applied to solve all kinds of

optimization problems arising in engineering (See e.g. [19,20,21,22,23,24,25,26,27,

28,29]), computer sciences (See e.g. [30,31,32,33,34,35,36,37,38]), and image recog
nition (See e.g. [39,40,41,42,43,44]) besides physics (See e.g. [15,45]) where the SA
ancestor, the Metropolis algorithm has been used quite extensively since the mid
fifties [14].

Together with a great deal of popularity, SA has also spurred discussions

in the scientific community. Among SA's advantages are its capability to deal



13

with a large number of problems quite naturally and effectively. Being an iterative

improvement algorithm, the dependence of SA on the problem is limited to the

selection of the move set. From this follows that it is relatively easy to build a SA

based algorithm to solve a new problem.

The flip side of the coin is the limited efficiency of the algorithm. If naive

implementations of SA are compared with heuristics especially tailored on the par

ticular problem, given a required levelof quality for the solution, the time required

by SA exceeds by a significant amount the time required by ad hoc heuristics [30].
This limitation is severe when the problem to be solved is relatively simple or is a

problem for which a polynomial algorithm is known. For example to solve graph

partitioning the time required by the most efficient algorithm [46,47] is oneorder of

magnitude smaller than the best SA implementations. Nevertheless, SA regains a

lot of its attractiveness when it is applied to solve "real world" problems. Experi

mental data (See e.g. [21,27,29,48]) showthat SA produces very good results when

compared to other techniques for the solution of complex combinatorial optimiza

tion problems such as those arising from the layout of integrated circuits. For these

problems, even if the required amount of computer time is large 3, no other known

algorithm is capable of producing results of similar quality.

The structure of SA raises a number of questions about its features and

the characteristics of the solution produced. For example:

• Does the algorithm ever converge?

• Does the initial solution have any influence on the final one?

. • What is the probability that the final solution produced by SA is the optimal
one?

• What is the influence of the annealing schedule on the quality of the final
solution?

It is clear that to find an answer to the preceding questions is important

in view of the application of the algorithm to solve practical problems.

3A 1,500 standard cell placement problem can take as much as 24 hours of aVAX 11/780 [19]
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If the algorithm converges, it becomes important to establish the behavior

of the expected value of the cost of the final solution as a function of the amount

of time spent by the algorithm to find the solution. If the expected value decreases

as the amount of time increases, we know that the more we can afford to spend in

terms of running time, the better will be the quality of the solution found.

Independence guarantees that the algorithm does not need an initial so

lution which is close enough to the optimal solution and this rules out the often

difficult problem of determining a good starting point for an iterative algorithm.

Convergence and independence of the final solution from the initial one

guarantee that the algorithm is "robust".

Finally, given the fact that the longerthe time spent, the better the quality

of the solution, the fourth question is more properly restated as follows: Given a

fixed amount of time, is there an optimal wayto select the annealing schedule so that

the expected value of the final cost is minimized? To provide an adequate answer

to this question is very important for practical implementations of SA because of

the large amount of time required to run the algorithm.

The goal of this thesis is twofold: The first one is to analyze the asymptotic

behavior (large number of iterations) of SA and establish the conditions on the

generate, accept, and update functions for the algorithm to converge to the optimal

solution with probability one. The second one, is to derive, from the asymptotic

results, viable strategies to design SA algorithms for practical implementations.

In particular an annealing schedule, whose parameters are determined adaptively

from the data collected during the execution of the algorithm, is presented. The

annealing schedule is problemindependentand uses efficiently the allotted computer

time. The next section contains a detailed outline of the thesis.

1.4 Outline

The first part of Chapter 2 contains a detailed description of the structure

of SA andof its parameters. To properly answer the questions raised in the previous

section, it is necessary to derive a mathematical model for the operation of SA. The
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natural model for SA is a discrete inhomogeneous Markov chain [49]. The Markov

chain is a stochastic process defined on a countable state space. A probability

measure, synthetically represented by a matrix, is defined on the set of transitions

between states. In SA the entries of the matrix represent the probability that a new

solution is generated and accepted. The entries are either constant or dependent

upon T and Ac. The details of the model are presented in the second part of

Chapter 2.

Given the model, It is possible to proveconvergence to the globaloptimum

following two different approaches.

The first, the simpler one, assumes that the algorithm performs a number

of iterations at each value of T which is large enough for the probability distribu

tion to reach a stationary value. With this assumption, it is proved, under mild

assumptions on the mechanism to generate and accept new solutions, that SA con

verges asymptotically to a solution which is independent of the initial condition.

Moreover the final solution of SA asymptotically approaches the optimum solution

of combinatorial optimization problems with probability one [50,51]. Chapter 3 is
dedicated to present these results together with the necessary background on the

theory of the homogeneous Markov chains. The details of the proofs presented in
Chapter 3, underline the essential properties of the algorithm, so that it is possible

to derive a class of "Probabilistic Hill-Climbing Algorithms" that share the same
asymptotic properties of SA [50,51].

The theory developed in Chapter 3 proves convergence independently of

the particular annealing schedule as long as the sequence {Tm } approaches zero

as m approaches infinity. The flip side of the result is that stationarity has to be

achieved and this, in general, requires an infinite number of iterations at each value

of T. A new question can then be raised: Is it necessary to achieve stationarity at
each value of T to prove convergence to the global optimum? The answer is no. In

fact, if a finite number of iterations is taken at each value of T, it can be proved

that a sufficient condition for the convergence with probability one to the optimal
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solution, requires that the sequence of temperatures Tm be

kT —
log(m + m0) '

where m is the iteration counter and mo and k are two problem dependent constants.

The details of the convergence proofarecontainedin Chapter 4 together with a short

review of the results on inhomogeneous Markov chains which are needed [52,53].

Results similar to those presented in Chapters 3 and 4 were proved inde

pendently by a number of authors in the same time frame (See e.g. [39,54,55,56,57,
58]).

The results presented in Chapter 4 are stronger that those presented in

Chapter 3 but are still asymptotic in the sense that they require the algorithm to

perform an infinite number of iterations. As such their utility in practical imple

mentations of the algorithm is limited.

In Chapter 5 the finite time behavior of the Markov chain is studied. The

results obtained show that after m iterations have been performed, the distance of

the state probability distribution p(m) from the optimal one 4 represented by e* is

given by

||p(m)- e.|| = 0((r/m)mto(«-»))

where r, a, and 6 are quantities characteristic of the problem to be solved. Unfortu

nately to estimate r, a, and b in real problems is not always feasible and this limits

the applicability of the bound.

Designing a SA algorithm for a given combinatorial optimization prob

lem amounts to selecting a generation mechanism, an acceptance strategy, and an

annealing schedule. The characteristics of all these parameters influence the per

formances of the SA algorithm. It turns out that the efficiency of the acceptance

strategy is independent of the particularinstance of the combinatorial optimization

problem to be solved. However, the performances of the algorithm are strongly

related to generation mechanism and annealing schedule.

4SA converges with probability one to the global optimum of the combinatorial optimization
problem if the probability distribution of the states converges toward a probability distribution
which is greater than zero only for states which are global optima. Such a probability distribution
is sometimes referred to as the optimal probability distribution.
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The criteria to design an efficient generation mechanism and an efficient

acceptance function are presented in Chapter 6.

The annealing schedule is, among the three parameters mentioned above,

the one which affects the quality of the solution the most. Unfortunately the results

from Chapters 3, 4, and 5 cannot be turned immediately into feasible annealing

schedules. The designer of an SA algorithm for a practicalapplication has to resort

to heuristic criteria to obtain a good trade-off between speed and quality of the

solution.

The annealing schedules that have been proposed, often rely on a number

of parameters that are to be fixed before the execution of the algorithm. This is

usually puzzling. First of all a good choice of the parameters is related to the par

ticular instance of the problem. As a consequence, to determine a good parameter

setting often requires the execution of a large number of time consuming exper

iments with the aggravation that the optimal parameter setting for one problem

is of limited utility for any other problem. Second these parameters are properly

interpreted only if the operation of the algorithm is properly understood. Hence

the user, who has usually only limited knowledge of the behavior of SA, finds it

difficult to determine a good parameter setting.

The "ideal" annealing schedule has to require only a limited number of

parameters. These parameters must be common to a large class of problems and

the annealing schedule has to be able to self tune its characteristics on the basis of

the data that arecollected during the operation of the algorithm. The details of the

adaptive annealing schedule are presented in Chapter 7. The adaptive annealing
schedule has been applied to SA with very good results as reported in Chapter 8
of this thesis.

The concluding remarks are collected in Chapter 9.



Chapter 2

Simulated Annealing Algorithm:

Structure and Basic Definitions

Consider an instance of a combinatorial optimization problem (CI, c). The

function, c : CI •-• B.+, assigns to each element of CI its cost or reward. Let us

consider from now on problems where the minimumover CI of c is sought * .

Oncethe cost function c is given, wecandefine the set of the global minima
for (CI, c) as follows:

Cl« = { u\-: c(u>i) < c(ljj) for all ljj £ CI} . (2.1)

For the sake of simplicity, we avoid to mention explicitly the dependence on w

anytimethe context willnot lead to anyconfusion. In practice c(u>,) willbe replaced

by Ci and u>f by i. Furthermore, for a reason that will be clearer at the end of this

chapter, we will indicate a solution also as a state.

xThe choice of minimum problems as opposed to maximum problems is a matter of taste and
does not affect the generality of the conclusions. In fact it is immediate to see that the minimum of
a function is coincident with the maximum of the same function with all the entries with the sign
changed.

18
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2.1 Algorithm Structure

The strategy implemented by SA consists of exploring the solution space

starting from an arbitrary selected solution, or state, and generating a new one by

perturbing it. Every time a new solution is generated, its cost is evaluated and the

new solution is either accepted or rejected according to an acceptance rule.

Simulated Annealing ( j0, T0 ) {

/* Given an initial state j0 and an initial value for the parameter T,T0 */
T = T0;

X = j0;

while ( Outer loop criterion is not satisfied ) {

while ( Inner loop criterion is not satisfied ) {

j = generate ( X );

if ( accept (j,X,T)){

* = ;; . '

}

}
T = update (T);

}

}

Figure 2.1: Simulated Annealing Algorithm.

The general structureofSA, as described in Figure 2.1, actually represents
a class ofalgorithms. Toobtain a particular instance of the class, it is necessary to
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specify the values of five parameters:

1. generate function;

2. accept function;

3. update function;

4. outer loop criterion;

5. inner loop criterion.

From now on, SA will be used to indicate the whole class of algorithms reported

in Figure 2.1. Any further assumptions on any of the parameters of the algorithm

will be explicitly stated whenever necessary.

The following simple example will help to understand the nomenclature

used to describe the algorithm.

Example 2.1.1 Recall the placement problem introduced in Chapter 1. Suppose

three interconnected modules, {a,b,c}, have to be placed on a one-dimensional

grid so that the total length of the interconnection is minimized. The state space

CI consists of 6 states, namely all the possible placements of the three modules, i.e.

CI = { wi, lj2, •••, c^e } with

u>i = a,b,c

u>6 =b,a,c.
D

There are, in general, several ways in which the current state can be per

turbed to generate the next one. The action taken to perturb a state is called move.

The collection of all legal moves determines the move set M. The set of moves M

induces a metric on CI. In fact once M. is specified, it automatically determines for

each state i its neighbors. More formally, let H,- C CI, denote the set of all the states

j € CI such that there exist a move m 6 M. that applied to i produces j. With the

topology induced by M we can now define a characteristic sub-set of CI as follows:

Clm = {i: Ci < Cj for all j e Cl{} , (2.2)
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Figure 2.2: Schematic representation of the solution set CI with the move set M

Clm is the set of local minima . Notice how, unlike Clm, Clm depends on the selected
move set.

The pair of sets CI and M can be represented with an undirected graph
G in which each solution corresponds to a vertex on the graph and there exist an
edge between vertex t and j if j € ft,.

Example 2.1.1 [Continuation] Back to the example. Assume that in this case M
consist of moves ofonetypeonly, i.e. pairwise interchange ofany two elements ofCI.
If CI is equipped with the topology induced by M we obtain the graph Qdepicted
in Figure 2.2. •

To select an appropriate set of moves M is crucial. M in fact has to be such

that for each couple ofstates, say t andj, there must exist a finite sequence ofmoves
that allows the algorithmto visit onestarting from the other. This characteristic of

M may seem trivial but in general it is not. The following example will illustrate
the point.
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Example 2.1.2 Consider a placement problem in which 24 modules have to be

placed on a 5-by-5 grid. Imagine that the connections among modules are such

that the optimal solution is the one represented in Figure 2.3. In the selected move

set consist of pairwise interchanges of modules and the initial solution has any of

the modules in the location at the center of the grid, it is clear that the optimal
solution of Figure 2.3 will never be reached. However, if the original move set is

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

I—I Module Connection

+ Grid location

Figure 2.3: Optimal placement of24 modules on a 5-by-5 grid. Modules are repre
sented by boxes, connections by solid lines, and grid locations by +.

replaced with another one in which the contents of two locations on the grid is
swapped, it is easy to see that all the space is reachable. The example is trivial but

shows how, even in a simple case, it is possible to select a set M which makes Q
not strongly connected. •

The generate function selects, according to a given criterion, a state i e ft
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and a move m £ M to generate the next state j 6 ft,-.

The acceptance function determines whether the new generated state j
is accepted. Its structure is shown in Figure 2.4.

accept ( j, i,T) {

/* the function returns a 1 if the cost variation passes a test

T is the control parameter */

Acij = cj - ct;

y = /r(ACii);

r = random (0,1);

/* random is a function which returns a pseudo-random number

uniformly distriduted on the interval [0,1] */

if (r < y)

return (1);

else

return (0);

}

Figure 2.4: Acceptance Function Structure

The acceptance strategy ofFigure 2.4 is implemented by a family of func

tions indexed by a parameter T. For each value of T € (0, oo) fT(c) :E+ *-+ (0,1].
T controls the shape of fr(c)-

The introduction of the generation and acceptance function modifies the

undirected graph Q. In particular each original edge is replaced now by a pair of
new edges. Each new edge has a weight appended to it. The weight is given by the

value of the generation function times the value of the acceptance function for the
perturbation represented by the edge. Self-loops are introduced to account for new

states that have been generated but rejected.

Example 2.1.1 [Continuation] Assume that the connections between the modules



are such that for all j, i = 1,2, •••, 6, if i < j the corresponding costs satisfy

c, < Cj ,

and assume that the acceptance function is given by

/r(Ac«) =imn[l)eXp(-^i)])
with

ACij = Cj - Ci .

The graph of Figure 2.2 becomes the one shown in Figure 2.5.

r \
J

24

(2.3)

Figure 2.5: Transition graph. The dashed edges represent transitions dependent
both on T and ActJ-. The solid edges represent independent transitions.

There are now two types of edges: Edges whose weight depends upon
T and the difference of cost Ac,,-, dashed in the figure. Edges whose weight are
independent of T and Acy, solid in the figure. Edges of the first type are of two
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different type: Self-loops and edges related to "up-hill" moves. The weight of self-

loops does not decrease as T decreases, to signify that as T is reducedthe probability

to generate a move and accept it does not increase. On the contrary the weight of

"up-hill" moves decreases as T decreases.

Finally note that the presence of edges whose weights are independent of

T and Acy is a consequence of the choice of (2.3) as acceptance function. In general

the weight of "up-hill" edges is non increasing as T decreases while for "down-hill"

edges weights are non decreasing. D

The remaining three parameters, namely the update function, the outer

loop and the inner loop criterionare usually referred to as the annealing schedule.
A careful choice of these three parameters is important to achieve the best trade-off

between the speed of the algorithm and the quality of the final solution.

In Kirkpatrick's instance ofSA [12], new states are generated by selecting
uniformly at random one of the moves. The acceptance function is given by (2.3).
The control parameterT, is updated by means of the following geometric law

Tro+1 =aTm, (2.4)

with 0 < a < 1. The inner-loop criterion is satisfied when a tnin^Tmirn number of

moves, proportional to the size of the problem (e.g. the number of modules to be

placed in Example 2.1.1) is attempted at each fixed value of T. The outer loop
criterion is verified when a stationary point in the cost function is reached.

2.2 The Mathematical Model

In this section a mathematical model that describes the behavior of the

algorithm is introduced. The model will be used in the following chapters to discuss
the convergence properties ofthe algorithm and to develop the adaptive annealing
schedule. In the remaining part ofthe thesis it will be assumed that the generation
function selects at random, according to a specified probability distribution, one of
the admissible moves.
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Given the random nature of both the generate and acceptance function,

the state visited by SA after k moves is a random variable, X^ Therefore each

execution of SA is a realization of a stochastic process and is represented by the

values taken on by the sequence of random variables { Xn } indexed by n (number

of moves or discrete time).

The probability that the state visited by SA at the (n + l)-st iteration be j

given that at the n-th iteration it was i, consists of two independent contributions:

The probability of generating j from i at the n-th iteration, represented by C?tJ(Tn),

and the probability that j is actually accepted as the new configuration /rn(ActJ).

If we assume that the two contributions are independent, the expression for the

transition probability is then given by:

Pr{ Xn+1 =j|Xn =i}=Ph{Tn) =Ja*T^ /r-(ACy)
Gij(Tn) is defined as follows

Gij(Tn) = {

where the expression for G,(Tn)

for all j 6 ft.-,

otherwise,

j'e(i,

guarantees

£ Gtj(Tn) = 1

for all j £ ft,-,

otherwise .
(2.5)

(2.6)

(2.7)

which is necessary since Gy(T„) has to be a probability measure on ft,.

Equations (2.5)-(2.7) define the transition probability only if i ^ j. How

ever, since / is not, in general, identically equal to one, there is a finite probability

that the algorithmwill remain in configuration *. The following equationdetermines

this probability:

P»(Tn) = 1- £ Ptj(T„) . (2.8)
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The transition probabilities can be represented in a more compact form

with a square matrix P(Tn) whose entries are defined by (2.5), (2.8). For every

value of Tn, P(Tn) is a stochastic matrix according to the following

Definition 2.2.1 A m-by-m matrix P such that:

i ) For all i, j

Pij>0;

ii ) For all i
m

i=i

is said to be stochastic. Similarly, a vector p such that:

i ) For all i

H)

is called a probability vector.

ft > 0;

Eft-1?
i=i

The stochastic process represented by the sequence of random variables

{ Xn } produced by SA algorithms is a Markov process. In fact, (2.5) implies that
the value of Xn+i depends only on the value of Xn, i.e., the probability of any
particular future behavior of the process, when its present state is known exactly,

is not altered by additional knowledge concerning its past behavior. Furthermore

it is easily seen that (2.5) can be generalized to describe an k —step transition of

the SA algorithm as follows

Pr{Xn+k =j\Xn = i} = P^Tn,Tn+k) , (2.9)

where Pi5(Tn, Tn+k) is the (i,j) element of matrix P(Tn,Tn+fc) defined by

n+k-l

P(?n, Tn+k) = <( fcB (2.10)
I iffc = 0,
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where I is the identity matrix. To make the notation less cumbersome, the explicit

dependence on T will be omitted whenever possible and P(ra) and P(m,n) will
replace P(Tro) and P(Tra,Tn) respectively.

With definition of the multistep transition probability matrix as in (2.9)

and (2.10), the semi-group property of Markov processes [59]

n

Phi* m) = E ?»(<!> tyPijfa rn) , (2.11)
f=i

is automatically satisfiedby the matrix multiplication rules for all q,k, m such that

q < k < m 2 .

Finally since the configuration space of combinatorial optimization prob

lems is a countable and, in general, finite set, the Markov process becomes a Markov
chain.

Equation (2.11) is also known as the discrete version of the Chapman-Kolmogorov equation.



Chapter 3

Asymptotic Behavior:

Homogeneous Theory

The aim of this chapter is to show that, given an arbitrary combinatorial

optimization problem, SA can produce a solution which is arbitrarily close to the

global optimum. Given the stochastic nature of the algorithm, convergence to the
global optimum is proved if it is possible to show that for any given e, there exists
a corresponding ke such that for all k > ke

Pt{Xk€Clm}>l-.e, (3.1)

where Xk is the random variable which describes the solution produced by SA at the

k-th. iteration. Given that the mathematical model for SA is a finite Markov chain,
the probability distribution over CI is represented by a finite real vector. Accordingly
(3.1) can be rephrased in terms of distance of the probability distribution of the

states after k transitions p(k) from the optimal probability distribution e*, i.e. a

probability vector whose entries are different from zero only if the corresponding
state belongs to Clm.

Given the finiteness of the state space, all the Lp norms are equivalent and

the choice of one norm over the others does not affect the generality of the results

29
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obtained [60]. However, the L1 vector norm

Ml =t M
«=1

and the corresponding induced matrix norm

n

||A||=supEk;l

have the advantage to extend easily the results proved for Markov chain with finite

state space, to the case in which the state space is only countable [61].

Two approaches havebeen followed to prove convergence in the form (3.1).

The first one, simpler, assumes that T is fixed for a time long enough for the chain

to reach its stationary probability distribution w(T). With this assumption, the

behavior of SA as T approaches zero is determined completely by the corresponding

behavior of ir(T). With this assumption, the appropriate mathematical model for

SA is an homogeneous Markov chain. The converge results proved using this model

are presented in this chapter.

The second approach, instead, assumes that only a small number of it

erations is performed at each value of the T. In this case, obviously, the Markov

chain does not reach the stationary probability distribution. The dependence of

the transition probability matrix on T cannot be disregarded and the theory of

inhomogeneous Markov chains has to be used. The details of this second approach

are presented in the following chapter.

The remaining part of the present chapter is subdivided into three sections.

First the basic results related to the existence of stationarity probability distribu

tion for homogeneous Markov chains are presented. Then, the conditions on the

acceptance and generation function are derived for SA to converge in the sense of

(3.1). Finally, Section 3.3 contains a review of similar results proved independently
by other authors.
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3.1 Homogeneous Markov Chains

In this section, a few basic definitions and theorems on homogeneous

Markov chains, relevant to the following discussion, are reviewed. All the major

results are presented without proofs and a reference to a basic text where the proof
can be found is given.

3.1.1 Classification of States

We will start the discussion by introducing the classical classification of

the states of the Markov chain.

Definition 3.1.1 State j is said to be accessible from state i if for some inte

ger m > 0, P}™' > 0. Two states i and j, accessible to each other, are said to
communicate. D

The relation induced by this definition is an equivalence relation. The

equivalence classes induced by this relation consist of all those states for which

there exist a probability greater than zero, to go from one state to the other in both

directions in a finite number of steps.

Definition 3.1.2 A Markov chain is said to be irreducible if the equivalence relation
induces a unique class.

Example 3.1.1 Consider a Markov chain with n states. If there is an ordering
of the states such that the transition probability matrix P has the following block
representation

n\ n2

n\ ( 0 P2\

-U •]• (32)
where P,«, t = 1,2 axe n$-by-nt- matrices that cannot be put into a block represen
tation with the same structure as in (3.2), then the Markov chain is irreducible. If
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P has the following block representation

n\ n2

p=n1/P1 o\
n2 \T2i P2/ '

where Pt-, i = 1,2 are two matrices with elements not all zero, the corresponding

Markov chain is not irreducible. Furthermore states nx + 1, •••, nx + n2 are called

transient. D

Definition 3.1.3 The period of state i is said to be the greatest common divisor of

all integers m > 1 such that

p£ra) > 0 .

Definition 3.1.4 A Markov chain in which each state has period one is said to be

aperiodic. D

It is easy to show that periodicity is a class property i.e., all the states in

an equivalence class have the same period [62].

Theorem 3.1.1 If the Markov chain is irreducible and there exists a state, say i,
such that

P» > 0 ,

then the Markov chain is aperiodic.

Proof. From the assumption Pa > 0, it follows that state i has period 1. Therefore

every state in the same equivalence class as state i has period 1. Since the chain

is irreducible, all the states are members of the same class and hence the chain is

aperiodic. D

Example 3.1.2 The Markov chain represented by the following probability tran

sition matrix

p =

7ll 7l2

nx I 0 P2

n2\Pi 0
>
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where Px and P2 are two matrices which elements are not all zero, is periodic with
period at least two. •

Definition 3.1.5 A Markov chain which is aperiodic and irreducible is said to be
regular .

Theorem 3.1.2 A Markov chain is regular if there exists an integer m such that
the corresponding transition probability matrix Pm has no zero entries.

Proof. Assume that the Markov chain is regular and has n states. Suppose that
there exists a pair of indexes (t,j) such that pfc"* = 0 with m > n. 1£ m > n and
Py = 0 only two cases are possible: First there is no connection between t and

j but in this case the Markov chain would not be irreducible. Second there is no

path oflength m between i and j but there is a shorter path with length k < n. In
this case t and j are members of a periodic class with period k. In both cases we
are contradicting the regularity assumption. D

Definition 3.1.6 Let ha' be the probability that starting from state i, the first
return to state i occurs at the k-th transition, i.e.,

4*} =Pr{*A =i,Xj # *, j =1,2,...,* - 1, |X0 =i} .

ha is defined by means of the following recursion

Pt-±ht"PlP =\l ** =°' (3.3)
/=o [ 0 ifk>0 .

A state i is recurrent if Jjjlj &W = l.

D

This definition says that a state t is recurrent if, starting from state i, the
probability ofreturning to state i aftersome finite lengthoftime is one. Recurrence
is a relevant characteristic only when the Markov chain has a countable state space
as shown in the following example



34

Example 3.1.3 The following probability transition matrix

Pij=<

q i£i=j + l,

p ift=j-l, (3.4)

0 otherwise,

represents the Markov process known as one-dimensional random walk on the pos

itive and negative integers. At each transition, a particle moves with probability q

one unit to the right and with probability p one unit to the left (p + q = 1). If the

process starts from the origin, and ii p ^ q, there is a non zero probability that a

particle initiallyat origin will drift to -J-oo if q > p ( -co in the other case ) without

ever coming back to the origin. Hence the origin is not recurrent. The following

condition

p = q = 1/2, (3.5)

is necessary to ensure the recurrence of the Markov chain determined by (3.4). In

[62] a formal proofof condition (3.5) is given. a

If the state space is finite, recurrence is implied by irreducibility. Recur

rence is introduced here becauseergodic results are proved for countable chains, i.e.

a more general class that contains finite chains as those arising in the study of SA

as a special case.

Recurrenceas periodicity is a class property, i.e., all the states in an equiv

alence class are either recurrent or non recurrent.

3.1.2 Ergodic Theory

The properties that have been introduced above define a large class of

Markov chains for which an ergodic theory has been developed. The two main
results of this theory are recalled below.

Theorem 3.1.3 Let i be the initial state and let P^ = 1. If a Markov chain is
regular and recurrent, then
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i ) The following limit exists

fc=0

where h^' is defined recursively by equation (3.3).

ii ) For every j,

& p*'" & *& - **" n* • <3-6>K 'OO K IQQ

Matrix H is called the constant matrix of the chain.

Proof. The formal proof of the theorem is rather cumbersome and can be found in

[62]. D

Ifn is large enough, from (3.6) follows that PJV, the probability of being
at the Ar-th iteration in state t, starting from state j, depends only on the state itself

and is totally independent on the initial state j. In other words, the memory of the
initial condition is completely lost. Note that tt,- defined in Theorem 3.1.3 is always
larger than or equal to zero. If it is strictly larger than zero, then the following
important result holds.

Theorem 3.1.4 If irt's of equation (3.6) are greater than zero for all i and the
Markov chain is regular and recurrent, then v^s are uniquely determined by the
following set of equations

mi

Z>. = 1, (3.7)

and for all j
|f)|

£*<fli = *"*•> (3.8)
i=i

*j > 0 . (3.9)

Proof. See [62]. q

The row vector ir = [*i,ira,...,ir|o|] is called the stationary probability
distribution vector of the Markov chain.

The stationary probability distribution is very important since it charac
terizes completely the asymptotic behavior of a Markov chain.
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3.1.3 •Rate of Convergence

The results from the previous section allow us to state, under some mild

assumptions on the transition matrix P, that the Markov chain converges to its

stationary probability distribution vector ir. The next point we want to address is

related to the rate of convergence. In other words, we are interested in establish

ing how fast an arbitrary initial probability distribution vector p converges to the
stationary probability distribution vector tt.

To state results on the rate of convergence we use two general theorems

from the theory of non-negative matrices and we recall that a Markov chain has

a transition probability matrix which is non-negative and stochastic according to

Definition 2.2.1.

Theorem 3.1.5 (Frobenius-Perron) Let P be a stochastic matrix. Let n the

vector that satisfies (3.8) then:

i ) A0 = 1 is an eigenvalue of P with algebraic multiplicity 1.

ii ) Let A,-, i = 0,1,2, •••, n—1 be the eigenvalues of"P. For alli = 1,2, •••, n —1

|A<| < A0.

Hi ) 7C and x are the left and right eigenvectors o/P corresponding to Ao. l is
a column vector with all the entries equal to 1.

Proof. Many different proofs of the Frobenius-Perron Theorem are available in the

literature on Markov chains and non-negative matrices. One of these can be found

for example on [63, page 2]. •

A direct consequence of the Frobenius-Perron theorem is:

Theorem 3.1.6 Let P be a stochastic matrix. If the eigenvalues of P are ordered
such that for all i = 0,1,..., n —1

IA,| < |Ai+1| (3.10)
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and

A0 = l,

then as k —*• oo

P* = iir + Jfemi-1|A1|*B(*,m1),

where mx is the geometric multiplicity ofAi and B(k,mx) is a matrix such that, for
allk

\\B(k,mi)\\<bk<l<oo.

B(A?,m1) is the residual matrix evaluated at the eigenvalue Ai [64].

Proof. For the proof of this theoremsee [63, page 9]. •

The combination of the Frobenius-Perron Theorem and of Theorem 3.1.6

yields:

Theorem 3.1.7 Ifp and q are two probability vectors and P is a stochastic matrix,
then as k —» oo

llpP'-qP'lUo^-,,^)
Up - qll

Proof. The proof follows from the fact that P is a stochastic matrix. In fact

||PP*-qP*|| = ||(p-q)P*|| <

< Ffc-'-WHp-qll.

As a corollary to Theorem 3.1.7 is it easy to see how, regardless of the ini

tial probability distribution, further transitions generate a probability distribution
which approaches geometrically fast the stationary probability distribution. The
above conclusion is stated more precisely in the following

Corollary 3.1.1 Let p be the initial probability distribution vector of the states in
the Markov chain and let pW be the probability distribution vector after k iterations
have been performed. If it is the asymptotic probability distribution vector then
Ik - P(fc)ll 9<>es to zero at least as fast as 0(Ar"»l_1|Ai|fc) as k -• oo.
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3.1.4 Reversible Markov Chains

In this section we will show how a particular structure of the transition

probability matrix allows us to be more specific about the rate of convergence of
the Markov chain to its stationarity distribution.

Definition 3.1.7 A Markov chain is said to be reversible if its transition probability
matrix P is such that for all pairs (i, j)

*iPij = KjPji, (3.11)

where it is the stationary probability distribution of the chain. D

Equation (3.11) it is often referred to as detailed balance equation as op

posed to the more general balance equation (3.8). Note that while (3.11) implies
(3.8), the reverse is not in general true x.

Theorem 3.1.8 If the Markov chain is reversible, then the eigenvalues of its tran
sition probability matrix are real, and all have geometric multiplicity 1.

Proof. Let us define the matrix D

D = diag{ v0, iru..., Ttn_x } , (3.12)

with the indices ordered as in (3.10). The matrix

L = D^PD"1/2 (3.13)
xThe origin ofthe name reversible Markov chain comes from the study ofthe stochastic process

obtained by reversing the time flow on a Markov chain [65]. The process is again a Markov chain
and its transition probability matrix P is given by

P*j = Pri Xm = j IXm+i = », Xm+2 = 1*2,..., Xm+k = ik } =
= Pf{ Xm = ji^m+1 = hXm+2 = »2>». •»Xm+k = jjfe } _

Pr{Xm+i = i, Xm+2 = «2» ••., Xm+k = ik } ~"
= Pr{*m = J }Pr{*m+i = i 1Xm = j}

Pr{*m+i = 0
Pr{ Xm+2 = t2,..., Xm+k = ik | Xm+1 = j\Xm = j) VjPjj

P*{ Xm+2 = t*2t..., Xm+k = h | Xm+i = i} TTf
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is symmetric, in fact

L« 375" -

7rV2p..
~ "^72 ^

From the symmetry of L, P is similar to a diagonal matrix, i.e. there exists a non

singular transformation S such that

SPS-^diagfAoA,...^-!},

with

S =s TD1/2

and T is an orthogonal matrix. Since P is a real matrix, it follows that the eigen
values are real and'their geometric multiplicity is 1. •

Theorem 3.1.8 yields a different version of Corollary 3.1.1.

Corollary 3.1.2 Let p be the initial probability distribution vector of a reversible
Markov chain and let pW be the probability distribution vector after k iterations
have been performed. If it is the asymptotic probability distribution vector then

n-l

E
i=l

Ik - P«|| < iajI* £ hd-vvWOd1/8!! , (3.14)

where r^ and 1(,) are the right and left eigenvectors associated to the i~th eigenvalue
ofL respectively with L as in (3.IS).

Proof. The proof follows by direct computation using the dyadic decomposition of
P [64]. In fact, since P is similar to the diagonal matrix diag{A0, \u..., An_i }, we
have for any k

P* = «T +E Ajrr1'VH^D1'2 . (3.15)



Substituting (3.15) into (3.14)

lk-p(fc)ll = IIE^pD"172^010^172!! <
t=i

< lA^ '̂llpD-^r^l^D1/2!! <

< Mkn^\\B^2r^l^B^2\\.
«=i
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Corollary 3.1.2 has another interesting formulation which gives a better

insight on the behavior of the Markov chain. If (3.15) is rewritten componentwise

we have [66]:

^ =*y +#EAJk<k,<f. (3.16)
V v* k=i

Equation (3.16) conveniently breaks P& into two components. The first one is
the limit to which P^' converges as k approaches infinity while the second one
measures the distance of P from the constant matrix II defined in (3.6). From

(3.16) it is clear that loss of memory is dependent not only on the magnitude of Ai

but also depends, at least on the short time horizon, on the ratio of the stationary

probability of state j versus the stationary probability of state i.

3.2 Asymptotic Properties of Simulated Anneal

ing

Results quoted in the previous section cannot be applied directly to the

Markov chain representing the stochastic process generated by SA. In fact, these

results are valid for transition probability matrices whose entries are constant. In

SA, some of the transition probabilities (See Chapter 2) depend on the parameter

T whichis updated during the evolution of the algorithm and hence are dependent

on time. However, if T is fixed, i.e. in the inner loop of SA (See Figure 2.1), the

transition probabilities are constant andthe results from the theoryof homogeneous
Markov chain can be applied.
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3.2.1 Ergodic Theory

The strategy to prove the ergodic properties of SA is as follow: First deter

mine which conditions SA must satisfy so that a stationary probability distribution

exists for each given value of the parameter T. Then introduce a function 7r,(T),

defined on the set of configurations, with the property that, as T approaches zero,

7rt(T) is different from zero only for those configurations that are global optima

for the combinatorial optimization problem. Finally select an acceptance function

/ such that 7r,(T) is the stationary probability distribution of the Markov chain

describing SA.

If we can prove that, given a function fi",(T) with the properties mentioned

above and a suitable generation function <7y(T), it is possible to determine an ac

ceptance function / with the features outlined in Chapter 2, then an implementation

of an SA algorithm is obtained which converges with probability one to the global
optimal solution of the combinatorial optimization problem.

Before we begin to present the details of the convergence proof, it is nec

essary to make the following assumption on the characteristics of the sequence of

control parameters { T* }.

Assumption 3.2.1 The sequence of control parameters {Tk} has to be such that:

and Tm > Tk for all k > m.

lim Tib = 0
fc-oo

D

The first condition on SA is related to the irreducibility of the underlying
Markov chain. In SA context, irreducibility is tantamount to require that for all
i € CI and j 6 ft,

Gij(T) > 0 , (3.17)

for any T. Equation (3.17) imposes a constraint on the generation mechanism used.

However, (3.17) by itself is not sufficient to ensure irreducibility. In fact we have to

require that the acceptance function / assigns a non zero probability to any of the
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edges of Q. This is guaranteed if / belongs to the class of admissible functions T

defined as follows:

Definition 3.2.1 /r is an admissible Junction if for all c and for allT ^ 0

0 < fT(c) < 1.

The next condition is related to the aperiodicity of the Markov chain.

Proposition 3.2.1 Let the Markov chain corresponding to SA be irreducible for

all T > 0. If the acceptance function f € F is such that there exists at least a pair

of states i and j for which

0 < /T(Ac0) < 1, (3.18)

for all T > 0, then the Markov chain is aperiodic for allT > 0.

Proof. If (3.18) holds, then according to (2.5), P»(T) > 0, for all T > 0 and the

proof follows from Theorem 3.1.1 and the irreducibility of the Markov chain. •

The condition of Proposition 3.2.1 is always satisfied since there is at least

one state for which (3.18) holds: The global optimum.

Proposition 3.2.2 Let ft be finite and the Markov chain associated to SA be irre

ducible for all T > 0, then the Markov chain is recurrent for all T > 0.

Proof. Since the state space of the Markov chain is finite, then after a number of

steps greater than |ft| at least a state of the Markov chain has been visited twice.

By definition, that state is recurrent. Since recurrence is a class property and the

Markov chain is irreducible by hypothesis, the Markov chain is recurrent. D

According to Theorem 3.1.4, the Markovchain associated with an SA algo

rithm whichsatisfies the conditions of Propositions 3.2.1 and 3.2.2, has a stationary

probability distribution.
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Now we look for a form of the stationary probability distribution which,

as T goes to zero, is different from zero only in global minima of c.

To this end, we have to find under which conditions a stationary proba

bility distribution ?r,(T) is different from zero, as T goes to zero, only if the i-th

configuration is the global optimal solution.

Theorem 3.2.1 Let 7a(T), be a function that for all i e ft maps R+ into (0,1].
Ki(T) is defined by

*m = Z(T)
where Z(T) is a normalizing factor such that

!><T)-1

and g is such that for all i, j, and T > 0

9(c,T)>0

0 if Ci > Cj ,

Then

T~0g(Cj,T) 9M *«=c"
oo if a < Cj .

\imn(T)=em ,

where em is the following probability vector

(e*)i = <

Jgfel

jen.

0 if i 6 (ft n ft$) .

if iefi,,

The set ft, is the set ofglobal minima and is defined in (2.1).

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Proof. The proof of (3.23) is straightforward because of the properties of the func
tion g. In fact for all i e ft*, (3.19) can be rewritten as

9(ci,T)
*<(T) =

£<K*;,T)+ £ g(Cj,T)
ien. j€(nnn«)
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" r 9(cj,T) g(Cj,T) * (3'25)
ik.9<<Ci,T) j^%)g(ci,T)

Uwe let T approach zero and use (3.22), we have that for all i e ft* and j € (ftnft£)
the second sum at the denominator of(3.25) vanishes while the first term approaches

y* £(£i)

Similarly, if i € (ft n ft*) the first sum at the denominator diverges. This completes

the proof of the theorem. D

Next, wehave to specify under which conditionson / and G, a 7r,(T) of the

form described above is indeed the stationary probability function of the Markov

chain associated to SA.

Theorem 3.2.2 Let Cl'j be defined by

Cl'j = {u>iiL>jeCli},

if f €.T and for all j

Y,9(*, r)G0(T)/r(Ac0) = (3.26)
ienj

then Vi(T) defined by (3.19) (3.22) is the stationary, probability distribution of the
Markov chain whose one-step transition probability is given by (2.5)-(2.8).

Proof. The proof is obtained by verifying that g, G, and / satisfy the conditions

of Theorem 3.1.4. In view of the assumptions made on function G and of Proposi

tions 3.2.1 and 3.2.2, the Markov chaindefined by (2.5)-(2.8) is irreducible, aperiodic

and positive recurrent. It is now immediate to see that 7T,(T) defined by (3.19) sat
isfies (3.7) because of (3.20) and (3.9) because of (3.21). Finally it takes just a little
algebra to see that (3.8) is satisfied automatically once / is chosen as specified by
(3.26). n
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Theorem 3.2.2 is important since it suggests a way to construct a SA al

gorithm with guaranteed convergence properties. In fact one first selects a function

7T;(T) that ensures the convergence to the global optima (See Theorem 3.2.1) and
then selects an acceptance function / and a generation rule G such that Propo

sitions 3.2.1, 3.2.2 and Theorem 3.2.2 are satisfied. Propositions 3.2.1, 3.2.2 and

Theorem 3.2.2 are sufficient condition for the algorithm to converge to the global

optimum provided that tt is achieved at each value of T.

If additional assumptions are placed on the generation function G and the

Markov chain is constrained to be reversible, a simplified version of (3.26) gives an
explicit expression for / as shown in the following

Corollary 3.2.1 If the function Gtj(T) is such that for all i Gft, and j Gft,

Gij(T)Gji(T) ± 0 (3.27)

and the Markov chain is reversible, (3.26) can be replaced by

9i(ci,T)Gij(T)fT(Acij) = (3.28)

= 9j(cj,T)Gji(T)fT(&Cji) .

Equation (3.28) yields the following explicit relation for f

MACij) _ G,,(r)g,(c,,T)
/T(AcjT) Gh{T)gi(Ci,T) •

Equation (3.27) is automatically satisfied by the definition of symmetric generation
rule

Gij(T) = Gji(T) = Gij (3.29)

given in [67,68].

Remark 3.2.1 Simulated annealing as proposed by Kirkpatrick [12] has g, G and
/ defined as follows

-Ci

g(d,T) = eT\
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G m _ , Vlft.l for all j 6 ft,,

fr(Acij) =nmi[l,e"^V::ij. (2.3)
0 for all j e (ft,)c ,

These functions satisfy the conditions of Corollary 3.2.1 and then, a fortiori, of

Theorem 3.2.2.

Another SA algorithm can be generated just by replacing the acceptance

function of (2.3) with the following one

Cj - Cj

e T
MAc«) = cprzr (3.30)

1 + e T

and leaving functions G and g unchanged. D

The result stated in Corollary 3.2.1 is of interest when a SA algorithm

has to be designed. In fact first we select the form of the stationary probability

distribution, then we choose the generation function which suits the problem the

best, and finally we use (3.26) to determine /. Note that (3.26) requires to know

the cost of all the neighbors of solution t to determine the probability of transition

from i to j. This is a limitation in practical applications since the cardinality of ft,-

may be quite large and we may even ignore which of the solutions are members of

ft,-. Corollary 3.2.1 offers a solution to this problem. In fact if we restrict ourselves

to reversible Markov chains, than we can use (3.28) instead of (3.26) to define /.

Notice that with (3.28) the transition probability is determined only by the cost

of solutions i and j. In Remark 3.2.1 it is shown how this degree of freedom can

be exploited to generate two different acceptance strategies that lead to the same

asymptotic behavior. However, the choice of / affects the rate of convergence of the

algorithm and, in Chapter 6 we will discuss how to select a function / that allows

the fastest convergence at fixed T.

Note that when the control parameter T, approaches zero, both the ac

ceptance functions / given by (2.3) and (3.30) become a unitary step function that
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assigns probability one only to those transitions which improve the cost function

and probability zero to the others (See Figure 3.1 and Figure 3.2). Hence, whenT is

-40.00 -20.00 0.00 20.00 40.00

Figure 3.1: Acceptance function given by (2.3).

set to zero, the acceptance functions degenerate into the usual greedy strategy and
select, among all the new configuration that are generated, those with cost lower
than the present configuration only.

3.2.2 Rate of Convergence

Theorem 3.1.6 and Corollary 3.1.2 give us a tool to assess the convergence
rate of SA. Corollary 3.1.2 in particular gives us a handy formula to measure the

distance of pW from it. In fact, from the definition of the constant matrix II (3.6),
it follows that

|PW-*II < ||p||||P*-JT|| <
= i|p*-irii. (3.31)
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Figure 3.2: Acceptance function given by (3.30).

The substitution of (3.16) into (3.31) gives

|p«-«|| < maxXX*>-,r,.| =

= max£ \M £a* r!")/f| <
i=i V w* h=i

< nmax#E|Aj||rS'"||/f| <

<n|A*|inaxygg|r,<fc»||/f| <
< n |Af| maXi/-i ,

*'tj y no

where the last inequality follows from orthonormality of r and 1. If we assume that

then we have

*,(T) =
e T

Z(T) '

Ac,

|p<*> - w|| < n |A*| e 2T , (3.32)
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where

Acmax = max(cy-c,) .

The last inequality gives us some insight on the influence of the cost function on the

rate of convergence. If we assume that there are two combinatorial optimization

problems for which the matrix P has the first two eigenvalues equal, then SA will

converge faster for the problem whose cost function has the larger Acmax.

Equation (3.32) unfortunately has limited utility when SA is applied to

solve practical problems. In fact, in these cases, to know of the second largest

eigenvalue of matrixP is out of the question since the sizeof the matrix is extremely
large and its entries are not even known. Furthermore what really interests us is

to know Ax as a function of T and this is hopeless! However, intuitively the rate
of convergence must be related to some extent to the topology of Q and there are
problems for which it is easier to make reasonable assumptions on topology of Q
than it is to estimate the second largest eigenvalue of P.

Intuition tells us that the Markov chain will converge faster if the prob

ability of getting stuck in a region of the graph with relatively small stationarity
probability is small compared to the probability of escaping that region. More pre
cisely, if we consider an arbitrary subset ft, ofthevertices ofQsuch that0 C ft, C ft,
the stationarity probability of beingin ft, is given by

•en,

while the probability to escape from ft, to the rest of the space { ft, }c is

£ *iPii •

We are interested in the ratio between the two probabilities defined above, namely

$.(T) = £i2i>l

i€tts
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$,(T) is a called the conductance of set ft* [69]. The conductance of Q, $g(T), is
defined by

$<,(T) =8crSinnmaxt*.(r),*!{r)},
where $t{t) is the conductance of {ft*}c.

The relation between $a(T) and the second largest eigenvalue of P, Ai

in our notation, has been proven by Jerrum and Sinclair [69] and is stated in the

following

Theorem 3.2.3 Given a regular Markov chain with transition probability matrix

P and underlying graph Q, the second largest eigenvalue Ai and the conductance of

G satisfy the following inequality

Al(T) <!_*££)!.
D

Theorem 3.2.3 by Jerrum and Sinclair is interesting because it establishes

a relation between the topology of the graph and Ai(T). However its use to esti

mate the rate of convergence of SA is rather limited in practical applications. In

fact, while it is possible to determine, for a number of combinatorial optimization

problems, an expression for the conductance evaluated when T is infinite [70], the

dependence of the conductance on T is not monotonic and hence it is impossible to

find a bound for $c(T) based on $<?(oo) for finite values of T.

In Chapter 5 we will see that, using the results of the inhomogeneous theory

it is possible to estimate the convergence rate of SA on the basis of quantities that

relates the topology of the graph and the characteristics of the cost function.

Before we conclude the discussion on the rate of convergence a final com

ment is in order. The homogeneous ergodic theory gives us sharp bounds on the

rate of convergence of the Markov chain to the asymptotic probability distribu

tion. Unfortunately the use of these results requires the knowledge of either the

eigenvalues of P or the conductance of the underlying graph and this poses seri

ous restrictions to their application to estimate the rate convergence of SA to the
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stationary probability in practical applications. However the results of the homo

geneous theory are useful to select among the different acceptance functions, which

guarantee the same asymptotic probability distribution, the one that will produce

the faster convergence. The details will be presented in Section 6.1.1.

3.2.3 General Comments

Theorems 3.2,1 requires the algorithm to reach the stationarity probability

distribution at each value of T. However reaching exactly stationarity requires, in

general, an infinite number of moves as stated in the following theorem

Theorem 3.2.4 Let P be a stochastic matrix. If there exist a finite m such that

Pm+1 = Pro then there exist an integer p <m such that Pp = JT. Furthermore, if
P is reversible, p = 1.

Proof. If Pm+1 = Pm then ^(P) = 0 with ij>(z) being the polynomial

il>(z) = zm(z - 1) .

From the Cayley-Hamilton theorem, it follows that the minimal polynomial <p(z) of

P divides if>(z) exactly and hence has the form cp(z) = zp(z —1) [64] with p < m.
Since the solutions of equation <p(z) = 0 are the eigenvalues of P, it follows that

the only possible choicefor them is either 0 or 1. Furthermore, from the Frobenius-

Perron theorem, the largest eigenvalue is a simple solution of the characteristic

equation for P. As a consequence of the above considerations it follows that the

Jordan form for P is given by

1 o o ... o

o Ji o ... o

J = o o J2 ... o , (3.33)

'gj



where the i-th block on the diagonal has the following form

0 1 0 0 0

J.=

0 0

0 0

Lo o

0 0

0 1

0 0
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and sizent with S?=i »«• = »—1. Using the Jordan form of P, it is possible to extend

the dyadic decomposition (3.15), to the general case in which P is not reversible,
to obtain [64]

X k.P* = i7r +T-12jt-T, (3.34)
t=i

where J,- is obtained from J (3.33) by setting to zero everything but block J,-. The
xk

term T £Li J,- T is identically zero for all &> maxi<,<9{n,} —1 = p —1. From
equation (3.34) follows the theorem. a

Theorem 3.2.4 implies that only two cases are possible. Either tt is achieved in p
steps, or an infinite number of steps is necessary. This in turn means that if the

Markov chain is reversible, it is obtained in one step or, equivalently, that we have

enough information to recognize directly the best solution to the problem!

From the above discussion, any strategywhichrequires to achieve, at each

value ofT, stationarity exactly, is practically inapplicable. In fact, anSA algorithm
performing an infinite number of iterations for each value of the parameter T is a

conceptual, non implementable algorithm [7], in the sense that an internal loop is
never exited.

However the results of the homogeneous theory can be used to guide the

selection of an annealing schedule. If we assume that function g is continuous
in its second argument, then also iti(T) is a continuous function. The continuity
of iTi(T) implies that the stationary probability distribution for a particular value
of the controlling parameter, say f, is a good approximation for the stationary
probability distribution for all the values of T sufficiently close to T. This result
suggests a strategy for the control of T: Start with a value of T for which the
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stationary probability distribution is easy to estimate, and update T so that only

a few iterations are needed to obtain a good approximation to the new stationary

probability distribution. We will elaborate more on this point in Chapter 7.1 where

we discuss how to derive an "efficient" control strategy for the algorithm.

3.3 Related Work

The assumptions used in the previous section are, to the best of my knowl

edge, the least restrictive of thoseused to date. A numberof other authors (See e.g.

[55,56,67,68,71]) have derived similar results using, however, a set of more stringent

assumptions. The conditions they used are implied by those presented in Section 3.2

but not vice versa.

The approach proposed in Section 3.2 to derive the asymptotic features

of SA is a constructive one. It is similar to the approach by Metropolis et al. [14]

in their original work and it is a well known technique in Monte Carlo simulation

[16,17,18].

The other proofs of the convergence of SA, with the only exception of the

the work by Rossier et al. [71], follow a different approach: A numberof assumptions

are placed on the acceptance function and on the generation rule and it is proved

that the resulting stationary probability distribution satisfies (3.23).

In particular Aarts and van Laarhoven [68] and Otten and van Ginneken

[67] assume that G is symmetric (See equation (3.29)) and that / satisfies the
following:

i ) For all i,j, k such that c,- < Cj < ck

fT(&Cij)fT(Acjk) = fT(Acik) .

ii ) H Ac < 0

/r(Ac) = 1.
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iii ) If Ac> 0

0 < /r(Ac) < 1 ,

Um/T(Ac) = 0.

With these assumptions and usingthe detailed balance equation (3.11), the solution
to (3.26) becomes

ir (T\ - /r(Ac,«,)
<t)~T^m^7)' (3-35)

where t* € ft*.

Lundy and Mees [56] relax the condition on the generation rule (See equa
tion (3.29)) a little to obtain the following

hj = \
0 otherwise.

The use of (3.36) instead of (3.29) modifies (3.35) to become

m _ |ft,|/T(Ac,.,)
^-•XmMM***)'* (3-37)

Note that if (3.29) and (3.36) are used together, the sizeof the neighbor set becomes

constant, i.e. Q becomes a regular graph in which each node has degree |ft,|, and
(3.37) reduces to (3.35).

Anily and Federgruen [55] use a generation rule similar to (2.6) but the

dependence on T is dropped and G^ is assumed symmetric. With this selection of

the generation rule we have the following expression for the stationary probability
distribution

, . G,/T(Ac,-.,)

Faigle and Schrader [72] follow a rather different approach which leads

to a different convergence proof. The main result is summarized in the following
proposition:

Proposition 3.3.1 Let Gtj be such that (3.29) is satisfied and Qis connected. Let
^r(cn Cj) be a real function such that:
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i ) For all i, j

Mcnc;)>°,
hT(ci,ci) hT(ct,Cj) = hT(ci,Cj) .

ii ) For all i, j such that c,- < Cj

hr(ci, Cj) < 1 ,

VLmhT(ci,Cj) = 0,

then there exist a constant g>0 which depends on G only so that, for all j € CI

*j(T)<ghT(c.,Cj).

D

Proposition 3.3.1 extends the family of functions that can be used as ac

ceptance functions. For example it is possible to use the following

hT(ci,Cj)=*T-te-«),

which accounts for c,- and Cj explicitly and not for Ac,-,- only. Of course the choice of
hT will determine the expression for tt together with the rate at which the memory
of initial condition is lost.



Chapter 4

Asymptotic Behavior:

Inhomogeneous Theory

In the previous chapter we have consideredthe case in which, for each value

of the temperature, the Markov chain is allowed to reach the stationary probability

distribution ir(T) and then behavior of ir(T) as T approaches zero is studied. In

other words a number of conditions on the Markov chain have been established for

the following to be true

Km ( lim Pr{ Xm =•}) =lim*,(T) =j '(*''|0,|) H*€"* ' (4.1)T-ov «.-.<» - II r^o * ' \ 0 otherwise. V '
The function / depends on the assumptions made on the generation and acceptance

functions. Note that the order in which the limitsin (4.1) are takenis essential to the

validity of the result. Furthermore, since the Markov chain is required to achieve

stationarity at each value of the temperature, no restrictions are placed on the

sequenceof temperatures as long as they satisfy the conditions of Assumption 3.2.1.

In this chapter we study the convergence of the algorithm to the global op

timum from a different perspective. We will drop the requirement that the Markov

chain reaches stationarity at each value of T. In practice, we will require that only

a finite number of iterations is performed by the algorithm at each value of T and

we will determine what are the conditions under which the algorithm converges to

the global optimum.

56
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Of course, if the Markov chain does not reach stationarity at each value of

T, the dependence of the probability transition matrix P on T cannot be disregarded

and the homogeneous model has to be replaced with an inhomogeneous one.

In the remaining of the present chapter, we will restrict ourselves to in

stances of SA for which the following assumption holds:

Assumption 4.0.1 The generate function G is independent of T and symmetric:

i.e. Gij = Gji. The acceptance function is as in (2.3).

U

Note that Assumption 4.0.1 is equivalent to assume that the Markov chain

is reversible.

4.1 Inhomogeneous Markov Chains

In this section, akin to the analogous section for homogeneous Markov

chains, definitions and fundamental results from-the theory ofinhomogeneous Markov
chains are recalled. Theorems are reported without proof which can be found in

standard texts on inhomogeneous Markov chains like [61,63,73].

Let us start with the definition of convergence for inhomogeneous Markov

chains. Intuitively, the inhomogeneous Markov chain will converge if, for any initial
probability distribution vector p(0),

Jm ||p(m)-e„|| = 0, (4.2)

where p(ra) denotes the state probability vector after m transitions of the Markov

chain are performed and e* is defined by (3.24). Note that in this case T is not

fixed. Hence the entries of the transition probability matrix are functions of the

parameter T and the process is non stationary. For this reason condition (4.2) has
to be replaced by the more precise requirement that the chain be strongly ergodic
as stated in the following definition:
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Definition 4.1.1 (Strong Ergodicity) An inhomogeneous Markov chain is strongly
ergodic if there exists a constant probability vector em such that for all m

lim sup|| p(m,k) - em || = 0 ,
00 P(°)

where

p(m, k) = p(0)P(m, k) . (4.3)

D

To use this definition to check ergodicity is impractical. A more viable

strategy is to determine first whether the Markov chain satisfies a weaker form

of ergodicity and then combine weak ergodicity with further conditions to achieve

strong ergodicity.

Definition 4.1.2 (Weak Ergodicity) An inhomogeneous Markov chain w weakly

ergodic if, for all m,

lim sup ||p(m,fc) - q(m,fc) || =0, (4.4)
*^°°P(0),q(0)

where p(0) and q(0) are two arbitrary initial state probability vectors with p(m, k)
and q(m,fc) defined as in (4-3). •

Notice how the definition of weak ergodicity is significantly less restrictive

than strong ergodicity. Weak ergodicity implies only "loss of memory" of the ini

tial condition. Strong ergodicity instead implies in addition to "loss of memory",

convergence to a constant vector.

Example 4.1.1 [Isaacson and Madsen] Consider a Markov chain with the transi

tion probability matrix P(m) given by

and by

P(2m) = (
2m 1-~ 2m

/-. 1 1 V

P(2m - 1) =( 2?\ZT 27VT I
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Consider an arbitrary initial probability vector p(0). p(m,k) is given by

is odd,

tt i-rj ii k is even.

The Markov chain is weakly ergodic but it is not strongly ergodic.

Consider now another Markov chain whose transition probability matrix

P(m) is given by

p(mife)={(1-£ *> *"

/l 1 1 ._1_\

W~mTT 2+mTT^
As in the previous case take anarbitrary initial probability vectorp(0) and compute
p(m, k). In this case we obtain

PW) =(Z-FTT 2+FTT) •
Then for all m

Emp(ro,*) =(J \) .
Hence the Markov chain is strongly ergodic 1. D

The definition of weak ergodicity is more tractable than the definition of

strong ergodicity but it remains practically unusable to check whether a Markov

chain is weakly ergodic.

Weak ergodicity is equivalent to loosing memory and from the results

on homogeneous Markov chain it follows that memory is lost once the rows of the

transition probability matrix P(m) become all equal, or, inother words, when P(rn)
becomes equal to JT(m) for all m. In the inhomogeneous case, we allow only one
transition for each value ofm and hence P(m) never approaches the corresponding
iT(m). On the other hand, what is really of interest to us is that the sequence of
matrices P(m, k) approaches, in the sense of (4.4), a constant matrix JT, whose

rows areall equal. To measure how far is P from II*, we could use the norm of the

difference between the two matrices. However this is impractical since it requires

1Note that in both the Markov chains memory is actually lost in only one step. This is due
to the structure of the probability transition matrix which has all the rows which are equal (See
Theorem 3.2.4).
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that we already know the expression for the entries of U'„ and this is out of the

question in most of the cases. Alternatively we can assume that P(m, k) converges

to an unknown constant matrix and use the following measure of the distance

Definition 4.1.3 (Ergodic Coefficient) Given aninhomogeneous probability tran
sition matrix P, its ergodic coefficient is defined by

t(P) = -max^lPtt-P,*! =
L *J fc=l

mi

= 1 - nm£imn(P»,Pifc). (4.5)
,J *=i

D

r(P) is a positive function defined on the set of stochastic matrices and is called

the ergodic coefficient for the stochastic matrix P. Several slightly different versions

of the ergodic coefficient are available in the literature of inhomogeneous Markov

chains [61,73]. The definition given by (4.5) is the one given by Seneta in [63] 2.

From Definition 4.1.3 we have the following theorems that relate ergodicity

coefficients and norms for stochastic matrices [61,63].

Theorem 4.1.1 IfPis any stochastic matrix and Q is any matrix such that for

all i

J

then

IIQPII < ||Q||r(P).

Theorem 4.1.2 Let P and Q be two stochastic matrices, then

r(QP) < r(Q)r(P).

D

2Dobrushin [74] has been the first to define and apply ergodic coefficients. Inhispaper, Dobrushin
called 1 —r(P) the ergodic coefficient.
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The ergodic coefficient can be used to test weak ergodicity for a stochastic

matrix as stated in the following theorem [61,63] :

Theorem 4.1.3 A time inhomogeneous Markov chain is weakly ergodic if and only

if there exists a sequence of integers {ki} such that

E[l-r(P(k,,**,))]- oo. (4.6)

D

The last step is now to introduce a tool to check strong ergodicity. The

strategy is to assume that the Markov chain is weakly ergodic and to add conditions

on the limit vector to prevent oscillatory behavior like the one of the first Markov

chain in Example 4.1.1. This is accomplished through the following theorem [61,75]

Theorem 4.1.4 Iffor all m there exists a probability vector 7r(m) such that

7r(m)P(rn) = ir(m) ,

and

£||ir(m) - w(m+ l)|| < oo ,
m=0

and the Markov chain is weakly ergodic, then it is also strongly ergodic. Moreover

if

lim ir(m) = e* ,
m—»oo '

then for all m

lim sup || p(m, k) — e* || = 0 .
k->oo p(0)

Note that all the conditions given in this section are sufficient conditions for strong

ergodicity and hence for convergence according to (4.2).
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4.2 Asymptotic Properties of Simulated Anneal

ing

In this section we will use the results of the previous section to prove

convergence for SA once a monotonic sequence { Tk } is used.

The idea is to determine the condition under which the Markov chain

describing the behavior of SA is weakly ergodic. Then we will apply Theorem 4.1.4

to prove strong ergodicity.

4.2.1 Bounds

Before we start proving the convergence results we need to establish few

bounds related to the connectivity of the Q, to the shapeof the cost function c, and

to the generate function G.

The first two bounds are related to the topology of Q. Define

r= min maxc?(i,j) (4.7)
i€(nnnAf)« i€0 v w/ v '

to be the radius of the graph, where d(i,j) is the distance of j from i measured as

the length (numberof edges) of the minimumlength path from i to j in Q, and ClM,
the set of local maxima, is defined by

&M = { i'•' Ci > Cj for all j £ Cli } .

Let i be the index of the vertex where the minimumin (4.7) is attained. The vertex

i is called the center oiQ. The radius r represents an upper bound on the number

of transitions that have to be performed on the Markov chain so that there exists

at least one column of. P, namelycolumn t, with all its entries strictly greater than

zero. Note that the radius is well defined since it is assumed that Q is connected.

Furthermore, because of the symmetry of GtJ-, G is also strongly connected. The

second bound is a lower bound on the degree of Q and it is defined as follows:

n0 = min |("2,-1 .
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The third bound is related to the cost function c and is an upper bound on the local

slope of the cost function. Its expression is given by

L = max max |c,- — c.l. (4.8)

L plays the role of a Lipschitz-like constant.

Finally the fourth bound is a lower bound on the generation function

w = mmmin-r^. - (4.9)
•en j&ii Gi v '

4.2o2 Estimation of the Coefficient of Ergodicity

Consider a pair of states (t, j) that are neighbors in G, i.e. j € (2,-. From

(2.3), (4.8), and (4.9), for all m

Pij(m)>w exp(-— J.
The entries on the diagonal of P(m), with the only exception of the entries

relative to states that are local maxima, i.e. the states of set Qm, are monotonically

increasing functions of m. To see this, recall the definition of Pu(m) and rewrite

equation (2.8) as follows

P.,(m) . 1- £ Gh - £ Gti e*p( -2Zfi ) . (4.10)

The contribution of the first summation, i.e. the contribution of "down-hill" tran

sitions, is independent of m. The contribution of the second summation, i.e. the

contribution of "up-hill" transitions, is monotonically decreasing with m. Equation
(4.10) can be rewritten as

ft(m) = £ GU{ 1- exp( -2££ ) } >
j:cj>ci *• > J-m ' '

> n0«;{l-exp(-— )}. (4.11)
From (4.11) follows that there exist an index m0 and a corresponding temperature
T•'•mo

no+T
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such that for all m > m0 and for all i € (CI 0 Clm)c

Pti(m)>«;exp(~). (4.12)
Equations (4.7) and (4.12) can be used to find a bound for Pa(m —r,m).

In fact for every m > m0 and for every t € CI

"" / L \Pa(m-r,m) > JJ wexpf -=- J >

>u,-exp(-5^-). (4.13)
To ease the notation, from now on we shall abbreviate r(P(m, k)) to r(m, k). If

(4.13) is plugged into the expression for the ergodic coefficient given by (4.5) we
have

r(kr —r,kr) = 1 —min{ min(Pti,P#) } <

<1- w' exp( -fi- ), (4.14)
for all k > ko = mo/r.

4.2.3 Weak Ergodicity

We are now ready to apply Theorem 4.1.3 to state a sufficient condition

which guarantees that the Markov chain associated with SA is weakly ergodic. In

fact with the estimation (4.14), condition (4.6) becomes

2 wr exp( --£— )=oo. (4.15)

Note that up to this point the sequence of parameters { Tm } had only to

comply with the conditions of Assumption 3.2.1. In particular the dependency of Tro

on m has not been specified. Equation (4.15) introduces a condition on the update

function that combined with the assumption that at least one move is attempted

at each value of Tm allow us to prove the following:
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Theorem 4.2.1 (Sufficient Condition) The inhomogeneous Markov chain asso

ciated with SA with the following update Junction

T<» = i / 2 TTT » (4-16)log(m + m0 -I-1) v '

where m = 1,2,... and m0 is any parameter such that 0 < m0 < oo, is weakly
ergodic if

7>rL.

Proof. Substituting (4.16) in (4.6) we have, for all Jfe > Ar0

r(kr -l,kr)<l ^—^ (4.17)
(k + k0)T

where a is given by
wr

a= ^lh • (4-18)
It is obvious that, for any /

oo

y](l —r(kr —r,kr)) = oo ,
k=i

if rIr/7 < 1. The application of Theorem 4.1.3 completes the prool D

It is worth noticing that the result wejust proved, retains its validityeven

if more than one transition is performed at each value of T. The only difference

will be in the values of the constants in (4.16) and not in the logarithmic law.

Moreover note that the logarithmic law has a major drawback for prac
tical applications of the schedule (4.16). In fact the logarithmic law requires that
an infinite sequence of temperatures has to be generated. Furthermore, since the

logarithmic rule is deduced from the sufficient condition for weak ergodicity (4.15),
it is immediate to see that the tail of the sequence of temperatures is essential to

guarantee weak ergodicity. Hence there is no reason to believe that, if only a finite

number oftemperatures are allowed, the sequence should be extracted from (4.16).
In Chapter 7 it will be shown that, at least in one case, the optimal finite sequence
of temperatures is not patterned after (4.16).
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4.2.4 Properties of the Stationary Probability Distribution

In this sectionwe present two usefulproperties of the stationary probability

distributions rc(T) that are necessary to the proofof strong ergodicity in the next

section and to the analysis of finite time behavior in a later chapter. In particular

we are interested in the behavior of ^r(T) as a function of the parameter T.

In Chapter 3 wehave already shown that as T approaches zero, ir(T) has
a limit which is given by the optimumvector e*. In this section we will investigate
the monotonicity of the convergence.

In view of Assumption 4.0.1, the expression for ic becomes

*&) =TJjfJ- (4-19)
with Z(T) an appropriate scale factor.

Let us define the average value and the variance of the cost with respect

to the distribution ir(T) as follows:

C(T) - J>i'iCT). (4.20)
jea

°UT) = £(c,. - C{T)f *,(r).

From the definition of ir(T) it is immediate to compute its derivative with respect

d*i(T) _ m(T)
dT - -j2~t c» ~ C\T) } • (4.21)

Similarly, from (4.20), the expression for the derivative of C(T) with respect to T
is given by

dT t**c{t) • (4.22)
Define the set Clc as follows

Clc = { i : c,->supC(T) } .
T

With the above definitions we can now prove the following proposition:

Proposition 4.2.1 Consider tt,- as a function ofT. Three cases are possible:
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* ) If i G Clm then for allm>0

*i(Tm+i) - *i(Tm) > 0 ;

ii ) Ifi€ Clc then for allm>0

*i(Tm+1)-iri(Tm)<0 ;

Hi ) Ifie (Clm UClc)c', then there exists an unique integer m,-, 0 < m,- < oo
such that for all m > m,-

^(Tm+i)-7rl(Tro)<0 ,

and for all 0 < m < m,- —1

^(Tm+i) - 7r,(TTO) > 0 .

Proof. From the expression for dirt(T)/dT, the sign of the derivative evaluated

at T is determined by the sign of ct- - C(T). From (4.22), C(T) is monotonically
decreasing with f. Hence C(T) attains its extrema at the extrema of the set on
which it is defined, namely

sup C(T) = lim C(T) = C(oo),
3* T too

and

mfC(T) = UmC(r) = c .

Point i)ofthe proposition is proven once we recognize that i GClm implies c,- < C(T)
for every T. Similarly point ii) follows from c, > C(T) for every T. Finally the
monotonicity of C(T) guarantees that there exist a unique value of T such that

Ci = C(T). Combining this with the monotonicity of the sequence {Tm }, there
exists a unique value mt- which satisfies point Hi). •

It is immediate to see that a corollary to Proposition (4.2.1) guarantees
the existence ofa unique m < oo such that for all i 6 (CI n Clm)c, for every m>m

*i(Tm+1) - 7r,(Tm) < 0 . (4.23)
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m is defined obviously by

m = max m,- (4.24)
i€(nnn.)e v '

m marks the onset of the monotonic decrease of fl",(T) for all but the least

cost configurations and is fundamental to establish finite time rate of convergence

of 7T to e«. To determine its value we have to study, for all i € (Clm UClc)c, the
behavior of the value of T, which solves the equation c,- —C(T) = 0, as a function
of Ci.

Proposition 4.2.2 For all i € (Clm U Clc)c, let Tt be the value of T which solves

Ci —C(T) = 0. Ti is monotonic, strictly increasing with increasing c,-.

Proof. Consider two states i,j £ (CI* UClc)c and such that Cj < c{. Rewrite (4.21)
as follows:

d*j(T) _ *j(T) f _ _ 1 , *j(T) d*j(T)
dT ~ T* XCi °j *+ nj(T)~dT~~

and evaluate it for T = Tj. From the definition of Tj and from (4.21), the second
term of the right hand side is zero. Hence

dT

and again from (4.21) and (4.22), Tt < Tj. D

From the monotonicity of 2J, the solution to (4.24) is obtained by solving

c? - C(T) = 0 (4.25)

where

cj = min Ci.
i€(ft,nft)«

Equation (4.25) can be rewritten as follows

«E^-E G.(c, - c,) exp( -C-i^± ) =0 (4.26)
«€ft. i'.ci>ci \ 1 /

where

&= c-t - <%. , (4.27)

>0
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and Cm is the cost of any of the states in ft*. In conclusion m is the smallest integer

such that Tm < Ti where T-t is the solution to (4.26).

Summarizing the quasi-stationaryprobability distribution 7r,(T) converges

with decreasing temperature (i.e. increasing time) to the optimum vector. The

quasi-stationary probabilities of the least-cost configurations monotonically increase

with decreasingtemperature. Forconfigurations with costs not less than the weighted

mean cost, the opposite is true. Each configuration i with cost between least-cost

Cm and C(oo) has an associated "critical temperature" 2} ; while the temperature is

greater than Ti, the quasi-stationary probability of the configuration increases with

decreasing temperature, and for temperatures less than Ti the opposite is true. Fur

thermore, the critical temperature is an increasing function of cost. All of the above

properties hold for any sequence { Tm } which satisfies Assumption 3.2.1.

4.2.5 Strong Ergodicity

To prove strong ergodicity it suffices to show that that SA satisfies the

conditions of Theorem 4.1.4. This is done in the following proposition

Proposition 4.2.3 For any sequence {Tk} which satisfies Assumption 3.2.1 the
corresponding quasi-stationary probabilities are such that

oo

£ ||*r(m +1) - 7r(m)|| < 2(m -1) < oo ,
m=0

where m is given in (4-24).

Proof. From statement i) of Proposition 4.2.1, and (4.23), for m > m

\\ir(m + l)-ir(m)\\ = £ {m(m + 1) - *f.(m) }- £ { *,-(m + 1) - 7rt(m) }
*€fl. i€(ft,nn)«

= E {{ <m +!) - *«(»*) } - { 1- *i(™ + 1) - 1+*i(m) }}
i€ft.

= 2£{7rt(m + l)-7r,(m)} . (4.28)
i€ft.

By (4.28), follows

2 ||7r(m + l)-7r(m)||<2 .
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which combined with the observation that for all 0 < m < m

||ir(m +1) - <7r(m)|| < 1

completes the proof. D

Using Theorem 4.2.1 and Theorem 4.1.4 we can now prove the central

result of this chapter:

Theorem 4.2.2 (Strong Ergodicity) The inhomogeneous Markov chain associ

ated with SA is strongly ergodic if it is weakly ergodic and the annealing schedule
satisfies (4*16). In this case for all m

limsup||p(m,&) - e* || = 0 . (4.29)
p(o)

In particular, the annealing schedule in (4>16) with 7 > rL gives a strongly ergodic
Markov Chain for which (4-29) holds.

4.3 Related Work

Several different proofs of strongergodicity for the Markovchaindescribing

SA have become available. The approaches followed by the various authors are

rather different and the objectiveof the present section is to compile a short survey
of them.

4.3.1 Sufficient Conditions

S. Geman and D. Geman were the first to find sufficient conditions for

strong ergodicity of SA through an elaborateanalysis based on the theory of Markov

fields instead of Markov chains [39]. The strategy followed to prove strong ergodicity

is similar to the one presented in the previous section. The bound on the ergodic

coefficient found in [39] leads to a slightly different expression for the update function
given by

m "" log(m + m0) ' V • ;
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where

Acmag = maxc, — mine,- .
w,€ft uy€fl J

Anily and Federgruen [55,76] find a sufficient condition for strong ergodic

ity in a more general setting in which the acceptance function fa is not constrained

to be as in (2.3) but belongs to a more general class which includes acceptance

functions of the type introduced by Hastings [77] and Bohachevsky et al. [78] 3.
The update function found by Anily and Federgruen is given by

~~ log(m +m0) ^ ' '
where L is given by (4.8) and n is the distance, measured in numberof edges, from

any state to one of the states in Clm. The form of (4.32) is the same as the one found

by the other authors but the constant that appears at the numerator of the fraction

is larger or equal to the one found in the previous section but smaller or equal to
the one by Geman and Geman.

Gelfand and Mitter [58] have generalized the set up of the problema little

further. In fact instead of finding the condition for convergence to the optimal set

Clm they derived the sufficient conditions for convergence to any arbitrary subset

CIa C CI. The update function derived by Gelfand and Mitter is given by

" log(m-j-mo) * \ - )
To define hA we need the following digression: Let i = i0, t'i,..., ip = j bea path of
length p which connects state i to state j. Let A,-_>j- be the set of all paths of finite
length which connects state i to state j and define the height htj of the connection
between i and j as

p

hij =min £ max(0, clfc+1 - ctfc) . (4.34)
Ksl

3It is interesting to note how this extended class contains acceptance functions of the form

/T(oi,ci)={«p(-i£S^) "*>« (4.31)
I 1 otherwise

where g is an arbitrary negative number. Notice that, unlike acceptance function such as (2.3),
(4.31) dependes on both c,- and Cj and not only on their difference. In Section 6.1.2 the behavior of
acceptance function (4.31) is compared with the behavior of (2.3).
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We are now ready to define hA as follows

Ha = min hi
ienA »j

i€(0A)«

In words, hA is the height of the lowest hill that the algorithm has to climb to go

from any of the states in ClA to any of the states in ClA.

Note that regardless the similarity of the update function (4.33) with the

analogous functions reported in (4.16), (4.30), and (4.32) the constant at the nu

merator of (4.33) has a different and perhaps more intuitive origin. The strategy

followed by Gelfand and Mitter in their proofrequires to find a bound on the prob

ability that a particularset is exited by the algorithm and then determine the form

for the update schedule that makes the escape probability zero as T goes to zero.

This is the reason why a constant of the form hA replaces constant of the type rL.

Finally, for the sake of completeness, we mention a third different ap

proach followed to prove sufficient conditions for strong ergodicity due to Holley

and Stroock [79]. A schedule of the type of (4.33) is presented in a more general

context in which the state space does not have to be finite and the Markov Process

is a continuous function of T.

4.3.2 Necessary and Sufficient Conditions

There are, to the best of my knowledge, three authors that proved neces

sary and sufficient conditions for strong ergodicity of SA. Here we will present, in

some details, the conditions as derived by Hajek [54] and we will mention briefly

the procedures due to the other authors. To get started, we need a few definitions.

Definition 4.3.1 Given (CI, c) with a generation function G

i ) A cup is defined as the set C of states such that for some number h the
following is true:

C = { j : jean be reached at height h^ < h from i }

for all i £ C
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ii ) The depth of the cup C is defined by

d(C) = c\C) - c(C)

where c\C) is defined by

c\C) = min{ Cj : j € (Cl4 UCc), i e C }

and c(C) by

c(C) = min{ Cj : j £ C } .

Definition 4.3.2 A Markov chain is weakly reversible if for any pair of states i

and j and for any real number h, i is reachable at height h from j if and only if j
is reachable at height h from i. D

The necessary and sufficient condition for strong ergodicity proven by Ha-

jek is stated in the following:

Theorem 4.3.1 Assume that the Markov chain is irreducible, weakly reversible,
and that at least one iteration is performed at each temperature then:

*) IfJ€(Cln Clm)c, i.e. j is not a local minima for c (See equation (2.2))

lim Pr{ Xm = j } = 0 .

« ) V j € Clm, i.e. j is a local minima for c

lim Pr{ Xm = j } = 0

if and only if

Eexp(--2-J = oo
msl v im/

where dj is the depth of the cup that contains j.

Hi ) i) and ii) imply

lim Pr{ Xm e Clm } = 1

if and only if

EexP( "TFT- ) = co (4.35)
m=l v im /

where dm is the maximum of the depths of all the states that are local but not

global minima.
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D

The divergence of the series (4.35) implies the following form for the an

nealing schedule:

T« =i / \ T• (4-36)log(m + m0)

Once again, not surprisingly, the law of the schedule (4.36) is logarithmic. What

makes condition (4.36) necessary and sufficient, as opposed to only sufficient, is the

choice of the constant which appears at the numerator. The result by Hajek has

been generalized a little further by Tsitsiklis [80] by eliminating the assumption on

weak reversibility.

Gidas' [57] necessary and sufficient condition for strong ergodicity holds

in a more general context in which the Markov chain is allowed to have more than

one ergodic component. In particular, Gidas' main theorem says that a schedule

which is necessary and sufficient has the following form

1 1
co +° <T < ^o /4 37\

log(m + m0) m log(m + m0) . \ - J

for some 8 > 0. If there are at most two ergodic components, C0 is defined as
follows:

where CI-,, 7 = 1,2 are the ergodic components of the Markov chain and h^ is defined
in (4.34).

If the number of ergodic components exceeds two, the schedule will have

again the logarithmic form (4.37) but the value of the constant at the numerator

will be unknown.

Gidas' extended his condition even further to include chains of the type

Im =±f:F(Xk), (4.38)
m *=o

where F is any function defined on Xk. Extension (4.38) is important since it

guarantees that, if the logarithmic rule to update T is used, Im is a consistent

estimator for E^[F], i.e. Im converges in probabiHty to E^[F] for any choice of
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the initial probability distribution p(0) [81]. The properties of estimator Im will be

used in Section 6.1.1 to determine the best form for the acceptance function.

The third result is due to Connors and Kumar [82]. They follow a different

approach based on the definition of the order of recurrence of a state w,-

ft =supf;e-c/:r*7rl(rib) =oo
e>°k=o

and the order of recurrence of a transition ft,

fa =sup f) e'c^Pij(Tk)7n(Tk) =oo .
c>0k=0

The order of recurrence of a state, ft, serves the scope of a potential defined on

CI and has a number of interesting properties. In particular ft is monotonically

decreasing with the cost of the state, ft,-, the order of recurrence of a transition,

satisfies the detailed balance equation on any edge of G and from this property

necessary and sufficient conditions for strong ergodicity are derived. The actual

result proven by Connors and Kumar is identical to the result proven by Hajek

but the use of the orders of recurrence provides a proofwhich is more elegant and
intuitive.

4.4 Concluding Remarks

In this chapter wehave presented a sufficient condition for strong ergodic

ity of SA. The condition has been obtained with the assumption that the generating
function is symmetric (See Assumption 4.0.1) and the acceptance function is as in

(2.3). The procedure followed requires to find first conditions for weak ergodicity
(i.e. loss of memory of the initial conditions) and then obtain strong ergodicity by
adding to them conditions on the convergence of the quasi-asymptotic probability
distribution.

The condition for weak ergodicity induced a constraint on the law imple
mented by the update function, namely

k

m log(m + m0) ' V • ;
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with k being a constant dependent on the problem. The conditions for the conver

gence of the quasi-asymptotic probability distribution to the optimal vector simply

require that the sequence { Tm } is as in Assumption 3.2.1. Notice how the more

restrictive condition on sequence {Tm} is required by weak ergodicity while the

effort to upgrade weak ergodicity to strong ergodicity is relatively minor.

This is not at all surprising. In fact if we recall the results of Chapter 3, it

is immediate to see that we were already able to show the converge of 7r to e„, i.e.

strong ergodicity, under the strong assumption that the Markov chain was allowed

to reach stationarity at each value of T. To require that stationarity is reached at

each value of T is equivalent to require that memory is lost at each value of T. The

weak ergodicity result from the inhomogeneous theory goes a lot further. It ensures

that, even if only one transition is performed at each value of T, memory is lost if

the sequence { Tm } is as in (4.39).

Finally we presented a short review of the most significant efforts that

have been made to prove strong ergodicity of SA. The results obviously have the

same logarithmic law (4.39) and differ only in the selection of the constant which

appears at the numerator of (4.39). In particular the constant found by Gidas

provides necessary and sufficient conditions for SA to be strongly ergodic with the

less restrictive conditions on the Markov chain.



Chapter 5

Finite Time Behavior

In this chapter we will use the results derived in Chapter 4 to study the

finite time behavior of the Markov chain describing SA. In particular it will be

assumed that G and / are as in Assumption 4.0.1, while the update function will

be the one defined by (4.16).

The main result of this chapter gives us an estimate of the departure of

the state of the Markov chain from the optimum vector e* at finite time m. The

form of the results stated in Theorem 5.2.1 below gives comprehensive indications

of the factors affecting the rate of convergence and their implications in the design
of optimum annealing schedules.

5.1 Components of Finite-Time Behavior

To determine the finite behavior of the Markov chain, we have to study

the behavior of ||p(m) —e*|| as a function of the iteration counter m. To proceed

it is useful to decompose p(ra) —em as follows:

p(m) - e. = { p(m) - tt(0)P(0, m) } +

+ { *r(0)P(0,m) - n(m) } + (5.1)

+ { n(m) - e„ } .

77
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Taking the norm of (5.1) we obtain

l|p(m)-«.|| < ||p(m)-7r(0)P(0,m)|| +

+ ||ir(0)P(0,ro)-ir(ro)|| + (5.2)

+ ||ir(ro)-e.|| .

Decomposition (5.2) can be interpreted as follows: The first two terms measure

the rate at which the memory of the initial condition is lost. In particular, the

first term monitors the distance of p(0) from ?r(0) as the number of transitions

increases. The second term of decomposition (5.2) measures the influence, on the

behavior of tt(A;), of the rate of convergence of P(0,m) to the constant matrix.

To understand better the role of the second term consider the following situation:

Assume that each one of matrices P(fc,k + 1), k = 0,1,..., m —1 is constant in

the sense that all the rows of P(A?, k+1) are identical. (See e.g. transition matrices

of Example 4.1.1). Then convergence of ir(k) to ir(k + 1) will occur in only one

transition, i.e. n(k)P(k,k + r) = *r(fc + r), k = 0,1,...,m - l,r = 1,2,...,m. In

this case the second term of (5.2) would be identically zero. Finally the third term

monitors the rate at which the asymptotic probability distribution w(m) converges
to the optimal vector e«.

In the next sections, each one of the three terms in the right hand side is
bounded independently.

5ol.l Bound for the First Term

To determine a bound for the first term in the right hand side of (5.2),
we need to recall two results of the theory of stochastic matrices presented in Sec
tion 4.1. In view of Theorem 4.1.1, for the first term of the right hand side of
(5.2),

||p(*r)-ir(0)P(0,*r)|| = ||( p(0)-w(0) )P(0,*r)|| <

< ||p(0)-7r(0)||r(0,A:r) . (5.3)

To complete the bound of the first term of(5.2) it is necessary to bound r(0, kr).
The following proposition gives the required bound:
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Proposition 5.1.1 J/7 > rL and the annealing schedule (4.16) is applied so that
t satisfies (4-17) then

i) Forl<k0<k

ii) Fork0<l<k

where a is defined by (4.18), r by (4.7), and k0 is such that (4.11) holds. m0 is the
parameter that controls the initial value of T.

Proof. Let us define

" 7
By means of Theorem 4.1.2, from (4.17) we have for k0 < / < k

k

r(lr —r, kr) < JJ r(mr —r,mr) <
m=l

k

T

" iiv (™ +m0/r)») -

(m + m0/r)u

^ // +m0/r\°

A similar bound can be derived for I < k0 < k. D

Bounds (5.4) and (5.5) are fundamental to the analysis of the finite-time behavior

of SA. Substituting (5.4) and (5.5) in (5.3) yields for all k > k0

||p(*r) - 7r(0)P(0,Ar)|| <||p(0) - ?r(0)||(*o +m°/r)° . (5.6)
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5.1.2 Bound for the Second Term

Let us define for all m = 1,2,... the row vector |i(m)

/*(m) = 7r(0)P(0,m) - 7r(m) .

The sequence of vectors { n(i) } satisfy the recursion
r

li(m + r) = fi(m)P(m,m + r) + £ { n(m + a- 1) - *r(m + *) }P(m + s, m + r).
5=1

Noticing that /i(0) = o, the recursion is solved to give

M*') = £€('r)P(/r», (5.7)

where

<fr) = £{ *(7r - a) - 7r(/r - a+ 1) }P(/r - s + 1, /r) . (5.8)
0=1

Applying Theorem 4.1.1 twice to obtain bounds for both ||e(7r)P(7r, kr)\\ and ||6(/r)||,
from (5.7) and (5.8) respectively we obtain, for k > 1,

IIMfaOII <E^r>£ |k(/r +1- a) ^ w(/r - «)||. (5.9)
/=1 5=1

Now making use of (5.4) and (5.5), (5.9) yields

for k>l0 = max{ m/r, k0 —2 }. 7r„ is given by

7r»(m) = £ *<(m) • (5.11)

Now writing 7r»(m) for { 1 - 7r*(m) }, we have
A:

£ (/ +1+m0/r)a{ 7r,(/r) - 7r„(7r - r) }<
A:

I
/=/0+i

k

^ £ ( (* +1+™o/r)a - (7 +m0/r)a }Z.(lr - r) +(70 +1+m0/r)a7r,(70r) <

- a^ //lir 7y3-a +tfo +1+m0/r)a7r»(70r) , (5.12)
/=/0+i V + m0/r) '
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where, in the last step we have used the relation a < 1.

The substitution of (5.12) in (5.10) gives for A: < 70

where

T /=1 «=1

+ 2(70 + l+mo/r)air,(7or) .

To proceed farther it is necessary to estimate irs(m) and this is undertaken

in the following proposition.

Proposition 5.1.2 With the above definitions ofirm(m) and ofitm(m) we have, for
m = 0,l,...,

7r„(m) = l-7r»(m) =-||7r(m)-e*|| <

i€(nnn«)e (m + m° +1) *

where bj is given by

*i = {<*-* 1/7 (5.15)

with cm the minimum of the cost function and Gm

G* = £ Gj •
i€ft.

(5.14)
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Proof. By the definition of ir(m) given in (4.19) and that of 7r*(m) given in (5.11)

we have

Gte Tm1 - nv(m) = 1- J2

Gj/G.

= i€(nnn.)« (m +m0 +1)''
1+ ^ _ G*/G* ~

< y* Gj/Gm
i€(finn.)« (m+ mo + 1) J

D

Observe that the bound given in (5.14) is asymptotically (i.e. as m —• oo ) tight .
We can now say that, for 7= 1,2,...,

where, for all j £ ft*

*'(/r_r)- E (I iZLlr* ' (5-16)i€(nnn.)« (« - 1 + mo/r)

GJGm
n=^jsr - (5-17)

Bysubstituting (5.16) in (5.13) andthen bounding the resulting expression
we obtain

where

£ = (70-l + m0/r).

The bound in (5.18) has been obtained with the assumption that a ^ bj9j Gft*.
If this is not true, then for the terms corresponding to states j for which a= bj, a
related expression is obtained by a slightly different bounding procedure.

5.1.3 Bound for the Third Term

The bound for the third terms comes directly from Proposition 5.1.2.
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5,2 Final Results

Combining the results given in Sections 5.1.1, 5.1.2, and 5.1.3 we obtain
the following conclusive theorem.

Theorem 5.2.1 For every k > 70, the following relation holds

•**>-••• * (FT^f +
+ y* 2arH [ 1 fia-bj

Marti.)* a~ 6i L(* +™o/r)6i (A: +m0/r)'
+

i€(nnn,)e V* + mo/r)

D = £>„ + ||p(0) - ir(0)||(*o + m0/r)a .

a, bj, and r\$ are given by (4-18), (5.15), and (5.17) respectively.

Equation (5.19) can be farther simplified if we consider that the dominant

term of

(* + mo/r)6' '
for j € (ft D ft*)c is given by

(k + m0/r)b '
where

o = min o ,• = — ,
i€(ftnn.)« ' 7

and 6 which has been defined in (4.27).

A simple corollary to Theorem 5.2.1 is :

Corollary 5.2.1 SA with the annealing schedule given by (4-16) has the following

rate of convergence

||p(Jbr) - e.|| = 0(1/Jfemin(a'6)) . (5.20)
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5.3 Concluding Remarks

We can see from (5.20) that the bound on the asymptotic rate of conver

gence is limited by min(a, 6). Both a and b depend on 8 and L derived from the

cost function, w and r from the connectivity properties of the graph underlying the

Markov chain and on 7 from the annealing schedule. Note that with all parameters

and time held fixed, higher 7 corresponds to higher temperature and thus, in this

sense to a slower schedule. Now 7 has to satisfy the condition that gives weak

ergodicity, i.e. 7 > jwe wherein by our analysis jwe = rL, but otherwise it is a

free parameter. It is therefore of some interest to investigate the value of 7 which

maximizes min(a, 6).

Recall the definition of a in (4.18) and that 6= 8/7. Hence a(y) and 6(7)

are respectively increasing and decreasing with increasing 7, and it is easy to see

that there exists an unique 7 such that 0(7) = 6(7). Furthermore, the problem *

max { min(a, b) }

has the solution

7 = max(7w^,7).

The above procedure for optimizing the algorithm is often feasible since

for manycombinatorial optimization problems estimates of r, L andSare available.

Example 5.3.1 Consider the placement problem discussed in Chapter 2 and con
sider the case in which n macro-cells have to be placed on a one-dimensional grid
withn positions. If we assume that each one of the solutions in the neighbor of ev
erystate has uniform probability ofbeing generated, we have the following estimate
for r and w

r = n — 1

and

2
w = ——— .

n(n —1)
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Substituting the estimates of w and r in the expression for a and 6 we have

r 2 r1
W Ln(n-l)J

a rrLh ~ ~~, -xil2=ii »
(n —1) t

7

Clearly a is the smallest of the two. L and 7 are constants of the problem and if

we assume that they can be neglected we have that

which in turn gives a very slow rate of convergence. D

The above discussion has been on the effect of 7 ( from the annealing

schedule ) on the bound of the rate of convergence at finite, but large time. For

behavior aftera smaller numberofiterations, the moredetailed relation (5.19) hasto

be considered. Observe that in the right hand side of this equation the only factors

which depend on time kr are l/(k +m0/r)a and l/(fc + m0/r)bJ for Uj € (ft n ft*)c.
We may glean qualitative information on the dependence of the rate of convergence

of 7 by investigating the dependence of a and bj on 7. First recall that smaller 7

gives larger bj for each Uj and, as already noted, smaller a. Hence reducing 7 has

the effect of reducing the third term and increasing the first term in the right hand

side of (5.19). The dependence of the middle term is more involved since it has

features of both terms reflected in it. Roughly, it is small only when both the first

and the third terms are small, i.e. in the mid-range of 7.

With the benefit of analysis we can even go back to (5.2) and deduce qual

itatively the effect of 7 on each of the three terms there. The first term measures

how effectively the difference between p(0) and tt(0) is forgotten at step m of the al

gorithm. The bound in (5.6) corroborates our intuitive understanding that this rate

is aided by having higher 7, i.e. higher temperature and slower cooling. The third

term, for which we have the most explicit information (See Proposition 5.1.2) de

pends on the rate at which the quasi-stationary probability distribution approaches
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its asymptotic value, the optimum distribution. This term benefits from small 7.

The middle term benefits from a matching of the two rates. The point in the anal

ysis where this is most manifest is in (5.13). The two rates are matched and the

term minimized in the mid-range of 7. In all, the above discussion illuminates the

balancing of opposite mechanism that an optimal annealing schedule must reflect.

The analysis can be brought to bear on an important question * : To

what extent does SA exploit the connectivity of the configuration in a particular

case? The comparison is therefore between a given partially connected graph and

a construct in which the connectivity is artificially increased. A first observation

is that the artificial increase of connectivity leads to a deteriorating component

in the performance, insofar as the departure of the quasi-stationary probability

distribution at a particular T from the optimum distribution (See third term in

(5.3)) is greater. This is easily seen by tracing the effect of increased connectivity

on Gj/Gmi in Proposition 5.1.2. On the other hand, the effect on the coefficient

of ergodicity and, in particular, on the parameter a in the bound for it given in

Proposition 5.1.1, depends on the characteristics of the case being considered. To

see this observe that the parameter a depends on w, r, and L and typically the first

two decrease while the last increases with the increase of the connectivity in the
construct.

Results similar to those presented in this section have been obtained also

by Anily and Federgruen [76] and by Connors and Kumar [82].

Finally a general comment is in order. The convergence results obtained
with the homogeneous theory were rather accurate but impossible to use in prac
tice, since they required to know the eigenvalues of the transition matrix or the

conductance of the graph Q underlying the Markov chain.

In this section, for specific acceptance, generate, and update functions we

were able to determine a bound on the departure of the finite time distribution from

the asymptotic one that requires to know only bounds on the connectivity of the
graph and on the local slope of the cost function. Not surprisingly however, the

1We are indebted to H.S. Witsenhausen for posing it
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bound turns out to be quite loose and gives a rate of convergence that requires a
number of iterations which is comparable with the number of iterations necessary
to perform an exhaustive search of the state space.

So why bother to estimate the rate of convergence if it requires either

quantities impossible to estimate or gives bound that are too loose to be used?

Because the convergence results are useful not so much as a precise estimation on

the amount of time necessary to achieve ergodicity but rather as a tool to establish

the relative merits of the different choices of the variables of the annealing, namely

the acceptance functions, the generate functions etc.

In this section we have discussed how the constant 7 affects the rate of

convergence of each single terms of (5.2) and what are the effects of an artificial

increase in the connectivity of Q. In Chapter 6 we will see how convergence rate

results can be used to select, among a sub-class of the admissible functions, the

acceptance function that guarantees the fastest convergence to the stationary prob

ability distribution at fixed T.



Chapter 6

The Acceptance and Generate

Functions

SA, since its inception in 1983 [12], has been identified with a probabilis

tic algorithm which generates new solutions and accepts them according to the
Metropolis rule •

Cj — Cj

^ =min|l,e T j. (2.3)
However wehave seen in Chapter 3 that SA isactually aclass ofalgorithms for which
convergence to the global optimumis guaranteed, provided that the acceptance and
generate functions satisfy some mild conditions. The conditions are general enough
that, given the asymptotic probability distribution of the solutions tt, there is still
freedom in the selection ofboth theacceptance function and the generate function.

Even themore restrictive conditions imposed by theinhomogeneous theory
leave, in the most general interpretation proposed by Anily and Federgruen, some
freedom in the selection of the acceptance function [76]. It is then legitimate to ask
whether, among the different choices for theacceptance function, there is one which
provides SA with the best rate of convergence to the optimal solution.

In this chapter we show that, if the stationary probability distribution is
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*AT) =%T (4-19)
and the generate function is symmetric, (2.3) is the best choice for the acceptance

function in the sense that, fixed T, the underlying Markov chain has the fastest rate

of convergence to the stationary probability distribution tt.

From the theory we also know that the acceptance function is not the

unique responsible for the rate of convergence of the Markov chain. In fact, the

rate of convergence is determined by the eigenvalues of the transition matrix P and

the entries of P depend not only on the form of the acceptance function but also

on the generate function. In Section 6.2 we describe how clever implementations

of the generate function can significantly improve the rate of convergence of SA to

the optimal solution.

Section 6.3 is dedicated to the influence of an approximate evaluation of

the cost function on the asymptotic behavior of SA. The issue of an approximate

evaluation of the cost function arises in two different circumstances. First, there are

problems for which to evaluate exactly the cost for a given solution is expensive in

terms of computing time, while approximations to the cost can be computed easily

[25]. Second, the implementation of SA on a computer with a parallel architecture

and shared memory may lead to incorrect evaluations of the cost function. In fact,

let us assume that the implementation is such that the variables of the problem are

partitioned among the processors. Every processor generates a move by perturbing

one or more of the variables it controls and, to decide whether to accept or reject

the new solution, it has to evaluate the cost function. The processor knows exactly

the value of the variables it owns but, unless all the other processors are idle, it has

only an out-of-date information of the variables it does not own. Consequently, the

evaluation of the cost for the perturbed solution may be incorrect and the processor

may decide to accept a solution when it should have been rejected or vice versa. In

both circumstances, it is important to determine whether, even in the presence of

these errors, the asymptotic convergence properties of the algorithm are retained.

The origin of expression (4.19) for the stationary probability distribution
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is implicitly justified by Kirkpatrick et al. [12] on the basis of an analogy between

classical statistical mechanics and combinatorial optimization. However, there is no

reason to believe that this analogy should hold for any combinatorial optimization

problem with any choice of cost function. The aim of the last section is to provide

a justification for the selection of (4.19) which does not require to use the analogy

to statistical mechanics but is based only on fundamental results from Statistical

Information Theory.

6,1 Acceptance Function

The criteria that should inspire the choice of the acceptance function for

a practical implementation of SA are discussed first. We show that, if the Markov

chain is reversible, given the form of the stationary probability distribution and

a class of possible acceptance functions, there is an optimal strategy to select the

acceptance function which makes the convergence to the asymptotic probability

distribution the fastest. Then we briefly review other forms for the acceptance
function that have been proposed in literature.

6.1.1 The Optimal Acceptance Function

In this section we assume that T is fixed and hence we will avoid to mention

explicitly the dependence of the variables on T. Furthermore we will restrict our

attention to reversible Markov chain according to Definition 3.1.7.

Among the possible ways to build a reversible Markov chain from a given
stationary probability distribution w, let us consider the class of chains whose tran

sition probabilities P^ are of the form

piJ = Gijfij , (6.1)

where G{j represents the probability to generate state j from state i and /#, defined
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by

is the probability that state j is actually accepted. a>j is any symmetric function
with the only limitation that corresponding acceptance probability fy obtained
from (6.3) satisfies 0 < f4j < 1. The class of transition probabilities defined by
(6.1), (6.2), and (6.3) has been introduced by Hastings in his work on Monte Carlo
sampling methods [77].

It is immediate to see that the transition probabilities P^ defined by (6.1),
(6.2), and (6.3) satisfy the detailed balance equation (3.11). Furthermore, if

*••; =1 ?.<£ (M

then

Similarly if 3tJ- = 1, then

fij = min
TTiGij

(6.5)

/«=fflfi°;c • (6.6)
Notice that if n is given by (4.19) and G^ is symmetric, (6.5) becomes (2.3), while
(6.6) becomes

Cj - Ci

f- = —
ci

1 + e T

To establish which of the different choices of stJ- leads to a faster rate of

convergence we could, in principle, construct the corresponding transition proba

bility matrices, compute their eigenvalues and determine which of the choices gives

the smallest second largest eigenvalue. However we know by now that any strategy

involving the computation of the eigenvalues is hardly feasible since, in general, we

do not even know all the entries of the transition probability matrix P. On the

other hand we are not interested in the absolute value of the rate of convergence

but only in establishing the relative merits of different choices of stJ-. To this end
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we can proceed as follows: Let us consider the following random variable

1 N

where Xn is the random variable that represents the state occupied by the Markov

chain after n iterations. In is the estimator of

where E9\c\ is the expected value of c with respect to the asymptotic probability

distribution re. Since ijv is a randomvariable, wecanuseits variance 0"2(ijv) defined
by

e2{IN) = EJL(!s - EJdf] ,

as a measure of the distance of the estimator i]y from the true value, .£?«[<:]. Now it

is clear that, if the probability distribution after n iterations, pW, converges to w
in the sense defined in Chapter 3 then

lim o*(IN) = 0 . (6.7)

Notice however that the converse is not true in general.

Kemeny and Snell have shown [83] that the variance of the estimator IN
is independent of the initial probability distribution on the solution space, p, and
has the following asymptotic expression

v(c,tt,P) = Km Na2(IN) =
Jy *oo

= c{DZ + (DZ)T - D - DiT}cT =

= c{2DZ-D-DJT}cr, (6.8)

where c = [cu c2,..., C|nj] is a row vector and c,- is the cost of the i-th state. D is

a diagonal matrix whose non zero entries are Da = 7r$- (See (3.12)), II is a matrix
withall the rows equal to 7r (See (3.6)), and Z = (I - P +iT)-1 is the fundamental
matrix of the Markov chain [83]. From (6.8), if N is large enough, the variance
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of the estimator Jjy can be approximated with its asymptotic value v(c,7r, P) as
follows

9 Vn) w ^ •

Equation (6.8) is crucial since it links v explicitly to the matrix P and

gives us a tool to relate the entries of P, and hence the 5,/s, to the variance of

ijv, and hence to the rate of convergence. To see this we can proceed as follows:

Consider two stochastic matrices Pi and P2 and define Pi < P2 if each off-diagonal

element of P2 is greater than or equal to the corresponding element of PlB With

the above definition, we have the following sufficient condition on the variances of

the estimators defined for the Markov chains corresponding to Pi and P2

Theorem 6.1.1 (Peskun) Suppose that both the stochastic matrices Pi and P2

correspond to regular, reversible Markov chains with the same stationaryprobability

distribution ir. If Pi < P2 then

v(c,tt,P2) <v(c,tt,Pi)

Proof. For each one of the off-diagonal elements of P, we have

0v(c,7T,P) _ /_5Z\ T
BPij ~-"•\rdPbr

If we use the following matrix identity

op*
r^Z""1 „

+ Z-7T^- = 0
dPij

and we substitute it in (6.9) we obtain

~#v(c,?r,P)
dPij

( dZ'1

y-

(6.9)

(6.10)

From the definition of D and Z, DZ"1 and its inverse ZD"1 are symmetric which,
in turn, implies that D(ZD_1)D = DZ is symmetric. The symmetry of DZ allows
us to rewrite (6.10) as follows

dp̂
)=_2(ZcV(D^)(ZcV
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By the definition of Z
3Z"1 ^ 0P
dPij dPij '

The matrix D(^P/5PtJ) is made of all zeros with the only exception of the en

tries (»,t)»(*»i)»(i»0»(i»i) which are equal to —tt,-, tt,-, icj, —Wj respectively. As a
consequence the matrix D(&P/dP^) is positive definite which, in turn, means that

v(c, tt, P) is a decreasing function of the off-diagonal elements of P. Therefore

Pi < P2 implies v(c, tt, P2) < v(c, tt, Pi). D

Theorem 6.1.1 implies that the asymptotic variance of the estimator J/y

can be reduced by making the off-diagonal elements of the transition matrix large.

Intuitively this means that the more a transition to a different state is likely to be

accepted, the faster the estimator Iff approaches its asymptotic value.

The result of Theorem 6.1.1 can be used to determine which, among the

possible choices of ay as in (6.3), gives the fastest convergence in the sense of (6.7).

Theorem 6.1.2 (Peskun) For any given generate function G;j, ifaij is given by

»H =\ I'fr. (6.4)

the corresponding acceptance function will give, among the functions in the class
defined by (6.S), the fastest rate of convergence in the sense of (6.7).

Proof. From the definition of Pfj- it follows that fa < 1 which implies that

Sij < (1 + (mGij/iTjGji)) .

A similar inequality holds for ajt. U the inequalities are combined we have

and (6.11) is satisfied with the equality sign, if atj is selected as in (6.4). Hence
an aij as in (6.4) gives a transition probability matrix with the largest off-diagonal
elements. Therefore from Theorem 6.1.1 stJ as in (6.4) gives among the functions
in Hasting's class, the fastest rate ofconvergence in the sense of (6.7). D
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If the results of Theorems 6.1.1 and 6.1.2 are applied to SA we have the

following

Proposition 6.1.1 If the following stationary probability distribution

*.(T) =%£-
and a symmetric generate function are selected for an instance ofSA, the acceptance

function which gives the fastest rate of convergence to ir(T) in the sense of (6.7) is
given by

r ~ci ~ c* -I
fij = min 1,e T

6.1.2 Other Acceptance Functions

The results derived in the previous section assume that the asymptotic

probability distribution tt is selected first and the transition probability matrix P

is built such that the detailed balance equation is satisfied.

However the selection of the transition probability as suggested in the

previous section assumes that the number of iterations is large. In practical ap

plications, the number of iterations has to be kept as small as possible. Hence

there have been a numberof authors that decided to select the transition probabil

ities which experimentally give the best trade-off between number of iterations and

quality of the solution produced.

Bohachevsky, Johnson, and Stein [78] propose an acceptance function

given by

fa-*)*?
fij=l e T XCj>Ci,

1 otherwise ,

where g is any arbitrary constant negative number. The acceptance function has

been applied to find the minimum of a two-dimensional continuous function for

which the optimum is known. The authors do not report explicit figures on the

performance of their acceptance function compared with the standard one given in

(2.3), but they claim that, for a class of two-dimensional continuous functions, the
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acceptance function defined above performs constantly better than an acceptance

function of the form (2.3). The acceptance function by Bohachevsky et al. does not

depend on the difference of cost only but depends on the absolute value of the two

costs. Another such acceptance function is the following

Jt' c

proposed by Faigle and Schrader [72].

Note that, unlike Faigle's acceptance functions, Bohachevsky's belongs to

the class of acceptance functions for which Anily and Federgruen showed that a

logarithmic update rule for T like (4.39) is sufficient to guarantee strongergodicity
for the underlying Markov chain [76].

6o2 Generate Function

The generate function plays an important role. In fact, a poor selection

of the move set may lead to a situation, such as the one shown in Example 2.1.2,

in which the solution space is not fully accessible. A poor choice of the move set

may still make the solution space reachable but with a very slow convergence to the
global optimum.

Given the dependency of the move set on the problem, very little can be

said in general. However there are two strategies that proved to work rather well

when applied to solve combinatorial optimization problems like those arising in the
layout of integrated circuits.

6.2.1 Range Limiting

The notion of range limiting was introduced first by Sechen in 1984 [19].
The idea behind it isquite simple and isbased onthe following observation: For any
given value of T there is a subset of the moves that are most likely to be accepted
by the algorithm. For example, towards the end of the execution of SA, when T
assumes small values, only moves that improve the value of the cost function or
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that degrade it by alimited amount are likely to beaccepted. Therefore generating
moves that produce a sizable degradation in the cost function, will result, most
of the time, in a rejection and in a consequent waste of time. The range limiting
strategy uses this observation to update the generation function trying to keep the

ratio of accepted moves versus attempted moves high so that SA uses the CPU time
efficiently.

The main drawback of range limiting is that it requires to recognize moves

likely to produce large variations of the cost even before they are attempted and

select them with a probability which is inversely proportional to the estimate of

the amount of the perturbation generated. For range limiting to perform well, the

move set has to be rich enough so that, even if some of the moves are discarded,
SA has still a relatively large set of moves to choose from.

In optimization problems such as placement problems, the notion of the

amount of variation produced by a moveis directly related to geometrical consider

ations, e.g. the amount of displacement. Furthermore the set of moves is rich since

any displacement of any of the cells generates a feasible moves. The combination

of accurate prediction of the cost variation produced by a move with the richness

of the move set is the reason why range limiting is particular effective in these
applications.

For other problems where it is more difficult to predict of the effect pro

duced on the cost by a move and/or the move set is not rich enough, we do not

expect range limiting to perform well. In these cases, the range limiting strategy

should be generalized. One such generalization is proposed by Greene and Supowit
[84]. The idea is to compile a list of the variations in cost produced by each of the
possible moves and select oneof them with a probability proportional to acceptance

probability. Once the move is generated, it is always accepted with probability one.

It is immediate to see that this variation of SA is probabilistically equivalent to the

original algorithm. However, it should be evident that the strategy proposed by

Greene and Supowit has a basic limitation: It requires to know, for each solution,
the cost of all the neighbors and this is, in most of the practical applications, out of
the question. In fact unless the information is known a priori, to build the list of
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all variations requires the exploration of the neighborhood which is time consum

ing. On top of this, it is necessary to store the cost of any of the solutions which

comprise the neighborhood and this requires a large amount of computer memory.

6.2.2 Adaptive Generate Functions

In the previous section, we presented some of the limitation of the range

limiting concept in its simplest implementation. In this section, we describe an

extension of the idea which provides a method to determine, from the data collected

during the execution of the algorithm, the selection probabilities for the moves. A

complete account of the method is given in [27,85].

Hustings method [27,85] is based on the assumption that a desirable move

is a move which produces a sizable perturbation of the cost while maintaining a

reasonable chance to be accepted. Then the moves have to be selected such that

the more desirable the move, the more often it is attempted.

To rank the desirability of the move m, a quality factor Qm is defined as

follows

Q_ Qc(m)

at(m)

where ac(m) and at(m) are the numberof moves of type m whichare accepted and

attempted respectively. The size a(m) of the move m is the absolute value of the

change in cost produced by the move. The selection probability for a move of type
77i is then determined by

P(m) = ^m

The quality factor is the product of two contributions: The average size of
the moves of type m and the acceptance ratio of moves of the same type. A small

quality factor means that either the move has a large size but is rarely accepted
or it is accepted quite often but its size is small. Hence the best quality factor

indicates the move which has the best trade-off between size and acceptance ratio.

Of course, since both size and acceptance ratio are functions of T, it follows that
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quality factors have to be recomputed every time a new temperature is generated.
The use of quality factor gives a criterion to select among the available

moves that, unlike range limiting, does not rely on the particular problem at hand.

In fact, the size of the move is determined from the data collected during the
execution of the algorithm and no a priori estimation is necessary.

The effectiveness of a generate function based on quality factors is en

hanced if it is combined with a rich move set. Hustin proved this by collecting the
results obtained by his program Tim with different move sets. As expected, for

a given quality of the solution, Hustin showed experimentally that the execution

time decreases as the move set becomes richer *. In particular the generate function

based on quality factors takes full advantage of the presence of complex moves. A

complex move consists of a combination of simple moves which are attempted in

sequence with the cost evaluated only after the last move of the sequence has been

completed. Pictorially, complex moves allow the algorithm to tunnel through hills

instead of climbing them.

The ideathat a proper use of tunneling moves or, more in general, of large-
size moves is useful to speed up the convergence of the algorithm is not new [86] and

has also been observed in a different context by Szu [87,88]. Szu applied SA to find

the global minimum of a continuous one dimensional function. In his implementa

tion, a move is generated by selecting at random, from a specified distribution, a

variable 8x which is added to the present value of the independent coordinate to

obtain the new one. He experimented with two .different distributions: A Gaussian

distribution and a Cauchy distribution. Both the Gaussian and the Cauchy dis

tributions are symmetric with respect to the origin but while the moments of the

Gaussian are all finite, those of the Cauchy are not. As a consequence, if 8xG is the

random variable extracted from the Gaussian distribution and 8xc is the random

variable extracted from the Cauchy distribution, for all a > 0

Pr{ \8xc\ > a } > Pr{ \8xG\ > a } .

1Hu3tin claims for Tim, his placement program, up to.24 times faster execution time compared
to Timberwolf3.2 [22] for solution with the same quality.
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The results found by Szu show that SA with the larger size moves, i.e.

those with 8xc extracted from the Cauchy distribution, produce results of the same

quality with shorter execution times.

6.3 Errors in the Cost Evaluation

In the theory developed so far, it is always assumed that the evaluation

of the cost is carried out exactly. In this section, we focus on the case in which

the cost evaluation is approximated. Aim of this section is to find under what

conditions on the error, the transition probabilities of the "noisy" process converge,

as T approaches zero, to the transition probabilities of the original process.

At time n, given the value of the temperature Tn, assume that the uncor-

rupted process is in state i and that the state j, j ^ t, is selected as a candidate

for the new state. Assume that the difference in cost Cj —ct- is measured with an

additive noise A. Assume that A is a real valued random variable independent of

the particular choice of the state and with probability distribution given by

Pr{ Wn < A } = Tn(A) . (6.12)

The probability distribution Tn(A) is actually a sequence of distributions indexed

in n. Now wecandefine on Qa process Zn which is conditionally dependent onlyon
Zn„i and on the error Wn_x and assume that its transition probabilities are given,
for all i ^ j, by

Pr{ Zn+1 =i\Zn =i, Wn =A} =jGii{Tn) eXp (-C'~'Z+X) *Ci ~** A•
Gij(Tn) otherwise.

(6.13)

With the above assumptions, Zn is a Markov process. Furthermore, since Wn is
independent of Zn, the transition probability of Z„ becomes

Pr{ Zn+1 =j | Zn = i} =f?Tn{Pr{ Zn+1 = j | Zn = i,Wn}} .

A sufficient condition for the transition probabilities of Zn to approach those of Xni
as T approaches zero, is to require that the probability distribution of the error
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concentrates, as T approaches zero, its mass around the origin. The details of the

sufficient conditions are presented in the following theorem:

Theorem 6.3.1 Let Zn be the Markov process obtained from the Markov process
Xn when the transition probability is affected by an additive noise A. If the sequence
of distributions { Tn(A) } is such that for every x > 0

gZoHM-k)**-™-1 (6l4)
and

Hiin^^^^+r^-i)"^]"0' (6-is)
then for all i ^ j

lim Pr{ ZB+1 = j | Z„ = i } = lim Pr{ Xn+1 = j \ Xn = »} . (6.16)

Proof. The proof simply requires to compute the transition probabilities of the

"noisy" process Zn. From (6.12), (6.13), and the independence of Wn and Zn, the
transition probability for Zn is given, for all i ^ j, by

Pr{ ZB+1 = j\Zn = t} = Sr„{Pr{ 2T„+1 = j \ Z„ = », W„}} =

=L.CiG^M-CJ^r1)dr^ +
+ / Gy(Tn)<n\,(A) =

JX<a—cj

To proceed we split the analysis into two separate cases:

i ) Down-hill transitions, i.e. c,- > Cj .

ii ) Up-hill transitions, i.e. ct- < Cj .

For down-hill transitions, wehave to show that (6.15) is sufficient to guarantee that
an « o{Tn) and (6.14) implies

&6n =&Gy(Tn) * (6*17)



102

From the expression for an it follows

aa =jL^G«(T-)eip("2z£±^),rr"(A) =
=o«py-p(-2^a)4^-p(-^)«^).

Since the term

o^TOexp^a^a)
is bounded as T approaches zero, from (6.15) and from the condition ct- > Cj,

which implies

lim ^ =0 . (6.18)
From the expression for bn

bn = / (?0(rn)dTn(A) =
J\<Ci—Cj

mJ <i< i ,GdTn)drn(X) +J . • G0(rn)<iTn(A).
^-oo<A<-(c,-Cj) ^-(c—cj)<A<c*-Cj

Hence taking the limits and using (6.14) on the second term of the second equality

and (6.15) on the first term of the second equality we obtain (6.17).

If the above computations are repeated for up-hill transitions we obtain

Hma„ =KmoGfi(r„) exp(-^i) (6.19)
and

^0b» = °(T") • (6-2°)
The four conditions (6.17), (6.18), (6.19), and (6.20) are equivalent to (6.16). •

A restricted version of Theorem 6.3.1 was proved earlier by Gelfand and

Mitter [89,90]. In their work, Gelfand and Mitter assume that the error has a

Gaussian distribution with zero mean and variance a\. With this assumption the
conditions of Theorem 6.3.1 reduce to the following condition on the variance

Um<r*»o(T„4) .
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Theorem 6.3.1 requires that the sequence of error distributions must con

centrate their mass around the origin as Tn approaches zero. In other words this

means that the error in the measurements has to go to zero in distribution faster
than Tn.

The experiments with parallel implementation of SA presented by Casotto,
Romeo, and Satigiovanni Vincentelli [91], show indeed that the error, introduced by

their algorithmin the measurements, goes to zero faster than Tn. The explanation

of this behavior is simple. The algorithm implementations features a mechanism to

control the moves based on quality factors. As a consequence, towards the end of

the execution, the algorithm tends to attempt only moves whose size is small. The

processor which is performing the move on a particular cell, owns also the cells that

are placed in the neighborhood and this, combined with the fact that the size of the

move is small, reduces the amount of error in the cost evaluation. The results were

confirmed by the parallel implementations of SA by Darema-Rogers, Kirkpatrick,

and Norton [92], by Kravitz and Rutenbar [93], and by Banerjee and Jones [28].
In the case of serial implementations where the error is introduced due to

approximations in the evaluation of the cost function, there are no experimental

results on the actual behavior of the error as a function of T. However, if the

quality factors are used to control the generation mechanism, the size of the moves

becomes a decreasing function of Tn hence, unless the error has some deterministic

components, its amount should vanish as T approaches zero.

6.4 Stationary Probability Distribution

The theory developed in the previous chapters hinges upon the assump

tion that the stationary probability distribution iz is known. Kirkpatrick et al., in
their original paper [12], implicitly assumed, using the Metropolis sampling rule as
acceptance function, that it was given by the exponential distribution
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The justification for the Metropolis rule and hence for tt, provided in [12] was

based on the analogy between combinatorial optimization problems and classical

statistical mechanics. However, there is no reason to believe that the exponential

density should represent, adequately, the state distribution for any combinatorial

optimization problem with any choice of the cost function. The aim of this section is

to provide a justification, based on Statistical Information Theory, for the selection

of the exponential as stationary probability distribution.

The idea behind the procedure is as follows. Consider an arbitrary combi

natorial optimization problem (Q, c) and suppose that the only information available

about the problem is the average value of the cost function on the set of solutions,

c. Knowing only the average value of the cost does not provide us with enough

information to compute the probability distribution of the solution exactly. The

best procedure we can follow is to assign some a priori probability distribution

that agrees with the information availablebut that expresses the "maximum uncer

tainty" about every other unknown. The rationale behind this reasoning is to leave

the maximum possible freedom in picking a more accurate distribution as soon as

new information becomes available.

The measure of the degree of uncertainty is given by the statistical entropy

or the informational uncertainty [94,95]. Therefore the probability distribution will

be found by maximizing the statistical entropy subject to the constraints imposed

by the available knowledge.

Here are the details. Assume that

N = |ft| (6.21)

where |fi| is the cardinality of set £1. Assume that cx, c2,..., c,-, are the admissi

ble values the function c(u>) achieves on ft. Suppose that in the particular instance

of (ft, c), niy i = 1,2,..., configurations have cost ct- and let c~ be the average value

of the cost. The quantity n,-/JV is the unbiased estimator for piy the probability that

a solution of (ft, c) has cost ct-. Hence, to determine the expression for n, for each i

is equivalent to find the probability distribution on ft .

The numbers n,-, i = 1,2,..., can, in principle, assume any arbitrary posi-
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tive value with the only constraints that

T,ni = N (6.22)
t

and

Y,cini = N7:i (6.23)
i

where N is given by (6.21) and Zis a datum of the problem.

If Af is the set of all collections of numbers {nt} which satisfies (6.22) and
(6.23), the total number of feasible solutions is given by

®= £ fTTT • (6.24)Uiflil '

The statistical entropy for problem (ft, c) is then defined by

S = ifeln0 (6.25)

with k a positive constant which embodies the choice of the units in which infor

mation is measured. The probability distribution which maximizes the uncertainty

is obtained by solving the following constrained optimization problem

Sm = max S . (6.26)

To find the solution to (6.26), we can use the Implicit Lagrange Multipliers

method [96]. However, before we can apply the method, we have to manipulate

(6.26) to put it into a more manageable form. The explicit evaluation of 0 from

(6.24) in closed algebraic form is rather difficult, owing to the restriction imposed

by Af. In spite of that, if the number of solutions is large, we can resort to the
following lemma [97]

Lemma 6.4.1 Given a combinatorial optimization problem with N solutions, if N
is sufficiently large the statistical entropy can be approximated with

5«Jfelni(n), (6.27)

where t(n) is given by

t(n) = fmaxr 0 J . (6.28)
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Proof. The proof of the lemma, in its generality is rather cumbersome and is there

fore omitted here. In [97, page 28] a simplified version of the proof in the case in

which the solutions can only have two different values of the cost is presented. •

H we assume that N is large enough for approximation (6.27) to make

sense 2, we can replace (6.25) with

S = khit(n). (6.29)

Substituting (6.28) in (6.29) and applying Stirling's formula we have

S = k\nt(n) =

= &{JVlnJV - N -^{piNhipiN - PiN}} =
i

= -kNfalapi} (6.30)

where n* have been replaced by ptJV. The Lagrangian function for (6.26) is then
given by

£(a'>,p) =-fcJV{ftlnp,} +a'(X;p,-l) +^c.p1-ff). (6.31)
• 1

If we assume that £ is a differentiate function in a', /?, and p, the stationary points

(eithera maximum or a minimum) of (6.26) are determined by the following set of
equations

§o7 " °' (6*32)

dp " ° ' (6-33)
0C(a>9P,p)_^ 0 »-l,2,... (6.34)

Substituting (6.31) in (6.32) and (6.33), we obtain again equations (6.22) and (6.23)
respectively but written in terms of probabilities p,- instead of relative frequencies
n,-. The substitution of (6.31) in (6.34) gives:

- In?,-+ a + £cj = 0 t = l,2,... (6.35)

2The assumption iswell taken in practical applications. For example the placement problem of
Example 2.1.1 with only 15 macro-cell gives N ~ 1012.
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where a = a' —1. Equations (6.35) are decoupled and can be solved separately for

Pi to obtain the optimal solution 7rt- given by

7rt = ea+^ . (6.36)

Notice that the expression for tt,- is a function of the two, yet unknown, Lagrange

multipliers a and /?. Equations (6.22) and (6.23) provide the values for a and /?:

e -« = V «,/**= Ee/3ci (6.37)

and

The next step is to prove that the choice of 7rt- indicated by (6.36), (6.37),

and (6.38) actually maximizes the statistic entropy 5. Let us rewrite (6.30) as
follows:

w--2>lnp,. .

Consider any other collection of numbers {pi} which satisfy (6.22) and (6.23) and
study the difference

5(ir) - S(p) „£Jy = -Z^ki-. +^Pilnp,- =

= -^nikkiCi +Y^pihipi +
i i

+]£ 1% in»,--£# in*,- =
I I

= -2(*i-i>»)m7ri--£#ln~- (6.39)

Since both 7rt- and pt satisfy (6.22) and (6.23), it follows that

£ fa - pt) In w< = X)(*•" " #)(<* + fo) = ° ' (6.40)

Substitution of (6.40) into (6.39) gives:

S(tt)-S(p) v-_,_*
P

= ? . (6.38)

w— = -?^ln^ =
TCi-Pi

TT, - p,

= -2>ln(l +^Z_Pi)>

> -£pA^ = o.
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Summarizing, the probability distribution that maximizes the information

uncertainty given the constraints (6.22) and (6.23) is

e0Ci

*'-£^- (6-41)
To see howT comesinto the picture, it is necessary to goback to statistical

mechanics and recall that
dS 1

*—r- (6'42)
U(6.30) and (6.41) are substituted in (6.42), the computation of the derivative gives

From (6.42) and (6.43) follows

'-4-
The method used to find tt,- can be generalized to include further infor

mation available a priori [32,98,99]. For example, if instead of knowing only the

first moment of the cost function, there are other r observable functions fj,j —
1,2,..., r, for which the value of the first moment

£/i(wi)p,= 77
i

is known, the equation for 7rt- becomes

r

*i = exp{a+ Y,0jfj(ui)} •

To conclude, a few comments are in order about the normalizing function

Z(ft,..., fir) =£ cEm**W =c- . (6.44)
i

Function Z is well known in Statistical Information Theory andit is usually referred
to as partition function or Gibbs function. To know Z is equivalent to know exactly
the probability distribution of7rf as it is evident from its expression (6.44). Further
more Z serves also the scope of the moment generating function for the distribution
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7rt- in the sense that all the moments of fj can be computed from Z by [98]

If = £/>•>; =

= (-1)" a-zp?.,ft, ...,&)

Finally note that Z is useful to compute not only the moments but also the variance

of/,-

**/> - lAJA^i) - fi) *• = Q02 J=1,2,...,r .



Chapter 7

The Annealing Schedule

In Chapter 3 it has been shown that for any monotonically decreasing se

quenceof temperatures { Tm } (See Assumption 3.2.1), SA converges asymptotically

with probability one to the global optimum. However the algorithmis required to

execute, at eachvalueof T, an infinite number of transitions to reach the stationary

probability distribution (See Theorem 3.2.4).

In Chapter 4 it has been proved that if only one iteration is performed at

each valueof T, there exists an annealing schedule which is necessary and sufficient

to guarantee that SA achieves the global optimum with probability one. However,

the sequence of temperatures { Tm } of the optimal annealing schedule

m~" log(m + m0) ' v • ;

indicates that an infinite number of steps has to be taken for T to reach the zero

value.

It is clear that neither of the convergence results outlined above offers a

viable strategy to control SA when it is applied to solve a practical problem. After
all, any combinatorial optimization problemcan always be solved in a finite amount

of time by using an exhaustive search!

Clearly, in any practical implementation the asymptotic convergence of the

algorithm can only be approximated and, consequently, the algorithm is no longer
guaranteed to produce the global optimum. Along these lines, it is interesting to
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establish how fast the algorithmapproaches the stationary probabilitydistribution.

In Chapter 3 it has been proved that the rate of convergence, at fixed T,

can be estimated once it is known the second largest eigenvalue of the transition

matrix P or the value of the conductance $(T) of the underlying graph Q. However,

as already pointed out, the knowledge of either the second largest eigenvalue of P
or of $(T) is out of the question in the practical cases.

The bound derived in Chapter 5 is a more useful result. In fact it depends

on a number of parameters, namelyw, L, r, 8, that aredefinitely easier to estimate

than the eigenvalues or the conductance and are independent of T. However, esti
mating these parameters in general cases may still be a very difficult task, and even

if there are cases in which the estimation of some of them is possible, the bound
turns out to be so loose that the number of iterations required is comparable to the

number of iterations necessary to perform an exhaustive search of the state space
(See Example 5.3.1).

The preceding discussion shows how results from the asymptotic theory
cannot be used verbatim to derive an annealing schedule for practical applications

ofSA. If SA has tobeused to solve combinatorial optimization problems efficiently,
it is important to answer this other question: Given a finite amount of time, what
is the annealing schedule which produces the best solution? The answer to this

question is, in general, not known. On the otherhand, thereis no apparent reason to

believe that theoptimal finite sequence oftemperatures should obey thelogarithmic
updating rule (4.39). Here is an intuitive explanation of why it should not do so.

The sequence produced with the logarithmic rule (4.39) is derived from the condition

that the probability to escape any solution which is not the global minimnTn tends to
oneasT tends to zero. In Chapter 4 it has been shown that the "escape" condition
is tantamount to require

The behavior of the series is not changed if any finite collection of its terms is

dropped. Hwe interpret the above comment in terms of the sequence of tempera
tures, it means that, no matter how small is the value of the initial temperature,
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the tail of the series is always sufficient to guarantee that convergence to the global

optimum is preserved. This in turn means that the choice of any finite initial sub

sequence does not have any influence whatsoever on the convergence.

Intuition is substantiated by the work of Strensky [100]. In fact he proved

that, at least in a very particular and simple example, the optimal finite schedule

consists of a sequence of temperatures that does not follow the logarithmic rule.

Quite surprisingly, Strensky's sequence of temperatures starts and ends with two

subsequences, of different lengths, in which the temperature is set to zero. The

subsequence of intermediate temperatures is monotonically decreasing but it consist

of too few entries to establish reliably whether or not it resembles the logarithmic

rule. There is no evidence that Strensky's annealing schedule is extendable to

more general cases and the peculiarity of the sequence of temperatures found by

Strenskymakes it hard to believe that such anextension is possible. Apart from any
skepticisms, the real problem with this method, as Strensky himself points out in

his paper, is that the procedure to find the optimal schedule requires the knowledge
of the complete transition probability matrix and a computing effort which is larger
than the effort necessary to explore the state space exhaustively.

In conclusion, the inhomogeneous theory developed in Chapter 4, even if

more sound from a theoretical point of view than the homogeneous one, offers little
or no guidance to develop a finite time schedule.

The homogeneous approach instead gives us some hints. The idea is as

follows. We know that the closer we are to thestationary probability distribution tt,
the faster the convergence to it will be. Suppose that SA is started with an initial

temperature, To, at which it is relatively easy to achieve a good approximation of

the stationary probability distribution. Now assume that m iterations have been

completed and that the current probability distribution of the states is a good
approximation to ir(Tm). If the value of Tm is reduced by a small but finite amount

to give Tro+1, the new stationary probability distribution will not be too far from

the old one and hence the approximation to 7r(Tm) should be a good stating point
to achieve the approximation to 7r(Xm+i).

The initial value ofT0, thequality of theapproximation to the stationarity



113

probability distribution, the amount by which T is reduced, and the stop criterion

qualify the annealing schedules.

The annealing schedules can be subdivided into two classes: Static sched

ules and dynamic schedules. A static schedule is a schedule whose parameters are

fixed before the algorithm is started. A typical example of such a static scheduleis

given by the geometric schedule introduced in Section 2.1. In a geometric schedule

the temperature is updated according to the geometric rule (2.4) and the equilib
rium is considered achieved oncea minimum number of moves, proportional to the

size of the problem, is attempted at each fixed value of T.

Dynamic schedules have parameters that are modified iteratively with the

information that is collected during the operation of the algorithm.

Static schedules are easier to implement than dynamic ones but have the

disadvantage that their parameters have to be tuned on the particular application
and as such, it is difficult to port the resulting schedule to different applications.
On the contrary, the parameters of dynamic schedules are problem independent.
Intuitively, we canthink of SA running on a problem, as a dynamical system whose

control systemis provided by the annealing schedule. A static schedule is equivalent

to feed-forward control action. Conversely, a dynamic schedule implements a feed
back control action. It should be no surprise to discover that static schedules

are very sensitive to the the particular value of their parameters unlike dynamic

schedules and that the performances of dynamic schedules are superior, in every
respect, to those of static schedule.

The remaining of this chapter is dedicated to present the details of a

dynamic annealing schedule and to review briefly the other significant approaches
to the design of annealing schedules that have been proposed in the literature.

7.1 Adaptive Schedules

An annealing schedule based on the homogeneous approach is completely
specified once we assign four parameters: The initial value of the temperature;
the temperature update rule; the rule by which we determine if a satisfactory ap-



114

proximation of the stationarity distribution has been achieved; the rule to stop the

algorithm.

To be widely usable, the annealing schedule should be problem indepen

dent. This means that the parameters of the four rules should be determined

automatically by the algorithm with as little outside intervention as possible. The

only way to do this is to make the parameters depend on the data that are collected

during execution and let the algorithm modify the tuning of the parameters as soon

as new information becomes available.

Before we start describing the details of the adaptive schedule we have to

be a little more specific about the model of the algorithm we will be using to derive

the schedule.

We want to be able to decide it, given the present value of T, the probabil

ity distribution of the states of the Markov chain is close enough to the stationary

probability distribution or, in other words, if the Markov chain has reached equi

librium. To keep track of the probability distribution of the states of the Markov

chain is very expensive. In fact, to keep track of the relative frequencies of the

states, any time a solution is accepted, we must check if the solution has been

found already and update the corresponding relative frequency counter or create

a new one. The check is rather time consuming since any solution consists of a

vector of 2ra coordinates, with n the number of independent variables considered by

SA. Furthermore, to memorize the solutions already found is costly also in terms

of memory requirements since the complete vector has to be stored.

On the other hand, we decide whether or not to visit a new state only

considering the costs of the states involved in the transition. Hence collecting the

statistics of the cost should provide the necessary information to determine the

parameters of the annealing schedule.

The theory developed in Chapter 3 and 4 is built on the fact that the

algorithm can be modeled by a Markov chain. However the stochastic process

Yn = c(Xn), (7.1)

where Xn is the Markov process defined on the solution space and c is the cost
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function is, in general, non Markov. The following example presents a case in which
Xn is Markov but Y„ is not

Example 7.1.1 Consider a Markov chain with four states 1. Assume that the

generation function is uniform andindependent ofT andassume that the acceptance
function is given by (2.3). The cost function c is such that

f 1 ifi = l
*=< m (7.2)

I 0 otherwise .

and the process Yn is given by (7.1). The details of the two process are presented
in Figure 7.1.

To check if the process Yn is Markov, we have to prove, following the
definition [101], that for any given collection (j/x, y2i..., yn)

Pr{ Yn = yn | Kn_! = yn-UYn-2 = y„-2,...,Ki = yi } =

= Pr{rn = yn|rn_1=yn_1}. (7.3)

We will show that there exist at least one case in which (7.3) is not satisfied for the
process Ynj in fact

pr{rn = i |rn_x = o,yn_2 = o,yn_3 = 1} # Pr{yn = 1\Yn.t = 0}, (7.4)

which in turn implies that Yn is not Markov.

To check (7.4) simply requires to compute the two terms of the inequality.
For the left hand side term we have

pr{ Yn = 11 yn_! = o, y„_2 = o, yn_3 =1} = (7.5)

= Pr{Xn = w1|yn_1=0,Xn_2 =W2,rn_3 = l}Pr{Xn_2 = a;2 |.YB-3 =Wi} +

+ Pr{Xn = wx |yn_! = 0,Xn_2 = w4,yn_3 = 1}Pr{Xn_2 = u>4 \Xn_3 = Wl } .

By symmetry considerations and by

Pr{Xn_2 =W2 IXn_3 =07! }=Pr{ Xn_2 =w4|Xn_3 =wx }=i
1We are indebted to G. Sorkin for proposing this example
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Figure 7.1: Example of a non Markov process Y„ = c(X„) with X„ Markov. The
transition probabilities in the figure refer to process Xn.

equation (7.5) becomes

Pr{yn = i|yn_1=o,yn_2 = o,yn-3 = i} =

= { Pr{Xn = u>i IXn-i = w2,Xn^2 = u;2,Xn-3 = Wi }

Pr{Xn-l = LJ2 Iyn>! = 0,Xn_2 = 0>2, Xn_3 = Wl } } +

+ { Pr{ -^n = ^1 I-X"„-l = W3, Xn_2 = W2, Xn_3 = Ui}

Pr{Xn_1=o;3|yn-1=0,A:n_2 = a;2,X„_3 = ^i}} =

= Pr{Xn = a;1|Jtn_1 = a;2}Pr{Xn_1=a;2|yn_1 = 0,Xn_2=a;2} (7.6)
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where the last inequality follows from the assumption that Xn is Markov and from

Pr{ Xn = U>i \Xn-i = U>3,^n-2 = W2,Xn_3 = UX } = 0 .

From (7.1) it follows that the event { Xn-X = u2 } implies the event {Yn-\ = 0}
and hence we can apply the Bayes rule and obtain

Vx{Xn-l = U^Yn-! = 0, Xn-2 = U>2 } =
_ Pr{ Xn-i = u;2 [Xw.2 = w2 }

Pr{y„-i=0|Xn.2 = u;2}

- ,K'-'-"0,

Substituting (7.7) in (7.6) gives

Pr{Yn = 11 yn_, = o,r„_, = o,y„_3 = 1} =

..,„ Ifr--")

The right hand side term of(7.4) gives

Pr{yn = i|y^1 = o} =

= Pr{Xn = a;1|Jfn_1=a;2}Pr{^n_1=a;2|yn_1=0}

+ Pr{Xn = u;1|Xn_1=a;4}Pr{A:n.1=a;4|y„-i=0} (7.9)
= ie'^T

3C *

Comparing (7.8) with (7.9) we obtain, for all T > 0,

-1 = e'1^

which is never satisfied. •

From the previous example it follows that, unless we gather enough evi

dence that the process Yn is indeed Markov, we cannot apply the strategy outlined
above to determine a viable annealing schedule.

= ie-'/Tir •^/i- (7-8)
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There is a second point that needs clarification. To check equilibrium we

have to compare the measured data with their predicted stationary distribution.

From the theory developed in previous chapters, we know that if the acceptance

function is in

/r(Acy) =min[l,eXp(-^i)],
and the generation function is symmetric,, the stationary probability distribution of

the states is given by

*KT) =̂ -. (4.19)
Of course the stationary probability distribution of the cost process Yn will not

have the form (4.19), but given (4.19) and the acceptance function, we can predict

the cost distribution at any given T once the cost distribution as T approaches

infinity is known. Hence we have to introduce a model for the cost distribution and

justify it in view of experimental observations.

The strategy used to check that process Yn is Markov together with the

model for the cost distribution are presented in the next section.

7.1.1 Preliminary Assumptions

Is The Process Yn Markov?

To use the Definition (7.3) to prove that Yn is Markov is impossible in

practice since it requires the knowledge of the conditional distribution of Yn which

in turns implies the knowledge of c(Xn) for all the possible outcomes of the random

variable Xn. In every annealing schedules presented in the literature of which I am

aware, process Yn is assumed to be Markov. As seen in the previous section, this

assumption may not hold. It needs to be carefully checked. Ideally, one should

prove rigorously that, given the problem we are interested in, Yn is indeed Markov.

However a formal proof is too difficult. Here we assume that Yn can be consid

ered Markov if the value of the random variable Yn is shown to depend on the

value of Yn-i only. Therefore we will pick some "illustrative" examples and verify,
numerically, that Yn satisfies the above stated criterion.
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The procedure used to checkthat Yn can be considered Markov, is standard

in the theory of time series analysis [102,103]. Here are the details. The Markov

property says that the behavior of the process at time n is completely determined

by the conditional distribution of Yn given Yn-\. In other words, all the information

needed to predict the value of Yn is contained in the distribution of Yn-i. Then the

idea is to use the data generated by the process Ym namely yn, and verify that the

best prediction for Yn requires only the knowledge of the statistics of Yn-i. If the

result of the test is positive, we will conclude that the process Yn can be considered

Markov and hencewe can apply the strategyderived from the theory of Chapter 3.

Rewrite the process Yn in its prediction form as follows

Yn = E[Yn\Yn-1] + en, (7.10)

where E[ Y \ y ]is the expectation of random variable Y given the event y and en
is the residual. The conditional expectation is, by definition, the best step predictor

and if the residual en is uncorrelated with the time series Yni (7.10) is equivalent to

state that the outcome of random variable Y„ is influenced only by the value taken
on by random variable yn_x.

To check (7.10) in practice is impossible since it requires to know the

conditional probability distribution of the cost which is unknown. However if we

can show that there is a predictor, not necessarily the best one, for which the

residual is uncorrelated, then we have reached the conclusion that the process Y„
can be considered Markov.

Assume that yn is the time series of the costs collected during an execution
of annealing at fixed temperature. Let yn

Vn = (2/n-i - E\yn])rw(l) + E[yn] (7.11)

be the optimal least-square one-step predictor, where ryy(l) is the one step correla
tion coefficient defined by

N

2 VnVn-l

N-l N
W

1 n=0 n=l
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and E[yn] is the expected value of yn. Hwe assume that the process that generated

the time series yn is stationary, then E[yn] = E[y] for all n and the predictor (7.11)
can be replaced by

Vn = (Vn-i - E[y])ryy(l)+ E[y]. (7.12)

To complete the procedure, we have to compute the prediction error

and check that the cross correlation coefficients rye(&), k > 1, defined by

(i)=

N

E ynen-i
n=l

JV-1 N

Ai E vl E el
\ n=0 n=l

are zero. The intuitive explanation for this procedure is as follows. The time series

en represents all the information that can still be extracted from the time series yn

after linear prediction. If en has a nonzero correlation with yn, then the prediction

errorstill carries some useful information and hence either the process is not Markov

or the linear predictor is not sufficiently good.

The actual implementation of the test is as follows. We execute SA to

generate the time series yn at fixed value of T. The set of data is partitioned into

two sub-sets: The training set and the test set.

The data from the training set are used to compute the parameters of

(7.12), namely E[y] and rw(l). The obtained linear predictor is then used to check

the Markov assumption for the data of the test set .

The data used are generated by running SA on three placement prob

lems 2 . For each of the problems two temperatures representative of different
regions of operation of SA are selected. The first temperature is assumed to be

infinite, i.e. all the solutions that are generated are accepted. In this case SA is

performing a pure random walk on the state space. The second temperature is

2The details of the placement problems are presented in Section 8.1.1.
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chosen so that the ratio between accepted and attempted moves of is about 50%.

In the examples used, this is obtained by setting T = 10.

The parameter of the predictor for the three examples are reported in

Table 7.1.1. In particular, ryy(l) is the parameter whichappears in equation (7.12)

while ryy/(l) is the one step cross correlation between the data in the Training set

and the data in the Test set. The results of the test are reported in Table 7.2 3.

ryy(l) sofr255 sohr255 sore255

10 CO 10 oo 10 oo

•w(i)
0.993

0.975

0.986

0.975

0.987

0.989

0.985

0.988

0.992

0.985

0.972

0.962

Notes:

Number of data points 3000

Table 7.1: Parameters of the linear predictor.

From the results contained in Table 7.2, it is evident that the correlation of

the prediction error, en, with the data yn is very small compared to ryy(l) reported
in. Table 7.1.1. Furthermore the sign of the correlation coefficients is not constant

and this can be interpreted as an indication that the prediction error is mostly due

to the noise which corrupts the time series yn.

As a final remark, notice that the results presented show that, for the

placement problems we used as test case, the best prediction of the outcome of

process Y at time n depends only on the outcome of Y at time n —1. This does

not mean that either the process Yn is Markov according to the proper definition,

or that the findings for the placement problems are to be expected if SA is run on

any combinatorial optimization problem. In practice, the analysis presented above

should be repeated any time SA with the annealing schedule is applied to a new
problem.

3The size ofboth test set and training set is3000 data points. The data points are the last 6000
data extracted from a sequence of 15000 data points generated by SA. The first 9000 points are
dropped to make sure that no transient effects are present in the data.



rey{k) sofr255 sohr255 sore255

10 oo 10 oo 10 oo

1 -0.012 0.023 0.009 0.005 -0.004 -0.008

2 -0.011 0.038 0.011 -0.002 -0.004 -0.006

3 -0.012 0.029 0.019 0.001 -0.004 0.002

4 -0.003 0.028 0.023 -0.003 0.002 0.000

5 -0.013 0.016 0.010 -0.002 0.007 0.000

6 -0.020 0.010 0.014 -0.009 0.011 0.001

7 -0.026 0.008 0.021 -0.012 0.004 -0.009

8 -0.029 0.011 0.022 -0.014 0.011 -0.007

9 -0.026 0.013 0.022 -0.016 0.009 -0.009

10 -0.029 0.017 0.015 -0.015 0.005 -0.012

20 -0.042 -0.001 0.010 -0.015 0.016 -0.013

30 -0.035 -0.011 0.007 -0.013 0.015 -0.019

40 -0.045 0.030 0.003 -0.020 0.022 -0.030

50 -0.045 0.041 0.004 -0.030 0.005 0.043

60 -0.040 0.020 -0.009 -0.021 0.007 0.037

70 -0.026 -0.014 -0.008 -0.001 -0.004 0.026

80 -0.027 0.012 -0.008 0.001 -0.032 0.020

90 -0.046 0.003 0.002 -0.020 -0.034 0.018

100 -0.018 0.003 0,028 -0.025 -0.049 0.010

Table 7.2: Correlation of the error with the data.
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Cost Distribution Model

The second assumption is related to the model for the density of the ran

domvariable Yn, namely *(c). The form of$(c) is unknown in general, but what
ever its form is, we know that it must satisfy some constraints: First of all, <P(c)
has to have a finite left tail. In fact the probability to find a cost below the op
timal cost must be zero. Second, experimental results show that states with cost

close to optimum are rare. We canexpress this constraint by requiring that only a
small portion of the probability measure $(c) is located in the neighbor of c„ and
that *(c) decreases rapidly with the size of the neighbor. There are many ways to
express the above constraint and one such way is:

Elos(c,-c*)tf(c,-) = 6. (7.13)

Other constraints are:
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i ) Finite expected value

*

ii ) Normalization constraint

To determine the form of ^(c), we can follow the same procedure used to

derive the exponential form for the it (See Section 6.4) and maximize the statisti

cal entropy subject to the constraints defined above using the method of Implicit

Lagrange Multipliers. The Lagrangian function in this case becomes

i

+ >?(E c<*(c.) - *) +ME los(* - <=.)*(*;) - *) • (7-14)
t t

Taking the derivatives of (7.14) with respect to ^(c,-) and to the multipliers A', 77,

and /a, we have the following set of equations:

*(c.) =(c,-c)"eA +'?(c'-c'), (7.15)

«"A =Ete - <=.)"e,(Ci" C*) >

E(c.- - c.)^1 e^i ~c-)

E(c- - c.r ei(c> -c-) =c' (T'16)
E Mci - c.) (c,- - c.)" erf* ~ <=•)

E(c< - c.r a* - «•) 6' (7'17)
»

where A= A'- 1. Note that *(c,) defined by (7.15 - 7.17) is the discrete version of
the Gamma density [104]

7(c; c, a,p) =fTT^C " °*\c - c.)?-1 (7.18)
with

T(p)= f°°x^e-'dt .
Jo
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If we assume that the discrete cost distribution ^(ct) can be replaced with the

correspondingcontinuous form, we can replace (7.15 - 7.17) with the more manage

able (7.18). The parameters a and p are obtained easily by solving the continuous

version of (7.16) and (7.17) for the Lagrange multipliers rj and \i.

The continuous gamma distribution is completely specified by the two

parameters a, the scale factor, and p the shape factor. Furthermore a and p, define

also the first two moments of 7(0;c*, a, p) as shown by

E[c] - cm =£ (7.19)

and

<r2(c) =E[c - E[c]f =£ . (7.20)
The assumption that (7.13) adequately represents the experimental obser

vation that states with cost close to the optimum are rare, is crucial to obtain the

gamma distribution for the cost. However, (7.13) is not the only way to represent

the constraint. On the other hand, the gamma density has a number of other char

acteristics that justify its adoption and hence support the use of (7.13). First of all,

for very low values of T, the shape of the gamma resembles an exponential density,

while at high values of T it approaches a Gaussian density. This fact is important

since it is in good agreement with the observed densities of costs produced by runs
of SA.

Second gamma is non symmetric. The asymmetry becomes more evident

as T is reduced, and again this is in goodagreement with experimentalobservations.

Finally, if we apply SA to an initial cost density which is a gamma, the

density is modified by the exponential sampling rule to become

rt^a,,)-^*™***, (7.21)
where Z(T) is the usual normalizing term. If (7.18) is substituted into (7.21) we
obtain the following

7r(c; c, a,p) =(ayp/r)> +Vr)(c -c.)(c _̂ , (7 ^
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The function jT is again a gamma density with the scale factor (a + 1/T), i.e.

gamma is closed under the exponential sampling 4. Figure 7.2, shows the influence

of the parameter T on the shape of the cost density.
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Figure 7.2: Gamma density as a function of T. cm is assumed 0

From expression (7.22) we can compute the expected value and the vari

ance of the density as a function of T

and

ET[c] =
cr + l/T + C-

4(c) =
(a + l/T)* '

Equations (7.23) and (7.24) can be used to estimate the expected value of

the cost and its variance at agiven value ofT once we know the corresponding values

4The closure under the exponential sampling is a property which is common to a number of
densities other than gamma. Among them, the Gaussian distribution has the same property as
shown by White [105] and by Otten and vanGinneken [67].

(7.23)

(7.24)
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for the cost distribution before the sampling procedure is started or, equivalently,

for T approaching infinity. In fact, if (7.19) is substituted into (7.23) and (7.20)

into (7.24) we obtain the following expressions

*T[c] =£Uc]_£^( ° ) (7.25)
and

2
.2 - - -

*-*<e>fcrb*) (7-26)
with a given by

•EooM-c.
a =

and JE?oo[c] and <r^(c) given by (7.19) and (7.20) respectively.

We conclude this section introducing a useful property of functions that

are closed under the exponential sampling:

Proposition 7.1.1 Let ^(c, T) be a density function defined on the set C with the

property that for all c € C

c

*(c'r) =̂ T' (7-27>
Z(T) being the partition function which normalizes %(c,T). Then V(c,T) satisfies
the following differential equation

^p-=JL*(c, T)(c - E*[c]), (7.28)
where Ey[c] is the expected value ofc given the density ^(cyT).

Proof. The proof follows directly by computing the derivative of (7.27). D

Consider now the following definition of distance between densities [106]

S(P.g) =E(P(C)^(C))2, (7.29)
where p and q are two probability densities defined on the same set C 5. Proposi

tion 7.1.1 provides a simple way to estimate the distance between densities ty(c,T)

5To be formally correct, we should require that pand qare defined on the same measurable space
C obtained combining the sample space C with a <r - algebra S of events defined on C [94].
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and$(c, T+8T). In fact if it is assumed that 8T is small enough sothat $(c, T+8T)
can be replaced with its Taylor expansion truncated after the linear term, substi

tution of (7.28) into (7.29), gives

(**(c,T))2 = £(c-£,[c])a
c€C V(C,T) c€CSW-PJ^f^w-

"^{STf. (7.30)
Equation (7.30) gives an estimate, for small variation of T, the distance

between two densities as a function of the variance of the cost at T and T4.

7.1.2 Initial Temperature

The choice of the initial temperature T0 is the result of a trade off. The

higher the temperature, the easier it is to achieve the stationary probability distri

bution since the space is explored more freely and all the states are almost equally

probable. However, the higher the initial temperature, the longer the sequence of

temperatures that have to be examined before the algorithm terminates.

Therefore wewant to select a finite value of To such that the corresponding
probability density is relatively close to the density for T that approaches infinity.

We cannot use the estimation for the distance between two gamma densities since

we are well outside the range in which the approximation given by (7.30) can be
used reliably. In fact, for (7.30) to be true, T has to be finite and 8T has to be

small enough for the linear approximation to hold.

However we can use (7.25) to determine the initial value for T. From

(7.25), since a > 1/T, E^c] - ET[c] is small if <t^(c) < T. Hence the criterion we
propose is as follows:

To = Ka(c)

with K a small positive number.

It should be noted that, since at high values of T, only a limited number of

moves is necessary to achieve a good approximation of the equilibrium distribution,
the overhead of selecting a value for K which is too high has relative effect on
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the efficiency of the schedule. This assumption is validated by the analysis of the

sensitivity of the solution, measured by the value of its cost and by the amount of

time required to obtain it, with respect to parameter K.

7.1.3 The Decrement of T

Tm is updated to give Tm+1 when it is recognized that the present cost

density is a good approximation of the stationary cost density at Tm. From the

homogeneous theory, it follows that the time required to obtain a good estimate of

the stationary cost density at the new value of Tm+1 is proportional to its distance

from the initial density. The idea then, is to control T so that, at two subsequent

values of T, the stationary densities arecloseenough for the current cost distribution

to be a good starting point to obtain quickly the desired approximation to the

stationary distribution at Tm+1.

From equation (7.30), it follows that the distance between two stationary

cost densities, 7r and Jt+st is less than a specified number A2 if

^jr-ST <A. (7.31)
The sequence of temperatures that satisfies the bound on the distance of the two

stationary distribution imposed by (7.31), can be obtained integrating in time the

following differential equation
dT XT2 ,m N
IT = —TT > (7-32)at orr(c)

where <rT(c) is a function of time given by (7.26). However, if (7.26) is rewritten in
the following more general form

Mc) _ <rT.(c)ar* + l
T " T* aT+1 ' {7'63)

weseethat for smallvariations of the difference (T—Tm), the second term to the right

hand side is approximately one and, as such, it can be neglected. Hence 0t(c)/T
can be considered constant with respect to T. If equation (7.32) is rewritten as

dT XT J , x

T=Mcjdt' (7-34)
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we can take advantage of the observation that aT(c)/T is constant and integrate
(7.34) by separation of variables to obtain

AT
l0gT*+1-l0grfc:=——

crT(c)

which ultimately gives

Note that at high values of T the ratio of the variance of the cost with

respect to T is rather small. Consequently, the exponent of (7.35) becomes large

and this causes large variations of T which will invalidate the procedure followed

for its derivation. For this reason in the actual implementation of (7.35), we have
to make sure that the ratio Tk+1/Tk is lower bounded so that the assumptions for
(7.35) to be true, are still valid.

7.1.4 The Equilibrium Condition

To reach an equilibrium means that the steady-state probability distribu

tion of the accessible states is established. However, dynamic monitoring of the
steady-state condition for all of the accessed states is in practice hardly feasible.

The condition we propose is completely based on statistical information collected
during the operation of the algorithm.

Onceequilibrium is established, the cost distributionapproaches a station

ary distribution 6 . From the assumption that the cost is distributed as a gamma,
we can predict the stationary values for both the expected value and the variance

once we know the corresponding values as T approaches infinity.

To achieve the estimates as T approaches infinity, the following procedure
is used. The acceptance probability is fixed to one and a fixed number of moves,
proportional to the number of the degrees of freedom of the problem, is executed by
SA. For every data that becomes available, a random number r is extracted from

a uniform distribution on the interval [0,1] and confronted with a fixed number

a < 1/2. If r < a the corresponding datum is assigned to time series #1 otherwise

6This is guaranteed in view ofthe assumption that the process Yn =c(Xn) is Markov.
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it is assigned to time series #2. Stationarity is achieved if the statistics of the two

series show, at a specified level of significance, that the data are extracted from the

same population.

To check that the data of the two series are extracted from the same pop

ulation, we proceed along the lines of the standard techniques for testing statistical

hypotheses [107]. The data from series #1 are used to estimate the expected value

Eqo and the variance <t^. With the estimated Eoo.and flr^, a gamma density, t*,,
is then built and the following two hypotheses are formulated:

JETo : The data from Series #2 belong to a population which has density 70,,.

Hi : The data of the Series #2 belong to a different populations.

The test used is based on the Kolmogorov-Smirnov statistics [107, page 345].

If the result of the test is in favor of hypothesis Ho, E^ and a7^ are

accepted as estimates of the corresponding quantities and the initialization proce

dure is concluded. In the opposite case, the generation at infinite temperature is

continued to obtain another batch of data and the testing procedure is repeated.

Given the estimates E^ and o^, equations (7.25) and (7.26) give the
estimates for Et[c] and 0^(6). A 77* density with parameters Et[c] and 0j.(c) is
then generated and the testing procedure described aboveis repeated, at each value

of T, to verify that the costs generated by SA have density 77.

The test described above gives correct results if the data are representative

of the corresponding population. As a consequence, some precautions are necessary

in its implementation. The initial set of data, most likely reflects the transient due

to the change in temperature and therefore its influence on the outcome of the test

should be relatively small. This is accomplished by requiring that the test is not

applied if a minimum number of data has not been generated yet.

To determine minimum number of data that have to be neglected is im

possible. In fact to determine the duration of the transient exactly requires the

knowledge of the second eigenvalue of P(T). However, we can use the number of

data that was necessary to reach stationarity when T was considered infinite as an

estimate of the minimum amount of data necessary for the test to make sense.
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On the other hand, we have to account for the case in which our estimates

are incorrect and the actual values of Et[c] and 0j-(c) are significantly different from

the predicted ones. In this case the outcome of the test will be always negative and

SA will enter an infinite loop. This is avoided simply by putting a fixed upper

bound on the number of moves that are attempted.

However if the limit on the number of moves is hit, we have an indication

that the estimates we are using are no longer adequate to predict the future values

of both Et[c] and a\(c). To limit the entity of future errors, the algorithm re-

tunes the reference values that will be used for future predictions. To this purpose,

equations (7.25) and (7.26) are replaced with

*H_,.H-«^(.-S)e±$) <,»,
and

*M =̂ (c)(ji|§)2, (7.37)
where T2 is the temperature at which we need the estimates and Ti is the reference

temperature. Note that as Tx approaches infinity, (7.36) and (7.37) approach (7.25)
and (7.26) respectively. The advantage of (7.36) and (7.37) over (7.25) and (7.26) is

that the most recently computed values of Etx [c] and a^ (c), can be used to produce
more reliable estimations.

The limit on the number of attempted moves is hit more frequently at low

values of temperature. The reason for this is twofold: First, at low temperatures,

the ratio between attempted moves and accepted moves is rather small and this

jeopardizes the reliability of the statistics since the number of useful samples is

greatly reduced. Second, towards the end, the algorithm tends to be trapped in a

local minimum. Because of this, measured data have both expected value and vari

ance whichare consistently lower that the predicted ones. Without re-adjustment, a

large numberof moves has to be attempted before the measured statistics approach

the predicted ones. Intuitively, we have to wait until when SA exits the present

local minimum and starts visiting a different portionof the state space and weknow

that the probability that such event occurs, is exponentially decreasing with both
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T and the height of the lowest path that takes out of the domain of attraction of

the local minimum.

A comment is in order about the Kolmogorov-Smirnov test. The test

requires to compare the measured density with the computed one. In practice

this is accomplished by grouping the data in n bins, constructing the cumulated

histogram of data 5n, computing the predicted distribution V and comparing them

by studying the statistics of the random variable Dn

Pn = max|r(c)-Sn(c)|.

Dn has a x2 distribution with n degrees of freedom and henceits statistics depend

on n and, ultimately, on the number of bins that are used to build the histogram.

Since the range of variability of data is known only approximately before the data

are actually generated, to distribute the bins uniformly over the range of variability

may lead to a histogram which is too inaccurate. On the other hand, to build

an accurate histogram, may require to alter the distribution of the bins over the

variability range iteratively and this procedure becomes rather cumbersome if the

size of the sample is very large.

To avoid this difficulty and speed up the execution time, the procedure de

scribed above to test the hypotheses, is modified as follows: Compute the weighted
moving average of the data

n

Yj Vkfn-k
R.O0 - —r

£/*

with r is the order of the moving average. /* < 1, k = 0,1,..., r are the oblivion

factors used to assign higher weights to more recent observations [102]. If

\ET[c]-Vn(r)\<8*2T(c) (7.38)

then compute the histogram and apply the Kolmogorov-Smirnov test. If the test

is satisfied with the desired level of significance, then conclude that equilibrium is
achieved, otherwise continue.
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The parameter 8 is of course related to the level of significance selected.

Wefound, in the majority of our experiments, that the outcome of the Kolmogorov-

Smirnov test with level of significance 5% is positive if equation (7.38) is satisfied

with 8 = .75. Furthermore, in the case of a negative outcome of the Kolmogorov-

Smirnov test, an additional data sample of size proportional to the size of the

problem was always sufficient for the test to give a positive result.

A Simplified Equilibrium Criterion

To conclude this section wepresent a simplified version of the equilibrium

condition that has been developed earlier than the one presented above and that

can be considered its prototype.

The idea behind the simplified criterion is the same, the implementa

tion however is different. In the simplified criterion, the equilibrium is considered

achieved if the ratio of the number of new generated states with their costs within

the range (i£r[c] —8), (Et[c] + 8) to the total number of the newly accepted states
also reaches a stable value, say p. If $(c) is the normalized distribution of cost p is
given by

p=*(8/<r)-*(-8/<r) .

Given p and the size of the problem, a batch of Na accepted moves is

generated by SA. During the execution, the numberna of acceptedsolutions whose

cost is in the range (Et[c] - 6), (ET[c] + 8), is monitored and compared against
pNa. If na exceeds pNa before Na moves have been accepted, the equilibrium is
considered achieved. Conversely, n0 is reset to zero and the algorithm is required
to generate a new batch of solutions.

Both p and Na should be updated dynamically to reflect the variations of

^(c) as T is decreased. However, in this simplified criterion they are both fixed at
the beginning of the algorithm.

Similarly to the condition described above, an upper and a lower bounds

on the number of generated moves are introduced.

The annealingschedule with the simplified equilibrium criterion described
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above is hereinafter referred to as the simplified schedule.

7.1.5 The Stopping Criterion

The scope of the stopping criterion is to recognize that the algorithm has

reached a local minimum and T is so small that the probability to escape from it is

negligible.

To determine the occurrenceof such a situation, after equilibrium is achieved,

we compare the difference between the maximum and minimum costs among the

accepted states at that value of T with the maximum changein cost in any accepted

move at the same value of T. If they are the same, apparently all the states accessed

are of comparable costs and there is no need to continue to use SA. T is then set to

zero and the algorithm becomes a standard "greedy" random selection algorithm.

This mechanism to terminate the annealing has been found to be quite successful

without any negative side effects.

7.2 Related Work

Many authors have tackled the problem of finding an aoptimaT finite time

annealing schedule. In this section we will review briefly some different interpreta

tions of the criteria presented above. Among all the schedules that we will refer to,

only the schedule proposed by Delosme and Lam [108] is truly dynamic. In all the

others, the criterion to determine if equilibrium has been achieved requires that a

minimum number of moves, proportional to the size of the problem, is attempted.

Moreover the annealing schedule by Delosme and Lam is different from the others

also because it requires to attempt only one move at each value of T.

7.2.1 Initial Temperature

The idea to relate the value of the initial temperature to the value of

the standard deviation of the costs at infinite value of T dates back to White's

work [105]. White proposed a criterion for the selection of the initial temperature
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based on the assumption that the cost has approximately a Gaussian distribution

with parameters E^c] and 0"£,(c). If the exponential sampling rule is applied, the
following expression for ET[c] is obtained

ET[c] * EM[c] - £& .

White proposes to take the initial value of T such that

Eoo[c]-Et[c]<<t(c).

which implies T > a(c) similarly to what proposed above. A similar criterion is

used by Delosme and Lam.

Aarts and van Laarhoven [68] suggest to select T0 such that a specified

acceptance ratio po is achieved. In particular if n moves are attempted at temper

ature T and the generation probability is uniform, the corresponding acceptance

ratio pr is given by

pT=If;min[l,e t], (7.39)
n $=1 i j

where A,- is the variation in cost of the t-th move. H n+(n~) is the portion of the

moves with positive (negative) A,-, and A+ is the average of the positive variation

in cost, (7.39) can be solved for T to give

Tn =
log(n+/(n+ - (1 - p0)n-))

A+

Criteria similar to Aarts' in spirit but slightly different in the implementation have

been proposed by other authors [26,30,56].

7.2.2 The Decrement of T

The condition on the decrement of T which appears most frequently in

literature requires to select the new value of T such that for all z € H

1 <Jfc2L (7.40)
i + A,!-tf(c,r,b+1)-
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Aarts and van Laarhoven [68] assume that cost is normally distributed and derive,

from (7.40), the following updating rule

T^ =1{ioIk+xA)T:- <7-41>
+ 3*Tk(c)

Notice that if the exponential factor in (7.35) is expanded in power series, the series

is truncated after the first term, and A^ is such that

A_log(l+Ai4)
3

with A as in (7.35), we obtain the update rule (7.41). In conclusion, if XTk/aT (c)
is small, the rule proposed by Aarts and van Laarhoven, (7.41), gives the same

temperature decrement provided by rule (7.35).

Otten and van Ginneken combine the requirement of equation (7.40) with
experimental observations to give the following criterion:

Tk+i = Tk —(• n

For high values of T*, the factor ( is related to \a by the following relation

<r%(c)log(l + \A)
* Tk(E[c]-Tklogtl +\A)) •

An approach similar to the one presented in Section 7.1.3 has been pro

posed by Nulton and Salamon [109]. They assume that each of the state has a

different cost and require that the distance between the cost densities at two subse

quent temperatures is smaller than a factor A^. They denote by dET[c]/dt the time

rate of variation of Ej{c\ during the annealing process. From statistical mechanics

it follows that

<*ffr[c] _ ET+ST[c] - Erjc]
~dt eJT) ' (7,42)

where e(T) is a function of the second eigenvalue of the transition probability matrix
P(T). Combining (7.42) with the condition

S(*(c,T + dr),^(c,T)) = A^,
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they obtain
dT XNT
-17 = / • (7.43)* e(T)J(<rT(c)/T)

Integrating equation (7.43) with respect to time, gives the temperature variation.

Notice that even if equation (7.43) has form similar to (7.32), the coefficients of the

two differential equations are rather different. In particular notice that to integrate

(7.43) the knowledge of e(T) is required which in turn implies the knowledge of the

second eigenvalue of the transition probability matrix P(T)!

A complete different approach is followed by Delosme and Lam [108]. Ac

cording to their definition, the system is considered to be in equilibrium if it satisfies

the following condition

I^*+i M- Erk+1W I^ *D*iWi(c) . (7-44)

where E is the expected value of the cost not necessarily at equilibrium. Delosme
and Lam assume that the dynamics of Erfc[c] are adequately approximated by the
first order autoregressive process given by

%Tk+1[c] =ri(c,Tw.1)(EPa)b[c] - ETk+1[c]) + ETk+1[c] , (7.45)

where ri(c,X*) is the first term of the autocorrelation function for the time series

of the cost.

Combining equation (7.44) with (7.45), Delosme and Lam obtain the fol

lowing expression for the update rule

?fc+i = m . (7.46)

1+AD^(1"ri(c'Tt))
The final form of (7.46) is again similar to (7.41) with the difference that the co

efficient which multiplies the ratio Tk/vTk(c) depends on the autocorrelation of the
time series. In particular, higher values of ri(c,Tk) correspond to slower update of
T while lower values of ri(c,Tk) force faster updates.

An intuitive explanation for the form of the interaction between T and

ri(c,Tk) is as follows: A high value of ri(c,Tfc), i.e. ri(c,Tk) close to one, means
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that jC/TjJc] is a good prediction for the corresponding quantity at temperature
Tk+x which in turn indicates that the process has its statistics still "close" to the

stationary statistics at Tk. To put it in another way, the process is slow to respond

to variations of T. Consequently, the pace at which T is updated must be slowed

down. Similarly, if ri(c,T*) is close to zero, the influence of the present value of E

in determining the corresponding new value is limited compared to the influence of

E (See equation (7.45)). Therefore the process is quick to follow variations of T
and hence T can be updated at a faster rate.

One final comment is in order about the update rule proposed by Delosme

and Lam. From (7.46) it follows that negative values of rx(c,Tk) generate annealing

schedules which are faster than annealing schedules generated from time series with

the sameautocorrelation coefficient but with the sign changed. This behavior seems

counter intuitive since only 11 —rx(c, Tk) | should matter in determining the amount

of variation in T that the system can tolerate.

In a later version of their work [110], Delosme and Lam specify the model

for both the cost distribution and for the generation strategy. This allows them to
modify (7.46) to give

rp Tk
*+1 = / T \* '

where

and pT is the acceptance ratio, namely theratio ofaccepted moves versus attempted
ones.

This result is very interesting since, for the first time, the temperature

update is linked with move generation. In particular, the smaller is the acceptance
ratio, the slower is the temperature updating. One explanation for this is the

following. A small acceptance ratio implies that the number of new configurations
that are actually accepted is small and this in turn means that the exploration
of the solution space proceeds slowly. Therefore, more time is required to achieve
quasi-equilibrium and this explains the slow down in the temperature update.
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Notice that as the temperature approaches zero, the acceptance ratio pT

goes to zero which in turn implies that the temperature variation approaches zero.

If the temperature becomes constant, unless other mechanisms intervene, the algo

rithm enters an infinite loop. However this situation does not occur. In fact a?, (c)

approaches zero at the same rate as T and this means that the variations of the cost

are progressively reduced and, eventually, the stopping criterion will detect that the

cost has become stationary and it will terminate the algorithm.

7.2.3 The Equilibrium Condition

To reach an equilibrium means to establish the steady-state probability

distribution of the accessible states. However, dynamic monitoring of the steady-

state condition for all the accessed states is in practice hardly feasible. Partly

because of this the condition that has to be satisfied for the system to reach the

equilibrium is the least addressed issue in the annealing processes in the literature.

Typically, either a fixed numberof generated configurations [68] or certain minimum

number of new accepted configurations [12] is used, in the hope that the system will

reach equilibrium by then. Both methods are strongly dependent upon the problem

that has to be solved and hence hardly portable.

Lam and Delosme [108] propose to take only one step at each temper

ature and let the update rule take care of the fact that the equilibrium has not

been approximated well. Notice however, that the sequence of temperatures gener

ated by Lam's annealing schedule does not resemble the sequence generated by the
logarithmic rule (4.39).

7.2.4 The Stopping Criterion

A typical criterion for termination of the annealing process is as follows:

The algorithm is terminated when the average cost does not change significantly
for few consecutive values of T [12,108].

A different approach is followed by White [105]. He proposes to stop the
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process when the final value of T is such that for every local minimum t € fif

min minexpf—* *) < - .

The above condition gives

C • — C'
T/<maxmax-Y-

»€nm jeQi loge

Notice that maxt€nm maXj^Q.(cj —ct) is not known and has to be estimated.

Otten and van Ginneken [67] suggest to terminate SA as soon as any

further reduction in T will produce an improvement of the expected value of the

cost which is e, (e < 1), times the average improvement registered during the

execution of the algorithm. The explicit form for the condition is given by

£fc> <e
T(E„[c] - Er[c]) ~ •

A similar bound was introduced also by Aarts and van Laarhoven [68].



Chapter 8

Applications of Adaptive

Annealing Strategies

In this chapter wedescribe the results obtained testingthe annealing sched
ule introduced in Chapter 7. The chapter is divided into two sections.

In the first section weconcentrate on a particular type of layout problem:
Placement of cells on a two-dimensional grid. For this problem we compare the
behavior of the new adaptive schedule to the behavior of its simplified version and
to the behavior of the geometric schedule in which T is updated by

?i+i = <*Tk

and equilibrium is considered achieved when a minimum number of new moves has

been attempted .

In the second one, we discuss some earlier results obtained using the simpli
fied version of the annealing schedule presented in Section 7.1.4. The test problems
used are: The traveling-salesman and the standard cell placement problem. These
particular problems have been chosen because, for both of them, algorithms based
on the simulated annealing but controlled with a static schedule, are available. Fur
thermore the nature of the problems is different enough to prove the generality of
the strategy proposed to control the annealing process.

141
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8.1 The Adaptive Schedule

In this section we concentrate on a particular instance of placement prob

lem and we address the following issues. First we study the improvements achieved

by replacing the simplified mechanismused to detect equilibriumwith the one pre

sented in Section 7.1.4. Then we show how variations in the values of the fixed

parameters that appear in the adaptive schedulehave limited influence on the qual

ity of the solution.

8.1.1 Test Case Characteristics

In all the circuits used as test case, the cells have to be placed on a pre-

specified rectangular grid. The circuits canbe classified into three groups according
to the characteristics of their connectivity.

The first group has a hierarchical structure. Each example is obtained

by combining 4 groups of 4* cells to obtain a circuit consisting of 4*+1 cells. An

example of the result of the constructing procedure for k = 1 is given by the circuit

shown in Figure 8.1. The first group is again subdivided into two subgroups. The

only difference between the subgroups is the different set of weights assigned to the

connections. Examples with the letter "h" at the end of the name, represent circuit

with higher weights. Given the structure of the circuit, we know the value of the

cost associated with the global optimum and this is a useful milestone to compare
the final solution found by SA.

The second group of circuits consists of examples whose connectivity has

been generated at random. In particular, for circuit sohr225 the netlist has been

generated according to the following procedure. The n cells which comprise the

circuit are partitioned into two subsets 5X and 52 of equal size. Then k(n/2)p pair
of cells (c,-, Cj) with c< 6 St and Cj G 52 are selected at random and a connection

between the two is created. The same procedure is repeated recursively on Si and
S2 until when the subsets consist of two cells only. The coefficients k and p are
selected according to the rent's rule [111]. Rent's rule gives an estimate of the
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I I Module Connection

+ Grid location

Figure 8.1: Hierarchical example with 16 cells.

number of connections given the number of cells if the example represents a digital
circuit. Circuit sohr225 has been generated in particular using n = 225, k = 0.6,
and p = 2/3.

Circuit sofr225, instead, hasbeen generated by selecting uniformly at ran

dom, a number m of connections among the n(n—1)/2 possible connections for the
n cells which comprise the circuit. To generate sofr225, m has been taken equal to
the number of connections in sohr225 and n = 225.

Finally the last example, sorell5 represents a real circuit.

In all the cases the move set consists of pairwise interchanges of cells and
the cost function is the total wire length measured as the sum of the Manhattan
lengths of all the interconnections.



Example Name # Cells #Nets Optimal cost
test64 64 84 292

test256 256 340 2340

testl024 1024 1364 18274

test64h 64 84 1092

test256h 256 340 17476

testl024h 1024 1364 279620

sofr225 225 361 (*) 1000
sohr225 225 361 (*) 780
sorel05 105 191 (*) 360
Notes:

(*) Estimated value
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Table 8.1: Summary of the characteristics of the test cases.

8.1.2 Improvements Over the Simplified Schedule

To test the quality of the adaptive schedule, we compare the results ob

tained by using it against the results obtained using the simplified schedule and the

geometric schedule. To keep the comparison as meaningful as possible, we fixed

the parameters of the adaptive schedule and of the simplified schedule, while we

optimized the parameters for the geometric schedule. In particular we run the

geometric schedule with different choices of the coefficient a in (2.4) and of the
number of attempts percell and we picked the best combination of the parameters

for each example. The set up of the parameters used for the geometric schedule is

Example Name a # Moves per Cell
test64 0.9 32

test256 0.9 64

testl024 0.95 32

test64h 0.85 32

test256h 0.85 64

testl024h 0.9 32

sofr225 0.9 64

sohr225 0.9 64

sorel05 0.9 64

Table 8.2: Parameters used for the geometric schedule.
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summarized in Table 8.2 while the parameters used for both the adaptive and the

simplified schedule are given in Table 8.3.

K 3

8 0.75

X 0.5

maximum generation 32

minimum generation 4

Table 8.3: Parameters used for both the adaptive and the simplified schedule.

The results obtained are collected in Tables 8.4, 8.5, and 8.6. The columns

Example Name Final Cost Attempted Moves Number

£• a2 y a* Samples
test64 359.6 1864.11 53610 5.14 e+07 50

test256 2700.6 33699.3 855230 7.6 e+09 30

testl024 20034 524722 3.28 e+06 2.16 e+11 20

test64h 1321.8 22166.8 48540 8.44 e+07 20

test256h 19960.8 2.55 e+06 273793 1.71 e+09 20

testl024h 301882 9.65 e+07 1.85 e+06 4.00 e+10 10

sofr225 1117.6 1924.34 234607 8.97 e+08 20

sohr225 906.45 2064.05 264216 1.94 e+09 20

sorelOS 413 382.2 63961.2 1.33 e+08 20

Table 8.4: Adaptive Schedule.

Example Name Final Cost Attempted Moves Number
a? a2 y &' Samples

test64 358.6 1858.4 59507.2 7.13 e+07 50

test256 2695.3 29922.0 898534 6.09 e+09 30

testl024 19941.0 676940.0 3.79 e+06 2.88 e+11 20

test64h 1319.2 21974.5 48455.6 6.17 e+07 20

test256h 19977.6 2.37 e+06 305267 1.96 e+09 20

testl024h 301943 1.02 e+08 1.89 e+06 4.20 e+10 10

sofr225 1117.0 2001.4 264405 1.39 e+09 20

sohr225 904.8 2067.3 288779 2.01 e+09 20
sorel05 411 462.16 79620 1.35 e+08 20

Table 8.5: Simplified Schedule.



Example Name Final Cost Attempted Moves Number

X a1 X a2 Samples
test64 355.8 1397.15 116695 3.06 e+07 50

test256 2729 80297.4 1.23 e+06 9.15 e+09 30

testl024 21411 3.38 e+07 7.71 e+06 4.45 e+11 20

test64h 1217 9125.9 49664 5.82 e+06 20

test256h 19553.1 2.95 e+06 554598 1.56 e+09 20

testl024h 293690 8.54 e+07 2.59 e+06 3.70 e+10 10

sofr225 1054 895.7 486720 1.04 e+09 20

sohr225 833.5 1238.55 473320 6.34 e+08 20

sorel05 386 57.94 193200 5.36 e+07 20
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Table 8.6: Geometric Schedule.

denominated x and a2 contain the average value and the variance of either the final

cost or the number of attempted moves. The number of samples used to compute

the statistics is reported in the last column of the table.

The number of attempted moves is used as an estimator of the time re

quired by the algorithm to produce the final solution. The time itself is not repro

duced since it varies significantly with the load average of the computer at the time

of the execution.

The analysis of the results shows that, while the values of the cost of the

final solutionsobtained with the three annealing schedules fluctuate only within few

percentage points among each other, the number of attempted moves and hence the

amount of time required varies significantly. Table 8.7 summarizes the results of

Tables 8.4, 8.5, and 8.6. In particular, the geometric and simplified schedule are

compared against the adaptive one. The variations Ac and Am are defined by

Ac = c,/ca i = G,S,

Aro = mi/ma i = G,S ,

where c,- (mt) is the cost(the number ofattemptedmoves) required by the geometric

(G) or simplified (S) schedules. cA (mA) is the cost (the number ofattempted moves)
required by the adaptive schedule.

In particular for example testl024 the simplified schedule requires 15%

more time then the adaptive schedule, while the time required by the geometric



Example Name A Variation

A G S

test64 Ac 1.00 0.987 0.997

Ara 1.00 2.17 1.11

test256 Ac 1.00 1.01 0.998

Am 1.00 1.44 1.05

testl024 Ac 1.00 1.06 0.995

Am 1.00 2.34 1.15

test64h Ac 1.00 0.921 0.998

Am 1.00 1.02 0.998

test256h Ac 1.00 0.980 1.00

Am 1.00 2.03 1.15

testl024h Ac 1.00 0.973 1.00

Am 1.00 1.24 1.02

sofr225 Ac 1.00 0.944 0.999

Am 1.00 2.07 1.12

sohr225 Ac 1.00 0.919 0.998

Aro 1.00 1.79 1.02

sorel05 Ac 1.00 0.936 0.995

Aro 1.00 3.02 1.24

Notes:

A = Adaptive Schedule
G = Geometric Schedule

S = Simplified Schedule

Table 8.7: Variation with respect to the adaptive schedule.
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schedule exceed the time required by the adaptive schedule by 132%. However the

amount of speed-up is not constant. There are cases in fact in which the improve
ment in speed obtained by the adaptive schedule with respect to the geometric one
is more limited (See for example testl024h).

The adaptive schedule selects a more effective sequence of temperatures
which in turns requires a smaller number of trials. In Figure 8.2 the sequence of
temperatures produced by the adaptive schedule is compared with the sequence

produced by the geometric schedule. The sequence of temperatures selected by
the simplified schedule is not reported since it is hardly distinguishable by the one
produced by the adaptive schedule. The data refer to sohr225.

Notice that the simplified schedule is slower than the adaptive schedule.
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Figure 8.2: Logarithm of T/T0 versus number of iterations. The straight line rep

resents the updating rule of the geometric schedule with a = .9. The piecewise line

represents the updating rule of the adaptive schedule.

This is due to the fact that the simplified schedule assumes that equilibrium is

achieved once the ratio of moves with cost within a certain range reaches a fixed

value. Hidden in this criterion is the assumption that the shape of the distribution

does not change as T is reduced. From experience however, it follows that, as T be

comes smaller, the costdistribution becomes more and more skewed. Consequently,
the simplified schedule ends up wasting time trying to achieve an equilibrium dis
tribution which is incorrect.

To assess the quality of the mechanism we used to predict the expected

value and the variance of the cost we collected the data from a run executed on

sohr225. Three curves are reported in Figure 8.3. The first one is the measured

average cost, the second one is the predicted average cost, and the third one is the

minimum value of the cost found.
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The agreement between prediction and measurements is extremely good

for temperature in the medium-high range. Only minor corrections of the predic

tions are necessary every time that T is updated. At low values of T, predictions

have to be readjusted more significantly after every temperature update.

This behaviorhas two explanations. First of all, in the present implemen

tation of the placement program, the mechanism to generate new moves is rather

naive. In fact no control on the type of moves that are generated is implemented

and, as a consequence, the acceptance ratio becomes very small towards the end

of the execution of the algorithm. A small acceptance ratio reduces the speed at

which the state space is explored and hence reduces the significance of the statistics

that are collected which in turn affects the reliability of the predictions.

Second, as T approaches zero, the algorithm tends to settle into a local

minima. This means that the statistics that are collected are biased. To show this

problem we run again SA on the same example but this time we did not do any
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adjustment to the estimates. In practice we measured the expected value and the

standard deviation of the cost as T approaches infinity and we used (7.25) and

(7.26) to compute the predictions. The results are presented in Figure 8.4. Note
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Figure 8.4: Cost versus logarithm of T. No prediction adjustments.

how the predicted value lays a little below of the measured one for high values of

T. As T is reduced the gap narrows and, eventually, the measured value becomes

smaller that the predicted one to indicate that the algorithm has been trapped in

a local minima and that the measured statistics are becoming biased.

Finally, in Figure 8.5 and Figure 8.6 the predicted and measured Gamma

densities are compared for three values of T. Figure 8.5 refers to a T at which

the acceptance ratio is about .75. Figure 8.6 refers to a very low value of T for

which the acceptance ratio is approximately .05. The histogram represents the

density of measured data, and the curve represents the gamma density build from

the predicted expected value and variance. Notice that while the agreement is fairly

good at high values of T, at low values the measured data (those represented by the



151

Figure 8.5: Cost density for high value of T.

discrete histogram in the figures) disagree significantly from the predicted curve. In

particular in the case represented in Figure 8.6, the Kolmogorov-Smirnov test was

never satisfied and the inner loop was exited because of the limit on the maYimnm

number of attempted moves. The data refer to sohr225.

8.1.3 Sensitivity Analysis

The adaptive schedule gives good results with the same set of parameters

for all the test cases we tried. However to assess the dependency of the solution

on the particular choice of the parameters, we conducted a sensitivity analysis. We

selected the three circuits test64, test256, and testl024, and we perturbed each of

the parameters, one at a time, to analyze the effects of the perturbation on the

result. We repeated the experiment ten times for each choice of the parameters

and we recorded the average variation of the cost and of the number of attempted

moves in Tables 8.8, 8.9, and 8.10. Ac refers to variation in cost while Am refers to
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variation in the number of attempted moves. Both values of A are defined by

A=(!lz£)ioo.
where r represents the unperturbed quantity and p the perturbed one.
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Example Name Cost Variation in %

-50% -25% -10% 0 10% 25% 50%

test64 Ac -4.73% -3.69% 7.90% 0.00% -3.78% 2.83% -5.94%

ATO 11.47% 12.03% 14.83% 0.00% 6.88% 7.63% 11.36%

test256 Ac 2.57% 0.01% 2.60% 0.00% -2.26% 4.05% -0.39%

Am 1.04% -1.15% -7.60% 0.00% -4.51% -3.25% -11.03%

testl024 Ac 2.72% -0.05% 0.06% 0.00% -3.22% 2.20% 0.89%

Am 6.86% 4.85% 0.50% 0.00% 3.71% 3.61% -2.18%

Number of Samples = 10

Table 8.8: Sensitivity with respect to parameter K
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Example Name Cost Variation in %

-50% -25% -10% 0 10% 25% 50%

test64 Ac 3.91% 2.55% 2.77% 0.00% -3.58% -4.94% -1.09%

Am -42.27% -22.11% -11.81% 0.00% 7.75% 7.58% 20.21%

test256 Ac -3.12% 0.18% -3.97% 0.00% 0.85% 3.22% 0.88%

Aro -67.50% -34.91% -16.84% 0.00% -4.27% 1.65% 19.57%

testl024 Ac 0.92% -0.51% 0.38% 0.00% 1.91% 0.17% -0.48%

Am -50.73% -31.71% -5.86% 0.00% 4.22% 9.74% 18.15%

Number of Samples = 10

Table 8.9: Sensitivity with respect to parameter 8

Example Name Cost Variation in %

-50% -25% -10% 0 10% 25% 50%

test64 Ac 0.45% -1.45% -0.50% 0.00% -1.45% -2.12% -1.28%

Am -38.24% -10.94% -0.74% 0.00% 6.81% 9.59% 14.45%

test256 Ac 5.23% -0.11% 1.20% 0.00% 1.61% 0.68% -4.15%

Am -45.56% -19.75% -7.31% 0.00% -10.02% 5.25% 8.61%

testl024 Ac 3.36% 3.16% 0.85% 0.00% -1.09% -1.16% -0.99%

Am -4451% -30.53% -8.12% 0.00% 6.16% 14.43% 19.05%

Number of Samples = 10

Table 8.10: Sensitivity with respect to parameter A

Analyzing the results, we see that for all the parameters, the differences

of cost are always contained within the -5% +5% range. The range of variations

combined with the observation that the relative sign does not seem to follow any

pattern, are hints that the fluctuations are due more to noise effects than to effective

sensitivity of the solution with respect to the parameters.

As expected, the number of attempted moves is more susceptible to the

variation of the parameters, particularly 8 and A. In fact a lower values of 6 imply

higher accuracy in checking the achievement of the equilibrium and hence a larger

number of attempts. Similarly, the smaller A, the smaller the decrement of T which

is allowed, hence the larger the number of temperatures that are generated.

Notice however, how the variations in the number of attempted moves

induced by positive perturbations, have an absolute value which is smaller that
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the negative counterpart. This asymmetry means that the adaptive schedule does a

better job in compensating positive variations than it does with negative ones. This

can be explained as follows: If A is increased, the algorithm is forced to take larger

increments of T but this is partially compensated by the larger number of moves

that is required to achieve equilibrium again. K 8 is increased, the algorithm will

be less precise in determining the convergence to equilibrium. This will be reflected

by a large variability measured by a which in turn will force a slower updating for

T. On the other hand, if A is reduced, the algorithm will take a smaller number of

iterations at each value of T but it will never be allowed to take less iterations than

the minimum number required for the accuracy of the estimation. Instead if 8 is

reduced, the extra time spent to achieve the equilibrium is not compensated by the

reduction of a which is bounded below by the noise of the measurements.

The sensitivity analysis presented above, far from being conclusive, tells

at least that the improvements obtained by the adaptive schedule over the plain

geometric one are not due to the particular choice of the parameters. Furthermore,

if we combine this result with the-observation that the parameters of the adaptive

schedule were constant for all the test cases, we conclude that the adaptive schedule

is fairly robust in the sense that it produces solutions with comparable quality in a

smaller time.

8.2 The Simplified Schedule

The only difference between the simplified schedule and the adaptive sched

ule presented in the previous chapter, is in the mechanism used to check if equilib

rium has been established. The simplified schedule has been the prototype for the

adaptive schedule. It has been tested on the traveling salesman problem and on the

placement of standard cells. The results obtained during the experimentations are

reported in the following sections.
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8.2.1 Traveling-salesman Problem

The Traveling-salesman problem is a well known NP — hard problem [8,

112]. It consists in determining a tour on a graph such that every node is visited

only once and the length of the tour is minimized. In the particular instance of the

traveling-salesman problem we selected, the cities, nodes of the graph, are located

at the vertices of a square array. The cost is the total Manhattan distance of a

closed tour divided by the number of the cities. The intercity distance is one.

A move is carried out by randomly selecting two cities in the tour and

reversing the order in which the cities in between are visited. The control parameters

of the annealing schedule are reported in Table 8.11. Problems with the number of

parameter value

K 20

X 0.7

8 0.5 cr

maximum generation N(N -1)/2
minimum generation N

Table 8.11: Parameter setting for the traveling salesman example. N number of

cities.

cities N ranging from 49 to 400 are analyzed.

For the particular traveling-salesman problems considered, the global min

ima are known. Hence the quality of the solution produced by the algorithm can

be carefully assessed. Using the control parameters reported in Table 8.11, the

standard deviation from the global minimum is less than 2 % for each problem

studied.

In Figure 8.7, the CPU time required for the annealings is compared with

the result published in [68] in which a geometric annealing schedule is used.

Care has to be taken when comparing the CPU time from various studies.

In fact two issues may affect the CPU time required to produce the result in addi

tion to the actual efficiency of the algorithms compared. The first issue involves the

targeted quality for the solution. SA may produce oscillations of the solution in the
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Figure 8.7: Comparison of performance of the new annealing process with the one
reported in literature. Solid line is from literature; circles are from thenew annealing
process.

vicinity of the optimum and a stopping criterion that promptly detects such a situ

ation can save few percents of the global running time. The second issue is related

to the differences in the computing environment, both in computer hardware and
software. Different efficiency of bothoperating systems and compilers may produce
significant differences in CPU time. In the comparison above, the quality of the
solution found by the algorithm is comparable in both studies. The computer hard
ware used, had the same architecture and the same speed performances measured

in MIPS . The operating system and the programming languages used in algo-
1Aarts et. al. used a Dec VAX 11-780, we used a DEC VAXstation II/GPX.
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rithm implementation are, however, different. In our case we used C programming

language and UNIX BSD 4.3 operating system. The program by Aarts et al. is

written in Pascal with VMS operating system.

Besides the differences described above, a uniform speed-up of more than

five times clearlydemonstrates the efficiency of the proposedadaptive schedule. The

CPU time saving is obtained mainly by reducing the number of moves attempted

at high values of T and by using a more aggressive updating strategy for T.

8.2.2 Placement of Standard Cells

The standard cell layout style is used to assemble sub-blocks of integrated

circuits. In this style the cells, each of which implements an elementary logic func

tion, are placed in rows (or columns) and are connected to realize more complex

logic functions. The connections are performed in the routing channels available

between the rows. The objective of the placement is to select the position of the

cells in the rows so that the areaof the sub-block, namely the area of the cells plus

the routing area, is minimized. Of course the minimization is obtained by reducing

the routing area since the cell areas are data of the problem.

TimberWolf3.2 [22] is a very efficient simulated annealing based package

for the placement and global routing of standard cells. TimberWolf3.2 features an

annealing schedule in which the number of moves that are attempted at each value

of T is proportional to the complexity of the circuit, i.e. number of cells, as shown

in Table 8.12. T is updated according to a predetermined exponential law.

To test its efficiency, the simplified adaptive schedule has been installed in

TimberWolf3.2. All the other features of the original program, namely the move-

set, the penalty term to account for overlap, as well as the range-limiting feature

in TimberWol£3.2 are left unchanged. The control parameters for the simplified

annealing schedule are the same as those used in the traveling-salesman problem

discussed in the previous section. In this case, N is the total number of cells.

Four circuits of size ranging from 183 to 800 cells are analyzed using both

algorithms. In Table 8.13 the results obtained with the TimberWolf3.2 annealing



No. of cells Att. per Cell

0 - 200 100

200 - 500 200

500 - 1000 300

1000 - 1500 400

1500 - 2000 500

2000 - 2500 600

2500 - 3000 700

3000 - 3500 800

3500 - 4000 900

4000 - 4500 1000

4500 - 1200
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Table 8.12: TimberWolf optimal number of attempts per cell.

process and those obtained with the simplified annealing schedule are indicated with

the subscript 1 and 2 respectively. The quantities At and Aw, given by

Ae =<l/*2 ,

Aw =wi/w2 , ,

represent the ratio of CPU time and of estimated wire length obtained by SA with

the two different annealing schedules. The results collected in Table 8.13 show that

Size CPU time (sec.) Wire Length

<i h At W\ w2 Aw
183 2301 984 2.33 295585 300448 0.98

286 7330 4536 1.61 317306 330263 0.96

469 11117 5140 2.16 487934 480981 1.01

800 38526 32400 1.19 1270561 1262354 1.007

Table 8.13: Comparisons with TimberWolf Annealing Process.

TimberWolf3.2 with the simplified schedule, is up 2.3 times faster than the same

program with the original schedule while maintaining the quality of the solution.

Similarly to what experienced with the adaptive schedule, the improvement in CPU

time does not exhibit a constant trend with respect to the size of the problem to

be solved. This is expected since the proposed scheduler even with the simplified

equilibrium criterion, is still adaptive and the number of attempted moves is varied
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according to the statistics of the problem to be solved, in order to obtain good

quality solutions.

As stated in the previous section, CPU time required by SA varies dras

tically with the quality of the solution. The speed-up ratio may be reduced if a

setting different from the one reported in Table 8.12 for the maximum number of

generated moves is used for the original annealing schedule.

To test the above conjecture, TimberWolf3.2 with the original schedule

was allowed to run for an amount of time comparable to the time required by the

simplified schedule. The results we have obtained are collected in Table 8.14. The

Size Wire length saving CPU time

simplified vs. original simplified vs. original
183

286

469

800

+2%
-3%

+42%
+1%

0.97

1.15

1.02

0.97

Table 8.14: Comparisons between the two schedules with the same amount of CPU

time.

results represented in Table 8.14 show that the two schedules produce solutions with

comparable quality in three out of four cases. In the fourth case the quality of the

solution obtained with the new schedule is considerably better. The conclusion we

derive is that the adaptive schedule, even in its simplified version, succeeds in the

task of determining the exact number of moves to be performed at each value of T

necessary to produce good quality results.



Chapter 9

Conclusions

A class of algorithms for the solution of combinatorial optimization prob

lems inspired by the technique known as Simulated Annealing has been presented.

The algorithms in the class have the characteristics of being able to climb "hills",

i.e. to accept intermediate solutions which increase the cost. The acceptance of

up-hill moves is controlled by a probability distribution whose shape is adjusted by

means of a parameter, the temperature T.

Any algorithm in the class is completely specified by assigning five pa

rameters: The generate function, the acceptance function, the update function, the

inner loop criterion, and the outer loop criterion. The generate function perturbs

the current solution to produce the new one. The acceptance function determines

whether or not a new generated solution has to be accepted. The update function

controls the rate at which the temperature is reduced. The inner loop criterion

determines the number of new solutions that have to be generated at each value

of the temperature. The outer loop criterion establishes when the algorithm has

reached a stationarity point for the cost function and should be terminated.

The structure of the algorithm prompts a number of questions on its be

havior: Is the algorithm guaranteed to find the global optimum of the combinatorial

optimization problem? Does the initial solution have any influence on the final one?

Do the parameters of the algorithm have an influence on the rate of convergence to

the optimal solution? To answer these questions a mathematical model of SA has

160
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been proposed. The model represents the algorithm as a stochastic process whose

transition probabilities depend only on the states involved in the transition. Due

to the characteristics of SA, the process is- a Markov chain.

Two theories have been developed to prove the convergence of the algo

rithm to the global optimum. The first one uses a simplified approach. It assumes

that T is kept fixed for a number of iterations which is long enough for the Markov

chain to achieve its stationary probability distribution tt. With this assumption, the

behavior of the Markov chain is completely specified by the stationary probability

distribution.

The procedure followed to prove convergence is constructive and provides

a method to build an instance of the SA algorithm. In fact, the first step of the

procedure requires to select a stationary probability distribution ir(T) such that,

as T goes to zero, only the solutions which are global optima are assigned non zero

probabilities. Given w(T), the results of the theory provide a rule to select the

generate and acceptance functions such that the Markov chain converges to it. The

rule is general enough to leave some degrees of freedom in the selection of both the

generate and acceptance function even with ir(T) fixed.

Since stationarity has to be achieved at each value ofT, the only limitation

imposedon the update function is that the sequence of temperatureshas to converge

to zero.

The requirement that stationarity must be achieved at each value of T is

the most severe limitation of the homogeneous theory. In fact, a part from trivial

cases, to require stationarity is tantamount to require that an infinite number of

iterations be performed.

The second theory proposed, based on inhomogeneous Markov chains,

eliminates the requirement about stationarity at each value of T. The main re

sults of the inhomogeneous theory says that convergence to the global optimum can

still be achieved if only one iteration is executed at each value of T. However, in

this case the selection of the acceptance function is more limited and the update
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rule must obey the following

T =
log(m + m0)

We showed how the constant at the numerator of the above equation is dependent

on the connectivity of the graph underlying the Markov chain and on the Lipschitz

constant that bounds the local variation of the cost function. Different expressions

for k were derived independently by other authors, k plays a crucial role in proving

convergence. In fact while the logarithmic form is a necessary condition for the

convergence, there are only a few values of k that make the logarithmic rule sufficient

to guarantee convergence. Furthermore there exists a unique choice of k which

makes the logarithmic rule both necessaryand sufficient for the convergence of SA

to the optimum.

The inhomogeneous model is also used to study the finite time behavior of

the algorithm. A bound on the distance of the actual probability distribution from

the optimum one after a finite number of iterations has been derived.

The bound indicates how the annealing schedule must be balanced between

opposing requirements for optimum performance. A simple corollary to this result

states that, for large number of iterations m, the Xi-norm of the difference of the

present probability distribution fromthe optimum one is Ofr/m***^), where r, a,

and 6 are quantities characteristic of the problem to be solved, a and b respectively

increase and decrease when the parameter k increases.

These results, though important because they show that the algorithm

converges asymptotically to the global optimum with probability one, cannot be

applied verbatim in practical implementations of SA. In fact the homogeneous

theory requires an infinite number of iterations at each value of T while the inho

mogeneous one needs only one iteration per temperature but an infinite sequence

of temperatures.

The bound on the finite time behavior is relevant since it relates the rate

of convergence with the connectivity of the graph underlying the Markov chain and

with the local variation of the cost function. However, the number of iterations

it requires is comparable with the number of iterations necessary to perform an
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exhaustive exploration of the state space.

Among the two theories, the homogeneous one offers a better guidance

to design SA algorithms for practical applications. In fact the strategy required

by the theory for the asymptotic convergence can be successfully approximated as

follows: Start with a value of T for which a good approximation of ir(T) can be

obtained quickly. Reduce T by a finite but limited amount AT such that ir(T) is a

good starting point to approximate 7r(T —AT). Keep the temperature fixed until

a good approximation to 7r(T —AT) is achieved. Repeat the process until when T

is sufficiently close to zero that the algorithm is, for practical purposes, trapped in

a local minimum and the execution can be terminated.

The degrees of freedom left by the homogeneous theory can then be ex

ploited to select the acceptance and generate functions that provide the fastest rate

at which the approximation to ?r(T) is achieved.

We presented a strategy to select.the acceptance function that guarantees

that the convergence to ?r(T) at fixed T is the fastest possible. We also discussed a

method to generate moves which keeps the ratio between accepted and attempted

moves as high as possible.

In order for the approximate strategy to work efficiently, the largest amount

AT which is tolerable by the algorithm and the criterion to judge the quality of the

approximation must be determined. For this purpose, we presented an annealing

schedule which efficiently uses the amount of time assigned to the algorithm. The

schedule consists of four criteria whose parameters are determined iteratively from

the data collected during the execution of the algorithm. The schedule is adaptive

and the procedure to determine the value of the parameters makes the schedule

independent of the problem to be solved.

The results obtained using SA with the adaptive schedule show that, for a

given quality of the results, savings of up to 50% of the CPU time are possible with

respect to SA implementations which feature non adaptive schedules. This shows

that adaptive schedules are definitely an effective strategy. However an efficient

annealing schedule alone is not sufficient. It is necessary to link the annealing

schedule to the mechanism used to generate new moves. In fact the reHability of
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the parameters determined by the adaptive schedule is related to the amount of

information that can be extracted from data. Towards the end of the algorithm,

unless the moves are selected carefully, the acceptance ratio approaches zero very

quickly and, consequently, the amount of information carried by data is greatly

reduced.

The work by Delosme and Lam presents the first results of such a joint

control strategy. We believe that this is a very promising direction in which the

study of the techniques to control the evolution of SA should be developed. In

particular generation mechanisms such as the one based on quality factors appear

to be the best suited to be combined with an adaptive annealing schedule.

Both theories developed, make very little assumptions on the data of the

problem. Even for the results on the finite time behavior, which require the tightest

set of assumptions, it is only assumed that the cost function has a bounded Lipschitz

constant, and that the graph underlying the Markov chain is strongly connected.

It should be no surprise to discover that the time required to achieve a reasonable

approximation of the equilibrium is unrealistically large.

Given that, in practical applications of SA, the asymptotic convergence

can only be approximated, it is interesting to investigate if there are characteris

tics of the cost function and of the move set for which the approximate strategy

performs better. Intuitively the cost function on the solution spaces looks like a

landscape with peaks and valleys and SA, during its execution, is actually perform

ing a random walk on it. At any given value of T, SA has a sizable probability to

climb hills within a certain range of cost, and the size of the range is a function of

T. When T is high, SA can hardly distinguish valleys from peaks and hence the

random walk is free to wander everywhere. As T is reduced, valleys become more

and more evident to SA and it becomes more and more difficult for the random

walk to leave one valley and enter another one. Eventually the random walk will

remain confined to a valley and will never exit it *.

1Notice that from the point of view of the asymptotic theory, the random walk is never trapped
in any of the local minima. In fact the asymptotic results are obtained by requiring that, for any
non zero temperature, the probability to escape any solution which is not a global minima never
vanishes.
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From the theory we know that the probability that the random walk is

trapped in a given valley is proportional, for large number of iterations, to the sum

of the asymptotic probabilities of the states that populate the valley. Consequently,

it seem that the worst performance of the algorithm should be obtained if the cost

function has a landscape which looks like a large plateau spotted with very narrow,

scarcely populated, valleys, some of which with high lying minima. In this case, in

fact, if the temperature is sufficiently high, the algorithm is likely to wander on the

plateau entering and exiting different valleys. As the temperature is lowered below

a critical value, the random walk will be trapped in the first valley it encounters

without being able to escape from it for the rest of the execution. Conversely SA

should perform better, if the deeper valley have also higher probability to capture

the random walk.

To translate this simple intuition into desirable characteristics for the cost

function is anything but easy owing to the structure of the solution space. Sorkin

[113] is the only one, to the best of my knowledge, that investigates the characteris

tics of the cost function for a class of combinatorial optimization problems. Sorkin

conjectures that the cost function has a fractal nature and to verify his conjecture

he proposes to study the characteristics of the trajectories produced experimen

tally by SA. If the cost function were indeed fractal, the trajectories produced by

SA should have the characteristics of a fractional brownian motion. Sorkin verifies

his conjecture showing that, on a number of real-world combinatorial optimiza

tion problems, including placement problems for both real and randomly generated

circuits, that the data collected executing SA exhibit the properties of fractional

brownian motion.

Even if the evidence is not conclusive, the result is interesting. If Sorkin's

conjecture holds true and the cost function does exhibit the fractal nature, it should

be possible to take advantage of the extra information and use it to select more

efficient generate functions and more effective cooling schedules.

The results discussed in this thesis relate to the application of SA to solve

optimization problems with a finite state space. There is an equally vast literature

that deals with the application of SA annealing to solve optimization problems
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defined on a continuous state space.

Szu [88] and Vanderbilt and Louie [114] use SA to solve continuous opti

mization problems simply by exploring the state space with moves that randomly

perturb one of the coordinates by a discrete amount. More interesting is the true

continuous time continuous space generalization of SA offered by the Langevin al

gorithm [90,115,116,117,118,119]. The Langevin algorithm finds the minimum of

the vector field V(x) by integrating the following differential equation

dXt =W(Xt)dt +y/zFt dwt X0 = x0,

where wt is the standard Wiener process and V is the gradient operator. The term

dwt represents a noise term whose amplitude is controlled by T that is added to

allow the algorithm to escape local minima in the vector field V(x). In [115,116] it

is shown that the necessary and sufficient condition for Xt to converge to the global

optimum of V(x) requires that T is updated with a rule which is the continuous

analogue of the logarithmic rule found for the discrete case.

Gelfand [90] proposed a hybrid SA-Langevin algorithm whose small time

behavior resembles that of the annealingalgorithm and whose large time behavior is

similar to the Langevin algorithm. It is not known if this new hybrid algorithm con

verges and if its performances are an improvement with respect to the SA algorithm

and to the Langevin algorithm.

The convergence result proved for the Langevin algorithm suffers from the

same limitations of the analogous asymptotic results proved for the SA algorithm.

It will be interesting to investigate if adaptive annealing schedules similar to the

one introduced for SA can be applied successfully also to the Langevin algorithm.

Finally the application of SA to neural networks has recently open another

very promising and interesting area of research. A neural network is a distributed,

massively parallel architecture in which each processing unit, a state, is patterned

after a simplified representation of the functional behavior of a neuron. One of the

architectures to implement neural networks, perhaps the most famous, has been

proposed by Hopfield and Tank [120]. It consists of a network of states, each

represented by a binary valued variable. The states are the vertices of a weighted
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graph whose edges represent the constraint of the optimization problem. Neural

networks provide a fast method to compute the solution to optimization problems.

However, their major drawback is that the solution produced is in general only a

local optimum for the problem. On the other hand SA is very slow to converge

but it provides asymptotically the global optimum of the problem. The new idea is

to combine the powerful concept of Hopfield's networks with a SA to obtain a fast

algorithm which locates quickly the global optimum.

The introduction of SA in the neural network domain has resulted in two

different algorithmic interpretations: The Boltzmann machine and the stochastic

neural network. In Boltzmann machines [121,122,123] the implementation of the

network is similar to Hopfield's the only difference being that the binary values of

the states are determined by SA instead of by the Hopfield's greedy strategy. In

stochastic neural networks [124], the states are represented by continuous variables

and their value is computed with the Langevin algorithm.

The asymptotic theory developed for the SA algorithm and for the Langevin

algorithm can be applied to Boltzmann machines (See Aarts and Korst [123]) to

stochastic neural networks (See Levy and Adams [125]) respectively. However, once

again, the asymptotic theory suggests an annealing schedule which is too slow to be

of use in practical applications and hence leaves the problem of determining viable

approximate strategies still open.
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