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Abstract

The periodic steady-state ofa circuit is important because the true characteristics ofmany
circuits can only be obtained when the circuit is in the periodic steady-state. One way of
determining the steady-state response is to carry out a transient analysis until the start
up transients in the circuit die out. Such an approach can prove to be computationally
expensive. A number ofalgorithms for the direct computation of the periodic steady-state
are available. In the present work, a class of algorithms that operate in the time domain
using shooting techniques has been studied. One such technique, based on Newton-Raphson
iterations, was proposed in the early seventies [AT72b] and implemented in a program
called SINC-S [Fan75]. The FORTRAN version ofSINC-S was converted to Cas a part
of the present work [GJ88]. Another algorithm belonging to this class was proposed and
implemented ina circuit simulator in the early eighties [Ske80]. SINC-S does not have this
algorithm implemented in it. Both these algorithms have been reexamined in the present
work and implemented into SPICE3 [QNPS87]. The resulting program, SSPICE, has
been used to evaluate the performance of the algorithms and to ascertain their relative
merits and demerits. The performance of these algorithms has also been compared with
that of an algorithm based on harmonic-balance and implemented in SPECTRE [KS86].
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Chapter 1

Introduction

1.1 The Periodic-Steady-State Problem

In many circuit simulations thesteady-state behavior of the circuit is ofprimary
interest. In particular, the time-dependent circuit variables should be observed only when
the start-up transient behavior is no longer present and an established periodic response is
present. A typical plot ofthe transient behaviour oiahigh-Q circuit is shown in Figure 1.1.
The figure shows clearly the decay of the start-up transients and the subsequent build up
of the steady-state. Measurement ofdistortion, for example, is inaccurate if transients are
present because the start-up transients would be confused with the nonlinear behavior of

the circuit. This can happen when the circuit itself is nonlinear or the input signal is non-
sinusoidal and the circuit is linear. Power dissipation, distortion generation, noise, gain
and transfer characteristics are some of the commonly measured circuit parameters which
require that the circuit have reached the steady-state.

Oscillators area class ofcircuits for which characterizing the steady-state behavior
is especially important, because in the case of oscillators the steady-state is usually the
primary region ofinterest. Generally, only an approximate value of the period is available
initially. The actual period can only be determined when the oscillator has reached the
steady-state.

Given the above factors, a simulator with the ability to establish the steady-state
rapidly and accurately is an important tool for circuit designers.
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Figure 1.1: Typical Transient Behaviour of a High-Q Colpitts Oscillator

1.2 Possible Solutions

Transient Analysis

One approach for a simulator to determine the steady-state is to carry out a

transient analysis until a criterion is satisfied indicating that the steady-state is reached.

Such an approach can require a large amount of cpu time. Consider the example of a
crystal oscillator with a Qof 100,000. If one uses conventional transient-analysis to reach
the periodic steady-state, one would typically require that the circuit be simulated for at

least 10 time-constants, which is the equivalent of one million cycles for a circuit with a

Qof 100,000. Even after simulating for a long time, the steady-state may not have been
reached to the desired accuracy. It is possible to use customized integration methods to
reduce the computing time required. For example, in case lightly damped oscillations are
present in the transient, the integration method can be made to follow the envelope rather
than solution itself [PetSl].

Direct Computation of the Periodic Steady-State

Apossibly more efficient approach is tocompute thesteady-state behavior directly.
Figure 1.2 shows a typical steady-state waveform for a Colpitts oscillator computed using
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Figure 1.2: Steady-State ofa Colpitts Oscillator Computed Using One of the Algorithms

such a method. Only 12 cycles of transient analysis were required to establish the steady-
state using the steady-state algorithm. The cpu-time required was 6.05 seconds. This

cpu-time requirement is less than one fifth of the cpu-time required when conventional

transient analysis is used. In addition to accelerating the computation of the steady-state,
direct computation gives a more accurate indication of whether the steady-state has been
reached. When conventional transient-analysis is used for determining the periodic steady-
state, the convergence to the steady-state may be very slow. Thus, the distance of the
circuit from the periodic steady-state does not change very much from one cycle to the
subsequent cycle. It becomes difl&cult to decide what the exact point in time should be
when one can assume that the steady-state has been reached. When the algorithms for
the direct computation of the periodic steady-state are being used, the difference in the
distance of the circuit from the periodic steady-state is usually quite large from one cycle
to the next. This makes it possible to do just enough computation so that the steady-state
is reached to the desired accuracy.

The problem of computing the periodic steady-state can be posed as a 2-point
boundary-value problem. The boundary constraints define a known relationship between
the initial state and the final state, but neither of the two states is known beforehand. It
is necessary to devise a numerical algorithm that finds a solution such that the initial and
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final conditions satisfy the given requirements. This problem is much moredifficult than an

initial-value problem which is solved when a conventional transient-analysis is done. In the

initial-value problem the integration starts from a given initial state and proceeds forward
in time with no constraints on the final state.

Many approaches to solving the 2-point boundary-value problem have been pro
posed [CT73,Ske80,KS86,DC76]. In general, it is possible to classify these approaches into
three categories:

• Shooting methods [Appendices C and D]

• Finite-difference methods

• Expansion methods

Shooting methods are time-domain methods that attempt to solve the 2-point
boundary-value problem by treating it as a sequence of initial-value problems. Each initial-
value problem is evaluted for one period. The aim is to obtain an initial condition that

eliminates any start-up transient behaviour and results immediately in periodicity. The so
lution ofeach initial-value problem isused iteratively to obtain therequired initial condition
x(0) that satisfies x(T) - x(0) = 0 . Different methods canbe used for iteration. For ex

ample, the Newton-Raphson1 method is used in [AT72b,AT72a,CT73,TCF75,GT82,Fan75]
to iterate while the extrapolation method is used in [Ske80]. The present research has fo-
cussed onshooting methods. Shooting methods are appropriate for highly nonlinear circuits
that none-the-less have a linear state-transition function. Both the Newton-Raphson-based
and the extrapolation-based methods have been implemented into the circuit simulator
SPICE3.

Finite-difference methods [KSS88] solve the 2-point boundary-value problem by
replacing the differential equations with finite-difference equations on a mesh of points in
time that cover one period. Trial solutions of the resulting system of equations consist of
one discrete value for each point on the mesh so that, even though the difference equations
may not be satisfied, the boundary conditions are satisfied. The solution at each point is
then iterated until the difference equations are also satisfied. The solution that satisfies

lThe use of the Newton-Raphson method in this context is distinct from the conventional use of the
Newton-Raphson method by circuit simulators
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both, the boundary constraints and thedifference equations, is thedesired solution. Finite-
Difference methods are difficult to implement. The effort involved in implementing these
methods is equivalent to the effort required to implement a full fledged circuit-simulator.

Expansion methods try to express the solution in terms of a finite number of basis

functions. The problem then reduces to finding themultiplying coefficient for each ofthese
basis functions so that some error is minimized. Harmonic-balance is a particular expansion
method that uses sinusoids as basis functions[KS86]. Expansion methods are well suited to
simulating circuits with distributed devices as long as the circuits are only mildly nonlinear.

1.3 The Focus of The Present Work

The application ofshooting and expansion methods to nonautonomous circuits has

been demonstrated and reported [AT72b,Fan75,Ske80,KS86]. Work toward using shooting
methods for autonomous systems has been done in the past[AT72a,Fan75]. The application
to autonomous systems is more difficult because the period of autonomous circuits is un

known. Modifications to the methods for nonautonomous circuits are required to deal with
autonomous circuits.

The present work has concentrated on shooting methods because the emphasis
has been on implementing methods that could be used to analyze autonomous systems. A
program known as SINC-S 87 that implements shooting methods for both autonomous
and nonautonomous systems exists. This program was first written in the early seventies
in FORTRAN [Fan75]. It was then converted to F0RTRAN-77 and subsequently to C
[GJ88] in 1987. In the conversion, imperfections were found in the implementation of the
algorithms in the program. Itwas also found difficult to add new features to the steady-state
portion of the program. In addition, SINC-S 87 does not have a MOS model implemented
in it. Consequently, the shooting methods have been implemented into SPICE3 [QNPS87,
Qua89] because of its use of good device models and the fact that it is not very difficult to
add a new analysis-type into it.

The two shooting methods, as mentioned above, have been implemented into
SPICE3 and their performance has been evaluated. The algorithms implemented in
SPICE3 have improved heuristics so that faster and more accurate convergence to the
steady-state is obtained. The program is available in the public domain.

Acomparision of these methods has also been made with SPECTRE [KS86].



Rectifier Circuit for Illustrating the NR Algorithm
vin 1 0 sin(5 20 50)

dl 12modi f**\
.model modi d(is=le-16 cjo=2pf) ^C-^
cl 20 lmF _L_
rl 2 0 Ik

*Command for steady-state analysis:

♦steady act nonjtuto 20ms 50 .0001 duic 10.0

♦plot v(2)

.end

a

Via

Figure 1.3: SPICE File for a Rectifier Circuit
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SPECTRE implements the harmonic-balance algorithm mentioned above.

1.4 The NR Method: Explanation By Example

The Newton-Raphson2 iterative process can be described by going through a typ
ical simple example step by step. An example is the rectifier circuit shown in Figure 1.3.
Since the circuit only has one reactive element there is only one state variable, making
all the relevant equations one-dimensional. The SPICE file for the circuit is also shown

in Figure 1.3. The description of the command for steady-state analysis and the associ
ated parameters is given in the user's manual in Appendix A. The details of the shooting
methods ingeneral and the Newton-Raphson and extrapolation algorithms inparticular are
presented in Appendices C-D. To understand the following description, it is useful to know
that a matrix of partial derivatives, known as the Jacobian, is required for every Newton-
Raphson iteration. The steady-state algorithm based on Newton-Raphson iterations builds
up the Jacobian by first computing a sensitivity matrix, a column of which is the set of
partial derivatives of each of the state variables after one complete cycle with respect to
a particular state variable at the beginning of the cycle. Because the sensitivity matrix is
expensive to compute, heuristics are used toavoid its computation unless necessary.

The initial-state chosen for the circuit at the beginning of the steady-state analysis
The use of the Newton-Raphson method in this context is distinct from the conventional use of the

Newton-Raphson method by circuit simulators
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does not have any bearing on the ability of the algorithm to determine the steady-state.
Assuming that nothing is known about the steady-state of the circuit, it is reasonable to
start with the capacitor voltage set to zero. The first n cycles ofcircuit simulation always
use transient analysis without sensitivity computation and Newton-Raphson iterationis not

used after a cycle to compute the initial conditions for the following cycle. This usually
ensures that the extremely fast transients which may exist in the start-up phase have died
out. The number of cycles so used should besuch that the penalty paid when the circuit
does not have very fast start-up transients is not excessive and at the same time when the

very fast start-up transients are present, they are eliminated during these ncycles, n = 3is
found to be suitable for most of the examples. The resulting waveform of the voltage across
the capacitor is shown in Figure 1.4. As can be seen, integration for three cycles is probably
not necessary because thefast start-up transients are completed during the first cycle. All
the same, the end result is that the circuit is taken into a state where Newton-Raphson
iteration can be used if certain conditions are satisfied.One of the conditions that must

be satisfied for a sensitivity computation to be carried out is that the difference between

thestates of the circuit at the start and end ofthe previous cycle should be within certain
bounds. Since thestateat thebeginning ofthe first cycle isfound tobefar removed from the
state at the end ofthe third cycle, this condition is not satisfied, and, the algorithm decides
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not to do sensitivity computation in the fourth cycle and a Newton-Raphson iteration
following it.The fourth cycle is then merely used to carry out one more cycle of transient
analysis as in the first three cycles. The waveform for this cycle is shown in Figure 1.5(a).
The state at the end of the fourth cycle is found to be close enough to the initial state used
for this cycle that the algorithm decides to do a sensitivity computation during the fifth
cycle. The waveform for the fifth cycle is shown inFigure 1.5(b). Instead ofusing the value
of the state-variable at the end of the fifth cycle of transient analysis as the initial condition
for the sixth cycle as was done for the earlier cycles, this time a Newton-Raphson iteration
is done using the sensitivity ofthe final state to the initial state that was computed during
the fifth cycle. The value so computed is used as the initial condition for the sixth cycle.
The waveform for the sixth cycle is shown in Figure 1.5(c). The difference between the
initial and the final states is found to belarger than the minimum error specified but small
enough to be able to do a Newton-Raphson iteration to predict the initial condition for the

seventh cycle and to do a sensitivity computation during the seventh cycle. The waveform
for the seventh cycle is shown in Figure 1.5(d). The difference between the initial and the

final states for the seventh cycle is found to be smaller than the specified minimum error.
Hence, the circuit is said to have reached the steady-state. The state of the circuit at the

end of the seventh cycle can then be used as the initial condition for the circuit when the
circuit is required to go directly into the steady-state. Once such an initial condition is
computed, the steady-state problem is said to have been solved.



Chapter 2

Results

2.1 Introduction

The Newton-Raphson-based and the extrapolation-based shooting methods have
been implemented in SPICES [QNPS87] to obtain the program Sspice. Sspice is identical
to SPICE3 apart from the addition of these two algorithms, and all the analyses and
device models in SPICES are available in Sspice. Shooting methods compute a set of
capacitor voltages and inductor currents for the circuit so that if these values are used as

the initial conditions for the circuit during atransient analysis, the circuit goes directly into
the steady-state. Sspice should be used to first compute an initial condition for the circuit
that corresponds to the circuit being in the steady-state. This initialcondition can then be

used during the subsequent analyses to obtain the steady-state circuit-parameters.

2.2 Comparision of the Algorithms

To evaluate the shooting methods, the ratio of the number of cycles of transient
analysis required by these methods to the number of cycles required using conventional
transient-analysis, such that some measure ofthe proximity to the steady-state is satisfied,
is computed. A low ratio for a circuit indicates that the steady-state algorithm is efl&cient.
In addition, the run-times required bythe steady-state algorithms should becompared with
the run-times required by conventional transient-analysis. Run-times are affected by the
number of Newton-Raphson or extrapolation iterations required to reach the steady-state
because each iteration has an computational overhead associated with it as explained in

17
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Appendices C and D. Even though the run-times are important indications of the usefulness

of a steady-state algorithm, run-times are implementation dependent. Since the aim of the

present work hasbeento compare algorithms andnot implementations, the run-times should

be used with caution. The ratio of cycles and the run-times have both been tabulated for

the two shooting methods and forconventional transient-analysis. Only the run-times have
been tabulated for SPECTRE.

Another important indication of the efficacy of a steady-state algorithm is the
number ofcircuits for which the algorithm is successful in finding the steady-state solution.

Since the same circuits were used to test all the four methods, it is possible to use this
criterion to compare the methods.

The results obtained when using conventional transient-analysis are shown in Ta

ble 2.1. The results from using the two implementations on typical circuits are presented
in Table 2.2 and Table 2.3. Table 2.4 gives the results obtained for thesame circuits using
SPECTRE [KS86], a harmonic-balance-based simulator for steady-state analysis. Finally,
Table 2.5 gives the run-times for the examples using all the four methods. The input file
and the circuit diagram for each of the benchmark circuits are in Appendix B.

The results allow us to evaluate each of the methods independently as well as com

pare one method with another. It must bepointed out here that since the transient analysis
in SPICES and the extrapolation and Newton-Raphson methods have been implemented
in the same framework and are both shooting methods, it is possible to compare not only
their run-times but also their efficiencies in terms of the number of iterations that they
require. On the other hand, SPECTRE is a separate entity altogether and it is possible
to compare only its run-time with the run-times of the shooting methods.

It should be noted that thesame error measure was used as the stopping criterion
for all of the time-domain methods1 including conventional transient-analysis. The error
measure gives an indication of the distance of the circuit from the steady-state solution.
The relative difference between the state of the circuit after a cycle of transient analysis
to the initial state used for that cycle was found individually for each of the states. The
maximum of these was then used as the error measure. This was then compared against
a user specified desired error to check whether the steady-state had been reached. For

some examples(Circuit B.6, Circuit B.7, etc), using the tran field in the steady command

SPECTRE uses a different criterion to decide the proximity to the steady-state



Circuit Number of

States

Total #
of Cycles

Run

Time
DC power supply (Figure B.l) 4 61 6.13

C-B class C - lo Q (Figure B.2) 5 15 3.77

C-B class C - hi Q (Figure B.3) 5 42 11.82
C-B class C (Figure B.4) 11 22 16.02

X3 AMP (Figure B.5) 5 * *

Colpitts Osc - lo Q (Figure B.6)1 3 241 18.9

Colpitts Osc - hi Q (Figure B.7)1 3 470 34.2

Hi Frq Colpitts Osc (Figure B.8)1 3 41 8.9

Wien Bridge Osc (Figure B.9) 2 6 4.87

OP AMP Wien Bridge Osc (Figure B.10)1 2 87 31.7

EC Colpitts Osc (Figure B.ll) 3 86 20.5

EC XFRMR Coupled Osc (Figure B.12)1 3 >100 >66

Phase-Shift Osc (Figure B.13) 3 5 0.90

LC EC Oscillator (Figure B.14)1 2 22 5.43

BJT Rlxn Osc (Figure B.15)1 4 >100 >334

"*" - Very Large

1Cycles for conventional transient-analysis obtained from hi-res plot.
All times are in sees, on a VAX 8800

Table 2.1: Run-Time Statistics Using Transient Analysis
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gave the wrong result. A high-resolution plot of the the state-variables obtained using
conventional transient-analysis was used to establish the steady-state for these circuits.
This method is less precise than the stopping criterion used for the Newton-Raphson and
extrapolation methods. r

2.2.1 Evaluation of the Newton-Raphson Method

The Newton-Raphson method can be evaluated by comparing the numbers in
Table 2.2 with those in Table 2.1. Most ofthe additional computation percycle oftransient
analysis in the Newton-Raphson method relative to the computational requirements per
cycle of conventional transient analysis involves the computation of the sensitivity matrix
which contains as elements the partial derivatives of the state of the circuit after a cycle
of transient analysis to the initial state used for that cycle. This matrix is required for
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computing the Jacobian needed for the Newton-Raphson iteration. It is observed that the

Newton-Raphson algorithm usually leads to substantial savings relative to conventional

transient analysis in the number of cycles required to reach the periodic steady-state. In
addition, the savings inthe number ofcycles carry over tosavings inthe run-times indicating
that thesensitivity-computation overhead isnot large enough for thesavings in thenumber
ofcycles to benullified. There is a clear advantage in using theNewton-Raphson algorithm
compared to conventional transient-analysis. The savings in the run-time and number

ofcycles required become more pronounced when conventional transient-analysis is found
to require a large number of cycles to reach the steady-state (Circuit B.7). The savings
are less pronounced when either the number of states is large (Circuit B.4) or when the
steady-state can bereached using conventional transient-analysis inasmall number ofcycles
(Circuit B.2).

Evaluation of the NR Method for Oscillators

The Newton-Raphson algorithm performs equally well for autonomous as well as
nonautonomous circuits. This proves the validity of the modifications that had to be made

to the algorithm so that autonomous circuits could be handled. Solving for the steady-state
of a circuit is more difficult for the autonomous case than for the nonautonomous case
because in the case ofautonomous circuits the period is an unknown. It turns out that the

number of independent equations available is only equal to the number of state variables
in the circuit. This implies that the unknown period cannot just be added to the list of
unknowns but its addition to the set of unknowns has tobe accompanied by the removal of
a state variable from the set. A reasonable value is assumed for the state variable removed

from the set ofunknowns as explained inAppendix C. Assuming a value for a state variable
isequivalent to fixing thephase oftheoscillator. Because thephase oftheoscillator isnot of
concern, this modification should not affect the iterative process, theoretically. The results
in Table 2.2 are an experimental verification of this theory. All the circuits that were used
as test cases are highly nonlinear and a majority ofthem are oscillators. The improvement
in the run-time because ofthe use ofthe Newton-Raphson algorithm has been found to be
by as much as a factor of5.5 for some circuits (Circuit B.7).
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Circuit Number of

States

Number of

Iterations

Total #
of Cycles

Ratio of

Cycles
Run

Time
DC power supply (Figure B.l) 4 5 12 0.20 3.97

C-B class C - lo Q (Figure B.2) 5 3 8 0.53 4.78
C-B class C - hi Q (Figure B.3) 5 4 9 0.21 5.67
C-B class C (Figure B.4) 11 6 15 0.68 17.42
X3 AMP (Figure B.5) 5 21 34 *1 22.78
Colpitts Osc - lo Q (Figure B.6) 3 7 14 0.061 6.81
Colpitts Osc - hi Q (Figure B.7) 3 6 12 0.031 6.05
Hi Freq Colpitts Osc (Figure B.8) 3 10 14 0.341 11.68
Wien Bridge Osc (Figure B.9) 2 1 6 1.0 4.98

OP AMP Wien Bridge Osc(Figure B.10) 2 6 12 0.141 3.70
EC Colpitts Osc (Figure B.ll) 3 14 26 0.30 19.82
EC XFRMR Coupled Osc (Figure B.12) 3 14 24 <0.24x 21.70
Phase-Shift Osc (Figure B.13) 3 4 10 2.0 3.73
LC EC Oscillator (Figure B.14) 2 6 12 0.551 11.60
BJT Rlxn Osc (Figure B.15) 4 2 8 <0.081 19.33

Ratio ofcycles = Total cycles required by algorithm / Total cycles required by transient-analysis

«*» . very Small

1Cycles for conventional transient-analysis obtained from hi-res plot.
All times are in sees, on a VAX 8800

Table 2.2: Run-Time Statistics for Newton-Raphson Based Algorithm
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Drawbacks of the NR Method

The main drawback of the Newton-Raphson method is the inability to handle
waveforms that do not have well defined periodicity. Such situations can, for example,
arise when the circuit is a multiplier and the inputs have frequencies that are not integral
multiples or when the circuit is a squegging oscillator. This inability to handle multiple
frequencies is probably the reason why the algorithm seems to work slightly better for the
high-Q version than for the low-Q version of two of the circuits tested. The nonlinearities

in the circuits result in the generation ofharmonics of the frequency ofinterest. In addi
tion, the resonant start-up transients have frequencies slightly off the center frequency of
oscillation. Acorrectly designed circuit with higher Qimplies lower relative amplitudes for
the uninteresting harmonics than in the lower Qcase. In other words, the periodicity of the
composite waveform at the frequency ofinterest is more pronounced for a high-Q circuit
than for the corresponding low-Q circuit.

One of the circuits tested was an X3 amplifier. The waveform at a node in this

circuit would have harmonic components with substantial amplitude. But the algorithm
was able to handle this circuit because all the frequencies in the steady-state are integral
multiples of the input frequency. Hence, the periodicity of the waveform at any node is
defined by the frequency of the input signal.

2.2.2 Evaluation of the Extrapolation Method

The simulation results obtained using the extrapolation method are given in Ta
ble 2.3. The extrapolation method operates successfully only for nonautonomous circuits.
When compared with conventional transient-analysis, the gain in the number of cycles re
quired was by as much as a ratio of 2.5to4.0:l for some circuits (Circuits B.l an<LB.3) while
the gain in the run-time was by as much as a ratio of 2:1 (Circuits B.l). But extrapolation
can be expected to give good speedups over transient analysis only when the number of
reactive elements in the circuit is small. The overhead of each iteration is expensive enough
that the computation time using extrapolation becomes larger than the computation time
using normal transient-analysis fairly rapidly with the number of reactive elements. The
common-base class-C circuit with 11 states the extrapolation algorithm has a larger run
time than normal transient-analysis even though the number of cycles that are required is
a little more than half of that required by normal transient-analysis.
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Circuit Number of

States

Number of

Iterations

Total #
of Cycles

Ratio of

Cycles
Run

Time
DC power supply (Figure B.l) 4 1 14 0.23 3.32
C-B class C - lo Q (Figure B.2) 5 2 18 1.2 35.13
C-B class C - hi Q (Figure B.3) 5 2 20 0.48 38.18
C-B class C (Figure B.4) 11 1 20 0.91 51.72
X3 AMP (Figure B.5)1 5 * *

-

*

Ratio ofcycles = Total cycles required by algorithm / Total cycles required by transient-analysis

«*" - Very Large

1Cycles for conventional transient-analysis obtained from hi-res plot.
All times are in sees, on a VAX 8800

Table 2.3: Run-Time Statistics for theExtrapolation Based Algorithm

Alarge number ofheuristics were tried without success for computing thesteady-
state of autonomous circuits using the extrapolation method. It was not possible to find
the solution for any ofthe oscillator circuits tested using the extrapolation algorithm.

Comparision of Extrapolation with the NR Method

For driven circuits, the simulation results for the Newton-Raphson algorithm and
for the extrapolation algorithm canbe compared. It canbeseen from the data ofTables 2.2

and 2.3 that even though the extrapolation method requires fewer iterations to reach the
steady-state in general, it usually requires more cycles of transient analysis and has either
a run-time that is comparable or larger. This fact is again brought out by the common-
base class-C circuit with 11 states (Circuit B.4). Even though the number of iterations
required by the Newton-Raphson method is three times the number ofiterations required
by extrapolation, the run-time for the extrapolation method is more than twice as large.
Each iteration in the extrapolation method consists of up to n+ 2 cycles ofintegration,
where n is the number of states. On the other hand, the Newton-Raphson requires just
one cycle of transient analysis per iteration, where each cycle has an overhead added to it

due to the sensitivity computation requirement. In general, the Newton-Raphson method
is less cpu-expensive than the extrapolation method.



Circuit Number of

States

Run

Time

DC power supply (Figure B.l) 4 3.47

C-B class C - lo Q (Figure B.2) 5 15.32

C-B class C - hi Q (Figure B.3) 5 1.17

C-B class C (Figure B.4) 11 46.18

X3 AMP (Figure B.5) 5 6.03

All times are in sees, on a VAX 8800
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Table 2.4: Run-Time Statistics for SPECTRE - a Harmonic-Balance Based Program

2.2.3 Shooting Methods and Harmonic-Balance

Results for the test circuits using the harmonic-balance algorithm are given in
Table 2.4. The run-times for the driven circuits using harmonic-balance are found to be

comparable to those using the Newton-Raphson method on the average. But the Newton-
Raphson method is found to be about 2.5 times better for the highly nonlinear common-
base class Camplifier with 11 states (Circuit B.4). Shooting methods are more suitable,
in general, for highly nonlinear circuits or highly nonsinusoidal waveforms than harmonic-

balance. A physical explanation for this is that shooting methods require the values ofa
signal in the circuit only at the start and end of a cycle while harmonic-balance requires
the values of the signal at a large number of points in between the start and end points. On
the other hand, harmonic-balance is known to be well suited for microwave circuits since
distributed elements can be included in the circuit. Even though it is possible to model
microwave circuits by means oflumped approximations, the large number ofstates that are
required for this purpose make the use ofshooting methods impractical.

The run-times for all the methods are shown together in Table 2.5 for an overall
comparision. It can beseen that the Newton-Raphson method performs betterthan conven
tional transient-analysis and the other steady-state algorithms on the average. The savings
in run-time can be expected to increase rapidly when convergence to the steady-state is
desired to a greater accuracy The reason for this is that once the steady-state algorithms
are close to the steady-state, convergence to the steady-state is quadratic. Convergence
using conventional transient-analysis, on the other hand, is linear.
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Circuit Newton-

Raphson
Extrapolation Harmonic-

Balance

Transient

Analysis
DC power supply (Figure B.l) 3.97 3.32 3.47 6.13
C-B class C - lo Q (Figure B.2) 4.78 35.13 15.32 3.77

C-B class C - hi Q (Figure B.3) 5.67 38.18 1.17 11.82
C-B class C (Figure B.4) 17.42 51.72 46.18 16.02
X3 AMP (Figure B.5) 22.78 * 6.03 *1

Colpitts Osc - lo Q (Figure B.6) 6.81 - - 18.91
Colpitts Osc - hi Q (Figure B.7) 6.05 - . 34.21
Hi Frq Colpitts Osc (Figure B.8) 11.68 - - 8.91
Wien Bridge Osc (Figure B.9) 4.98 - - 4.87
OP AMP Wien Bridge Osc (Figure B.IO) 3.70 - - 31.71
EC Colpitts Osc (Figure B.ll) 19.82 - - 20.5

EC XFRMR Coupled Osc (Figure B.12) 21.70 - . >66x
Phase-Shift Osc (Figure B.13) 3.73 - - 0.90
LC EC Oscillator (Figure B.14) 11.60 - - 5.431
BJT Rlxn Osc (Figure B.15) 19.33

-

-

>334x

«*" - Very Large

1Cycles for conventional transient-analysis obtained from hi-res plot.
All times are in sees, on a VAX 8800

Table 2.5: Comparision of the Run-Times



Chapter 3

Adding a Steady-State Algorithm

to SPICE3

The modular structure ofSPICE3 [QNPS87] offers a significant advantage when
adding a new analysis capability. New analyses can be added to SPICE3 without having
to understand all the intricacies of SPICE3. The steady-state analysis portion of the
program Sspice has been organized with the same philosophy, so that including additional
steady-state algorithms to the basic skeleton should be an easy task. In this chapter the
steps that were taken to add the Newton-Raphson [AT72b,CT73] and extrapolation [Ske80]
steady-state algorithms to SPICE3 are outlined. Similar steps have to be taken to add any
other new steady-state algorithms. In addition, the steps that were taken to add the basic
skeleton for steady-state analysis are similar to the steps that would be required to add any
new analysis type to SPICE3. Some files specific to nutmeg [CNPS87], the input-output
processor used by SPICE3, also have to be modified.

The preliminary steps in adding the steady-state analysis skeleton involved modi
fying the following SPICE3-specific and mtfmeflr-specific files:

• spiceif.c

• cmdtab.c

• runcoms.c

• types.c

• INP2dot.c
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• SPIinit.c

• CKTdoJob.c

spiceif.c isa nutmeg file that contains routines which interface SPICE3 to nutmeg.
The existenceof the steady-state analysis skeleton has to be made known to this file in two

locations for input parsing, cmdtab.c is a nutmeg file that contains a list of all available

commands. The command for steady-state analysis has to be added to this file in one

location, runcoms.c is also a NUTMEG file that contains one function each for all the

commands available. A function called comjsteadyfwl) has to be added for steady-state
analysis. This function (see Figure 3.1) calls dosimQ with the correct arguements. types.c
is a nutmeg file that defines types for plots. A type for steady-state analysis has to be
added tothis file. These four files are the only ntrfme^-specific files that have tobe modified,
in general, to add a new analysis.

void

comjsteady(wl)

wordlist *wl;

{

}

dosim("steady", wl);
return;

Figure 3.1: Function Added to runcoms.c for Steady-State Analysis

The function in SPICE3 that calls most analyses is in CKTdoJob.c. The call to

the top-level steady-state function has to be added to CKTdoJob.c. The top-level function
for steady-state analysis is STEADYanQ and the call to this function is found in CKTdo
Job.c. The fields that need to be present on the command line for the steady-state analysis
command are coded in the SPICE3 file called INP2dot.c. The data-type ofeach input pa
rameter is specified in this file. The function INP2dot() is organized as if-then-else clauses.

One such clause has to be added for steady-state analysis. The STEADYinfo structure,
which is defined in STEADYsetParm.c, is declared in SPIinit.c.
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The new files that had to beadded to complete the basic skeleton for steady-state
analysis are the following:

• STEADYsetParmx

• STEADYaskQuest.c

• STEADYan.c

• STEADY.h

The STEADYinfo structure is defined in STEADYsetParm.c. The basic data

structure used by steady-state analysis (see Figure 3.2) is STEADYAN. The function

STEADYsetParm transfers the input parameters tothis data structure. The file STEADYaskQuest.c
contains a function that answers queries about steady-state analysis. The top-level func
tion STEADYanQ for steady-state analysis is in STEADYan.c. Once this function is called,
control is transferred tosteady-state analysis. STEADY.h is a header file specific tosteady-
state analysis. The STEADYAN structure is defined here. Once the above modifications

have been made tothe basic SPICE3 structure, the basic skeleton for steady-state analysis
is complete.

Afterthe basic skeleton is added, the actual steady-state algorithms can be incor
porated into it. The STEADYanQ function calls the function corresponding to the desired
algorithm. The algorithm desired is specified on the command line for steady-state analysis.
For each new algorithm added, a new field is added to the STEADYAN structure corre

sponding to the pointer to the algorithm-specific structure. The algorithms implemented
need to call DCtranQ, which is a SPICE3-specific function that does transient analysis.
The STEADYAN structure has to be padded with dummy fields corresponding to the fields
present in the transient-analysis-specific structure so that DCtranQ can be called from the
steady-state-analysis-specific functions. The first three fields in STEADYAN sue fields that
are mandatory for all analyses. Apart from the fields in STEADYAN mentioned above, the
rest of the fields correspond to the other input parameters.

To add a new steady-state algorithm to the basic skeleton, only the minor ad
ditions have to made to the steady-state-specific files. An extra field has to be added

to the STEADYAN structure in STEADY.h corresponding to the pointer to algorithm-
specific structure. A call to the top-level algorithm-specific function has to be inserted in



29

typedef struct {

int JOBtype;

JOB *JOBnextJob; /* pointer to next thing to do*/
char *JOBname; /* name of this job */

double TRANfinalTime; /* have to duplicate the fields in the transient */
double TRANstep; /* analysis structure so that DCtran can becalled */
double TRANmaxStep; /* from the steady state package */
double TRANinitTime;

long TRANmode;

enum algorithm SteadyAlgorithm; /* name of the algorithm */
enum mode SteadyMode; /* indicates whether autonomous or nonautonomous */
double SteadyPeriod; /* period ofoscillation */
in* SteadyNumpts; /* number of pointsper cycle */

double SteadyTol; /* tolerance within which steady-state is to be obtained */
int SteadyUic; /* indicates whether uic flag is set */

double SteadyDampFact; /* damping factor for the Newton-Raphson method */

ACTAN *act; /* pointer to the data structure for the Newton-Raphson algorithm specific functions */
EXTAN *ext; /* pointer to the data structure for the extrapolation algorithm specific functions */

} STEADYAN;

Figure 3.2: DataStructure Used by the Steady-State functions in Sspice
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STEADYanQ in STEADYan.c. Minor modifications have to be made to STEADYsetParm.c

and STEADYaskQuestc to recognize that the algorithm field on the steady command line
can have one more possible choice ofalgorithms. Once this has been done, new algorithm-
specific files can be added to carry out the required functions. Each algorithm has its own
header file and an independent file that contains its top-level function. In addition, there
has to an algorithm-specific file that does the memory allocation for the structure used

by the algorithm. In general, each algorithm uses the devices in a different way. There
has to be at least one algorithm-specific file for each device that the algorithm needs to ac
cess. SPICE3 is constructed sothat thedevice-dependent functions areindependent ofthe
analysis-specific functions toa very large degree. The addition ofany new device-dependent
has to be logged in three places. First, if the function is the first of its kind for any device,
it has to be declared in DEVdefs.h. Any function added for a device has to be logged in
the device-specific header file. In addition, once a function has been declared in DEVdefs.h
it also has to be logged in dev.c for all devices (dev is a generic name for a device. The
file name could be CAP.c, IND.c or a similar name for the other devices). The order in
which it is logged in dev.c should be the same as that in DEVdefs.h. If the function is not

present for a particular device, dev, a NULL should be logged in place of the function name
in dev.c.

Once these requirements have been satisfied, theremaining algorithm-specific func
tions can be added. The following new files have been added specifically for the Newton-
Raphson algorithm:

• ACT.h

• ACTan.c

• ACTerror.c

• ACTinit.c

• ACTsenSolve.c

• ACTstateUpdt.c

• c/evactLoad.c (detace-specific)

• NIactlntegrat.c
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• NlactSolvcc

The substring act is common to all the files added. In addition, a SPICE3-specific file,
Nliter.c, has been modified so that the LU-factored circuit Jacobian is available for use

in the sensitivity computations. The data structure pertaining to the Newton-Raphson
algorithm is shown in Figure 3.3. The main loop of the Newton-Raphson algorithm is in
the function ACTanQ in the file ACTan.c. The call to DCtranQ are made from this func
tion. ACTinitQ in ACTinit.c allocates memory for the data structures required by "the
Newton-Raphson algorithm and initializes them. The loop for sensitivity computation is
present in ACTsenSolveQ which is in ACTsenSolve.c. This function is called from DCtranQ
after every time-point at which a solution is found for the circuit. ACTsenSolveQ loops
through all the devices and loads the right hand side required for sensitivity computation
(see Appendix C). The function SMPsolveQ is then called tosolve for thesensitivities. This
process isrepeated for every column in the sensitivity matrix. ACTstateUpdtc contains the
function ACTstateUpdateQ that loops through the devices to load the capacitor voltages
and inductor currents into the data structure for the Newton-Raphson method. Nlactln-
tegratc contains the function NIactlntegrateQ which is a modified version of the function

NlintegrateQ used by SPICE3. This function does integration by the trapezoidal rule for
the reactive elements in the sensitivity circuits. NIactSolveQ is a function in NIactSolve.c
for factoring a non-sparse matrix and for doing the subsequent forward and backward sub
stitutions. This function is required to be called every time a Newton-Raphson iteration is
done because the Jacobian is not sparse.

The following new files have been added specifically for the extrapolation-based
steady-state algorithm:

• EXT.h

• EXTan.c

• EXTinit.c

• EXTgetPeriod.c

• EXTstateUpdt.c

• deuextLoad.c (dewce-specific)
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The substring ext is common to all the files added. The data structure used by the extrapo
lation algorithm is shown in Figure 3.4. DCtran.c is another SPICE3-specific file that had
to be modified for the extrapolation and Newton-Raphson algorithms. This was done so
that calls toalgorithm-specific functions could be made from inside the function DCtranQ.
EXTanQ isa function in EXTan.c which contains the main loop for theextrapolation-based
algorithm. EXTinitQ in EXTinitc does the memory allocation and the initialization for

the data structures used by the extrapolation-based method. EXTgetPeriodQ in EXTget-
Period.c computes the current period ofthe signal. This function is called from DCtranQ
after every time-point at which a solution is obtained for the circuit (see Appendix D for
details). EXTstateUpdateQ in EXTstateUpdtc loads the capacitor voltages and inductor
currents into data structures used by the extrapolation method.



typedef struct {

int ActSenUpdate; /* update senmatrix if ActSenUpdate = 1 */

double **ActSenMat; /* sensitivity matrix */

double **ActSenMat01d; /* old sensitivity matrix required for integration */
double **ActCurState; /* the current calculated at the current time point */
double **ActCurState01d; /* the current calculated at the previous time point */
double *ActDqDv; /* The nonlinear caps(inds) at the previous time point */
double *ActSenT; /* sensitivity wrt T for the autonomous case */
double *ActCktStateOk; /* state x(0) */
double *ActCktStateOKpl;

double *ActCktStateT; /* state x(T) */

double *ActCktStateArch; /* state x*(0) */

int ActSubCol; /* the entry chosen to be replaced by the period */

double **ActJacMat; /* the jacobian matrix insome form */
double *ActRhs; /* the right hand side used during the newton iteration */
int ActNumStates;

int ActNumlterOfState;

int ActNumlterOISenMat;

int ActNumTimePoint;

int ActDqDvFlag;

double ActErrorl, ActError2;

double ActErrorlOld, ActError201d;

double ActDenominator; /* yet another restricted global variable! */

double ActMaxSenT; /* max sensitivity wrt T */

} ACTAN;

Figure 3.3: Data Structure Used by the NR Algorithm
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typedef struct {

double **ExtState;

double *ExtStateT;

double *ExtStateTprime;

double *ExtStateExtrap;

double ExtPeriod;

double ExtMinNorm;

double ExtTimeOfMinNorm;

int ExtGetPeriod;

int ExtNumStates;

int ExtNumlterOfState;

} EXTAN;

Figure 3.4: Data Structure Used by the Extrapolation Algorithm
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Appendix A

Manual for Sspice

Sspice is anaugmented version oiSPICE3'm which algorithms for the computation
of the periodic steady-state are implemented. The algorithms currently implemented are the
Newton-Raphson-based and the extrapolation-based methods. Both these methods belong
to the general class ofmethods known as shooting methods. The algorithms can be used
by means ofa new analysis-type called steady that has been incorporated into SPICE3.

Thealgorithm to beused for steady-state analysis isspecified onthecommand line
for steady-state analysis. The usual SPICES analyses can still be used from within Sspice.
To use the steady-state analysis, the steady command, with the fields on the command
line appropriately specified, is used. Areview of the user's manual for SPICE3 [QNPS87]
may be necessary before using Sspice. The fields that need to be specified on the steady
command line are described below in the order in which they should occur. The general
steady-state command is the following:

steady 'algorithm' 'circuit type' time-period* 'no. ofpoints' 'accuracy*
'initial condition flag' 'damping'

A.1 Description of the Options Available for Steady-State
Analysis

Specifying the Algorithm

This field, act in the example (see Figures A.1 and A.2), specifies the algorithm
that one desires to use for steady-state analysis. Currently, two algorithms have been
implemented in Sspice. Thus, the algorithm name can be either act when the Newton-
Raphson-based method is to be used, ext when the extrapolation-based method is to be
used or tran when conventional transient-analysis is to be used.

Specifying the Type of the Circuit

In the example, the field, auto, specifies that the circuit being simulated is an
oscillator. A driven circuit can have a periodic input which may be either sinusoidal or
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nonsinusoidal. This parameter can either be auto for an autonomous (oscillator) circuit or
nonjauto for a nonautonomous (driven) circuit.

Specifying the Time-Period

The time-period is a real number giving the value of the time period for a nonau
tonomous circuit or a close estimate for an autonomous circuit. The time-period in the
example is 0.62/jseconds.

Specifying the Number of Points

The 'number of points' is the minimum number of points per cycle at which the
simulator should solve the circuit. This is an integer that sets a bound on the maximum
time-step taken during an integration. 50 points per cycle has been found to be sufficient
for all the example circuits.

Specifying the Desired Accuracy

Thedesired accuracy is a real number specifying the accuracy with which conver
gence to the steady-state is tested. This number is compared with the difference between
the state of the circuit after a cycle of transient analysis and the initial circuit-state used
for that cycle. An accuracy of0.01 was used for all ofthe example circuits.

Specifying Whether the Device Initial-Conditions Should be Used

The flag to indicate whether the device initial-conditions should be used can be
either uic, which is identical to the uic flag in SPICES, or duic which means that the uic
flag has been turned off for the first cycle. The uic flag is always on for all subsequent
cycles.

Specifying the Damping

When the algorithm specified is act, the 'damping' is used for computing the
damping factor for the Newton-Raphson iterations. The higher the value of the damping
factor, the closer the damping factor is to unity. Different values of the damping factor
may be suitable for different problems. A value of 10.0 was used for all of the example
circuits. When the algorithm used is ext, the 'damping' specifies the number of cycles of
transient analysis carried out before the extrapolation algorithm is applied. Three cycles
ofintegration before the first extrapolation iteration were found to be sufficient for all the
circuits for which the extrapolation algorithm was successful.

A.2 An Example of the use of Steady-State Analysis
The circuit, with the corresponding SPICE3 file, used for the steady-state analysis

example shown in Figure A.1 is shown in Figure A.2. The algorithm field on the steady
command line in Figure A.1 is specified to be act, which implies that the Newton-Raphson



shell_prompt> Sspice
/* Example ofthe use ofthe Newton-Raphson algorithm */
Sspice_prompt> source ckt
Sspice_prompt> steady act auto 0.62uss 50 .01 uic 10.0
Sspice_prompt> plot v(l) - v(3)

Figure A.1: Example of the use ofSteady-State Analysis

Colpitts Oscillator: q=50 [Fan75]
rl 3 1 10k

re 2 4 20k .—-, .

ql 102 modi _,_£.
.model modi npn (rb=100 rc=20 tf=.lns) ~ ^ ^
11 3 1 20uh ic=0
cl 1 2 0.5nf ic=0

c2 2 0 40nf ic=-0

vcc 3 0 10

vee 4 0 -10

.end

Figure A.2: Colpitts Oscillator with a Q of 50
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method will be used for steady-state analysis. The circuit is a colpitts oscillator. Because
the circuit is autonomous, the second field on the command line is specified as auto. The
period of the input source is 0.62//seconds, and this is specified in the third field. Thefourth
field specifies the minimum number ofpoints per cycle that the circuit must be solved for.
50 points per cycle is found to be sufficient for the example circuit. The fifth field is the
accuracy with which convergence to the steady-state is required. An accuracy of 0.01 is
used for the example circuit. The sixth field is specified to be uic implying that the device
initial conditions will be used for the first cycle. A 'damping' of10.0 is used for thecircuit.

The circuit is first sourced into Sspice as shown in Figure A.1. Then the steady-
state analysis is carried out. Sspice saves the data from each cycle of transient analysis
leading to the steady-state. It is possible toplot the waveform corresponding toany variable
for any of the cycles leading to the steady-state. The choice of the cycle to be plotted can
be chosen using the setplot command in nutmeg. The output produced by Sspice is shown
in Figure A.3. The progression ofthe circuit towards thesteady-state is shown in theseries
of plots in Figure A.4. This particular set of of plots is interesting because it shows a
typical example of how the Newton-Raphson algorithm is capable of recovering from an
error during one of the intermediate iterations.

A.3 Distribution of the Program

The source-code for the program and additional copies of this report areavailable
in the public domain through the EECS/ERL Industrial Support Office, Cory Hall, the
University of California, Berkeley.



The circuit has 3 state(s).
The Steady-State has been reached!

Values of the state variables in the circuit are the following :
c2 : -0.7700 Volts

cl : 4.8747 Volts

11 : 0.0259 Amps

The period of waveform: 6.245321e-07

The number of NR iterations required : 7
Number of cycles required : 14

CPU time for the steady-state analysis = 7.63 sec

Figure A.3: Output Produced by Sspice for the Example

Comments

• Sspice is still in the developmental stage.

• The extrapolation algorithm is not available for oscillators.

• All the fields in the steady command are mandatory.
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Appendix B

Input Files for the Test Circuits
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DC Power-Supply [Ske80]

vin 1 0 sin(0 20 50)
dl 1 2 modi

.model modi d (is=le-16 cjo=2pf)
cl 1 2 luF

c2 3 0 lmF

c3 4 0 lmF

11 3 4 0.1H

rl235

r2 4 0 Ik

♦plot v(4)

♦commands for steady-state analysis:
♦steady act nonjauto 20ms 50 .01 uic 10.0

♦steady ext nonjauto 20ms 50 .01 uic 3.0

♦steady tran non_auto 20ms 50 .01 uic 10.0
.end

(JT
p-^

a

Figure B.l: DC Power-Supply

C-B CLASS C AMPLIFIER (LO-Q) [Fau75] *
RBI 7 6 3.9K

RB2 6 0 1.2K

CB 6 0 1UF

RE 4 0 510

RC 7 5 1.6K

LT7 5 50UH

CT 7 5 2NF

Ql 5 6 4 modi

.model modi NPN(IS=l.e-14 BF=80 RB=100

+RC=10 CJE=2PF CJC=2PF VA=50)
VCC 7 0 15

RS 1 2 50

LS 2 3 10UH

CS 3 4 10NF

RLK 3 4 100MEG _
VSIN 1 0 sin(0 500MV 500KHZ) "
♦PLOT -5 25 VOUT 5 0

♦commands for steady-state analysis :
♦steady act non_auto 2us 50 .01 duic 10.0

♦steady ext nonjauto 2us 300 .01 duic 3.0

♦steady tran non_auto 2us 50 .01 duic 10.0
.end

Ll

>ca 'O

VWS Re;
Rb2 Rbl

Figure B.2: Common-Base Class-C Amplifier (Low-Q)
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C-B Classs-C Amplifier (HI-Q) [Fan75]
RBI 7 6 3.9K

RB2 6 0 1.2K

CB 6 0 1UF

RE 4 0 510

RC 7 5 1.6K

LT 7 5 10UH

CT 7 5 10NF

Ql 5 6 4 modi

.model modi NPN(BF=80 RB=100

+RC=10 CJE=2PF CJC=2PF VA=50)
VCC 7 0 15

RS 1 2 50

LS 2 3 50UH

CS3 4 2NF ^ ;vdn
RLK 34100MEG J^
VSIN 1 0 sin(0 500MV 500KHZ) "
♦PLOT -5 25 VOUT 5 0

♦commands for steady-state analysis:
♦steady act nonjauto 2us 50 .01 duic 10.0
♦steady tran nonjauto 2us 300 .01 duic 3.0
.end

Figure B.3: Common-Base Class-C Amplifier (High-Q)

42

CTjoLT

Vcc



Class-C Amplifier [CT73]
rl 1 0 50

r2 6 0 50

cl 1 2 lOOpf

c2 2 0 lOpf

c3 3 0 lOpf

c4 4 0 lOpf

c5 5 0 lOpf

c6 5 6 lOOpf

c7 7 0 lOOpf

18 1 3 0.025uh

19 3 0 1.2uh

110 4 5 .025uh

111 5 7 1.2uh

ql 4 0 3 modi

.model modi NPN(IS=le-16 BF=80

+RB=100 VA=50 tf=.lns)
vdc 7 0 30v

Iin 1 0 sin(0 0.1 lOOMEGHz)
♦plot v(6)

♦commands for steady-state analysis:
♦steady act nonjauto .Olus 50 .01 uic 10.0

♦steady ext nonjauto .Olus 300 .01 uic 3.0

♦steady tran nonjauto .Olus 50 .01 duic 10.0
.end

Figure B.4: Common-Base Class-C Amplifier With a Large Number ofStates

Qi no
/innr\•y / 1—'COO1

-=L- C4?t C5?t

C7
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X3 FREQUENCY MULTIPLIER [Fan75]
RE3 5 5K

CE 3 0 1UF

RC 2 6 10

Ql 6 1 3 modi

.model modi NPN(IS=le-14 BF=80 RB=100

+CJE=5PF CJC=2PF VA=50)
RT 4 2 2K

LT 4 2 1UH

CT 42112PF ( I
RS 1 0 IK ^ *
CS 1 0 500PF

LS 1 0 2UH

ISIN 1 0 sin(0 250UA 5MEGHZ)
VCC 4 0 10

VEE 5 0 -10

♦frequency : 5MEGHZ

♦command for steady-state analysis :
♦steady act nonjauto .2us 50 .01 uic 10.0

♦steady tran non_auto .2us 50 .01 uic 10.0
.end

Figure B.5: X3 Frequency Multiplier

Colpitts Oscillator: q=50 [Fan75]
rl 3 1 10k

re 2 4 20k

ql 1 0 2 modi

.modelmodi npn (rb=100 rc=20 tf=.lns)
11 3 1 20uh ic=0

cl 1 2 0.5nf ic=0

c2 2 0 40nf ic=-0

vcc 3 0 10

vee 4 0 -10

♦ period = 0.62us

♦vout = v(3) - v(l)

♦command for steady-state analysis :
♦steady act auto .62us 50 .01 uic io.O

♦steady tran auto ,62us 50 .01 uic 10.0
.end

Figure B.6: Colpitts Oscillator with a Q of 50
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Colpitts oscillaton q=100 [Fan75]
rl 3 1 10k

re 2 4 20k

ql 1 0 2 modi

.model modi npn (rb=100 rc=20 tf=.lns)
11 3 1 lOuh ic=0ma

cl 1 2 1.013nf ic=0v

c2 2 0 79nf ic=-0v

vcc 3 0 10

vee 4 0 -10

♦ period = 0.62us

♦vout = v(3) - v(l)

♦command for steady-state analysis :
♦steady act auto .62us 50 .01 uic 10.0

♦steady tran auto .62us 50 .01 uic 10.0
.end

Figure B.7: Colpitts Oscillator with a Q of 100
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Colpitts oscilator - High Frequency [Ngy88] Vcc
♦ oscfreq = 822meg output from v(5)=700mV
♦ power supply
vcc 3 0 5

vee 4 0-5

ree 2 4 840

♦ active device
ql 5 6 7 4 nd230ew

♦ tank circuit
re 3 1 Ik

11 1 0 9n

ce 1 0 3p

cl 1 2 3p

♦ ammeter
vie 1 5 0 _
vib 0 6 0

vie 2 7 0

♦ transistor model

.model nd230ew npn( xtb=1.5 xti=2.148 is=94.7e-18 bf=205 nf=0.978
+ vat=22 ikf=142m ise=0.00 ne=1.50 br=62.0 nr=1.000 var=2.2 isc=0.00
+ nc=1.5 rb=41 irb=134u rbm=10.1 re=0.36 rc=8.9 eg=1.232 cje=300.0f
+ vje=0.995 mje=0.46 tf=10.0p xtf=1.00 itf=42.00m ptf=0.0 cjc=503f
+ vjc=0.42 mjc=0.22 xcjc=0.13 tr=400p cjs=240.0f vjs=0.65 mjs=0.31
+ fc=0.875 )

♦ Vout = v(5)
♦Command for steady-state analysis:
♦steady act auto 1.2195ns 50 .01 uic 10.0
♦steady tran auto 1.2195ns 50 .01 uic 10.0
.end

Figure B.8: High Frequency Colpitts Oscillator
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Wien Oscillator [Fan75]
re 6 1 7k

re 4 0 470

rf42 Ik

ql 1 2 0 modi

q2 3 1 4 modi

.model modi npn(bf=80 rb=100 rc=10 cje=2pf
+cjc=2pf tf=lns va=50)
rl 6 3 2.2k

r2 5 2 2.2k

cl 3 0 470pf ic=0.0v

c2 3 5 470pf ic=0.0v

vcc 6 0 7.5v

♦ period = 6.67us

♦vout v(3, 0)

♦command for steady-state analyis :
♦steady act auto 6.67us 50 .01 uic 10.0

♦steady tran auto 6.67us 50 .01 uic 10.0
.end

Figure B.9: Wien Oscillator

OP AMP Based Wien Bridge Oscillator [Ped88]
vl 100

r2 1 2 Ik

c2 2 0 0.0159u ic=lv

rl 2 6 Ik R2"

cl 6 7 0.0159u ic=lv

eo 5 0 2 0 3.05 r+

ro5 7 1

dell 7 8 modi

vbcll 8 0 14

dcl2 0 9 modi

vcl2 9 7 14

.model modi d is=le-16

♦period lOOus

♦plot v(7)

♦command for steady-state analysis :
♦steady act auto lOO.Ous 50 .01 uic 10.0

♦steady tran auto lOO.Ous 50 .01 uic 10.0
.end

vi

Cl

:C2

Figure B.10: OP AMP Based Wien Oscillator
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Emitter Coupled Colpitts Oscillator [Fan75]
RBI 1 0 5K

RB2 6 0 5K

RE 3 4 4.7K

RC 5 2 5K

LT 5 2 10UH ic=1.5ma

Cl 2 1 lOOpF ic=10V

C2 1 0 1000PF ic=0V

Ql 5 1 3 MOD

Q2 2 6 3 MOD

•model MOD NPN(RB=150 RC=20 CJE=2P
+CJC=2P VA=50)
VCC 5 0 10

VEE 4 0 -10

♦ Vout = v(5, 2)

♦steady 1 5meghz 0 75
♦commands for steady-state analysis:
♦steady act auto .2us 50 .01 uic 10.0

♦steady tran auto .2us 50 .01 uic 10.0
.end

Rbl

Figure B.ll: Emitter-Coupled Colpitts Oscillator

E-C transformer feedback oscillator [Fan75]
rl 1 3 Ik

cl 1 3 lOnf ic=2.0v

11 1 3 lOuH ic=0.2ma
12 4 0 luH ic=0.1ma
kt 11 12 0.98

re 2 5 3k

ql 3 4 2 modi

q2 1 0 2 modi

.model modi npn(bf=80 rb=100)
vcc 3 0 10

vee 5 0 -10

♦plot 5 15 vout 1 0

♦steady 1 500kHz 0 75

♦command for steady-state analysis :
♦steady act auto 2us 50 .01 uic 2.0
♦steady tran auto 2us 50 .01 uic 2.0
.end

Figure B.12: Emitter-Coupled Transformer Feedback Oscillator
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phase-shift oscillator [Fan75]
re 5 1 3.3k

rb 1 2 470k

ql 1 2 0 modi

.model modi npn(rb=100 rc=10 va=50)
cl 1 3 .047uF

rl 3 0 7k

c2 3 4 .047uF

r2 4 0 5k

c3 4 2 .047uF

vcc 5 0 10

♦plot 0 10 vout 1 0 vb 2 0

♦command for steady-state analysis :
♦steady act auto 4.0ms 50 .01 uic 10.0

♦steady tran auto 4.0ms 50 .01 uic 10.0
.end

Figure B.13: Phase-Shift Oscillator

sony oscl [Sony Corp.]
ql 6 2 4 modi

q2 2 6 4 modi

iee 4 0 0.2m

li 5 2 2.39u

ci 5 2 106p

ri 5 2 100k

.model modi npn bf=100 is=le-16
+rb=50

vcc 5 0 5

veel 6 0 5

♦period = 0.1us

♦vout v(2)

♦command for steady-state analysis :
♦steady act auto .lus 50 .01 uic 10.0

♦steady tran auto .lus 50 .01 uic 10.0
.end

Figure B.14: LC-Tank Based Emitter-Coupled Oscillator
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Bipolar relaxation-oscillator [Ped88]
.option reltol=le-6

il 0 1 5u

cbl 1 0 lpF

ql 3 1 0 modi

rcl 5 3 10k

cl 3 4 lOOpF

i2 0 4 5u

cb2 4 0 lpF

q2 6 4 0 modi

rc2 5 6 10k

c2 6 1 lOOpF

vcc 5 0 5

.model modi npn is=le-16

♦period 180us

♦plot v(l) v(6)

♦command for steady-state analysis :
♦steady act auto 180us 50 .01 uic 10.0

♦steady tran auto 180us 50 .01 uic 10.0

.end

Figure B.15: Bipolar Relaxation-Oscillator
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Appendix C

Shooting Methods : The
Newton-Raphson Approach

Cl Introduction

The Newton-Raphson iteration1 algorithm can be used for solving the boundary-
value problem. The boundary-value problem with the periodicity constraint can be
expressed as follows:

y'W = f(*,!/W),g(*+r),j/W) = y(t +T)-y(t) = o,
such that r € [ii,t2], y 6 HN, and f: KN -* 1ZN

where ti and t2 are distinct and g :7lN -• fcN (C.l)

To solve the fixed-point problem y(t0 +T, y(t0) =y(#) using Newton-Raphson, the
following iterative equation is used:

y(i+1) (4) =yw (ti) -
6yM{ti) [y^it^-y^itt +r)^)

f is assumed to be diflferentiable with a Lipschitz continuous derivative. In Eqn. C.2,
given y(0 (rj), one can compute y(0 (t+ +r) using aprogram that can do conven
tional transient analysis. In the next section it is shown how fl - ^(0(fo+^)1 tve
Jacobian, can be computed efficiently by means of sensitivity circuits under the as
sumption that the capacitor voltages and the inductor currents are independent. This
implies that state equations are not necessary. It is shown in a later section that the
sensitivity circuit approach is valid even when some dependencies exist among the
capacitor voltages and inductor currents. The modification ofthis method for solving
autonomous systems is presented in the section on autonomous systems. Finally, the
implementation of the algorithm and the heuristics used are presented.

lThe application of the NR method in this context is distinct from the conventional use of NR iterations
by simulators.
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C.2 Sensitivity Circuits

Sensitivity circuits[TCF75] are anefficient way ofcomputing theJacobian (see Eqn. C.2)
required for the Newton-Raphson iteration. The circuit equations using the sparse-
tableau formulation[HBG7l] are:

^£=0 (KCL) (C.3)
Ae = v (KVL) (C.4)

and the branch equations

£r = fJSr) (resistive) (C.5)
!c = L&) (capacitive) (C.6)

h = fjdx) (inductive) (C.7)
dq

where -j*=i; 2c(0) = 2c0
, d\t . . .

IT = u ^ = Uo
the independent source equations:

Cu + Dju = Sit) (C8)

If the Eqns. C.4 - C.8 aredifferentiated with respect to the initial value ofone of the
state variables, the following set of equations are obtained:

•4TO=fl (KCL) (c-9)
.T tic Sv

A\m~ms (KVL) (ci°)
?OT - ^kWw %M(resistlve) (c-n)
tq 6f Sv

mSi = l£*MjltHg>W 53SJ (capacitive) (C.12)
*h _ *//. Si, .. 0 . x

?OT ~ 3TW>w J^Jto) (mductlve) (da)
where

'iC

%(*o)J syk(t0y
£ r % i ^
A L%(*o)J fy*(to)'

x /j. \ fan(* tn?i initial conditions are givenLby,
a^cW = J fi» " 3te 1S the voltage on tie jCh capacitor
tyk(to) \ 0, if yk is an inductor current (c-14)

^Jj(*o) _ / £i> ** 2/Jk is the current in the jth inductor
6yk(to) [ 0, if yk is a capacitor voltage
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where ej is the unit vector,

Eqns. C.10 -C.15, expressed in terms of the set of parameters (j^jfU, suffer), are
identical to the original sparse-tableau equations (Eqns. C.4 - C.8) expressed in terms
of(£, e) if theoriginal circuit is linear. In general the sensitivity circuit is a linearized
version of the original circuit at the current operating point. There is a one-to-one
correspondance between each variable and its partial derivative with respect to the
chosen state variable. The only major difference between the two circuits is in the
initial conditions for the differential equations as shown in Eqn. C.10 to Eqn. C.15.
Theinitial voltage (current) ofall capacitive (inductive) elements is zero except for the
capacitor voltage (inductor current) with respect to which the partial derivatives are
being computed, the initial condition for this capacitor (inductor) being lvolt (lamp).
One sensitivity circuit can begenerated for every state-variable in the original circuit.
The solutions of each of these sensitivity circuits, with the unity initial condition
mentioned above, at t = to+ T is the set of partial derivatives required to form the
Jacobian, J (to + T), used in the Newton-Raphson iteration.

Since each of the sensitivity circuits is just a linearized version of the original circuit
at the present operating point in the original circuit, its circuit matrix has already
been obtained in a LU-factored form while solving the original circuit. Thus, if each
sensitivity circuit is solved in-step with the original circuit, the only computation
ally intensive steps in the solution of the sensitivity circuits at each time step are
the forward and back substitutions. Therefore, an overhead of the order of G(N3),
where N is the number ofstates in the circuit, is added to the cost of carrying out a
transient analysis on the original circuit because of the need to compute the sensitivi
ties. There are other ways ofcomputing the required Jacobian, notably using adjoint
techniques[Dir71], butall ofthese are much more expensive than the sensitivity-circuit
approach in terms of theoverhead. The sensitivity matrix starts offas a diagonal ma
trix at t = t0. With time, the off-diagonal entries get filled up. The ultimate structure
of the matrix is not easily described. An algorithm for predicting the ultimate struc
ture would be extremely helpful in reducing the overhead even further.

The end result is that the y(t0 + T) and J(t0 + T), which are required for the
Newton-Raphson iteration, are computed simultaneously and are both available when
a transient analysis has been carried out for one period. Since a sufficiently general
sparse-tableau formulation is used in the above development of the sensitivity circuits,
it does not matter what formulation is actually used by the simulator to solve the
circuit. The same conclusons are still valid. Because it is assumed that the circuit
states are independent, it has to be shown that the presence of dependent states does
not change the situation.
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C.3 Circuits with Dependent States

In situations with dependencies, it is not possible to choose the initial conditions inde
pendently. The analysis for circuits with dependent states are considered in [TCF75].
It has been proven that the sensitivity approach described above leads to the same
results as the state formulation approach and one need not worry about finding the
dependencies among the state variables. This follows from the rigorous use ofrj in
the Newton-Raphson equation. Essentially, the circuit is allowed to relax for an in
finitesimal amount of time so that the charge and flux redistribution can take place
between the dependent storage devices.

C.4 Newton-Raphson for Autonomous Systems

Shooting methods can be modified to handle autonomous systems. The phase of the
autonomous systemis not of importance, and it is possible to assign some value to one
ofthe state-variables and remove it from the set ofunknowns and make the period of
oscillation an unknown, giving us a solvable system with Af unknowns and the same
number ofequations. In this section it is described how the Newton-Raphson method
can be modified to do so.

When the substitution mentioned above is carried out, the following modified Newton-
Raphson equation is obtained [AT72a]:

»«+1) (ti) =»<•> (tt) -
svM(ti) [y(i)(<o-)-2/(i)(^+p(,'))]

where, v is given by, v = {yu y2... yk_u p, yk+1... yjsf}
p being the unknown that represents the period (C.16)

T is the identity matrix with the kth column replaced by a column consisting of all
zefoes* ^he Jacobian in Eqn. C.16 requires that the kth column consisting of the

jjg f be computed. This computation is not done as part of the solution of the
sensitivity circuits. But again it can be shown that this computation is not expensive.
For example, for a capacitor:

^(p+'f)-^('o+)=i/r°+ #•»*
0

Similarly for an inductor,

^-i-Pfr-t) (C.18)
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Usually, the capacitor current and inductor voltage is available from the simulator
and can be read from the data-structure. The kth column is zero because the initial
condition chosen obviously does not depend on thecurrent iterate of the period. The
(« +l)th iterate ofthe period is obtained by using Eqn. C.16. The following observa
tion [AT72a] shows that the Jacobian as constructed in Eqn. C.16 is nonsingular and
its inverse is available. The n x (n + 1) matrix [$ : A] where $ = I - $, $ is the
state transition matrix and A=*yjfe|+V '> nas nindependent columns if and only
if the column kis such that 6yk v\pP *' ^ 0.
According to this observation, the element of the vector of partial derivatives with
respect*to the period that will become a diagonal element in the new sensitivity
matrix should not be zero if the new sensitivity matrix is to be nonsingular. It
should be noted that the desirable properties of the Newton-Raphson iteration are
not altered. In particular, the quadratic convergence when oneis close to the solution
is maintained. Also, it is important to choose the column to be substituted (the kth
column) such that the corresponding variable is in the range of the orbit. We choose

Vpt») # 0to satisfy the observation by choosing aksuch that *^p '
maximum. The desirable side effect of this is that y$ is assured ofbeing in the range
of the steady-state oscillation because when 6yh.^

maximum values. This implies that if

and is valid.

.(0= 0, yk(t) is at its minimum or

.(0£ °> yk (t) lies between the extremes

C.5 Implementation, Heuristics and Practical Consid
erations

The Newton-Raphson method has been implemented in SPICE3 [QNPS87]. The
resulting program is called Sspice. The program is made sufficiently general that new
steady-state algorithms can beadded as required. The details are in Chapter 3. The
pseudo code for the implemented algorithm is given in Figure Cl.

The main task is to solve the Newton-Raphson iterative equation (Eqn. C.2) to con
vergence with a minimal number ofiterations. Each iteration in the Newton-Raphson
iterative process is extremely expensive because it involves a transient analysis for
one complete period of the circuit with the additional cost of computing the sen
sitivities. Also, the Newton-Raphson iteration may overshoot if the current guess
happened to be far away from the solution. Finally, if more than one solution exists,
the Newton-Raphson method may lead to the wrong solution. To reduce the proba
bility of the iterative process going astray or the leading to the wrong solution, the
following heuristics are used:

(1) Do a transient analysis in the beginning for as many cycles as required to reach a
threshold distance from the solution. Computation of a measure of the distance from



int
NRiterate(circuit) {

NRinitQ; /* initialize the data-structures */
exitLoop = FALSE;

START:
ttfAiVe(TRUE) {

if (Too Many Iterations) {
retom(ERROR);

} else {
«/(doSensitivityUpdate) {

Do a transient analysis for onecycle with sensitivity update;
} else {

Do a transient analysis for one cycle without sensitivity update;

Compute error;
1/(exitLoop) {

if (converged) {
r*<«m(DONE);

} else if (error > THRESHOLD) {
exitLoop = FALSE;
doSensitivityUpdate = FALSE;

} else {
break;

} else if\(error < THRESHOLD) {
exitLoop = TRUE;
doSensitivityUpdate = TRUE;

}
} /* end while loop */
case Autonomous: Do NR for oscillators;
case Nonautonomous : Do NR for driven circuits;
goto START;

Figure Cl: Psuedo Code Showing the NR Algorithm
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the solution is explained later.

(2) Dampen the Newton-Raphson iteration so that overshoot is prevented. Damp
ing reduces the effect of the Jacobian on the iteration. The damping coefficient is
computed dynamically as follows:

Damping Coefficient n = max (0.1, (1 - am)) (C.19)

It is necessary to restrict n to be a nonzero quantity to avoid dividing by zero while
computing the damped Jacobian for an autonomous system. A restriction of n to a
minimum value of0.1 [Fan75], as in Eqn. C.19, has been empirically found to besmall
enough to leave the iterative process unaffected.

a is an error measure that gives an indication of the distance from the solution. For
an autonomous system,

a=max (|y<0 (r0 +p<«>) - yW(*0)||) . (C.20)
For a nonautonomous system the period is a known quantity,

a=max (|y(0 (*0 +T) - y<*>(*0)||) . (C.21)
Other error measures [CT73,GT82] have been proposed but were found during the
course of the present work to be less effective than the simple measure above. The
positive integer m is either a user defined quantity or some default value that was
arrived at empirically. Since an overdamped system is also not desirable, the value of
m in Eqn. C.19 has to be carefully chosen. It has been found experimentally that a
value ofm = 10 gives good results for most circuits. This method ofdamping implies
that when the error is large, the Newton-Raphson iteration reduces to a fixed-point
iteration, and when close to the solution it becomes an undamped Newton-Raphson
iteration.

The damped Jacobian is computed in the following way:

For a nonautonomous system, J = I —n$,
where $ is the state transition matrix defined earlier (C.22)

For an autonomous system, J = I' —n$fc,

where I' has been defined earlier and $k = ^(fi+jf^

with the kth diagonal element divided by n2 (C.23)

(3) The error indicating the distance of the latest value of the state vector from
the solution is checked before each transient analysis. If the error is greater than
an acceptable threshold, no sensitivity computation is done during that transient
analysis. This saves the cost of computing the Jacobian which would not have been
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Figure C.2: Variation of Sensitivity Computation Overhead with Number of States

used anyway since after such a transient analysis a fixed-point iteration rather than
a Newton-Raphson iteration is carried out.

(4) The Newton-Raphson algorithm for autonomous systems requires special heuris
tics to ensure that there is no overshoot while computing a new iterate for the time-
period. During any iteration of the period, the change in the period is not allowed to
exceed acertain fraction ofits current value. It has been found that allowing amaxi
mum change in the period of0.1 [Fan75] times the current period prevents overshoot
during the iteration and at the same time allows the iterations to proceed normally
when there is no overshoot. It is necessary to protect against such overshoot because
a wrong guess of the period could potentially lead the algorithm astray.

C.6 Cost of Sensitivity Computation and NR Iteration

It is possible to reduce the overall cost ofthe sensitivity computation required for the
Newton-Raphson method. Programs like NITSWIT [KSS8] require the computation
of the sensitivity matrix an extremely large number of times. Even small reductions
in the overhead can lead to significant improvements in the times in such situations.
Figure C.2 shows the variation ofthe ratio ofthe sensitivity computation time to the
total time taken for transient analysis with an increasing number of states.
One technique for reducing the cost is the well-known Samanskii's method [OR70]
that uses the same Jacobian over many iterations. Thus, only one LU-factoring of the
Jacobian needs to be done over many iterations. Each iteration just requires aloading
ofthe right-hand side and aforward-back substitution. Though each iteration becomes
cheaper, the number of iterations required increases. This method was suggested
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and utilized in [CT73]. It was implemented in Sspice for experimentation. It was
found that for many circuits it is difficult to predict when the Jacobian would have
elements significantly different from the previous Jacobian. Frequently, either the
wrong solutions are obtained or the number ofiterations required was larger. In cases
where a saving was obtained, it was not significant. Hence, Samanskii's method was
not used.

Another approach to reducingthe cost ofsensitivitycomputation is the eliminationof
states that do not affect the ultimate solution but make the convergence to it slower
and increase sensitivity computation overhead. Experiments have shown [GT82] that
states due to transistor parasitics need not be considered. This result has been used
in Sspice.

Future Possibilities

An approach to reducing the the cost of each Newton-Raphson iteration is to make
the Jacobian more sparse. Each Newton-Raphson iteration is 0(cube of the number
of states) in complexity because the Jacobian can, in general, be expected to be
dense. Asparse Jacobian would reduce it to <9(super-linear in the number ofstates).
The problem is to find elements of the Jacobian that can be predicted to have an
insignificant effect on the solution ofthe system ofequations that is computed during
each iteration so that they can be zeroed out. As long as the algorithm used to find
such elements is quadratic or less in complexity, it will lead to an improvement from
0(cube ofthenumber ofstates) in complexity to at worst (^(square ofthenumber of
states) incomplexity. This isa new approach and hasn't been tried yet. It isimportant
to note that for a linear circuit, the Jacobian is time invariant. After the Jacobian
has been computed for the first iteration, it need not be computed again. Since the
Jacobian is time invariant, itsstructure does not change with time. It may be possible
to reach a conclusion on the effects of each of the elements of the Jacobian on the
solution of each Newton-Raphson iteration after the first iteration has been carried
out. One could essentially zero those elements out and use the resulting more sparse
matrix for all subsequent iterations. It is not clear how such an approach or another
approach could be used for the case ofnonlinear circuits. One possible technique for
locating elements in the Jacobian that would not affect the final solution would be to
first normalize thesystem oflinear equations set upfor theNewton-Raphson iteration
with respect to the right hand side. The elements of the resulting matrix could then
be compared with some norm ofthe matrix and ifmuch smaller than the norm, could
be zeroed out, making the matrix more sparse.



Appendix D

Shooting Methods : The
Extrapolation Approach

D.l Introduction

Extrapolation is another technique that can be used for the fixed-point iterations
required for steady-state computation using shooting methods. The following three
extrapolation algorithms were proposed in [Ske80]:

— scalar

— vector €

— minimum polynomial

Only the minimum-polynomial method has been considered in the present work be
cause it is usually the most efficient, requiring fewer periods to perform an extrapo
lation. In essence, extrapolation is the acceleration of the solution of the nonlinear
equation y = F(y) based on a sequence {y0i yu ... ,yr_u ,yr} which is generated
by r iterations of the type yn+1 = F(yn). In the following sections, it is shown that
extrapolation is quadratic-convergent if certain conditions are satisfied, the algorithm
is extended toautonomous systems and the implementation details are presented.

D.2 Foundation

The equation that extrapolation tries to solve is the same as Eqn. Cl with the peri
odicity constraints. Extrapolation is based on the assumption that the sequence {yrf
is generated by the finite-dimensional linear system of the form

S/j+i =<Ayj + b
where AeHNxN and beHN (D.l)

Aand bin Eqn. D.l are useful for the formulation of the equation but are not actually
required to be computed. IfF(y) is linear, Eqn. D.l models F(y) exactly and the fixed
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point is found in just one iteration. More iterations are required if F(y) is nonlinear.
Expanding F(y) about its fixed point z0y

?(zo + Sy) = F(z0) + Jr(z0)6y + G(Sy2)
= F(zo) - Jr(*o)zo + JH*o)(*b + fy) + 0(Sy2)

= b + A(z0 + Sy) + C(6y2) (D.2)

Consider the sequence {Syj} generated by Eqn. D.l, where Syj = yj - z0. Since
Syj € HN, there are at most iV linearly independent vectors in the sequence. If A is
not of full rank because of constraints on the basic circuit equation (Eqn. Cl) or an
ill-formed matrix, A has a rank of r < N and a null space of N - r. At the most r of
the vectors in the sequence {Syj} are linearly independent. If some of theeigenvalues
of A have multiplicity greater than one, the number of linearly independent vectors
may be less than r. As stated in the following theorem, the number of independent
vectors is actually less than or equal to the degree of the minimum polynomial of A.
Equivalently, there is a number q < r < N such that there are at most q linearly
independent vectors in the sequence {Syj}. This implies that there exists a set of
q+ 1 nonzero coefficients {cj} such that

9

Since Syj = yj - z0,

!>;}% = 0 (D.3)
i=o

r _ 3%* cm

The coefficients {cj} are found by the following equations:

Since, yj+i = Ayj + 6 and, z0 = Az0 + b

K Ayj = yj+1 - Vj we have, ^CjAyj =

^ q *
2>i("4-i)(yj-*o) = YtAA-tyy* = °-
i=o j-o

Thus, if y = {Ay0,...A^1}, c = {Acc-Ac^}7,
and cq = -1, we have that ^c = Ay9 (D.5)

If q < iV, the problem isoverdetermined and cannot be solved using LU factorization.
Even if q = JV, y may be ill-conditioned because of small eigenvalues of A. Thus,
Eqn. D.5 is treated as a least-squares problem and is solved using QR factorization.
QR factorization chooses acoefficient vector csuch that €= ||Jc-Ayq\\2 is minimized.
The value of q cannot be precomputed because the eigenvalues of A are not known.
To compute g, the value of € is monitored. The smaller of the minimum number of
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iterations that give a value ofeless than a threshold and N ischosen as q. After every
iteration, an error, giving a measure of the distance from the solution, is computed
to check for convergence to the steady-state. This iterative process has been shown
to be quadratically convergent under the conditions specified in [Ske80]. In the same
paper, it has also been proven that efficiency of extrapolation is independent of the
formulation of the network equations. It is shown that there is no need for choosing
state-equations and no set of state-variables has to be identified.

D.3 Extension of Extrapolation to Autonomous Sys
tems

The extension of the extrapolation algorithm to autonomous systems was suggested
in [Ske80]. When the circuit is autonomous, the iteration is done on a new function
obtained by replacing one of the variables by the unknown period. That this new
function satisfies the properties required for convergence has been shown in [Ske80].
The underlying principle that allows the replacement of a state-variable by the period
is the same as explained for the Newton-Raphson case.

Even though the application of the extrapolation method to autonomous systems is
theoretically sound, practical difficulties were encountered during the implementation.
These are explained in the following section.

D.4 Implementation, Heuristics and Practical Consid
erations

The extrapolation algorithm has been implemented into Sspice. The pseudo code for
the implementation is shown in Figure D.l. The implementation is found to work
well for nonautonomous circuits, but not for autonomous circuits.

It has been noted in [Ske80] and also observed in the present work that the lack
of precision in numerical integration can prevent convergence if some of the tran
sients are very slowly decaying. It is obvious that the change in the transient from
nT to (n + 1)T must be well above the level of integration errors for extrapolation
to work properly. Effectively, the agreement between the discretized system and the
continuous system must be close enough to represent the slowest changing transient
in the continuous solution. In this connection, it has been observed that for some
problems, forcing the error to be low by decreasing the maximum step size is found
necessary to be able to reach convergence.

Themotivation for the heuristics used for theextrapolation method is similar to that
for the heuristics used in the Newton-Raphson method. As in the Newton-Raphson
method, the purpose of the heuristics here is to reduce the effects of the start-up
transients, to reduce the cost of the extrapolation method and to make sure that the
solution computed is the desired solution. Some oftheimportant heuristics that were
tried, successfully and unsuccessfully, are described below.



int
EXTiterate(circuit) {

EXTinitQ; /* initialize the data-structures */
Integrate for a user specified number of initial cycles:
u>A*7e(not(CONVERGED)) {

Integrate for one cycle;
Check convergence;
if (CONVERGED) {

retam(DONE);
} else {

CONVERGED = FALSE;
START:

DO as many cycles of transient analysis required for next EXTRAPOLATION;
if (error > THRESHOLD for any cycle) {

goto START;

doExtrapolation;

Figure D.l: Psuedo Code Showing the Extrapolation Algorithm
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(1) The circuit is integrated for one cycle after every new initial state has been
computed by extrapolation, and the state obtained after this cycle of integration is
used as the initial state for the subsequent extrapolation. This results in a reduction
of the effects ofany error that may have occurred during the previous extrapolation
on the next one.

(2) There is a constant monitoring of the difference between the state obtained after
a cycle ofintegration and theinitial state used for that cycle. Unless theerror during
all the cycles leading to the extrapolation is found to be less than a threshold, no
extrapolation is done.

(3) The coefficients required for the extrapolation are computed using a variation
of the QR algorithms based on Householder transformations [GL83]. As mentioned
earlier in this appendix, the coefficients are computed so that the least-square error,
\\Ax - b\\2 for the linear system ofequations Ax = 6, is minimized. To prevent the
domination oftheerror by a single equation, theequations arenormalized with respect
to the right hand side. This allows the error to be more uniformly distributed over
the equations in the linear system.

(4) Each extrapolation is, in general, more expensive than a Newton-Raphson based
iteration because q+ 2 cycles of transient analysis are required to obtain the qSyj
vectors necessary for each extrapolation. In the Newton-Raphson method, each it
eration involves only a single integration with some overhead. Thus extrapolation is
usually comparable to the Newton-Raphson method only when the number of states
is small. In thepresent work an attempt was made to reduce theoverall cost ofdoing
an extrapolation by sharing vectors computed for one extrapolation iteration with
the next such iteration. It was found that the ability of the extrapolation method to
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reach the solution was reduced when this heuristic was being used. An attempt was
made toreduce the number ofvectors required to be computed for each extrapolation
iteration by using the method explained in an earlier section in this appendix. This
was not found tobe ofmuch use because the number ofvectors usually required using
this method was equal to the number that would have been required anyway. It is
notclear that such techniques to reduce thecost ofeach extrapolation are worthwhile
because even if they are successful, it is unlikely for the extrapolation method to be
comparable in the computational requirements to the Newton-Raphson method when
the number of states is large.

(5) In case of autonomous circuits, a large number of heuristics were tried out but
without success. As in the Newton-Raphson method for autonomous circuits, the
change in the period computed during anyiteration is not allowed to exceed a certain
fraction ofits current value. It has been found that allowing a maximum change in
the period of0.1 times the current period prevents overshoot during the iteration and
at the same timeallows the iterations to proceed normally when there is noovershoot.
It is necessary to protect against such overshoot because awrong guess ofthe period
could potentially lead the algorithm astray.

(6) One way of incorporating the period into the extrapolation iteration for au
tonomous circuits is to measure the period at the end of every cycle of transient
analysis. It was proposed in [Ske80] that the period be measured by first obtaining
the maximum and minimum of some signal in the circuit during one of the initial
cycles of transient analysis. A value between the maximum and minimum is chosen.
The period of the circuit is then measured as the time between two time-points when
the signal takes this value. This technique assumes that a relatively good estimate of
the period is available in the beginning.

Abetter way toobtain the period is tocompute anorm so that the period corresponds
to the time-point when this norm is minimized. The norm is computed as the sum of
the squares of the difference between the current values of the state variables and the
values of the state-variables at the first time point in the current cycle of transient
analysis. During the transient analysis this norm is checked after each time-point at
which the circuit is solved once some fraction (e.g. 0.8) of the current estimate of the
period has elapsed. The time-pointat which the normis the minimum is noted as are
the values of the state-variables at that point. The difference between this time and J
the starting time for the cycle is then used as the period. There are two ways ofusing
the period measured in every cycle. Oneis to use thesevalues to do an unaccelerated
fixed-point iteration in the period. Every time a new period is computed, it becomes
the current estimate ofthe period. Another way ofusing the period computed during
every cycle is to add it as an element in the vectors of state-variables obtained at the
end of every cycle leading to an extrapolation iteration. This way a new iterate of
the period can beobtained using extrapolation instead of just a fixed-point iteration.
Both the methods were tried but were found to be unsuccessful in computing the
steady-state of the circuit.
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