
 

 

 

 

 

 

 

 

 

Copyright © 1989, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



REPORT ON THE 1989 SOFTWARE CAD

DATABASES WORKSHOP

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M89/35

10 April 1989



REPORT ON THE 1989 SOFTWARE CAD

DATABASES WORKSHOP

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M89/35

10 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



REPORT ON THE 1989 SOFTWARE CAD

DATABASES WORKSHOP

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M89/35

10 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Report on the 1989 Software CAD Databases Workshop
Lawrence A. Rowe

Computer Science Division-EECS, University ofCalifomia at Berkeley
Berkeley, CA 94720, USA

Aworkshop was held to develop abetter understanding ofthe features and database requirements of software develop-
mem environments. It was organized into aseries ofmoderated discussions between all participants.
The major conclusion was that software development tools need most features found in commercial relational database
systems and many features found in next generation object-oriented database systems currently being developed
Specific features required include: object-oriented data models, navigational and set-oriented query languages, complex
object support, long transaction support, derived data support, and alerters. Itwas also apparent that better logical and
physical database design tools would significantly improve the development ofthese new systems

1. Introduction

A two day workshop on the topic of software
CAD databases was held inNapa Califomia in February
1989. Approximately 10people from thedatabase com
munity and 40 people from the software engineering
community attended the workshop. The group included
amixture of people from academia and industry. Atten
dance was limited to encourage dialog between the two
communities. Attendees were selected by a program
committee that read position papers submitted bypeople
who wanted to participate. These position paraswere
published inaworkshop proceedings [RoW89jv

The goal of the workshop was to develop better
understanding in the software engineering and database
communities about the .database requirements for
software CAD databases/ the capabilities of existing
commercial database systems (DBMS), and the capabili
ties of next generation object-oriented database systems
(OODBMS) that are currently being developed. The
workshop was organized into sessions that covered the
following topics: SDE services, database requirements
for SDE's, and alternative DBMS architectures. The last
session was used to develop general conclusions with
which the group could agree. Each session began with a
short presentation on the issues and followed by a
moderated discussion. A designated person took notes
during each session. These notes will bepublished at a
later date.

A limited number of copies of the proceedings
canbe ordered from Sharon Wensel whocanbe contact
ed by phone (415-642-4662), email (wensel®
postgres3erkeley.EDU), or by postal mail at the same
address as the author.

One problem that immediately became apparent
is that there is no generally agreed upon term for pro
gramming environment tools. The term software CAD
(SCAD, pronounced "ess-cad") was suggested by Bill
Scherlis at DARPA. In the software engineering com
munity people use other terms including: integrated pro
ject support environments (IPSE), software engineering
environments (SEE), and software development environ
ments (SDE). In the remainder of the paper I will use
the term SDE.

This paper summarizes the session discussions
and conclusions. It was not possible to have all atten
dees read and comment onthe paper due to tight publi
cation deadlines soI apologize in advance for any errors
or omissions. The remainder of the paper summarizes
the discussions in each session. The session leader is
indicated in parentheses.

2. SDE Services (B.Boehm, TRW)

This session addressed the services that an SDE
system should provide. The goal wastoidentify thedata
that should bestored inaDBMS and the kinds ofopera
tions that might be performed on that data. Following
this discussion, several people presented short "war
stories" about their attempts to build an SDE's on a
DBMS.

A SDE database must include all information
relating to the software lifecycle process. This informa
tion includes:

1. Product data (e.g„ specifications, code,documen
tation, etc.).

2. Resource data (e.g., people, facilities, equipment,
budgets, etc.).

3. Management data (e.g., schedules, action items,
problem reports, etc.).

Figure 1 shows several queries that might be answered
byquerying this database. The first query involves com
plex queries over data that is derived from the data
stored in the database. The second query may require a
change to the product definition (i.e., application schema
change). The third query triggers an automated activity.
The fourth query shows an example ofa fine granularity
query on the source code. And finally, the fifth query is
anexampleof a fuzzy query.

The database people at theworkshop claimed that
queries one, two, and four can be solved with conven
tional DBMS's assuming that reasonable H?tabnsf
designs are used. Queries three and five, on the other
hand, are much harder. The ensuing discussion
identified several issues related to database support for
SDE's including the fact that current commercial
DBMS's provide inadequate support for dynamic
changes to the database design (i.e., schema evolution),
derived data (i.e., data computed from data stored in the
database), complexobjects, andversioncontrol.



Query 1
List the programmers and managers of all tasks on the
critical path withover 5 days of slippage in their current
milestones.

Query 2
Take the "computer experience" cost driver attribute
for each module inthe system and split it into the "com
puter experience" for the host-system and target-system.
Query 3
Perform an appropriate set ofregression tests and report
the possible adverse side-effects of every module
change.

Query 4
List all exceptions that could beraised by the system for
whichthere is no exception handler.

Query 5
If we change the security level of a specific piece of
data, describe how it will effect the security of the com
plete database.

Figure 1:Example queries.

Several people presented "war stories" about
their attempts to build SDE's on a DBMS. William
Paseman described the evolution of the Atherton Tech
nology products from aprogramming language environ
ment tool to anintegrated project support environment
The programming language tool supported multiple user
access to source code and cross-reference data. The
IPSE added support for management control data. Ath
erton has built an object storage system that supports
version and configuration management They concluded
that a programming language environment tool does not
require sophisticated database services (e.g„ sharing,
access control and associative queries) but that it did
need good data modelling, efficient support for fine
granularity objects (i.e., abstract syntax tree nodes) and
navigational queries (i.e., get next object given an object
identifier (OBJID)9

Dennis Heimbigner from the University of
Colorado at Boulder described his experiences develop
ing a system that manages requirement specifications
(REBUS) on top of the Cactis research prototype DBMS
[HuK87]. The novel feature of Cactis isthat it supports
automatic recomputation of derived data in the data
base. Heimbigner had to develop an interface between

An object identifier is a unique identifier as
signed bythe DBMS that never changes [KhC86].

Cactis uses an attribute grammar to specify
the derived data computation. Other research database
systems are exploring theuseof rules to specify derived
data (e.g., POSTGRES [StR86] and STARBURST
[LMP87]).

ADA and Cactis. He described a variety of problems
withinterfacing an existing programming language to a
DBMS that are well known in the database community
(e.g., type compatibility, incompatible datamodels,etc.).
Other problems he described related to the fact that
Cactis was a research prototype thatdid not provide all
the functions a commercial DBMS provides (e.g.,
dynamic schema changes, secondary indexes, sophisti
cated query optimization, and transaction management).
This discussion raised an issue that came up several
times during the workshop. A SDE has many database
requirements that can be satisfied by features found in
different DBMS's. The problem is that nosingle DBMS
providesall the required features.

Mark Dowson, currently at the Software Produc
tivity Consortium (SPC), described two systems: one
builton a custom DBMSandonethatis being builton a
commercial DBMS. The first system, called ISTAR,
was built on a federated DBMS, that is, a collection of
independent communicating DBMS's. Theadvantage of
this approach is that it maybe possible tointegrate exist
ing tools into an SDE by interfacing the tool-specific
DBMS to the federated DBMS. Hiedisadvantage is that
a federated DBMS is really a distributed heterogenous
DBMS. Consequently, the standard distributed DBMS
problems mustbe solved (e.g., distributed query optimi
zation, distributed transactions, replicated data, and cata
log design andmaintenance) [CeP84]. In most cases an
independent DBMS cannot be changed so it may be
impossible to implement all required facilities (e.g., dis
tributed transactions require mat the federated database
master process be able to access the local database lock
tables or to set timeouts on transactions to implement
distributed deadlock detection). In addition, Dowson
noted the problems associated with building a custom
DBMS. Specifically a DBMS is a large complex
software system that requires considerable resources to
build and maintain. He also described an effort at SPC
to use a commercial SQL-based DBMS to build an SDE.
The primary problem thatthey have encountered is that
the conventional transaction model isnotappropriate for
SDE's. This topicis discussed in more detail below.

The final "war story" was presented by Ian Tho
mas from GIE Erneraude. He described the PCTE
project's Object Management System (OMS). A major
goal of PCTE is to create a tool interface abstraction that
allows existing tools to be integrated with the SDE.
OMS has an entity-relationship model with some
object-oriented capabilities (e.g., attribute and relation
ship inheritance). Two problems were encountered.
First, interfacing existing tools to an SDE is averyhard
problem. And second, developing a good database
design that supports tool integration is difficult Several
people who have tried to build SDE's on databases com
mented on the difficulty of developing good database
designs. The importance of good design tools and the
ability to rapidly change a design are well-known prob
lemsin thedatabase community.

While some progress on the database design
problem has been made in the past decade, too much
expertise and effort are required to build acomplex data
base application. Database systems should monitor



access patterns and automatically change the storage
structures so that queries can be executed efficiently. In
addition, better support is needed toreduce program and
data translation required when the logical database
design is changed.

3. SDE Database Requirements (W. Paseman, Ather-
tonTechnology)

The second session explored in moredetail some
of the database requirements that were identified in the
first session. Several lists of database requirements for
SDE's have been published. Figure 2 shows a list
developed by Maria Penedo from TRW that was dis
cussed during this session. While a consensus did not
emerge, several different viewpoints did emerge during
this discussion. First several database people argued
that most of these requirements have already been
addressed by commercial relational DBMS's or are
being addressed in one of the research prototypes that
are currently being developed. A second viewpoint was
offered bysome of the software engineering people who
were unsure that a future, unknown, and unproven
DBMS that would solve the SDE problem will be forth
coming within a reasonable timeframe. Finally, others
argued that a radically different open database architec
ture was needed that would allow prograrnming
languages to selectively use powerful database features
(e.g., associative access, crash recovery, etc.) ondata in
the database and non-persistent data created bythe pro
gram. This last proposal is discussed in more detail in
the next section.

Extensible data model.
Meta-schema support (i.e.» schemes stored as data).
Operations stored with objects and encapsulation.
Explicit relationships.
Support for derived data (i.e., rules).
Transitive closure queries to access hierarchical data.
Multiple prograrnming language interfaces.
Query optimization and indexing.
Complex object support
Support for large data sets.
Versionsupport
Automatic selection of storage structures.
Comprehensive access control facilities.
Bulk data load and unload.
Short and long transaction support
Crash recovery.
Undo facility.
Portable DBMS (Le., itmust run on many platforms).
Client-server architecture.
Distributed database support.
Acceptable performance.

Figure 2:SDE database requirements.

Theremainder of this session covered avariety of
topics on transactions, query optimization, data models,
and historical databases. Themostinteresting discussion
centered around the topic of transactions. Gail Kaiser
from Columbia University presented a short overview of
the capabilities of a transaction system and the conven
tional DBMS strategies that are used to implement these
capabilities. Several problems were identified including
the following.

1. SDE'sneedmorecapabilities than a conventional
transaction system provides. Specifically, an
SDE mustbe able to manage inconsistency. For
example, a tool might require consistency within
a complex object such as a program module but
inconsistency between complex objects such as
the other modules that use the module being
modified by the tool. Another example is that a
tool may want to enforce consistency, but delay
notification to others that an update has been
made to the database.

2. SDE's need to support multiple processes within
a single transaction. For example, two tools run
ning on a workstation maybe showing different
viewsof thesamedata (e.g., the source code for a
procedure and the call graph for the system).
Updates can be made to the data through either
tool but the database should see mem as one tran
saction.

3. A SDE needs efficient support of different types
of transactions. Some applications read and
update relatively little data in a transaction.
These transactions are called short transactions.
Other applications execute transactions that run
for a long time while the user browses and
updates many different objects in die database.
These transactions are called long transactions.
Conventional DBMS's provide excellent support
for short transactions. However, these systems
have troublewith long transactions becauseusers
are prohibited from accessing the data read and
written by the transaction.

Kaiser described several approaches that
researchers are experimenting with to solve these prob
lems. The first approach uses nested transactions
[Mos82]. A nested transaction allows a transaction to
spawn a sub-transaction that can commit before the
parent transaction commits. The Sun Network Software
Environment uses nested transactions [Ade89]. In both
systems a user can make several changes to a virtual
copy of the database. These changes can be viewed as
nested transactions on the virtual database within the
larger transaction that will be completed when these
changes are merged back into the main database. This
approach solves problems 1 and 2 above.

A second approach to solving some of these prob
lems is to use naming domains to control access to the
database. In a naming domain, all versions of objects
are retained. A user operates on a "configuration" that
defines a set of object versions. A transaction is exe
cuted with respect to an initial configuration. An update
transaction that commits creates a new configuration.



Naming domains can be usedto solveproblem 1 above,
namely, managing inconsistency between complex
objects. This approach is being investigated in the
COSMOS system [Wae88].

A third approach is called participant transac
tions [Dow89, Kai88] The idea is that several processes
can participate in the transaction. Transactions are
named so that a process can join a running transaction.
Consequently, multiple processes can execute within a
single transaction (i.e., it solves problem 2 above). Each
process sees the database with all participant's updates,
but the rest of the users do not see them.

A fourth approach is touse commit-serializability
(CS) transactions. CS allows a transaction to split into
several distinct transactions as long as they have disjoint
write sets (i.e., the set of objects the transaction has
updated) and the read set of each new transaction is dis
joint from theother newtransactions being created inthe
split. These new transactions can commit or abort
independently or they may join withanyother transac
tion in the system to create another new transaction. All
transactions that commit are serializable, but they may
be completely different than the set of transactions that
were initially created [PK88]. The idea is that transac
tions are created, split merged, and committed as the
userexamines andupdates the database. CS transactions
can beused to solve problems withlong transactions.

Lastly, database researchers are exploring another
approach to solving thelong transaction problem, called
sagas. A saga is a long transaction that can be broken
up into a collection of sub-transactions that can run at
the same time with other transactions. These sub-
transactions are related to each other and all must com
mit for the saga to commit Sub-transactions are non-
atomic which means that database updates made by the
sub-transaction can beundone atalater time bya"com
pensating transaction" that must be defined for each
sub-transaction. The advantage of sagas is that more
concurrent access is possible because sub-transactions
can be completed and the resources they control can be
released [GaS87].

Most people agreed that there is still much work
to be done in this area.

Another topic discussed in this session was the
requirement that a rule in the database invoke some
action when the predicate becomes true. For example, a
manager might want tobenotified when the bug count in
a particular part of the system had reached a certain
threshold. This capability is called analerter in thedata
base community [BuC79J. Few, if any, commercial
DBMS's supportalerters.

4. Alternative DBMS Architectures (D. DeWitt, U. of
Wisconsin)

The majorityof this sessionwas used to allowthe
developers of various database systems to describe their
systems. The following systemswerediscussed:

Software BackPlane* (Atherton Technology) [Pas89]
Cactis (U. ofColorado atBoulder) [HuK87]

EXODUS(U. ofWisconsin) [Cae88]
Gemstone (Servio-Logic) [CoM84]
Iris (HP Laboratories)
Observer/Encore (BrownU.) [SZR86]
POSTGRES (U.C.Berkeley) [StR86]
A Yet to beNamed Product (Ontologic) [And89]

Several themes emerged fromthese presentations. First
all of the systems are object-oriented in the following
senses: 1) they provide richer type systems than a con
ventional relational DBMS, 2) they support some form
of object identity, and 3) they support inheritance.
Some, but not all, systems extend a set-oriented query
language (e.g., SQL) with user-defined procedures and
methods and some store methods and procedures in the
database.

The second theme was the importance of support
for complex objects. Typically, this support includes
some mechanism to load an object composed of many
objects with different types that are highly interdepen
dent (i.e., they containmany attributes with references to
other objects in the complex object) very quickly.
Object references are represented by OBJID's that are
assigned by the DBMS and never changed. The load
process usually translates the database representation of
values to anappropriate representation for the program.
This translation is called swizzling. Most systems con
vert OBJID's to main memory pointers, called pointer
swizzling, so that subsequent references can be imple
mented very efficiently. Main memory performance is
critical for many of the applications that these systems
areaddressing, including SDE's.

A third theme that emerged was that any next
generation DBMS must provide all functionality that is
provided by current commercial relational DBMS's.
This fact was apparent bom from the requirements list
presented in figure 2 and the discussion during the
workshop. Specifically, the DBMSmust support associ
ative queries, multiple programming language interfaces,
database procedures (i.e., the ability to dynamically link
application code into the DBMS process), and conven
tional transactions.

The discussion then turned to an object-oriented
prograrnming system with an integrated database that
allows a programmer to use database functionality on
any object The basic idea is that some database func
tions (e.g., associative queries and atomic operations)
should be available on objects created by a program that
are not persistent In addition, these functions should be
applied uniformly to across all objects (i.e., persistent
and non-persistent). Examples are queries that search
for data in the database, in a program cache that holds
objects that have been fetched from the database, and
non-persistent objects in the program. Another example
is that it should be possible to define a rule on database
andprogramobjects.

The software architecture that runs on the distri
buted system shown in figure 3 wasproposed by several

Trademark of AthertonTechnology.



people. The object cache holds database and program
objects. Object references in the program access this
cache directly. Associative queries are handled by the
distributed DBMScode in the clientmachine. This code
treats the object cache as another local data manager
similar to the DBMS that runs on the server machine.
While this architecture isconceptually clean, many hard
problems remain to be solved. For example, how does
the system optimize a complex query that joins database
and program objects where some ofthe database objects
have been fetched into the object cache and modified by
the program. Several groups in the database and pro
gramming language communities are working onsimilar
systems [Bae82, Kie88, Row86, SZR86].

At the end of the session two issues related to
standards were raised. First someone said that they
wanted a better object-oriented data model than the
model provided by C++. This issue was raised because
most attendees recognized that C++ will be the most
widely-used object-oriented programming language
model due to thepopularity of C. TTie problem with a
C++datamodel is the absence of a standard set abstrac
tion, a rules system, and a set-oriented query language.
Tim Andrews from Ontologic identified the real problem
when henoted mat his company had developed a better

Figure 3:Integrated programming environment architecture.

data model in their VBASE productbut that the market
place was not interested in it

The second issue raised was whether SQL was
the right query language. As with C++, SQL is clearly
the dominant query language and it is likely toremain so
for a very long time. The problem with SQL is the
difficulty of extending it to support new features (e.g.,
transitive closure queries and complex object support).

5. Workshop Conclusions (L. Rowe, U.C. Berkeley)
The final session produced the following list of

conclusions with which the majority of attendees could
agree.

1. There are many inconsistent and confusing terms
in both communities. Everyone who attended
agreed that the meeting had been productive in
mat it exposed some of this confusion and in
some cases led to agreement on common termi
nology(e.g.,participanttransactions).

2. The development of an SDE, viewed as a data
base application, requires more programmer con
trol than conventional business applications.
Specifically, there is an urgent need for more
functionality (eg., complex object support ver
sions, database rules, alerters, transitive closure
queries, non-traditional transaction models, better
integration of database services and program
environments, and schema evolution support)
while at thesame time providing acceptable per
formance.

3. Next generation DBMS's will be object-oriented
and they will have to provide a superset of the
capabilities found in current commercial rela
tional DBMS's.

4. Version management is not well understood and
there is no evidence that database systems will
provide the required support for thesophisticated
versionsystemsrequiredby an SDE.

5. Better schema evolution support is needed. At
one point during the workshop people discussed
the idea of the SDE being able torunconsistently
across major changes to the SDE schema and still
answer the kinds of complex queries described
above. This capability presents a major challenge
to databaseresearchers that might not be achiev
able.

6. The majority of attendees were skeptical that an
acceptable, commercially supported DBMS with
all the features required by an SDE will be forth
coming in a reasonable timeframe.

7. Interfacing existing tools toanSDE isa very hard
problem and nobody has any good ideas about
howto solveit Somepeople thought thiswillbe
a critical requirement for future SDE's.

8. Lastly, many people agreed thatthere mustbe life
after C++ and SQL, but everyone reluctantly
agreed that the marketplace would continue to
makethem thedominant languages.



Acknowledgements

I wantto thank Rick Adrion, Dave Dewitt, and LeeOs-
terweil who supported this workshop. Without their
help, it would neverhavehappened. I also want to thank
the session note takers: Gail Kaiser, Dennis Heimbigner,
and Maria Penedo. I could not have written this report
withouttheirinput

References

[Ade89] E. Adams and et al., "Object Management
in a CASE Environment", Proc. 11th Int.
Conf. on Software Engineering, Pittsburgh,
PA, May 1989.

[And89] T. Andrews, "Database Support for
Software Design", Proc. 1989 ACM
SIGMOD/SIGSOFT Workshop onSoftware
CAD Databases, Napa, CA, Feb. 1989,3-4.

[Bae82] R. Balzer and et al., "Specification-Based
Computing Environments", Proc. 8th
VLDB Conf., Sep. 1982,273-279.

[BuC79] O. P. Buneman and E. K. Clemons,
"Efficiently Monitoring Relational
Databases", ACM Trans. Database
Systems, Sep. 1979,368-382.

[Cae88] M. Carey and etal., "The EXODUS
Extensible DBMS Project: An Overview",
Computer Sciences Technical Report #808,
Univ. ofWisconsin, Nov. 1988.

[CeP84] S. Ceri and G. Pelagatti, Distributed
Databases - Principles and Systems,
McGraw-Hill, New York, 1984.

[CoM84] G. Copeland and D. Maier, "Making
Smalltalk a Database System", Proc. 1984
ACM-SIGMOD Conf. on Management of
Data, June 1984.

[Dow89] M. Dowson, "Nested Transactions and
Visibility Domains", Proc. 1989 ACM
SIGMOD/SIGSOFT Workshop on Software
CAD Databases, Napa, CA, Feb. 1989, 36-
38.

[GaS87] H. Garcia-Molina and K. Salem, "Sagas",
Proc. 1987 ACM-SIGMOD Conf. on
Management of Data, San Francisco, CA,
May 1987.

[HuK87] S. E. Hudson and R. King, "Object-
Oriented Database Support for Software
Environments", Proc. 1987 ACM-SIGMOD
Conf. on Management of Data, San
Francisco, CA, May 1987.

[Kai88] G. E. Kaiser, "Extended Transaction
Models for Software Development
Environments", Technical Report CUCS-
404-88, Columbia Univ. Dept of Comp.
Sci., 1988.

[KhC86] S. N. Khoshafian and G. P. Copeland,
"Object Identity", Proc. 1986 OOPSLA
Conf., Portland, OR,Sep. 1986,406-416.

[Kie88] W. Kim and et al., "Integrating an Object-
Oriented Programming System with a
Database System", Proc. 1988 OOPSLA
Conf., San Diego, CA, Sep. 1988,142-152.

[LMP87] B. Lindsay, J. Mcpherson and H. Pirahesh,
"A Data Management Extension
Architecture", Proc. 1987 ACM-SIGMOD
Conf. on Management of Data, San
Francisco, CA, May 1987.

[Mos82] J. E. B. Moss, "Nested Transactions and
Reliable Distributed Computing", Proc.
2nd Symp. on Reliability in Dist. Soft, and
Database Sys., Pittsburgh, PA, July 1982.
Available from IEEE Computer Society
Press.

[Pas89] W. Paseman, "Architecture of the Atherton
Software BackPlane", Proc. 1989 ACM
SIGMOD/SIGSOFT Workshop on Software
CAD Databases, Napa, CA, Feb. 1989,
105-108.

[PK88] C. Pu, G. E. Kaiser and N. Hutchinson,
"Split-Transactions for Open-Ended
Activities", Proc. 14th Int. Conf. on Very
Large DataBases, Los Angeles, CA, Aug.
1988,26-37.

[Row86] L.A. Rowe, "A Shared Object Hierarchy",
Proc. Int. Wkshp on Object-Oriented
Database Systems, Asilomar, CA, Sep.
1986.

[RoW89] L. A. Rowe and S. Wensel, editors, Proc.
1989 ACM SIGMOD/SIGSOFT Workshop
on Software CAD Databases, Napa, CA,
Feb. 1989.

[SZR86] A. H. Skarra, S. B. Zdonik and S. P. Reiss,
"An Object Server for an Object-Oriented
Database System", Proc. Int. Wkshp on
Object-Oriented Database Systems,
Asilomar, CA, Sep. 1986.

[StR86] M. R. Stonebraker and L. A. Rowe, "The
Design of POSTGRES", Proc. 1986 ACM-
SIGMOD Conf. on Management of Data,
Washington, DC, June 1986.

[Wae88] J. Walpole and et aL, "A Unifying Model
for Consistent Distributed Software
Development Environments", Software
Eng. Notes13,5 (Nov. 1988).


	Copyright notice1989
	ERL-89-35

