Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BEAR MANUAL

by

Wei-Ming Dai, Margaret Marek-Sadowska,
Benjamin Chen, Massoud Pedram, Sherry Solden

Memorandum No. UCB/ERL M89/36

12 April 1989

BEAR MANUAL

by

Wei-Ming Dai, Margaret Marek-Sadowska,
Benjamin Chen, Massoud Pedram, Sherry Solden

Memorandum No. UCB/ERL M89/36

12 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

BEAR MANUAL

by

Wei-Ming Dai, Margaret Marek-Sadowska,
Benjamin Chen, Massoud Pedram, Sherry Solden

Memorandum No. UCB/ERL M89/36

12 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

BEAR Manual

Table of Contents

Introduction .. reeesseessnessessarersassansssaseses

.

Appendix 1. Input Format Specifications

mmo O w>

.l. Installation and User Interface

A. General Information ...

B. Getting Started

C. USEr INtErfACEcoccverevmsussnresnsssasarsssnsnsnannsens

..........

D. Sample Layout .

...

Clustering, Placement, and Shape Optimization

Clustering
Placement ...

Write Placement

........

ooo

oooooooooooooooooooooooooooooooo

File Interface for Clustering
Shape Optimization

ssee

mmooO®>

. File Interface for Shape Optimization
The Routing System of BEAR
Overview of the ROUtING ProCeSSccueemmmscemmsnsssermsesenes

............

..

ooo

The Global ROULET ..c.ccccuermnuennisrsssnacsescsnsaces

GIODAI SPACING cevvveresrrsssssissssrmnssssussssssssssssrssassanes

.........................

ooo

lteractive Detailed ROUNING ..c.ccoucencrienesscsssusensmmmensassccsesases

............

Automatic Detailed ROULINGccccceecesecemmssmscessmsnssansensssscnaces
Ring ROULE ...ocecrerecnccnensinsenses

......

...

G. Wire Widths Sizing evesenennnneassenens

...................

Appendix 2. X DfaUS .c..ciimmerimmmsssesssissemissecsssensineneess

Appendix 3. OCT Interface reseereseneasassesseress
Appendix 4. XDM: X Dialog MaNAGET ..covverremrrersssscnsnanenses
Appendix 5. iv: Change Values of Variables Interactively
scrollText: Multi-font Scrollable Text Windows for X
REFEIEMNCES ..vcvvurrerresesrenssocseserssarassssssassassasanassasseasssananes

Appendix 6.

......................................

...

ooo

ooooooooo

ooo

..................................

10

23
25
27
27
28
30

BEAR Manual 1

Introduction

BEAR is a second generation macrocell-based layout system being developed at U. C.
Berkeley. The system takes advantage of our experience with BBL (Berkeley Building-Block Lay-
out System [1]) and feedback from industry; our goal is to provide automatic and interactive
features to lay out a chip in both top-down and bottom-up physical design environments. This sys-
tem has two unique features: a new architecture which employs strong interaction between place-
ment and routing and a dynamic and efficient data representatlon which unifies topological and
geometrical information.

Although placement and routing are interdependent, they have historically been approached
separately because of the complexity of computation. Even with very sophisticated placement and
routing techniques, a system will not guarantee an appropriate layout if the placement and global
routing solutions are mismatched. We believe that floorplanning/placement should be refined
more and more (with possible topological changes) as routing proceeds and global routing should
be updated incrementally.

Placement defines the capacity of the routing area around the blocks; global routing defines
the density (net assignment) of the routing area. Considering the detailed routing, the desirability
of a particular global routing on a given placement depends on the degree of the match of capacity
and density. After placement and global routing we can change the density by giobal re-routing (at
present this is done manually) or we can change the capacity by global spacing (global compaction
or decompaction). In order to achieve high density in the final layout, we iterate these two opera-
tions to obtain a satisfactory match of the capacity and density of the routing area before detailed
routing. During global spacing, global routing is updated incrementally. A dynamic data represen-
tation which unifies topological and geometrical information is used to achieve an efficient imple-
mentation of these difficult operations The global spacing organizes the interaction between place-
ment and global routing in a dynamic way. Going one step further, we can optimize the shapes of
the soft blocks after global routing. At that point, the global routing is already done, so we can
make use of this information in our shape optimizer.

After making a considerable effort to interact placement with global routing, BEAR allows an
additional opportunity to refine the placement during local routing. To make such refinement
robust and efficient, a feasible routing order is crucial. In a feasible routing order, a new channel
can be expanded or contracted when it is being routed without destroying the previously routed
channels. In this way, routing can be completed without iteration. Rather than restricting the floor
plans or placements to slicing structures (finding a feasible routing order in such special case is
trivial) as most systems do, BEAR provides a feasible routing order for non-slicing structures. A
highly efficient hierarchical global router is used in conjunction with a global spacer to match the
channel capacity and routing density. An L-shaped channel router together with a regular channel
router is used in conjunction with the channel spacer NUTCRACKER for detailed routing. Also
recently completed is a ring router which makes a connection to the I/O pads, including power and
ground nets.

BEAR Manual -2

This manual describes the BEAR system in three sections. In section 1, installation instruc-
tions and user interface are given. Also a step-by-step running example is provided to help users
get started. Clustering, placement, and shape optimization are described in Section 2. Although
this part of the system is fully automated, the set of parameters and graphic display provide con-
troliability and observability. In Section 3, routing and spacing processes are discussed. While we
provide a set of operations (or mechanisms), users have the freedom to choose when and how to
apply them. The input file format is described in Appendix . BEAR runs on both color and black-
and-white workstations which support the X-window system (currently X10). Users may customize
the colors, font styles, and other parameters by setting the X defaults file (Appendix 2, p. 45). The
BEAR system has been integrated into the OCT framework (Appendix 3, p. 48).

BEAR Manual 3

. Installation and User Interface

A. General Information

-4
.

Hardware requirements.

Disk Space: about 30 megabytes of disk space is required to compile and run the system.

2. Software requirements.

X-Window System, version 10 (color or black & white). The system has been tested on a
black & white and 6 & 8 plane color monitors.

UNIX operating system. The system has been tested on Ultrix 2.2 and 4.2 BSD.
Fortran Compiler (Fortran-77).

C compiler: cc. The system has not been tested using gcc.

Optional: OCT library.

3. Notes.

BEAR has been tested on:

e Sun 3/60C running NFS and 4.2 BSD with 16 megabytes of real memory and a CGFOUR

display driver.

e DEC microvax GPX/Il running Ultrix 2.01 and 2.2 with 8 megabytes of real memory and

B&W and 8-plane color displays.

BEAR Manual 4

B. Getting Started

This section of the manual gives step-by-step instructions for getting BEAR from the tape into
the system.

1. Reading from the tape.

BEAR is stored in the tar format so it can be read by any UNIX-like system. The blocking fac-
tor of the tape record is 20, which should be the default on most systems. At any rate, this param-
eter is already determined when reading in the tapes. To get BEAR onto the system, you should
do the following:

a. Load the tape into your tape drive so that it is ready for reading. Be sure the write-protect
mechanism on the tape is activated to avoid accidental erasure of media.

b. Make a directory where BEAR will reside. The program will need about 30 megabytes of disk
space to compile. A typical command might be:

% mkdir /users/bear

This directory will be the one used for the rest of this guide.

c. Now you are ready to read from thé tape.
% tar x /users/bear

This process will take a while depending on how fast your system is, so be patient.

d. When the prompt returns, the taping has been finished. Type
% cd /users/bear/bear/src

and then
%Is -F

to list the source directories that should be present:

bearGrUltils/ gtTree/ rectSlice/
bearMisc/ input/ ringRouter/

cluster/ localRouter/ routeDB/

ezPlot/ localSpacer/ textio/

floorplan/ localVia/ tileMapping/

fog/ mac/ tileProp/
geoChDecomposer magicMisc/ tiles/

globalRouter/ octinterface/ topChDecomposer/
globalSpacer/ pgRoute/ utils/

grEditor/ placer/

BEAR Manual 5

2. Compiling BEAR.

To compile the system, some variables must be set describing the environment in which

BEAR resides. Also, a few local directories must be installed before proceeding to compile BEAR.

a.

The main Makefile must be edited to match the system. This file resides in /users/bear/bear.
You can use your favorite editor to do accomplish this task. Find the place in the Makefile
where you see:

BEAR _DIR = /users/bear/bear

This specifies where the BEAR resides. In this case, the default directory matches the direc-
tory previously recreated. If the default differed then /users/bear would be replaced by the
directory specified by the initial mkdir command.

Search for:
MACHINEFLAGS = -DVAX

This variable specifies what type of machine is be used. It can be set to -DVAX or -DSUN2. If
the machine is not a VAX or a Sun 2 then the variable should be set to -DNEITHER. Currently,
the only machine-dependent code is located in $BEAR_DIR/src/utils/whence.s.

Quit the editor. Be sure you are in the BEAR directory. In this case, it is Jusers/bear/bear.
Now type:

% make setupdirs
This directive instalis the directories necessary to support the BEAR compilation and coding
environment.

The program is ready to be compiled. Type:
% make install

" This command will compile all of the libraries, support modules, and BEAR modules and link

them together. The runnable program will reside in /users/bear/bear/src/polarBear and it will be
called bear. If changes are made to the BEAR code, the BEAR modules can be recompiled
and linked by typing make Installbear in place of make Install.

BEAR Manual ‘ 6

A N e e

C. User Interface

BEAR uses the X Window System as its interface to the user. Two major types of windows
are used along with different types of dialog boxes to converse with the user and display the status
of the program. The console window is the main root window where commands are issued. Chip
windows graphically display the status and characteristics of the current layout example. Three
types of user interface are used. The first is for interactive variables (1V) which allow the user to
modify various parameters of the program. The second is an X dialog manager (XDM), which
prompts the user for more information when required. The last type of intertace is the X deck of
cards menu system which is used to allow user commands to be entered by using the menus
rather than the keyboard.

1. The console window.

The console window of BEAR is the main area where the user directs program action . Com-
mands are specified in the UNIX tradition. Each command consists of a command name followed
by an optional list of arguments usually preceded by a ‘. Each command that has optional argu-
ments recoghizes the -help option which causes a small summary of all the command options to
be printed out in the console window. For primitive editing, a few simple key strokes have been
defined. The last word of text on a command line can be deleted by typing control-w (W), while
the entire line may be deleted with a control-u ("U). The console window be closed by typing
control-d ("D).

Unless a default geometry has been specified in the user's -/ Xdefaults (See XDefaults), the
program prompts the user to create the console window upon invoking the program. Once the
console window has been placed, a prompt is displayed when the program is ready to accept com-
mands. Holding down the middle mouse button on the window will display a menu of commands
directly related to the console.

Along the right side of the console window is a scroll bar window. The scroll bar window
displays a filled square representing the relative position through the window and the relative
amount of the window currently on the screen. Scrolling is controlled by clicking mouse buttons in
the scroll bar. The middie button scrolls to a particular spot in the window. This operation causes
the screen to scroll so that the center of the scroll bar indicator moves to the current position of the
mouse. The other two mouse buttons are used for scrolling down or up some proportion of the
screen. The left button causes the screen to scroll so that the line adjacent to the mouse position
becomes the top line of the screen. Thus, clicking near the top of the scroll bar scrolls only a cou-
ple of lines while a click near the bottom will scroll almost an entire screen. The right button
causes the top line of the screen to scroll down to the current position of the mouse.

BEAR Manual 7

2. The chip window.

The chip window of BEAR is the main area where the user can view the results of his or her
commands. It displays the current layout of the chip using graphical abstractions. Cells are
represented by rectilinear shapes. Pins are fixed-size squares usually placed along the inner
boundary of cells. Regions of the chip window can be magnified for closer inspection. Other
abstractions displayed in the manual are explained in detail below.

3. Interactive variables (IV).

This form of dialog is specifically used to view and edit program variables. The appearance
of these dialogs are very distinct. A title describing the current operation is displayed at the top of
the dialog. All the interactive variables are. shown on a window, one on each row. Each variable is
displayed with its description and a region containing its current value.

At any one time, the IV window maintains at most one active edit region where the variable
may be changed. All keyboard input anywhere in the IV window will be directed to this region.
Edit regions are activated by placing the mouse cursor over an edit region, and either clicking a
mouse button or pressing a key. This action is indicated by a cursor (a pointer under a line of
text) inside the active edit-region. The user is not allowed to enter more text than there is
space in the edit region component. Changes are accepted only by a carriage return or end-of-file.
The original value of the variable can be restored by typing control-u ("U) before accepting any
changes. Edit regions are usually denoted by a different color background where the value of the
variable is displayed. Edit regions whose background color matches the background color of the
entire window are read-only, unless buttons are present.

For integer or floating-point variables, two buttons are provided to change the value of the
variable. The "+" button has the following effect:
If the LEFT mouse button is pressed, the value of the variable is incremented by 1%, or by one for
integer variables.
If the MIDDLE mouse button is pressed, the value of the variable is incremented by 10%
If the RIGHT mouse button is pressed, the value of the variable is doubled.

The "-* button has similar behavior, but the value of the variable is decremented. Integer vari-
ables can be distinguished from floating point variables by the presence of a decimal point. For
variables with strings as values (except booleans), the plus and minus buttons advances or
reviews through a list of values that the user can choose. For boolean variables, one button is pro-
vided for easy toggling of its state. Single buttons are also provided for directing actions such as
aborting the dialog.

BEAR Manual . 8

4. X Dialog Manager (XDM).

This form of dialog is designed to query input from the user. The two major types of com-
ponents for these dialogs are check boxes and edit regions. A check box appears as a small box
with rounded corners. When a button is clicked inside the box, a small check mark is drawn inside
the box indicating a choice has been made. Edit regions are similar to those of the interactive vari-
ables dialogs. At any one time, each top-level dialog component maintains one active edit-region
component. This component is indicated by a cursor (a pointer under a line of text) inside the
active edit-region. All keyboard input anywhere in the dialog will be directed to this component.
All normal printing characters insert themselves into the edit region at the current cursor loca-
tion. The user is not allowed to enter moré text than there is space in the edit region com-
ponent. In addition, many character control sequences can be used for basic text editing opera-
tions:

Key Description

“A Move to beginning of the line

“E Move to the end of the line

“P Move to the previous line

“N Move to the next line

“F Move forward one character

"B Move backward one character
“H or Delete the previous character

“D Delete the next character

“Uor-X Delete the current line

There are several ways to change the currently active edit region component. First, the
user can move the mouse over another edit region field and press a mouse button, thus activat-
ing that field. Second, the user can type <tab> and “Q to move to the next and previous fields
respectively. The next and previous fields are determined by the order of creation of edit region
components. Typing <tab> in the last edit region to be created causes the first edit region
created to become active. Similarly, typing “Q in the first edit region to be created causes the
last edit region created to become active. Finally, typing "N in the last line of an edit region is
equivalent to typing <tab>, and typing P in the first line of an edit region is equivalent to typing
Q. As with 1V, edit regions are sometimes disabled, disallowing any input to the region. These
are indicated by a shaded edit region.

All XDM dialogs consists of a title, "ok and "abort" buttons. There is one special slider com-
ponent. This component contains a slider and two buttons to increment or decrement the slider.
The value field of the slider may also be edited with the same usage as in the edit region of an IV
variable. '

5. X Deck of cards Menu System (XMenu).

XMenu is an X Window System Utility Package that implements a ‘deck of cards’ menu sys-
tem. XMenu is intended for use in conjunction with Xiib, the C Language X Window System

A

BEAR Manual ’ 9

Interface Library.

In a ‘deck of cards’ menu system a menu is composed of several cards or panes. The panes
are stacked as if they were a fanned-out deck of playing cards. Each of these panes has one or
more selections. A user interacts with a ‘deck of cards’ menu by sliding the mouse cursor across
the panes of the menu. As the mouse cursor enters each pane it will rise to the top of the deck
and become ‘current’. If the current pane is an active pane it will be ‘activated’, or made available
for selection. To indicate this, its background will change from the patterned inactive background
to a solid color and the selections on the pane will be activated. If the current pane is not an active
pane (a setable state) then it will not be activated. To indicate this its background will continue to
be the patterned inactive background and no selections on the pane will be activated. The pane
previously containing the mouse will lower (preserving its stacking order). If it was activated it will
then become deactivated, its background changing back to the inactive pattern. Because of this
action it is not possible to have more than one current pane at any one time. When the mouse
cursor enters an active selection in a pane that has been activated then that selection will become
activated and be highlighted. If the selection is not active or the pane has not been activated then
the selection will not be activated and will not be highlighted. Selection highlighting is accom-
plished in one of two ways depending upon the state of the user's Xdefaults variables. If ‘box’
mode highlighting is in effect, the menu selection will be activated by placing a highlight box
around the selection as the mouse cursor enters the selection’s active region and removing it
(deactivating the selection) as the cursor leaves. If invert mode highlighting is in effect, the menu
selection will be activated by inverting the background and foreground colors within the selection’s
active region as the mouse cursor enters it and reinverting them as the cursor leaves.

The purpose of these menus is singular: to present the common console window commands
to the novice user, though experienced users may find this way of entering commands easier than
entering commands through the keyboard. XMenu's are available in every type of window created
by BEAR, but the commands it lists are context-sensitive. The commands displayed are only the
commands valid for that particular window. Upon choosing a command, the keyboard abbreviation
is echoed into the console window.

BEAR Manual ' 10

D. Sample Layout

This section of the manual describes a typical set of instructions that is used to complete the
routing of a chip.

1. Starting the program.

The first step is to start-the program:
% bear

Be sure your DISPLAY environment variable is set. If it is not, the user can specify the
display on which to run BEAR by typing bear petrus:0, where petrus is the hostname of the desti-
nation machine.

2. Start log file.

At this point the BEAR console window will be created and a prompt displayed. (See Fig. 1.)

BEAR : CONSOLE
This is BEAR release 1.0
bear > | .
Fig. 1.
Now the user should type:

bear > log sample.log

This creates a file in your current working directory called sample.log. It will contain all mes-
sages echoed to the console window from the time the user invoked the command.

BEAR Manual 11

3. Read in the placement file for the chip.

Next, type: .
bear > ow -bbl testData/iccadi.r

The command ow stands for open window. A window will be created displaying the cell lay-

out for the iccad1.r example, found in the testData directory, which has been stored in BBL format.
(See Fig. 2.)

BEAR : CHIP (testData/iccadl.r)
u =

T L I amm MR BN]

Fig. 2.

The testData directory is in your current working directory in this case. Although not specified
directly, one other file must exist in the same path as iccad1.r. This file is iccad1.tech. An optional
file, iccad1.wt, used for power and ground sizing should also be in this path. The format and
usage of these files are described in detail later in the manual.

4. Create clustering tree.

Now that the initial placement file has been loaded, BEAR is ready to optimize the placement.
This step is optional as the user may proceed directly to routing. Usually, the first step in place-
ment optimization is the creation of a clustering tree. This task is accomplished by the ¢l com-
mand. Remember that the mouse cursor must be in the chip window for this command to be valid.

bear > cl

After this command is entered, a dialog box will be created (centered about the current
mouse position) since more information is required. The user must specify the type of clustering
algorithm. The matching algorithm usually gives good results. Select this algorithm by placing the
mouse cursor over the box adjacent to the name and clicking the button. An x will mark the
choice. (See Fig. 3a.)

BEAR Manual | 12

Cluster Algorithm

H Abort E

® Matching
© Greedy
| Random
File€ln

Fig. 3a.

Then click the button over the Ok box. Abort will close the dialog box and return input to the con-
sole window. After the choice has been made, a message will be echoed to the console:

.cl-am
This message is an abbreviation for the command specified by the dialog box. In the future,
the user may wish to enter the abbreviation instead of working with the dialog box.

immediately following the dialog box, an IV (interactive variable) window is created centered
around the current mouse position. (See Fig. 3b.)

Cluster

Target Shape Generation Flag |TRUE | R

Routing Area Estimation Flag :TRUE g

Routing Adjustment Factor (top down) L_E—__—\ |

" Routing Adjustment Factor (bottom up) E =]
Maximum Dimension Ratio

Maximum Area Ratio E]

Storage Filename W

Store Clustering Tree |FALSE I L e

Prompting [FALSE
Cluster cells
Abort

Fig. 3b.

Variables are displayed to allow the user to change the default values for the clustering parameters
(see section on Clustering and Placement). In general, the user accepts the default values within
IV windows. In this case, a click on the button adjacent to the Cluster cells label will accept the
defaults and begin generating the clustering tree. When the tree has been generated, this mes-
sage will be displayed in the console window:

BEAR Manual 13

Clustering is finished
And the prompt will return.

5. Placement of cells.

Now the placement of the cells can be computed. This task is done with the pl command.
bear > pl

A dialog box will appear with default values in its fields. (See Fig. 4.)

Placement
OK . Abort

Fixed X |
(@) Fixed Y |

€& Aspect Ratio |1-0 |
]

Fig. 4.

This particular dialog has some unique features. Boxes along with type-in fields appear next to
parameter names. Marking one box disables all the other type-in fields. The disabled options are
highlighted by shaded type-in regions, and input is not allowed to these regions. Just below these
type-in fields is a slider component. This component is described in the User interface portion of
the manual. In this case, all of the defaults will be accepted by clicking the mouse over Ok. As
with the cluster command, the equivalent command line sequence is echoed to the console win-
dow:

pl-ar1.00.1

At this time, the user is prompted for the lookahead constant.
Cluster level 0
Depth of lookahead [0]:

See the section on Clustering and Placement for details. The default value is printed in the
brackets and is accepted by a carriage retun. The message:

Placing cells ...

is echoed to console. This portion of the program usually takes some time to finish. The con-
clusion of placement is signaled by a message:

BEAR Manual _ 14

Placing cells ...done
and the command line returns.

6. Viewing the clustering tree and placement.

The user may view the clustering tree and placement of the cells before accepting them. The
command is:

bear > ow -tf
The -tf option stands for "tree-floorplan.” The user will then be prompted to create two win-

dows. Initially, these windows display the root node of the clustering tree and its corresponding
placement. (See Fig. 5a.)

BEAR : TREE BEAR : PLACEMENT

Fig. 5a.

Entering the series:
Next tree and floorplan level?y
Next tree and floorplan level? y
Next tree and floorplan level? n

will display the entire clustering tree and the placement of the example (see Fig. Sb) and
retumns the user back to the console.)

BEAR Manual 15

BEAR : TREE BEAR : PLACEMENT

Fig. 5b.

7. Saving the placement.
If the placement is acceptable, then the user types:

bear > wpl

which stands for "write placement.” The placement is then written to the
Fig. 6.)

chip window. (See

BEAR : CHIP (testData/iccadlr)

Fig. 6.

BEAR Manual 16
To close the tree and floorplan windows, the user should move the mouse over each window and
type:

bear >cw
Alternatively, the user can type:

bear > <control-d>
over a window to accomplish the same task.

8. Global routing.

Now that the placement is completed, the example is ready for global routing:
bear > gr

The congestion factor and timing mode must then be specified (See section on Global Rout-
ing, Il B, p. 32):

Congestion Factor [0]:

An IV window similar to the cluster IV window will appear showing the default values. When
the global routing is done, the prompt will return.

9. Space optimization.

For further space minimization of the floorplan, the user may want to alter the shape of the
cell blocks but still stay within the technology constraints. This task is accomplished by the shape
optimizer command, but this time the user can try using the deck of cards menu system to enter in
the command. The user should move the mouse over the chip window and hold down the middle
mouse button. A stack of menus will immediatly emerge, each command sorted by action. The
mouse should be moved to display the Placement menu. Choose the shapeOptimize entry. The
corresponding keyboard command will be echoed to the screen:

bear > so
Another IV window will emerge. (See Fig. 7.)

Shape Gptimizer
Algorithm [1-p gg
Preferred Direction Hou I 4 8

Options Best Slack .E
Layout Style (G |BE

Minimom Slack Size
Optimize Flsorplan =

Abort
Fig. 7.

BEAR Manual 17

See the section on Shape Optimization (Il E, p. 28) for explanation of variables. Clicking the
mouse button next to Optimize Placement will begin the algorithm. When the algorithm is finished:

Shape Optimization finished
will be echoed, and the prompt will return to the console.

10. Global spacing.

Now the example will be ready for further global spacing. First, horizontal compaction will be
invoked:

bear > hcm

Horizontal compaction is done.
Similarly, vertical compaction is invoked:

bear >vem

Vertical compaction is done.

11. Detailed routing.
The next step is the detail routing:
bear > dch

This command stands for “define channel.” The chip window will be redrawn showing the
floorplan graph. (See Fig. 8.)

BEAR : CHIP (testData/iccadl.r)

= —

(1) -

Fig. 8.

BEAR Manual . 18

Independent channels will be highlighted. These channels are the valid channels that can
currently be routed. A channel is picked by clicking the mouse over two junctions on the floorplan
graph. At this point, this cursor will have changed from its normal cross to a circular cursor that is
to be matched over a junction. The user will then be prompted: -

Pick junction number one.

The user should then move the circle over an end junction of a highlighted channel and click
the left mouse button. If the user did not select a valid end junction, the error:

Picking junction failed.

will be echoed to the console window, and the console prompt will return. Choose the _channel
marked (1) on Fig. 8. The second junction is specified in a similar manner.

Pick junction number two.

When this junction is successfully chosen, an IV window is displayed showing routing param-
eters. (See Fig. 9.)

Channel Router

Available Channel Helght

Required Channel Height
Target Chanzel Height
Use Nuteracker

Via Reduction

Route Channel

Abort

Fig. 9.

Nutcracker is a local spacing routine which attempts to compact the routing to fit the available
channel height. (See manual section on Detailed Routing.) All of the parameters are described in
the Detailed Routing section of the manual, however, two particular parameters should be noted:
available channel height and required channel height. If the required height is greater than the
available height, then the channel should not be routed and the command should be aborted. Oth-
erwise, there is enough space to accommodate the routing, and the user should click on Route
Channel. Since sufficient space exists in this case, the channel can be routed.

When the routing is completed, the route cell will be drawn. The user can closely examine the
route cell by defining a region to magnify:

bear > ow

Opening a window without any arguments allows the user to specify a region of a chip win-
dow to display. The user will be prompted to:

pick a rectangle

BEAR Manual .19

to define the region. The mouse button should be clicked and held down while moving the mouse
itself to define the region. Once the button is released the window is created focused on that
region. (See Fig. 10.) :

BEAR : CHIP (lestData/iccadlr)

Fig. 10.

In any window except the console window, the user can zoom in, zoom out, magnify an area, or
pan the view. In this case, moving the mouse to the newly created region and typing:

bear>Z

will show more detail of the routing. To destroy this window, type:
bear > <control-d>

Now the user can define another channel (2):
bear > dch
Pick junction number one.

Pick junction number two.

At this point if the user does not have enough space in the channel to fit the routing, the com-
mand must be aborted and decompaction must be done. If the channel to be routed is a vertical
channel, horizontal decompaction is necessary. If the channel to be routed is a horizontal channel,
vertical decompaction must be done as in this case:

bear > vdem
Vertical decompaction is done.

The program is aware of the amount of space that the channel lacks for routing. The decom-
paction routines tries to adjust channel height accordingly so in the next attempt to define a chan-

nel:

BEAR Manual . 20

bear > dch
Pick junction number one.
Pick junction number two.

the available height is as close to the required height as possible. if the channel is not on a critical
path, however, the estimate may not be that close.

After routing a channel, it is always a good idea to run a decompaction routine to minimize the
number of attempts to define a channel. In this case it is:

bear > hdem
Horizontal decompaction is done.

The rest of the example is routed similarly. When all of the channels are routed, the floorplan
will appear as in Fig. 11.

BEAR : CHIP (testData/iccadilrs)

12. Resizing the parent cell.

Due to the compaction of cells, much space is left over in the parent cell, as can be seen in
Fig. 11. This parent cell can be resized by: :

bear > rp

At this point the mouse cursor changes to a circle and the user must select a corner or edge
of the parent cell to drag to reduce the cell boundaries. In this case, the upper right corner of the
cell is appropriate to begin dragging. As in the open window command, a rectangular outline is

BEAR Manual 21

rubber-banded indicating the target size of the parent cell. When the resizing is finished, the con-
sole window will display:

Resizing...done.

" (See Fig. 12.)

BEAR : CHIP (tesiData/iccadi.r)

Fig. 12.
If the cell blocks with routing are not centered in the parent cell, they can be moved all at once
using the transform cell command:
bear > tc -im

The -Im option specifies an interactive mode. When the circular cursor appears, the user
must hold down the mouse button on any of the cell blocks and move the mouse. The outline of
all the cells will be displayed giving the user an idea of where the cells will be oriented after releas-
ing the button.

13. Ring routing.
The final step in the routing process is the ring routing:
bear>rr

An IV window will be opened displaying the default filename for the output of the ring router.
When the ring router is finished, the layout is final. (See Fig. 13.)

BEAR Manual

BEAR : CHIP (lestData/iccadir)

14. Saving the example.
The user may want to save the example in CIF format. The command is:
bear > s -clf lccadi.cif

where lccadi.clf is the name of the file to be written. A particularly useful feature of the save
command is the scaling option. The user could have typed:

bear > s cif -scale 5 iccad1.cif

All geometrical specifications in the CIF file will then be scaled by a factor of 5 in the horizon-
tal and vertical directions.

15. Leaving the program.
To leave the program, the user must move the mouse to the console window and type:

bear > cw

One final dialog box is created prompting the user to confirm his or her request so that the
layout is not accidentally erased.

BEAR Manual 23

Il. Clustering, Placement, and Shape Optimization

The objective of the placement is to provide an arrangement of blocks which, after being
routed, fits into an enclosing rectangle of minimum area with given height, width or aspect ratio. In
order to achieve a high performance circuit, a concurrent goal is to minimize the length of connec-
tions. The BEAR placement algorithm combines the goal orientation of a top-down approach with
the module orientation of bottom-up techniques. The result is a "meet in the middle” strategy. It
considers the mutual dependency between placement and routing explicitly by incorporating a
novel method of hierarchical routing area estimation. The placement process may be followed by a
shape optimization phase which resizes individual modules so as to reduce the layout area. The
user controls a set of input parameters to influence the clustering, placement or shape optimization
stages. Due to the efficiency of the programs, it is possible to experiment with different parameter
values to obtain more desirable results. However, the user may choose to use the default values
which often give good results.

A. Clustering

The following description of the user interface of the BEAR placement program assumes that
a chip window has been opened. In order to obtain a new placement, a hierarchical clustering tree
must be built. Placement is then performed by traversing the tree top-down and placing the ele-
ments of each node optimally [4, 5]. The clustering algorithm can be invoked by typing cl while the
cursor is in the chip window. A small pop-up window will ask the user to specify the type of cluster-
ing that is desired. Four algorithms are available:

e Maltching: generates a clustering tree by optimal pairwise matching of modules and clusters [6].
e Greedy: does clustering based on a greedy heuristic.
‘e Random: randomly places modules in clusters.

e Input from File: reads the clustering tree directly from a file (see below). The best clustering
results are often obtained by the matching algorithm.

After the desired algorithm is selected, a Cluster Parameter window will pop up. We shall
describe each parameter, its effect on the clustering procedure, a typical range of values for it, and
its default value. In particular, the matching algorithm parameter set is described. Parameters for
other algorithms have similar meanings and ranges of values (see following table):

BEAR Manual ' 24

Clustering Parameter Set

parameter : range default
Target Shape Flag TRUE, FALSE TRUE
Routing Area Flag TRUE, FALSE TRUE
Top-Down Adjustment Flag 0.1-2.0 1.0
Bottom-Up Adjustment Flag 0.1-2.0 1.0
Maximum Dimension Ratio ~ 1.0-10.0 5.0
Maximum Area Ratio 1.0-10.0 25
Prompting TRUE, FALSE FALSE

1. Target shape generation flag.

If this boolean flag is set to TRUE, the clustering algorithm will generate the target shapes
while building the clustering tree. Target shapes are the optimal shape goal of clusters derived by
enumerating all possible topologies of elements of the lowest level clusters and then propagating
this information recursively up the clustering tree. These shapes are then used as though they
were the actual shapes of the non-leaf nodes in the subsequent top-down placement phase. Gen-
erating the target shapes is recommended since they often yield better placement topologies.

2. Routing area estimation flag.

If this flag is set to TRUE, the target shapes will be derived by allocating some routing area
around the modules. In addition, in the placement phase that follows, at each node of the cluster
tree some area is allocated for routing. This is recommended because it is often better to include
the routing area during the placement phase rather than after the placement. If this flag is set to
FALSE, the placement phase that follows will generate a block packing, and the routing area must
be provided by interactive spacing of the modules.

3. Top-down and bottom-up routing adjustment factors.

After the input parameters are specified, the program starts to run, and at the end of each
hierarchical level, information concerning the match between bottom-up and top-down routing area
estimation is printed as standard output. If it turns out that the routing area allocated does not
match the area needed, the routing area estimate can be increased with the top-down routing
adjustment factor (value > 1.0) or decreased (value < 1.0) before a new clustering tree is gen-
erated. If the crude bottom-up estimation is wrong, it can be adjusted with the bottom-up routing
adjustment factor in the same way. Although a mismatch does not cause any errors, it may pro-
duce strange results (especially if too much area is made available by the bottom-up estimation).
The default value for both factors is 1.0.

BEAR Manual | : 25

4. Maximum dimension and maximum area ratios.

A clustering based only on connectivity information can result in a block shape mismatch that
makes it impossible for the placement algorithm to avoid big dead space areas. ltis our conjecture
that two blocks do not match if (a) their areas and (b) the length of their longer sides are
sufficiently different. A simple implementation is to prohibit the merging of block pairs whose areas
or lengths differ by more than some ratio. The maximum dimension and maximum area ratios are
computed based on the distribution of block sizes and areas available for clustering at each level
of the hierarchy. Note that these parameters only appear in the dialog window for the matching
and greedy clustering algorithms..

5. Prompting flag.

If this flag is set to FALSE, the clustering algorithm will use the internally computed values for
the maximum dimension and maximum area ratios. If the flag is set to TRUE, it will stop and ask
the user to enter new values (or accept the defaults) at each level of the hierarchy. The user may
want to experiment with these ratios, however, the default values are often good.

B. Placement

After the clustering tree is constructed, the user can proceed with the placement. The placer
can be invoked by typing pl while the cursor is in the chip window. To start the placer, a few input
parameters are requested from the user (see following table):

Placement Parameter Set
parameter range default
Chip Goal Shape Fixed-X, Fixed-Y, Aspect-Ratio Aspect-Ratio
Fixed-X or Fixed-Y integer computed
Aspect-Ratio 0.5-5 1.0
Area-Length Tradeoff 0-1.0 0.1
Lookahead 0-2 0
Prune 0-2.0 0.2

1. Determination of the chip goal shape.

The desired shape of the final layout can be specified in either of two ways: as goal aspect
ratio (ratio of width to height) or as a fixed width or height of one dimension of the layout. The

BEAR Manual , 26

default shape in either case is a square. Although it cannot be guaranteed that the specified goal
can be achieved exactly, the results are never far away from the desired value. Because the goal
shape plays an important role in the computation of the objective function, it is often helpful to play
around with this number to get the best result (for example, a change from 1.1 to 1.15 may have a
big impact). This problem is alleviated if a 1-level lookahead (see below) with a reasonably large
search region is specified.

2. Trade-off between area and sum of wire lengths.

On a scale from 0.0 to 1.0, the relative weight of the objective functions for area minimization
and for wire length minimization can be influenced. 0.0 means that area minimization is most
important; 1.0 emphasizes wire lengths. It is very difficult to know exactly what the optimal weight-
ing for minimal wire lengths is because the dead space that is introduced by moving strongly con-
nected blocks closer to each other may have a detrimental effect. The internal weight factors are
adjusted so as to make it probable that a value of 0.1 gives the optimal solution. For some exam-
ples, however, it might be better to choose 0.05 or even 0.95.

3. Lookahead and pruning of the search tree.

To improve the placement results, the breadth-first traversal of the hierarchy can be comple-

mented by a depth-first lookahead to improve the reliability of the objective function [4]. The user is

“free to specify different lookahead depths from different levels of the hierarchy and to narrow down
the search space more or less drastically. .

Because of the additional computational complexity of the lookahead, most of the time only 0
and 1 will be considered relevant. If a lookahead (> 0) is selected, the user is prompted for a con-
stant that determines the width of the search. On every level the objective function of that level is
computed. Only those possibilities with values of objective function lying between the minimal
value and (1 + pruning constant) times the minimal value are explored.

For a lookahead of 0 (no lookahead) most time is spent in the last level to determine the
orientations of the macrocells. To make the time spent on higher levels comparable to that time, a
pruning constant of 0.5 is OK (but that depends very much on the example). A constant of 1.0
most of the time gives near-optimal results; only in few cases can the result be improved above
values of 2.0.

C. Write Placement

The user can graphically examine the clustering tree and placement generated by typing ow
-tf in the console window. The clustering tree and placement will be shown hierarchically, and the

BEAR Manual 27

user should type y to see the next level. q or <CR> will terminate the command. In order to
proceed with the global and detailed routing of the chip, it is necessary to transfer the placement
from the internal data structure to the data base (and the chip window). This is accomplished by
typing wpl in the console window (while the cursor is in the chip window). .

D. File Interface for Clustering

To make it possible to keep the clustering tree constant after input changes, a clustering tree
can be stored to and retrieved from a file. That file also offers the opportunity to edit the clustering
tree. An example shows best how the file is organized:

9

1 18 23 24

3 4 5 30

6 7 20 27

2 31 32 33
11 12 0 0

8 9 1 0

13 17 28 29
14 15 16 19

3

1 9 0 0
2 3 4 0
5 6 7 8

-

A blank line starts a new clustering level, the lowest level appearing first. The second line
gives the number of clusters on that level. Every cluster occupies one line with as many numbers
as elements are allowed per cluster. If there are less elements than the maximal cluster size,
zeros are used to pad the input lines to the standard length. The numbers on the first clustering
level correspond to the sequence in which the blocks are stored in the input file. On the following
clustering levels the numbers indicate the position in the preceding clustering level. For example
on the second clustering level the first cluster consists of clusters 1 (blocks 1, 18, 23, 24) and 9
(blocks 21, 22, 25, 26) of the preceding level.

BEAR Manual | | 28

E. Shape Optimization

The user may have freedom in choosing the aspect ratio of a given module subject to some
constraints. The assumption here is that although the functionality of the module is determined, the
exact shape and pin locations of the module are not specified. Therefore, the placement algorithm
may be followed by a global shape optimization which resizes and redistributes pins around the
boundary of flexible modules in order to minimize an estimate of the layout area. If all modules are
stiff, the user should proceed with the global and detailed routing without having to go through the
shape optimizer.

After an initial placement of modules is derived, the capacity of the routing channels is known.
However, in order to accurately estimate the layout area at each iteration, the shape optimizer
must know the density of the channels. That is why global routing of the chip should be completed
before the shape optimizer is called.

To run the shape optimizer, the user should type so in the console window. The user can
specify a set of parameters to guide the shape optimizer. These parameters are as follows (see
following table):

Shape Optimization Parameter Set .
parameter range ' default
Design Style GC, SC, GA GC
Algorithm 1-D, 2-D 1-D
Preferred Direction HORZ, VERT HORZ
Slack Option BEST-SLK, HALF-SLK, FULL-SLK BEST-SLK
Minimum Slack Size 1-128 - 8

1. Design style.

This parameter specifies the type of modules on the chip. This is required since the shape
optimizer must know which resizings are legal. In the current BEAR release only the General Cell
(GC) design style (which says that the module dimensions may be continuously changed in either
direction subject to aspect ratio constraints) is supported, and other styles (Standard Cell, (SC)
and Gate Array (GA)) are not.

2. Algorithm.

This parameter specifies whether one-dimensional or two-dimensional shape optimization
algorithms should be used. The 2-D algorithm performs simultaneous X- and Y- axis optimization.
After the global routing both the block sizes and the estimated routing densities around the blocks

BEAR Manual 29

are known. The longest or critical paths in either X- or Y- direction, which determine the extent of
the layout, can thus be computed. The 2-D algorithm iteratively reduces the layout area by picking
up a module with the largest resize capacity lying on a critical path (in either direction) and resizing
it so that the module dimension along the critical path is reduced. The process terminates when no
improvement in the layout area has been achieved after a certain number of previous iterations.
For small macrocell circuits (less than 15-20 blocks), this algorithm is very efficient and gives
excellent results. For larger circuits, because of the unpredictability of the changes made to the
underlying topology, the algorithm may have a long run-time. Therefore, we allow for a two-pass
1-D shape optimization option (an X-direction pass followed by a Y-direction pass).

3. Preferred direction.

This parameter has no effect when the 2-D algorithm is selected. With the 1-D algorithm,
however, it specifies the direction in which the chip dimension will be reduced. The other direction
often remains unchanged. For large chips (> 15 modules), it is suggested that the 1-D algorithm
be used because it keeps the circuit topology relatively unchanged and therefore is more likely to
quickly converge to good solution.

4. Slack option.

This parameter determines the amount by which a given soft module is resized on each itera-
tion of the algorithm. The horizontal slack of a module is the amount by which the X dimension of
the module can be increased without increasing the chip X dimension. The vertical slack is defined
similarly. Consider a block which lies on the longest path through the horizontal space tile adja-
cency graph [2, 3]. The Best-Slack resizes this block by an amount such that this block will at
worst be placed on the second longest path through the vertical adjacency graph. The Half-Slack
resizes the same block by half its slack in the vertical direction. The Full-Slack resizes this block
by all the available slack in the vertical direction. The Full-Slack terminates much faster but often
leads to poor optimization results. The program may even be trapped in a cycle whereby a block
is resized in opposite directions alternatively until the phenomenon is detected and the program is
automatically terminated. The Half-Slack takes more conservative resizing steps and is therefore
slower. The Best-Slack has proven to be a good compromise between the speed of the Full-Slack
approach and the quality of the Half-Slack approach .

5. Minimum- slack size.

This parameter specifies the stopping parameter for the shape optimizer. Whenever the hor-
izontal or vertical slack for each of the modules drops below the value of this parameter, the shape
optimization terminates. Hence, the user may initially set the value of this parameter high (e.g. 32),
and do the shape optimization. If the rough shape optimization result is acceptable, the user
reruns the shape optimizer on the partially optimized chip, this time with a smaller value of
Minimum Slack Size (e.g. 2). Before and after each shape optimization run, it is recommended
that the user compact the chip so that the circuit topology becomes more representative of the final
routed layout (see section on the global spacer, lil C, p.35).

BEAR Manual 30

When the shape optimizer is run, information about the block being resized and repositioned
at each iteration will be printed as standard output. The block being resized will be highlighted. At
the end of the shape optimization phase the percentage of layout area reduction is printed to the
standard output.

F. File Interface for Shape Optimization

in order to define the shape constraints for individual modules in a chip named "test.r’, the
user must create a file called "test.flex". The first line in the "test.flex" is the header line. It is of the
form "NumFlexModules n*, where n is the number of flexible modules that the user wants to read
"from the “test.flex”. Each line following the header line has seven fields: "name minX maxy tarX
tarY maxX minY". name is name of a flexible module, minX, maxX are the lower and the upper
bounds on the horizontal dimension of the flexible module. minY and maxY are defined similarly.
tarX and tarY are the target dimensions of the module, and in particular, are the dimensions
assumed by the module in the initial placement phase. The parameters specify the legal range of
aspect ratios for the module where minAspect = minX / maxY and a maxAspect = maxX / minY
and the module may be resized to assume any aspect ratio between the two bounds. In particular,
when minAspect = maxAspect, the module is considered stiff and is not resized. An example file
follows:

NumF lexModules 6

Bl 150 600 300 300 600 150
B2 150 576 180 480 360 240
B3 100 400 200 200 400 100
B4 220 480 440 240 660 180
B5 100 1480 200 740 400 370
B6 100 360 200 180 267 135
B7 150 200 300 100 400 75
B8 140 600 280 300 560 150

Notice that modules named "B7" and "B8" will be considered stiff by the shape optimizer.

BEAR Manual ’ 31

ll. The Routing System of BEAR

A. Overview of the Routing Process

Routing in a building block environment is a complicated task. Not only is the routing region
irregular, but we also want to be able to move blocks during the routing process. The freedom to
move blocks is a mixed blessing. It enables us to achieve more compact layouts than in the static
case, but it complicates the problem tremendously. BEAR can handle block movement during the
routing process and calls for a different routing data representation from that of conventional sys-
tems.

In the routing process, we assume that the placement of blocks has been predetermined.
This placement is not completely rigid, but serves as a starting point. As we will see later, the ini-
tial placement can be deformed during routing, when the amount of distortion and the method of
change depend on the user's actions. The starting placement can be arbitrary as long as blocks do
not overlap, their sides are parallel to the x and y coordinates, and all cells are contained inside a
chip area specified by the user.

After the placement has been read into BEAR, two tile planes are built. The horizontal tile
plane consists of horizontal tiles [7]; the vertical tile plane consists of vertical tiles. Each of the tile
planes has two kind of tile: solid tiles, which represent blocks; and space tiles, which cover the
routing area. In the horizontal plane, the routing area is dissected horizontally into maximal hor-
izontal stripes. In the vertical tile plane, the routing area is dissected vertically. The command
show tile property can be used to view the tile planes. Invoking stp -h displays the horizontal tile
plane; stp -v displays the vertical tile plane.

During the routing process, the bottleneck tiles play a key role. Intuitively speaking, these are
tiles between the parallel edges of two neighboring modules, in the critical regions where conges-
tion is most likely. Invoking stp -b displays the bottieneck tiles. For a more formal classification of
tiles, please refer to [2].

The first step in the routing process is the determination of topologies and rough placement of
all the nets. The nets’ topologies and relative positions with respect to the blocks can be deter-
mined manually by using the route net command (invoked by rn), or can be automatically routed
by using the global route command (invoked by gr). Nets routed manually by the user are treated
as prerouted by the global router. The information about net routes is stored in the bottleneck tiles.
The topology of a net may be viewed using the show net property command (invoked by snp).

Since it is very difficult to determine a priori how much space is needed to accommodate all
the wires, block positions are adjusted after the global routing step. The adjustment is made by
using the compaction (invoked by cm) or decompaction (invoked by decm) commands. The user
may wish to perform one-dimensional spacing (invoked by hem for horizontal compaction, vem for
vertical compaction, hdcm for horizontal decompaction and vdcm for vertical decompaction) in

order to move blocks and the global routes of nets so that the space between cells matches the

BEAR Manual : 32

estimate provided by the global router. Compaction removes extra space, while decompaction
provides more space in congested areas of the chip.

Now we enter the detailed routing phase. The unrouted region is divided into straight chan-
nels and/or L-channels. First subregions are ordered, then one of those which can be routed at
this time is selected. If we wish to selecta straight channel to be routed now, the dch command is
used. If we want to choose an L-channel, the dich command is used. When dch or dich com-
mands are invoked, the legal channels are highlighted. When the detailed router completes its
task, two previously disjoint chunks of layout are merged into one larger block. The nets exiting
from the routed channel are fixed pins of the combined block. Such a combined block is called a
route block. The results of partial detailed routing are now used to adjust the blocks’ placement by
performing the decompaction/compaction process again. After the adjustments, the remaining
routing region is split and ordered again, the next channel is chosen, and the loop is executed until
all the blocks are merged into one. '

The last step is to connect this merged block to the pads on the periphery of the chip. This
task is performed by the ring route command (invoked by rr).

Besides these basic routing steps, BEAR has the ability to calculate wire widths of power and
ground nets by the wire net command (invoked by wn).

There are also many useful commands for showing the nets' topologies, checking connec-
tivity etc., or creating or modifying examples.

B. The Global Router

1. Automatic global routing.

The global router is invoked by typing the gr command. The purpose of the global router is to
determine the topologies and rough placement of wires on all unconnected nets. For each net, the
global router determines through which bottleneck tiles the net will pass. This information is stored
by means of pseudo pins which are attached to the open sides of bottleneck tiles. Each pseudo
pin has an internal and an external id. Two pseudo pins connected inside a bottleneck tile have
matching internal ids. Similarly, when the external ids of pseudo pins are the same, the pseudo
pins are connected between different bottieneck tiles. Pins of cells, I/O pins and pins of route cells
also have external and internal ids. Their internal ids are always 0. If a pin is inside a bottleneck,
the external id matches the internal ids of corresponding pseudo pins; if a pin is outside a
bottleneck, the external id matches the external ids of appropriate pseudo pins.

The global router used in BEAR takes a subregion in which routing has not yet been com-
pleted and determines a cut which separates it into two smaller subregions. When a net has pins
or pseudo pins in both sides of the partition, the net crosses the cut line. For each such net,
pseudo pins are inserted along the cut line in appropriate bottleneck tiles. This cutting process
continues until each subregion on the list is free of bottlenecks. At each partitioning step, the

BEAR Manual 33

linear assignment algorithm is used to determine where the net will be placed. The number of nets
which can pass through a bottleneck tile is determined by the initial placement (geometrical dimen-
sions of the tiles) and design rules (wire widths and spacings between them). The.size of a
bottleneck is measured by its capacity. The amount of available space inside bottleneck tiles can
be decreased further by manually prerouting nets. The occupied space inside a bottleneck is
measured by its density. The global router tries to place nets in bottleneck tiles so that the density
(used space) does not exceed the capacity (available space) of each tile. If there is enough space
for all the nets to cross the current cut line, then the assignment is performed. When there is not
enough space, the global router increases the bottlenecks’ capacities proportionally to their initial
capacities until there is enough space for all the nets to pass through. Thus if the initial placement
is too compact, the global router may produce many nets which do not take their shortest paths
because it will try to utilize the existing area.

The global route command is controlled by a floating-point type parameter called the conges-
tion factor. Its legal range is 0.0 to 1.0; its typical value is 0.0. This parameter controls the tradeoff
between modifying placement and taking longer paths for nets. Small values will cause small
modifications of the initial placement and, for placements with an underestimated routing area,
may result in nets taking detours. Large values (close to 1) will result in nets taking shorter paths
and more modified placement. A congestion factor larger than 0 artificially increases the capaci-
ties of the bottieneck tiles, but only for the purpose of the global router. The bottieneck tiles which
are adjacent to the external bounding box are treated somewhat differently from the other
bottleneck tiles: nets are assigned to pass through them only when necessary. This is because it
is usually quite difficult to determine the dimensions of the bounding box, so even if it is overes-
timated, it will not cause nets to take detours through these regions.

The global router can take into account spatial constraints imposed on some nets. To exe-
cute this option the user has to set the timing mode to true in the dialog box, and then enter the
name of a file which contains the following information:

number_of_nets [int],
vertical_layer_multiplication_factor [float],
net_name [string], max_net_ length [float].

There must be as many net_name, max_net_ length pairs as the value of number_of_nets.
Vertical_layer_multiplication_factor is a parameter by which the lengths of vertical wires are multi-
plied in net length calculations; it is useful when wires on different layers have different conduc-
tances. If this distinction is not needed then the value of vertical_ layer_multiplication_factor should
be specified 1.0. :

A detailed description of the global router can be found in [8].

Limitations: The global router requires the capacity of every bottleneck tile to be at least wide
enough that one wire can pass through it. If a bottleneck tile does not fulfill this requirement a
warning message is printed and the command aborts.

BEAR Manual - ' 34

2. Manual global routing.

The user may wish to manually specify the global routes of some nets. The route net com-
mand provides methods for building the tree of a net. Nodes in the tree are terminals (pins) and
nodes in the floorplan graph. Edges can be edges of the floorplan graph, pin to floorplan graph
nodes, or pin to pin connections. Route net can be invoked by specifying the name of the net to
be routed (rn -n netname) or by selecting a terminal on the screen. Thus, before executing the
auto global route command, the user may preroute some nets. After selecting a net, the user is
prompted with a menu of choices:

e Add a tree edge by selecting its two nodes. A valid tree edge is an edge from a pin
of the net to a neighboring node of a floorplan graph, or an edge between adjacent
floorplan graph nodes, or between two pins of the net if they are covered by a com-
mon edge of the floorplan graph. When an ilegal edge is selected, a warning mes-
sage is displayed and this edge is ignored.

e Delete tree edge (by selecting on the screen two nodes of the edge).
e Delete subtree (by picking any of its nodes).

e Draw a net — highlights the net being routed.

e Abort this command.

Limitations: A net must be only completely prerouted; it cannot be partially prerouted. If rnis
used to route a net which will later have its wires sized (see paragraph 6), then no node of the net
can have a degree exceeding 4.

3. Show commands which display results of global routing.

a. Show net property (invoked by snp.) The user is prompted to choose a net by selecting one of
its pins. He may also specify a net by using snp -n [netName]. The specified net is
highlighted on the screen. snp -off turns off the highlight.

b. Show tile property. stp -h displays horizontal tiles on the screen, stp -v displays vertical tiles,
stp -bp displays both planes, stp -b displays bottleneck tiles, and stp -co displays cells only.
When the stp -Ip command is invoked with the mouse on a bottleneck tile in the window
display, the list of pseudo pins attached to this bottieneck tile is printed on the X-window
screen.

‘c. Show pin property. When the spp command is invoked, the user is prompted to choose a pin.
The coordinate positions, type, external ids, etc., of the selected pin are printed.

BEAR Manual 35
C. Global Spacing

After the global router completes its job, the topologies and positions of all nets with respect
to blocks are determined. Since it is quite difficult to estimate the routing area precisely, some
bottleneck tiles will have more nets passing through them than their sizes permit. Similarly, some
tiles will have less. The purpose of global spacing is to match the capacity of each bottieneck tile
with its density as much as possible while preserving the existing nets’ topologies.

There are two steps in global spacing. The first, global decompaction, is invoked by dem. Its
goal is to increase the size of the chip as little as possible so that negative mismatches (i.e. more
nets than are allowed pass through a bottleneck) are eliminated. The second step, global compac-
tion, is invoked by cm. lts goal is to reduce the size of the chip as much as possible without creat-
ing negative mismatches. The global spacer, working in either mode, selects a ridge which is a
path through space tiles from one side of chip to the other. For horizontal
compaction/decompaction the ridge goes from the top to the bottom of the chip; for vertical
compaction/decompaction it goes from left to right. Ridges are chosen through bottlenecks with
mismatches and then all objects on the top or the right side of the ridge are moved to increase or
decrease the size of the ridge. For decompaction, ridges are selected from the smallest to the
largest mismatch. For compaction, ridges are selected from the largest to the smallest mismatch.
In addition, the ridges are selected alternately in the horizontal and vertical direction to preserve
the topology of the placement.

The cm command compacts all mismatched ridges. cm - allows the user to compact one
ridge at a time.

The push command allows the user to manually select a ridge. First the user chooses a set of
adjacent tiles from one side of chip to the other. Then he or she is prompted to give the amount
that the ridge should be moved. The push command is invoked by pu for a horizontal ridge and
pu -v for a vertical ridge.

Detailed description of the global spacing algorithm can be found in [3]. Each time blocks are
moved, some bottleneck tiles may be destroyed and/or new ones created. Since we want to
preserve the nets’ topologies, after block movement the net connectivities are updated in the back-
ground. This process is invisible to the user and is not controlled by any external parameters.
Details of the updating algorithm can be found in [2].

D. lteractive Detailed Routing

1. Detailed routing iterative loop.

Detailed routing repeatedly executes the following steps:

BEAR Manual 36

a. The unrouted region is broken into straight and L-channels which are ordered appropyiately.
Please see [9] for details of the routing regions ordering algorithm. Horizontal channels can
change their vertical dimensions, vertical channels can change their horizontal dimensions and
L-channels can change both dimensions without affecting previously routed regions. The t
command with option o displays the channels which can currently be routed.

b. A straight channel or an L-channel is selected from those currently feasible. The channel is
defined by invoking the dch (straight channel), or the dich (L-channel) command. These com-
mands call detailed routers which perform routing but do not enter results into the data base.
The available channel height (current size of channel) and required channel height are
displayed on the screen. The user is prompted to either:

o Route the channel (store the results in the data base). This option is used when
the available height is not less than the required height and detailed compaction
is not used.

e Attempt to decrease the channel height using detailed compaction by checking
the Nutcracker option on the screen and specifying the target height for the
channel.

e Abort the command. This option is used when the available channel height is
less than the required height.

c. If the previous channel route command was aborted due to a mismatch between available and
required space, then placement must be adjusted by the Jocal decompaction/compaction,
manual move blocks (invoked by pu or pu -v), or transform cell commands.

2. Detailed routers.

The channel router Glitter does the detailed routing. It is a gridless, variable width router.
The dch command invokes Glitter on a straight channel; the dich command invokes it on two
straight subchannels created by dividing the L-channel. Details of the detailed routing algorithms
can be found in [10] and [11].

When the dch command is invoked on the chosen channel, Glitter runs and displays the
number of tracks it needs to connect all the wires of the selected channel. In addition to Glitter's
results, the available height of the channel and the target height are displayed. Initially the target
height is set equal to the available height. The user can compact routing produced by Glitter by
decreasing the target height, setting the Nutcracker option to true, and checking route. This will
invoke the channel compactor Nutcracker. Nutcracker will attempt to compact the initial detailed
routing by inserting jogs. It will compact the channel as much as possible, but no more than the
specified target height. After completing its job, Nutcracker displays its results and the user is
prompted to either: :

e Continue, if required and target heights match.

e Abort, if results are not satisfactory.

BEAR Manual ') 37

Glitter places horizontal wires on one layer and vertical wires on the other layer. This strategy
may lead to many more vias than necessary. By default the detailed routing is followed by a via
reducer which slides and removes unnecessary contacts. To turn this feature off, change the via
reduce option from true to false in the box displayed by the dch command.

Detailed discussion of the algorithms used by the channel compactor and the 'via reducer can
be found in [12] and [13], respectively.

Glitter routes L-channels and displays the results. At this point, results are not yet entered
into the data base and the user is prompted to either:

e Route channel (store in the data base) if horizontal and vertical adjustments
displayed are 0.

e Abort if router asks for horizontal or vertical adjustments.

By default, unnecessary vias produced by the detailed router are removed by the via reducer.
To turn this feature off, change the via reduce option from true to false. Nutcracker cannot be
invoked on an L-channel.

3. Placement adjustments.

This step is used to adjust a channel region to match the requirement specified by the
detailed router. As we have seen in the section on detailed routers, if the detailed routing does not
match the available area, the detailed routing command is aborted and the results are not entered
into the data base. Placement adjustment is performed to correct this situation. There are two
cases: either the available channel height was larger than required or it was smaller. In the first
case, local compaction and in the second case, local decompaction may be used to modify the
placement.

The local compaction step is used to compact the channel region to the number of tracks
required by the previous detailed route. The orientation of the channel determines which compac-
tion command is needed. A horizontal channel requires vertical compaction (invoked by vem); a
vertical channel requires horizontal compaction (invoked by hcm). The compaction command
finds ridges across the chip and moves all blocks to the right or top of the ridge. If executed
immediately after dch, the compactor will find the ridge which passes through the recently aborted
channel. The amount the blocks are moved depends on the mismatch between the number of
tracks needed by the router and the actual height of the channel. The compactor will not select
ridges unless it results in a smaller chip area.

Local decompaction is used to add the number of tracks required to the channel that was pre-
viously detail routed and aborted. The orientation of the channel determines which decompaction
command is needed. A horizontal channel requires vertical decompaction (the vdcm command); a
vertical channel requires horizontal decompaction (the hdem command). Local compaction and
decompaction are based on similar principles.

BEAR Manual : 38

The user may manually select a ridge for compaction or decompaction by invoking pu (hor-
izontal ridge) or pu -v (vertical ridge).

Another method of adjusting placement is to manually move the blocks. Moving blocks main-
tains the global routing information and previously routed channels. To move a block manually,
the transform cell command is used. First tc is invoked. The user is then prompted to choose a
transformation: for manual cell moving, check the move option. Next, the user is prompted to
choose the type of move: delta x-y or interactive. dich gives x,y measurements for the delta x-y
move. Finally the user is prompted to specify the cell on the screen.

E. Automatic Detailed Routing

The automatic router is invoked by typing the ar command. This command routes all chan-
nels in the chip, decompacting when necessary. The command can be invoked with the -I option
to allow the user to route one channel at a time.

When ar is invoked, a dialog box is created with options for applying Nutcracker and via
reducer to all channels in the chip.

F._Ring Route

The last step in detailed routing is ring route (invoked by rr), which connects the core of a
chip to the I/O pads at the periphery. The ring router expects all signal wires to be the same width.
Wires specified as power/ground can be of arbitrary widths.

Limitations: Ring route cannot handle power pads at the corners of the bounding box or verti-
cal constraints between power nets.

G. Wire Widths Sizing

BEAR is capable of determining the widths of power and ground nets so that the area of wire
segments is minimized while fulfilling electromigration and voltage drop constraints. Details of the
wire sizing algorithm can be found in [14].

The wire net command is invoked by typing wn. wn expects that a net whose wire widths are
to be determined.has a certain structure, called gtTree, already built in the data base. If the user's
intention is to calculate the wire widths of a net which was manually global routed, then gtTree
already exists and no additional action is necessary. If the user wishes to determine the wire
widths of a net which was automatically global routed, then a gtTree must be built using the build
tree command (invoked by bt). wn requires a wire technology file. In this file, which can have an

BEAR Manual 39

arbitrary name, the parameters needed by wire net are stored. These parameters are as follows:

grid [float]: specifies how many microns correspond to one grid line;
conductance [float] (in A/V): specifies conductance of wires;

curPerMicron [float] (in A/micron): electromigration constant
(i.e. the max branch current < curPerMicron * width);

minWidth [int] (in grid lines): specifies

the minimum acceptable wire width;

timeSteps [int]: specifies in how many time steps the calculations are to be performed
(usually 1); ,

flag [int]: used to set appropriate parameters for wn.

There are three parameters which need to be set in wire net: elect_flag, volt_flag and
feasible_flag. When elect_flag is 1, electromigration constraints are included in calculations; if it is
0 then they are not. When volt_flag is set to 1, voltage constraints are taken into account; if it is
set to O then they are not. When feasible_flagis setto 1, only a feasible solution is sought; if itis 0
then an optimal solution is calculated.

These parameters are calculated as results of the following bitwise operations:

elect_flag = PGR_ELECT_FLAG & flag
volt_flag = PGR_VOLT_FLAG & flag
feasible_flag = PGR_FEASIBLE_FLAG & flag

where PGR_ELECT_FLAG =01, PGR_VOLT_FLAG =02, PGR_FEASIBLE_FLAG =04. Thus for
example, flag set to 05 causes elect_flag = 1, volt_flag=0 and feasible_flag = 1.

When the wn -n [netName] command is invoked, the user is prompted to give the following
information:

e Specify feasible voltage drops (in V) and current requirements (in A) for receiving ter-
minals.

e Enter the name of the wire technology file.

¢ Specify which terminals of the net (by selecting them on the screen) are current
sources.

e Invoke wire width calculations — can be executed after all above information has
been specified.

BEAR Manual ' 40

Appendix 1. Input Format Specifications

BEAR input data are entered from two files. The first file contains block dimensions and pin-
net specifications. It is called a routing file and its name must be something.r. The second file
contains descriptions of design rules and is called a technology file. Its name must be
something.tech. The first portion (up to the dot) of both files must be the same.

A. Input Format for a Routing File

1. The input text file format.

SN<number of nets>

{ top level module data }

$
{ module data at this level }

BEAR Manual

41

2. The format of module data.

MOD
<x> <y>

<module name>
<module flag>

<x1> <yl>

<x2> <y2>

/* top level module */

/* integer origin coordinates, all module coordinates
are relative to this position */

/* up to 8 characters */

/* 1 = top routing module; 0 = bottom module */

/* corner coordinates of the module in the
counterclockwise direction */

/* terminals */

<x> <y> <name> <direction> <type> [<layer> <widthl> <width2> <p/g flag>
<current> <voltage>]

/* <x> <y>:
/* <name>:

/* <direction>:

/* <type>:

terminal coordinates relative to the origin of the module */
the name of the net that the terminal belongs to, up to 40
characters */

routing direction (0: west, 1l: south, 2: east, 3: north) */
terminal type (0: floating, 1: edge fixed, 2: fixed) */

[Optional specifications]

/* <layer>:

/* <widthl>:
/* <width2>:
/* <p/g flag>:
/* <current>:
/* <voltage>:

terminal layer (1: layer 1, 2: layer 2, 12: layer 1 or 2) */
width on layer 1 */

width on layer 2 */

power/ground flag (0: signal, 1: ground, 2: power) */
current requirement of the p/g terminal */

voltage drop of the p/g terminal */

BEAR Manual

B. Input Format for a Technology File

N

w(l)
w(2)

nxi (1)
mxi(2)

w(N) mxi(N)

sz (1)
sz (2)

sz (M)

m(l,1)
m(2,1)

m(N,1)

s{1,1)
s(2,1)

s(M,1)

m(l,1)
m(2,1)

m(N,1)

NOTE:

i(1)
i(2)

i(M)

p(l,1)
p(2,1)

p(N,1)

s(l,2)
s(2,2)

s (M, 2)

ov(l,l)

ov(2,1)

ov(N,1)

M = number of Hole types = N -1

sr(l) plc(l) prc(l)
sr(2) plc(2) prc(2)

sr (N) plc(N) prc(N)

r(l)
r(2)

r (M)

m(l,2)
m(2,2)

m(N, 2)

oooooo

m(l,2)
m(2,2)

m(N, 2)

c (1) prc(l)
c(2) prc(2)

c (M) prc (M)

p(1,2)
p(2,2)

p(N:2)

s(1,M)
s(2,M)

s (M,M)

ov(l,2)

ov(2,2)

ov(N,2)

42

/* number of layers */

/* Layer Rule */

/* Hole Rule */

.. m(1,N) p(1,N) /* LayerLayer Rule */
. m(2,N) p(2,N)

. m(N,N) p(N,N)

/* HoleHole Rule */

. m(1,M) ov(l,M) /* LayerHole Rule */
. m(2,M) ov(2,M)

. m(N,M) ov(N,M)

BEAR Manual . 43

The following explains the table above.

1. Layer Rule: one line for each layer (see Fig. 14). w()
For layerj
w() = minimum wire width
mxi(j) = maximum current carrying capacity
per micron wire width) i
sr) = sheet resistivity per square micron wires on |Oyer I
pic) = plate capacitance per square micron
prc() = capacitance per micron perimeter length Fig. 14.
(fringing capacitance)
2. Hole Rule: one line for each type of hole (see Fig. 15). wie on kyer §
For hole j
sz(j) = size
i) = current _ _
r) = resistance B § § wre on byer H1
c¢(j) = capacitance
Hole between byer | & oyer i+
is ceroted by hde of type i
lts size is specified by sz(}).
Fig. 15.
3. LayerLayer Rule: one line for each layer (see Fig. 16).
For layersiand j:.
m(ij) = minimum spacing between wires between layer i & layer j
pi,j = maximum (longest) parallel wiring between layer i & layer
s(ij) il
NI DA — moimmpodtvies — p(i])
wire on byer i wre on j 7/
| wire on byer |

Fig. 16.

BEAR Manual

4. HoleHole Rule: one line for each type of hole (see Fig. 17).
s(ijj = minimum spacing between hole i and hole j

wie on byer i wre on byer j

wre on byer #1 ; S E

E 2 ; wre on byer j+

{ANN

Fig. 17.

5. LayerHole Rule: one line for layer (see Fig. 18).

m(i,j) = minimum spacing between layer i & hole j
ov(ij = minimum overlap width between layer i & hole j
wre on boyer j wire on byer j
ov(j,j)
.. |
m(,}) -
Pl hoke j il IS vire on byer j+
e pn |
wire on byer j E— mirFrum overtp
ov(j+1))

wre on oyer j+

Fig. 18.

BEAR Manual

Appendix 2. X Defaults

45

BEAR allows you to preset defaults in a customization file in your home'directory called

7. Xdefaults

The format of the file is programname.keyword:string. BEAR obeys the convention for ‘MakeWin-
dow’ defaults. Keywords recognized by BEAR are listed below.

BlackAndWhite
ReverseVideo
Background
Border
BorderWidth
Foreground .
Font

Highlight

Mouse

Text
Console.Background
Console.Border
Console.Cursor
Console.Geometry

Console.BoldFont
Console.ltalicFont

Console.NormalFont

If on, a black and white color scheme will be used even on a color
display so that programs that dump windows to printers will work.

If on, reverse the definition of foreground and background colors on
black and white displays.

Determines the background color for all windows other than the con-
sole window.

Determines the border color for all windows other than the console
window.

Determines the border width for all windows other than the console
window.

Determines the foreground color for all windows other than the con-
sole window.

Determines the font for text in all windows other than the console
window.)

Determines the highlight color for all windows other than the console
window.

Determines the mouse cursor color for all windows.
Determines the color of prose printed in a window.
Determines the background color of the console window.
Determines the border color of the console window.
Determines the cursor's color in the console window.

Geometry specification for the placement of the console window on
start up.

Determines the console window's boldface font which will be used to
show everything the user types.

Determines the console window's italic font which will be used to
show error messages.

Determines the console window's normal font which will be used to
show basic system messages.

BEAR Manual

Console.BoldColor

. Console.ltalicColor
Console.NormalColor
Chip.Cell
Chip.RouteCell
Chip.DummyCell
Chip.CellBorder

Chip.Pin
Chip.Background
Chip.hchannel
Chip.vchannel
Chip.ichannel

Chip.Net1

Chip.Net2

Chip.Net3
Chip.HorzBottleNeckTlle
Chip.VertBottieNeckTile
Chip.HorzDominantTile
Chip.VertDominantTile
TF.leaf1

TF.leaf2
TF.leaf3

TF.leaf4

- TF.leafs

TF.node
TF.edge
Cif.BNDO
Cif.BND1
Cif.BND2

46

Determines the color of the boldface font within the console window.
Determines the color of the italic font within the console window.
Determines the color of the normal font within the console window.
Determines the color of cells on the chip.

Determines the color of route cells on the chip.

Determines the color of dummy cells on the chip.

Determines the border color of all cells on the chip, the pin color, as
well as the color of the floor plan graph. '

Determines the color of the pins for the chip.
Determines the background color of the chip.
Determines the horizontal channel color.
Determines the vertical channel color.
Determines the L-shaped channel color.
Determines the color of net one on the chip.
Determines the color of net two on the chip.
Determines the color of net three on the chip.
Determines the color of horizontal bottleheck tiles.
Determines the color of vertical bottieneck tiles.
Determines the color of horizontal dominant tiles.
Determines the color of vertical dominant tiles.

Determines the color of leaf number one in the tree and floorplan
windows. ’

Determines the color of leaf number two in the tree and floorplan
windows.

Determines the color of leaf number three in the tree and floorplan
windows.

Determines the color of leaf number four in the tree and floorplan
windows.

Determines the color of leaf number five in the tree and floorplan
windows.

Determines the color of the nodes in the tree windows.
Determines the color of the edges in the tree windows.
Determines the color of cif boundary zero.

Determines the color of cif boundary one.

Determines the color of cif boundary two.

BEAR Manual

Cit.NC
Cif.NM
CIf.NP
Cif.TRM

47

Determings the color of cif nMos contact cut color.
Determines the color of cif nMos metal color.
Determines the color of cif nMos polysilicon color.
Determines the color of cif text.

The following defaults are for the IV windows:

iv.Background
iv.BorderColor
iv.BorderWidth
iv.ButtonColor
iv.CursorColor
iv.EditBackground

iv.EditFont
iv.EditFontColor

iv.EraseValue
iv.Padding

lv.TextFont
iv.TextFontColor

iv.TitleFont
Iv.TitleFontColor

Set the background color. Default is light grey on color displays,
black on monochrome.

Set the border color. Default is black on color displays, white on
monochrome.

Set the border width of the main IV window, and the border around
the edit region windows. Default is 1.

Set the color of the buttons. Default is yellow on color displays,
white on monochrome. For best results, choose a non-dark color.

Set the color of the mouse cursor. Default is green on color
displays, white for monochrome.

Set the background color of the edit region. Default is light blue on
color displays, black for monochrome.

Specify the font to print the edit region. Default is 6x10.

Set the font color of the edit region. Default is red for color displays,
white for monochrome.

If on clear the edit region upon editing the variable. The default is
off. Note that data can still be recovered by CONTROL_U.

Specifies the extra padding above and below each IV row (text and
variable). The defauitis 2.

Specify the font to print the documentation field. Defaultis 6x10.

Set the font color of the documentation field. Default is blue for
color displays, white for monochrome.

Specify the font to print the title. Default is 9x15.

Set the font color of the titte Default is dark slate blue for color
displays, white for monochrome.

BEAR Manual 48

Appendix 3. OCT Interface

The following is a description of how to read from and write to OCT in BEAR.

First, BEAR must be executed before the read-from or write-to OCT commands can be per-
formed. Once BEAR is running,to load a chip from the OCT database, issue the following open
window command:

ow -oct celiname viewname [output_celiname [output_viewname]]

where celiname is the name of the OCT cell to be read, viewname is the name of the OCT cell's
view, and output_celiname is the name of the OCT cell used temporarily in the reading process.

This OCT cell is an exact copy of the OCT cell described by cellname and viewname, but
with two additional bags to facilitate in reading and writing back. Also, output_celiname is the
name of the OCT cell to be written back out when the save command without any optional informa-
tion, s -oct, is used later. (The default for the optional output_celiname is macout.)
output_viewname is the name of the OCT cell's view which is temporarily used and is to be writ-
ten back out. (The default for the optional output_viewname is the same name as the
viewname.)

When writing to OCT in BEAR, issue the following save command,
s -oct [[-r] output_cellname output_viewname]

where the -r option is for saving routing information to OCT and output_cellname is the name of
the OCT cell to be written out to OCT. This name is only optional when saving an OCT cell that
has been read in by the open window command described above, has never been saved after
being read in, and has not been changed other than the placement of its cells. The default for the
optional output_cellname is the same name as the output_cellname used in the open window
command (above) when reading in from OCT. output_viewname is the name of the OCT cell's
view to be written out and is also only optional under the same conditions as the ones described
just above in output_cellname of this command. The default for the optional output_viewname is
the same name as the output_viewname used in the open window command (above) when read-
ing in from OCT.

The save (write back) command,
s -oct

is a much faster write mechanism than the full save (write) command with options. It uses
knowledge from the open window (read) command and only updates the placement of the cells.

BEAR Manual '] 49

Example 1: Make placement modifications on an OCT chip and save in macout.

(Open window commands are typed with the-cursor in the BEAR console window, and all other
commands, save and close window, are typed with the cursor in the window displaying the cell
read in from OCT using open window.)

ow -oct foocell fooview
(Opens a window displaying the information read in from OCT cell, foocell, and view, fooview.

[placement modifications]

s -oct

(Saves the placement information in the window by writing the medifications to OCT cell default,
macout, and view default, fooview.)

cwW
(Closes the window.)

Example 2: Make placement modifications on temporary file to be saved in new cell foocell.

ow -oct macout fooview foocelll fooview1
(Opens a new window containing the previously saved OCT cell, macout, and view, fooview.)

[more placement modifications]

s -oct

(Saves the placement information in the window by writing the modifications to OCT cell, foocelll,
and view, fooview1.)

BEAR Manual : 50

Example 3: Save placement and routing modifications.

[more placement modifications, routing, and/or creating, deleting, modifying new cells,
pins, and nets]

.

s -oct -r foocell2 fooview2

(Saves the placement and routing information in the window by creating and writing to OCT cell,
foocell2, and view, fooview2.)

cw

(Closes the window.)

Example 4: Read in BBL file and save it in OCT database.

ow -bbl foobbl
(Opens a new window displaying the information read in from BBL file, foobbl)

[placement modifications and/or creating, deleting, modifying new cells, pins, and nets]

s -oct foocell3 fooview3

(Saves the placement information in the window by creating and writing to OCT cell, foocell3, and
view, fooview3.)

cw
(Closes the window.)

Unless otherwise specified during the open window command with the OCT option, the
default output OCT cell name is macout and the view name is the same as the view name read in.
Any type of modifications can be done on the data that has been just read into BEAR from OCT
with the open window command. After all the necessary changes have been made on the data,

BEAR Manual 51

save command (s -oct) should be issued to write back only the placement data to the default OCT
cell and view. This save command can be used to write back placement data only once after
every read from OCT. Thus, after a write back, the window must be closed and a new window
must be opened to read in the changed data for any new modifications made thereafter to be
saved properly. Alternatively, the full save command with all the options can be issued. This action
will write the placement and routing information to the newly created OCT cell and view named in
the options. If only placement data is to be written out to a new OCT cell and view then the full
save command with all the options minus the -r option should be issued. Other types of data such
as BBL read into BEAR by the open window command or new information created inside BEAR
can be written to OCT by using the full save command with the options.

BEAR Manual : ' 52

Appendix 4. XDM: X Dialog Manager *

A. General Information

1. Synopsis.

#include <X/Xlib.h>
#include "XDM.h"

2. Modification and control routines.

Int XDMinit(prName) char *prName;

int XDMModify(dialog, fieldld, name, value, ..., XDM_END) Window dialog; int fieldid;
int XDMQuery(dialog, fieldid, name, value, .., XDM_END) Window dialog; int fieldld;
int XDMDelete(dialog, fieldid) Window dialog; int fieldid;

int XDMPost(dlalog, X, y, func, options) Window dialog; int x, y; int (*func)(); int options;
int XDMFilter(event, dialog, fieldld) XEvent *event; Window *dialog; int *fieldld;

int XDMEnd(dialog) Window dialog;

3. Field creation routines.

Window XDMDialogCreate(parent) Window parent;

int XDMTextCreate(dialog, id) Window dialog; int id;

int XDMButtonCreate(dialog, id) Window dialog; int id; .

int XDMBlendCreate(dialog, id, relid) Window dialog; int id; int relld;
int XDMEdRegCreate(dialog, Id) Window dialog; Int id;

int XDMRowColCreate(dialog, id) Window dialog; int id;

int XDMForeignCreate(dialog, Id, w, h, bdrSize, bdr, bgnd, minSize, optSize, realSize,
thePos, delFunc, win) Window dialog; int id; int w, h; int bdrSize; Pixmap bdr, bgnd; int
(*minSize)(); int (*optSize)(); int (*realSize)(); int (*thePos)(); int (*delFunc)(); Window
*win;

4. General purpose and error routines.

Int XDMForEach(dialog, func, arg) Window dialog; int (“func)(); XDMPointer arg;

* Program written by David Harrison, University of California, Berkeley.

BEAR Manual 53

Window XDMFlnlealog(ﬂeld)‘Window field;
int XDMTypeQuery(dialog, fieldid) Window dialog; int fieldid;
char *XDMError()

5. Overview.

XDM is an interactive forms-based input system for X. It provides means for displaying and
controlling a window which may contain text, buttons, blender controls, type-in fields, and foreign
windows. These dialogs can be used to ask user for input in a easy to use, aesthetically pleasing
manner.

XDM is intended for use in conjunction with Xlib, the C Language X Window System Interface
Library. The programmer builds a dialogs using field creation routines, posts them using
XDMPost, and then routes all events in the program’s main event loop through the dialog event
handler, XDMFilter. The event handler handles all events associated with the dialog and ignores
all other events. Furthermore, if some action on the part of the user requires some response from
the application, XDMFiiter indicates this and returns the appropriate information.

Although XDM is written in standard C, the programming style is object oriented. Once
created, the basic components of XDM respond to a set of pre-defined messages which are
passed to a component using the XDMModify and XDMQuery routines. Any changes to the com-
ponents are reflected immediately in the corresponding dialog window.

XDM components are created in a hierarchical fashion. At the top level, there is the dialog
component. A dialog is a window which may contain other components. Some of these com-
ponents may themselves contain other components, forming a tree. This tree is used to define the
control path for input events to a dialog. If an input event is not handled by a lower level com-
ponent, it is passed up automatically to its parent. Its parent may handle the event, allow it to be
transferred up to its own parent, or pass the event down to one of its children.

For example, a button component may contain one other component (normally text) which is
considered “inside" the button. Normally, the component inside a button ignores mouse button
events. These events are passed up to the button to be handled. The button may then send mes-
sages down to the text component indicating it should reverse its colors.

Components are identified by the dialog that contains them (an X window), and a fieldld. The
fieldld is a positive integer returned by all object creation routines. This identifier is assigned by
the containing dialog component in increasing order starting from zero. Thus, as long as the com-
ponents are created in the same order, they will always have the same fieldid.

New components are created by routines which are specific to the component. However, all
of these routines require the programmer to identify the Window of the containing dialog, and the
fieldid of the parent component (or XDM_WINDOW if it is a direct child of the dialog). All of these
routines guarantee to return a fieldld for the newly created component.

A

BEAR Manual 54

Once a component has been created, messages can be sent to it by the generic -routines
XDMModify, XDMQuery, and XDMDelete. XDMModify and XDMQuery are the primary means
of changing and querying the state of all components. Since components may have many dif-
ferent options, these routines have variable length argument lists. The first two parameters are
always the dialog and fieldids which uniquely specify a particular component. The dialog itself can
be modified by specifying XDM_WINDOW as the fieldild. The remaining arguments are
name/value pairs terminated by the end-of-list identifier XDM_END. The order of these
name/value pairs is not significant. The message names are listed in XDM.h and in the com-
ponent descriptions below. The component itself defines what name/value pairs are legal for that
type of component. However, for the use of the dialog itself and any formatting components, all
objects support messages for setting and querying their size and position.

6. Example.

A program using the facilities of XDM is structured as an event handling loop. The library is
initialized by the routine XDMInit. This routine reads the users 7.Xdefaults file (see the defaults
section near the end of the man page for details) and initializes the package. New dialogs and
components are then created using the various component creation routines described in the sec-
tions that follow. Dialogs are placed on the screen by the XDMPost routine. After posting one or
more dialogs, the user enters an event loop where X events are filtered through the routine
XDMFilter. After the user Interaction with a dialog Is complete, the programmer can use
XDMENd to delete dialogs.

The following programming example shows how these routines interact:

/*

* A program to display one button with the text
"Hello, World" inside it. When the user clicks
on the button, the dialog finishes.

*

*/

#include <X/Xlib.h>
#include "XDM.h"

main({argc, argv)
int argc:
char *argvl(]:
{
Display *theDisp;
Window TheDialog, ReturnDialog;
XEvent theEvent;
int ButtonField, TextField;
int ReturnField;

BEAR Manual . 55

theDisp = XOpenDisplay (argv([1]):
XDMInit (argv[0]):;
TheDialog = XDMDialogCreate (RootWindow);

/* XDM_WINDOW is used to indicate a direct child of the dialog */
/* (Note: ButtonField will be zero after the call) */ '
ButtonField = XDMButtonCreate(TheDialog, XDM_WINDOW) ;

/* Tell the button to notify us when it is pressed */
XDMModify (TheDialog, ButtonField, XDM_SETSIGNAL, 1, XDM_END) ;

/* Create a text component which is a child of the button */
/* (Note: TextField will be one after the call) */
TextField = XDMTextCreate (TheDialog, ButtonField):

/* Modify the value of the text field */
XDMModify (TheDialog, TextField, XDM_TEXT, wHello, World", XDM_END);

/* Display the dialog */
XDMPost (TheDialog, 100, 100, 0, 0):

/* Event handling loop */
for (::) {
¥NextEvent (&theEvent);

if (XDMFilter (&theEvent, sReturnDialog, &ReturnField) < 0) |
/* Signal event: ReturnDialog and ReturnField are set */
if (ReturnField == ButtonField) {
/* Obviously true in this case */
XDMEnd (TheDialog);
exit (0);

7. General control routines.

XDMinit Initializes the XDM Package and reads the user's 7.Xdefaults file. prName is the
name of the program (normally argv[0]). The defaults for the package are listed in
the defaults section near the end of this manual.

XDMModify This routine modifies the specified attributes of the component in dialog with unique
id fieldld. It fieldid is XDM_WINDOW, dialog is interpreted as the window of the
component itself. This is how dialogs themselves are modified. The legal names to

BEAR Manual 56

use in the variable length name/value pairs are listed in XDM.h and in the sections
that follow. The last argument to the routine should always be XDM_END.

XDMQuery This routine is similar to XDMModify except the values passed should be pointers.
These pointers will be passed to the component's query function which will fill in the
proper values for the named attributes. The last argument to this routine should
always be XDM_END.

XDMDelete This function releases all resources consumed by the component whose dialog is
dialog and unique identifier is field/d. Like other routines, if fieldld is
XDM_WINDOW, the dialog itself will be deleted. In general, deleting a component
deletes all of its children as well. '

XDMPost This routine posts dialog at location (x, y). Normally, this function returns and the
programmer is expected to enter an event loop waiting for appropriate events.
However, if func is provided, the dialog is posted as a moded dialog. In this case,
XDMPost will internally handle the events associated with the window and call func
whenever a component signals (see XDMFilter for signal details). The form of the
function is:

int func(evt, diag, fidid)
XEvent *evt;

Window diag;

int fidid;

If the event is a signal from a component, diag will be non-zero. Otherwise, the
event could not be handled by XDM and will be returned in evt. There are three
options available when specifying options: XDM_INTERACT, XDM_MOUSE, and
XDM_FREEZE. If XDM_INTERACT is specified, XDMPost will ignore the (x, y)
parameters and interactively query the user for the dialog position. If XDM_MOUSE
is specified, the dialog will be centered around the current mouse position. Finally,
if func is provided and XDM_FREEZE is specified as an option, the routine will
freeze the X server and attempt to save the pixmap under the dialog for fast restor-
ing.

Warning: XDMPost handles all of the initial exposure events for a dialog and clears
all events from the input queue before retuming. It will discard any other user
events occurring at this time.

XDMFilter This routine examines event and handles it if it is associated with an XDM dialog
window. If the event was handled, the routine returns a positive status. If the event
causes some component to generate a signal, the return code will be negative. In
this case, the routine will set dialog and fieldld to the appropriate values for the com-
ponent. If something went wrong (like an event not meant for XDM), the return
code will be zero.

XDMEnd Unmaps dialog without deleting it. It can be reposted again using XDMPost.

BEAR Manual 57
B. Component Descriptions

All of the currently supported components are described in the -sections that follow. These
descriptions include an overview of the component, its interface description, and the message
identifiers recognized by the component.

1. Dialog components.

Dialog components are the basic entity exported by XDM. Dialogs consist of an X window
which may contain any number of other XDM components. Unlike other components, dialogs are
identified by an X window identifier. In order to medify or query a dialog, XDM_WINDOW must be
used as the fieldid to XDMModify and XDMQuery.

A dialog is also special in that it maintains a list of all components of the dialog. It is from this
list that the fieldid's of other components are allocated. All other creation routines in the interface
query the dialog in order to determine their fieldlds.

Dialogs also maintain carnal knowledge of type-in components. This knowledge is used to
implement the concept of a currently active type-in component. inactive type-in components pass
KeyPressed everits upward to the dialog which direct the events to the currently active type-in
component. Thus, typing anywhere in the dialog always causes the text to be directed to the
active type-in component. Initially, the first type-in component created under a dialog is considered
the active component.

XDMDialogCreate

This routine creates and returns a new dialog which is a child of parent (usually the root window).
Dialogs are recursive; a dialog can act as the parent of any number of other dialogs. If there was a
problem creating the new dialog, the routine will return NULL. Dialog parameters are controlied
using the standard message passing routines XDMModify, XDMQuery, and XDMDelete. The
messages accepted by a dialog are shown in the tables below.

Dialog XDMModify Messages

Name Type Description

XDM_NAME char* String used in dialog icon
XDM_BGNAME char* Name of the background color
XDM_BGPIXEL int Background pixel value
XDM_HORTPAD int Horizontal padding (pixels)
XDM_VERTPAD int Vertical padding (pixels)
XDM_SMALL int Become as small as possible

BEAR Manual | | S8

XDM_BGNAME and XDM_BGPIXEL are mutually exclusive: one can either specify the color
in standard X text format or as a pixel value previously allocated by XGetHardwareColor or
~ XGetColorCells. Note that all string parameters passed to XDM will be copied into local storage.
The padding parameters specify the minimum amount of space around the outside of the dialog;
i.e. the placement of components in the dialog will be offset by this amount. If XDM_SMALL is
given a non-zero value, the dialog will attempt to shrink to its smallest possible size.

Dialog XDMQuery Messages

Name Type Description

XDM_NAME char** Name of dialog
XDM_BGNAME char** Background color name
XDM_BGPIXEL int * Background pixel value
XDM_WIDTH int* Width of dialog (in pixels)
XDM_HEIGHT int* Height of dialog (in pixels)
XDM_HORTPAD int* Current horizontal padding
XDM_VERTPAD int* Current vertical padding

It is important to note that returned text values (char **) return pointers to the actual internal
string used by XDM. These strings must not be modified.

2. Text components.

Text components are leaf objects which can display a single line of text in any font or color. A
leaf object is a component which cannot contain any other component. Text components are also
purely output fields. All user input to a text field is sent upward to'its parent. These components
are most often used to label other kinds of fields and to display messages of one kind or another.

XDMTextCreate

This routine creates a new text component, returning its fieldid. The parent of the component is
specified by dialog and id. Normally, id is the fieldld of some component of dialog. However, if id
is XDM_WINDOW, the text component will be created as a child of dialog itself. If there were
problems creating the text component, the routine will return XDM_NO_ID. The modify and query
messages recognized by text components are described in the tables that follow.

BEAR Manual 59

Text XDMModify Messages
Name Type - Description
XDM_X int Upper left comer X coordinate
XDM_Y int Upper left comer Y coordinate
XDM_COLS int Number of characters in text
XDM_TEXT char* Text of component
XDM_FONTNAME char* Name of font used to display text
XDM_FONTINFO Fontinfo * Previously opened font
XDM_BGNAME char* Name of background color
XDM_BGPIXEL int Background pixel value
XDM_FGNAME char* Name of text color
XDM_FGPIXEL int Foreground pixel value
XDM_DISABLE int If non-zero, grays out text
XDM_LOCKPOS int If non-zero, can't change position

The size of the text component window is never allowed to be less than the size of the text.
The position of the component (XDM_X, XDM_Y) is relative to its parent component or dialog. If
the number of columns is specified (XDM_COLS), the text component window will never be less
than the size needed to display that number of average sized characters. The messages control-
ling font, background color, and foreground color may be specified either in name form
(XDM_FONTNAME, XDM_BGNAME, XDM_FGNAME), or as a previously opened X entity
(XDM_FONTINFO, XDM_BGPIXEL, XDM_FGPIXEL). The XDM_DISABLE message is used by
other components who might wish to show text grayed when the input component containing the
text is inactive. XDM_LOCKPOS is also used by other components to turn off the repositioning
capability of the text component.

*MOJ|0} JEY} SOIqe) 8Yj Ul paquIssp ale sjuauodwod uopnqg Aq paziubooal sabessaw Aionb
pue Appow 8yl ‘Al ON WAX wmnds jiim augnol sy} “usuodwod uonnqg ayj Buneeso swa|qosd
aiom 219y} J| Hasy Dojelp j0 PIyo B Se pajeald aq |IM auodwoo uoyng syl ‘MOANIM WAX
sipi j) ‘1anamoy ‘bofelp jo juauodwod awos J0 p|PiaY aul Si P! ‘Ajrewop ‘pr pue borerp Aq payoads
s1 Jusuodwod ay} Jo juased ayl ‘pipley su Buinial uauodwod 1x3) MaU B S8jealsd aulinol siyL

areasguonnginax

-anjeA sii yim a|660) osie jjasi juauodwod 8y J0 S10]09 punoibyoeq pue punosbaio} ayy wauod
-WOo9 PjIyd S} punoJe aupno ue se sieadde uopng e ‘AjensiA -ebueyo sy} syedipul 0} Pilyd SH
J0 S10j00 punoibxyoeq pue punoibai0) sy} dems o} Jdwaye |im Juauodwod uonng 8y} ‘sauepunoq
uopng sy} apisul passaidap S| UOHNQ SSNOW B USYM -(1xa} Ajfensn) jusuodwiocd Jaylo duo Ureuod
UBD PUE S}03lqo [BO1YOSBIISY S8 SUOHNG “S3UEpUNOq SH ApISul 01|90 uoHNg asnow B 0} asuodsal ul
anjea Aueuiq [eussiul sy sa|660) ey juauodwos 10 Bojeip e jo uoibas e sl jusuodwod uonnq v

‘s)usuodwoo uopng ‘g

‘wayy abueys 0}
sue|d Jowwesbosd syl yi peidod aqg pinoys sBuus asayy ‘snyL "sbums JajoBIEYD [BUIBIU! [BNIOE S}
yoeq sessed aupnos syl ‘anjea ay} urejuod o} ybnous abie| eoeds € 0} juiod pinoys Jajured 8y
-uawnbie ay} jo adA} erep ay} 0} siayuiod aq pinoys sabessaw Asanb Joj spiay SnfeA 8y} 0 |1V

1xa} 1no sAeib ‘019z-uou ji .l 371avsIa Wax
anjea joxid punosbaiod L Ul 13AXIIDS WaAX
40|09 X3} Jo sweN +» JEUO IWVYNDS WAX
anea jaxid punoibyoeg Ll 13X1d98 WaxX
10j00 punoiBxoeq Jo sweN - JBUD INVNDE WAX
juoj pauado Ajsnoinaid .. Ojupuod O4NILNO4 WaX
1xa) Aejdsip O} pasn juo} JO dWeN «JBUD IWVNLNOS Wax
jusuodwod Jo Ixa] v JEUO - 1X3aLr wax
(Aue y) 1xa} Jo suwnjod L S100 Wax
juauodwod 1xa} Jo biay wnuwiuiy LU LHDISHNIN WaxX
jusuodwiod 1xa} JO YIpim WnWwiuiN LU HLAIMNIN NaX
jusuodwo? 1xa} Jo WbisH LU LHOIEH NaX
1uauodwod 1xa} JO YIPIM o U H1QIM Wax
SJBUIPI00D A 18UI0J Ya] Jaddn » WUl A Wax
S]euIpI000 X 102 Ya] Jaddn Ul X Wax
uonauasag . 8dAL aweN

sabessapy A1onDNAX 1X3L

09 [enuey Hv3g

BEAR Manual : 61

Button XDMModify Messages
Name Type - Description
XDM_VALUE int Value of button (0 or 1)
XDM_X int Upper left corner X coordinate -
XDM_Y int Upper left corner Y coordinate
XDM_WIDTH int Width of button component
XDM_HEIGHT int Height of button component
XDM_USER ' XDMPointer User defined data
XDM_HILITE int Highlight flag (0 or 1)
XDM_SETSIGNAL int Arrange for signal to be generated
XDM_DISABLE int If non-zero, disables button operation
XDM_NOCHANGE int If non-zero, ignores formatting directives
XDM_LOCKPOS int If non-zero, prevents user repositioning
XDM_OPTWIDTH int Optional width formatting change
XDM_OPTHEIGHT int Optional height formatting change

The size of the button component is never allowed to be less than the size of its child com-
ponent. The position of a button (XDM_X, XDM_Y) are specified relative to its parent component
or dialog. The colors of the button are inherited from its child component. If XDM_SETSIGNAL is
set, every time the button changes state, XDMFilter will return with a status indicating a signal has
occurred. The dialog and fieldld parameters of XDMFiiter will be set to those of the signaling but-
ton. The XDM_USER feature allows the programmer to attach his own data structures to the but-
ton and act accordingly when a signal occurs. If XDM_HILITE is non-zero, the button outline will
be drawn in a way which makes the button stand out. This is often used to indicate which button
of many the user should normally choose under most circumstances. If XDM_DISABLE is non-
zero, the button and its child component will become “grayed out" and the button will refuse to tog-
gle.

Buttons have a number of messages which are format related (see the description of Rows
and Columns for details). These options include XDM_OPTWIDTH, XDM_OPTHEIGHT,
XDM_NOCHANGE, and XDM_LOCKPOS. XDM_OPTWIDTH and XDM_OPTHEIGHT specify an
"optional” width and height which is offered to the button by a formatting component. Normaily, the
button will always accept this size as long as it is larger than the button’s child component. How-
ever, if the XDM_NOCHANGE flag is set to a non-zero value, the button will reject optional size
requests and remain the same size. The XDM_LOCKPOS flag is used by formatting components
to turn off position changes to a button under that component’s control.

BEAR Manual 62

Button XDMQuery Messages
Name Type . Description
XDM_VALUE int* Value of button (0 or 1)
XDM_X int* Upper left coner X coordinate
XDM_Y int * Upper left corner Y coordinate
XDM_WIDTH int* Width of button component
XDM_HEIGHT int* Height of button component
XDM_MINWIDTH int * Minimum width of button
XDM_MINHEIGHT int* Minimum height of button
XDM_USER XDMPointer* User defined data
XDM_HILITE int* Highlight flag (0 or 1)
XDM_SETSIGNAL int* Signal flag (0 or 1)
XDM_DISABLE int* if non-zero, disables button operation
XDM_NOCHANGE int* If non-zero, ignores formatting directives
XDM_LOCKPOS int* If non-zero, prevents user repositioning

For all passed pointers, the pointer should point at an area large enough for the queried
value. In the case of text strings, the pointer returned is a pointer to the internal character string of
the package and should not be modified.

4. Blender components.

The blender component is a special leaf component which consists of a small window con-
taining a check box. This component is related to other blender components. These related
blenders form a blender set. When a button click occurs inside a blender, the internal binary value
of the blender is set and the internal state of all other blenders in the blender set are turned off.
This mechanism can be used to offer the user the choice of exactly one option among many.
Visually, a blender appears as a small box with rounded comers. When the internal state of a
blender is set, a small check mark is drawn inside this box.

XDMBlenderCreate

This routine creates a new blender component and returns its fieldld. The parent of the com-
ponent is specified by dialog and id. As with other components, if id is XDM_WINDOW, the com-
ponent will be created as a child of dialog. The parameter relid should be the fieldid of some other
previously defined blender object. The blender will be added to the blender set of the specified
blender component. !f the blender is the first in a blender set, relld should be set to XDM_NO_ID.
If the new component could not be created, the routine will return. XDM_NO_ID. The modify and
query messages recognized by blender components are described in the tables that follow.

BEAR Manual , 63

Blender XDMModify Messages
Name Type - Description
XDM_VALUE int If non-zero, turns on this blender
XDM_X int Upper left corner X coordinate
XDM_Y int Upper left corner Y coordinate
XDM_SETSIGNAL int If non-zero, arrange for signal
XDM_USER XDMPointer User defined data
XDM_HILITE int Highlight flag (0 or 1)
XDM_DISABLE int if non-zero, blender is disabled
XDM_BGNAME char* Name of background color
XDM_BGPIXEL int Background pixel value
XDM_FGNAME char* Name of foreground color
XDM_FGPIXEL int Foreground pixel value
XDM_LOCKPOS int If non-zero, position is locked.

The size of a blender component is fixed and does not change. The position of the blender is
specified relative. to its parent component or dialog. If XDM_SETSIGNAL is set, every time the
internal blender value is set, XDMFilter will return with a status indicating a signal has occurred.
The dialog and fieldld parameters of XDMFilter will be set to those of the signalling blender. The
XDM_USER feature allows the programmer to attach his own data structures to the blender and
act accordingly when a signal occurs. if XDM_HILITE is non-zero, the blender box will be drawn in
a way which makes it stand out from other blenders. This can be used to indicate which blender
the user should choose under normal circumstances. |f XDM_DISABLE is non-zero, the blender
will become "grayed out" and the blender will refuse to activate when a mouse button is clicked
inside its borders. The messages controlling blender color can be specified either by name
(XDM_BGNAME or XDM_FGNAME), or by previously allocated pixel values (XDM_BGPIXEL or
XDM_FGPIXEL). The XDM_LOCKPOS messages is normally used by formatting components to
turn off the positioning capability of a blender under its control.

BEAR Manual ‘ 64

_ Blender XDMQuery Messages
Name Type Description
XDM_VALUE int * If non-zero, turns on this blender
XDM_X int* Upper left corner X coordinate
XDM_Y int * Upper left corner Y coordinate
XDM_WIDTH int* Width of blender
XDM_HEIGHT int* Height of blender
XDM_MINWIDTH int* Minimum width of blender
XDM_MINHEIGHT int* Minimum height of blender
XDM_SETSIGNAL int* If non-zero, arrange for signal
XDM_USER XDMPointer * User defined data
XDM_HILITE int* Highlight flag (0 or 1)
XDM_DISABLE int * If non-zero, blender is disabled
XDM_BGNAME char ** " Name of background color
XDM_BGPIXEL int * Background pixel value
XDM_FGNAME char ** Name of foreground color
XDM_FGPIXEL int* Foreground pixel value
XDM_LOCKPOS int* If non-zero, position is locked.

All of the pointer items passed to the query function should point at areas large enough to
receive the filled in item. The width and height of all blenders is fixed. Messages reporting this
information are provided for completeness. Returned character pointers point to the internal string
used by the package and should not be modified. :

5. Edit region component.

An edit region component is a rectangular area for editing text. It is a composite component
made up of an array of edit line components. Edit region components automatically spawn these
edit line objects. Edit line components are not part of the official interface to XDM and are not
described here.

The edit region component is one of the most complex as far as operation is concerned. At
any one time, each top-level dialog component maintains one active edit-region component. This
component is indicated by a cursor (a pointer under a line of text) inside the active edit-region. All
keyboard input anywhere in the dialog will be directed to this component. All normal printing char-
acters insert themselves into the edit region at the current cursor location. Edit regions do not
scroll. The user is not allowed to enter more text than there is space in the edit region component.
However, the programmer can make the edit region bigger in this case. Mouse clicks inside the
edit region will position the cursor to that spot and insertion will continue from there. In addition,

BEAR Manual 65

niany emacs like character control sequences can be used for basic text editing operations:

Editing Features
Key Description
A Move to beginning of the line
‘E Move to the end of the line
P Move to the previous line
‘N Move to the next line
F Move forward one character
‘B Move backward one character
"Hor Delete the previous character
D Delete the next character
“Uor X Delete the current line

There are several ways to change the currently active edit region component. First, the user
can move the mouse over another edit region field and press a mouse button, thus activating that
field. Second, the user can type <tab> and "Q to move to the next and previous fields respec-
tively. The next and previous fields are determined by the order of creation of edit region com-
ponents. Typing <tabs> in the last edit region to be created causes the first edit region created to
become active. Similarly, typing “Q in the first edit region to be created causes the last edit region
created to become active. Finally, typing "N in the last line of an edit region is equivalent to typing
<tab>, and typing “P in the first line of an edit region is equivalent to typing Q.

XDMEdRegCreate

This routine creates a new edit region component and returns its fieldid. The parent of the com-
ponent is specified by dialog and id. Like other components, if id is XDM_WINDOW, the com-
ponent will be created as a child of dialog. If there were errors while attempting to create the com-
ponent, the routine will return XDM_NO_ID. The modify and query messages recognized by edit
region components are described in the tables that follow.

BEAR Manual

Edit Region XDMModify Messages

Name Type Description

XDM_VALUE char* Value of edit region

XDM_X int Upper left corner X coordinate
XDM_Y int Upper left corner Y coordinate
XDM_CURROW int Cursor row

XDM_CURCOL int Cursor column

XDM_ROWS int Number of lines in region
XDM_COLS int Average number of characters per line
XDM_FONTNAME char* Name of font used to draw text
XDM_FONTINFO Fontinfo * Previously opened font
XDM_BGNAME char* Name of background color
XDM_BGPIXEL int Background pixel value
XDM_FGNAME char* Name of foreground color
XDM_FGPIXEL int Foreground pixel value

XDM_USER XDMPointer User defined data

XDM_ACTIVE int If non-zero, edit region is active
XDM_DISABLE int If non-zero, edit region is deactivated
XDM_SETSIGNAL int If non-zero, arrange for signal
XDM_LOCKPOS int If non-zero, lock position

66

The size of the edit region is controlled by the number of rows and columns (XDM_ROWS
and XDM_COLS). Because both fixed and proportionally spaced fonts are supported, the number
of columns is computed based on the average size of the characters in the selected font. If
XDM_SETSIGNAL is set, every time the user leaves the edit region XDMFilter will return with a
status indicating that a signal has occurred. The dialog and fieldid parameters of XDMFilter will be
set to those of the signalling edit region. The XDM_USER features allows the programmer to
attach his own data structures to the edit region and act accordingly when a signal is detected. If
XDM_ACTIVE is set to a non-zero value, the edit region will become active and a cursor will be
drawn in the editing space. The active status of other edit region components are not affected. If
XDM_DISABLE is non-zero, the edit region will become "grayed out" and the user will not be able
to type text into the component. Like other components, the color and font parameters of an edit
region can be specified either in text form or in X format.

BEAR Manual ‘ 67

Edit Region XDMQuery Messages
Name Type Description
XDM_VALUE char ** Value of edit region
XDM_X int* Upper left corner X coordinate
XDM_Y int* Upper left corner Y coordinate
XDM_CURROW * int Cursor row
XDM_CURCOL * int Cursor column
XDM_ROWS int* Number of lines in region
XDM_COLS int * Average number of characters per line
XDM_WIDTH int* Width of edit region (in pixels)
XDM_HEIGHT int* Height of edit region (in pixels)
XDM_MINWIDTH int * Minimum width of edit region
XDM_MINHEIGHT int* Minimum height of edit region
XDM_FONTNAME char ** Name of font used to draw text
XDM_FONTINFO Fontinfo ** Previously opened font
XDM_BGNAME char ** Name of background color
XDM_BGPIXEL int* Background pixel value
XDM_FGNAME char** Name of foreground color
XDM_FGPIXEL ~ int* Foreground pixel value
XDM_USER XDMPointer * User defined data
XDM_ACTIVE int * if non-zero, edit region is active
XDM_DISABLE int* If non-zero, edit region is deactivated
XDM_SETSIGNAL int* If non-zero, arrange for signal
XDM_LOCKPOS int* if non-zero, lock position

All of the pointer items passed to the query function should point to an area large enough to
receive the entire item. The value of an edit region is returned as a null-terminated string where
lines are marked by <eol>. Note that the edit region field will often break lines itself if extremely
large lines are passed to it. Thus, the component does not guarantee that what comes in is what
comes out (even if no changes to the text occur). All returned character pointers (including the edit
region value) point to memory owned by the package and should not be modified.

6. Row/column components.

Row/column components allow the programmer to group other components into rows and
columns. The programmer can then control the inter-component spacing, outside padding, pitch,
and justification of these components as a unit. Row/column components can contain any number
of other components of any type (including other row/column components). Thus, aimost any type

BEAR Manual . 68

of formatting is possible.

A row/column component can be either a row ora column based on the value of a flag set
using XDMModify. If the component is a row, then components created under the row will be
positioned horizontally (from left to right) relative to the origin of the row. Similarly, if the com-
ponent is a column, then components created under the column will be positioned vertically (from
top to bottom) relative to the origin of the column. Normally, these components are placed next to
each other in the order of creation and centered with respect to all other components in the row or

column.

A row/column component that contains other row/column components can also be designated
as an array. This designation causes a row/column to align each item in a sub-component with
the corresponding items in other sub-components. For example, this might be used to format a list
of text and blender components. First, the text and blender components could each be placed in
normal columns. Then, the two columns could be placed in a row with the array designator set.
This would cause each text label to line up with each blender.

Visually, row/column components have only a background color. This color will only be seen
if there are portions of the row/column which are not covered by its sub-components. It is impor-
tant to note that all sub-components of a row/column inherit this background color by default.
Thus, it is not necessary to explicitly set the background color of sub-components of a row/column
if the desired background is the same as the row/column background.

XDMRowColCreate

This routine creates a new row/column component (which is a column by default), and returns its
fieldid. The parent of the component is specified by dialog and id. Similar to other components, if
id is XDM_WINDOW, the row/column component will be created as a child of dialog. The mes-
sages recognized by row/column components are described in the tables that follow.

BEAR Manual 69

Row/Column XDMModify Messages

Name Type Description

XDM_ISROW int If non-zero, component is a row (otherwise a column)
XDM_ARRAY int If non-zero, child will be arrayed

XDM_X int Upper left corner X coordinate

XDM_Y int Upper left corner Y coordinate

XDM_HORTPAD int Outside horizontal padding (in pixels)
XDM_VERTPAD int Outside vertical padding (in pixels)

XDM_HORTJUST int Horizontal justifcation (see below)
XDM_VERTJUST int Vertical justification (see below)
XDM_SPACE int Spacing between objects (in pixels)
XDM_BGNAME char* Name of background color
XDM_BGPIXEL int Pixel value of background
XDM_RECOMP int If on, causes recomputation
XDM_NOCHANGE int If non-zero, disallow growing

XDM_OPTWIDTH int Optional formatting width
XDM_OPTHEIGHT int Optional formatting height

The size of a row/column component is a direct function of its child components. [nitially, a
new row/column component is a column. If XDM_ISROW is given a non-zero value, it will change
into a row. Note that if there are sub-components of a row/column when XDM_ISROW is
changed, they will immediately change orientation. If XDM_ISARRAY is given a non-zero value,
each item of row/column sub-components will be aligned with the corresponding items of all other
row/column sub-components. The location of the row/column (XDM_X, XDM_Y) is specified rela-
tive to the parent of the component. XDM_HORTPAD and XDM_VERTPAD can be used to con-
trol the spacing from the largest items in the row/column and the outer border of the row/column.
XDM_HORTJUST and XDM_VERTJUST set the alignment justification of the sub-components of
a row/column. XDM_HORTJUST only has effect for columns and can only take the predefined
values XDM_LEFT, XDM_CENTER, or XDM_RIGHT. XDM_VERTJUST only has effect for rows
and can only take the predefined values XDM_TOP, XDM_CENTER, and XDM_BOTTOM.
XDM_SPACE controls the spacing between each sub-component of a row/column.
XDM_BGNAME and XDM_BGPIXEL can be used to specify the background of the row/column.
As mentioned in the introduction, sub-components inherit this background unless otherwise
specified.

As sub-components change in size, row/column components must recompute the placement
of these components. Normally, this recomputation is done once for every change detected. This
recomputation can be expensive if a large number of sub-components change in succession. To
overcome this problem, XDM_RECOMP can be temporarily turned off by the programmer while
extensive modifications of sub-components take place and turned back on afterward. This

BEAR Manual _ ' 70

increases the response time of the package significantly.

The remaining options to row/column components are generally used by higher level format-
ting components. When a dialog expands, the top-level dialog offers the excess space to all of the
top level components. This offering is done through the XDM_OPTWIDTH and
XDM_OPTHEIGHT messages. Normally, row/column objects accept these offerings and pass
them downward to child components who may choose to expand as well. However, if
XDM_NOCHANGE is set to a non-zero value, the row/column will reject any offerings of excess
space and it will remain the same size.

Row/Column XDMQuery Messages

Name Type Description

XDM_ISROW int * If non-zero, component is a row (otherwise a column)
XDM_ARRAY int* If non-zero, child will be arrayed

XDM_X int* Upper left corner X coordinate

XDM_Y int* Upper left corner Y coordinate

XDM_WIDTH int* Width of row/column

XDM_HEIGHT int* Height of row/column

XDM_MINWIDTH int* Smallest possible width
XDM_MINHEIGHT int* Smallest possible height”
XDM_KIDS int* Number of children

XDM_HORTPAD int* Outside horizontal padding (in pixels)
XDM_VERTPAD int * Outside vertical padding (in pixels)

| XDM_HORTJUST int* Horizontal justifcation
XDM_VERTJUST int* Vertical justification

XDM_SPACE int* Spacing between objects (in pixels)
XDM_BGNAME char** Name of background color
XDM_BGPIXEL int * Pixel value of background
XDM_RECOMP int* If on, causes recomputation

XDM_NOCHANGE int* If non-zero, disallow growing
XDM_OPTWIDTH int* Optional formatting width
XDM_OPTHEIGHT int* Optional formatting height

XDM_WIDTH and XDM_HEIGHT return the actual size of the row/column object including all
of its sub-components. XDM_MINWIDTH and XDM_MINHEIGHT return the smallest possible size
for the row/column without violating the spacing and padding rules. Note that all returned string
values are pointers to the actual internal string and should not be modified.

BEAR Manual 71

7. Foreign window components.

Foreign window components are leaf objects which allow the programmer to integrate their
own X application windows inside XDM dialog boxes. These foreign windows are treated like all
other leaf components. For example, they can be formatted using row/column components. How-
ever, unlike other components, the control of this window is the responsibility of the programmer.
Input events to the window are not automatically handled by XDMFilter. Only position related
parameters are handled by XDMModify and XDMQuery. Other parameters of the window must
be handied directly by the programmer.

XDMForeignCreate

This routine creates a new foreign window component. It returns the window's fieldld and its X
window Id (via the win parameter). Like other components, the parent component is specified by
dialog and id. If id is XDM_WINDOW, the foreign window is created as a direct child of dialog. Ini-
tially, the window is placed at (0,0) with respect to its parent component's coordinate system. Its
initial width and length are set to w and h, and the window will have a border size of bdrSize. Its
border and background patterns will be set to bdr and bgnd respectively. The remaining parame-
ters to the routine are functions XDM calls when messages are passed to the foreign window ver-
sions of XDMModify and XDMQuery. XDM provides defaults for all of these functions if the pro-
grammer is not interested in intercepting these calls.

int minSize(win, width, height)
Window win;
int *width, *height;

This routine should return the minimum size for the window (including the borders). If it is not pro-
vided (zero), XDM will assume the minimum size is the initial size passed to XDMForeignCreate.

int optSize(win, width, height)
Window win;
int width, height;

XDM will call this function which it has found extra space for the object to expand. The width and
height are guaranteed to be larger than the minimum width and height reported by minSize. The
component may choose not to grow larger than it is currently. However, it should shrink to the
given width and height if they are smaller than the current size. If this function is not provided, all
optional size requests will be discarded.

int realSize(win, x, y, width, height)
Window win;
int *x, *y;
int *width, *height;
This routine should always return the current position and size of the object (including borders).

This size is the one used for final formatting by the row/column component. If the function is not
provided, XDM will query the server for the current size and position of the window.

Ky

BEAR Manual 72

int thePos(win, x, y)
Window win;
intx,y;

This routine should position the object to the specified coordinates relative to the parent com-
ponent. If it is not provided, XDM will use XMoveWindow in this slot.

int delFunc(win)
Window win;

This routine should release any user data structures associated with the foreign window. The win-
dow itself is destroyed by XDM and need not be destroyed in the deletion function. If there are not
user structures associated with the window, this function need not be provided.

Finally, whenever the foreign window changes size by some mechanism outside the control of
XDM, the programmer should call the following routine:

int XDMForeignResize(win, oldW, oldH, newW, newH)
Window win;

int oldW, oldH;

int newW, newH;

The parameters oldW and oldH should contain the size of the window before the change, and
newW and newH should contain the size of the window after the change. The routine sends a
message to the foreign window's parent informing it of the change to it can compensate. The posi-
tion of the foreign window should always be changed using XDMModify. All of the messages sup-
ported by the interface are described in the tables that follow.

Foreign Window XDMModify Messages

Name Type Description
XDM_X int Upper left corner X coordinate
XDM_Y int Upper left corner Y coordinate

XDM_OPTWIDTH int Optional formatting width
XDM_OPTHEIGHT int Optional formatting height

The position of the window (XDM_X, XDM_Y) should be specified relative to the component’s
parent. Changing the position of a foreign window causes XDM to call the function thePos. If
extra space becomes available, XDM will notify the foreign window using the messages
XDM_OPTWIDTH and XDM_OPTHEIGHT. This will cause the foreign window interface to call the
function optSize.

BEAR Manual

73

Forelgn Window XDMQuery Messages

Name Type Description

XDM_X int* Upper left corner X coordinate
XDM_Y int* Upper left corner Y coordinate
XDM_WIDTH int * Current width of window
XDM_HEIGHT int* Current height of window

XDM_MINWIDTH int* Smallest possible width
XDM_MINHEIGHT int* Smallest possible height

XDM calls the function realSize in order to service requests for the messages XDM_X,
XDM_Y, XDM_WIDTH, and XDM_HEIGHT. For the messages XDM_MINWIDTH and
XDM_MINHEIGHT, XDM consults the function minSize.

8. Utility functions.

XDM provides some general purpose routines for searching through the components of a dia-
log, determining the dialog of a component, and querying the type of a component. These routines
are described below:

XDMForEach

XDMFindDialog

XDMTypeQuery

This routine calls func once for each component in dialog. The form of funcis:

int func(diag, fidid, type, arg)
Window dialog;

int fieldid;

int type;

XDMPointer arg;

The diag and fldId parameters identify the field. For example, these parameters
can be used as arguments to XDMModity or XDMQuery. type is the com-
ponent type (see XDMTypeQuery for a list of component types). The parame-
ter arg is the same as that passed to XDMForEach. it can be used to pass
state information to func.

All components in XDM are actually X windows. This routine returns the dialog
of a component given its X window identifier. If no such dialog exists, the rou-
tine returns NULL.

This routine returns the type of a component given dialog and fieldid. The valid
types currently supported by XDM are:

BEAR Manual

9. Default handling.

74

Component Types

Name Description

XDM_DIALOG_OBJ Dialog component
XDM_TEXT_OBJ Text component
XDM_BTN_OBJ Button component
XDM_BLEND_OBJ Blender component
XDM_EDREG_OBJ Edit region component
XDM_ROWCOL_OBJ Row/column compone
XDM_FOREIGN Foreign window

-

All parameters of all components have default values.

DialogFont

DialogBackground

DialogForeground

DialogBorderWidth

DialogBorderColor

DialogCursorColor

The default font used for all components with font parameters. If not
specified, XDM uses "6x10".

This parameter specified the default background color for all components
with background attributes. The default color is white.

This default specifies the default foreground color for all components with
foreground parameters. If not specified, XDM uses black.

This default specifies the border width of all dialogs. The default border
width is 2 pixels.

This parameter specifies the color of all dialog borders. The default color is
black.

This parameter controls the color of the mouse cursor when it is inside a
XDM dialog box. By default, the color used is black.

BEAR Manual | 75

Appendix 5. iv: Change Values of Variables Interactively *

A. General Information

1. Synopsis.

#include "X/Xlib.h"
#include "iv.h"

2. Routines.

Window Iv_init(programName, title, maxValChars) char *programName; char *title; int
maxValChars;

iv_addiIvar(docString, varP, type, precision, func) char *docString; int *varP; int type; int
precision; iv_PFI func;

iv_updatelVar(varP) int *varP;

iv_WhichSelect(itemPtr) ivWhichitem “itemPtr;

int iv_promptiVar(varP, bell) int *varP; int bell;

int iv_MapIVWindow(x, y, option) int , y; int option;

int iv_handleEvent(theEventP) XEvent “theEventP;

vold Iv_SetEraseFlag(status) int status;

void Iv_SetEnableFlag(varP, status) int *varP; int status;

int iv_processAllEvents();

int Iiv_destroy()

3. Overview.

IV is an interactive forms-based input system for the X Window System. It provides the
means for displaying and controlling variables in a C program through the use of an X window,
while the program is running. All the interactive variables are shown on a window, one on each
row. Each variable is displayed with its description and an edit region containing its current value.
At any one time, the IV window maintains at most one active edit region, where the variable may
be changed. All keyboard input anywhere in the IV window will be directed to this region. Edit
regions are activated by placing the mouse cursor over an edit region, and either clicking a mouse
button or pressing a key. Changes are accepted only by a carriage return or end-of-file.

* Program written by Andrea Casotto and Benjamin Chen, University of California, Berkeley.

BEAR Manual ‘ 76

For integer or floating-point variables, two buttons are provided to change the value of the
variable. The "+" button has the following effect: If the LEFT mouse button is pressed, the value of
the variable is incremented by 1%, or by one for integer variables. If the M/IDDLE mouse button is
pressed, the value of the variable is incremented by 10% If the RIGHT mouse button is pressed,
the value of the variable is doubled.

The "-* button has similar behavior, but the value of the variable is decremented. For
IV_WHICH variables, the plus and minus buttons advances or reviews through a list of values
specified by the user. (See test program and iv.h to see how to implement an IV_WHICH vari-
able.) For boolean variables, one button is provided for easy toggling of its state.

B. Description of Routines

iv_init This procedure initializes the IV package and reads the user’s “/.Xdefaults file. pro-
gramName is the name of the program (normally argv{0]). The defaults for the
package are listed in the defaults section. title is the name of the IV window. The
name is centered at the top of the window. maxValChars specifies the maximum
number of characters allowed in the edit region of the variables, except for string
variables, which hold more depending on the font size. The procedure returns the
window 1D of the IV window it was successfully created. If it was not successful, it
will return a null window ID. A connection to an X display must have been esta-
blished before calling this routine. Only one window can be open at any time.

iv_addIVar This routine adds an IV variable to the window. The variable will not be displayed
until iv_MapIVWindow is called. docString should contain a short documentation
(usually the variable name) for the variable. The IV window will resize according to
the longest documentation string it is given. varP should be the address of the vari-
able to be edited. To make lint happy, a (int *) should precede the variable address,
since IV always casts the pointer to an (int *). type should specify the type of vari-
able-to be added.

There are six types of IV variables: IV_DOUBLE, IV_INT, IV_BOOLEAN,
IV_STRING, IV_TOGGLE, and IV_WHICH. Except for IV_TOGGLE, each type has
a documentation field and an edit region. An edit region is indicated by the
appropriate background color specified in the user's XDefaults. Typing "MAXINT" in
the edit region will display the maximum integer allowed for integer types. Similarly,
"MAXFLOAT" displays the maximum floating point number, while "Infinity" or
"HUGE" will set the variable to the IEEE standard infinity (99.e999), or MAXFLOAT
if no such definition exist on the machine. IV_DOUBLE, IV_INT, and IV_WHICH
variables have plus and minus buttons. IV_TOGGLE and IV_BOOLEAN variables
are basically identical except that IV_TOGGLE does not display the state of the
variable. They will both set the variable to 1 or 0, respectively. IV_BOOLEAN vari-
ables will and show "TRUE" or "FALSE" in their edit regions. IV_STRING variables

BEAR Manual

iv_updatelVar

iv_WhichSelect

iv_promptivar

iv_MaplVWindow

iv_handleEvent

lv_SetEraseFlag

lv_SetEnableFlag

77

have no associated button.

_ precision specifies the number of places to the right of the decimal to print

a floating point number. Numbers greater than 999999.9 and less than
0.001 are shown in exponential notation. IV_NO_OPT should be used for
all other variable types. func is a pointer to a function that returns an
integer. The function should take no parameters, and will be called when-
ever its button is pushed. The function should return an IV_OK when
successful. If no routine is to be called, IV_NULL_FUNCTION should be
used. iv_PFlis defined in iv.h.

This routine prints the current value of the variable pointed to by varP. in
the IV window. It should be called when the program internally changes
the value of the given variable, and the user wants to see the’'new value.

This routine retums the index of the item selected from the list pointed to
by itemPtr. The first item is item #0.

This routine prompts the user to edit the value of a variable. Unlike the
normal editing feature it halts the process running iv, since it enters its
own internal loop. No other action can be taken until the prompted vari-
able is accepted by a carriage return or EOF. The IV window is automati-
cally raised upon prompting. The prompted variable is specified by varP,
and is highlighted. bell specifies the volume of the bell (0-7).

This routine maps the current IV window at location (x, y). There are
three options available when specifying option: IV_INTERACT,
IV_MOUSE, and IV_NO_OPT. If IV_INTERACT is specified, the routine
will ignore the (x, y) parameters and interactively query the user for the IV
window position. If IV_MOUSE is specified, the window will be centered
around the current mouse position.

This routine will return IV_EXTRANEOUS_EVENT if the event in the
argument is not affecting any of the interactive variables. Otherwise, it
returns /V_OK after processing the event.

This routine sets to the erase flag described in the EraseValue default to
status. If non-zero, EraseValue will be "on."

This routine sets to the enable flag for the specified variable to status.
The enable flag determines whether a variable can be edited or changed.
If the enable flag is zero, the background of the type in field, if one exists,
will be changed to the background of the IV window. Also, any buttons
will disappear.

BEAR Manual

78

iv_processAllEvents This routine processes ALL-events. It removes the need for an event loop

iv_destroy

C. Defaults

in the main program. This procedure should be used only when IV is the
only X application the program is running.

This routine unmaps and destroys the IV window and frees all resources
associated with IV.

IV has a number of parameters that can be set using the .Xdefaulits file. The format should
be <program names.iv.<default>.

Background

BorderColor

BorderWidth

ButtonColor

CursorColor

EditBackground

EditFont
EditFontColor

EraseValue

Padding

TextFont

TextFontColor

Set the background color. Default is light grey on color displays, black on
monochrome.

Set the border color. Default is black on color displays, white on monochrome.

Set the border width of the main IV window, and the border around the edit
region windows. Default is 1.

Set the color of the buttons. Default is yellow on color displays, white on mono-
chrome. For best results, choose a non-dark color.

Set the color of the mouse cursor. Default is green on color displays, white for
monochrome.

Set the background color of the edit region. Default is light blue on color
displays, black for monochrome.

Specify the font to print the edit region. Default is 6x10.

Set the font color of the edit region. Default is red for color displays, white for
monochrome.

If "on" clear the edit region upon editing the variable. The default is "off.” Note
that data can still be recovered by CONTROL_U.

Specifies the extra padding above and below each IV row (text and variable).
The default is 2. '

Specify the font to print the documentation field. Defaultis 6x10.

Set the font color of the documentation field. Default is blue for color displays,
white for monochrome.

BEAR Manual . 79

TitleFont Specify the font to print the titte. Default is 9x15.

TitleFontColor Set the font color of the title Default is dark slate blue for color displays, white
for monochrome.

D. Sample Program

/* test the iv.a routines *x/

#include <X/Xlib.h>
#include "iv.h"

extern char *strcpy():
extern char *calloc();

int

modifiedN()

{
(void) printf ("N has been modified0);
return(IV_OK):

}

static ivWhichItem itemPtr[] = {{"Simple", O},
{"Complex", 0},

{"Net", 0},
{"pin", 1}}:
main()
{
double a, c, d; /* test variables */

int n, b;

XEvent theEvent;
char *getenv():;
char *displayName;
Display *display’
char *theString;
int exitFlag = 0;
int selected;

theString = (char *) calloc ((unsigned) (20), sizeof (char)):
(void) strcpy(theString, "Test String"):

BEAR Manual . 80

displayName = getenv("DISPLAY"):
if ((display = XOpenDisplay (displayName)) == (Display *) 0) {
abort () ;
}

a = 100; ¢ = 12.67; d = 19999999%e12;
n = 13;
b = 0;

(void) iv_init ("test","Test interactive variables", 12);
iv_addIVar ("WhichOne", itemPtr, IV_WHICH,

(sizeof (itemPtr)/sizeof (ivWhichItem)) , IV_NULL_FUNCTION) ;
iv_addIVar("Variable A", &a, IV_DOUBLE, 1, IV_NULL FUNCTION);
iv_addIVar("Variable C", &c, IV_DOUBLE, 2, IV_NULL FUNCTION):
iv_SetEnableFlag(&c, 0):
iv_addIVar("Variable D", &d, IV_DOUBLE, 3, IV_NULL FUNCTION):
iv_SetEnableFlag(&d, 0):
iv_addIVar("Integer N" , &n, IV_INT, IV_NO_OPT, modifiedN);
iy_addIVar(“Boolean var", &b, IV_BOOLERAN,

IV_NO_OPT, IV_NULL_FUNCTION):
iv_addIvar("string", gtheString, IV_STRING,

IV_NO_OPT, IV_NULL_FUNCTION);
iv_addIvar ("Exit IV", sexitFlag, IV_TOGGLE,

IV_NO_OPT, IV_NULL_FUNCTION);
iv_MapIVWindow (IV_NO_OPT, IV_NO_OPT, IV_MOUSE);

while (!exitFlag) {
XNextEvent (&theEvent);
if (iv_handleEvent(&theEvent) != IV_OK) {
(void) printf ("Extraneous event0);
}
}

iv_addIVar ("Duplicate variable A", &a, IV_DOUBLE,
IV_NO_OPT, IV_NULL_FUNCTION);

iv_addIVar ("Duplicate variable C", &c, IV_DOUBLE,
IV_NO_OPT, IV_NULL_FUNCTION);

iv_SetEnableFlag(&c, 1):

iv_MapIVWindow (IV_NO_OPT, IV_NO_OPT, IV_NO_OPT):

a=9.6;

d=9.9;

iv_updateIVar (IV_NO_OPT)

iv_promptIVar(&n, 1);

iv_SetEraseFlag(l);

c = 6.9;

iv_updateIVar(&c);

BEAR Manual 81

exitFlag = 0;

while (!exitFlag) { ‘
iv_processAllEvents():

}

selected = iv_WhichSelect (itemPtr);

iv_destroy():

(void) printf ("Selected : %dO0, selected);

(void) printf("Variable A: %1£0, a):

(void) printf ("Variable C: %1£0, c):

(void) printf("Variable D: %1£0, d):

(void) printf (“Integer N: %d0, n);

(void) printf ("Boolean var: %d0, b):

(void) printf("string:’%s’0, theString);

(void) printf("exit flag: %d0, exitFlaqg):

Files: “cad/ib/libiv.a
"cadﬁnclude/iv.h

Bugs: Mail complaints to Andrea Casotto or Benjamin Chen, Dept. of EECS, University of Califor-
nia, Berkeley, CA 94720. ‘

BEAR Marual | | | 82

Appendix 6. scrollText: Multi-font scrollable text windows for X *

A. General Information

1. Synopsis.

#include <X/Xlib.h>
#include "scrollText.h"

2. Routines.

int TxtGrab(textWin, program, mainFont, bg, fg, cur) Window textWin; char *program;
Fontinfo *mainFont; int bg, fg, cur;
Iint TxtRelease(w) Window w;

int TxtAddFont(textWin, fontNumber, -newFont, newColor) Window textWin; int
fontNumber; Fontinfo *newFont; int newColor;

int TxtWinP(w) Window w;

int TxtClear(w) Window w;

int TxtWriteStr(w, str) Window w; char *str;
int TxtJamStr(w, str) Window w; char “str;
Int TxtRepaint(w) Window w;

Int TxtFilter(evt) XEvent “evt;

3. Overview.

The scrollText package implements a multi-font, multi-color, scrollable text window abstrac-
tion which runs over the X Window System. The package supports any number of windows each
with its own scroll bar and character buffer. Each window can have up to eight fonts loaded. A
color may be specified for each loaded font. The fonts can be mixed freely using a change font
character control sequence. The scrolling operations supported are scroll relative to scroll bar,
line to top, and top line to here. The size of the character buffer for each window is limited only by
the process space of the controlling program.

* Program written by David Harrison, University of California, Berkeley.

BEAR Manual 83

B. Description of Routines

TxtGrab Takes control of a previously created window, textWin, and makes it into a scroli-
able output window. The string program is used to look up X defaults for the pack-
age (see section X Defaults). The parameter mainFont is the initial font used for
drawing text in the window. This font is loaded into slot zero. TxtGrab assumes this
record is fully filled (including the width table). The X library routine XOpenFont can
be used to obtain fully filled font record structures. Additional fonts can be loaded
using TxtAddFont (described below). The pixel value fg will be used to draw the
scroll bar and is also used as the initial color for mainFont. The pixel value bg will
be used as the background for drawing all text. bg is also used as the background
for the scroll bar subwindow. The color of the text cursor is set to cur. In order for
the text window to work properly, the programmer must select ExposeRegion and
ExposeCopy events on the window in addition to any other events the programmer
might wish to register. The routine returns a non-zero value if the window was
sucessfully grabbed.

TxtRelease Releases control of a previously grabbed window. All resources consumed by the
text window package are reclaimed. The window itself is not destroyed.

TxtAddFont Loads a new font so that it can be used in a previously grabbed text window. The
parameter fontNumber is used to specify the slot for the new font. There are eight
font slots numbered 0 through 7. If there is already a font in the specified slot, it will
be replaced with the new one and an automatic redraw of the screen contents will
take place. See TxtWriteStr and TxtJamStr for details on using multiple fonts. The
pixel value newColor specifies the foreground color for the font. |If
TXT_NO_COLOR is specified, the color will default to the foreground color supplied
when the window was grabbed. The programmer can change just the color of a font
by specifing a null font for a given slot. The routine returns a non-zero value if the
font was sucessfully loaded.

TxtWinP Returns a non-zero value if the specified window has been previously grabbed using
TxtGrab. If it is not a text window, the routine returns zero.

TxtClear Clears the specified window of its contents and resets the current writing position to
the upper left hand corner of the screen. The routine also clears the contents of the
text window buffer and resets the scroll bar. The routine returns zero if the window
is not a text window. This procedure should be used instead of the X library call
XClear.

TxtWrlteStr Writes a null-terminated string into the specified text window. The text is always
appended to the end of the text buffer. If the scroll bar is positioned such that the
end of the text is not visible, an automatic scroll to the bottom will be done before
the text is appended. Non-printable ASCII characters are ignored. The newline
character (\n) causes the current text position to advance one line and start at the

A

BEAR Manual 84

left. Tabs are not supported. Lines too wide to fit on the screen will be wrapped to
the next line and a line wrap indicator will be drawn in the right margin. Backspace
deletes the previous character. It will do the right thing if asked to backspace past a
normal or wrapped line marker. A new text font can be specified using the
sequence control-F followed by a digit. The digit must be 0, 1, 2, or 3. The directive
will be ignored if there is no font loaded in the specified slot. If there is no more
space at the bottom of the screen, the window will scroll to make room. The routine
will return zero if it could not append the text.

TxtJamStr s identical to TxtWriteStr except the current screen position is not updated. This
routine should be used if the programmer wants to append text to the buffer without
causing the window to scroll. After the text has been added, the programmer
should call TxtRepaint to update the screen contents.

TxtRepaint Redraws the specified scrollable text window. The routine repaints the entire win-
dow including the scroll bar. NOTE: for handling exposure events, TxtFilter should
be used.

TxtFilter Handles events associated with scrollable text windows. It will handle ExposeRe-
gion and ExposeCopy events on the main window, and ExposeWindow and Button-
Released events in the scroll bar. It does not handle any other events. If it does
not want to handle the event, the routine will return zero. A call to this routine
should be included in the main event loop of the programmers controlling program.

C. User Interface

The scrollText package supports user controlled browsing through a buffer built using TxtWri-
teStr or TxtJamStr. Along the right side of the window is a scroll bar window. The scroll bar win-
dow displays a filled square representing the relative position through the buffer and the relative
amount of the buffer currently on the screen. Scrolling is controlled by clicking mouse buttons in
the scroll bar.

This package supports three scrolling operations: scroll to spot, line to top, and top to here.
The middle button is used to select scroll to spot. This operation causes the screen to scroll such
that the center of the scroll bar indicator moves to the current position of the mouse. This is used
to scroll to a relative spot in the buffer. Line to top and top to here operations are for scrolling
down or up some proportion of the screen. The left button selects line to top. This operation
causes the screen to scroll such that the line adjacent to the mouse position becomes the top line
of the screen. Thus, clicking near the top of the scroll bar scrolls only a couple of lines while a
click near the bottom will scroll almost an entire screen. The right button is used for the top to
here command. This function causes the top line of the screen to scroll down to the current posi-
tion of the mouse. This allows the user to scroll up and down by the same amounts if the mouse

BEAR Manual ’ 85

position is kept constant.

Defaults:

Files:
See also:

Bugs:

The current version of the library reads one default: JumpScroll If on, the line to top
and top to here operations will not scroll to the target position smoothly. Instead, the
window will be repainted once at the correct spot.

libScroll.a (Scrollable text library)

Xlib - C Language X Interface, X(8C)

Sometimes when the window is resized, the scroll bar is repainted without a border.
The origin of this bug is unknown but a work-around is to iconify and deiconify the win-
dow forcing a complete redraw.

Loading large files with many font changes is slow. Unfortunately, there is simply a
lot of work which must be done. Resizing windows with extrodinarily large buffers may
also take some time (the line breaks must be recomputed).

BEAR Manual) 86

References

10.

11.

12.

13.

14.

N.P. Chen, C.P. Hsu, and E.S. Kuh, "The Berkeley Building-block (BBL) Layout System for
VLS| Design,” in Dig. Tech. Papers, IEEE Int. Conf, on Computer-Aided Design, pp. 40-41,
1983. '

W. Dai, M. Sato, and E.S. Kuh, "A Dynamic and Efficient Representation of Building Block
Layout,” Proc. 24th Design Automation Conf., pp. 376-384, 1987.

W. Dai and E.S. Kuh, "Global Spacing of Building Block Layout,” Proc. VLSI Cont., pp. 161-
173, 1987.

W. Dai, E.S. Kuh, "Simultaneous Floorplanning and Global Routing for Hierarchical Building-
Block Layout,” Proc. Int. Conf. on Computer-Aided Design, pp. 828-837, 1986.

B. Eschermann, W. Dai, E.S. Kuh, and M. Pedram, "Hierarchical Placement for Macrocells,”
Proc. Int. Conf. on Computer-Aided Design, pp. 460-463, 1988.

M. Khellaf "On the Partitioning of Graphs and Hypergraphs,” Ph.D. Diss., Dept. IEOR, Univ.
of California, Berkeley, 1987.

J.K. Ousterhout, "Corner Stitching: A Data Structure Technique for VLSI Layout Tools,’ IEEE
Trans. on Computer-Aided Design, vol. CAD-3, no. 1, 1984.

M. Marek-Sadowska, "Route Planner for Custom Chip Design,” Dig. Tech. Papers, IEEE Int.
Conf. on Computer-aided Design, pp.246-249, 1986. :

W.M. Dai, T. Asano and E.S. Kuh, "Routing Region Definition and Ordering Scheme for Build-
ing Block Layout,” IEEE Trans. on Computer-Aided Design, vol. CAD-4, no. 3, pp.189-197,
1985.

H.H. Chen and E.S. Kuh, "Glitter: A Gridless Variable-Width Channel Router," IEEE Trans.
on Computer-Aided Design, vol. CAD-5, no. 4, pp. 459-465, 1986.

H.H. Chen, "Routing L-Shaped Channels in Nonslicing Structure Placement,” Proc. of 24th
Design Automation Contf., pp. 152-158, 1987.

X.M. Xiong and E.S. Kuh, "Nutcracker: An Efficient and Intelligent Channel Spacer,” Proc. of
24th Design Automation Conf., pp. 298-304, 1987.

X.M. Xiong and E.S. Kuh, "The Constraint Via Minimization Problem for PCB and VLSI
Design," Proc. 25th Design Automation Conf., pp. 573-578, 1988.

R. Dutta and M. Marek-Sadowska, "Automatic Sizing of Power/Ground (P/G) Networks in
VLSI," to appear in Proc. 26th Design Automation Conf., 1989.

	Copyright notice 1989
	ERL-89-36

