

Copyright © 1989, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

BEAR MANUAL

by

Wei-Ming Dai, Margaret Marek-Sadowska,
Benjamin Chen, Massoud Pedram, Sherry Solden

Memorandum No. UCB/ERL M89/36

12 April 1989

BEAR MANUAL

by

Wei-Ming Dai, Margaret Marek-Sadowska,
Benjamin Chen, Massoud Pedram, Sherry Solden

Memorandum No. UCB/ERL M89/36

12 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BEAR MANUAL

by

Wei-Ming Dai, Margaret Maiek-Sadowska,
Benjamin Chen, Massoud Pedram, Sherry Solden

Memorandum No. UCB/ERL M89/36

12 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BEAR Manual

Table of Contents

1

3

Introduction

I. Installation and User Interface

A. General Information
4

B. Getting Started ^
C. User Interface

D. Sample Layout
II. Clustering, Placement, and Shape Optimization

A. Clustering 2^
B. Placement 27
C. Write Placement 27
D. File Interface for Clustering
E. Shape Optimization
F. File interface for Shape Optimization

III. The Routing System of BEAR
A. Overviewof the Routing Process

B. The Global Router ^5
C. Global Spacing 25
D. Iteractive Detailed Routing
E. Automatic Detailed Routing
F. Ring Route 28
G. Wire Widths Sizing ^2

Appendix 1. Input Format Specifications
Appendix 2. XDefaults ^2
Appendix 3. OCT Interface ^2
Appendix 4. XDM: XDialog Manager
Appendix 5. iv: Change Values of Variables Interactively
Appendix 6. scrollText; Multi-font Scroliable Text Windows for X
References

BEAR Manual

Introduction

BEAR is a second generation macroceii-based layout system being developed at U. C.
Berkeley. The system takes advantage of our experience with BBL (Berkeley Building-Block Lay
out System [1]) and feedback from industry; our goal is to provide automatic and interactive
features to lay out a chip in both top-down and bottom-up physical design environments. This sys
tem has two unique features: a new architecture which employs strong interaction between place
ment and routing and a dynamic and efficient data representation which unifies topological and
geometrical information.

Although placement and routing are interdependent, they have historically been approached
separately because of the complexity of computation. Even with very sophisticated placement and
routing techniques, a system will not guarantee an appropriate layout if the placement and global
routing solutions are mismatched. We believe that floorplanning/placement should be refined
more and more (with possible topological changes) as routing proceeds and global routing should
be updated incrementally.

Placement defines the capacity of the routing area around the blocks; global routing defines
the density (net assignment) of the routing area. Considering the detailed routing, the desirability
ofa particular global routing on a given placement depends on the degree of the match of capacity
and density. After placement and global routing we can change the density by global re-routing (at
present this is done manually) orwe can change the capacity byglobal spacing (global compaction
or decompaction), in order to achieve high density in the final layout, we iterate these two opera
tions to obtain a satisfactory match of the capacity and density of the routing area before detailed
routing. During global spacing, global routing is updated incrementally. Adynamic data represen
tation which unifies topological and geometrical information is used to achieve an efficient imple
mentation of these difficult operations The global spacing organizes the interaction between place
ment and global routing in a dynamic way. Going one step further, we can optimize the shapes of
the soft blocks after global routing. At that point, the global routing is already done, so we can
make use of this information in our shape optimizer.

After making a considerable effort to interact placement with global routing, BEAR allows an
additional opportunity to refine the placement during local routing. To make such refinement
robust and efficient, a feasible routing order is crucial. In a feasible routing order, a new channel
can be expanded or contracted when it is being routed without destroying the previously routed
channels. In this way, routing can be completed without iteration. Rather than restricting the floor
plans or placements to slicing structures (finding a feasible routing order in such special case is
trivial) as most systems do, BEAR provides a feasible routing order for non-slicing structures. A
highly efficient hierarchical global router is used in conjunction with a global spacer to match the
channel capacity and routing density. An L-shaped channel router together with a regular channel
router is used in conjunction with the channel spacer NUTCRACKER for detailed routing. Also
recently completed is a ring router which makes a connection to the I/O pads, including power and
ground nets.

BEAR Manual

This manual describes the BEAR system
tions and user interface are given. Also ®®*®P" ^ „ „ described in Section 2. Aithough
get started. Clustering, piacement. and s P narameters and graphic dispiay provide con-
This part of the system is fuiiy automat^, the set of (»rOTeters^^^^^^^^
troilabiiity and observabiiity. In SecUon 3, rou ing p ^ j choose when and how to

BEAR system has been integrated into the OCT framework (Appen ix ,p.

BEAR Manual 3

I. Installation and User Interface

A. General Information

1. Hardware requirements,

• Disk Space: about 30 megabytes of disk space is required to compile and run the system.

2. Software requirements.

m X-Window System, version 10 (color or black &white). The system has been tested on a
black &white and 6 &8 plane color monitors.

• UNIX operating system. The system has been tested on Ultrix 2.2 and 4.2 BSD.
• Fortran Compiler (Fortran-77).

• 0 compiler: cc. The system has notbeen tested using gcc.
• Optional: GOT library.

3. Notes.

BEAR has been tested on:

• Sun 3/60C running NFS and 4.2 BSD with 16 megabytes of real memory and a CGFOUR
display driver.

• DEC microvax GPX/II running Ultrix 2.01 and 2.2 with 8 megabytes of real memory and
B&W and 8-plane color displays.

BEAR Manual

B. Getting Started

This section of the manual gives step-by-step instructions for getting BEAR from the tape into
the system.

1. Reading from the tape.

BEAR is stored in the tar format so it can be read by any UNIX-like system. The blocking fac
tor of the tape record is 20, which should be the default on most systems. At any rate, this param
eter is already determined when reading in the tapes. To get BEAR onto the system, you should
do the following:

a. Load the tape into your tape drive so that it is ready for reading. Be sure the write-protect
mechanism on the tape is activated to avoid accidental erasure of media.

b. Make a directory where BEAR will reside. The program will need about 30 megabytes of disk
space to compile. A typical command might be:

% mkdir /users/bear

This directorywill be the one used for the rest of this guide.

c. Now you are ready to read from the tape.

% tar X /users/bear

This process will take a while depending on how fast yoursystem is, so be patient.

d. When the prompt returns, the taping has been finished. Type

% cd /users/bear/bear/src

and then

%ls -F

to list the source directories that should be present:

bearGrUtils/ gtTree/ rectSlice/

bearMIsc/ input/ ringRouter/

cluster/ localRouter/ routeDB/

ezPlot/ localSpacer/ textio/

floorplan/ localVia/ tlleMapping/

fpg/ mac/ tlleProp/
geoChDecomposer magicMisc/ tiles/

globalRouter/ octlnterface/ topChDecomposer/
globalSpacer/ pgRoute/ utils/

grEdltor/ placer/

BEAR Manual

2. CompilingBEAR.

To compile the system, some variables must be set describing the environment in which
BEAR resides. Also, a few local directories must be installed before proceeding to compiie BEAR.

a. The main Makefile must be edited to match the system. This file resides In /usere/bear/bear.
You can use your favorite editor to do accomplish this task. Find the place in the Makefile
where you see:

BEAR_DIR =/users/bear/bear

This specifies where the BEAR resides. In this case, the default dlrecto^ matches the drec-
tory previously recreated. If the default differed then /usersAsear would be replaced by the
directory specified by the initial mkdlr command.

b. Search for:

MACHINEFLAGS = -DVAX

This variable specifies what type of machine Is be used^ Itbe set ^ 'cuSy
the machine Is not aVAX or aSun 2then the vanable should be set to -DNE/THER Currently,
the only machine-dependent code Is located In $BEAR_DIFt/src/utils/whence.s.

c. Quit the editor. Be sure you are In the BEAR directory. In this case. It Is /users/bear/bear.
Now type:

% make setupdirs

This directive InstaHs the directories necessary to support the BEAR compilation and coding
environment.

d. The program is ready to be compiled. Type:
% make Install

This command will compile all of the libraries, support modules, and BEAR modules and link
themtoqether The runnable program will reside In/osers/bear/bear/sro^JO/arBe^ an i
Sled bS »ianges are r^ade to the BEAR code, the BEAR modules can be recompiled
and linked by typing make Installbear in place of make Install.

BEAR Manual

r. I tear Interface

BEAR uses the XWindow System as ite wftTthe'us^ahd display the status
are used along with different types of did^ ox ^ ^ commands are issued. Chip
of the program. The console window is the mam rort ^ IJJIe current layout example. Three
windows graphically display ® . , interactive variables (iV) which allow the user to

rather than the keyboard.

1, The console window.

control-d fD).

unless adefault geometry has been specified In the Je
rr> nrnmritQ thp ij^fir to Create the console window upon invoking the program.

directly related to the console.

Se left buSn ca^es ttiTscreeM^^^ so that the line adjacent to the mouse position
-

Luses the top line of the screen to scroll down to the current position of the mouse.

BEAR Manual

2. The chip window.

The chip window of BEAR is the main area where the usercan view the results of his or her
commands. It displays the current layout of the chip using graphical abstractions. Cells are
represented by rectilinear shapes. Pins are fixed-size squares usually placed along the inner
boundary of cells. Regions of the chip window can be magnified for closer inspection. Other
abstractions displayed in the manual are explained in detail below.

3. Interactive variables (IV).

This form of dialog is specifically used to view and edit program variables. The appearance
of these dialogs are very distinct. Atitle describing the current operation is displayed at the top of
the dialog. All the interactive variables are. shown on a window, one on each row. Each variable is
displayed with its description and a region containing its current value.

At any one time, the IV window maintains at most one active edit region where the variable
may be changed. All keyboard input anywhere in the IV window will be directed to this region.
Edit regions are activated by placing the mouse cursor over an edit region, and either clicking a
mouse button or pressing a key. This action is indicated by a cursor (a pointer under a line of
text) inside the active edit-region. The user is not allowed to enter more text than there is
space in the edit region component. Changes are accepted only by a carriage return or end-oMile.
The original value of the variable can be restored by typing control-u fU) before accepting any
changes. Edit regions are usually denoted by a different color background where the value of the
variable is displayed. Edit regions whose background color matches the background color of the
entire window are read-only, unless buttons are present.

For integer or floating-point variables, two buttons are provided to change the value of the
variable. The"+" button has the following effect:
If the LEFT mouse button is pressed, the value of the variable is incremented by 1%, or by one for
integer variables.
If the MIDDLE mouse button is pressed, the value of the variable is incremented by 10%
If the RIGHT mouse button ispressed, the value of the variable isdoubled.

Thebutton has similar behavior, but the value of the variable isdecremented. Integer vari
ables can be distinguished from floating point variables by the presence of a decimal point. For
variables with strings as values (except booleans), the plus and minus buttons advances or
reviews through a list of values that the user can choose. For boolean variables, one button is pro
vided for easy toggling of its state. Single buttons are also provided for directing actions such as
aborting the dialog.

BEAR Manual

4. XDialog Manager (XDM).

This loan rt aalog is

°^°T„zrr.t=s.^i?rr«=si"rr?;rrir.srn.rr4'2^^
ponent. In addition, many character control sequences can be used for basic text eainng op

Key Description

"A Move to beginning of the line
"E Move to the end of the line
T Move to the previous line

Move to the next line
Move forward one character

"B Move backward one character

"H or Delete the previous character
•D Delete the next character

"U or"X Delete the current line

There are several ways to change the currently active edit region
user can move the mouse over another edit region field and press a mouse button, thus adivat-
ino that field Second, the user can type <tab> and "Q to move to the next and previous fiel^
respectively. The next and previous fields are determined by the order of creation of edit region
components Typing <tab> in the last edit region to be created causes the first edit region
created to become active. Similarly, typing *Q in the first edit region to be created Muses theta?St mgion created Finaily. typing "N in the last line of an ^it reg^n-s
equivaient to typing <tab>. and typing -P In the first iine of an edit region's eP"'vatent to ^ g
-Q. As with iV. edit regions are sometimes disabied. disaiiowing any input to the region. These
are indicated by a shaded edit region.

Aii XDM dialogs consists of atitie. "ok" and "abort" buttons. There is one special slider com
ponent. This component contains a slider and two buttons to increment "
The value field of the slider may also be edited with the same usage as in the e i regi
variable.

5. XDeck ofcards Menu System (XMenu).

XMenu is an XWindow System Utility Package that implements a'P®®^ ®'®®^®'̂ ®s" ^
tem. XMenu is intended for use in conjunction with Xlib. the CLanguage XWindow Syste

BEAR Manual

Interface Library.

In a-deck of cards' menu system amenu Is composed of several cards or panes. The panes
are deck of playing cards. Each of these panes has one ormorels TL Interacts with a'deck of cards' menu by f

previously containing the mouse will lower ^ pattern. Because of this
then become deactivated, its background changing back mouseaao. . . ~t possible Bbe.. n»™ »X''Sb1S.2riLrBrile*n
cursor enters an active selection in apane that nane has not been activated then
activated and be highlighted. If the selection is no ^ . ggiggjion highlighting Is accom-
the selection will not be activated and will "o'f If 'box'
pllshed In one of two ways depending "P°" . . agtjvated by placing a highlight box
mode highlighting Is In effect, the menu ®®'® '̂°" removing It
around the selection as the mouse cursor ®;'® '̂f®

entering commands through the keyboard. XMenu s

SmmSs^"Ilid Upon choosing acommand, the keyboard abbreviation
Is echoed Into the console window.

BEAR Manual 10

D. Sample Layout

This section of the manual describes a typical set of instructions that is used to complete the
routing of a chip.

1, Starting the program.

The first step is to start the program:

%bear

Be sure your DISPLAY environment variable is set. If it is not, the user can specify the
display on which to run BEAR by typing bear petrus:0, where petrus is the hostname of the desti
nation machine.

2. Startlogfiie.

At this point the BEAR console window will be created and a promptdisplayed. (See Fig. 1.)

BEAR : CONSOLE

This is BEAR release i.O
bear > I

Fig. 1.

{

!

Now the user should type:

bear> log sampleJog

This creates a file in your current working directory called sample.log. It will contain all mes
sages echoed to the console windowfrom the time the user invoked the command.

BEAR Manual 11

3. Read in the placement file for the chip.

Next, type:

bear> ow -bbl testData/lccadl.r

The command ow stands for open window. Awindow will be created displaying the cell lay
outfor the iccadl.r example, found in the testData directory, which has been stored in BBL format.
(See Fig. 2.)

BEAR : CHIP (leslData/iccadl.r)
—• • mm—•—1—•• •

* -

iuiiC

• •

it •>.!!•«.

i ^ I

All

I

i
< ij;

k 1

*

I ^ 1
m

.M.m

Fig. 2.

The testData directory is in your current working directory in this case. Although not specified
directly, one other file must exist in the same path as iccadl.r. This file is iccadl.tech. An optional
file, iccadl.wt, used for power and ground sizing should also be in this path. The format and
usage of these files aredescribed in detail later in the manual.

4. Create clustering tree.

Now that the initial placement file has been loaded, BEAR is ready to optimize the placement.
This step Is optional as the user may proceed directly to routing. Usually, the first step in place
ment optimization is the creation of a clustering tree. This task is accomplished by the cl com
mand. Remember that the mouse cursor must be in the chip window for this command to bevalid.

bear> cl

After this command is entered, a dialog box will be created (centered about the current
mouse position) since more information is required. The user must specify the type of clustering
algorithm. The matching algorithm usually gives good results. Select this algorithm by placing the
mouse cursor over the box adjacent to the name and clicking the button. An x will mark the
choice. (See Fig. 3a.)

BEAR Manual

Cluster AlgoTithm

Ok I Abort"]

Matching

Gieedy

Random

File<-In

12

Fig. 3a.

Then click the button over the Ok box. Abort w'lW close the dialog box and return input to the con
sole window. After the choice hasbeen made, a message will be echoed to the console:

. cl-am

This message is an abbreviation for the command specified by the dialog box. In the future,
the user may wish to enter the abbreviation instead of working with the dialog box.

Immediately following the dialog box. an IV (interactive variable) window is created centered
around the current mouse position. (See Fig.3b.)

Cluster

Target Shape Generation Flag TRUE

Routing Area Estimation Flag TRUE

Routing Adjustment Factor (top down) J .00

Routing Adjustment Factor (bottom up) 1 .00 BU

Maximum Dimension Ratio 10 BB

Maximum Area Ratio 10 SS

Storage Filename cluster .imp

Store Clustering Tree FALSE BS3

Prompting FALSE Hgi

Cluster cells 810

Abort

Fig. 3b.

Variables are displayed to allow the user to change the default values for the clustering parameters
(see section on Clustering and Placement). In general, the user accepts the default values within
IV windows. In this case, a click on the button adjacent to the Cluster cells label will accept the
defaults and begin generating the clustering tree. When the tree has been generated, this mes
sage will be displayed in the console window:

BEAR Manual

Clustering is finished

And the prompt will return.

5. Placement of cells.

Now the placement of the cells can be computed. This task is done with the pi command.
bear > pi

Adialog box will appear with default values in its fields. (See Fig. 4.)

PlacQmani

I OK bort

Fixed X i||iji

O Fixed Y HBjjjlijt
Aspect Ratio \l>0

Length / Area 0.10

13

Fig. 4.

This particular dialog has some unique features. Boxes along with type-in fields wear next to
parameter names. Marking one box disables ail the other type-in fields. The '''tabled options are
highlighted by shaded type-in regions, and input is not allowed to these regions. Just
type-in fields is aslider component. This component is descnbed in the User Interface Po^ion of
the manual, in this case, all of the defaults will be accepted by clicking the mouse o^er Ok. As
with the cluster command, the equivalent command line sequence is echoed to the console win-
dow:

pl-ar 1.0 0.1

At this time, the user isprompted for the lookahead constant.
Cluster level 0

Depth of lookahead [0]:

See the section on Clustering and Placement for details. The default value is printed in the
brackets and is accepted by a carriage return. The message:

Placing cells...

is echoed to console. This portion of the program usually takes some time to finish. The con-
elusion of placement is signaled by a message:

BEAR Manual

Placing cells ...done

and the command line returns.

14

6. Viewing the clustering treeandplacement.

The user may view the clustering tree and placement of the cells before accepting them. The
command is:

tear>ow-tf

The -tf option stands for "tree-floorplan." The user will then be prompted to create two win
dows. Initially, these windows display the root node of the clustering tree and Its corresponding
placement. (See Fig. 5a.)

BEAR : PLACEMENTBEAR : TREE

Fig. 5a.

Entering the series:

Next tree and floorplan level? y

Next tree and floorplan level? y

Next tree and floorplan level? n

will display the entire clustering tree and the placement of the example (see Fig. 5b) and
returns the user back to the console.

BEAR Manual
15

BEAR : TREE BEAR : PLACEMENT

iSaigiiafiifrtai

« •

Fig. 5b.

7. Saving the placement

If the placement isacceptable, then the user types:
bear >wpl

which stands for "write placement" The placement Is then written to the chip window. (See
Fig. 6.)

BEAR ; CHIP (tastPata/iccadl.r)

Fig. 6.

BEAR Manual 16

To close the tree and floorplan windows, the user should move the mouse over each window and
type:

bear >cw

Aiternativeiy, the user can type:

bear><control-d>

over a window to accomplish the same task.

6. Global routing.

Now that the placement is completed, the example is ready for global routing:

bear >gr

The congestion factor and timing mode must then be specified (See section on Global Rout
ing, ill B, p. 32):

Congestion Factor [0]:

An IV window similar to the cluster IV window will appear showing the default values. When
the global routing is done, the prompt will return.

9. Space optimization.

For further space minimization of the floorplan, the user may want to alter the shape of the
cell blocks but still stay within the technology constraints. This task is accomplished by the shape
optimizer command, but this time the user can try using the deck of cards menu system to enter in
the command. The user should move the mouse over the chip window and hold down the middle
mouse button. A stack of menus will immediatly emerge, each command sorted by action. The
mouse should be moved to display the Placement menu. Choose the shapeOptimize entry. The
corresponding keyboard command will be echoed to the screen:

bear> so

Another IV window will emerge. (See Fig. 7.)

OptimixT

Al^riUun I'D BS
Preferred Direction For: BQ

Options Serf Slack BB
UyoQt Style GC BB

Minimoin Slack Size BB
Optinize Fliorplan la

Akort E

Fig. 7.

BEAR Manual 17

See the section on Shape Optimization (11 E, p. 28) for explanation of variables. Clicking the
mouse button next to Optimize Placementw\\\ begin the algorithm. When the algorithm is finished:

Shape Optimization finished

will be echoed, and the prompt will return to the console.

10. Global spacing.

Now the example will be ready for further global spacing. First, horizontal compaction will be
invoked:

bear > hem

Horizontal compaction is done.

Similarly, vertical compaction is invoked:

bear>vcm

Vertical compaction is done.

11. Detailed routing.

The next step is the detail routing:

bear>dch

This command stands for "define channel." The chip window will be redrawn showing the
floorplan graph. (See Fig. 8.)

BEAR ; CHIP (leslData/iccadl.r)

Fig. 8.

BEAR Manual
18

Independent channels will be highlighted. These channeis are the vaiid channeis that can
currently be routed. Achannel is picked by clicking the mouse over two junctions on the floorpian
graph. At this point, this cursor wili have changed from its normai cross to a circuiar cursor that is
to be matched over a junction. The userwill then t)e prompted:

Pick junction number one.

The user should then move the circle over an end junction of a highlighted channel and click
the leftmouse button. If the user did not select a valid end junction, the error:

PickingJunction failed.

will be echoed to the console window, and the console prompt will retum. Choose the channel
marked (1) on Fig. 8. The second junction isspecified in a similar manner.

Pick junction number two.

When this junction is successfully chosen, an IV window is displayed showing routing param
eters. (See Fig. 9.)

Channel Routtr

Available Channel Height SS

Required Channel Height SO

Target Channel Height iiS BB

Use Nutcracker

Via Reduction mm Mai

Route Channel hntim

Abort 11^2

Fig. 9.

Nutcracker is a local spacing routine which attempts to compact the routing to fit the available
channel height. (See manual section on Detailed Routing.) All of the parameters are described in
the Detailed Routing section of the manual, however, two particular parameters should be noted:
available channel height and required channel height. If the required height is greater than the
available height, then the channel should not be routed and the command should beaborted. Oth
erwise, there is enough space to accommodate the routing, and the user should click on Route
Channel. Since sufficient space exists in this case, the channelcan be routed.

When the routing is completed, the route cell will be drawn. The user can closely examine the
route cell by defining a region to magnify:

bear>ovi

Opening a window without any arguments allows the user to specify a region of a chip win
dow to display. The user will be prompted to:

pick a rectangle

BEAR Manual 19

to define the region. The mouse button should be clicked and held down while moving the mouse
Itself to define the region. Once the button is released the window is created focused on that
region. (See Fig. 10.)

BEAR : CHIP (leslData/iccadl.r)
«•!«<

Fig. 10.

In any window except the console window, the user can zoom in, zoom out, magnify an area, or
pan the view. In this case, moving the mouse to the newly created region and typing:

bear>Z

will show more detail of the routing. To destroy this window, type:

bear > <control-d>

Now the user can define another channel (2):

bear >dch

Pickjunction number one.

PickJunction number two.

At this point if the user does not have enough space in the channel to fit the routing, the com
mand must be aborted and decompaction must be done. If the channel to be routed is a vertical
channel, horizontal decompaction is necessary. If the channel to be routed is a horizontal channel,
vertical decompaction must be done as in this case:

bear >vdcm

Vertical decompaction is done.

The program is aware of the amount ofspace that the channel lacks for routing. The decom
paction routines tries to adjust channel height accordingly so in the next attempt to define a chan
nel:

BEAR Manual 20

bear ><ich

Pick junction number one.

Pick junction number two.

the available height is as close to the required height as possible. If the channel is noton a critical
path, however, the estimate may not be that close.

After routing a channel, it is always a good idea to run a decompaction routine to minimize the
number of attempts to define a channel, in this case it is:

bear >hdcm

Horizontal decompaction is done.

The rest of the example is routed similarly. When all of the channels are routed, the floorplan
will appear as in Fig. 11.

BEAR : CHIP (testData/iccadl.r)

4pnnir

wwnm

Fig. 11.

12. Resizing the parent cell.

Due to the compaction of cells, much space is left over in the parent ceil, as can be seen in
Fig. 11. This parent cell can be resized by:

bear >rp

At this point the mouse cursor changes to a circle and the user must select a corner or edge
of the parent cell to drag to reduce the cell boundaries. In this case, the upper right corner of the
cell is appropriate to begin dragging. As in the open window command, a rectangular outline is

BEAR Manual 21

aibber-banded indicating the target size of the parent cell. When the resizing is finished, the con
sole window will display:

Resizing.,.clone.

(See Fig. 12.)

BEAR : CHIP (leslDala/iccadl.r)

J

Fig. 12.

If the cell blocks with routing are not centered in the parent cell, they can be moved all at once
using the transform cell command:

bear>Xc -Im

The -Im option specifies an interactive mode. When the circular cursor appears, the user
must hold down the mouse button on any of the cell blocks and move the mouse. The outline of
all the cells will be displayed giving the user an ideaof where the cells will be oriented after releas
ing the button.

13. Ring routing.

The final step in the routing process is the ring routing:

bear>rr

An IV window will be opened displaying the default filename for the output of the ring router.
When the ring router is finished, the layout is final. (See Fig. 13.)

BEAR Manual
22

BEAR ; CHIP (leslDala/iccadl.r)

S' I

Fig. 13.

14. Saving the example.

The user may want to save the example in CIF format. The command is.
bear>s -ctf Iccadi .clf

where Iccadi.clf Is the name of the file to be written. Apartlculariy useful feature of the save
command Is the scaling option. The user could have typed:

bear > s -clf -scale 5 iccadi .clf

All geometrical specifications in the CIF file will then be scaled by afactor of 5in the horizon
tal and vertical directions.

15. Leaving the program.

To leave the program, the user must move the mouse to the console window and type:
bear > ON

One final dialog box Is created prompting the user to confirm his or her request so that the
layout is not accidentally erased.

23
BEAR Manual

II. Clustering, Placement, and Shape Optimization

The obiective of the placement Is to provide an arrangement of blocks which, after beitig
routed, fits into an enclosing rectangle of minimum area with given height, width J
order to achieve a high performance circuit, a concurrent goal is to minimize the length of connec
tions. The BEAR placement algorithm combines the goal orientatwn of a ^̂ „
the module orientation of bottom-up techniques. The result is a meet in the middle st at gy.
ccnsiders the mutual dependency between placement and routing explicitly by incoiporahng a

stiape opdmiiaBon phase which resizes Individual modules so as to reduw „
iicpr controls aset of input parameters to influence the clustering, placement or shape optimizationSrrimetiSS 01 mo pn^rams.«Is posdhle to
values to obtain more desirable results. However, the user may choose to use the default vau
which often givegood results.

A. Clustering

The following description of the user interface of the BEAR placement Program ^sumes that

ing that is desired. Four algorithms are available.

. Matching: generates aclustering tree by optimal pairwise matching of modules and clusters [6].
• Greedy: does clustering based on agreedy heuristic.

• Random: randomly places modules in clusters.

. input from File: reads the clustering tree directly from afile (see below). The best clustering
results are often obtained by the matching algorithm.

After the desired algorithm is selected, aCluster Parameter window will pop up. We shall
describe each parameter, its effect on the clustering procedure a oW
its default value, in particular, the matching algorithm pyameter se is Pesaibed. Para
other algorithms have similar meanings and ranges of values (see following ta).

BEAR Manual

Clustering Parameter Set

parameter range default

Target Shape Flag TRUE, FALSE TRUE

Routing Area Flag true, false TRUE

Top-Down Adjustment Flag 0.1-2.0 1.0

Bottom-Up Adjustment Flag 0.1-2.0 1.0

Maximum Dimension Ratio 1.0-10.0 5.0

Maximum Area Ratio 1.0-10.0 2.5

Prompting TRUE, FALSE FALSE

24

1. Target shape generation flag.

If this boolean flag is set to TRUE, the clustering algorithm wili generate "i®
while buildino the clustering tree. Target shapes are the optimal shape goal of clusters denved by
enumerating aii possibie topologies of eiements of the iowest ievei clusters and then P-fPagahng
this Information recursiveiy up the ciustering tree. These shapes are then used ^ ^
were the actuai shapes of the non-ieaf nodes in the subsequent top-down P'®®®™"*
erating the target shapes is recommended since they often yieid better placement topologies.

2. Routing area estimation flag.

If this flag is set to TRUE, the target shapes wiii be derived by ailocating some routing area
around the moduies. In addition, in the piacement phase that foliows, at each "°^® o ®"^
tree some area is ailocated for routing. This is recommended because it is o"®"
the routing area during the placement phase rather than after the placement. If this flag is set to
FALSE, the placement phase that follows will generate ablock packing, and the routing area must
be provided by interactive spacing of the modules.

3. Top-down and bottom-up routing adjustment factors.

After the input parameters are specified, the program starts to run. and at the end of each
hierarchical level, information concerning the match between bottom-up and
estimation is printed as standard output, if ft tums out ftat the
match the area needed, the routing area estimate can be increased with fte top-down roum
adjustment factor (value >1.0) or decreased (value <1.0) ®"®yj! ®
erated If the crude bottom-up estimation is wrong, it can be adjusted with the bottom-up rowing
adiustment factor in the same way. Although a mismatch does not cause any errors, it may pro
duce strange results (especially if too much area is made available by the bottom-up estimation).
The default value for both factors is 1.0.

BEAR Manual
25

4. Maximum dimension and maximum area ratios.

Aclustering based only on connectivity information can resuit in abiock shape '"'s'̂ ^lch thatmakes it impossibie for the placement aigorithm to awa big ^adspa^ «ou

and graady clustaring algorithms..

5. Prompting flag.

want to axparimant with thasa ratios, howavar. tha dafauit vaiuas ara on g

R Placemant

parameters are requested from the user (see following table).

Placement Parameter Set
default

parameter
Aspact-RatioFixad-X, Fixad-Y, Aspact-RatioChip Goal Shapa computad

intagarFlxad-X or Fixad-Y

Aspact-Ratio

Araa-Langth Tradaoff
Lookahaad

Pruna

1. Determination ofthe chip goal shape.

26

BEAR Manual

search region is specified.

2. Trade-off between area and sum of wire lengths.

On ascale from 0.0 to 1.0. the relative weight of the objective functions for area minimization
and for wirienS mW^^^^^^ can be influenced. 0.0 means
^nnrtanf 10emohasizes wire lengths. It is very difficult to know exactly what the optimal weight
ing for minimal wire lengths is because the dead space that is introduced by movingnlc!ed~cioser to each other may have adetriments eflect. The
adjusted so as to make it probable that avSue of 0.1 gives the optimal soiuton. For some exam
pies, however, it might be better to choose 0.05 or even 0.95.

3. Lookahead and pruning of fhe search tree.

To improve the placement results, the breadth-first traversS of the hierarchy ran be compie^
mented bv adepth-first lookahead to improve the reliability of the objective function [4]. The user is
free to specify different lookahead depths from different levels of the hierarchy and to narrow down
the search space more or lessdrastically.

Because of the additions computational complexity of the iookahead. most of the time only 0
and 1wiii be considered relevant, if aiookahead (> 0) is selected, the user is prompted for acon-
stant that determines the width of the search. On every ievei the objeckve
computed. Only those possibiiities with vaiues of objective function lying between the minimal
vSue and (1 +pruning constant) times the minimS value are explored.

For a iookahead of 0 (no iookahead) most time is spent in the last ievei to bete '̂ne the
orientations of the macroceiis. To make the time spent on higher levels ^
pruning constant of 0.5 is OK (but that depends very much on the exaiiP'®)- "
most of the time gives near-optimS results; only in few cases can the result be improved abo
values of 2.0.

C. Write Placement

The user can graphically examine the clustering tree and placement ^P'"^
-tf in the console window. The clustering tree and placement will be shown hierarchically.

27
BEAR Manual

user should type y to see the next level, q or <CR> will terminate the command. In order to
proceed with the global and detailed routing of the chip, It Is necessary to transfer the Pfc®'"®"'
from the Internal data structure to the data base (OTd the chip window). This is accomplished by
typing wpl in the console window (while the cursor is in the chip window).

D. File Interfflcfi for Clustering

To make It possible to keep the clustering tree constant after Input changes. ®
can be stored to and retrieved from afile. That file also offers the opportunity to edit the clustering
tree. An example shows best how the file is organized:

9

1 18 23 24

3 4 5 30

6 7 20 27

2 31 32 33

11 12 0 0

8 9 1 0

13 17 28 29

14 15 16 19

21 22 25 26

3

1 9 0 0

2 3 4 0

5 6 7 8

1

1 2 3 0

Ablank line starts a new clustering level, the lowest level appearing
Qlves the number of clusters on that level. Every cluster occupies one line with as '"anv
L elements are allowed per cluster. If there are less elements than the maximal ®
zeros are used to pad the Input lines to the standard length. The numbers on the first custe g
level correspond to the sequence In which the blocks are stored In the Input file. On the 'o'lo^mg
Clustering levels the numbers Indicate the position In preceding dustenng
on the second clustering level the first cluster consists of clusters 1(blocks 1.18. 23. 24) a
(blocks 21.22.25. 26) of the preceding level.

BEAR Manual
28

E. Shape Optimization

The user may have freedom in choosing the aspect ratio of agiven module subject to some
constraints The assumption here is that although the functionality of the module is determined, the
eS shSe of the module are not specified. Therefore, the placement algonthrn
may be followed by aglobal shape optimization which resizes and redistnbutes pins around the
boundary of flexible modules in order to minimize an estimate of the layout area. If all modules are
stiff, the user should proceed with the global and detailed routing without having to go through the
shape optimizer.

After an initial placement of modules is derived, the capacity of the routing channels is known.
However, in order to accurately estimate the layout area at each iteration, the sh^e opt""«er
must know the density of the channels. That is why global routing of the chip should be completed
before the shape optimizer is called.

To run the shape optimizer, the user should type so in the console window. The user can
specify aset of parameters to guide the shape optimizer. These parameters are as follows (see
following table):

Shape Optimization Parameter Set

parameter range default

Design Style GC, SC. GA GC

Algorithm 1-D. 2-D 1-D

Preferred Direction HORZ, VERT HORZ

Slack Option BEST-SLK. HALF-SLK, FULL-SLK BEST-SLK

Minimum Slack Size 1-128 8

1. Design style.

This parameter specifies the type of modules on the chip. This is required since the shape
optimizer must know which resizings are legal. In the current BEAR release only the General Cell
(GO design style (which says that the module dimensions may be continuously changed in either
direction subject to aspect ratio constraints) is supported, and other styles {Standard Cell, (SC)
and Gate Array (GA)) are not.

2. Algorithm.

This parameter specifies whether one-dimensional or two-dimensional shape optimization
algorithms should be used. The 2-D algorithm performs simultaneous X- and Y- axis optimization.
After the global routing both the block sizes and the estimated routing densities around the blocks

29

BEAR Manual

it so that the module dimension along the critical path is reduc . ^ . | nrevious iterations

underlying topology, the algorithm may have along run-tme^ ISSoroiS
1-D shape optimization option (an X-direction pass followed by aY-direction pass).

3. Preferred direction.

quickly converge to good solution.

4. Slack option.

leads to poor optimization results. The . -pop jg detected and the program Is
IS resized in oPPOsite and is therefore
nr '̂̂ SSh^pro^^^^^ be agood compromise behveen the speed of the Fuil-Siack
approach and the quality of the Half-Slack approach .

5. Minimum slack size.

SrelefcLiTact the chip so that the circuit topology ^comes more representative of the fmal
routed layout (see section on the global spacer, III C, p.35).

30

BEAR Manual

When the shape optimizer is run. information about the block being
at each iteration will be printed as standard output. The block being resized wi g 9 •

Standard output.

F. File Interface for Shape Optimization

In order to define the shape constraints for individual modules In achip nanied "*®st.r". the
user lsure2e afile called "tlstflex". The first line in the "testflex" is the header line. It is of the
form -NumFlexModules n". where n is the number of flexible
4rr.rr^ ♦ho "♦oct fipv" Fsch lins followino the header line has seven fields: name minX maxY tarx
t^Y mLx mir.•na^ fenameTa flexible module. m/nX. maxX are the lower ^d the upper
bounds on the horizontal dimension of the flexible module. minY and maxY are defined similarly.
tarX and tarY are the target dimensions of the module, and in particular, ^e the
^umS by L module In the Initial placement phase. The parameters specify the legal range of
aSeS ratKr the module where minAspect =m/nX/maxY and amaxAspect^
and the module may be resized to assume any aspect ratio between the two bounds. In •?en mSpecf =max/tspecf. the module is considered stiff and is not resized. An example file
follows:

NumFlexModules 6

B1 150 600 300 300 600 150

B2 150 576 180 480 360 240

B3 100 400 200 200 400 100

B4 220 480 440 240 660 180

B5 100 1480 200 740 400 370

B6 100 360 200 180 267 135

B7 150 200 300 100 400 75

B8 140 600 280 300 560 150

ed "B7" and "B8" will be considered Stiff by the shape optimizer.

31
BEAR Manual

ill. The Routing System of BEAR

A. Overview of the Routing Process

Routing in abuilding block environment is acomplicated task. Not only is muting region

terns.

tial placement can be deformed during routing as blocks do

chip areaspecified by the user.

plane consists of horizontal tiles [7]: the vertical tiie ^^ich cover the

plane; stp -v displays the vertical tile plane.

During the routing process, the boff/ene^tiles P'®y ® irracaUeyora^here conges-

tiles, please refer to [2].

•n,e «««.». IBe —"S IS-lpTirNSS'llB'rdl?
all the nets. The nets topologies ®^ ,j_„oi.ed by m). or can be automatically routed
mined manually by using the route nef | routed manually by the user are treated

Since it is very difficult to 'J'̂ ^after'̂ J'gto^^^ Te'̂ SStmemT^^^ bj
the wires, block positions are adiusted after the gloMi routing p commands. The user

:rBrru^rrr.r.^"-- - ~

32

BEAR Manual

estimate provided by the giobai router. Compaction removes extra space, whiie decompaction
provides more space in congested areas of the chip.

Now we enter the detailed routing phase. The unrouted region is
nels andlrL-channeis. First subregions are ordered, then one of those which can be routed at
this time is selected If we wish to select astraight channel to be routed now. the dch cornrnand is
useru we wSuo cZse an L-channei. the dich command is used. When dch or dlch com
mands are invoked, the legal channels are highlighted. When
task two previously disjoint chunks of layout are merged into one larger btock. T^e nets exm^
from' the routed channel are fixed pins of the combined combined
route block. The results of partiai detailed routing are now used to adjust the bio^
performing the decompaction/compaction process again. After the adjustments, the
routing region is split and ordered again, the next channel is chosen, and the loop is executed unt
ail the blocks are merged into one.

The last step is to connect this merged block to the pads on the periphery of the chip. This
task is performed by the ring route command (invoked by rr).

Besides these basic routing steps. SEAR has the ability to calculate wire widths of power and
ground nets by the wire nef command (invoked by wn).

There are also many useful commands for showing the nets' topologies, checking connec
tivity etc., orcreating or modifying examples.

B. The Global Router

1. Automaticglobal routing.

The giobai router is invoked by typing the gr command. The purpose of the global '"O"*®'' 'Sjo
determine the topologies and rough placement of wires on ail unconnected nets. For each net. the
giobai router determines through which bottleneck tiles the net will pass. This informafton is stored
by means of pseudo pins which are attached to the open sides of bottleneck tiles. Each pseudo
pin has an internal and an external id. Two pseudo pins connected inside a bottiene^ tiie have
matching internal ids. Simiiariy. when the extemai ids of pseudo pins are the same, the pseudo
pins are connected between different bottleneck tiles. Pins of ceils. I/O pms md pins o'®®"®
also have external and internal ids. Their intemai ids are always 0. if a pin is inside a bott eneck.
the extemai id matches the intemai ids of corresponding pseudo pins; if a pin is outside a
bottleneck, the extemai id matches the extemai ids of appropriate pseudo pins.

The giobai router used in BEAR takes a subregion in which routing has not yet been com
pleted and determines a cuf which separates it into two smaller subregions. When a net has pins
or pseudo pins in both sides of the partition, the net crosses the cut line. For each such net
pseudo pins are inserted along the cut line in appropriate bottleneck hies. This cutting proce^
continues until each subregion on the list is free of bottlenecks. At each partitioning step, the

33
BEAR Manual

™ sss^<S"r;nr.=s:,^SSrHf:
rr^ capa«, (..«»««»«)«""!j.7'^7;2;n
for all the nets to cross the current cut line, then the assignment is performed. When there is n
enniinh soace the olobal router increases the Irattlenecks" capacities proportionally to their initiasr=s.r« .«-.«»«» ytt-™ ^
Is too compact, the global router may produce many nets which do not take their shortest p
because itwill try to utilize the existing area.

The olobal route command is controlled by afloating-point type parameter called« iPo,o»,.o: I.S wic. TL^rnrsr;ur2"»"
beween moving Pja""™ « mSLhis "W ^ underesHmaBO toping aroa.
modifications of the inibal placement and, for placemente wit

bottleneck tiles: nets are assigned to pass through them only when JJ'' -ygrgs-
Is usually quite difficult to determine the dimensions of the bounding box,
timated. it will not cause nets to take detours through these regions.

The global router can take into account spatial constraints imposed on sorne To ®xe_
cute moSon the user has to set the timing mode to true in the dialog box. and then enter the
name of a file which contains the following Information.

number_of_nets pnt],
verticai_iayer_multipiication_factor[fioat],

net_name [string], maxjnetjength [fioat].

be specified 1.0.

Adetailed description of the global router can be found in [8].

Limitations- The global router requires the capacity of every bottleneck tile to be at least wide
thro^r. ». «g>«««"« go« n« W..« reqp— a

warning message is printed and the command aborts.

34
BEAR Manual

2, Manual global routing.

The user may wish to manually specify the global routes of some nets. The roofe nef com
mand provides methods for building the tree of a net. Nodes In the tree f
nodes In the floorplan graph. Edges can be edges of the floorplan P'" ^
nodes, or pin to pin connections. Route net can be Invoked by specifying the name of the net to
be routed (rn -n netname) or by selecting aterminal on the screen. Thus, before e*ecuti'̂ g the
auto global route command, the user may preroute some nets. After selecting a net, the user is
prompted with a menu of choices:

• Add atree edge by selecting Its two nodes. Avalid tree edge Is an edge from apin
of the net to a neighboring node of a floorplan graph, or an edge between adjacent
floorplan graph nodes, or between two pins of the net if they are covered by a com
mon edge of the floorplan graph. When an illegal edge is selected, a warning mes
sage is displayed and this edge is ignored.

• Delete tree edge (by selecting on the screen two nodes of the edge).

• Delete subtree (by picking any of its nodes).

• Draw a net—highlights the net being routed.

• Abort this command.

Limitations: Anet must be only completely prerouted; It cannot be partially prerouted. If rn Is
used to route a net which will later have Its wires sized (see paragraph 6), then no node of the net
can have a degree exceeding 4.

3. Show commands which display results ofglobal routing.

a. Show net property (Invoked by snp.) The user Is prompted to choose anet by selertlng one of
its pins. He may also specify a net by using snp -n [netNameJ. The specified net is
highlighted on the screen, snp-off turns off the highlight.

b. Show tile property, stp -h displays horizontal tiles on the screen, stp -v displays vertical tiles,
stp -bp displays both planes, stp -b displays bottleneck tiles, and stp -co displays cells only.
When the stp -Ip command Is Invoked with the mouse on a bottleneck tile In the window
display, the list of pseudo pins attached to this bottleneck tile Is printed on the X-wlndow
screen.

c. Show pin property. When the spp command is Invoked, the user Is prompted to choose apin.
The coordinate positions, type, external Ids, etc., of the selected pin are printed.

BEAR Manual

C. Global Spacing

After the global router completes its job, the topologies and positions of all nets with respect
to blocks are determined. Since It Is quite difficult to estimate the routing area precisely, some
bottleneck tiles will have more nets passing through them than their sizes permit. Similarly, some
tiles will have less. The purpose of global spacing Is to match the capacity of each bottleneck hie
with Its density asmuch as possible while preserving the existing nets' topologies.

There are two steps In global spacing. The first, global decompaction. Is Invoked by dcm. Its
goal Is to Increase the size of the chip as little as possible so that negative mismatches (i.e. more
nets than are allowed pass through abottleneck) are eliminated. The second step, global compac
tion, Is Invoked by cm. Its goal Is to reduce the size of the chip as much as possible without crea -
Ing negative mismatches. The global spacer, working In either mode, selects a rrdge which is a
pith through space tiles from one side of chip to the other. For horizonta
compaction/decompaction the ridge goes from the top to the bottom of
compaction/decompaction it goes from left to right. Ridges are chosen through boWenecte with
mismatches and then all objects on the top or the right side of the ndge are moved ^
decrease the size of the ridge. For decompaction, ridges are selected from the smaller to I
largest mismatch. For compaction, ridges are selected from the largest to smallest m.s^
In addition, the ridges are selected alternately In the horizontal and vertical direction to preserve
the topology of the placement.

The cm command compacts all mismatched ridges, cm -I allows the user to compact one
ridge at a time.

The push command allows the user to manually select aridge. First the user chocks aset of
adjacent tnes from one side of chip to the other. Then he or she Is Pf°"!'Pteb ^ Jhe ^ount
that the ridge should be moved. The push command Is Invoked by pu for ahonzontal ndge and
pu -V for a vertical ridge.

Detailed description of the global spacing algorithm can be found In [3]. Each time blocks are
moved, some bottleneck tiles may be destroyed and/or new ones created. ®'"®® 1"® !°
preserve the nets' topologies, after block movement the net connectivities are uj^ated '" be back
ground. This process Is Invisible to the user and Is not controlled by any external parameters.
Detaiis of the updating algorithm can befound in [2].

D. Iteractive Detailed Routing

1. Detailed routing iterative loop.

Detailed routing repeatediy executes the following steps:

36
BEAR Manual

a The unrouted region is broken into straight and L-channeis which are order^
Please see [91 for details of the routing regions ordering algorithm. Honzontai channels can
change their vertical dimensions, vertical .channels can change their horizontd dimensions an
Snnels cin change both dimensions without affecting previously routed regions. The t
command with option odisplays the channels which can currently be routed.

b. AStraight channel or an L-channel is selected from those currently feasible. chann^ is
defined by invoking the dch (straight channel), or the dich (L-channel)
mands call detailed routers which perform routing but do not enter results into the base^
The available channel height (current size of channel) and required channel height are
displayed on the screen. The user is prompted to either.

• Route the channel (store the results In the data base). This option is used when
the available height is not less than the required height and detailed compaction
is not used.

• Attempt to decrease the channel height using detailed compaction by checking
the Nutcracker option on the screen and specifying the target height for the
channel.

• Abort the command. This option is used when the available channel height is
less than the required height.

c. If the previous channel route command was aborted due to amismatch between available and
required space, then placement must be adjusted by the local decompaction/compaction,
manual move t>locks (invoked by pu or pu -v). or transform cell commands.

2. Detailed routers.

The channel router Glitter does the detailed routing. It is a gridless. variable width router.
The dch command invokes Glitter on a straight channel; the dIch command invokes it on two
straight subchannels created by dividing the L-channel. Details of the detailed routing algorithms
can be found in [10] and [11].

When the dch command is invoked on the chosen channel, Glitter runs and displays the
number of tracks it needs to connect all the wires of the selected channel. In addition to Glitter's
results, the available height of the channel and the target height are displayed. Initially
height is set equal to the available height. The user can compact routing produced by GMer t)y
decreasing the target height, setting the Nofcracker option to true, and checking route, ^is wiH
invoke the channel compactor Nutcracker. Nufcracker will attempt to compact the initial detailed
routing by inserting jogs. It will compact the channel as much as possible, but no more than the
specified target height. After completing its job. Nutcracker displays its results and the user is
prompted to either:

• Continue, if required and targetheights match.

• Abort, if results are not satisfactory.

BEAR Manual

Glitter places horizontal wires on one layer and vertical wires on the other layer. This strategy
may lead to many more vias than necessary. By default the detailed routing is followed by a wa
reducer which slides and removes unnecessary contacts. To tum this feature off, change the via
reduce option from true to false in the box displayed by the dch command.

Detailed discussion of the algorithms used by the channel compactor and the via reducer can
be found in [12] and [13], respectively.

Gutter routes L-channels and displays the results. At this point, results are not yet entered
into the data base and the user is promptedto either:

• Route channel (store in the data base) if horizontal and vertical adjustments
displayed are 0.

• Abort if router asks for horizontal or vertical adjustments.

By default, unnecessary vias produced by the detailed router are removed by the via reducer.
To tum this feature off, change the via reduce option from true to false. Nutcracker cannot be
invoked on an L-channel.

3. Placement adjustments.

This step is used to adjust a channel region to match the requirement specified by the
detailed router. As we have seen in the section on detailed routers, if the detailed routing does not
match the available area, the detailed routing command is aborted and the results are not entered
into the data base. Placement adjustment is performed to correct this situation. There are two
cases: either the avaiiabie channel height was larger than required or it was smaller. In the first
case, local compaction and in the second case, locai decompaction may be used to modify the
placement.

The locai compaction step is used to compact the channel region to the number of tracks
required by the previous detailed route. The orientation of the channel determines which compac
tion command is needed. Ahorizontal channel requires vertical compaction (invoked by vcm); a
vertical channel requires horizontai compaction (invoked by hem). The compaction command
finds ridges across the chip and moves all blocks to the right or top of the ridge. If executed
immediately after dch, the compactor will find the ridge which passes through the recently aborted
channel. The amount the blocks are moved depends on the mismatch between the number o
tracks needed by the router and the actual height of the channel. The compactor will not select
ridges unless it results in a smaller chip area.

Local decompaction is used to add the number of tracks required to the channel that was pre
viously detail routed and aborted. The orientation of the channel determines which decompaction
command Is needed. Ahorizontal channel requires vertical decompaction (the vdcm comrnand); a
vertical channel requires horizontal decompaction (the fidcm command). Local compaction and
decompaction are based onsimilar principles.

38
BEAR Manual

The user may manually select a ridge for compaction or decompaction by Invoking pu (hor-
izontal ridge) or pu -v (vertical ridge).

Another method of adjusting placement Is to manually move the blocks. Moving blocks mam-
talns the global routing information and previously routed channels. To move a block manually,
the transform ce//command is used. First tc is invoked. The user Is then prompted to choose a
transformation: for manual cell moving, check the move option. Next, the user is pro"]P'®a 'O
choose the type of move: delta x-y or interactive, dich gives x,y measurements for the delta x-y
move. Finally the user is prompted to specify the cell on the screen.

E. Automatic Detailed Routing

The automatic router is Invoked by typing the ar command. This command routes all chan
nels in the chip, decompacting when nece^ary. The command oan be invoked with the -I option
to allow the user to route one channel at a time.

When ar is invoked, a diaiog box is created with options for applying Nutcracker and wa
reducer \o all channels in the chip.

F. Ring Route

The last step in detailed routing is ring route (invoked by rr), which connects the core of a
chip to the I/O pads at the periphery. The ring router expects all signal wires to be the same width.
Wires specified as power/ground can be of arbitrary widths.

Limitations: Ring route cannot handle power pads at the corners of the bounding box or verti
cal constraints between power nets.

G. Wire Widths Sizing

BEAR is capable of determining the widths of power and ground nets so that the area of wire
segments is minimized while fulfilling electromigration and voltage drop constraints. Details of the
wire sizing algorithm can be found in [14].

The wire nef command is invoked by typing wn. wn expects that a net whose wire widths are
to be determined has acertain structure, called gtTree, already built In the data base. If the u^rs
intention is to calculate the wire widths of a net which was manually global routed, then pfTree
already exists and no additional action is necessary. If the user wishes to determine the wire
widths of a net which was automatically global routed, then a gtTree must te built using the buiid
tree command (Invoked by bt). wn requires a wire technology t\\e. In this file, which can have an

39
BEAR Manual

arbitrary name, the parameters needed by mre net are stored. These parameters are as follows;
grid [float]: specifies how many microns correspond to one grid line,
conductance [float] {in AN): specifies conductance of wires;
curPerMicron [float] (in A/micron): electromigration constant

(i.e. the max branch current <curPerMicron *width);
minWidth [int] (in grid lines): specifies
the minimum acceptable wire width;
meSteps pnt]: specifies in how many time steps the caicuiations are to be performed

(usually 1);

flag pnt]: used to set appropriate parameters for wn.

There are three parameters which need to be set in wire net eiectjiag. vo^ag a^
feasible flag When elect flag is 1. electromigration constraints are included in caicuiations, iiSlSefarrnot When volt flag is set to 1. voltage constraints are taken into account; if tissWten the! are not. When fLibleJag is set to 1. only afeasible solution is sought; if it is 0
then an optimal solution is calculated.

These parameters are calculated as results of the following bitwise operations:
electjflag =PGR_ELECT__FLAG &flag
volt_flag =PGR_VOLT_FLAG &fleg
feasible_flag =PGR__FEASIBLE_FLAG &fleg

where PGR_ELECT_FLAG =01. PGR_VOLT_FLAG =02. S^E.F^G =04. Thus for
example, flag set to 05 causes eiectjiag =1. voitjiag - 0and feasible, g

When the wn -n [netName] command is invoked, the user is prompted to give the following
information:

• Specify feasible voltage drops (in V) and current requirements (in A) for receiving ter-
minals.

• Enter the name ofthe wire technology file.

• Specify which terminals of the net (by selecting them on the screen) are current
sources.

. invoke wire width calculations - can be executed after ail above information has
been specified.

BEAR Manual

Appendix 1. Input Format Specifications

BEAR input data are entered from two files. The first file contains block dimensions and pin-
net specifications. It is called a routing file and its name must be something.r. The second file
contains descriptions of design rules and is called a technology file. Its name must be
something.tech. The first portion (up to the dot) ofboth files must be the same.

A. Input Format for a Routing File

1. The input text file format.

SN<nuinber of nets>

{ top level module data }

$

{ module data at this level)

BEAR Manual 41

2. The format of module data.

MOD

<x> <y>

<inodule naine>

<mociule flag>
<xl> <yl>

<x2> <y2>

/* top level module */
/* integer origin coordinates, all module coordinates

are relative to this position */

/* up to 8 characters */
/* 1 «= top routing module; 0 = bottom module */
/* corner coordinates of the module in the

counterclockwise direction */

$

T /* terminals */

<x> <y> <name> <direction> <type> [<layer> <widthl> <width2> <p/g flag>
<current> <voltage>]

/* <x> <y>: terminal coordinates relative to the origin of the module */
/* <name>: the name of the net that the terminal belongs to, up to 40

characters */

/* <direction>: routing direction (0: west, 1: south, 2: east, 3: north) */
/* <type>: terminal type (0: floating, 1; edge fixed, 2: fixed) */

[Optional specifications]

/* <layer>;
/* <widthl>:

/* <width2>;

/* <p/g flag>;
/* <current>;

/* <voltage>;

terminal layer (1: layer 1, 2: layer 2, 12: layer 1 or 2) */
width on layer 1 */
width on layer 2 */

power/ground flag (0: signal, 1: ground, 2: power) */
current requirement of the p/g terminal */
voltage drop of the p/g terminal */

42

BEAR Manual

B. Input Format for a Technology File

/* nuiDber of layers */
N

w(l) mxi{l) sr(l) plc(l) prc(l) / Layer
w(2) mxi(2) sr(2) plc(2) prc(2)

• •

• •

• •

w{N) mxi{N) sr(N) pic(N) pre(N)

sz(l) id) r(l) c(l) prc(l) /* Hole Rule */
sz(2) i(2) r(2) c(2) prc(2)

• •

• •

• •

sz(M) KM) r{M) c(M) pre (M)

md,l) Pdd) md,2) p(l,2) ... m(l,N) p(l,N) /* LayerLayer Rule */
m(2,l) P(2,l) m(2,2) p(2,2) ... in{2,N) p(2,N)

• •

m(N,i) p{N,l) m{N,2) p(N,2) ... m{N,N) p{N,N)

5(1,1) 3(1,2) 3(1,M) /* HoleHole Rule */
5(2,1) 3(2,2) 3(2,M)

5(M,1) 3(M,2) 3(M,M)

m(l,l) ov(1,1) m(l,2) ov(l,2) ...m(l,M) ov(l,M) /* LayerHole Rule */
m(2,l) ov(2,l) m(2,2) ov(2,2) ... m(2,M) ov(2,M)

m(N,l) ov(N,l) m(N,2) ov(N,2) ... m(N,M) ov(N,M)

NOTE: M = number of Hole typea = N -1

BEAR Manual

The following explains the table above.

1. Layer Rule: one line for each layer (see Fig. 14).

For layer j:

w(j) = minimum wire width
mxi(j) = maximum current carrying capacity

per micron wire width
sr(j) = sheet resistivity per square micron

pIcG) = plate capacitance per square micron
prc(i) = capacitance per micron perimeter length

(fringing capacitance)

2. Hole Rule: one line foreach type of hole (see Fig. 15).

For hole j;

wires on layer i

Fig. 14.

wre on byer t

43

S2(i) =

iO) =
r(i) =
CO) =

size

current

resistance

capacitance

wire on byer W

Hcfe between byer i &. byer i+1
is denoted by hde of ty^1
Its sizeis speoTed by szO).

Fig. 15.

3. Layeriayer Rule: oneline for eachlayer (see Fig. 16).

For layers i and j:

m(i,j) = minimum spacing between wires between layer i&layer j
p(i.i) = maximum (longest) parallel wiring between layer i&layer j

s0.j)
rrrrruTi
^XErg

wine onb^ i on byer j

Fig. 16.

on byer i

mawnm pordd wiring | p(l»j)

wire en byer j

BEAR Manual

4. HoleHole Rule: one line for each type of hole (see Fig. 17).
s(i,j) = minimum spacing between hole iand hoie]

wireon byer

vnre onbyeri onk^ j

s(i.j) IR
fT»f I'tm
spocrg mi

hobi Wb j

Fig. 17.

5. LayerHole Rule: one line for layer (see Fig. 18).

m(i,j) = minimum spacing between layer i&hole j
ov(i,)) = minimum overlap width between layer i&hole j

wte on byer j wire on byer j

wire on byer j+1

rririm/n owertp

wire on byer J

wire on byer j+1

Fig. 18.

ni iiun owtp

ov(j+1,j)

wire on byer j+1

44

BEAR Manual

Appendix 2. X Defaults

45

BEAR allows you to preset defaults In a customization file in your home directory called
y.Xdefaults

The format of the file is programname.keyword:strlng. BEAR obeys the convention for 'MakeWin-
dow' defaults. Keywords recognized by BEAR are listed below.

BlackAndWhIte If on, a black and white color scheme will be used even on a color
display so that programs that dump windows to printers will work.

ReverseVldeo If on, reverse the definition of foreground and background colors on
black and white displays.

Background Determines the background color for all windows otherthan the con
sole window.

Border Determines the border color for all windows other than the console
window.

BorderWidth Determines the border width for all windows other than the console
window.

Foreground Determines the foreground color for all windows other than the con
sole window.

Font Determines the font for text in all windows other than the console
window.

Highlight Determines the highlight color for all windows other than the console
window.

Mouse Determines the mouse cursor color for all windows.

Text Determines the colorof prose printed in a window.

Console.Background Determines the background color of the consolewindow.

Console.Border Determines the border color of the console window.

Console.Cursor Determines the cursor's color in the console window.

Console.Geometry Geometry specification for the placement of the console window on
start up.

Console.BoldFont Determines the console window's boldface font which will be used to
show everything the user types.

Console.ItalicFont Determines the console window's italic font which will be used to
show error messages.

Console.NormalFont Determines the console window's normal font which will be used to
show basic system messages.

BEAR Manual

Console.BoldColor

Console.ltalicColor

Consote.NormalColor

Chlp.Cell

Chip.RouteCeli

Chlp.DummyCell

Chlp.CellBorder

Chip.Pin

Chlp.Background

Chlp.hchannel

Chlp.vchannel

Chlp.lchannel

Chlp.Net1

Chlp.Net2

Chlp.Net3

Chlp.HorzBottleNeckTlle

Chip.VertBottleNeckTlle

Chlp.HorzDomlnantTlle

Chlp.VertDomlnantTlle

TF.IeaH

TF.Ieaf2

TF.Ieaf3

TF.Ieaf4

TF.IeafS

TF.node

TF.edge

Clf.BNDO

Clf.BNDI

Clf.BND2

46

Determines the colorof the boldface font within the console window.

Determines the color of the italic font within the console window.

Determines the colorofthe normal font within the console window.

Determines the color of cells on the chip.

Determines the color of route cells on the chip.

Determines the color of dummy cells on the chip.

Determines the border colorof all cells on the chip, the pin color, as
well as the color of the floor plan graph.

Determines the color of the pins for the chip.

Determines the background color of the chip.

Determines the horizontal channel color.

Determines the vertical channel color.

Determines the L-shaped channel color.

Determines the color of net one on the chip.

Determines the color of net two on the chip.

Determines the color of net three on the chip.

Determines the color of horizontal bottleneck tiles.

Determines the color of vertical bottleneck tiles.

Determines the color of horizontal dominant tiles.

Determines the color of vertical dominant tiles.

Determines the color of leaf number one in the tree and floorplan
windows.

Determines the color of leaf number two in the tree and floorplan
windows.

Determines the color of leaf number three in the tree and floorplan
windows.

Determines the color of leaf number four in the tree and floorplan
windows.

Determines the color of leaf number five in the tree and floorplan
windows.

Determines the color of the nodes in the tree windows.

Determines the color of the edges in the tree windows.

Determines the color of cif boundary zero.

Determines the color of cif boundary one.

Determines the color of cif boundary two.

BEAR Manual

Cif.NC

Cif.NM

Clf.NP

Clf.TRM

The following defaults

iv.Background

iv.BorderColor

Iv.BorderWIdth

Iv.ButtonColor

Iv.CursorColor

iv.EdltBackground

Iv.EdltFont

Iv.EdltFontColor

Iv.EraseValue

tv.Paddfng

Iv.TextFont

Iv.TextFontColor

Iv.TltleFont

Iv.TltleFontColor

Determines the color of elf nMos contact cut color.
Determines the color of cif nMos metal color.

Determines the color of clf nMos polyslllcon color.
Determines the color of clf text.

47

are for the IV windows:

Set the background color. Default Is light grey on color displays,
black on monochrome.

Set the border color. Default is black on color displays, white on
monochrome.

Set the border width of the main IV window, and the border around
the edit region windows. Default Is 1.
Set the color of the buttons. Default Is yellow on color displays,
white on monochrome. For best results, choose anon-dark color.
Set the color of the mouse cursor. Default Is green on color
displays, white for monochrome.
Set the background color of the edit region. Default Is light blue on
color displays, black for monochrome.
Specify the font to print the edit region. Default Is 6x10.
Set the font color of the edit region. Default Is red for color displays.
white for monochrome.

If on clear the edit region upon editing the varif^e. The default is
Off. Note that data can still be recovered by CONTROL_U.
Specifies the extra padding above and below each IV row (text and
variable). The default Is 2.

Specify the font to print the documentation field. Default is 6x10.
Set the font color of the documentation field. Default Is blue for
color displays, white for monochrome.
Specify the font to print the title. Default Is 9x15.
Set the font color of the title Default Is dark slate blue for color
displays, white for monochrome.

48
BEAR Manual

Appendix 3. OCT Interface

The following is adescription of how to read from and write to OCT in BEAR.

First BEAR must be executed before the read-from or write-to OCT commands can be per
formed. Once BEAR is running, to load a chip from the OCT database, issue the following open
window command:

ow -octcellname vlewname [outputjcellname [output_ylewname]]

where cellname is the name of the OCT cell to be read, vlewname is the name of the OCT cell's
view, and output_cellname is the name of the OCT cell used temporarily in the reading process.

This OCT cell is an exact copy of the OCT cell described by cellname and vlewname. but
with two additional bags to facilitate in reading and writing back. Also. output_cellname Is the
name of the OCT cell to be written back out when the save command without any optional informa
tion s -oct, is used later. (The default for the optional output_cellname is macout)
outputjvlewname is the name of the OCT cell's view which is temporarily used and is to be wnt-
ten back out. (The default for the optional output_vlewname is the same name as the
vlewname.)

When writing to OCT in BEAR^ issue the following save command,

s -oct [[-r] output_,celIname output_viewname]

where the -r option is for saving routing information to GOT and output__celIname is the name of
the GOT cell to be written out to GOT. This name is only optional when saving an GOT cell that
has been read in by the open window command described above, has never been saved after
being read in, and has not been changed other than the placement of its cells. The default for the
optional outputjcellname is the same name as the outputjcellname used in the open window
command (above) when reading in from GOT. output_vlewname is the name of the GOT cell's
view to be written out and is also only optional under the same conditions as the ones described
just above in outputjcellname of this command. The default for the optional output_vlewname is
the same name as the output_vlewname used in the open window command (above) when read
ing in from GOT.

The save (write back) command,

s-oct

is a much faster write mechanism than the full save (write) command with options. It uses
knowledge from the open window (read) command and only updates the placement of the cells.

49

BEAR Manual

Pv:.mniB 1r Mak.» piarpmRHt mpHifiratinns on an HOT ohip and save in macout.

read in from OCT using open window.)
ow -oct foocell fooview

window dispiaying the information read in from OCT ceii. fooceii. and view, fooview.(Opens a

[placement modifications]

s-oct

(Saves the placement Information in the
macout, andview default, fooview.)

window by writing the modifications to OCT ceii default.

cw

(Closes thewindow.)

Fvamplft 2: placement mnriifications on temporar filfl to be saved in n^wcell foocell.

ow -oct macout fooview foocelll foovlewl
(Opens anew window containing the previously saved OCT ceii. macouf. and view, fooview.)

[more placement modifications]

s-oct

(Saves the placement information in the
and view, foovlewl.)

window by writing the modifications to OCT ceii. foocelll.

50
BEAR Manual

Example 3: Save placement and routing modifications.

[more placement modifications, routing, and/or creating, deleting, modifying new celis,
pins, and nets]

s -oct -r foocell2 fooview2

(Saves the placement and routing Information in the window by creating and writing to OCT cell,
fooceli2, and view, fooview2.)

cw

(Closes the window.)

Example 4: Read in BBL file and save it in OCT database.

ow -bbi foobbi

(Opens a new window displaying the information read in from BBL file, foobbi)

[placement modifications and/or creating, deleting, modifying new cells, pins, and nets]

s -oct foocell3 fooviewS

(Saves the placement information in the window by creating and writing to OCT cell, fooceliS, and
view, fooview3.)

cw

(Closes the window.)

Unless otherwise specified during the open window command with the OCT option, the
default output OCT cell name is macout and the view name is the same as the view name read in.
Any type of modifications can be done on the data that has been just read into BEAR from OCT
with the open window command. After all the necessary changes have been made on the data.

51
BEAR Manual

save command (s -oct) should be issued to write back only the placement data to the default OCT
cell and view This save command can be used to write back placement data only once after
every read from OCT. Thus, after a write back, the window must be closed
must be opened to read In the changed data for any new modifications made t^^after to te
saved properly. Alternatively, the full save command with all the options can be issued. This achon
«e the placement and routing Information to the newly created OCT cell and view named in
The Sns. If only placement data Is to be written out to anew OCT cell and v/ew then the fuH
save command with all the options minus the -roption should
as BBL read into BEAR by the open window command or new information created inside
can be written to OCT by using the full save command with the options.

52
BEAR Manual

Appendix 4. XDM: XDialog Manager *

A. General Information

1. Synopsis.

#include <X/Xlib.h>

#lnclude "XDM.h"

2. Modification and control routines.

Int XDMInlt(prName) char *prName;

Int XDMModlfy(dlalog, fieldid, name, value,..., XDM_END) Window dialog; int fieldid;
Int XDMQuery(dlalog, fieldid, name, value,..., XDM_END) Window dialog; int fieldid;
Int XDMDelete(dlalog, fieldid) Window dialog; intfieldid;
Int XDMPost(dlalog, x, y, func, options) Window dialog; int x, y; int nunc)(); int options;
Int XDMFilter(event, dialog, fieldid) XEvent *event; Window *dialog; int *fieldld;
Int XDMEnd(dlalog) Window dialog;

3. Field creation routines.

Window XDMDIalogCreate(parent) Window parent;

Int XDMTextCreate(dlalog, Id)Window dialog; int id;
Int XDMButtonCreate(dlalog, Id)Window dialog; int id;

IntXDMBIendCreate(dialog, Id, relld) Window dialog; int id; int relld;
Int XDMEdRegCreate(dialog, Id) Window dialog; Int Id;
Int XDMRowColCreate(dlalog, Id)Window dialog; int id;

Int XDMForelgnCreate(dlalog, Id, w, h, bdrSIze, bdr, bgnd, mInSIze, optSIze, realSIze,
thePos, delFunc, win) Window dialog; int id; int w, h; int bdrSize; Pixmap bdr, bgnd; int
(*minSize){); int (*optSize)(); int frealSize)(); int nhePos)(); int rdelFunc)(); Window
•win;

4. General purpose and error routines.

Int XDMForEach(dlalog, func, arg) Window dialog; Int (*func)(); XDMPointer arg;

Program written by David Harrison, University of California, Berkeley.

BEAR Manual 53

Window XDMFIndDiaiog(field) Window field;

Int XDMTypeQuery(dialog, fleidid) Window dialog; int fieidid;
char *XDMError()

5. Oven/iew,

XDM is an interactive forms-based input system for X. It provides means for displaying and
controlling a window which may contain text, buttons, blender controls, type-in fields, and foreign
windows. These dialogs can be used to ask user for input in a easy to use, aesthetically pleasing
manner.

XDM is intended for use in conjunction with Xlib, the C Language XWindow System Interface
Library. The programmer builds a dialogs using field creation routines, posts them using
XDMPost, and then routes all events in the program's main event loop through the dialog event
handler, XDMFilter. The event handler handles all events associated with the dialog and ignores
all other events. Furthermore, if some action on the partof the user requires some response from
the application, XD/WF//fer indicates this and retums the appropriate information.

Although XDM is written in standard C, the programming style Is object oriented. Once
created, the basic components of XDM respond to a set of pre-defined messages which are
passed to a component using the XDMModify and XDMQuery routines. Any changes to the com
ponents are reflected immediately in the corresponding dialog window.

XDM components are created in a hierarchical fashion. At the top level, there is the dialog
component. Adialog is a window which may contain other components. Some of these com
ponents may themselves contain other components, forming a tree. This tree is used to define the
control path for input events to a dialog. If an input event is not handled by a lower level com
ponent, it is passed up automatically to its parent. Its parent may handle the event, allow it to be
transferred up to its own parent, orpass the event down to one of its children.

For example, a button component may contain one other component (normally text) which is
considered "inside" the button. Normally, the component inside a button ignores mouse button
events. These events are passed up to the button to be handled. The button may then send mes
sagesdown to the text component indicating it should reverse its colors.

Components are identified by the dialog that contains them (an Xwindow), and a fieldld. The
fieldid is a positive integer returned by all object creation routines. This identifier Is assigned by
the containing dialog component in increasing order starting from zero. Thus, as long as the com
ponents are created in the same order, they will always have the same fieldld.

New components are created by routines which are specific to the component. However, all
of these routines require the programmer to identify the Window of the containing dialog, and the
fieldld of the parent component (or XDM_WINDOW if it is a direct child of the dialog). All of these
routines guarantee to return a fieldld for the newly created component.

54
BEAR Manual

Once a component has been created, messages can be sent to it by the generic routines
XDMModify, XDMQuery, and XDMDelete. XDMModIfy and XDMOuery are the pnmary means
of changing and querying the state of aii components. Since components may have many dif
ferent options, these routines have variable lertgth argument lists. The first ^o
always the dialog and fieidids which uniquely specify aparticular component. The dialog itself <^n
be modified by specifying XDMJWiNDOW as the fieidid. The remaining arguments^e
name^aiue pairs terminated by the end-of-iist identifier XDM.END The order of these
name/value pairs is not significant. The message names are listed in XDM.h and in the corn-
ponent descriptions below. The component itself defines what name/value pairs are legal for tha
type of component. However, for the use of the dialog itself and any formatting components, all
objects support messages for setting and querying their size and position.

6. Example.

Aprogram using the facilities of XDM is structured as an event handling loop. The library is
initialized by the routine XDMInlt. This routine reads the users '/.Xdefaults file (see the defaults
section near the end of the man page for details) and initializes the package. New dialogs and
components are then created using the various component creation routines described in the sec
tions that follow. Dialogs are placed on the screen by the XDMPost routine. After posting one or
more dialogs, the user enters an event loop where Xevents are filtered through the routine
XDMFIIter. After the user Interaction with a dialog Is complete, the programmer can use
XDMEnd to delete dialogs.

The following programming example shows how these routines interact:

/•k

* A program to display one button with the text
* "Hello, World" inside it. When the user clicks
* on the button, the dialog finishes.
*/

tinclude <X/Xlib.h>

#include "XDM.h"

main{argc, argv)
int argc;

char *argv[];

{
Display ♦theDisp;

Window TheDialog, ReturnDialog;
XEvent theEvent;

int ButtonField, TextField;
int ReturnField;

55
BEAR Manual

theDisp = XOpenDisplay{argv[l]);
XDMInit(argv[0]);
TheDialog = XDMDialogCreate(RootWindow) ;

/* XDM WINDOW is used to indicate a direct child of the dialog /
/* (Note: ButtonField will be zero after the call) */
ButtonField = XDMButtonCreate(TheDialog, XDM_WINDOW);

/* Tell the button to notify us when it is pressed */
XDMModify(TheDialog, ButtonField, XDM^SETSIGNAL, 1, XDM_END);

/* Create a text component which is a child of the button */
/* (Note: TextField will be one after the call) */
TextField = XDMTextCreate(TheDialog, ButtonField);

/* Modify the value of the text field */ ^
XDMModify(TheDialog, TextField, XDM_TEXT, "Hello, Wor , _

/* Display the dialog */
XDMPost(TheDialog, 100, 100, 0, 0);

/* Event handling loop */
for (;;) {

XNextEvent(&theEvent);

if (XDMFilter(&theEvent, SReturnDialog, &ReturnField) < 0) {
/* Signal event: ReturnDialog and ReturnField are set
if (ReturnField == ButtonField) {

/* Obviously true in this case */
XDMEnd(TheDialog);

exit(0);

}

7. General control routines.

XDMInIt Initializes the XDM Package and reads the user's -/.Xdefaults file. I®
name of the program (normally argv[01). The defaults for the package are listed
the defaults section near the end of this manual.

XDMModify This routine modifies the specified attributes of the component mdialog wiique
id (ieldld. if fieldid is XDMJWiNDOW. dialog is interpreted as the window of the
component itself. This is how dialogs themselves are modified. The legal names to

BEAR Manual
56

use in the variable length name/value pairs are listed in
that follow. The last argument to the routine should always be XDM.END.

XDMQuerv This routine is similar to XDMModify except the values passed should pointers^
These pointers will be passed to the component's query function which will fill in theJ?oper vSs for the named attributes. The last argument to this routine should
alwaysbo XDM__END.

XDMDelete This function releases ail resources consumed by the component whose dialog is
XDMJWINDOW. the dialog itself will be deleted, in general, deleting acompone
deletes all of its children as well.

XDMPost This routine posts dialog at location (x, y). Normally, this function returns
programmer is expected to enter an event loop wa"'"gjof aPP™P"®*®
However, if func is provided, the dialog is posted as a moded dialog. ^®'
XDIUIPost will internally handle the events associated with the window and call /one
whenever a component signals {see XDMFiiter for signal details). The form of the
function is:

intfunc(evt, diag, fidid)
XEvent *evt;
Window diag;
intfldid;

If the event is a signal from a component, diag will be non-zero. Otherwise, the
event could not be handled by XDM and will be returned in evt There are three
options available when specifying options: XDMJNTERACT, XDM.MOUSE, and
XDIVI FREEZE, if XDMJNTERACT is specified, XDMPost will ignore the (x, y)
parameters and interactively query the user for the dialog position, if XDM.MOUSE
is specified, the dialog will be centered around the current mouse positon. Finally,
if func is provided and XDM.FREEZE is specified as an option, the routine will
freeze the Xserver and attempt to save the pixmap under the dialog for fast restor-
ing.

Warning; XDMPost handles ail of the initial exposure events for adialog and clears
all events from the input queue before returning, it will discard any other user
events occurring at this time.

XDMFiiter This routine examines event and handles it if it is associated with an dialog
window, if the event was handled, the routine returns a positive status, if the eve
causes some component to generate a signal, the return code will be negative. In
this case, the routine will set dialog and fieididto the appropriate v^ues for the com
ponent. if something went wrong (like an event not meant for XDM), the return
code wilt be zero.

XDMEnd Unmaps dialog without deleting it. it can be repeated again using XDMPost.

BEAR Manual 57

B. Component Descriptions

All of the currently supported components are described In the sections that follow. These
descriptions include an overview of the component, its interface description, and the message
identifiers recognized by the component.

1. Dialog components.

Dialog components are the basic entity exported by XDM. Dialogs consist of an Xwindow
which may contain any number of other XDM components. Unlike other components, dialogs are
identified by an Xwindow identifier. In order to modify or query a dialog, XDM_WINDOW must be
used as the fieldid to XDMModify and XDMQuery.

Adialog is also special in that it maintains a list of all components of the dialog. It is from this
list that the fieldld's of other components are allocated. All other creation routines in the interface
query the dialog in orderto determine their fieldlds.

Dialogs also maintain carnal knowledge of type-in components. This knowledge is used to
implement the concept of a currently active type-in component. Inactive type-in components pass
KeyPressed everits upward to the dialog which direct the events to the currently active type-in
component. Thus, typing anywhere in the dialog always causes the text to be directed to the
active type-in component. Initially, the first type-in component created under a dialog is considered
the active component.

XDMDialogCreate

This routine creates and returns a new dialog which is a child of parent (usually the root window).
Dialogs are recursive; a dialog can act as the parent of any number of other dialogs. If there was a
problem creating the new dialog, the routine will return NULL. Dialog parameters are controlled
using the standard message passing routines XDMModify, XDMQuery, and XDMDelete. The
messages accepted by a dialog are shown in the tables below.

Dialog XDMModify Messages

Name Type Description

XDM_NAME char* String used in dialog icon

XDM_BGNAME char* Name of the background color

XDM_BGPIXEL int Background pixel value

XDM_HORTPAD int Horizontal padding (pixels)

XDM_VERTPAD int Vertical padding (pixels)

XDM_SMALL int Become as small as possible

BEAR Manual
58

XDM_BGNAME and XDM_BGPIXEL are mutually exclusive: one can either specify the color
in standard X text format or as a pixel value previously allocated by XGetHardwareColor or
XGetColorCells. Note that all string parameters passed to XDM will be copied into local storage.
The padding parameters specify the minimum amount of space around the outside of the dialog;
i.e. the placement of components in the dialog will be offset by this amount. If XDM_SMALL is
given a non-zero value, the dialog will attempt to shrink to its smallest possible size.

Dialog XDMQuery Messages

Name Type Description

XDM_NAME char ** Name of dialog

XDM_BGNAME char" Background color name

XDM^BGPIXEL Int* Background pixel value

XDM_WIDTH int* Width of dialog (in pixels)

XDM_HEIGHT Int* Height of dialog (in pixels)

XDM_HORTPAD int* Current horizontal padding

XDM^VERTPAD int* Current vertical padding

It is important to note that returned text values (char **) return pointers to the actual Internal
string used byXDM. These strings mustnotbe modified.

2. Text components.

Text components are leaf objects which can display a single line of text in any font orcolor. A
leaf object is a component which cannot contain any other component. Text components are also
purely output fields. All user input to a text field is sent upward to its parent. These components
are most often used to label other kinds of fields and to display messages of one kind or another.

XDMTextCreate

This routine creates a new text component, returning its fieldld. The parent of the component is
specified by dialog and Id. Normally, ld\s the fieldld of some component of dialog. However, if Id
is XDM_WINDOW, the text component will be created as a child of dialog itself. If there were
problems creating the text component, the routine will return XDM_NOJD. The modify and query
messages recognized by text components are described in the tables thatfollow.

BEAR Manual

Text XDMModify Messages

Name Type Description

XDM_X int Upper left comer Xcoordinate

XDM_Y int Upper left comer Y coordinate

XDM_COLS int Number of characters in text

XDM_TEXT char* Text of component

XDM_FONTNAME char* Name of font used to display text

XDM_FONTINFO Fontlnfo * Previously opened font

XDM_BGNAME char* Name of background color

XDM_BGPIXEL int Background pixel value

XDM_FGNAME char* Name of text color

XDM.FGPIXEL int Foreground pixel value

XDM.DISABLE int If non-zero, grays out text

XDM LOCKPOS int If non-zero, can't change position

59

The size of the text component window is never allowed to be less than the size of the text.
The position of the component (XDM_X. XDM_Y) is relative to its parent component or dialog. If
the number of columns Is specified (XDM_COLS). the text component window will never be less
than the size needed to display that number of average sized charactere. The messages control
ling font, background color, and foreground color may be specified either in name form
(XDM_FONTNAME, XDM_BGNAME, XDM_FGNAME), or as a previously opened X entity
(XDM_FONTINFO, XDM.BGPIXEL, XDM.FGPIXEL). The XDM_DISABLE message is used by
other components who might wish to show text grayed when the input component containing the
text is inactive. XDM_LOCKPOS is also used by other components to turn off the repositioning
capability of the text component.

BEARManual

TextXDMQueryMessages

NameTypeDescription

XDM_XInfUpperleftcomerXcoordinate

XDIi/l_YInt*UpperleftcomerYcoordinate

XDMJWIDTHint*Widthoftextcomponent

XDIi/l_HEIGHTint"Heightoftextcomponent

XDM_MINWIDTHint*Minimumwidthoftextcomponent

XDIl/l_MINHEIGHTint*Minimumheightoftextcomponent

XDryi_coLSInt*Columnsoftext(ifany)

XDM_TEXTchar"Textofcomponent

XDr/l_FONTNAMEchar"Nameoffontusedtodisplaytext

XDM_FONTINFOFontlnfo"Previouslyopenedfont

XDM_BGNAMEchar**Nameofbackgroundcolor

XDIi/l_BGPIXELint*Backgroundpixelvalue

XDM_FGNAMEchar"Nameoftextcolor

XDM_FGPIXELint*Foregroundpixelvalue

XDI^DISABLEInt*Ifnon-zero,graysouttext

60

Allofthevaluefieldsforquerymessagesshouldbepointerstothedatatypeoftheargurnent.
Thepointershouldpointtoaspacelargeenoughtocontainthevalue.TheroutinepassesIsack
theactualinternalcharacterstrings.Thus,thesestringsshouldbecopiediftheprogrammerplans
tochangethem.

3.Buttoncomponents.

AbuttoncomponentisaregionofadialogorcomponentthattogglesItsinternalbinaryvalue
inresponsetoamousebuttonclickinsideitsboundaries.Buttonsareheirarchicalobjectsandcan
containoneothercomponent(usuallytext).WhenamousebuttonIsdepressedinsidethebutton
boundaries,thebuttoncomponentwillattempttoswaptheforegroundandbackgroundcolorsof
ItschildtoIndicatethechange.Visually,abuttonappearsasanoutlinearounditechildcom
ponent.Theforegroundandbackgroundcolorsofthecomponentitselfalsotogglewithitsvalue.

XDMButtonCreate

Thisroutinecreatesanewtextcomponent,returningItsfieldld.Theparentofthej®
specifiedbydialogandid.Normally,idisthefieldldofsomecomponentofd/a/og.««s
XDIi/lWINDOW,thebuttoncomponentwillbecreatedasachildofdialogitselfIftherewere
problemscreatingthebuttoncomponent,theroutinewillreturnXDM.NOjaThemodifyand
querymessagesrecognizedbybuttoncomponentsaredescribedinthetablesthatfollow.

BEAR Manual

Button XDMModIfy Messages

Name Type Description

XDM_VALUE int Value of button (0 or 1)

XDM_X int Upper leftcorner Xcoordinate

XDM_Y int Upper leftcorner Ycoordinate

XDM_W1DTH int Width of button component

XDM_HEIGHT int Height of button component

XDM_USER XDMPointer User defined data

XDM_HILITE int Highlight flag (0 or 1)

XDM_SETSIGNAL int Arrange for signal to be generated

XDM_D1SABLE int If non-zero, disables button operation

XDM_NOCHANGE int If non-zero, ignores formatting directives

XDM_LOCKPOS int If non-zero, prevents user repositioning

XDM_OPTWIDTH int Optional width formatting change

XDM_OPTHEIGHT int Optional height formatting change

61

The size of the button component is never ailowed to be less than the size of its child com
ponent. The position of a button (XDM_X, XDM_Y) are specified relative to its parent component
or dialog. The colors of the button are inherited from its child component. If XDM__SETSIGNAL is
set every time the button changes state. XDMFIIter will return with astatus indicating asignal has
occurred. The dialog and //e/d/d parameters of XDMFIIter will be set to those of the signaling but
ton The XDM_USER feature allows the programmer to attach his own data structures to the but
ton* and act accordingly when a signal occurs. If XDM_HILITE is non-zero, the button outline will
be drawn in a way which makes the button stand out. This is often used to indicate which button
of many the user should normally choose under most circumstances. If XDM_DISABLE is non
zero. the button and its child component will become "grayed out" and the button will refuse to tog
gle.

Buttons have a number of messages which are format related (see the description of Rows
and Columns for details). These options include XDM_OPTWIDTH. XDM_OPTHEIGHT.
XDM_NOCHANGE. and XDM_LOCKPOS. XDM_OPTWIDTH and XDM_OPTHEIGHT specify an
"optional" width and height which is offered to the button by aformatting component. Normally, the
button will always accept this size as long as it is larger than the button's child component. How
ever if the XDM_NOCHANGE flag is set to a non-zero value, the button will reject optional size
requests and remain the same size. The XDM_LOGKPOS flag is used by formatting components
to turn off position changes to a button under that component's control.

BEAR Manual

Button XDMQuery Messages

Name Type Description

XDM_VALUE int" Value of button (0 or 1)

XDM_X int* Upper leftcomer X coordinate

XDM_Y int* Upperleft corner Ycoordinate

XDMJWIDTH int* Width of button component

XDM_HEIGHT int* Height of button component

XDM_MINWIDTH int* Minimum width of button

XDM_MINHEIGHT int* Minimum height of button

XDM_USER XDMPointer * User defined data

XDM_HILITE int * Highlight flag (0 or 1)

XDM_SETSIGNAL int* Signal flag (0 or 1)

XDM_DISABLE int* If non-zero, disables button operation

XDM_NOCHANGE int* If non-zero, ignores formatting directives

XDM LOCKPOS int* If non-zero, prevents user repositioning

62

For all passed pointers, the pointer should point at an area large enough for the queried
value. In the case of text strings, the pointer returned is a pointer to the internal character string of
the package and should notbe modified.

4. Blender components.

The blender component Is a special leaf component which consists of a small window con
taining a check box. This component is related to other blender components. These related
blenders form a blender set. When a button click occurs inside a blender, the internal binary value
of the blender is set and the intemal state of all other blenders in the blender set are turned off.
This mechanism can be used to offer the user the choice of exactly one option among many.
Visually, a blender appears as a small box with rounded comers. When the internal state of a
blender is set, a small check mark is drawn inside this box.

XDMBIenderCreate

This routine creates a new blender component and returns its fieldld. The parent of the com
ponent is specified by dialog and id. As with other components, if id is XDM_WINDOW, the com
ponent will be created as a child of dialog. The parameter relld should be the fieldld of some other
previously defined blender object. The blender will be added to the blender set of the specified
blender component. If the blender is the first in a blender set, re/Zd should be set to XDM^NOJD.
If the new component could not be created, the routine will retum XDM__NOJD. The modify and
query messages recognized by blender components are described in the tables that follow.

BEAR Manual

Blender XDMModIfy Messages

Name Type Description

XDM_VALUE int If non-zero, turns on this blender

XDM_X int Upper left corner Xcoordinate

XDM^Y int Upper left corner Ycoordinate

XDM^SETSIGNAL int If non-zero, arrange for signal

XDM_USER XDMPointer User defined data

XDM_HILiTE int Highlight flag (0 or 1)

XDM^DISABLE int If non-zero, blender is disabled

XDM_BGNAME char* Name of background color

XDM_BGP1XEL int Background pixel value

XDM_FGNAr^E char* Name of foreground color

XDM_FGPIXEL int Foreground pixel value

XDM LOCKPOS int If non-zero, position is locked.

63

The size of ablender component Is fixed and does not change. The ^sition of the W^ens
soecified XiveTo its parent component or dialog. If XDM.SETSIGNAL .s set. hme ^
intprnal blender value Is set. XDMFIIter will return with a status Indicating a signal has •Se 1/00 and S of XDiaFIIter will be set to those of the signalling blender. The
?d1uIIr fel 7alCs the programmer to attach his own data structures to the blender andS aoSdlnglythen asSal ^ If XDM.HILITE Is non-zero, the blender box will -n
away which makes It stand out from other blenders. This can be us^ to indioa ®wi
the user should choose under normal circumstances. If XDM.DISABLE is .

hecle tatd out- and the blender will refuse to activate when amouse button is clicked
inside Its borders. The messages controlling blender color can be
(XDM BGNAME or XDM_FGNAME). or by previously allocated pixel
XDmJgpIXEL). The XDM_LOCKPOS messages is normally used by formatting components
turn off tfie positioning capability of ablender under its control.

BEAR Manual

Blender XDMQuery Messages

Name Type Description

XDM_VALUE inf If non-zero, turns on this blender

XDM_X int* Upper left corner X coordinate

XDM_Y int* Upper left corner Y coordinate

XDM_WIDTH int* Width of blender

XDM^HEIGHT int* Height of blender

XDM_M1NW1DTH int* Minimum width of blender

XDM_MINHEIGHT int* Minimum height of blender

XDM_SETSIGNAL int* If non-zero, arrange for signal

XDM_USER XDMPointer * User defined data

XDM_HILITE int * Highlight flag (0 or 1)

XDM_DISABLE int* If non-zero, blender is disabled

XDM_BGNAME char ** Name of background color

XDM^BGPIXEL int* Background pixel value

XDM_FGNAME char ** Name of foreground color

XDM_FGPIXEL int * Foreground pixel value

XDM_LOCKPOS int* If non-zero, position is locked.

64

All of the pointer items passed to the query function should point at areas large enough to
receive the filled in item. The width and height of all blenders is fixed. Messages reporting this
information are provided for completeness. Returned character pointers point to the internal string
used by the package and should not be modified.

5. Edit region component

An edit region component is a rectangular area for editing text. It is a composite component
made up of an array of edit line components. Edit region components automatically spawn these
edit line objects. Edit line components are not part of the official interface to XDM and are not
described here.

The edit region component is one of the most complex as far as operation is concerned. At
any one time, each top-level dialog component maintains one active edit-region component This
component is indicated by a cursor (a pointer under a line of text) inside the active edit-region. All
keyboard input anywhere in the dialog will be directed to this component. Ail normal printing char
acters insert themselves into the edit region at the current cursor location. Edit regions do not
scroll. The user is not allowed to enter more text than there is space in the edit region component.
However, the programmer can make the edit region bigger in this case. Mouse clicks inside the
edit region will position the cursor to that spot and insertion will continue from there. In addition.

BEAR Manual

many emacs like character control sequences can be used for basic text editing operations:

Editing Features

Key Description

"A Move to beginning of the line

^E Move to the end of the line

"P Move to the previous line

"N Move to the next line

Move fonward one character

"B Move backward one character

"H or Delete the previous character

"D Delete the next character

or^X Delete the current line

65

There are several ways to change the currently active edit region component. First, the user
can move the mouse over another edit region field and pressa mouse button, thus activating that
field. Second, the user can type <tab> and "Q to move to the next and previous fields respec
tively. The next and previous fields are determined by the order of creation of edit region com
ponents. Typing <tab> in the last edit region to be created causes the first edit region created to
become active. Similarly, typing "Q in the first edit region to be created causes the last edit region
created to become active. Finally, typing *N In the last line of an edit region is equivalent to typing
<tab>, and typing "P in the first line of an edit region is equivalent to typing "Q.

XDMEdRegCreate

This routine creates a new edit region component and retums its fieldld. The parent of the com
ponent is specified by dialog and id. Like other components, if id is XDM_WINDOW, the com
ponent will be created as a child of dialog. If there were errors while attempting to create the com
ponent, the routine will return XDM_NO_ID. The modify and query messages recognized by edit
region components are described in the tablesthatfollow.

BEAR Manual

Edit Region XDMModIfy Messages

Name Type Description

XDM_VALUE char" Value of edit region

XDM_X int Upper left comer X coordinate

XDM_Y int Upper left comer Y coordinate

XDM_CURROW int Cursor row

XDM.CURCOL int Cursor column

XDM_ROWS int Number of lines in region

XDM_COLS int Average number of characters per line

XDM_FONTNAME char* Name of font used to draw text

XDM_FONTINFO Fontlnfo * Previously opened font

XDM_BGNAf^E char* Name of background color

XDM_BGPIXEL int Background pixel value

XDM_FGNAME char* Name of foreground color

XDM_FGPIXEL int Foreground pixel value

XDM_USER XDMPointer User defined data

XDM_ACTIVE int If non-zero, edit region is active

XDM_DISABLE int If non-zero, edit region is deactivated

XDM__SETSIGNAL int If non-zero, arrange for signal

XDM_LOCKPOS int If non-zero, lock position

66

The size of the edit region is controlled by the number of rows and columns (XDM_ROWS
and XDM__COLS). Because both fixed and proportionally spaced fonts are supported, the number
of columns is computed based on the average size of the characters in the selected font. If
XDMJSETSIGNAL is set, every time the user leaves the edit region XDMFIIter will return with a
status indicating that a signal has occurred. The dialog and f/e/c//cf parameters of XDMFIIter will be
set to those of the signalling edit region. The XDM_USER features allows the programmer to
attach his own data structures to the edit region and act accordingly when a signal is detected. If
XDM_ACTIVE is set to a non-zero value, the edit region will become active and a cursor will be
drawn in the editing space. The active status of other edit region components are notaffected. If
XDM_DISABLE is non-zero, the edit region will become "grayed out" and the user will not be able
to type text into the component. Like other components, the color and font parameters of an edit
region can be specifiedeither in text form or in Xformat.

BEAR Manual

Edit Region XDMQuery Messages

Name Type Description

XDM_VALUE char ** Value of edit region

XDM_X Int* Upper left comer X coordinate

XDM_Y Int* Upper left corner Y coordinate

XDM__CURROW * int Cursor row

XDM_CURCOL* int Cursor column

XDM_ROWS int* Number of lines in region

XDM_COLS Int* Average numberof characters per line

XDr^_WIDTH int* Width of edit region (in pixels)

XDM_HEIGHT int* Height of edit region (in pixels)

XDM.MINWIDTH int* Minimum width of edit region

XDM^fy/IINHEIGHT int* Minimum height of edit region

XDM^FONTNAME char ** Name of font used to draw text

XDM.FONTINFO Fontlnfo ** Previously opened font

XDM_BGNAME char ** Name of background color

XDM_BGPIXEL int * Background pixelvalue

XDM^FGNAME char** Name of foreground color

XDM_FGPIXEL int* Foreground pixelvalue

XDM_USER XDMPointer* User defined data

XDf^_ACTIVE int* If non-zero, edit region is active

XDM_DISABLE int* If non-zero, edit region is deactivated

XDM_SETSIGNAL int* If non-zero, arrange for signal

XDM LOCKPOS int * If non-zero, lock position

67

All of the pointer Items passed to the query function should point to an area large enough to
receive the entire item. The value of an edit region is returned as a null-terminated string where
lines are marked by <eol>. Note that the edit region field will often break lines itself if extremely
large lines are passed to it. Thus, the component does not guarantee that what comes in is what
comes out (even if no changes to the text occur). All returned character pointers (including the edit
region value) point to memory owned by the package and should not be modified.

6. Row/column components.

Row/column components allow the programmer to group other components Into rows and
columns. The programmer can then control the inter-component spacing, outside padding, pitch,
and justification of these components as a unit. Row/column components can contain any number
of other components of any type (Including other row/column components). Thus, almost any type

68

BEAR Manual

of formatting is possible.

A row/column component can be either a row or a
using XDMModlfy. it the component is a row, Simiiariv if the com-

column.

Arow/coiumn component that contains other row/coiumn componente can ®'®o''®
as an array This designation causes arow/coiumn to aiign each item .n asub-~mponent w^
the corresponding items in other sub-components. For example, this ""f'
of text and blender components. First, the text and blender components could each be placed in
normal columns. Then, the two columns could be placed in a row with the array designate .
This wouid cause each text label to line up with each blender.

Visually, row/coiumn components have only abackground color. This color will on^ be seen
if there are portions of the row/coiumn which are not covered by its sub-componente. " '®
ant to note toa? all sub-components of a row/column inherit this background color by «Sus!itte not necessary to explicitly set the background color of sub-components of arow/coiumn
if the desired background is the same as the row/column background.

XDIWRowColCreate

This routine creates a new row/column component (which is a column by default), and returns its

id is XDM WINDOW, the row/column component will be created as a child of d/ g.
sages recognized by row/column components are described in the tables that follow.

BEAR Manual

Row/Column XDMModIfy Messages

Name Type Description

XDMJSROW int if non-zero, component isa row (otherwise a column)
XDM_ARRAY int If non-zero, child will be arrayed

XDM_X int Upper left corner X coordinate

XDM_Y int Upper left cornerYcoordinate

XDM_HORTPAD int Outside horizontal padding (in pixeis)

XDM_VERTPAD int Outside vertical padding (in pixels)

XDM_HORTJUST int Horizontal justifcation (see below)

XDM__VERTJUST int Vertical justification (see below)

XDM_SPACE int Spacing between objects (in pixels)
XDM^BGNAME char* Name of background color

XDM^BGPIXEL int Pixel value of background

XDM__RECOMP int If on, causes recomputation

XDM_NOCHANGE int If non-zero, disallow growing

XDM^OPTWIDTH int Optional formatting width

XDM^OPTHEIGHT int Optional formatting height

69

The size of a row/column component is a direct function of its child components. Initially, a
new row/column component is a column. If XDMJSROW is given a non-zero value, it will change
into a row. Note that if there are sub-components of a row/coiumn when XDMJSROW is
changed, they will immediately change orientation. If XDMJSARRAY is given a non-zero value,
each item of row/column sub-components will be aligned with the corresponding items of all other
row/column sub-components. The location of the row/coiumn (XDM_X, XDM_Y) is specified rela
tive to the parent of the component. XDM__HORTPAD and XDM_VERTPAD can be used to con
trol the spacing from the largest items in the row/column and the outer border of the row/column.
XDM^HORTJUST and XDM_VERTJUST set the alignment justification of the sub-components of
a row/coiumn. XDM_HORTJUST only has effect for columns and can only take the predefined
values XDM_LEFT. XDM_CENTER, or XDM^RIGHT. XDM.VERTJUST only has effect for rows
and can only take the predefined values XDM_TOP, XDM_CENTER, and XDM_BOTTOM.
XDM_SPACE controls the spacing between each sub-component of a row/coiumn.
XDM_BGNAME and XDM_BGPIXEL can be used to specify the background of the row/column.
As mentioned in the introduction, sub-components inherit this background unless otherwise
specified.

As sub-components change in size, row/column components must recompute the placement
of these components. Normally, this recomputation is done once for every change detected. This
recomputation can be expensive if a large number of sub-components change in succession. To
overcome this problem, XDM_RECOMP can be temporarily turned off by the programmer while
extensive modifications of sub-components take place and turned back on afterward. This

BEAR Manual
70

increases the response time ofthe package significantly.

The remaining options to row/column components are generally used by higher level format
ting components. When adialog expands, the top-level dialog offers the excess space to all of the
top level components. This offering is done through the XDM_OPTWIDTH and
XDM_OPTHEIGHT messages. Normally, row/column objects accept these offerings and pass
them downward to child components who may choose to expand as well. However, if
XDM_NOCHANGE is set to a non-zero value, the row/column will reject any offerings of excess
space and itwill remain the same size.

Row/Column XDMQuery Messages

Name Type Description

XDMJSROW int* If non-zero, component is a row (othenwise a column)

XDM_ARRAY int* If non-zero, child will be arrayed

XDM_X int* Upper left cornerXcoordinate

XDM_Y int* Upper left corner Ycoordinate

XDMJWIDTH int* Width of row/column

XDM_HEIGHT int* Height of row/column

XDM_MINWIDTH int* Smallest possible width

XDM_MINHEIGHT int* Smallest possible height

XDM_KIDS int* Number of children

XDM_HORTPAD int* Outside horizontal padding (in pixels)

XDM_VERTPAD int* Outside vertical padding (in pixels)

XDM_HORTJUST Inf Horizontal justifcation

XDM_VERTJUST int' Vertical justification

XDM_SPACE int* Spacing between objects (in pixels)

XDM_BGNAME char** Name of background color

XDM_BGPIXEL int* Pixel value of background

XDM_RECOMP int* If on, causes recomputation

XDM_NOCHANGE int* If non-zero, disallow growing

XDM_OPTWIDTH int* Optional formatting width

XDM OPTHEIGHT int * Optional formatting height

XDM WIDTH and XDM__HEIGHT retum the actual size of the row/column object including ail
of its sub-components. XDM_MINWIDTH and XDM.MINHEIGHT retum ttie smallest possible size
for the row/column without violating the spacing and padding rules. Note that all returned stnng
values are pointers to the actual internal string and should not be modified.

BEAR Manual 71

7. Foreign window components.

Foreign window components are leaf objects which allow the programmer to integrate their
own Xapplication windows inside XDM dialog boxes. These foreign windows are treated like all
other leaf components. For example, they can be formatted using row/column components. How
ever, unlike other components, the control of this window is the responsibility of the programmer.
Input events to the window are not automatically handled by XDMFIIter. Only position related
parameters are handled by XDMModIfy and XDMQuery. Other parameters of the window must
be handled directly by the programmer.

XDMForeignCreate

This routine creates a new foreign window component. It returns the window's fieldid and its X
window Id (via the win parameter). Like other components, the parent component is specified by
diaiog and id. If id is XDM^WINDOW, the foreign window is created asa direct child of dialog. Ini
tially, the window is placed at (0,0) with respect to its parent component's coordinate system. Its
initial width and length are set to wand h, and the window will have a border size of bdrSize. Its
border and background pattems will be set to bdr and l)gnd respectively. The remaining parame
ters to the routine are functions XDM calls when messages are passed to the foreign window ver
sions of XDMModIfy and XDMQuery. XDM provides defaults for all of these functions if the pro
grammer is not interested in intercepting these calls.

int minSize(win,width, height)
Window win;

int *width, *height;

This routine should return the minimum size for the window (including the borders). If it is notpro
vided (zero), XDM will assume the minimum size is the initial size passed to XDMForeignCreate.

int optSize(win, width, height)
Window win;

int width, height;

XDM will call this function which it has found extraspace for the object to expand. The width and
height are guaranteed to be larger than the minimum width and height reported by mlnSize. The
component may choose not to grow larger than it is currently. However, it should shrink to the
given width and height if they are smaller than the current size. If this function is not provided, all
optional size requests will be discarded.

int realSize(win, x, y, width, height)
Window win;

int *x, •y;
int *width, ^height;

This routine should always return the current position and size of the object (inciuding borders).
This size is the one used for final formatting by the row/coiumn component. If the function is not
provided, XDM will query the server for the current size and position of the window.

BEAR Manual
72

int thePos(win, x, y)
Window win;

int X, y;

This routine should position the object to the specified coordinates relative to the parent com
ponent. If it is not provided, XDM will use XMoveWlndow in this slot.

int delFunc(win)
Window win;

This routine should release any user data structures associated with the foreign window. The win
dow itself is destroyed by XDM and need not be destroyed in the deletion function. If there are not
user structures associated with the window, this function need notbe provided.

Finally, whenever the foreign window changes size by some mechanism outside the control of
XDM, the programmer should call the following routine:

Int XDMForelgnReslze(wln, oldW, oIdH, newW, newH)
Window win;

int oldW, oIdH;
int newW, newH;

The parameters oldW and oIdH should contain the size of the window before the change, and
newW and newH should contain the size of the window after the change. The routine sends a
message to the foreign window's parent informing it of the change to it can compensate. The posi
tion of the foreign window should always bechanged using XDMModify. All of the messages sup
ported by the interface are described in the tables thatfollow.

Foreign Window XDMModify Messages

Name Type Description

XDM_X int Upper left comer X coordinate

XDM_Y int Upper leftcomer Y coordinate

XDM_OPTWIDTH int Optional formatting width

XDM_OPTHEIGHT int Optional formatting height

The position of the window (XDM_X, XDM.Y) should be specified relative to the component's
parent. Changing the position of a foreign window causes XDM to call the function thePos. If
extra space becomes available, XDM will notify the foreign window using the messages
XDM_OPTWIDTH and XDM_OPTHEIGHT. This will cause the foreign window interface to call the
function optSlze.

BEAR Manual

Foreign Window XDMQuery Messages

Name Type Description

XDM X int* Upper left comer Xcoordinate

XDM Y int* Upper left corner Ycoordinate

XDM WIDTH int* Current width of window

XDM_HEIGHT int* Current height of window

XDM_MINWIDTH int* Smallest possible width

XDM M1NHEIGHT int* Smailest possible height

73

XDM calls the function realSIze In order to service requests for
XDM_Y. XDM_WIDTH. anrj XDM.HEIGHT. For the messages XDM_MINWIDTH and
XDM_MINHEIGHT, XDM consults the function mInSlze.

8. Utility functions.

XDM provides some general purpose routines for searching through the components of adia^
log, determining the dialog of acomponent, and querying the type of acomponent. These
are described below:

XDMForEach This routine cails tuna once for each component in dialog. The form of func is.
int func(diag, fidid, type, arg)
Window dialog;
int fieldid;
int type;
XDMPointer arg;

The diag and fldW parameters Identify the field. For example, these parameters
can be used as arguments to XDMModIfy or XDMQuery. fy^ is the corn-ponent type (see XDMTypeQuery for alist of component types). T^he param®
tet arg Is the same as that passed to XDMForEach. It can be used to pass
State information to func.

XDMFIndOlalog All components In XDM are actually Xwindows. This routi^ne dialog
of acomponent given Its Xwindow Identifier. If no such dialog exists, the ro
tine returns NULL

XDIUlTypeQuery This routine returns the type of acomponent given dialog and fieldid. The valid
types currently supported by XDM are:

BEAR Manual

Component Types

Name

XDM_DIALOG_OBJ

XDM_TEXT_OBJ

XDM_BTN_OBJ

XDM_BLEND_OBJ

XDM_EDREG_OBJ
XDM_ROWCOL_OBJ

XDM FOREIGN

Description

Dialog component

Text component

Button component

Blender component

Edit region component
Row/column componer t

Foreign window

74

9. Default handling.

Ail parameters of all components have default values.

DialogFont The default font used for all components with font parameters. If not
specified, XDM uses "6x10".

OialogBackground This parameter specified the default background color for all components
with background attributes. The default color Is white.

DIalogForeground This default specifies the default foreground color for all components with
foreground parameters. If not specified, XDM uses black.

DIalogBorderWIdth This default specifies the border width of all dialogs. The default border
width is 2 pixeis.

DIalogBorderColor This parameter specifies the coior of all dialog borders. The default color is
black.

DialogCursorCoior This parameter controls the color of the mouse cursor when it is inside a
XDM dialog box. By default, the color used is black.

BEAR Manual

Appendix 5. Iv: Change Values of Variables Interactively *

A. General Information

1. Synopsis.

#lnclude "X/Xllb.h"

#lnclude "Iv.h"

2. Routines.

Window lvJnlt(programName, title, maxValChars) char *programName; char Mitle; int
maxValChars;

lv__addlVar(docStrlng, varP, type, precision, func) char *docString; int *varP; int type; int
precision; iv_PFI func;

lv_updatelVar(varP) int *varP;
lv_WhlchSeIect(ltemPtr) ivWhichitem *itemPtr;
Int lvjDromptlVar(varP, bell) int *varP; int beii;
Int lv_MaplVWIndow(x, y, option) int x. y; int option;
Int lv__handieEvent(theEventP) XEvent MheEventP;
void lv_SetEraseFlag(status) int status;

void lv_SetEnabieFlag(varP, status) int *varP; int status;
Int lvj)rocessAIIEvents();

Int lv_destroy()

3. Overview.

iV is an interactive forms-based input system for the X Window System. It provides the
means for displaying and controlling variables in a C program through the use of an Xwindow,
while the program is running. All the interactive variables are shown on a window, one on each
row. Each variable isdisplayed with its description and an edit region containing its current value.
At any one time, the iV window maintains at most one active edit region, where the variable may
be changed. All keyboard input anywhere in the IV window will be directed to this region. Edit
regions are activated by placing the mouse cursor over an edit region, and either clicking a mouse
button or pressing a key. Changes are accepted only by a carriage return orend-of-fiie.

* Program written by Andrea Casotto and Benjamin Chen. University of California, Berkeley.

BEAR Manual 76

For Integer or floating-point variables, two buttons are provided to change the value of the
variable. The **+" button has the following effect: If the LEFTmouse button is pressed, the value of
the variable is incremented by 1%, or by one for integervariables. If the MIDDLE mouse button is
pressed, the value of the variable is incremented by 10% If the RIGHT mouse button is pressed,
the value of the variable is doubled.

The button has similar behavior, but the value of the variable is decremented. For
IV__WHICH variables, the plus and minus buttons advances or reviews through a list of values
specified by the user. (See test program and iv.h to see how to implement an IV_WHICH vari
able.) For boolean variables, one liutton is provided for easy toggling of its state.

B. Description of Routines

ivjnit This procedure initializes the IV package and reads the user's 7.Xdefaults file, pro-
gramName is the name of the program (normally argv[0]). The defaults for the
package are listed in the defaults section, title is the name of the IV window. The
name is centered at the top of the window. maxValChars specifies the maximum
number of characters allowed in the edit region of the variables, except for string
variables, which hold more depending on the font size. The procedure returns the
window ID of the IV window it was successfully created. If it was not successful, it
will return a null window ID. A connection to an X display must have been esta
blished before calling this routine. Only one window can be open at any time.

lv_addlVar This routine adds an IV variable to the window. The variable will not be displayed
until iv_MaplVWindow is called. docString should contain a short documentation
(usually the variable name) for the variable. The IV window will resize according to
the longest documentation string it is given. varP should be the address ofthe vari
able to be edited. To make lint happy, a (int*) should precede the variable address,
since IV always casts the pointer to an (int *). type should specify the type of vari
able to be added.

There are six types of IV variables: IV__DOUBLE, IVJNT, IV_BOOLEAN,
IV_STRING, IVjrOGGLE, and IV_WHICH. Except for IVJTOGGLE, each type has
a documentation field and an edit region. An edit region is indicated by the
appropriate background color specified in the user's XDefaults. Typing "MAXINT" in
the edit region will display the maximum integer allowed for integer types. Similarly,
"MAXFLOAT" displays the maximum floating point number, while "Infinity" or
"HUGE" will set the variable to the IEEE standard infinity (99.e999), or MAXFLOAT
if no such definition exist on the machine. IV_DOUBLE, IV__INT, and IV_WHICH
variables have plus and minus buttons. IV_TOGGLE and IV_BOOLEAN variables
are basically identical except that IV_TOGGLE does not display the state of the
variable. They will both set the variable to 1 or0 , respectively. IV_BOOLEAN vari
ables will and show "TRUE" or "FALSE" in their edit regions. IV_STRING variables

BEAR Manual

iv_updatelVar

Iv WhIchSelect

iv__promptlVar

lv_MaplVWindow

iv handleEvent

lv_SetEraseFlag

IvjSetEnableFlag

77

have no associated button.

precision specifies the number of piaces to the right of the decimal to print
a floating point number. Numbers greater than 999999.9 and less than
0.001 are shown in exponential notation. IV_NO_OPT should be used for
ail other variable types, func is a pointer to a function that returns an
integer. The function should take no parameters, and will be called when
ever its button is pushed. The function should return an IV_OK when
successful. If no routine is to be called, IV_NULL_FUNCTION should be
used. ivJPFi is defined in iv.h.

This routine prints the current value of the variable pointed to by varP. in
the IV window, it should be called when the program internally changes
the value of the given variable, and the user wants to see the" new value.

This routine retums the index of the item selected from the list pointed to
by itemPtr. The first item is item #0.

This routine prompts the user to edit the value of a variable. Unlike the
normal editing feature it halts the process running iv, since it enters its
own internal loop. No other action can be taken until the prompted vari
able is accepted by a carriage return or EOF. The iV window isautomati
cally raised upon prompting. The prompted variable is specified by varP,
and is highlighted, be//specifies thevolume of the bell (0-7).

This routine maps the current IV window at location (x, y). There are
three options available when specifying option: IVJNTERACT,
iV_MOUSE, and IV_NO_OPT. If IVJNTERACT is specified, the routine
will ignore the (x, y) parameters and interactively query the user for the IV
window position. If IV_MOUSE is specified, the window will be centered
around the current mouse position.

This routine will return IV__EXTRANEOUS_EVENT if the event in the
argument is not affecting any of the interactive variables. Otherwise, it
returns IV__OK after processing the event.

This routine sets to the erase flag described in the EraseValue default to
status, if non-zero, EraseValue will be "on."

This routine sets to the enable flag for the specified variable to status.
The enable flag determines whether a variable can be edited or changed.
If the enable flag is zero, the background of the type in field, if one exists,
will be changed to the background of the IV window. Also, any buttons
will disappear.

BEAR Manual
78

lv_processAIIEvents This routine processes ALL events. It removes the need for an event loop
in the main program. This procedure should be used only when IV is the
only Xapplication theprogram Is running.

lv_,destroy

C. Defaults

This routine unmaps and destroys the IV window and frees ail resources
associated with iV.

IV has a number of parameters that can be set using the .Xdefaults file. The format should
be <program name>.iv.<defauit>.

Background

BorderColor

BorderWIdth

ButtonColor

CursorColor

EdItBackground

EditFont

EditFontCoior

EraseVaiue

Padding

TextFont

TextFontColor

Set the background color. Default is light grey on color displays, black on
monochrome.

Set the border color. Default is black on color displays, white on monochrome.

Set the border width of the main IV window, and the border around the edit
region windows. Default is 1.

Set the color of the buttons. Default is yellow on color displays, white on mono
chrome. For best results, choose a non-dark color.

Set the color of the mouse cursor. Default is green on color displays, white for
monochrome.

Set the background color of the edit region. Default is light blue on color
displays, blackfor monochrome.

Specify the font to print the edit region. Default is 6x10.

Set the font color of the edit region. Default is red for color displays, white for
monochrome.

If "on" clear the edit region upon editing the variable. The default is "off." Note
that data can still be recovered by CONTROL_U.

Specifies the extra padding above and below each IV row (text and variable).
The default is 2.

Specify the font to print the documentation field. Default is 6x10.

Set the font color of the documentation field. Default is blue for color displays,
white for monochrome.

79
BEAR Manual

TItleFont Specify the font to print the title. Default is 9x15.

TltleFontColor Set the font color of the title Default Is dark slate blue for color displays, white
for monochrome.

D. Sample Program

/* test the iv.a routines */

#include <X/Xlib.h>
#include "iv.h"

extern char *strcpy();
extern char *calloc{);

int

modif ledN {)

(void) printfC'N has been modifiedO) ;
return(IV_OK);

}

static ivWhichltem itemPtrf] = {{"Simple", 0},
{"Complex", 0),
{"Net", 0},

{"Pin", 1}};

main()

double a, c, d; /* test variables */
int n, b;

XEvent theEvent;

char *getenv();
char *displayName;
Display *display;
char *theString;

int exitFlag = 0;
int selected;

theString = (char *) calloc((unsigned) (20), sizeof(char));
(void) strcpy(theString, "Test String)/

on

BEAR Manual

displayNcume = getenv("DISPLAY") ;
if ((display = XOpenDisplay(displayName)) == (Display *) 0) {

abort();

}

a = 100; c = 12.67; d = 19999999el2;
n = 13;

b = 0;

(void) iv_init("test","Test interactive variables", 12);
iv_addIVar("WhichOne", itemPtr, IV_WHICH,

(sizeof (itemPtr) /sizeof (ivWhichltem)) , IV__NULL__FUNCTION) ;
iv__addIVar ("Variable A", &a, IV_DOUBLE, 1, IV__NULL_FUNCTION) ;
iv_addIVar("Variable C", &c, IV_DOUBLE, 2, IV_NULL_FUNCTION);
iv_SetEnableFlag(&c, 0);
iv_addIVar ("Variable D", &d, IV_DOUBLE, 3, IV__NULL_FUNCTION) ;
iv_SetEnableFlag(&d, 0);
iv_addIVar("Integer N" , &n, IV_INT, IV_NO_OPT, modifiedN);
iv_addIVar("Boolean var", &b, IV_BOOLEAN,

IV_NO_OPT, IV_NULL_FUNCTION);
iv_addIVar ("String", fitheString, IV__STRING,

IV_NO__OPT, IV__NULL__FUNCTION) ;
iv_addIVar("Exit IV", sexitFlag, IV_TOGGLE,

IV_NO_OPT, IV_NULL_FUNCTION);
iv MapIVWindow (IV__NO_OPT, IV_NO_OPT, IV_MOUSE);

while (lexitFlag) {
XNextEvent(&theEvent);
if (iv_handleEvent(fitheEvent) 1= IV_OK) {
(void) printf("Extraneous eventO);
}

}

iv_addlVar("Duplicate variable A", &a, IV_DOUBLE,
IV_NO__OPT, IV_NULL_FUNCTION) ;

iv__addlVar ("Duplicate variable C", &c, IV__DOUBLE,
IV__NO__OPT, IV_NULL_FUNCTION) ;

iv_SetEnableFlag(&c, 1);
iv MapIVWindow (IV_NO_OPT, IV__NO_OPT, IV_NO_OPT) ;
a = 9.6;

d = 9.9;

iv__updateIVar (IV_NO_OPT) ;
iv__prompt IVar (&n, 1);
iv^SetEraseFlag(1);
c = 6.9;

iv_updateIVar (&c) ;

BEAR Manual

}

exitFlag = 0;

while (!exitFlag) {
iv__processAllEvents ();

}

selected = iv_WhichSelect(itemPtr);
iv__destroy () ;
(void) printf("Selected : %dO, selected)
(void) printf("Variable A: %lfO, a);
(void) printf("Variable C: %lfO, c);
(void) printf("Variable D: %lfO, d);
(void) printf("Integer N: %dO, n);
(void) printf("Boolean var: %dO, b) ;
(void) printf("string:'%s'0, theString);
(void) printf("exit flag: %dO, exitFlag)

Files: 'cad/llb/liblv.a

'cad/include/lv.h

81

Bugs: Mai! complaints to Andrea Casotto or Benjamin Chen, Dept. of EEGS, University of Califor
nia, Berkeley, CA 94720.

82
BEAR Manual

Appendix 6. scrollText: Multi-font scrollable text windows for X*

A. General Information

1. Synopsis,

#lnclude <X/Xllb.h>

#lnclude "scrollText.h"

2. Routines.

Int TxtGrab(textWin, program, mainFont, bg, fg, cur) Window textWin; char program,
Fontlnfo *mainFont; int bg, fg, cur;

Int TxtRelease(w) Window w;

Int TxtAddFont(textWln, fontNumber, newFont, newCoior) Window textWin; int
fontNumber; Fontlnfo 'newFont; int newColor;

Int TxtWlnP(w) Window w;

Int TxtClear(w) Window w;

Int TxtWrlteStr(w, str) Window w; char*str;
IntTxtJamStr(w, str) Window w; char*str;
Int TxtRepalnt(w) Window w;

Int TxtFllter{evt) XEvent 'evt;

3. Overview.

The scrollText package implements a multi-font, multi-color, scrollable text window abstrac-
lion which runs over the XWindow System. The package supports any numter of windows each
with its own scroll bar and character buffer. Each window can have up to eight fonts loaded. A
color may be specified for each loaded font. The fonts can be mixed freely using a change font
character control sequence. The scrolling operations supported are scroll relative to scroll bai^
line to top. and top line to here. The size of the character buffer for each window is limited only by
th© procGSS spac© of th© controiling program.

Program written by David Harrison, University of California, Berkeley.

BEAR Manual 83

B. Description of Routines

TxtGrab Takes control of a previously created window, textWin, and makes it into a scroll
able output window. The string program is used to look up Xdefaults for the pack
age (see section X Defaults). The parameter mainFont is the initial font used for
drawing text in the window. This font is loaded into slot zero. TxtGrab assumes this
record is fully filled (including the width table). The Xlibrary routine XOpenFont can
be used to obtain fully filled font record structures. Additional fonts can be loaded
using TxtAddFont (described below). The pixel value fg will be used to draw the
scroll bar and is also used as the initial color for mainFont The pixel value bg will
be used as the background for drawing all text, bgis also used as the background
for the scroll bar subwindow. The color of the text cursor is set to cur. In order for
the text window to work properly, the programmer must select ExposeRegion and
ExposeCopy events on the window in addition to any other events the programmer
might wish to register. The routine returns a non-zero value if the window was
sucessfully grabbed.

TxtRelease Releases control of a previously grabbed window. All resources consumed by the
text window package are reclaimed. The window itself is nof destroyed.

TxtAddFont Loads a new font so that it can be used in a previously grabbed text window. The
parameter fontNumber is used to specify the slot for the new font. There are eight
font slots numbered 0 through 7. If there is already a font in the specified slot, it will
be replaced with the new one and an automatic redraw of the screen contents will
take place. See TxtWriteStr and rxfJamSfr for details on using multiple fonts. The
pixel value newColor specifies the foreground color for the font. If
TXT_N0_C0L0R is specified, the color will default to the foreground color supplied
when the window was grabbed. The programmer can change justthecolor of a font
by specifing a null font for a given slot. The routine returns a non-zero value if the
font was sucessfully loaded.

TxtWInP Returns a non-zero value if the specified window has been previously grabbed using
TxtGrab. If it is not a text window, the routine returns zero.

TxtClear Clears the specified window of its contents and resets the current writing position to
the upper left hand corner of the screen. The routine also clears the contents of the
text window bufferand resets the scrollbar. The routine returns zero if the window
is not a text window. This procedure should be used Instead of the X library call
XCIear.

TxtWriteStr Writes a null-terminated string into the specified text window. The text is always
appended to the end of the text buffer. If the scroll bar is positioned such that the
end of the text is not visible, an automatic scroll to the bottom will be done before
the text is appended. Non-printable ASCII characters are ignored. The newline
character (\n) causes the current text position to advance one line and start at the

BEAR Manual 84

TxtJamStr

TxtRepaInt

left. Tabs are not supported. Lines too wide to fit on the screen will be wrapped to
the next line and a line wrap indicator wili be drawn in the right margin. Backspace
deletes the previous character. It will do the right thing if asked to backspace past a
normal or wrapped line marker. A new text font can bs specified using the
sequence control-F followed by a digit. The digit must be 0,1, 2, or3. The directive
will be ignored if there is no font loaded in the specified slot. If there is no more
space at the bottom of thescreen, the window will scroll to make room. The routine
will return zero if it could not append the text.

Is identical to TxtWriteStr except the current screen position is not updated. This
routine should be used if the programmer wants to append text to the buffer without
causing the window to scroil. After the text has been added, the programmer
should call TxtRepaInt {o update the screen contents.

Redraws the specified scrollable text window. The routine repaints the entire win
dow including the scroll bar. NOTE: for handling exposure events, TxfF//fer should
be used.

TxtFllter Handles events associated with scrollable text windows. It will handle ExposeRe-
glon and ExposeCopy events on the main window, and ExposeWindow an6 Button-
Released events in the scroll bar. It does not handle any other events. If it does
not want to handle the event, the routine will return zero. A call to this routine
should be included in the main event loop of the programmers controlling program.

C. User Interface

The scrollText package supports user controlled browsing through a buffer built using TxtWri
teStr or TxtJamStr. Along the right side of the window is a scroll barwindow. The scroll barwin
dow displays a filled square representing the relative position through the buffer and the relative
amount of the buffer currently on the screen. Scrolling is controlled by clicking mouse buttons in
the scroll bar.

This package supports three scrolling operations: scroll to spot, line to top, and top to here.
The middle button is used to select scroll to spot. This operation causes the screen to scroll such
that the center of the scroll bar indicator moves to the current position of the mouse. This is used
to scroll to a relative spot in the buffer. Line to top and top to here operations are for scrolling
down or up some proportion of the screen. The left button selects line to top. This operation
causes the screen to scroil such that the line adjacent to the mouse position becomes the top line
of the screen. Thus, clicking near the top of the scroll bar scrolls only a couple of lines while a
click near the bottom will scroll almost an entire screen. The right button is used for the top to
here command. This function causes the top line of the screen to scroll down to the current posi
tion of the mouse. This allows the user to scroll up and down by the same amounts if the mouse

85
BEAR Manual

position is keptconstant.

Defaults: The current version of the library reads one default; JumpScroll If on the line to top
and top to here operations will not scroll to the target position smoothly. Instead, the
window will be repainted once at thecorrect spot.

Files: ilbScrolLa (Scrollable text library)

See also: Xlib - C Language XInterface, X(8C)

Bugs: Sometimes when the window Is resized, the scroll bar Is repainted ^
The origin of this bug Is unknown but awork-around is to iconify and deiconify the win-
dow forcing a complete redraw.

Loading large files with many font changes is slow. Unfortunately, there is simply a
lot of work which must be done. Resizing windows with extrodinarily large buffers may
also take some time (the line breaks must be recomputed).

86
BEAR Manual

References

1 NP Chen 0 P. Hsu, and E.S. Kuh, "The Berkeley Building-block (BBL) Layout System for
VLSI Design," in Dig. Tech. Papers, IEEE Int. Conf. on Computer-Aided Design, pp. 40-41,
1983.

2. W. Dai. M. Sato, and E.S. Kuh, "A Dynamic and Efficient Representation of Building Block
Layout," Proa. 24th Design Automation Conf., pp. 376-384,1987.

3. W. Dai and E.S. Kuh, "Global Spacing of Building Block Layout," Proa. VLSI Conf., pp. 161-
173,1987.

4. W. Dai, E.S. Kuh, "Simultaneous Floorplanning and Global Routing for Hierarchical Building-
Block Layout," Proa. int. Conf. on Computer-Aided Design, pp. 828-837,1986.

5. B. Eschermann, W. Dai, E.S. Kuh, and M. Pedram, "Hierarchical Placement for fyiacrocells,"
Proa. int. Conf. onComputer-Aided Design, pp. 460-463,1988.

6. M. Khellaf "On the Partitioning of Graphs and Hypergraphs," Ph.D. Diss.. Dept. lEOR, Univ.
of California, Berkeley, 1987.

7. J.K. Ousterhout, "Corner Stitching: AData Structure Technique for VLSI Layout Tools," IEEE
Trans, on Computer-Aided Design, vol. CAD-3, no. 1,1984.

8. M. Marek-Sadowska, "Route Planner for Custom Chip Design," Dig. Tech. Papers, IEEE int.
Conf. on Computer-aided Design, pp.246-249,1986.

9. W.M. Dai, T. Asano and E.S. Kuh, "Routing Region Definition and Ordering Scheme
ina Block Layout," IEEE Trans, on Computer-Aided Design, vol. CAD-4, no. 3, pp.189-19/,
1985.

10. H.H. Chen and E.S. Kuh, "Glitter: AGridless Variable-Width Channel Router," IEEE Trans,
on Computer-Aided Design, vol. CAD-5, no. 4, pp. 459-465,1986.

11. H.H. Chen, "Routing L-Shaped Channels in Nonslicing Structure Placement," Proc. of 24th
Design Automation Conf., pp. 152-158,1987.

12. X.M. Xiong and E.S. Kuh, "Nutcracker: An Efficient and Inteliigent Channel Spacer," Proc. of
24th Design Automation Conf., pp. 298-304,1987.

13. X.M. Xiong and E.S. Kuh, "The Constraint Via Minimization Problem for PCB and VLSI
Design," Proc. 25th Design Automation Conf., pp. 573-578,1988.

14. R. Dutta and M. Marek-Sadowska, "Automatic Sizing of Power/Ground (P/G) Networks in
VLSI," to appear in Proc. 26th Design Automation Conf., 1989.

	Copyright notice 1989
	ERL-89-36

