

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ADDING DEVICES TO SPICE3

by

Thomas L. Quarles

Memorandum No. UCB/ERL M89/45

24 April 1989

N

ADDING DEVICES TO SPICE3

by

Thomas L. Quarles

Memorandum No. UCB/ERL M89/45

24 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ADDING DEVICES TO SPICE3

by

Thomas L. Quarles

Memorandum No. UCB/ERL M89/45

24 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Ill

Preface

This memo is one of six containing the text of the Ph.D. dissertation Analysis of Performance

and Convergence Issues for Circuit Simulation. The dissertation itself is available as UCB/ERL

Memorandum M89/42. The other appendices are available as:

Memo number Tide

UCB/ERL M89/43 The Front End to Simulator Interface
UCB/ERL M89/44 The SPICE3 Implementation Guide
UCB/ERL M89/46 SPICE3 Version 3C1 Users Guide
UCB/ERL M89/47 Benchmark Circuits: Results for SPICE3

This memo was originally Appendices D and E of the dissertation and contains a description of

the procedure which must be followed to add a device model to SPICE3. The release of SPICE3

described is SPICE3, version 3C1

Table of Contents

Chapter 1 : Adding a Device 1

1.1 : Writing device specific routines 1
1.2 : Device Specific Data Structures 1

1.3 : Parameter Descriptors 3
1.4 : The overall device structure 4

1.5 : Converting a SPICE2 model 13

1.6 : Adapting the parser to the new device 14
1.7 : Linking the new routines into the program 17

Chapter 2 : The device to simulator interface 19

2.1 : Preliminaries 19

2.2 : Data structures 19

2.3 : Input routines 23

2.4 : Output routines 25

2.5 : Structure decomposition routines '. 29

2.6 : Processing routines . 31

2.7 : Sensitivity routines 46

2.8 : More data structures and constants 47

2.9 : The SPICEdev structure 50

CHAPTER 1

Adding a Device

When adding a new device, there are three types of changes that must be made: new routines

which must be written specifically to support the device, modifications to existing routines to give

them some detailed knowledge of the device for parsing, and changes necessary to integrate the dev

ice into the main loops of the simulation algorithms.

1.1. Writing device specific routines

The new devices for which routines must be written typically come from two different sources,

those written completely from scratch, and those being moved from SPICE2 to SPICE3. This section

contains an overview of the routines which must be written followed by a few guidelines for moving

an existing SPICE2 implementation into SPICE3. For more detailed information on how the routines

shouldbe written, see the detailed descriptions of them in die next chapter.

Each device is described by a data structure which contains pointers to functions which provide

the device specific operations and tables which describe the parameters of the device. This structure

also contains pointers to a variety of tables and size data that are needed by code at the user-interface

level and by higher-level SPICE routines. This data structure is the only externally visible portion of

the device specific code; everything else is referenced through the function pointers contained in the

structure. The other substructures to be defined are presented first, followed by a description of how

they are all placed into this master data structure.

1.2. Device Specific Data Structures

For any device, it is necessary to define the internal data structures. There are two such struc

tures required for each device, one for the device model, and one for the instance. The model struc

ture will contain all the parameters which a number of devices arc likely to have in common, such as

1

ohms per square or capacitance per square meter. Typically, these parameters are all specific to the

process used to produce the devices or to a class of similar devices, such as short channel transistors,

rather than to a specific device instance. There is a standard header which describes the first four

entries in the model structure which must be present in exactiy the given order, but everything after

that is up to the implementor. These four entries serve to connect the model and its instances

together into the overall data structure, and by forcing their exact placement in the structure, generic

routines can be used to traverse the structure.1 The prototype model header is:

typedef struct sGENmodel {
int GENmodtype;
struct sGENmodel *GENnextModel;
GENinstance * GENinstances;
IFuid GENmodName;

} GENmodek

Where GEN is replaced throughout by the package prefix used for the device. The GENmodType

field is used to store the index number of the device type, allowing location of the routines needed to

manipulate any given model. The GENnextModel field points to the next model of the same type of

device, thus forming a linked list which can be traversed to process all models of a given type. GEN

instances points to the first instance of the model, and is the starting point for a linked list of the

instances of the model, again allowing a simple traversal to process all such devices. GENmodName

is the unique identifier assigned by the front end to represent the name of the modeL Following GEN

modName, the implementor may add any additional fields desired.

Foran instance, the standard header contains three entries which must bepresent, and additional

entries which, if present, must be in specific positions. The GENmodPtr, GENnextlnstance, and GEN-

name fields are required and must be first GENmodPtr is a back-pointer to the model structure this

structure represents an instance of, and allows easy access to model parameters as well as the device

type field contained in the model The GENnextlnstance field contains the pointer to the next instance

in the linked list started by the GENinstances pointer in the model structure above. GENname is the

There would be a requirement that the first item in the structure be an instance of this GENmodel structure, but the C
language also guarantees that if two structures share acommon prefix then references within that prefix can use either structure

unique identifier assigned to the name of this instance by the front end, and thus identifies the

instances. If the device has any external nodes, they must appear next and in the same order as they

will appear on the device card. At this time, devices with up to 5 external nodes are supported,

although this may be increased by modifying GENdefs.h and CKTbindNode.c.

typedef struct sGENinstance {
GENmodel *GENmodPtr,
struct sGENinstance ^GENnextlnstance;
EFuid GENname;
int GENnodel; /* only use as */
int GENnode2; /* many of these as */
int GENnode3; /* you need and */
int GENnode4; /* change their names to */
int GENnode5; /* be more appropriate */

} GENinstance ;

Following this requiredportion of the structure may be any number of fields to contain instance data.

13. Parameter Descriptors

The next pair of structures that must be created are the parameter descriptor arrays. Each dev

ice has an array of parameter descriptors for the device and an array for the model. These arrays list

all the parameters which are legal for the device and model, along with information needed by rou

tines which will need to handle these parameters, such as their type and a simple integer that can be

used to refer to them to avoid die overhead of multiple string compare operations. The integer is usu

ally given as a symbolic constant rather than an actual constant to make the code more readable. The

type is one of the symbolic constants IFJNTEGER, IFJiEAL, IF_FLAG, IFJIODE, IFjOOMPLEX,

IFJSTRING, IFJNSTANCE, or IF_PARSETREE combined with one or more modifiers. These symbolic

constants indicate that the parameter requires an integer value, a real value, no value at all, a circuit

node, a complex number, a character string, the unique identifier of another device, or a parse tree

representing an expression respectively. These types are the basic datatypes supported by the parser.

The modifiers pass additional information about the types used and are bitwise OR'd into the field as

necessary. JF_VECTOR indicates that a vector of values of the given type is expected. IFREQUIRED

definition, and theextra field inevery reference within the device code would be unnecessary and distractingKe™78» .

indicates that the value must be supplied if the model is to function correcdy. IFSET and IFASK

indicate, respectively, that the parameter can be set by the front end and returned by the simulator in

response to a front endquery. If neither IF_SET nor IF_ASK is set, it indicates a parameter which the

programmer recognizes but does not implement at this time, and should generate a warning from the

front end but not an 'unrecognized parameter' error. The actual values of all these different types are

passed in a single structure, and knowledge of the type field allows the program to access the correct

field or fields of the structure. Specifying these incorrecdy may result in errors when an attempt is

made toextract data from this structure since it will not be in the expected form. Finally, DESELECT

and IF_VSELECT indicate that a parameter is used to set or examine the value of a single element of

a vector or array, and the additional select parameter to the corresponding set or ask function is an

integer or vector of integers which will be used to select the correct elements from the appropriate

vector or array entity.

1.4. The overall device structure

Once the basic structures have been defined, the SPICEdev structure must be filled in. This

structure contains pointers to routines described in the device interface chapter of this dissertation,

along with a number of tables and constants. The following gives the declaration of the structure and

a brief comment on the purpose or source of eachentry.

typedef struct SPICEdev {
struct {

char *name;
char description;

int terms;
int numNames;
char **termNames;

int numlnstanceParms;
IFparm *instanceParms;

int numModelParms;
IFparm *modelParms;

} DEVpublic;

int (*DEVparamX);
int (*DEVmodParam)();
int (*DEVload)();
int (*DEVsetupX);

int (*DEVpzSetup)0;
int (*DEVtemperature)();

int (*DEVtruncX);
int (*DEVfindBranchX);
int (*DEVacLoadX);
int (*DEVacceptX);
void (*DEVdestroyX);
int (*DEVmodDeleteX);
int (*DEVdelete)0;
int (*DEVseticX);
int (*DEVaskX);
int (*DEVmodAskX);
int (*DEVpzLoadX);
int (*DEVconvTestX);
int (*DEVsenSetupX);
int (*DEVsenLoadX);
int (*DEVsenUpdateX);
int (*DEVsenAcLoad)();
void (*DEVsenPrint)();
int (*DEVsenTruncX);

int DEVinstSize;
int DEVmodSize;

} SPICEdev;

/* name of this type of device */
/* description of mis type of device */

/, number of terminals on this device */
/* number of names in the termNames array*/
/* pointer to array of pointers to names */
/* array contains 'terms' pointers */

/* number of instance parameter descriptors */
/* array of instance parameter descriptors */

/* number of model parameter descriptors */
/* array of model parameter descriptors */

/* routine to input a parameter to a device instance */
/* routine to input a parameter to a model */
/* routine to load the device into the matrix */
/* setup routine to preprocess devices once before
/* solution begins */
/* setup routine specifically for pole-zero anal. */
/* subroutine to do temperature dependent
/* setup processing */
/* subroutine to perform truncation error calculate. */
/* subroutine to search for device branch eq.s */
/* ac analysis loading function */
/* subroutine to call on acceptance of a timepoint */
/* subroutine to destroy all models and instances */
I* subroutine to delete a model and all instances */
/* subroutine to delete an instance */
/* routine to pick up device iniL conditions from RHS */
/* routine to ask about device details*/
/* routine to ask about model details*/
/* routine to load for pole-zero analysis */
/* convergence test function */
/* routine to setup the device sensitivity info */
/* routine to load the device sensitivity info */
/* routine to update the device sensitivity info */
/* routine to load the device ac sensitivity info */
/* subroutine to print out sensitivity info */
/* subroutine to print out sensitivity info */

/* size of an instance */
/* size of a model */

/* instance
/* device */

of structure for each possible type of
/

The structure is divided up into two major sections. The first part, DEVpublic is designed to

comply with the requirements for the front end interface, and provides the information it needs to

parse the input The remainder of the structure is for SPICE3 itself to identify the specific subroutines

to call for each operation that needs to be performed on the specific device. The breakdown of the

fields follows. For a complete description of the functions in the main part of the structure, see the

device interface chapter, for the details of the public part of the structure, see the front end interface

documentation.

1.4.1. name

char *name;

This is a character string constant which is the name of the class of devices, such as "Resistor".

This field will be used for identification of the devices internally, via CKTtypelook, and for error and

debugging messages as necessary.

1.4.2. description

char *description;

This is a longer character string which should provide a more detailed description of the device

implemented by this package.

1.4.3. terms

int terms;

This is the number of actual tenninals on the device, and is positive for an exact number. The

front end interface supports a negative number here indicating a variable number of terminals, but

SPICE3 does not support this option.

1.4.4. numNames

int numNames;

This is the actual number of names in the termNames array.

1.4.5. termNames;

char **termNames;

This is an array of character strings which provides names for the terminals of the device.

1.4.6. numlnstanceParms

int numlnstanceParms;

This is the count of the number of IFparm records in the instanceParms array.

1.4.7. instanceParms

IFparm *instanceParms;

This is a table giving the parameters and possible queries for the device. Each entry of the

table is an IFparm structure which looks like:

typedef struct {
char *keyword;
int id;
int dataType;
char *description

JIFparm;

Where keyword is the name the user is expected to supply in the input, id is a simple integer code

used to refer to the option internally, and is the unique identification of the parameter. The keyword

should always be given entirely in lower case, and user input keywords are then converted to lower

case to provide a case independent match. DataType indicates the type of argument the keyword

takes, and indicates to the parser what type of value to read and pass to the DEVparam routine, such

as integer, real, a vector of reals, or a device name. Description is a longer, but hopefully less than

one line, description of the parameter.

1.4.8. numModelParms

int numModelParms;

The number of parameters described in the modelParms structure.

1.4.9. modelParms

IFparm *modelParms;

A table describing the model parameters and questions similar to the instanceParms table.

1.4.10. DEVparam

int (*DEVparamX);

A function which, given a specific device instance, a parameter, and a value, will assign that

value to that field of the device. This function must be supplied by the implementor if there are any

instance parameters, otherwise a value of NULL will inform SPICE3 that there are no legal device

parameters.

1.4.11. DEVmodParam

int (*DEVmodParamX);

This function corresponds to the DEVparam function, but applies to model parameters.

1.4.12. DEVload

int (*DEVload)();

This function is used in the inner loop of the dc and transient analyses to load the sparse matrix

and right hand side for solution. If this function pointer is left NULL, then no action will be taken for

this device during dc and transient analysis.

1.4.13. DEVsetup

int (*DEVsetup)();

This function will be called once during parameter preprocessing, and all the one-time opera

tions should be done here, such as allocating sparse matrix entries and getting pointers to them, as

well as allocating space in the state table for data which must be retained from timepoint to timepoint.

1.4.14. DEVpzSetup

int (*DEVpzSetup)();

This function will generally be exacdy the same as the DEVsetup function, and is called during

the pole-zero setup operation. For almost all devices, this routine can be identical to, or simply

another pointer to the same routine as the DEVsetup routine, since the only devices that need special

processing during pole-zero setup are input voltage sources which must be removed from the circuit

1.4.15. DEVtemperarure

int (*DEVtemperature)();

This is the function where most of the parameter preprocessing takes place, and will be called

before simulation takes place and whenever parameters or the simulation temperature have been

changed.

1.4.16. DEVtrunc

int (*DEVtmnc)();

This function must perform the truncation error calculation on any energy storage elements or

components of elements. If the device has no energy storage elements, this subroutine pointer should

be NULL.

10

1.4.17. DEVfindBranch

int (*DEVfindBranchX);

This is a routine supplied by all devices which introduce a branch current equation and used by

current controlled elements to find the equation corresponding to a named source.

1.4.18. DEVacLoad

int (*DEVacLoad)();

This routine corresponds to DEVload, but is used for ac analysis where complex quantities may

need to be loaded. For a device which has exacUy the same loading needs during ac analysis, this

may be a pointer to the same routine as DEVload.

1.4.19. DEVaccept

int (*DEVaccept)();

This is a function which is called once at each timepoint after SPICE3 has decided that the

current solution is acceptable. This can be used for one time calculations and breakpoint scheduling.

1.4^0. DEVdestroy

void (*DEVdestroyX);

This function is used for dismantling the data structures and should free all space used by all

models and instances of the device.

1.4.21. DEVmodDelete

int (*DEVmodDelete)();

This function is used for partially dismantling the data structures by freeing a model and all

instances to it, leaving the rest of the devices of the same type alone.

11

1.4.22. DEVdelete

int (*DEVdelete)();

This function deletes a single instance from the data structures, leaving everything else alone.

1.4.23. DEVsetic

int (*DEVsetic)();

This function is used to get device initial conditions from node initial conditions. Before cal

ling this, the right hand side vector will be loaded with all the node initial conditions, so each device

should look at the nodes it is attached to and set its initial condition fields to the proper value based

on those voltages if the user has not specified themdirectly on the device.

1.4.24. DEVask

int (*DEVask)();

This is the function that allows user access to internal values of the device. Items from the

instanceParms array with the IF_ASK bit set can be passed to it, and the corresponding value should

be computed and returned if sucha value is valid to compute at the time the routine is called.

1.4.25. DEVmodAsk

int (*DEVmodAskX);

This function is exacdy like DEVask, but applies to models, and is intended primarily to access

the parameter set

1.4.26. DEVpzLoad

int (*DEVpzLoad)();

This is the function used for evaluating and loading the matrix during pole-zero analysis.

12

1.4.27. DEVconvTest

int (*DEVconvTestX);

This function performs the per device convergence test The function may return as soon as it

has determined that a device has not converged and it has incremented ckt->CKTnoncon.

1.4.28. DEVinstSize

int DEVinstSize;

This is usually given as sizeof(DEVinstance), and is the amount of memory SPICE3 will allo

cate and link into the data structures for each instance that is created.

1.4.29. DEVmodSize

int DEVmodSize;

This is the size of a model structure which SPICE3 will allocate and link into the list structure

for each model created.

1.4.30. DEVsenSetup

int (*DEVsenSetup)();

This is the special setup routine that is needed for sensitivity analysis, and performs additional

computations and allocations needed by the sensitivity code.

1.431. DEVsenLoad

int (*DEVsenLoadX);

This routine loads the matrix and right hand side with the information needed for sensitivity

analysis.

13

1.432. DEVsenUpdate

int (*DEVsenUpdate)();

This routine updates the matrix for sensitivity analysis.

1.433. DEVsenAcLoad

int (*DEVsenAcLoad)();

This is the modified ac load subroutine that is needed when sensitivity analysis is in progress.

1.434. DEVsenTrunc

int (*DEVsenTrunc)();

This subroutine performs truncation error computation during sensitivity analysis.

1.5. Converting a SPICE2 model

This section is a supplement to the above for those users who have existing SPICE2 models and

wish to translate them to SPICE3. The places where corresponding sections of code are found in a

SPICE2 implementation and the special precations that must be taken when translating a SPICE2 model

will be shown.

There are no counterparts for the param or modParam functions in SPICE2, but these routines

are quite straightforward to write, mostiy requiring replication of prototype code and replacing a few

key words.

The load function is almost identical to the SPICE2 subroutine LOAD or those subroutines it

calls such as MOSFET, BJT, or JFET, requiring the same basic calculations, but specifically excluding

those calculations related solely to convergence testing.

The setup, temperature, and setic functions are combinations of of the SPICE2 routines SETUP,

ERRCHK, MATPTR, MATLOC, MODCHK, and TMPUPD. The operations of MATPTR and MATLOC are

combined by using the SMP function SMPmakeHt which not only allocates the memory, but also

14

returns a pointer to the data field at the requested matrix location. The one time only operations from

these functions, such as the MATPTR and MATLOC code, should be placed in the setup function, the

conversion of node initial conditions to device initial conditions from ERRCHK goes into setic, while

the rest should be combined into the temperature function, including the temperature correction in all

calculations.

The trunc function can simply call the CKTterr function to compute the truncation error on each

of the energy storage elements within the device.

If the device adds a branch equation to the matrix which could be used to control a source, the

findBranch function must be able to get the equation number for it from the name ofthe device, oth

erwise the findBranch function is not relevant

The acLoad function is comparable to the code in ACLOAD in SPICE2.

The accept function is a new function which is used primarily by the incremental breakpoint

table code to ensure that additional breakpoints are not added every iteration, but instead only once

per timepoint.

The destroy, modDelete, and delete functions are new with SPICE3, and are quite simple to

copy from existing implementations. No extra code is needed unless the device allocates additional

memory beyond the basic data structure. The standard subroutine provided as a prototype breaks

down all of the standard structure elements.

The ask and modAsk functions are also new, and are used to not only provide new functional

ity, but also to provide better access to many values used throughout the program.

1.6. Adapting the parser to the new device

The SPICE2 input language currendy handled by SPICE3 is sufficiendy irregular that the parser

requires customization for each device. These customizations are relatively simple, and are spelled

out in detail here.

15

1.6.1. INPdomodel.c

In the INP directory, the file INPdomodel.c provides a mapping from the model types which can

appear on the ".MODEL" card, such as NPN, to the internal device names, such as BJT, and then a

conversion using CKTtypelook to the device type number. If the device does not have a ".MODEL"

card associated with it, this routine can be ignored entirely. The routine currendy consists of a

sequence of strcmp's in an if-then-elseif structure into which an additional elseif clause can easily be

inserted for the new model type between any two existing clauses.

}else if(strcmp(typename,"new-device-model-name") = 0) {
type = ac^tyr>elook("new-intemal-type-name,,);
INPmakeMod(modname, type, image);

1.6.2. INPfindLev.c

The file JNPfindLev.c in the INP directory is used for MOSFETs to distinguish between the vari

ous levels of models (It is used by INPdomodel after deterniining that the device is a MOSFET of

some kind). If another level of MOS model is being added, another case similar to the existing ones

can be added for any additional levels which will be supported. Note that SPICE3 already has an

additional level 4 model for BSIM.

1.63. inpjnumnodes.c

This subroutine is used to translate from the first letter of the device name in SPICE2 format

input to a number of nodes. This routine may go away at a later date, and is currendy used only by

the front end in subcircuit expansion. This subroutine is used to compensate for the difference

between the SPICE3 device structure and the SPICE2 input format which allows a variable number of

terminals on a bipolar junction transistor. Another case like the existing ones must be inserted for the

first letter of the instance name of the new device. Note that unlike all of the other routines described

in this section, this routine is in the FTE subdirectory, and is at the end of the file subcktc instead of

in a file by itself.

16

1.6.4. INPpas2.c

This subroutine does the bulk of the parsing of SPICE2 format input lines. For each possible

first letter ofadevice instance, there is a case which processes the device's input line. INPpas2 calls

a series of subroutines, one for each type of device to do the local parsing in order to make things

simpler for compilers and to reduce the amount ofcode that must be recompiled when working on the

parsing of a single device. INPpas2 should call a routine INP2*.c to parse the line corresponding to a

first character ofx. This subroutine should then parse the first part of the line which is usually quite

irregular, and then use INPdevParse to handle the rest of the line. The subroutine INPdevParse can

handle all of the parameters to the device that are of the form

keyword=value
keyword2 value
keyword3=value, value value

by reading the (keyword, value type) table provided in the previous section. All of the parameters

that don't fall into this category, such as node names, model names, or parameters that don't have a

keyword preceding them must be parsed directiy in INP2x. The normal sequence is to use the utility

routines supplied in the INP package to break off and properly handle the tokens on the first part of

the line, up to but not including an optional keyword-less numeric parameter followed by keyword

parameters, create the device with CKTcrtElt, bind the nodes identified with CKTbindNode, and hand

the rest of the line to INPdevParse. The following subset of the routines in the INP package may be

useful in writing the parser - see the section onthe INP package for more details of these routines.

INPdomodel - determine device type from .model card
INPerrCat - concatenate error messages
INPevaluate - numerically evaluate the next token on the line
INPfindLev - determine MOS model level from .model card
INPgetMod - find a model given its name
INPgetTok - get the next token from the input line
INPgetValue - given an argument type, get an argument of that type
INPlookMod - look to see if a model with a given name has been defined
Ir^Ptermlnsert - insert into terminal/node name symbol table
INPinsert - insert into device/model name symbol table

17

The simplest way to generate the code for this is to copy the code for an existing device and

modify it as necessary.

After modifying all the necessary routines, those which were changed must be recompiled and

the library rebuilt, then a new executable built

1.7. Linking the new routines into the program

Linking the routines written above into the simulator is quite simple, requiring only a few sim

ple changes to configuration files. In the CKT directory, there is a file called SPIinitc which must be

modified. The general form of this file is:

header and includes

external declarations

initialization of DEVices

additional constant declarations

The first and last sections need not be changed. The external declarations section contains a block of

lines of the form:

extern SPICEdev XXXinfo;

where the XXX's are the device prefixes. Another similar line describing the new device must be

added to this section.

The initialization of DEVices section includes the initialization of an array of pointers to the

device descriptors which the program will use to access all of the device dependent data and subrou

tines. This section consists of a sequence of lines of the form:

&XXXinfo,

where XXX is the device prefix. The new device is simply added to this list, noting that the last dev

ice in the list is not followed by a comma.

The only step that remains is to recompile and relink. The exact details of this step depend on

the operating system.

CHAPTER 2

The device to simulator interface

Integrating devices into the simulator is relatively easy as outlined in the previous chapter;

Somewhat more complicated is writing the actual implementation code for the devices to be added.

This chapter provides a detailed description of the routines needed by the simulator.

2.L Preliminaries

The first step in implementing a new device is usually to look through the descriptions of the

old devices and determine which one looks the most like the new device. Having done that, all the

code for it should be copied. It is much easier to implement a new device by walking through the

framework of an existing device and changing things as needed thanit is to buildthe framework from

scratch, and this procedure further enhances the consistency of the resulting system. After making the

copy, the prefix used throughout should be changed to agree with the prefix chosen for the new dev

ice. Following this, each section of this chapter should be examined in detail along with the

corresponding file being modified.

2.2. Data structures

The data structures for the devices are relatively unrestricted. There are very few strict rules,

but many conventions which make life easier for anyone working on the code. There are four sources

of data that will be available to each device at different times during its operation, with different

characteristics for each one.

Data placed in the per model data structure will only be examined by the code implementing

the device and will be relatively static - any data to be moved must be moved by the device code.

Since the size of this structure is fixed when the model is defined, it must contain only data that is

completely independent of any instance of the model Space in this structure is reserved by adding

19

20

elements to the model data structure definition in the device specific header file.

Data placed in the per instance data structure will also be examined only by the code imple

menting the device and will be similarly static. Per model data should generally not be copied to the

instance structure, but precomputed values which will be used frequendy and which combine several

input device and model parameters or which are expensive to compute may be computed and placed

here. Space in this structure is reserved by adding elements to the per instance data structure

definition in the device specific header file.

During the iterative stages of the algorithm, the solution for the terminal voltages and branch

currents of the previous iteration or timepoint will be available in the CKTrhsOld vector, indexed

exacdy as the corresponding current and voltage equations are in the new CKTrhs vector being built.

These values must not be changed under any circumstances. Space in these vectors is allocated

automatically for any circuit node either described by the front end or created internally through a call

to CKTmkVolt, and to any circuit branch equation created by a call to CKTmkCur.

Finally, during transient solutions, there are a set of vectors known internally to SPICE3 as the

state vectors. These vectors are all of the same size and are shifted around by the higher level por

tions of the simulator. At any given timepoint, the zero'th state vector contains data for the current

timepoint, the first state vector contains data for the previous timepoint, the second one for the second

previous timepoint, etc. These vectors are automatically switched around as needed, thus any data

left in the zero'th vector at the end of a timepoint will be in the first vector at the first step of the

next timepoint Space in these vectors is allocated by the higher level portions of SPICE3 at the

request of the device implementation code. In the DEVsetup routine, the device code is given the

opportunity to mark off an arbitrary sized block of the vectors for its use. This space is not immedi

ately available, but will be allocated after all the setup routines have run and the simulator has com

puted the total size of the vectors needed. Note that because of the way these vectors are automati

cally shifted by the simulator, the device code can only keep an offset into the vector of its data, not

an address, and that because of the way they are defined, all possible state vectors may not have valid

21

values in them during early timepoints. When running with predictor-corrector algorithms, the zeroth

vector is filled with a predicted value before the first iteration at a new timepoint.

2.2.1. Model data structure

typedef struct sRESmodel {
int RESmodType; /* device index for this device type */
struct sRESmodel *RESnextModel; /* pointer to next possible model in

/* linked list */
RESinstance * RESinstances; /* pointer to list of instances that have this

/* model */
char *RESmodName; /* pointer to character string naming this model */

double REStnom; /* temperature at which resistance measured */
double REStempCoeffl; /* first temperature coefficient of resistors */
double REStempCoefG; /* second temperature coefficient of resistors */
double RESsheetRes; /* sheet resistance of devices in ohms/square */

/* flags to indicate whether above parameters */
/* were specified by the user (1) or obtained */
/* from default mechanism (0). 1 bit values */
/* used to save space. */

unsignedREStnomGiven:l; /* nominal temperature given? */
unsigned REStclGiven:l; /* tcl given? */
unsigned REStc2Given:l; /* tc2 given? */
unsigned RESsheetResGiven:!; /* sheet resistance given? */

} RESmodel;

Figure 2.1
Example of a model data structure

The structure used to describe a device model is usually fairly straightforward since there

should be no time-dependent values or values which vary from iteration to iteration, just a set which

can be given by the user or computed by the setup or temperature routine. The fields of this structure

generally are sorted into four major blocks: The required prefix, a block of double precision values, a

block of integer values, and a block of single bit flags that are used to keep track of the source of the

values. The required prefix is maintained by higher level code in SPICE3. By convention, the flags

have the same name as the corresponding value with the word Given added on the end. Since these

names are all internal, and thus subject only to a 31 character uniqueness constraint, this should not

11

cause a conflict between the two names. Similarly, convention indicates that these flags should have a

zero value, asproduced when the structure is created, when the corresponding data location contains a

program generated value and a non-zero value when the corresponding location contains user specified

data.

2.2.2. Instance data structure

typedef struct sCAPinstance {
struct sCAPmodel *CAPmodPtr;
struct sCAPinstance

♦CAPnextlnstance;

char *CAPname;

int CAPposNode;
int CAPnegNode;

double CAPcapac;
double CAPinitCond;

int CAPstate;
#define CAPqcap CAPstate
#define CAPccap CAPstate+1

double *CAPposPosptr;

double *CAPnegNegptr;

double *CAPposNegptr,

double *CAPnegPosptr;

unsigned CAPcapGiven:l;
unsigned CAPicGiven:l;

CAPinstance;

/♦pointer to our model */

/* pointer to next instance of
/* current model*/
/* pointer to character string naming this instance */

/* number of positive node of capacitor */
/* numberof negative node of capacitor */

I* capacitance */
/* initial capacitor voltage if specified */

/* pointer to start of capacitor state vector */
/* charge on the capacitor */
/* current through the capacitor */

/* pointer to sparse matrix diagonal at
/* (positive, positive) */
/* pointer to sparse matrix diagonal at
/* (negative, negative) */
/* pointer to sparse matrix off-diagonal at
/* (positive, negative) */
/* pointer to sparse matrix off-diagonal at
I* (negative, positive) */

/* capacitance specified? */
/* init cond. specified? */

Figure 2.2
Example of an instance data structure

The per instance data structure is very similar to the per model data structure, but it includes a

few additional features. The integer values will, if necessary, end in the offset of the first entry the

23

instance has reserved in the state vectors. This will usually be followed by a set of defines for the

names of the variables stored in these locations. Access to the data stored in these locations would

then be through an expression such as *(ckt->CKTstateO+here->CAPqcap). The integers will then be

followed by a section containing pointers. These pointers will primarily be to positions within the

sparse matrix which are located in advance to eliminate the need to hunt through the entire matrix

structure every iteration.

23. Input routines

These routines are used by the front end to communicate input parameters to the device. This

means of communication eliminates the need for the front end to have any knowledge of the data

structures used by the device internally.

23.1. DEVparam

int

RESparam(param, value, here, select)
int param;
IFvalue *value;
RESinstance ♦here;

IFvalue *select;

{
switch(param) {

case RES_RESIST:
here->RESresist = value->rValue;
here->RESresGiven = TRUE;
break;

default:

return(E_BADPARM);

return(OK);

Figure 2.3
Example of a DEVparam function

The DEVparam function takes parameter values from the input parser and sets the appropriate

field in the per instance data structure of the device. Four arguments will be provided: param is the

24

integer identifier of the parameter to be set The values for these identifiers will be chosen at the end

of this appendix, but will be aset of unique integers, thus allowing aswitch statement, and there will

be symbolic constants for each of them which should be used for case labels. The symbolic constants

are conventionally given names of the form XXX_PARMNAME where XXX is the unique prefix being

used for the device and PARMNAME is a simple abbreviated name for the parameter. There is no

need to assign values to these symbolic constants at this point, simply to maintain a list of them.

Value is aunion which can contain any type of value that the interface supports: flags, integers, reals,

instances, charaaer strings, nodes, and parse trees representing expressions, along with vectors of

these types. Assume that the most convenient data type is provided at this point and use it keeping

track of that data type in the list of symbolic constants. Here is a pointer direcdy to the instance the

parameter value is to be applied to. Select is another union which may contain either an integer or

vector of integers as desired to specify a parameter more exactiy. The intention is that select be used

to isolate a single element in a vector or array to simplify the modification of a single element in a

large structure without having to respetify the entire structure.

23.2. DEVmodParam

int

RESmParam(param, value, model, select)
int param;
IFvalue *value;
register RESmodel *model;
IFvalue *select;

{
switch(param) {

case RES_M0D_TC1:
model->REStempCoeffl = value->rValue;
model->REStclGiven = TRUE;
break;

case RES_MOD_TC2:
model->REStempCoef£2 = value->rValue;
model->REStc2Given = TRUE;
break;

default:

return(E_BADPARM);
}
retum(OK);

}
Figure 2.4

Example of a DEVmodParam function

25

The DEVmodParam function is exacdy analogous to the DEVparam function, but provides

values for model parameters instead of instance parameters. The symbolic constants chosen should be

distinct from those chosen for the DEVparam function and by convention take the form

XXX_MODJPARMNAME. Note that since in the parsing of SPICE2 format inputs, the model type is a

parameter (NPN, PNP, D, etc), this parameter should be accepted, even if it carries no useful informa

tion, as the 'D' in the diode model.

2.4. Output routines

These routines are used by SPICE3 to obtain data from the device. Rather than giving SPICE3

knowledge of the data structures of the devices, these routines are provided to allow the higher level

routines to query the devices for values of their internal variables. In some sense, these routines are

exacdy the opposite of the DEVparam and DEVmodParam routines.

26

2.4.1. DEVask

int

RESask(ckt, here, which, value, select)
CKTcircuit *ckt;
RESinstance ♦here;

int which;
IFvalue ♦value;

IFvalue ♦select;

{
switch(which) {

case RES_CONDUCT:
value->rValue = here->RESconduct;
return(OK);

case RES_RESIST:
value->rValue = here->RESresist;
retum(OK);

case RES_POWER:
value->rValue = (♦(ckt->CKTrhs01d + here->RESposNode)

♦(ckt->CKTrhs01d + here->RESnegNode)) ♦

here->RESconduct ♦

(♦(ckt->CKTrhs01d+ here->RESposNode) -
♦(ckt->CKTrhs01d + here->RESnegNode));

retum(OK);
default:

retum(E_BADPARM);
}
/♦ NOTREACHED ♦/

Figure 2.5
Example of a DEVask function

This function is the reverse of the DEVsetParm function and has the same parameters with one

addition. Ckt is the pointer to the circuit the device is in, and is used to get access to additional data

such as that in the right hand side and state vectors. Generally, there will be far more legal queries to

a device than there are parameters to the device, since this provides a way for both users and the pro

gram maintainer to get access to internal circuit variables as well as the parameters already input

Note that although the tables describing the queries available will be static, it may not always be valid

to ask any given question, so the routine should watch for such a situation and provide an

E BADPARM error return.

2.4.2. DEVmodAsk

int

RESmodAsk(ckt, model, which, value, select)
CKTcircuit ♦ckt;

RESmodel*model;
int which;
IFvalue ♦value;

IFvalue ♦select;

{
switch(which) {

case RES_M0D_TC1:
value->rValue = model->REStempCoeffl;
return(OK);

case RES_MOD_TC2:
value->rValue = model->REStempCoefiE2;
retum(OK);

default:

retum(E_BADPARM);
}

Figure 2.6
Example of a DEVmodAskfunction

27

The DEVmodAsk function provides access to model parameters in exacdy the same manner as

the DEVask function provides access to instance parameters. The DEVmodAsk function will generally

only provide access to model parameters and precomputed functions of those parameters, since there

are usually no other interesting values associated with the models. These parameters are not generally

interesting to the user, but can be helpful for program maintenance and new device implementation

testing

2.4.3. DEVfindBranch

int

VSRCfindBr(ckt, inModel, name)
register CKTcircuit ♦ckt;

GENmodel ♦inModel;

register EFuid name;
{

register VSRCmodel ♦model = (VSRCmodel ♦)inModel:

register VSRCinstance ♦here;

int error,
CKTnode ♦tmp;

for(; model != NULL; model = model->VSRCnextModel) {
for (here = model->VSRCinstances; here != NULL;

here = here->VSRCnextInstance) {
if(here->VSRCname = name) {

if(here->VSRCbranch = 0) {
error = CKTmkCur(ckt, &tmp, heretmp, here->VSRCname, "branch");
if(error) retum(error);
here->VSRCbranch = tmp->number;

retum(here->VSRCbranch);
}

}
}
return(O);

Figure 2.7
Example of a DEVfindBranch function

28

The DEVfindBranch function is used to find the equation that represents a branch current in

order to use that equation in another device. As an example, a current controlled voltage source

needs to know the equation number of the current equation for the voltage source which will control

it If a device adds an additional equation to the circuit and that equation should be usable by a con

trolled source or similar construct, then a DEVfindBranch function must be written. This function

should examine the source unique identifier given as its third argument and compare it with all possi

ble device names and if a match is found, return the equation number. If the equation has not yet

been generated, the DEVfindBranch function must create it and return its number. If no name match

is found, zero should be returned. Note that rather than examining a single instance, this routine

29

iterates through all instances of all models of the given device type given the pointer to the first

model structure.

2.5. Structure decomposition routines

These routines are used to dismantle the data structures that have been built up. Failure to pro

vide these should not cause the simulator to fail, but will cause a more rapid consumption of memory

and possible problems with running out of memory when editing circuits and performing multiple

runs.

2.5.1. DEVdestroy

void

RESdestroy(model)
RESmodel ♦♦model;

{

RESinstance ♦here;

RESinstance ♦prev = NULL;
RESmodel ♦mod = ♦model;

RESmodel ♦oldmod = NULL;

for(; mod ; mod = mod->RESnextModel) {
irfaldmod) FREE(oldmod);
oldmod = mod;
prev b (RESinstance ♦)NULL;

for(here = mod->RESinstances ; here ; here = here->RESnextInstance)
if(prev) FREE(prev);
prev = here;

}
if[prev) FREE(prev);

}

if(oldmod) FREE(oldmod);
♦model = NULL;

Figure 2.8
Example of a DEVdestroy function

The DEVdestroy functions all follow the same general pattern and loop through all instances and

all models of the device type to free all memory used by them. For devices which have more compli-

30

cated structures, such as those which allocate additional substructures or arrays, these structures and

arrays should also be freed at this time, but only if they have already been created (do not free null

pointers!). This function will only be used when deleting the entire circuit, so inter-device dependen

cies need not be considered in this function.

2.5.2. DEVmodDelete

int

RESmDelete(model, modname, modptr)
RESmodel ♦♦model;

char ♦modname;
RESmodel ♦modptr,

{
RESinstance ♦here;

RESinstance ♦prev = NULL;
RESmodel ♦♦oldmod;
oldmod = model;
for(; ♦model; model = &((+model>>RESnextModel)) {

if((♦model)->RESmodName = modname I
(modptr && ♦model = modptr)) goto delgot;

oldmod = model;

}
retum(E_NOMOD);

delgot:
♦oldmod = (♦model)->RESnextModel; /♦ cut deleted device out of list ♦/

for(here = (♦model)->RESinstances ; here ; here = here->RESnextInstance) {
if(prev) FREE(prev);
prev = here;

}
if(prev) FREE(prev);
FREE(+model);
return(OK);

Figure 2.9
Example of a DEVmodDelete function

This function is designed to delete a model from the circuit As a side effect, it should track

down all instances of the model and delete them as well. At this point node and matrix entry refer

ence counting are not implemented, but in the future these reference counts will have to be decre-

31

mented at this point as well. This function is provided for future extension capabilities since full

reference counting will have to be performed to allow individual instances or models to be deleted,

and as such is never called by the present front end.

2.53. DEVdelete

int

RESdelete(model, name, inst)
RESmodel ♦model;

char ♦name;

RESinstance ♦♦inst;

{
RESinstance ♦♦prev = NULL;
RESinstance ♦here;

for(; model; model = model->RESnextModel) {
prev = &(model->RESinstances);
for(here = ♦prev; here ; here = ♦prev) {

if(here->RESname = name I(inst && here=+inst))]
♦prev= here->RESnexdnstance;
FREE(here);
return(OK);

}
prev = &(here->RESnextInstance);

}
}
return(E NODEV);

}
Figure 2.10

Example of a DEVdelete function

This function must delete the single specified instance from the circuit Reference counting will

have to be taken into account in this function in a future version, but is not handled yet This func

tion is similarly never called by the present front end since full reference counting will have to be

implemented and the specifications for this function extended before it can be used properly.

2.6. Processing routines

2.6.1. DEVsetup

int

CAPsetup(matrix, model, ckt, states)
register SMPmatrix ♦matrix;

register CAPmodel ♦model;

CKTcircuit ♦ckt;

int ♦states;

{
register CAPinstance ♦here;

/♦ loop through all the capacitor models ♦/

for(; model != NULL; model = model->CAPnextModel) {

/♦Default Value Processing for Model Parameters ♦/

/♦ loop through all the instances of the model ♦/

for (here = model->CAPinstances; here != NULL ;
here=*iere->CAPnextInstance) {

/♦ macro to make elements with built in test for out ofmemory ♦/
#define TSTALLOC(ptr, first, second) E
if((here->ptr = SMPmakeFJt(matrix, here->first, here->second) E

)=(double +)NULL){ retum(E_NOMEM);}
TSTALLOC(CAPposPosptr, CAPposNode, CAPposNode)
TSTALLOC(CAPnegNegptr, CAPnegNode, CAPnegNode)
TSTALLOC(CAPposNegptr, CAPposNode, CAPnegNode)
TSTALLOC(CAPnegPosptr, CAPnegNode, CAPposNode)

/♦ grab our share of space in the state vector ♦/

here->CAPqcap = ♦states;

♦states += 2;

}
}
retum(OK);

}
Figure 2.11

Example of a DEVsetup function

32

This function performs the first step of preparing the device for simulation. By the time this

function is called, the device will be attached to all necessary nodes and have most of its parameters

set although some parameters may be changed later. At this point space in the simulator state vec

tors is reserved by saving the current value of *states and then incrementing it by the number ofdou

ble precision values needed. All parameter defaulting to constant values may also be done at this

33

point, but not defaulting to computed values which depend on other parameters or model parameters.

In addition, any additional equations needed should be allocated if they haven't been allocated

already. Note that a DEVfindBranch function call earlier may have forced a device to allocate its

equation early and it must not be allocated again. Finally, the entries in the sparse matrix where con

tributions from this devise will be added should be reserved and their addresses saved to speed perfor

mance during the simulation.

2.6.2. DEVpzSetup

This function is almost exacdy the same as the DEVsetup function and, except for input voltage

sources, should do exacdy the same thing as the setup routine. For all other devices, except for those

which replace themselves with instances of other devices during setup, the DEVsetup routine may be

used as the DEVpzSetup routine.

2.63. DEVtemperature

This function completes the parameter preprocessing and prepares the device for simulation to

begin. All model and instance parameters should have their final default values assigned here, either

constants or based on computed values, even dependent on which other values have or have not been

specified by the user at this point It is recommended that all unconditional constant valued defaults

(i.e. those based only on whether the specific parameter was or was not given and with a constant,

not computed value) be performed in the DEVsetup routine.

This routine may be called several times, so it must make sure that it can properly handle being

called again and again. Every time a model or instance parameter is changed, this routine will be

called, additionally, every time the circuit temperature changes this routine will be called. The way

temperature dependence is handled currendy is to perform the following defaults in this routine.

1 If the model nominal temperature (temperature at which parameters were measured) is not

specified, it should be set to the circuit nominal temperature (ckt->CKTnomTemp).

int

REStemp(model, ckt)

register RESmodel ♦model;

register CKTcircuit ♦ckt;

/♦ perform the temperature update to the resistors
♦ calculate the conductance as a function of the
♦ given nominal and current temperatures.
*/

{
register RESinstance ♦here;

double factor;
double difference;

/♦ loop through all the resistor models ♦/

for(; model != NULL; model = model->RESnextModel) {

/♦ Default Value Processing for Resistor Models ♦/

if(!model->REStnomGiven) model->REStnom =ckt->CKTnomTemp;
if(!model->REStclGiven) model->REStempCoeffl = 0;
if(!model->REStc2Given) model->REStempCoef£2 = 0;

/♦ loop through all the instances of the model ♦/

for (here = model->RESinstances; here != NULL ;
here=here->RESnextInstance) {

/♦ Default Value Processing for Resistor Instance ♦/

if(!here->REStempGiven) here->REStemp =ckt->CKTtemp;
if(!here->RESresGiven) {

(void)sprintf(emsg, "Resistor %s resistance^, set to 10000
, here->RESname);

(♦(SPfrontEnd->IFerror))(ERR_WARNING,

"%s: resistance=0, set to 1000", &(nere->RESname));
here->RESresist=1000;

}

difference = here->REStemp - model->REStnom;
factor = 1.0+ (model->REStempC<>efrl ^difference +

(model->REStempCoeff2)+difference+difference;

here->REScondua = 1.0/(here->RESresist ♦ factor);
}

}
retum(OK);

}
Figure 2.12

Example of a DEVtemperature function

34

35

2 If die instance temperature (temperature at which the specific instance will operate) is not

specified, it should be set to the circuit operating temperature (ckt->CKTtemp).

Finally, all parameters should be adjusted for temperature and any pre-computation of derived

values may be performed.

2.6.4. DEVsetic

int

CAPgetic(modeL ckt)
CAPmodel ♦model;

CKTcircuit ♦ckt;

{
CAPinstance ♦here;

/♦

♦ grab initial conditions out of rhs array. User specified, so use
♦ external nodes to get values
♦/

for(; model; model = model->CAPnextModel) {
for(here = model->CAPinstances; here ; here = here->CAPnextInstance)

if(!here->CAPicGiven) {
here->CAPinitCond =

♦(ckt->CKTrhs + here->CAPposNode) -
♦(ckt->CKTrhs + here->CAPnegNode);

}
}

}
return(OK);

}
Figure 2.13

Example of a DEVsetic function

This function is used to convert node initial conditions to device initial conditions. Before cal

ling the DEVsetic function, the simulator will put all of the node initial condition values in the ckt-

>CKTrhs array, so for any device initial condition that was not individually specified, the condition

should be computed from the node voltages present in ckt->CKTrhs.

36

2.6.5. DEVload

!'.:,.::..•'

int

CAPload(inModeLckt)
GENmodel ♦inModel; /♦ starting model pointer ♦/

register CKTcircuit ♦ckt; /♦ the circuit to work on ♦/

/* actually load the current capacitance value into the
♦ sparse matrix previously provided
*/

register CAPmodel ♦model = (CAPmodel+)inModel; /♦ current model ♦/

register CAPinstance ♦here; /♦ current instance ♦/

register int condl; /♦ the condition for using initial condition ♦/

double vcap; /♦ voltage across the capacitor ♦/

double geq; /♦ equivalent conductance ♦/

double ceq; /♦ equivalent current ♦/

int error, /♦ Var. to hold error return codes ♦/

/♦ check if capacitors are in the circuit or are open circuited ♦/

if(ckt->CKTmode & (MODETRANtMODEACivlODETRANOP)) {
/♦ evaluate device independent analysis conditions ♦/
condl=

(((ckt->CKTmode & MODEDC) &&
(ckt->CKTmode & MODEIN1TJCT))

I((ckt->CKTmode & MODEUIC) &&
(ckt->CKTmode & MODEINnTRAN))) ;

/♦ loop through all the capacitormodels ♦/

for(; model != NULL; model = model->CAPnextModel) {

/♦ loop through all the instances of the model ♦/

for (here = model->CAPinstances; here != NULL ;
here=here->CAPnextInstance) {

ifXcondl) {
vcap = here->CAPinitCond;

} else {
vcap = ♦(ckt->CKTrhs01d+here->CAPposNode) -

♦(ckt->CKTrhs01d+here->CAPnegNode);

}
if(ckt->CKTmode & (MODETRAN IMODEAC)) {

#ifhdef PREDICTOR

if(ckt->CKTmode & MODeNTTPRED) {
♦(ckt->CKTstateO+here->CAPqcap) =

♦(ckt->CKTstate l+here->CAPqcap);
} else { /♦ only const caps - no polynomials ♦/

#endif /♦ PREDICTOR ♦/

♦(ckt->CKTstateO+here->CAPqcap) = here->CAPcapac ♦ vcap;
if((ckt->CKTmode & MODEINnTRAN)) {

♦(ckt->CKTstatel+here->CAPqcap) =
♦(ckt->CKTstateO+here->CAPqcap);

}
#ifndef PREDICTOR

{

37

tendif /♦ PREDICTOR ♦/

error = Mmtegrate(ckt,&geq,&ceq,here->CAPcapac,
here->CAPqcap);

if(error) return(error);
if(ckt->CKTmode & MODEINnTRAN) {

♦(ckt->CKTstatel+here->CAPccap) =
♦(ckt->CKTstateO+here->CAPccap);

}
}

}
return(OK);

♦(here->CAPposPosptr)+= geq;
♦(here->CAPnegNegptr) += geq;
♦(here->CAPposNegptr) -= geq;
♦(here->CAPnegPosptr) -= geq;

*

(<jkt->CKTrhs+here->CAPposNode) -= ceq;
(ckt->CKTrhs+here->CAPnegNode) += ceq;

Figure 2.14
Example of a DEVload function

38

The DEVload function is the most important function in the device implementation. The

DEVload function is responsible for evaluating all instances at each iteration in dc and transient ana

lyses and for loading the sparse matrix and right hand side vector with the appropriate values.

Because of the variety of startup conditions and analysis type special conditions, this function can be

quite complicated, but as the most frequendy called function must be as efficient as possible.

There are sixmajor forms of operation of the DEVload function, controlled by the value of the

variable ckt->CKTmode. To begin, the mode determines where the DEVload function obtains the ter

minal voltages of the device for the evaluation. The six cases are:

MODEINITFLOAT

This is the most common case and is used when iterating to convergence. The terminal vol

tages should be obtained by looking in the previous solution vectorckt->CKTrhs01d.

MODFJNITPRED

This is the case used for the first iteration at any given timepoint. In this case, historically,

39

SPICE has had to predict the terminal voltages. For non-linear devices where junction voltages

have been being saved, a linear prediction of the junction voltages is performed, otherwise, the

values from the previous solution vector are used. The most recent version of SPICE3 treats this

case in two different ways. If the preprocessor symbol "PREDICTOR" is defined, this case

can be treated exacdy as MODEXNITFLOAT since the simulator will perform the needed predic

tion, while if it is not defined, the predictionshould be done as in SPICE2.

MODEINnTRAN

This is a special case of MODEINITPRED and is used for the first iteration at the first timepoint

after the dc solution. This is needed because the prediction code historically used two previous

solutions to perform the prediction, but for the first timepoint only one previous solution is

available. This special case is no longer important since SPICE3 now either performs the pred

iction as in the MODEINITPRED case described above, generates data to fill in the data for the

non-existent second previous timepoint, thus MODEINnTRAN can always be considered

equivalent to MODEINITPRED.

MODFJNITFrX

This is the case which considers the effect of the "off" specifications on device lines. Other

than forcing devices to be off if necessary, this case behaves exacdy as MODEINTTFLOAT.

MODFJNITJCT

This is used for the first iteration of the circuit and is used to initialize the junction voltages to

something reasonable. Where there is no advance knowledge, such as from initial conditions,

the best results have been obtained in the past from initializing the junctions to V, or its

equivalent to allow the device to readily move either direction in a single iteration.

MODEDSTITSMSIG

This case is used to store special values needed for small signal analyses. Traditionally, SPICE2

did not save very many of the values computed as intermediate values, but some of them were

needed during the small signal analyses, where such things as capacitor charges were not

40

needed. This mode triggered the DEVload function to save these extra values in place of the

normally saved information in the state vector. This makes the use of things in the state vector

confusing since it is necessary to know the exact context of the call to the function to know

what values are stored in the vector. In SPICE3, there is a separate location in the per instance

data structure used to store each of these additional values, and most are simply computed in

place during the course of the evaluation. If a call is made with this flag set, any values which

may occasionally not be computed that are needed for small signal analysis should be explicitly

computed and stored. Terminal voltages are again picked up from the previous right hand side

vector, but the matrix and new right hand side vector need not be recomputed.

Once the operating condition of the device is determined, the necessary derivatives need to be

computed. The matrix ckt->CKTmatrix must be filled with the jacobian of of the circuit In the

absence of the preprocessor define "NEWCONV" the convergence tests described as making up the

DEVconvTest function should be performed here, otherwise they are performed in that function.

2.6.6. DEVtrunc

int

MOSltrunc(inModel, ckt, timeStep)
GENmodel ♦inModel;

register CKTcircuit *ckt;
double ♦timeStep;

{
register MOSlmodel ♦model = (MOSlmodel ♦)inModel;

register MOSlinstance ♦here;

for(; model != NULL; model = model->MOSlnextModel) {
for(here = model->MOSlinstances ; here != NULL ;

here = here->MOSlnextInstance) {
CKTterr(here->MOSlqgs, ckt, timeStep);
CKTterr(here->MOSlqgd, ckt, timeStep);
CKTterr(here->MOSlqgb, ckt, timeStep);

}
}
return(OK);

}
Figure 2.15

Example of a DEVtrunc function

41

The DEVtrunc function is used to compute the truncation error for eachenergy storage device in

the circuit The CKTterr function is generally used. For a given set of charge/current vectors CKTterr

computes the acceptable truncation error, and from that it computes the maximum timestep that could

have been taken to reach this point consistent with the acceptable error. The DEVtrunc function

reduces its timeStep argument to be the minimum of its previous value and the smallest timestep

found for any of the instances it processes.

2.6.7. DEVconvTest

int

DIOconvTest(inModel, ckt)
GENmodel ♦inModel;

CKTcircuit ♦ckt;

/♦ Check the diodes for convergence ♦/

{

}

register DIOmodel ♦model = (DIOmodeF)inModel;
register DIOinstance ♦here;

double delvd, vd, cdhat, cd;
double tol;

/♦ loop through all the diode models ♦/

for(; model != NULL; model = model->DIOnextModel) {
/♦ loop through all the instances of the model ♦/

for (here = model->DIOinstances; here != NULL ;
here=here->DIOnextInstance) {

/♦

♦ initialization

*/

vd = ♦(ckt->CKTrhsOId+here->DIOposPrimeNode)-
"(ckt^CKTrhsOld + here->DIOnegNode);*/

delvd=vd- ♦(ckt->CKTstateO + here->DIOvoltage);
cdhat= ♦(ckt->CKTstateO + here->DIOcurrent) +

♦(ckt->CKTstateO + here->DIOconduct) ♦ delvd;
cd= ♦(ckt->CKTstateO + here->DIOcurrent);
/*
♦ check convergence
*/

tol=ckt->CKTreltol+

MAX(FABS(cdhat), FABS(cd))+ckt->CKTabstol;
if (FABS(cdhat-cd) > tol) {

ckt->CKTnoncon++;
return(OK); /♦ don't need to checkany more diodes ♦/

}
}
return(OK);

Figure 2.16
Example of a DEVconvTest function

42

The DEVconvTest function performs the necessary convergence testing to determine whether the

currents in each device have converged. If the device has no energy storage elements, this routine is

not necessary, but if there are energy storage elements, this function should test the change in the

currents since the last iteration and increment ckt->CKTnoncon if the change exceeds the permitted

43

tolerance. Code to perform this testing is integrated into the DEVload function if the preprocessor

symbol NEWCONV is not defined, but if it defined it is in this routine so that unnecessary evaluations

of the device are not performed.

2.6.8. DEVaccept

The DEVaccept function is called by the simulator at each timepoint once it has been deter

mined that the current solution is adequate and will be accepted. This allows the device code to do

any clean up or one time only operations necessary. Typically, this is used by devices to check for

breakpoints and set future breakpoints.

2.6.9. DEVacLoad

int

CAPacLoad(inModel, ckt)
GENmodel ♦inModel;

register CKTcircuit ♦ckt;

{
register CAPmodel ♦model = (CAPmodel+)inModel;
double val;
register CAPinstance ♦here;

for(; model != NULL; model = model->CAPnextModel) {
for(here = model->CAPinstances ; here != NULL;

here = here->CAPnextInstance) {

val = ckt->CKTomega ♦ here->CAPcapac;
♦(here->CAPposPosptr +1) += val;
♦(here->CAPnegNegptr +1) += val;
♦(here->CAPposNegptr +1) -= val;
♦(here->CAPnegPosptr +1) -= val;

}

return(OK);

Figure 2.18
Example of a DEVacLoad function

The DEVacLoad function is a variation of the DEVload function that is used when performing ac

analysis. The DEVacLoad function will not evaluate the device based on current information in the

int

TRAaccept(ckt, inModel)
register CKTcircuit ♦ckt;

GENmodel ♦inModel;

{
register TRAmodel ♦model = (TRAmodel ♦)inModel;

register TRAinstance ♦here;

register int i=0, j;
double vl, v2, v3, v4;
double v5, v6, dl, d2, d3, d4;
double ♦from, ♦to;

int error,

/♦ loop through all the transmission line models ♦/

for(; model != NULL; model =model->TRAnextModei) {
/♦ loop through all the instances of the model ♦/

for (here = model->TRAinstances; here != NULL ;
here=here->TRAnextInstance) {

if[(ckt->OCrtime - here->TRAtd) > ♦(here->TRAdelays+6)) {
/♦ shift! ♦/

for(i=2;i<here->TRAsizeDelay &&
(ckt->CKTtime - here->TRAtd > ♦(here->TRAdelays+3#i));i++)

{ /♦ loop does it all ♦/; }
i -= 2;
for(j=i; j<=here->TRAsizeDelay; j++) {

from = here->TRAdelays + 3+j;
to = here->TRAdelays + 3*(j-i);
♦(to) = ♦(from);

♦(to+1) = ♦(from+1);

♦(to+2) = ♦(from+2);

}
here->TRAsizeDelay -= i;

1
if(ckt->CKTtime - ♦(here->TRAdelays+3+here->TRAsizeDelay) >

ckt->CKTminBreak) {
if(here->TRAallocDelay <=here->TRAsizeDelay) {

/♦ need to grab some more space ♦/

here->TRAallocDelay += 5;
here->TRAdelays = (double ♦)REALLOC((char ♦)here->TRAdelays,

(here->TRAallocDelay+l)^3+sizeof(double));
}
here->TRAsizeDelay ++;
to = (here->TRAdelays +3+here->TRAsizeDelay);
♦to = ckt->CKTtime;
to = (here->TRAdelays+l+3#here->TRAsizeDelay);
♦to = (♦(ckt->CKTrhs01d + here->TRAposNode2)

-♦(ckt->CKTrhs01d + here->TRAnegNode2))
+ ♦(ckt->CKTrhs01d + here->TRAbrEq2)+

here->TRAimped;
♦(here->TRAdelays+2+3+here->TRAsizeDelay) =

(♦(ckt->CKTrhs01d + here->TRAposNodel)

44

-♦(ckt->CKTrhs01d + here->TRAnegNodel))
+ ♦(ckt->CKTrhs01d + here->TRAbrEql)+

here->TRAimped;
vl = ♦(here->TRAdelays+l+3+here->TRAsizeDelay);

v2 = ♦(here->TRAdelays+l+3+(here->TRAsizeDelay-l));

v3 = ♦(here->TRAdelays+l+3+(here->TRAsizeDelay-2));

v4 = ♦(here->TRAdeIays+2+3+here->TRAsizeDelay);

v5 = ♦(here->TRAdelays+2+3+(here->TRAsizeDelay-l));

v6 = ♦(here->TRAdelays+2+3+(here->TRAsizeDelay-2));

dl = (vl-v2)/ckt->CKTdeltaOld[0];
d2 = (v2-v3)/ckt->CKTdelta01d[l];
d3 = (v4-v5)/ckt->CKTdeltaOld[0];
d4 = (v5-v6)/ckt->CKTdeita01d[l];
if((FABS(dl-d2) >= here->TRAreltol+MAX(FABS(dl), FABS(d2))+

here->TRAabstol) I
(FABS(d3-d4) >= here->TRAreltol+MAX(FABS(d3), FABS(d4))+
here->TRAabstol)) {

/♦ derivative changing - need to schedule after delay ♦/

error = CKTsetBreak(ckt,
♦(here->TRAdelays+3#here->TRAsizeDelay-3) +
here->TRAtd);

if(error) retum(error);

return(OK);

Figure 2.17
Example of a DEVaccept function

45

right hand side vector, but will load the matrix and right hand side based on the data at the last dc

analysis, which will have been followed by a call to the DEVload function with the MODEINITSMSIG

bit set This should have saved enough data in the instance's own data structures to allow the matrix

to be quickly loaded during an ac analysis with the proper conductance evaluated at the frequency

fWxckt-»CKTomega.

2.6.10. DEVpzLoad

int

CAPpzLoad(inModel,ckt,s)
GENmodel ♦inModel;

CKTcircuit ♦ckt;

register SPcomplex +s;
{

register CAPmodel ♦model = (CAPmodel%)inModel;
double val;
register CAPinstance ♦here;

for(; model != NULL; model = model->CAPnextModel) {
for(here = model->CAPinstances;here != NULL;

here = here->CAPnextInstance) {

val = here->CAPcapac;
♦(here->CAPposPosptr) += val ♦ s->real;
♦(here->CAPposPosptr +1) += val ♦ s->imag;
♦(here->CAPnegNegptr) += val ♦ s->real;
♦(here->CAPnegNegptr +1) +=val ♦ s->imag;
♦(here->CAPposNegptr) -= val ♦ s->real;
♦(here->CAPposNegptr +1) -= val ♦ s->imag;
♦(here->CAPnegPosptr) -= val ♦ s->reaL
♦(here->CAPnegPosptr +1) -= val ♦ s->imag;

}
retum(OK);

}
Figure 2.19

Example of a DEVpzLoad function

46

The DEVpzLoad function is very similar to the DEVacLoad function, but evaluates the conduc

tance at the complex frequency s which is not the purely imaginary frequency / used in the ac

analysis.

2.7. Sensitivity routines There are five subroutines which are entirely dedicated to performing

sections of the sensitivity analysis. The modifications to SPICE3 to support sensitivity analysis are

covered in an additional report <**"&** which provides the details of that implementatioa The imple

mentation of sensitivity analysis for a device requires that five routines, DEVsenSetop, DEVsenLoad,

DEVsenUpdate, DEVsenAcLoad, and DEVsenTrunc be written as described in that report. If no sensi

tivity capability is required, these routines can be left out

47

2.8. More data structures and constants

In addition to the basic per model and per instance data structures, there are a few other struc

tures that must be defined to provide the complete description of the device type to the higher levels

of the simulator.

2.8.1. DEVinstSize

The DEVinstSize field should be initialized to the size of the per instance data structure needed

by the device, and is usually initialized using the preprocessor construct sizeof to automatically track

changes.

2.8.2. DEVmodSize

The DEVmodSize field must be initialized to the size of the per model data structure needed by

the device, and is usually initialized using sizeofas the DEVinstSize field is.

2.83. instanceParms

static IFparm RESpTableQ = {
IOP("resistance", RES RESIST,
IOP("w",
IOP(T',
IOP("c",
IOP("p",

RES_WIDTH,
RES_LENGTH,
RES~CURRENT, EFJREAL,
RES~POWER, IF REAL,

IFREAL,
IFREAL,
if'real,

"Resistance"),
"Width"),
"Length"),
"Current"),
"Power")

Figure 2.20
Example of a instanceParms definition

The instanceParms element in the structure is eventually exported all the way to the front end

and is an array which describes die acceptable parameters and queries for the device instances. The

array should be a static, initialized array containing instances of the macros IP, OP, and IOP. These

macros are defined in the DEVdefs.h header file and are used to specify parameters which are Input

Parameters, Output Parameters, or Input and Output Parameters. These macros perform two

48

functions:

They shorten the text needed to describe a parameter, so that it can frequendy be put on a sin

gle line, by automatically putting the IFjSET and IF_ASK bit in the proper subfield.

They allow the program to fit on a machine such as the IBM PC/AT which has a limited data

area for initialized variables where the descriptive text must be left out

The contents of the structure comes from the lists of parameters and questions prepared while

writing the DEVparam and DEVask functions. For each legal param argument to the DEVparam func

tion, a line of the form:

IP(name, const, type, description)

should be present in the instanceParms array. The name field is the short name or abbreviation that

the user will use to refer to the parameter, const is the corresponding symbolic constant used in the

DEVparam function as a case label, type is a.coded variable type field that corresponds to the type of

data required in the DEVparam function, and description is a longer description of the parameter

designed to help a user unfamiliar with the abbreviations used. Further details of the coding of the

type field can be found in the description of the IFparm data structure in the front end to simulator

interface appendix.

2.8.4. modelParms

static IFparm RESmPTablef] = {
IOP("tcl", RES_MOD_TCl,
IOP("tc2", RES_MOD_TC2,
IP ("r", RES MOD R,

};

DFJtEAL, "First order temp, coefficient"),
IF_REAL, "Second order temp, coefficient"),
EFFLAG, "Device is a resistor model")

Figure 2.21
Example of a modelParms definition

The modelParms structure is exacdy comparable to the instanceParms structure, but contains

descriptions of the parameters to the device models instead of the instances of those models.

2.8.5. Symbolic constants

/♦ instance parameters ♦/

#define RES_RESIST 1
#define RES WIDTH 2

#define RESJJENGTH 3
#define RES_CONDUCT 4
#define RES~RESIST_SENS 5
#define RESCURRENT 6
#define RES POWER 7
#define RES""SENS_REAL 8
#define RES~SENS_IMAG 9
#define RES~SENS MAG 10
#define RES SENS~PH 11
#define RES"~SENS~CPLX 12
#define RES~SENS_DC 13

/♦ model parameters ♦/

#define RES MOD TCI 101
#define RES~MOD~TC2 102
#define RES~MOD_RSH 103
#define RES MOD~DEFWIDTH 104
#define RES~MOD NARROW 105
#define RES MOD~R 106

Figure 2.22
Example of a set of

symbolic constant definitions

49

Once all of the functions to implement the device are complete, the symbolic constants used to

refer to parameters must be defined. The constants should be grouped into those which apply to

instances and those which apply to models. The exact values used for these symbolic constants is not

important, but it is recommended that they be distinct to help catch errors and that the two sets of

symbolic constants each use a contiguous set of integers to make it possible for compilers to generate

better code.

2.8.6. Function declarations

extern int RESask();
extern int RESdelete();
extern void RESdestroyO;
extern int RESload();
extern int RESmAsk();
extern int RESmDelete();
exfern int RESmParam();
extern int RESparam();
extern int RESpzLoad();
extern int RESsenAcLoad();
extern int RESsenLoad();
extern int RESsenSetupO;
extern void RESsenPrint();
extern int RESsetupO;
extern int REStempQ;

Figure 2.23
Example of a set of
function declarations

50

The device specific header file should contain a set of declarations for all of the functions used

in the device implementation.

2.9. The SPICEdev structure

SPICEdev RESinfo = {
{

"Resistor",
"Simple linear resistor",

sizeof(RESnames)/sizeof(char ♦),

sizeof(RESnames)/sizeof(char ♦),

RES names,

sizeof(RESpTable)/sizeof(IFparm),
RESpTable,

sizeof(RESmPTable)/sizeof(IFparm),
RESmPTable,

RESparam,%/# the DEVparam function ♦/

RESmParam,%/# the DEVmodParam function ♦/

RESload,%/+ the DEVload function ♦/

RESsetup.V the DEVsetup function ♦/

REStemp,%/+ the DEVtemp function ♦/

NULL,%/+ the DEVtrunc function ♦/

NULL,%/+ the DEVfindBranch function ♦/

RESload,%/+ the DEVacLoad and DEVload functions are identical ♦/

NULL,%/^ the DEVaccept function ♦/

RESdestroy,%/+ the DEVdestroy function ♦/

RESmDelete,%/% the DEVmDelete function ♦/

RESdelete,%/# the DEVdelete function ♦/

NULL,%/+ the DEVsetic function ♦/

RESask,%/^ the DEVask function ♦/

NULL,%/+ the DEVmodAsk function ♦/

RESpzLoad,%/+ the DEVpzLoad function ♦/

NULL,%/+ the DEVconvTest function ♦/

RESsSetup,%/+ the DEVsenSetup function ♦/

RESsLoad,%/+ the DEVsenLoad function ♦/

NULL,%/+ the DEVsenUpdate function ♦/

RESsAcLoa<L%/# the DEVsenAcLoad function ♦/

RESsPrint,%/+ the DEVsenPrint function ♦/

NULL,%/+ the DEVsenTrunc function ♦/

sizeof(RESinstance),
sizeof(RESmodel),

Figure 2.24
Example of a SPICEdev
structure initialization

51

52

The SPICEdev structure is an initialized constant stracture which contains pointers to all of the

other descriptive data structures and functions defined in this appendix. By exporting this one struc

ture to the higher level routines, the details of which functions are required, the exact names of them,

and even the set of functions that will be used at run time is not fixed at this time. The next level of

software can use any or all of the functions provided by the device interface and will only have a sin

gle reference to the entire device rather than about 30 of them distributed throueh the code.

References

Chou88a.

Choudhury, Umakanta, "Sensitivity Analysis in SPICE3," Masters Report, University of Cali

fornia, Berkeley (December 1988).

Kem78a.

Kemighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey (1978).

53

	Copyright notice1989
	ERL-89-45

