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ABSTRACT

We consider a flexible spacecraft modeled as a rigid body which rotates arbitrarily in iner-
tial space; a light flexible beam is clamped to the rigid body at one end and free at the other. The
equations of motion are obtained by using free body diagrams. It is shown that suitable boundary
controls applied to the free end of the beam ahd a control torque applied to the rigid body stabil-

ize the system. The proof is obtained by using the energy of the system as a Lyapunov functional.
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introduction

Many mechanical systems, such as spacecrafts with flexible appendages, consist of coupled
elastic and rigid parts. In such systems, if a good performance of overall system is desired, the
dynamic effect of elastic members becomes important. Thus, over the last decade there has been
a growing interest in obtaining new methods for the design, dynamics and control of the systems

which have elastic parts. (e.g. see [Bal.1] and the references therein ).

Consider a system which has rigid and elastic members.The motion of elastic members is
usually described by a set of partial differential equationd with appropriate boundary conditions.
Since the motion of rigid parts is governed by a set of nonlinear ordinary differential equations
and rigid members are coupled with elastic members, overall equations of motion are generally a
set of coupled nonlinear partial and ordinary differential equations. These equations can be

obtained by using standard methods in Mechanics, e.g. see [Gol.1].

After having obtained the equations of motion, the commonly used approach is to consider
only finitely many modes of the elastic parts, which is called " modal analysis ", This approach
reduces original equations to a set of coupled nonlinear ordinary differential equations. However,
having established a control law for this reduced set of equations does not always guarantee that
the same control law will work on the original set of equations, ( e.g.one migh encounter so-
called "spillover” problems , [Bal.2] ). Also note that the actual number of modes of an elastic
system,in theory, is infinite and the number of modes that should be retained is not known a

priori.

Recently Biswas and Ahmed, [Bis.1], used a Lyapunov type approach to prove the stability
of a rigid spacecraft with an elastic beam attached to it under appropriate forces and torques
applied to the beam and the rigid spacecraft. Their proposed control laws contain distributed
forces appied to the beam which are proportional to the beam deflection velocities. Implementa-

tion of such control laws might not be easy.
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In recent years, boundary control of elastic systems ( i.e. controls applied to the boundaries
of elastic systems ) has become an important research area. This idea is first applied to the sys-
tems governed by wave equation ( e.g. strings ), [Che.1], and recently extended to the beam equa-
tions. In particular Chen, [Che.2], proved that, in cantilever beam, a single actuator applied at the

free end of the beam is sufficient to uniformly stabilize the beam deflections.

In this paper, we consider the motion of a rigid body with a beam clamped to it, the other
end of the beam is free. The rigid body is assumed to be rotating in an inertial space with its
center of mass fixed in a given inertial frame. After having obtained the equations of motion, we
define the rest state of the system. :I'hen we state the contol problem, which is , if the system is
perturbed from the rest state, to find appropriate control laws which drive the systém to the rest
state. We propose two differem: control laws, each of which consist of appropriate boundary
force and moment controls applied to the beam at its free end and a torque control applied to the

rigid body. We then show that the proposed control laws, rigid body angular velocities and beam

deflections decay to the rest state.

In section 1, we explain the configuration under consideration and derive the equations of
motion using free-body diagrams. Then we state the control problem and propose some feedback

laws.

In section 2 and 3, we show that the proposed control laws solve the proposed control prob-

lem.
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notation

boldface letters like r , n etc. denote vectors in R

x=L
L>={f :[O.L}-R! [ f2dx <)
x=0

H*=(f e L? | ficl?,i=1,..k }.
Ho={f e H* | f(O=f10)=0}.

fx »f. etc., denote %, 3—{, etc., resp.

x denotes standard cross-product in R3,

<,>:R3x R?® = R denotes the standard inner product in R3.
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section 1

1.1 equations of motion

We consider the following configuration : Figure 1 shows the rigid body (drawn as a

square) and the beam ; P is a point on the beam.

Figure 1 : Rigid body with flexible beam.

In figure 1, ( O, e, e;, €3 ) denotes a dextral orthonormal inertial frame, which will be
referred to as N, ( O, Dy, D,, D3 ) denotes a dextral orthonormal frame fixed in the rigid body,
which will be referred as B, where O is also the center of mass of the rigid body and D,, D,, D,
are the principal axes of inertia of the rigid body. The beam is clamped to the rigid body at the
point Q at one end along the D, axis and is free at the other end. Let L be the length of the beam.
We assume that the mass of the rigid body is larger than the mass of the beam, so the center of
mass of the rigid body is approximately the center of mass of the whole configuration. So the

point O is. fixed in the inertial space throughout the motion of the whole configuration and the
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rigid body may rotate arbitrarily in the inertial space.

The beam is initially straight, along the D, axis. Let P be a typical beam element whose
distance from Q in' the undeformed configuration is x, let u; and u4 be the displacement of P
along the D, and D5 axes, respectively. Let r(x,¢ )=OP be the position vector of P. Let the

beam be homogeneous with uniform cross-sections.

We define the contact force n(x,t) and the contact moment m(x,t) at the beam cross-sections
as follows. Consider a beam cross-section C, at x. The effect of the part of the beam which lies
on the (x,L] segment of the beam to the materials which lies on the [0,x] segment is equivalent to
a force applied to the cross-section C, , which is called the contact force n(x,t), and a moment
applied to the cross-section C,, which is called the contact moment m(x,t). For further informa-

tion, see [Ant.1].

Neglecting gravitation, surface loads and rotatory inertia of the beam cross-sections, we

obtain the following equations that describe the motion of the whole configuration : t = 0

on _. o

—_— = >

™ katz O<x<L 20 (1.1)
om  or .
¥+§xn—0 O<x<L 20 (1.2)
IR(;H-o)xIRa):r(O,t)xn(O,t)+m(0,t)+Nc(t) (1.3)

wheren (x, ¢ ) and m ( x, ¢ ) are the contact force and the contact moment , respectively, A is the
mass per unit length of the beam, which is a constant by«assumption, L is the length of the beam,
I is the inertia operator of the rigid body, which is diagonal, ® is the angular velocity of the
rigid body with respect to the inertial frame N and N, (¢ ) is the control torque applied to the
rigid body.

The equation (1.1) is the balance of forces, the equation (1.2) is the balance of moments at
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the beam cross sections and the equation (1.3) is the rigid body angular momentum equation.
Note that the first two terms in the right hand side of (1.3) represent the torque applied by the

beam to the rigid body.

1.2 remark : Let r : R—R? denote a vector valued function of time, typically r(z) is the posi-
tion of a particle. Letr¥ = (¥, r¥,,r¥ )T andr® = (2, r®,, r2,)T denote the components
of r in the dextral orthonormal frame N given by ( O, e;,’e,, €3 ) and in the dextral orthonormal
frame B given by ( O, Dy, D,, D5 ) , respectively. Let @ denote the angular velocity of the frame

B with respect to the frame N. Then we have the following (see [Kan.1]):

i=3 drN i=3 grf D. +
‘-§l ar e"—i§l ar ; +OXr.
dr. _iBarl dr. _iBdrp
If we define (—-)y = Y, ——e; and (—-)g = },——D; then we obtain the following equation
dt o a dt o at
(see e.g. [Gol.1]):
d
(%)” =(—d-t"-)3 +oxr. 0O . (1.4)

We use the Euler-Bemoulli beam model to give the component form of the contact force n
and the contact moment m in terms of the beam deflections u;,u;. For more details, see
[Mei.1]. Assuming that the beam is inextensible and neglecting the torsion, we express the con-

tact force n, the contact moment m, and the position vector r in terms of #,; and u4 as follows: for

. 0€x<L,t20,

m=mD, +m;D, n=n,D;+nD; - (1.5)
my=Eljus,, n3=-—Elus. (1.6)
msy=—El U ny==El U0 a.n
r=u\Dy+(b +x)Dy+usD; - (1.8)

where EIy and El; are the flexural rigidity of the beam deflectios along the axes D, and D5 ,
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respectively, and b is the distance between the points O and Q.

Since the beam is clamped to the rigid body at the point Q, we have (see figure 1) :
u;(0,t)=uy(0,t)=0, 20, i=1,3 (1.9

The rest state of the system is by definition :

0=0 (1.10.1)

ui(x)=usz(x)=0 0<x<L (1.10.2)

up(x)=us3(x)=0 0<x<L (1.10.3)
We now state our

stabilization problem :

If the system given by the equations (1.1)-(1.9) is perturbed from the rest state defined by

[(1.10.1)-(1.10.2), find an appropriate control law that drives the system to the rest state.(]

1.3 proposed control laws :

We propose two stabilizing control laws. Each law consist of appropriate forces and
torques applied to the beam at the free end and a torque applied to the rigid body. We note that _

these two sets differ in the torque applied to the rigid body.

1.3.1 control law based on cancellation

This control scheme applies a force n(L,t) and a torque m(L,t) at the free end of the beam and a
torque N, (t) applied to the rigid body. They are specified as follows : we choose o; > 0, B; >0,
and a 3x3 positive definite constant matrix K , (which can be chosen diagonal); then for all t> 0, i

=1, 3, we require the following equations :

n(L,t)+o;u,(L,t)=0 (1.11)



m;(L,t)+Puz(L,t)=0 ©(112)
N, (t)=-r(0,1)xn(0,¢)-m(0,¢)-Ka(t) (1.13.1)

Equation (1.11), {(1.12), resp.} represents a transversal force, { torque, resp. } applied at the
free end of the beam in the direction, { around, resp.} the axis D; whose magnitude is propor-
tional to and whose sign is opposite to the end point deflection velocity, u; (L,z),{ end-point
deflection angular velocity u;, (L.t), resp. } of the beam along the direction of D; axis, for i= 1,
3. Also note that to apply the control laws given by (1.11)-(1.13.1), the end point deflection velo-
cities u; (L, ¢ ), the end point deflection angular velocities u;, (L, ), the rigid body angular
velocity vector w(t) and the moment applied by the beam to the rigid body must be measured.
This moment consist of the effect of the contact force n(0,t) and the contact moment m(0,t) at the
clamped end. Both can be measured by using strain rosettes and strain gauges,

respectively,[Ana.1] .

The control law (1.13.1) cancels the effect of the beam on the rigid body. To see this, sub-
stitute (1.13.1) into (1.3), then the equation (1.3) becomes a set of nonlinear ordinary differential
equations. Then substitute the solution w(t) of (1.3) into the beam equation (1.1). Now the latter

becomes a set of linear partial differential equations.

Equation (1.13.1) is reminiscent of a "computed torque" type control law in robotics,
(Pau.1]. When substituted in (1.3), (1.13.1) cancels the effect of the beam on the rigid body.
This type of control law recently has been applied to the attitude control of the flexible spacecraft,

[Ana.1]. O
1.3.2 natural control law

This control sceheme applies the same boundary force n(L,t) and the moment m(L,t) as
specified by the equations (1.11) and (1.12), respectively, but the torque applied to the rigid body

is given by :
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N.(t)=-r(L,t)xn(L,t)-m(L,t)-Kwn(t) (1.13.2)

This control scheme is "natural” in the sense that it enables one to choose the total energy of

the whole configuration as a Lyapunov function to study the stability of the system.

Unlike the control law (1.13.1), when (1.13.2) is substituted in (1.3), it does not cancel the
effect of the beam on the rigid body. As a result of this, the equations (1.1)-(1.9), together with
the control laws (1.11),(1.12) and (1.13.2) form a set of nonlinear ordinary and partial differential
equations. The control law (1.11),(1.12),(1.13.2) requires that the end-point deflections u; (LY,
the end-point deflection velocities u; (L,t), the end-point deflection angular velocities u;, (L.t)
and the rigid body angular velocity vector o(t) be measured. The first two could be measured by

optical means and the latter by gyros.

Throughout our analysis, the initial conditions %; (x,0) and u; (x,0) are assumed to be
sufficiently differentiable (i.e C2intand C*in x ) and compatible with the boundary conditions

(1.9), (1.11), (1.12), for i=1, 3.
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section 2
stability results for the control law based on cancellation :

After substituting (1.13.1) in (1.3), we obtain the following rigid body equation :

LRro+oxo=-K o @2.1)

2.1 proposition : Consider the equation (2.1). There exist a ¢c> 0 and an o > 0 such that for all

initial conditions ® (0) € R3, the solutioﬁ o (2) of (2.1) satisfies

<O@),o)><ce™ <n(0),n0)> forall t=20 2.2)

proof: Consider the following "energy function" for the rigid body :

Ep(t) = % <0 @), o ()> 2.3)

Ep (¢) is the rotational kinetic energy of the rigid body with respect to the inertial frame N.

Also note that since I, =diag(/,,/,.! 3), we have

Inin<®,0><2Ep <I . <w,0> forall ®eR? (2.4)

where [ ;= min(/ 1,/ 3,/ 3) and [ oy = max(/ 1,15,/ 3).
Differentiating (2.3) and using (2.1) we obtain :

Ep(t) =<, 0>
=—<®0xlO>-<0, K 0>
=—<0,K o> (2.5)

But, since K is positive definite, there exist positive, nonzero constants A; and A,, which
may be taken as the minimum and the maximum eigenvalues of %(K +KT), respectively , such

that the following holds :
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M<o,0><<0,Kk 0><h,<0,0> (2.6)

max(/ l’l 2,1 3) 2}.1

=——L O
min@ dods) o max{ iyl

Using (2.4)-(2.6), we obtain (2.2) where ¢ =

Next, we obtain the component form of equation (1.1). After applying (1.4) twice, we
obtain the following :

d’r dr, . - dr
Z )y, =(=— = . 2.
(dtz)N (dtz)g +(oxr+2cox(dt)3+(ox(coxr) 2.7

Using (2.7) in (1.1)-(1.10), we obtain the following equations which govern the motion of

transverse beam deflections in D, and D5 directions :

EIN Uigee + M1y +2 X @p g, + A (@) + @) @) U5
“A (02 + @)U ~A(-0,0,)(b+x)=0 O0<x<L, t20 (2.8)
E13u3m+7«.u3,,—Zko)zu,,—k(&iz—mla)g)ul
-x(m12+m22)u3+x(03,+m2m3)(b+x)=o 0<x <L, t20 (2.9)

Equations (2.8) and (2.9) can be rewritten in the following state space form :

[ o 1 0 o .
U EI 4 uy
et W A S
d uy, A ox Uy
E u3 = 0 0 0 1 u3
Ely 3t
U3y _—3 9 Uz,
L 0 0 A 9x¢ 0 L
0 0 0 07 [ u 0
02 +07 0 —(@,+003) 20 |uy, (03 — ) (b+x)
+ 0 0 o o0 uy| 0 (2.10)
@ =@y 20, P2 +02 0 | |ug| | @ +@05) (b4x)
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whose solutions evolve in the following function space 4 :

H={((uy,uy,u3 uy) | uyeHe?, useHp? uy,el?, usel?). (2.11)

where the function spaces L2, H* and H¥, are as defined below :

x=L
L’={f :[0L]-R | [ fldx<o}
x=0

H*=(f e L2 | fiel?,i=1,.k ).
Ho=(f e H* | f(O)=7'0)=0}.

In H, we define the following inner product, which is called "energy" inner product

x=L
<z,2>pi= [ (Bl 1 +El3V g Vg ) dx
x=0
x=L '
+ [ Mugiia+vy¥))dx  forall z 7 e H. (2.12)
x=0 )

Note that, (2.12) induces a norm on H, which is called "energy norm". This norm is
equivalent to a standard "Sobolev" type norm which makes H an Hilbert space.( for more details,
see [Paz.1] and [Che.2])

To put (2.10) into an abstract equation form, we define the following operators A : H —H ,

B : R*xH —H and function f : R*—H,

[0 1 0 0|
El, 3¢
- A Sx_" 0 0 0
A= 0 0 0 ) . (2.13)
El; 3¢ "
0 0 —Tg 0
0 0 0 0
2+ w2 0 —(@+m03) 20,
B(t)= 0 0 0 0 (2.14)

(!.)2 — )0, 2(02 (012 + 0)32 0
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0

(@3 — e0y) (b+x)
f@)= 0 (2.15)

~(@; + @) (b+x)

2.2 remark : A is an unbounded linear operatoron H. B(¢) is bounded for all te R*. Since w(t)
and c;)(t) are exponentially decaying functions of t, (see proposition 2.1 and equation (2.1)), so is
|| B(#)l|, where the norm used here is the norm induced by the energy inner product given by

2.12).0

Using the above definitions, equation (2.10) can be put into the following abstract form :

g:—:Az+B(t)Z+f_(t) z(0)=zpe H (2.16)

where z=[ uy, uy,, u3, u3, 7. The domain D (A) of the operator A is defined as follows :

D(A)={ (uy, uy, w3 u3): uy eHo', uy, eHo', uz eHo?, us, eHy?, (2.17)
—El Uy (L) + 0y uyL)=0
El u1o@L)+PBu1n(L)=0
—El3 u3en(L)+ 0 u3,(L)=0
Eljus (L) +Byus,(L)=0}.

It is easy to show that D (A) is dense in H, [Che.2].

Next, we state the existence and uniqueness theorem of the solutions of (2.16). [Paz.1].

23 fact : Consider the equation (2.16) with A, B, f defined in (2.13)-(2.15). Then :

i) The operator A generates an exponentially decaying C, semigroup T(z) in H. That is, there

exista M > 0 and a & > 0 such that

[| TGN <M e™ forallt 20 ; (2.18)

ii) for all zoe D (A ), (2.16) has unique classical solution , defined forall s 20 ; '
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iii) in terms of T (¢), the solution z(t) of (2.16) may be written as :

x=L x=L
z(t)=T(@)zp+ I T(—s)B(s)z(s)ds + I T@-s)f(s)ds. (2.19)
x=0 x=0

proof :
i) Due to the block diagonal form of A, it is an easy extention of theorem 3.1 of Chen, [Che.2].
ii) Since B (¢) is globally lipschitz on H and || B (¢)| -is exponentially decaying due to the propo-

sition 2.1, (also see remark 2.2), it follows that A +B (¢) defines a unique, globally defined semi-

groupon H, (e.g. see [Mar.1], [Paz.1]).

Since f eL![R,H] and is a C* function of t, (see equation (2.15)), by standard theorems on
nonhomogeneous partial differential equations (e.g. see pp. 105-110, [Paz.1]) it follows that

(2.16) has unique solution defined for all ¢ > 0.
iii) That the solution may be given as (2.19) can be verified by substitution, using %f- =AT. O

Next, we prove the exponential decay of the solutions of (2.16).

24 theorem : Consider the equation (2.16), where the operators A, B (¢) and the function f (¢)
are defined in (2.13),(2.14) and (2.15) respectively. Then for all zqe D (4 ), the solution z (¢) of

(2.16) decays exponentially to 0.
proof : By taking norms in (2.19) and using (2.18), we get :

s=t

[z <M e[| 24| + [ M 30| Bs)| || 2¢)| ds
s=0

S={

+ [M e f(s)| ds (2.20)
s=0

But since o(z) and c;)(t) are decaying exponentially, it follows that there exist positive con-

stants ¢ > 0,c, > 0,8, > 0,8, > 0, such that for all t=0
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B <cie™ 2.21)

[ £ @] Scpe™ (2.22)

Using (2.21),(2.22) in (2.20), evaluating the last integral, and multiplying each side of
(2.20) by e, we get

I1z@)e¥|| <M ||z{d| +”;;; e® _1)

s=f

+ jM c,e'a"llz(s)essll ds (2.23)
s=0

Now applying a general form of Bellmann- Gronwall lemma ,(e.g. see [Des.1]), and using

the following simple estimate

s=t § =00 1
fePas< [ e as<— (2.24)
s=ty s=0 8l

we obtain the following :

Mc
2| <M || zo]| +—=2 (®* -1)

5_52
+zM cleMs.cl || g +";_§22 @B _ 1y o8 g
<M || 2d| + sk (e‘*"‘5=>‘-1)+Mz:,cl eM*"a dlzd| - ::;2)(1-;”")
B (S_gg(gigia?) e”,;—f' (1-2, (2.25)

Multiplying each side with ¢, we obtain the desired result. 01
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section 3

stability results for the natural control scheme (1.3.2)

To prove the stability of the system given by equations (1.1)-(1.12) and (1.13.2), we first define
the energy of the system as follows :
x=L

E(t)=l<m,cho>+—1- fa<r,r>ax
2 2x=0

1 x=L
+s L(Ellu,n%ﬂgumz)dx (3.1)
X

where < , > denotes the standard inner product in R3 ; the first term in (3.1) is the rotational
kinetic energy of the rigid bedy, the second term is the kinetic energy of the beam, both with

respect to the inertial frame N, and the last term is the potential energy of the beam .

3.1 proposition : Consider the system given by the equations (1.1)-(1.12) and (1.13.2). Then the
energy E (¢) defined by (3.1) is a nonincreasing function of t, along the solutions of (1.1)-(1.12)
and (1.13.2).

proof : By differentiating E (¢ ) with respect to t, using (1.1) and (1,4), we get

x=L

dEt)=<w, o>+ fA<r . ry>de
dt x=0
x=L
+ [ (BN g Uiy + El3llngy U3yy) dX
x=0
. x=L x=L
=<0,lpo>+ _[<r,,nx >dx + I(Ellum Uiy +ElUs s, ) dx
x=0 x=0
x=L x=L

=<(D,IR(;)>—EII Iu“ ulmdx "'Elg fu3, U 3xrxx dx
x=0 x=0
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x=L x=L

+EI, Iuln Uy dx +El4 ju3n Usey dX 3.2)
x=0 x=0

Using integration by parts we obtain the following equation , fori=1, 3 :
x=L

El; | iy ey dx =El e (L, 1 )ty (L, T )
x=0

x=L
—Eltie (L, t ).ty (Lot )+ El; [ Wiy iy dx (3.3)
x=0

Using (3.3) and boundary conditions (1.11) and (1.12) in (3.2), we get

E(t)=—<®,K0>—0quy,2(L.t)— 04 us(L.t)

—PBr ity 2L ot) =Py ttag (L 1) <O (3.4)

Since the rate of change of the energy is nonpositive, it follows that the energy is a nonincreasing

funétion of time. forallze H. O

3.2 remark : If one sets o; =f; =0, for i=1,3, and K =0,( i.e no control applied to the system ),

one gets E () = 0: as expected, the total energy (given by the equation (3.1)) is conserved. [

3.3 remark : We need an estimate, which states that if the energy given by (3.1) stays bounded,
then so does the beam deflections u;(x,z) and their derivatives u; (x,t),(hence also so does
r(x,t)), for all xe [O,L], for i=1,3. Using the boundary conditions and the fundamental theorem
of calculus, fori=1,3 we get forall 0<x <L ,forallt 20:

§=x

wG)= [ug(se)ds (35)
s=0
therefore, using Jensen’s inequality, [Mit.1], we get :

s=L
@<L [ uy¥s.t) ds (3.6)
s=0
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By using the same arguments, we get, forall x € [0,L]

s=L
e RAPSL | uie%(s.t)ds 3.7
s=0

hence, combining (3.5) and (3.6), we get :

s=L s=L
P SL [ ugXs)ds SL? [ wXs.p)yds . O (3.8)
s=0 s=0

Next, we will show that the rate of decay of the energy is at least % for large t.

3.4 theorem : Consider the system described by the equations (1.1)-(1.12)and (1.13.2). Then

there exists a 720 such that the energy given by (3.1) is bounded above by O (%) forall ¢t 2T.

proof : To show that E (¢) decreases at least as O (—1-), we first define the following function

V(i) foranyO<e<1,

x=L
V@)=2(1-€)t E(t)+2 [Ax<r,r, >dx , (3.9)
x=0

Next, we need the following estimate on V(t). Note that :
x=L x=L

- flx<r,,r,,>dx$xL.[(<r,,,r,>+<r,,r,>)dx (3.10)
x=0 x=0

Now by using Remark 3.3, we can find a M; > 0 and a M, >0 such that

x=L

=2 [Ax<r ,r,>dx SM\EQ)+M, (3.11)
x=0

Therefore, using the last inequality in (3.9), we get

RU-e)t-M)E@)-M,<V(t) t 20 (3.12)

Now, differentiating (3.9) and using equations (1.1)-(1.12), we get :
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V()=2(1-€e)E@)+2(1—¢)t E@t)

x=L x=L
+2 [Ax<r,,r>dc+2 [Ax<r ,r,>dx (3.13)
x=0 x=0 '

Using integration by parts, the third and fourth integrals in (3.13) can be evaluated as follows :

x=L x=L
2 [Ax<r vy >de=M<r @, Or@L,1)>- [A<r, 1, >dx (3.14)
x=0 x=0
x=L x=L
jlx <ry,ry>dx = f x<n, . >dx
x=0 x=0
x=L x=L
== [ % 1y BNl 1py @% — | % 3y El gy, dx (3.15)
x=0 x=0

To evaluate the last to integral, we need the following :
x=L

J' X Uy Uppry A =L uy (L,2) U (L ,t) —ut, (L t) u (L 1)
x=0

x=L

_L 2, .3 2
>l (Lot) + leoun dx (3.16)
After using (3.14)-(3.16) in (3.13), we get
. x=L
V@e)=(1-e)<wo,go>+(1-¢) [A<r,r >dx
x=0

x=L

+(1-€) [ (BN +Elus2)dx -2 (1-€)< 0, K0 >
x=0)
—2Q-g)oguyLt)-2(1—-€)ogus XL .t)

—2(1—€)Brur® L) =2 (1 —€) By sy 2L 1)
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’ x=L
+7\.L<I',(L,t),r,(L,t)>— fx(l’,,l’, >dx
x=0

=2L uy (L,t)ouy, (Lt)=2u (L) Bruyy (L2

. Blz x=L

+L ——u1g2Lt)-3El; [u,tdx
EIl x=o

—2L us,(L,t)ogus (Lt)—2us,(L,t) B3u3,,(L,t)

Baz x=L
+L E—13u3x,2(L,t)—3E13 [ w3 dx (3.17)
x=0

To estimate some of the terms in (3.17), we need the following inequalities :

(@ +b)*<2(a+b? aeR, beR. (3.18)
ab582a2+§b2 S<R,5#0 acR, beR. (3.19)

Finally using Remark 3.1 and Remark 3.3, we get the following estimate on the end point

velocities of the beam in the inertial frame.

<r,(L.t)r (L, t)><ky @ 2L2)+us L)) +k,<0, 0> (3.20)
for some £y > 0 and k5 > 0.

Using these estimates in (3.17), we obtain :

V) S(1-€)(2t <0, K 0>—< @, g ©>—Alky<®,®>)

x=L x=L
—e [A<r,r,>dx —(e+2) [ (Eluo>+Elus,?)dx
x=0 x=0

—2(—e)oytuy (Lt =2(1-€)ogt us (L t)?
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21 —e)Byt ULt =2 —€)Pst sy (L t)?

MLy XL 1) + s L) +2 Loy (B2 up XL 1)+ % L))
1

+2L 03 (82 us, AL ot) + —5 U3, 2L 1))+ 852 u AL 1)

522

+2 Bl (832u112(L !t)é ulﬁz(L’t))

+2B, (62 s )5 gL 4))
4

+ F B2u 1, AL :)+ — Bgzu;,,,z(L 1) (3.21)

where §;€ R are any nonzero real numbers, for i=1,2,3,4. Now, collecting likewise terms, we

rearrange (3.21) as follows :

V(t)s—(l—e)(Zt <O, K0~<0,[Ro>-ALk,<®,0>)

x=L

2L
& [A<r,r,>de-Q(1-g)oyt —ALk, -
x=0 81

oy
31 (L)

-2 -¢e)ogt —ALk, - f”)u3,2(1,,:)

—(2(1—8)B|t-8_ﬁ;-l’ B )y (L t) -
-(2(1-8)5:#—2;&-14 B_S)qulz(L )
4

x=L
—(e+2) [ (Elupg®+Elusg?) dx
x=0
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+ QLS Z+2PB8D) U AL 1)+ QL 058,24+ 2 B38d) us AL t)) (3.22)

By Remark 3.3 ( e.g. using (3.7) ) and choosing §; sufficiently small, i=1,2,3,4 , the sum of

the last two lines in (3.22) can be made negative. Then, we conclude that after some TeR,

V()<0 t>T (3.23)
hence
V)< V(T) t2T (3.24)

Using (3.12) and (3.24), we get the following estimate, which proves the theorem 3.4 :

E(t)s — T+ M2 >T 0O 325
(t)-Z(l-e)t—Ml t= (325

For the sake of brevity, the existence, the uniqueness and the exponential decay of the solu-

tions of the equations given by (1.1)-(1.12) and (1.13.2) are presented in the appendix. -
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appendix

In this appendix, first we give an existence and uniqueness theorem, A.1, to the linear part

of the equations (1.1)-(1.12) and (1.13.2) (i.e. the "natural" control scheme ). Then including the

nonlinear terms, in the theorem A.2 we prove the exponential decay of the solutions of the same

equations.

For simplicity, we’ll take the positive definite matrix K = diag ( k1, k, k3). Then equations

(1.1)-(1.12) and (1.13.2) can be written as:

Ellulm +7Lul,, +2l(02u3, +l((l‘)2+0)|0)3)u3
“A (02 + @)Uy —A (3 -0,0,)(b+x)=0 0<x<L, t.20
El3 Uggee +Mltzg =2 A @y 1y, — A (0= @ 03) 4,

“A (02 +®2)us +A (0 +0y0;) (b +x)=0 0<x <L, t20

x=L
1@y + (I3 = 1)0y03 + k1@ =El3 [ (b +x Mgy dx
x=0

x=L x=L

10, + (I = 13)@30, + kot = El5 | #1830 dx ~EI |z -
x=0 x=0

x=L

130+ (U= 1)0yp + kgy =Ely [ = (b +3 My ¥
x=0

together with the boundary conditions (1.9),(1.11) and (1.12).

(A.1)

(A2)

(A.3)

(A4)

(A.S5)

Let the function space H be the same as defined in (2.11). Define a new function space H=

HxR3. Then, separating the linear and nonlinear parts, the equations (A.1)-(A.5) can be put into

the following matrix form :
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%4 2 +Ti@)+8() .

where z = [uy, uy, ,u3, U3, @ ,0; ,03)7.

A:H — H is a linear operator whose matrix form is specified by the following :

A={my:i=1.7,j=1.7)
where all m;; are zero except :

mp=ms=1
EI, 3

AW )T(b+ A
mo = (b+x X )—
2 Aoaxt Is ox*

k3
ma7 = -E(bﬂ )

Ely 3% El, 3 ’-b A
Mma3= Aot I +x)J(+x)

ky
Mmys = —(b+x)
I

El, 34
, m53=l— j (b+x)
1 x=0
ky
"155---11
ko
66—-12
EIl, 34
mn =—"73— I (b+X)
x=0
ks
m77=-z

T, : H—H is a nonlinear integral operator defined as :

[ 0
=L EI, El,
u3 ("_u3ulmx + [_2u1u3m ) dx
0
=L Fi1, El,
T;(z)= ( "l_ulu3xm + —I_u3ulxm )dx
x=O 2 2
0
*=L  FI, El,
J (_I—ulu3xm + I_u3ulxzxz ) dx
x=0 2 2
i 0

(A.6)

(A7)

(A.8)
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g : H—H is a nonlinear operator defined as :

g(z)=1g1@)...g72(2)I"

(A9

where all g; (z) are defined as follows :

81(z)=83(2)=0

-1, I1—=1,
82(2)= I 0 (3u3 + ; 010 (b+x)
k
+ '1—;(02“3 -2 W uy + (0 + 3Du; — ©,(3u3 — @, 0x(b+x)
Iy—1I, I,—1I,
84(z)=+ Pl S 7 0,03 (b+x)
2 1
k
-1—:'032“1'*'2 @ 1y, + (0 + 02U — @031 ) — @,003(b+x)
Iy-1,
8s(z)= 7 020
1
13-1,
8s(z)= 7 010
. 2
Iy—-1
g8+(z)= 11 2(01(02
3

Note that A : H — H is an unbounded linear operator and its domain D(ff ) is defined as

D(A')=D(A) x R3 where D(A) is defined in (2.17) and is dense in H, since D(A) is dense in

H.

In H we define the following "energy" inner product:

<z ,f>l=11(01(61 +120)2(62+13(D3(A03

x=L
+ | Muy = oy(b+2)) (i), — G3b+x)] d
x=0
x=L .
+ | Mus, +@y(b+x)] 3, + @ (b+x)] dx
x=0
x=L
+ I (BN U i1 + El 3l 350 i35, ) dx
x=0

This inner product induces a norm on H, which is given below :
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|| 2|| 2=2 E(2) =1 10,2 + I 300)% + I 30057 (A.10)

x=L
+ [ M[uy, — @3(b+x) P+ [uy, + @y (b+x)?) dx
x=0

x=L
+ [ (Elug +Elsus,?) dx
x=0

Note that the usual "Sobolev" type norm which makes H a Banach space is given by :
x=L
[zl = o + 02+ @52+ [ (u)2+up,2+u,?)dx (A.11)
x=0
x=L x=L

+ J(u32+u3x2+u31,2)dx+ j(u1‘2+u3‘2)dx
x=0 x=0

But, by remark 1.3 and inequalities (3.18)-(3.19) it can be shown that the norms given by
(A.11) and (A.10) are equivalent to each other.
A.1 theorem : Consider the linear operator A: H —H given by (A.7). Then :
i) A generates a C  semigroup 7°(¢);
ii) there exist positive constants M‘> 0 and & > 0 such that the following holds :

N T@)| sMe™ 120, (A.12)

proof :

i) We will use the Lumer-Phillips theorem to prove (i),( see p.14, [Paz.1]). So we have to show

that A is dissipative and the operator (\/ — A ):H —H is onto for some A > 0.

To prove that A is dissipative, consider the following equation :

dZ ol A

@ =Az z(0eD A). (A.13)
Then ,differentiating (A.10) and using (A.13) and (A.7), we get the following :

a x=L

% =11(01031 +[2(020:)2+130)3(1.)3+ j M“u —Q)3(b+x)] [ulll —(63(b+X)] dx
x=0

x=L

+ [ Mug +0y0+1)] [u3, + @ (b+x)] dx
x=0
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x=L

+ [ (El1gto +ElU3n g, ) dx
x=0

=—k 10,2 —k200,% —k 332 0411, (L t)
— U3, AL t) = Byt 1 AL 1) = Pott3 2L 1) <O (A.24)

This proves that A is dissipative.

To prove that the linear operator (A -A ):I? —H is onto for some A > 0, we decompose the

operator A as follows :

A=A +Tp ‘ (A.15)

where A;: H — H is defined as :

o 1 0 00 0 0
L' oy o o 0 0 0
A ox?
0 0 0 1 0 0 0
A 0 o0-23 44 o o A.16
1= - x ax4 ( . )
ky
0 0 0 0O0— 0 0
Iy
ko
0 0 0 0O 0 —— 0
I
L k3
0 0 0 00 0 —
I3
and the operator Tp: H —H is defined as
Tp =A - A, (A.17)

We first note the following remarks :

1) A;:H—H is an linear unbounded operator . Its domain D(A ) is equal to D(4). By using
theorem 3.1 of Chen, [Che.2], it can be shown that A, generates an C contraction semigroup.

Hence, (\ — A, ):H —H is an invertible operator for all A > 0. In fact the range of (\/ —A ) is
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equal to-D(A ;) and by Hille-Yosida theorem, (see e.g. p.8, [Paz.1]), we have :

[T =AY < A>0, AeR.

1
A
2) Tp : H—H is a degenerate linear operator relative to the A,.( see p. 245, [Kat.1] ).By

definition, the range space of T}, is finite dimensional and there exist positive constants a and b

such that :

| Tpzl| <allz|] +b]] Ayz]] forall ze D(A)). (A.18)

That the operator T, has a finite dimensional range follows from (A.17),(A.7) and (A.16).
By using (A.17) and (A.11), it can be shown that (A.18) holds for some positive a and b.

From the remarks 1 and 2 above it follows that T (A/ — A l)“ : H— H is a bounded linear
operator with finite dimensional range ; hence || Tp(M —A,)™|| <M for some M > 0 and

Tp(M —A )™} is a compact operator, ( see p.245, [Kat.1]).

Next we need the following fact :
Fact : forall A > 0, 1 is not an eigenvalue of the compact operator Tp (A — A ).

Proof : Suppose not. Then there exists aA>0andaye H, y#0 such that the following holds :
y=Tp(M -Ap)7y. ‘ (A.19)
Definexe D(A;) as
x=(M -A)7Y.
Then (A.19) implies that the following equation also holds :
M -A,-Tp)x =0.

But since 4 =A, + Tp is dissipative and A > 0, it follows that x = 0, which implies y = 0,

which is a contradiction. O
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From the above fact it follows that the operator / =Tp (Al — A,)"! is invertible for all A > 0.
Hence we conclude that (\J — A, —Tp) : H —H is invertible for all A > 0 and its inverse is given

by :
M —A -Tp) =M -A) I -TpM -AD™H!

This shows that (\/ —A; -Tp) : H—H is onto for all A>0. Then , the assertion (i) fol-

lows from the Lumer-Phillips theorem, [Paz.1].

ii ) To prove that the semigroup 7'(¢) generated by A is exponentially decaying, we first follow a
similar argument we made in proving the theorem 3.1. We first define the following function 20

x=L
V@)=2(1-8tE@)+2 [ Ax (uy, — 03+, dx
x=0

x=L
+2 [ Ax (u3 — 0)(b+x)u, dx (A.20)
x=0

where €€ (0,1) is arbitrary.

Applying Schwartz’s inequality to the integrals in (A.20) and using x < L, it can be shown

that there exists a K > 0 such that the following estimate holds :

QA -e)-KE@)SV()

Differentiating V(t) with respect to t, using equations (A.1)-(A.5) and following the line of

the proof of the theorem 3.1, we can conclude that there exists a T > 0 such that V() is bounded
above for all ¢ > T. Therefore E (¢) is bounded above by O (%), forall ¢+ > T. Hence for some M

>0
{ =oo
[E*eyar sm
=0

The assertion (ii) then follows from a theorem due to Pazy, ( thm. 4.1, [Paz.1]). O
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We now show the existence and uniqueness of the solutions of (A.6). The main difficulty is
the fact that the nonlinear operator T;(z) : H—H defined by (A.8) is also unbounded, that is not
defined for all ze H. But, with an appropriate norm defined on D(/f ), (see (A.21) below),

T;(z): D(A)—H becomes an C* operator.

A.2 theorem : Consider the equation (A.6), where the operators A, Tp and g are defined in the
equations (A.7)-(A.9), respectively. Then:

i) for all initial conditions z(0) e D (AA ), (A.6) has unique classical solution z(t) defined for all t >
0; |

ii) in terms of the semigroup 7'(¢) generated by the linear operator A, this solution can be written
as:

s=t s=t

2@)=T®)zO+ [T -5)T;@(s) ds + [ Tt ~5)g(s))ds ;
=0 s=0

iii) the solutions of (A.6) are exponentially decaying.

proof :

i) We define the following norm on D(4) :

11zl =||4z]], zeD(A), (A21)

where|| .||, is defined in (A.11).

A simple calculation shows that this norm is equivalent to the norm given by (A.10), hence
D(A) with this norm becomes a Banach space. Let us call this space [D(A)]. Then
T, :[D (A)]—H becomes an C™ operator, since its components are linear combinations of pro-

ducts and integrals of the components of z over [0,L], (see the equations (A.6) and (A.8) ).

Also note that g : H—H ,as defined by the equation (A.9), is a C™ map, since its com-

ponents are products of the components of z. Therefore it follows from a theorem due to Segal
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that ,( thm.2, [Seg.1]), equation (A.6) has unique classical solution for all initial conditions z(0)
eD(A), defined in [0, £ ] for some € > 0. But since the theorem 3.1 shows that the solutions are

decaying to O, this local existence theorem can be extended globally (i.e. forallt > 0 ).
ii) This may be proven by substitution in (A.6);

iii) Since by the theorem 3.1 the solutions of (A.6) are decaying to 0 in H, it follows that the
positive orbits Oy*(t)={ z(¢ YeH | z (0) =zq, t>0} belong to a compact set in H . Therefore by
a generalization of LaSalle’s invariance argument to the infinite dimensional spaces ,[Hal.1], and
by the energy decay estimate (3.4) it follows that asymptotically the rate of change of the encrgy

defined by (3.4) decays to 0. That is u; (L,t), uy (L.t),i=1,3 and &(z) decay to 0, as t — oo,

Using integration by parts in (A.8) and the above conclusion, and the techniques used in

thm. 3.4, we obtain the following estimates :

T @N| sy 2@l
|| g sw@)lz@)].

where v,(¢) and ¥,(¢) are asymptotically decaying to O.

Using these estimates and following the arguments made in the proof of the theorem 2.4,

we conclude that the solutions of (A.6) are decaying exponantially to 0. OJ
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