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ABSTRACT

We consider a flexible spacecraft modeled as a rigid body which rotates arbitrarily in iner-

tial space; a light flexible beam is clamped to the rigid body at one end and free at theother. The

equations ofmotion are obtained by using free body diagrams. It is shown that suitable boundary

controls applied to the free end ofthe beam and a control torque applied to the rigid body stabil

ize the system. The proof isobtained by using the energy ofthe system as aLyapunov functional.

This research is partially supported by the National Science Foundation Grant ECS 8500993 and by the
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introduction

Many mechanical systems, such as spacecrafts with flexible appendages, consist of coupled

elastic and rigid parts. In such systems, if a good performance of overall system is desired, the

dynamic effect of elastic members becomes important. Thus, over the last decade there has been

agrowing interest inobtaining new methods for the design, dynamics and control of the systems

whichhaveelastic parts, (e.g. see [Bal.1] and the references therein).

Consider a system which has rigid and elastic members.The motion of elastic members is

usually described by a set of partial differential equations* with appropriate boundary conditions.

Since the motion of rigid parts is governed by a set of nonlinear ordinary differential equations

and rigid members are coupled with elastic members, overall equations of motion are generally a

set of coupled nonlinear partial and ordinary differential equations. These equations can be

obtained by using standard methods in Mechanics, e.g. see [Gol.l].

After having obtained the equations of motion, the commonly used approach is to consider

only finitely many modes of the elastic parts, which is called " modal analysis ". This approach

reduces original equations to aset ofcoupled nonlinear ordinary differential equations. However,

having established acontrol law for this reduced set of equations does not always guarantee that

the same control law will work on the original set of equations, ( e.g.one migh encounter so-

called "spillover" problems , [Bal.2]). Also note that the actual number of modes of an elastic

system.in theory, is infinite and the number of modes that should be retained is not known a

priori.

Recently Biswas and Ahmed, [Bis.l], used aLyapunov type approach to prove the stability

of a rigid spacecraft with an elastic beam attached to it under appropriate forces and torques

applied to the beam and the rigid spacecraft. Their proposed control laws contain distributed

forces appied to the beam which are proportional to the beam deflection velocities. Implementa

tion of suchcontrol laws might not be easy.



In recent years, boundary control of elastic systems (i.e. controls applied to the boundaries

of elastic systems ) has become an important research area. This idea is first applied to the sys

tems governed by wave equation (e.g. strings), [Che.l], and recently extended to the beam equa

tions. In particular Chen, [Che.2], proved that, in cantilever beam, a single actuator applied at the

free end of the beam is sufficient to uniformly stabilize the beam deflections.

In this paper, we consider the motion of a rigid body with a beam clamped to it, the other

end of the beam is free. The rigid body is assumed to be rotating in an inertial space with its

center of mass fixed in a given inertial frame. Afterhaving obtained the equations of motion, we
i

define the rest state of the system. Then we state the contol problem, which is , if the system is

perturbed from the rest state, to find appropriate control laws which drive the system to the rest

state. We propose two different control laws, each of which consist of appropriate boundary

force and moment controls applied to the beam at its free end arid atorque control applied to the

rigid body. We then show that the proposed control laws, rigid body angular velocities and beam

deflections decay to the rest state.

In section 1, we explain the configuration under consideration and derive the equations of

motion using free-body diagrams. Then we state the control problem and propose some feedback

laws.

In section 2 and 3, weshow that the proposed control laws solve the proposed control prob

lem.



notation

boldface letters like r, n etc. denote vectors in R3

L2={/ :[0JL]-*R\ jf2dx<~)
x=0

H* ={/ 6L2l/'6L2,i=U }.

H*0={/eH* l/(0)=/1(0) =0).

fx »/* etc., denote -J-, -^-, etc., resp.
dx dt

x denotes standard cross-product inR3.

<,>:#3*fl3-»/? denotes the standard inner product inR3.
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section 1

1.1 equations of motion

We consider the following configuration : Figure 1 shows the rigid body (drawn as a

square) and the beam ; P is a point on the beam.

Figure 1: Rigid body with flexible beam.

In figure 1,(0, elt e2, e3 ) denotes a dextral orthonormal inertial frame, which will be

referred to as N, ( O,DltD2, D3) denotes a dextral orthonormal frame fixed in the rigid body,

which will be referred as B, where Ois also the center of mass of the rigid body and D^ D2, D3

are the principal axes of inertia of the rigid body. The beam is clamped to the rigid body at the

point Q at oneend along the D2 axis and is free at the other end. LetL be the length of the beam.

We assume that the mass of the rigid body is larger than the mass of the beam, so the center of

mass of the rigid body is approximately the center of mass of the whole configuration. So the

point O is. fixed in the inertial space throughout the motion of the whole configuration and the
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rigid body may rotate arbitrarily in the inertial space.

The beam is initially straight, along the D2 axis. Let P be a typical beam element whose

distance from Q in the undeformed configuration is x, let ux and u3 be the displacement of P

along the D{ and D3 axes, respectively. Let r( x, t) = OP be the position vector of P. Let the

beam be homogeneous with uniform cross-sections.

We define the contact force n(x,t) and the contact moment m(x,t) at the beam cross-sections

as follows. Consider a beam cross-section Cx at x. The effect of the part of the beam which lies

onthe (x,L] segment of the beam to the materials which lies on the [0,x] segment is equivalent to

a force applied to the cross-section Cx , which is called the contact force n(x,t), and a moment

applied to the cross-section Cx, whichis called the contact moment m(x,t). For further informa

tion, see [Ant. 1].

Neglecting gravitation, surface loads and rotatory inertia of the beam cross-sections, we

obtain the following equations that describe the motion of the whole configuration : t >0

9n . 92r n
~dx~ J? 0<X<L '*<> (1.1)

9m 9r
~a7+aJxn o<x<l r>o 0.2)

//?0) +a)x^(D =r(0,r)xn(0,r) +m(0,r) +Nc(r) (1.3)

where n (x, t) and m (x, t) are the contact force and the contact moment, respectively, Xis the

mass per unit length of the beam, which is aconstant by assumption, L is the length of the beam,

IR is the inertia operator of the rigid body, which is diagonal, co is the angular velocity of the

rigid body with respect to the inertial frame N and Nc (t) is the control torque applied to the

rigid body.

The equation (1.1) is the balance of forces, the equation (1.2) is the balance of moments at



the beam cross sections and the equation (1.3) is the rigid body angular momentum equation.

Note that the first two terms in the right hand side of (1.3) represent the torque applied by the

beam to the rigid body.

12 remark : Let r :R-»/?3 denote a vector valued function oftime, typically r(r) is the posi

tion ofaparticle. Let r* = (rN x, rN2, rN3)T and r5 = (rB x, rB 2, rB 3f denote the components

of r in the dextral orthonormal frame N given by ( O, e1,e2, e3 ) and in the dextral orthonormal

frame B given by ( O, Dlt D2, D3 ), respectively. Let co denote the angular velocity of the frame

B with respect to the frame N. Then we have the following (see [Kan.1]):

«=3 dr? «=3 drf
E^re^i:—D/+coxr.
1=1 i=i ***

dr ^drf dr i=3drf
If we define (—t-)n = £—r-e, and (-t~)b = E—T^i men we obtain the following equation

at l=1 at at £J dt

(see e.g. [Gol.l]):

,drs ,drN _, ,, JV

("5T^=("S")B+G)xr" (L)

We use the Euler-Bernoulli beam model to give the component form of the contact force n

and the contact moment m in terms of the beam deflections u{, u3. For more details, see

[Mei.l]. Assuming that the beam is inextensible and neglecting the torsion, we express the con

tact force n, the contactmomentm, and the position vectorr in terms of u{ and u3 as follows: for

0<x<L ,t >0,

m = m1D1+m3D3 n = nlDl + n3D3 (1.5)

mx=EI3u3xx n3 = -EI3u3xxx (1.6)

m3 = -EIlulxx nl=-EIlulxxx (1.7)

r = ulDl + (b +x)D2 + u3D3 (1.8)

where EIX and EI3 are the flexural rigidity of the beam deflectios along the axes Dj and D3 ,



respectively, and b is the distance between the points O and Q.

Since the beam is clamped to the rigid body at the point Q, we have (see figure 1):

",-(0,0 = ^(0,0 = 0 . t>0 , i = 1,3 (1.9)

The rest state of the system is by definition :

co = 0 (1.10.1)

ul(x) = u3(x) = 0 0<x<L (1.10.2)

uu(x) = u3t(x) = 0 0<x<L (1.10.3)

We now state our

stabilization problem:

If the system given by the equations (1.1)-(1.9) is perturbed from the rest state defined by

(1.10. l)-(1.10.2), find an appropriate control law that drives thesystem to the reststate.D

13 proposed control laws:

We propose two stabilizing control laws. Each law consist of appropriate forces and

torques applied to the beam at the free end and a torque applied to the rigid body. We note that

these twosetsdifferin the torque applied to the rigid body.

1.3.1 control law based on cancellation

This control scheme applies a force n(L,t) and a torque m(L,t) at the free end of the beam and a

torque Nc(t) applied to the rigid body. They are specified as follows : we choose at > 0, ft- > 0,

and a 3x3 positive definite constant matrix K, (which can bechosen diagonal); then forall t> 0, i

= 1,3, we require the following equations :

n,(L,r ) + aiuit(L,t ) = 0 (1.11)
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*!;(£.O +Mfaf(£.D=0 • (1.12)

Nc(0 =-r(0,Oxn(0,0-m(0,0-tfco(0 (1.13.1)

Equation (1.11), {(1.12), resp.) represents atransversal force, {torque, resp. } applied at the

free end of the beam in the direction, { around, resp.} the axis D, whose magnitude is propor

tional to and whose sign is opposite to the end point deflection velocity, uit(L,t),{ end-point

deflection angular velocity U& (L,r), resp. } of the beam along the direction of D, axis, for i= 1,

3. Also note that to apply the control laws given by (1.11)-(1.13.1), the end point deflection velo

cities uu (L, O. the end point deflection angular velocities u^ (L, t), the rigid body angular

velocity vector co(t) and the moment applied by the beam to the rigid body must be measured.

This moment consist of the effect of the contact force n(0,t) and the contact moment m(0,t) at the

clamped end. Both can be measured by using strain rosettes and strain gauges,

respectively, [Ana. 1].

The control law (1.13.1) cancels the effect of the beam on the rigid body. To see this, sub

stitute (1.13.1) into (1.3), then the equation (1.3) becomes a set of nonlinear ordinary differential

equations. Then substitute the solution co(t) of (1.3) into the beam equation (1.1). Now the latter

becomes a set of linear partial differential equations.

Equation (1.13.1) is reminiscent of a "computed torque" type control law in robotics,

[Pau.l]. When substituted in (1.3), (1.13.1) cancels the effect of the beam on the rigid body.

This typeof control law recently has been applied to theattitude control of the flexible spacecraft,

[Ana.l]. a

1.3.2 natural control law

This control sceheme applies the same boundary force n(L,t) and the moment m(L,t) as

specified by the equations (1.11) and (1.12), respectively, butthe torque applied to the rigid body

is given by:



Nc (r )=-r(L,r)xn(L,r)-m(L,r)-A'co(0 (1.13.2)

This control scheme is "natural" in thesense that it enables one to choose the total energy of

the whole configuration as a Lyapunov function to study the stability of the system.

Unlike the control law (1.13.1), when (1.13.2) is substituted in (1.3), it does not cancel the

effect of the beam on the rigid body. As a result of this, the equations (1.1)-(1.9), together with

the control laws (1.11),(1.12) and (1.13.2) form asetof nonlinear ordinary and partial differential

equations. The control law (1.11),(1.12),(1.13.2) requires that the end-point deflections K,-(Lft),

the end-point deflection velocities uu (L,t), the end-point deflection angular velocities u-m (L,t)

and the rigid body angular velocity vector co(t) bemeasured. The first two could be measured by

optical means and the latter by gyros.

Throughout our analysis, the initial conditions u-t (x, 0) and uit (x, 0) are assumed to be

sufficiently differentiable (i.e C2 in t and C4 in x) and compatible with the boundary conditions

(1.9), (1.11), (1.12), for i=l, 3.
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section 2

stability results for the control law based on cancellation :

After substituting (1.13.1) in (1.3), we obtain the following rigid body equation :

Ir(0 + (OxIr<q = -K co (2.1)

2.1 proposition : Consider the equation (2.1). There exist a c> 0 and an a > 0 such that for all

initial conditions co (0) e /?3, the solution co (r) of (2.1) satisfies

< co (r), co (r) > < c e^ < co (0), co (0)> forall t> 0 (2.2)

proof: Consider the following "energy function" for the rigid body :

Er(0 =\ <to(0,/*co (0> (2.3)

ER (0 is the rotational kinetic energy of the rigid body with respect to the inertial frame N.

Also note that since //?=diag(/1/2/3), we have

/min<co,co><2^/? </max<co,co> fora// coe/?3 (2.4)

where /^ = min(/1,/2,/3) and /max = max(/1^2,/3).

Differentiating (2.3) and using (2.1) we obtain :

• *

£/?(0 = <co,/flCO>

= - < CO, COX//? C0>-<C0, AT G>>

= - < co, K co > (2.5)

But, since K is positive definite, there exist positive, nonzero constants Xx and X^, which

may be taken as the minimum and the maximum eigenvalues of —{K +KT), respectively , such

that the following holds :
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Xi<co, co><<co,ATco><X2<co, co> (2.6)

max(/i,/2,/3) 2X\
Using (2.4)-(2.6), weobtain (2.2) where c =—r-^-^rz and a= . •

min(/!J 2J3) max(/ x,I2J3)

Next, we obtain the component form of equation (1.1). After applying (1.4) twice, we

obtain the following:

(—7)n =(-TTh +coxr +2cox(i7-)B +cox(coxr).
at at

dr_
dt

(2.7)

Using (2.7) in (l.l)-(l.lO), we obtain the following equations which govern the motion of

transversebeam deflections in Dj and D3 directions :

Ehu\xxxx +'XuUt +2X(02U3t +X(Gy2 + (Oi(o3)u3

-A>(co22 +co32)m1-A.(co3~co1co2)(Z?+x) =0 0<x<L, t >0 (2.8)

Eh^3xxxx+^U3n -2^co2m1/-A,(co2-co1co3)m1

-X((Oiz +<o22)u3 +X((ol +<o2(o3)(b +x) =0 0<x<L, t>0 (2.9)

Equations (2.8) and (2.9) can berewritten in the following state space form :

"i

d

dt

U3t

=

0 1

^-* 0
X dx4

0 0 0 1

EI3 tf0 0-^o

"1

"1/

U3

U3t

0 0 0 0 "

G^ +G^2 0 -(COj +CO^) -2(302
0 0 0 0

o^-co^ 2% co^ +coj2 0

"1 0

"1/

u3
+

(COs-C^CO^-hx)

0

u3t -i^ + a^oy^ib+x)

(2.10)
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whose solutions evolve in the following function spaceH :

H = { (UhUU,U3,U3t) I KiGHo2, M3GH02,Mi/6L2,M3/eL2}.

where the function spaces L2, H* and H*0 are as defined below :

x=L

jc=0

L2={/ :[0,L ]-*/?! jf2dx <oo)

H* =(/6L2I/'*gL2,/=U}.
H*0={/eH* l/(0)=/1(0) =0}.

In H, we define the following innerproduct, which is called "energy" inner product

(2.11)

<z,£>£:= j (EI1ulxxalxx+EI3vlxxv*lxx)dx
x=0

+ J X(u2ti2 +v2V2)dx for all z ,z e H. (2.12)
*=0

Note that, (2.12) induces a norm on //, which is called "energy norm". This norm is

equivalent to a standard "Sobolev" type norm whichmakes H an Hilbert space.( formore details,

see [Paz.l] and [Che.2])

To put (2.10) into an abstract equation form, we define the following operators A : H ->// ,

B :R+xH-*H and function/ :R+->H,

A =

B(t) =

0 1 0 0

"i a4 0
X dx4

0 0

0 0 0 1

0 0 •
Eh a4- * ° A o

A. dx'

0 0 0 0 "

CO^ + COs2 0 -(0^ +CO^) -2C02
0 0 0 0

Cfrj-CO^ 2g>2 C0!2 + C032 0

(2.13)

(2.14)



/(0 =

0

(G^-GiiG^ib+x)

0

-(G)i+Gy2Gy3)(b+x)

13

(2.15)

2.2 remark : A is an unbounded linearoperatoron H. B(r) is bounded for all te R+. Since co(t)

and co(t) are exponentially decaying functions oft, (see proposition 2.1 and equation (2.1)), so is

11 £(f)| |, where the norm used here is the norm induced by die energy inner product given by

(2.12). •

Usingthe abovedefinitions, equation (2.10) can be put into the following abstract form :

dz_
dt

= A z +B(t)z+f(t) z(0) = zQeH (2.16)

where z=[ ulf uu, u3, u3t f. The domain D(A) ofthe operatorA isdefined as follows :

D(A)={(ul,uu,u3,u3t):uleH04,ulteH04,u3eH021u3t eH02, (2.17)

£/i«i»a) + Mb,(i) = 0

-£'3 W3;ccc(£) + C<2 K3/(L) = 0

£/3M3xr(L)+ P2M3jtf(L) = 0}.

It is easy to show that D (A) is dense in H, [Che.2].

Next, we state the existence anduniqueness theorem of the solutions of (2.16). [Paz.l].

23 fact .-Consider the equation(2.16) withA, B,f defined in (2.13)-(2.15). Then :

i) The operator A generates an exponentially decaying C0 semigroup T(t) in H. That is, there

exist aM>0anda8>0 such that

||r(0|| <M e-*1 forall t>0 ; (2.18)

ii) for all z0eD (A), (2.16)has uniqueclassical solution , defined for all t > 0;
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iii) in termsof T(t), the solution z(t) of (2.16) may be written as :

x=L x=L

z(t) =T(t)z0+ JT(t-s)B(s)z(s)ds + J T(t-s)f(s)ds. (2.19)
x=0 x=0

proof:

i) Dueto the blockdiagonal form of A, it is an easyexternum of theorem 3.1 of Chen, [Che.2].

ii)Since B(?) is globally lipschitz onH and 11 B(r)| | isexponentially decaying due to the propo

sition 2.1, (also see remark 2.2), it follows that A+B(t) defines a unique, globally defined semi

group on H, (e.g. see [Mar.l], [Paz.l]).

Since/ eLx[R Ji] and is a C°° function oft, (see equation (2.15)), by standard theorems on

nonhomogeneous partial differential equations (e.g. see pp. 105-110, [Paz.l]) it follows that

(2.16) has unique solution defined for all t > 0.

/fn

iii) That the solution may be given as (2.19)can be verified by substitution, using — = A T. •
dt

Next, we prove the exponential decay of the solutions of (2.16).

2.4 theorem : Consider the equation (2.16), where the operators A, B(t) and the function / (t)

are defined in (2.13),(2.14) and (2.15) respectively. Then for all z0e D(A), the solution z(r) of

(2.16) decays exponentially to 0.

proof: By takingnormsin (2.19) andusing(2.18), weget :

|| z(0|| <Me^\\z^\ + JMe^-^\\B(si\ ll*(^l ds

+ fMe-*«-s)\\f(sJi\ ds (2.20)
s=0

But since co(r) and co(t) are decaying exponentially, it follows that there exist positive con

stants c! > 0,c2 > 0,5! > 0,62 > 0, such that for all t> 0
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||B(r)|| Sc^"8" (2.21)

||/(r)|| <c2e-*il (2.22)

Using (2.21),(2.22) in (2.20), evaluating the last integral, and multiplying each side of

(2.20) by e8t, we get

||z(0^|<MM*dl+^(e(^y-l)
s=t

+ JM cY e~*lS 11 z(s)e**\ \ ds (2.23)
s=Q

Now applying a general form of Bellmann- Gronwall lemma ,(e.g. see [Des.l]), and using

the following simple estimate

Je-** ds < J e~*lS ds<±

we obtain the following

(2.24)

z(0^|<M||z0||+|^(e(5 '̂-l)

s=t Mcx

+ JMCle8* [M\\zA\ +T-|r(e(eWJ*-l)] e~8lS ds

M2 MC|

(c^Xo-o^ 6 U e >' (2'25)

Multiplying each sidewith e~*', we obtain the desired result. •
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section 3

stability results for the natural control scheme (1.3.2)

To prove the stability of the system given by equations (1.1)-(1.12) and (1.13.2), we first define

the energy of the system as follows :

1 1 X=LE(t) =—<G),IRG» +— jX<rt,rt>dx
L l x=0

1 X=L+- j(EIlulxx2 +EI3u3xx2)dx (3.1)

where < , > denotes the standard inner product in R3 ; the first term in (3.1) is the rotational

kinetic energy of the rigid body, the second term is the kinetic energy of the beam, both with

respect to the inertial frame N, and the last term is the potentialenergy of the beam.

3.1 proposition : Consider the system givenby the equations (1.1)-(1.12) and (1.13.2). Then the

energy E(t) defined by (3.1) is a nonincreasing function of t, along the solutions of (1.1)-(1.12)

and (1.13.2).

proof: Bydifferentiating E(t) with respect to t, using (1.1) and (1,4), weget

d • X=L—E(t) =<G>,IRGi>+ j X<rt ,r„ >dx
at jc=0

x=L

+ j (EIxulxxuXxxt+EI3u3xxu3xxt)dx
x=0

x=L x=L

J<rttnx>dx+ J(
x=0 x=0

=<co,/^co>+ J<r/,nx><fc+ \ {EIxuXxxuXxxt+EI3u3xxu3xxl)dx

x=L x=L

J"II U\xxxxdx-El3 \l
x=0 x=0

=<g>,Irg>>-EIx \uXtuXxxxxdx-El3 \u3lu3xxxxdx
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x=L x=L

+&\ J"i« uixxt dx+EI3 ju^u^clx (3.2)
x=0 x=0

Using integration by parts we obtain the following equation, for i=l, 3

x=L

EIt J w«/*Wc<& =£/IMizxz(L,r ).uu(L,T)
x=0

-EIiuixx(L,t).uixt(L,t) +EIi Ju^u^dx . (3.3)
x=0

Using(3.3) and boundary conditions (1.11) and (1.12) in (3.2), we get

E(t )=-<G),KG>>-axuXl2(L,t)-a3u3t2(L,t)

-p1wlxl2(L,r)-p3M3x/2(L,r)<0 (3.4)

Since the rate ofchange of the energy isnonpositive, it follows that the energy is a nonincreasing

function of time, for all z e H. •

33, remark : If onesets a,- = ft = 0, for i=l,3, and K = 0,( i.eno control applied to the system ),

one getsE(t) = 0: as expected, the totalenergy(givenby the equation (3.1)) is conserved. D

33 remark : We need an estimate, which states that if theenergy given by (3.1) stays bounded,

then so does the beam deflections Ui(x,t) and their derivatives w«(^,r),(hence also so does

r(*,f)), for all xe [0,L], for i=l,3. Using the boundary conditions and the fundamental theorem

of calculus, for i=l,3 we get for all 0 < x < L , for all t > 0:

s=x

Ui(x,t)= Jub(s,t)ds (3.5)
5=0

therefore, using Jensen's inequality, [Mit.l], we get:

s=L

(Ui(xtt))2<L ju^iSiOds (3.6)
j=0
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By using the same arguments, we get, for all x e [OJL ]

(K«(x,f))2<L J w^VOds (3.7)
s=0

hence, combining (3.5) and (3.6), we get:

s=L s=L

(Ui(x,t))2£L J u^isrfdsZL2 J u^is^ds . • (3.8)
s=Q j=0

Next, we willshowthat the rateof decay of theenergy is at least —for large t.

3.4 theorem : Consider the system described by the equations (l.l)-(1.12)and (1.13.2). Then

thereexists a T>0 such that the energy givenby (3.1) is bounded aboveby O (—) for all t > T.

proof : To show that E{t) decreases at least as O (—), we first define the following function

V(t): for any 0 < e < 1,

x=L

J
x=0

V(t) =2(l-e)tE(t)+2 jXx<rt,rx>dx (3.9)

Next, we need the following estimate on V(t). Note that:

x=L x=L

- J Xx <r, ,rx >dx <XL J (<rx,rx >+<r,,r, >)dx (3.10)
x=0 x=0

Nowby usingRemark3.3, we can find a M! > 0 anda M2 >0 such that

x=L

-2 J Xx <r, ,rx >dx <MxE(t) +M2 (3.11)
x=0

Therefore,using the last inequality in (3.9), we get

(2(l-e)r-Af1)£:(0~M2<V(r) t >0 (3.12)

Now, differentiating (3.9) and using equations (1.1)-(1.12), we get:
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V(t) = 2(l-e)E(t) + 2(l-e)tE(0

x=L x=L

+2 J Xx <r„ ,rx >dx+2 j Xx <rt ,rtx> dx (3.13)
x=0 x=0

Using integration by parts, the third and fourth integrals in (3.13) can be evaluated as follows :

x=L x=L

2 j Xx <rt ,rte >dx =XL<rt(L,t),rt(L,t)>- J X<rt ,rt>dx (3.14)
*=o x=o

x=L x=L

J A,* <r„ ,vx >dx = j x <nx ,rx>dx
x=0 x=0

x=L x=L

=- J x «u ^/i^ixxxx dx- j xu3x EI3u3xxxx dx (3.15)
x=0 x=0

To evaluate the last to integral, we need the following :

x=L

J
x=0

J *"x uxxxxdx=L Mx(L,r)wxrc(L,0-wx(L,OMxc(L,r)

x=£

-yWzx2(L,0 +y J^2^ (3.16)
Zx=0

After using (3.14)-(3.16) in (3.13), we get

x=L

K(r) =(l-e)<0,/^co>+(l-6) J A,<r,,r, >rfx
x=0

x=L

+(l-e) j (EIxulxx2 +EI3u3xx2)dx-2(l-e)<G>,KG>>
x=0

-2(l-e)a1w1/2(L,0-2(l-e)a3«3/2(L,r)

-2 (1 -e) ft Mlx,2(L,0-2 (1 -e) ft u3xt2(L,t)
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x=L

+AL<r/(L,0,i\(L,f)>- j X<rt,rt>dx
x=0

-2L uXx(L,t)a.xuXt(L,t)-2uXx(.L,t)$xuXxl(L,t)

x=L

5_.. %+L-!ruXxt\L,t)-3EIl ju^dx
EIl x=0

-2Lu3x{Lj)c%u3t(L,t)-2u3x(L,t)§3u3xt(L,t)

ft,2 X=L
+L—u3xt\L,t)-3EI3 iu3xx2dx (3.17)

EIs xio

To estimate some of the terms in (3.17), we need the following inequalities :

(a+b)2Z2(a2+b2) aeR, beR. (3.18)

ab<&a2+^b2 5eR,b*0 ,ae/?, beR.
oz

(3.19)

Finally using Remark 3.1 and Remark 3.3, we get the following estimate on the end point

velocities of the beam in the inertial frame.

<rt(L,t),rt(L,t)><kx(ux2(L1t) + u3t2(L,ty) + k2<G>,G» (3.20)

for some kx > 0 and k2 > 0. v

Using these estimates in (3.17), we obtain:

V(r) <-(1 - e) (2 t < co, K co >- < co, IR co >- XLk2 < co, co >)

x=L x=L

-e J A,<rf,r, >dx-(e +2) j (EIxuXxx2 +EI3u3xx2)dx
x=0 x=0

-2(\-e)axt uXt(L,02-2(\-E)a3t u3t(L,ty
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-2(l-e)ftf uXxt(L,t)2-2(l-e)]%t u3xt(L,t)2

+XLkx(uXl\L,t) +u32(Lit)) +2Lax(bx2uXx2(L,t) +^Tuu2(L,t))
5/

2u3x2(L,t) +-^u32" — *2» 2<

Ulx2(Ltt)^juXxt2Q

+2ft (842 M3je2(L,r)-^ M3x/2(L,r))

+2La3(b22u3x2(L1t) +-^u3t\Ltt)) +632uXx\Ltt)

+2ft(832Mbc2(L,r)-^-Ml;tf2(L,r))
S32

J

54

+̂ - ft2"lx,2(L,r) +-J- ftW(L,r) (3.21)

where 8,e R are any nonzero real numbers, for i=1,2,3,4. Now, collecting likewise terms, we

rearrange (3.21) as follows :

V(t) < - (1 - e) (21 < co, K co - < co, IR co >- XLk2 < co, co >)

*t* * 2La! ,-e J X<rMrf >dx-(2(l-e)a1r-ALA:1 -t-^K!,2^,*)

-(2 (1 - e) a3t - Wcx - —-r-i )k3/2(L,0

(2(l-e)ftr-^-L-^-)Mlx/2(L,r)-
o3 £' 1

ft ft2(2(l-e)ft,-2-g-L-^)W3x,2(L,0
64 ^'3

-(£ +2) J(^/l«ixx2 +^3"3xx2)^
x=L

J'
x=0
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+(2La1812 +2ft832)MU2(L,0 +(2Lcx3822 +2ft842)M3x2(L,r)) (3.22)

By Remark 3.3 ( e.g. using (3.7)) and choosing 8X- sufficiendy small, i=1,2,3,4 , the sum of

the last two lines in (3.22) can be made negative. Then, we conclude that after some TeR,

V(t)<0 t>T (3.23)

hence

V(t)<V(T) t>T (3.24)

Using (3.12) and(3.24), we get the following estimate, which provesthe theorem 3.4 :

V(T)+M2

£(f)S(l-e),-M, '2TD <3-25>

Forthe sake of brevity, the existence, the uniqueness andthe exponential decay of the solu

tions of the equations givenby (1.1)-(1.12) and (1.13.2) are presented in the appendix.
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appendix

In this appendix, first we give an existence and uniqueness theorem, A.l, to the linear part

of the equations (1.1)-(1.12) and (1.13.2) (i.e. the "natural" control scheme ).Then including the

nonlinear terms, in the theorem A.2 we prove the exponential decay of the solutions of the same

equations.

For simplicity, we'll take the positive definite matrix K =diag (kx, k2, k3). Then equations

(1.1)-(1.12) and (1.13.2) can be written as:

Eh "lxxxx +^"1// +2 XG)2U3t +X(G>2+G}X C03)M3

-A.(co22 +co32)w1-X(co3-co1co2)(6 +x )=0 0<x<L, t->0 (A.l)

EI3^3xxxx+^U3u -2XC02M1/-X(C02-C01C03)W1

-X((Ox2 +oy22)u3 +X(Gix +(02Gi3)(b +x) =0 0<x<L, t>0 (A.2)

x=L

/1co1 +(/3-/2)co2co3 +/:1co1=E/3 J (b +x )u3xxxx dx (A.3)
x=0

x=L x=L

/2co2 +(/! - /^cosco! +k2G>2 =EI3 J uxu3xxxx dx - EI xJ u3uXxxxx dx (A.4)
*=0 x=0

/3co3 +(/2-/1)co1co2 +^3co3 =£/1 J -(b+x)uXxxxxdx (A.5)
x=0

togetherwith the boundary conditions (1.9),(1.11) and(1.12).

Let the function space H be the same as defined in (2.11). Define anew function space H =

H xR . Then, separating the linear and nonlinear parts, the equations (A.1)-(A.5) can be put into

the following matrix form :
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-^-=/iz+7}(z)+g(z) . (A.6)

where z = [u^ uXt ,u3, u3/, G}x ,0^ .o^]7.

A A A

A ://->// is a linearoperator whose matrix form is specified by the following :

A = {ntij : i = 1,..,7 , y = 1,..,7 } (A.7)

where all m^ are zero except:

m12

m21

m21

m43

M4S

m34=l

a*

x=L

*3

73

EI3 94 £/3 *=L 34

A, dx* I\ XU a*4

= -r-<*+*)

Ehxt a4
M x=0 OX*

m53 =

m71

m77

/2

£/ix7L a4
'3 x=o dx*

Tf : H -»// is a nonlinear integraloperatordefined as

7>(z) =

0

xf Eh Eh
u3 J (—T-*&\xxxx + -r-uiu3jrocc) dx

xf £/3 EIX
ui J (—7—uiu3xxcc + —u3ulxcce) dfc

x=L

x=0 *2

0

f ^3 £'l
J ( —T-Ulu3xxxx + -T-^lxxxx ) dx

(A.8)
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g : H->H is a nonlinear operator defined as :

g(z) = [gi(z),-.,g<z)]T (A.9)
where all gt (z) are defined as follows :

Si(z) = £30O = 0

Ix-I3 Ix-I2
gi(?)= —:—cOiOfrjKg + —-—co^ (b+x)

li h

+ —G>2.U3 -2G}2U3t+ (Gtf + Gy3)ux -©1©^ - COjCO^+x)
l2

h-h h~h
#400 =+ } COjCO^! COjQXj (b+x)

l2 h

2 9 9
- —G>iU x+ 2 CO?, UXt + (COf + G>2)U3 - CO^K x- COp.CO^ +x)

l2

h-h

h-h
86(z)=—r ^COs

l2

h-h
g7(z) =—-—c^coj

Note that A :H ->H is an unbounded linear operator and its domain D(A) is defined as

D(A) =D(A) x R3where D(A) is defined in (2.17) and is dense in H, since D(A) is dense in

H.

In H we define the following "energy" inner product:

< z , z >x = / !©!©! +hGfyi^ + ha^G^
x=L

+ J X[uXt - co^+x)] [iiu - co^+x)] dx
x=0

x=L

+ J X[u3t +G)x(b+x)] [u3t +G)x(b+x)] dx
x=0

x=L

+ J(£'l"lxx"lxx +^3"3xx"3xx) <&
x=0

This inner product induces a norm on H, which is given below :
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||z||2 = 2£(r) = /1co12 +/2C022 +/3co32 (A.10)

+ J X([uXt -G>3(b+x)]2 +[u3t+G)x(b+x)]2)dx
x=Q

x=L

+ \(EhuXxx2-¥EI3U3xx2)dx
x=0

Note that the usual "Sobolev" typenorm which makes H a Banach spaceis givenby :

x=L

||z||12=©12 +co22 +co32+ J (ux2 +uXx2 +uXxx2)dx (AM)
x=0

x=L x=L

+ j(u32+u3x2 +u3xx2)dx+ j(ux2+u3t2)dx
x=0 x=0

But, by remark 1.3 and inequalities (3.18)-(3.19) it can be shown that the norms given by

(A.11) and (A.10) are equivalent to each other.

A.1 theorem: Consider the linearoperator A: H->H given by (A.7). Then :

i)A generates a C0semigroup f(t);

ii) there exist positive constants M> 0 and 8 > 0 such that the following holds :

11/(0|| <Me-* r>0. (A.12)

proof:

i) We will use the Lumer-Phillips theorem to prove (i),( see p.14, [Paz.l]). So we have to show

that A is dissipative and the operator (XI -A):H->H is onto for some X> 0.

A

To prove thatA is dissipative, considerthe following equation:

^-=Az z(0)eD(A). (A.13)
Then.differentiating (A.10) and using (A.13) and (A.7), weget the following :

x=L

dt

dE
=/lCOlC0l -f-/2CO2C02 + /3C03CO3+ j X[uXt -G^ib+x)] [uXtt - G^ib+x)] dx

x=0

x=L

+ J X[u3t +<ox(b+x)] [u3tt +(Ox(b+x)] dx
x=0
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x<=L

+ j (EIxuXxxuXxxt+Ehu3xxu3xxt)dx
x=0

=-kxG>x2-k2G>22-k3G)32-o:xuXt2(L,t)

-a2K3,2(L,0-ftK1*2(L,r)-ftK3*2(L,0 <0

This proves that A is dissipative.

(A.24)

To prove that thelinear operator (XI -A):H^H is onto for some X>0, we decompose the

operator/ as follows:

A=AX+TD

where A x://-»// is defined as

A,=

0 i 0 0 0 0 0

EIX a4
0 0 0 0 0 0

X a*4

0 0 0

EI3 a4

1 0 0 0

0 o •
X dx4

0 0

*1

0 0

0 0 0 0 •
~h

0 0

0 0 0 0 0
k2

h
0

0 0 0 0 0 0
*3.

h

and the operatorTD: #-»// is defined as

TD=A-AX

We first note the following remarks :

(A.15)

(A.16)

(A.17)

1) AX:H-*H is an linear unbounded operator . Its domain D(AX) is equal to D(A). By using

theorem 3.1 of Chen, [Che.2], it can be shown that Axgenerates an C0 contraction semigroup.

Hence, (XI - Ax):H -»// isan invertible operator for all X> 0. In fact the range of (XI - Ax)~l is
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equal to-DG41) and by Hille-Yosida theorem, (see e.g. p.8, [Paz.l]), we have :

\\(XI-Axrl\\ <-L X>0, XeR.

2) TD ://->// is a degenerate linear operator relative to the Ax.( see p. 245, [Kat.l] ).By

definition, the range space of TD is finite dimensional and there exist positive constants a and b

such that:

||7Dz|| <Ja||z|| +&||A1z|| f0TallzeD(Ax). (A.18)

That the operator TD has a finitedimensional range follows from (A.17),(A.7)and (A.16).

By using (A.17)and (A.11), it can be shownthat (A.18) holds for somepositive a and b.

From the remarks 1and 2 above it follows that TD (XI - Ax)~l: /?-> H is a bounded linear

operator with finite dimensional range ; hence 11 TD(XI -A{fl\ \ <M for some M > 0 and

TD(7d -A x)~l isa compact operator, (seep.245, [Kat.l]).

Next we need the following fact:

Fact: forallX> 0,1 isnotaneigenvalue ofthe compact operator TD(XI -A x)~l.

Proof: Suppose not. Then there exists ak>0andaye//,y*0 such thatthefollowing holds :

y=TDQJ-Aifly. (A.19)

Define x e D (Ax) as

x=(Xl-Axrly.

Then (A.19) implies that the following equation also holds :

(XI -Ax-TD)x =0.

A

But sinceA =A x+ TD is dissipative and X> 0, it follows that x = 0, which implies y = 0,

which is a contradiction. D
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From the above fact it follows that theoperator / -TD (XJ -A x)~l is invertible for all X> 0.

Hence we conclude that (XI -A x- TD): #-»// is invertible for all X>0 and its inverse is given

by:

(xi -a , - TDrl=(xi -Axrla - td(xi -Axrlrl

This shows that (XI - Ax - TD): H-+H is onto for all X> 0. Then , the assertion (i) fol

lows from the Lumer-Phillips theorem, [Paz.l].

ii) To prove that the semigroup f(t) generated by A is exponentially decaying, we first follow a

similar argument we made inproving the theorem 3.1. We first define the following function V(t)

x=L

V(t) =2(l-e)t £(r) +2 J Xx (uXt -(^(b+xVUte dx
x=0

x=L

+2 j he (u3t - cojtfj+x))^ dx (A.20)
x=0

where ee (0,1) is arbitrary.

Applying Schwartz's inequality to the integrals in (A.20) and using x < L, it canbe shown

thatthere exists a K >0 suchthatthe following estimate holds :

(2(l-E)t-K)E(t)<V(t)

Differentiating V(t) with respect to t, using equations (A.1)-(A.5) and following the line of

the proof of the theorem 3.1, we can conclude that there exists aT >0 such that V(t) is bounded

above for all t > T. Therefore E(t) is bounded above by 0 (—), for all t > T. Hence for some M

>0

J E2(t)dt<M
=0

The assertion (ii) then follows from atheorem due to Pazy, (thm. 4.1, [Paz.l]). •

/=o
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We now show the existence and uniqueness of the solutions of (A.6). The main difficulty is

the fact that the nonlinearoperator 7)(z): H->H defined by (A.8) is also unbounded, that is not

defined for all zeH. But, with an appropriate norm defined on D(i4), (see (A.21) below),

Tf(z):D (A)-*H becomes an C°° operator.

A.2 theorem : Consider the equation (A.6), where the operators A, TD and g are defined in the

equations (A.7)-(A.9), respectively. Then:

i) for all initial conditions z(0) eD(A), (A.6) has unique classical solution z(t) defined for all t >

0;

ii) interms of the semigroup f(t) generated bythe linear operator/, this solution can be written

as:

z(t) =f(t)z(0)+ jf(t-s)TI(z(s))ds+ jf(t-s)g(z(s))ds ;
=0 s=0

iii) the solutions of (A.6) are exponentially decaying.

proof:

i) We define the following norm on D(A):

IIMMHI^IIi zeD(A (A.21)

where11 .11 xis definedin (A.11).

A simplecalculation showsthatthis norm is equivalent to the norm given by (A.10), hence

D(A) with this norm becomes a Banach space. Let us call this space [D(yf)]. Then
A A

Tr : [D (A)]-»// becomes an C°° operator, since its components are linear combinations of pro

ducts and integrals of the components of z over [0,L], (see the equations (A.6) and (A.8)).

Also note that g : //->// ,as defined by the equation (A.9), is a C°° map, since its com

ponents are products of the components of z. Therefore it follows from a theorem due to Segal
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that,(thm.2, [Seg.l]), equation (A.6) has unique classical solution for all initial conditions z(0)
A

e D (A), defined in [0, e ] for some e > 0. But since the theorem 3.1 shows that the solutions are

decaying to 0, this local existence theorem can beextended globally (i.e. for allt >0).

ii) This may be proven by substitution in (A.6);

iii) Since by the theorem 3.1 the solutions of (A.6) are decaying to 0 in H, it follows that the

positive orbits O0+(t) ={z(t)eli Iz(0) =z0, t>0) belong to acompact set in H. Therefore by

a generalization of LaSalle's invariance argument to the infinite dimensional spaces .[Hal.l], and

by the energy decay estimate (3.4) it follows that asymptotically the rate of change of the energy

defined by (3.4) decays to 0. That is uu (L ,t), k«, (L,t), i=l,3 and co(r) decay to0, as t-» ~

Using integration by parts in (A.8) and the above conclusion, and the techniques used in

dim. 3.4, we obtain the following estimates :

\\Tj(z(t)i\ *Yi(f)||z(0||.
\\g{z(t)i\ <;y2(0||z(^|.

where yx(t) and y2(t)are asymptotically decaying to 0.

Using these estimates and following the arguments made in the proof of the theorem 2.4,

we conclude that the solutions of (A.6) are decaying exponantially to 0. •
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