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Abstract

Accompanied with the recent advancement in integrated circuit technology is the need for

an automatic multi-level logic optimization tool. Such a tool must be able to explore the

entiredesign space, understanding different design styles and making appropriate tradeoffs.

This thesis presents algorithms in four areas of multi-level logic optimization: factoring

logic functions, simplification of logic functions, global phase assignment, and technology-

independent timing optimization. All problems are provided with abstractions for better

understanding and ease of analysis. The algorithms are used in various phases of the

optimization process and arecomponents in the multi-level logic optimization system MIS.

1. Factored forms have been shown to be a useful abstraction of logic functions in the

multi-level logic design style. Algorithms will be given for deriving the factored forms

from the sum-of-products forms of logic functions. In addition, a system is proposed

in which logic functions can bemanipulated directly in anefficient way, thus providing
a stable internal representation for a multi-level logic optimization system. Certain

properties of optimal factored forms willalso be investigated which could lead to more

powerful factoring algorithms.

2. A combinational circuit can be abstracted as a Boolean network containing a set of

logic functions. A procedure will be given to simplify a function using a don't-care

set derived from its environment. Large effort has gone into making the procedure

more efficient, which involves filtering out the useless or "almost" useless part of the

don't-care set and finding a better representation for the don't-care set.

3. Phase assignment is the generalization of the inverter minimization problem, an NP-

hard problem. An integer programming formulation is used to derive an exact algo
rithm to solve the problem optimally for circuits with some special properties. A set

of heuristic algorithms will be given to solve the problem with varying quality-versus-
performance tradeoffs.



4. Timing optimization has always been an essential part of any multi-level logic opti

mization system. This thesis concentrates on the technology independent aspect of

timing optimization, i.e., global circuit re-structuring. An algorithm will be given

which incrementally improves the global structure of the circuit. Emphasis is placed

on one step of the algorithm, timing-driven decomposition. A technique for speeding

up the optimization process, incremental delay trace, will be presented.

Most of the algorithms presented in this thesis have been implemented and tested,

and installed as part of MIS. Experimental results will be given to illustrate the efficiency

of the algorithms.

( /

Prof. Alberto Sangiovanni-Vincentelli
Thesis Committee Chairman
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Chapter 1

Introduction

Research done over the past thirty years has led to efficient methods for imple

menting combinational logic in optimal two-level form using programmable logic arrays

(PLA's). It is commonly accepted that most of the problems in the area of PLA synthesis,

including logic minimization and verification, layout generation, folding, testing, with pos

sible exception of state encoding, are now solved to the extent that efficient programs exist

and produce nearly optimal results. More importantly, this advance has been accompanied

and supported by a rich collection of theory with effects far beyond its original scope.

However, due to the rapid advancement in integrated circuit (IC) technology, dig

ital systems are becoming increasingly complex. Many logic functions are inappropriate for

PLA implementation because of more stringent silicon area and/or speed constraints. For

example, there exist functions whose minimum two-level representation has 2n —1 product

terms, where n is the number of primary inputs. In addition, even if a two-level represen

tation contains a reasonable number of terms, there are many cases in which a multi-level

representation can be implemented in less area and generally as a much faster circuit. Fur

thermore, new developments in VLSI design style such as gate-arrays, standard-cells, and

programmable logic devices, have made multi-level logic an attractive and economical im

plementation style for its short design circle, reasonable silicon efficiency, and its ability to

adapt to new technologies. For these reasons, the multi-level logic implementation style has
been widely used in designing digital systems.

As complexity of digital systems increases, so does the complexity of the combi

national logic components inside the systems. It is no longer feasible or economical for

a designer to optimize the logic manually. Automatical tools for optimizing multi-level
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logic have become essential to produce high-quality designs. Another need for automatic

multi-level logic optimization tools comes from recent development of tools for architectural

design of digital systems. These "high-level" tools synthesize a system from a functional

level description and produce logic which, even though functionally correct, may contain

many redundances, relying on logic optimization tools to derive efficient implementations.

Such tools must be efficient enough to produce results in a reasonable amount of time and

yet sophisticated enough to explore the entire design space, make appropriate tradeoffs, and

understand different electrical design styles (e.g., domino logic, static CMOS) and layout

design styles (e.g., Weinberger arrays, gate matrix, standard cells, and gate arrays).

Optimal multi-level logic synthesis is a known difficult problem which has been

studied since the 1950's. However, much work still remains to be done in order to achieve

the same level of advancement as for two-level logic synthesis. In recent years, an increasing

level of research has been apparent in multi-level logic optimization. The first of the modern

developments is the Logic Synthesis System (LSS) [20] at IBM, which has as target tech

nology a variety of gate arrays and standard cells. The Yorktown Silicon Compiler, which

automatically synthesizes and lays out CMOS dynamic logic, is based on multi-level logic

and has domino CMOS logic as its primary target technology. The SOCRATES system [26]

is a multi-level logic synthesis system which uses gate arrays and standard cells, and is one

of the earliest to emphasize optimized timing performance. More recent work in multi-level

logic optimization includes MIS [14] developed at University of California, Berkeley, and

BOLD [7] developed at University of Colorado, Boulder. Both MIS and BOLD are aimed

at optimization techniques which are independent of particular technologies, and were de

veloped with the goal of bringing the multi-level logic optimization to the level of science

obtained for two-level logic optimization. In particular, MIS was developed as an interac

tive system with totally open architecture. The objective is to provide not only an efficient

optimization tool but, more importantly, an environment in which new algorithms can be

implemented quickly and experiments can be performed easily.

A commonly accepted optimization criterion for multi-level logic synthesis is to

minimize the area occupied by the logic equations (which is measured as a function of the

number of gates, transistors, and nets in the final set of equations) while simultaneously

satisfying the timing constraints derived from the performance requirements of the systems.

Considerations such as testability should alsobe included; however,in most current systems,

testability is only considered indirectly as a side-effect of a less redundant implementation.



For multi-level logic optimization, two basic methodologies have evolved: l) global

optimization, where the logic functions are manipulated into an optimal multi-level form

with little consideration of the form of the original description (e.g., the Yorktown Silicon

Compiler [11], part of Angel [29], SOCRATES [26], and FDS [23]); 2) peephole optimiza

tion, wherelocal transformations areappliedto a user-specified (or globally-optimized) logic

function (e.g., a part of Angel, LSS [20], MAMBO [27], and SOCRATES). Global optimiza

tion is generally accomplished in algorithmic fashion, where functions are eliminated and

created according to certain algorithms. The algorithmic-based techniques are generally

used to derive a "good" global structure of the multi-level logic and therefore are mostly

technology independent. In contrast, peephole optimization is usually based on a finite set

of rules, where the rule set and the order in which to apply the rules are dependent upon

the particular technology used in the final implementation.

Global structuring algorithms have been proposed in the past (e.g., [2], [35]), but

these techniques have required an exhaustive search which is prohibitively expensive for

the complexity of the designs of interest today. The problem of global structuring can be

viewed as a problem of optimal common divisor extraction, i.e., expressing each output of

the logicas a single Boolean function of the inputs (collapsing), identifying a set of common

divisors among two or more functions, creatingintermediate functions for the divisors, and

re-expressing each output in terms of the inputs and the intermediate functions such that

the total cost of the logic is minimized. The first difficulty comes from the fact that single-

equation representation of some functions is too large to be practical. So, the algorithms

must be able to cope with an existing multi-level logic directly rather than relying on being

able to collapse the logic network first. The second difficulty is due to the fact that the

set of possible divisors for a typical function is too large to enumerate and identifying an

optimal sub-set of them is even harder. In practice, an iterative improvement scheme is

used to reduce the size of the logic incrementally. The method iterates over two major steps:

selectively eliminating some intermediate functions while keeping the size of the logic under

control; extract common divisors of existing functions. This approach was inspired by the

algorithms for two-level minimization, first experimented in YLE [10], and later enhanced
in MIS.

The success of PLA minimization is largely due to its abstraction as a two-level

logic minimization in which problems can be well-defined and made independent of the

implementation technology. One of the most attractive feature of multi-level logic is its
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ability to adapt to different technologies and implementation styles. But, it is this feature

that makes multi-level logic optimization less well-defined. Recent research emphasis has

been placed on abstracting the multi-level logic implementation problem and providing

a simple mathematical model, the Boolean algebra, in which theorems can be proved and

algorithms can be designed. Two general concepts are used to aid the abstraction of various

implementation problems:

1. the concept of logic function in .a factored form representing logic gates. For example,

NAND gate is represented by the function O = (ab)' and AO1223 gate is represented

by the function O = (ab -f cd + efg)'. Using this representation, logic gates can

be combined, separated, eliminated, or created by directly manipulating the logic

functions using rules of Boolean algebra.

2. the concept of Boolean network representing a combinational logic block, which is

simply a set of inter-dependent set of logic functions.

All problems solved in this thesis came from real design requirements and are presented,

using this abstraction, as well-defined combinatorial optimization problems.

This thesis addresses four individual problems in multi-level logic optimization:

factoring logic functions, simplifying logic functions, minimizing the total number of invert

ers, and improving circuit performance.

1.1 Factoring Logic Functions

There are many ways of representing logic functions; among them are the binary

decision diagram [19], the truth table, the disjunctive form (SOP), the spectral form [39],

and the factored form. A factored form is a parenthesized logic expression (e.g., a+b(c+d)).

There are many attractive properties of factored forms when compared with other repre

sentations. Perhaps the most important feature of factored forms is their association with

final implementations of the functions they represent. In most design styles (for example,

complex-gate CMOS design) the implementation of a function corresponds directly to its

factored form. For example, the factored form a+ b(c + d) specifies not only the number of

transistor pairs in the gate realizing the function, but also the way in which the transistors

are connected. Hence, factored forms are used to derive the physical implementation of
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logic gates in the static-CMOS complex gate design style, and are useful in predicting area

and delay of a circuit in a technology independent fashion.

Another feature of factored forms is the compactness of the representation. Fac

tored forms are more compact than disjunctive forms. For example, the factored form

(a -f b)(c + d) when expressed as a sum-of-products form would be ac + be+ ad + bd. Fur

thermore, many commonly used logic operations can be easily performed on factored forms.

By duality, every factored form of a function gives a factored form of its complement, which

is a property not found in the sum-of-product form. These properties make factored forms

useful as an internal representation of logic functions in a logic synthesis and optimization

system.

Chapter 3 of this thesis is intended to achieve three goals. The first is to define

systemically a set of logic operations on factored forms. Efficient algorithms will be given

and their complexities will be analyzed. The results can be used to implement a new logic

synthesis system in which the factored forms are used as the internal representation of

logic functions. The second goal is to develop and analyze algorithms for deriving good

factored forms from sum-of-product forms. A spectrum of algorithms will be given, in

order to achieve desired performance versus quality tradeoffs. Last but not least, several

properties of optimum factored forms are studied, from which more powerful algorithms

may be derived and lower bounds on the size of factored forms can be computed to verify

the quality of factoring algorithms.

1.2 Boolean Simplification

A Boolean network is simply a collection of interconnected logic functions. Each

one can be represented as a sum-of-products expression or a factored expression. The sum-

of-products form of each function in a Boolean network can be minimized, i.e. replaced

by an equivalent, but simpler, sum-of-products form using two-level logic minimization

algorithms. Two-level minimization can be made more powerful in this contextby providing

the minimizer with various don't-care sets derived from the immediate environment of a

function. Just how much of the don't-care sets to derive depends on how thoroughand how

fast this minimization process is expected to be.

The ultimate goal of simplifying a function in a Boolean network is to replace it

with another equivalent, but minimal, function which has the least literals in its factored
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form. At the moment, there is no algorithm for minimizing a function with this objective.

Instead, two-level minimization algorithms are used to minimize the number of literals in

the sum-of-products form of a function as an approximation to the number of literals in the

factored form.

The don't-care set of a function in multi-level logic can and do become very large

in the sum-of-products representation. Furthermore, the dimension of the Boolean space in

which a function and its don't-care set are defined can also become very large. Together,

they limit seriously the effectiveness of our simplification procedure. Chapter 4 looks further

into ways of reducing the size of a don't-care set by finding and removing the useless or

"almost" useless cubes from the don't-care set. Doing so not only reduces the size of

a don't-care set (in the sense of Boolean space as well as the representation), but also

restricts the dimension of the Boolean space. Experiments performed in MIS have shown

that this approach improves significantly the performance of the simplification process at

the potential expense of a small loss in quality of results.

1.3 Phase Assignment

The principle of duality is an important property of Boolean functions. It simply

states that every truth statement involving operator + and * and constant 0 and 1 remains

true when both the operators and the constants are switched. The duality principle makes

it possible to implement a Boolean function in either un-complemented or complemented

form provided that necessary inverters are supplied at the inputs as well as the output

of the function. In a given multi-level combinational logic network, each function can be

implemented in its present or complemented form with appropriate inverters. However,

the costs of implementing a function or its complement may differ. For example in static

CMOS technology, NAND gates are generally preferred over NOR gates due to performance

considerations. More importantly, the choice of implementing a function in its present or

complemented form affects the number of inverters needed at the inputs and output of the

function, which may in turn affect how other functions are to be implemented. The phase-

assignment problem is to determine for each function in a circuit whether to complement

it such that the total cost of the circuit is minimized.

To solve the phase assignment problem, the first question to be answered is whether

an algorithm exists for solving the problem optimally in a reasonable amount of time. It
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will be shown in Chapter 5 that the problem is NP-complete. Only when the network is in

a very specific form can the phase assignment problem be solved optimally in polynomial

time. A dynamic programming algorithm will be designed to minimize the total number of

inverters in a network whose topology is a tree.

To offer a practical solution to the phase assignment problem, several heuristic

algorithms have been developed, tested on a large set of examples, and experimentally

shown to be very efficient and effective.

When used in a cell-based design style, e.g., standard cell or gate array technology,

the phase-assignment problem can be extended to allow more general modifications to

functions than just complementations. New modifications will be formally defined which

extends the heuristic algorithms to solve this generalized phase assignment.

1.4 Timing Optimization

Being able to meet performance requirements is essential in synthesizing digital

logic circuits. As the circuit complexity increases, many of the manual methods for per

formance improvement have become impractical. Automatic- performance optimization of

digital circuits has played and will be playing a more and more important role in any syn

thesis system. Such performance optimization system must be able to work with different

levels of circuit hierarchyand at various steps of the design process (e.g. re-timing, reducing

delay in combinational logic, delay-driven layout, etc.). Chapter 6 deals exclusively with

performance optimization of combinational logic circuits (timing optimization). The results

can be used as a component in a performance driven synthesis system.

Timing optimization of combinational circuits can be viewed as a three-phase pro

cess. In the first phase,circuits areglobally restructured to have better "timing properties".

There, the quality of the circuits is judged not by the detailed timing figures, but rather,

by their structure. An example of global restructuring is the conversion from a carry-ripple

adder to a carry-look-ahead adder. This phase is characterized by its independence of target

technology. The objective here is to look for global structural changes of circuits to achieve

delayreductions that can not be obtained by lower level techniques such as transistor sizing

or buffering.

The second phase of timing optimization is performed during the physical design

process. Here, the target technology is known and more accurate timing information are
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available. Optimization involves transistor sizing, buffering, delay-driven placement, etc.

This phase is characterized by its dependence on a particular target technology and on the

existence of fast and relatively accurate timing simulators.

The third and last phase of timing optimization is performed when actual designs

are available. There, much more accurate timing analyzers are used to fine-tune the circuit

parameters. This phase serves both the optimization and verification purpose.

There have been several previous attempts to solve this problem. SOCRATES

[26] uses a rule based approach and tries to achieve global restructuring through a sequence

of local transformations. Even though the system is very flexible in adapting to various

cell libraries and target technology, it is heavily dependent on the rule set and the order

in which the rules are applied. More recently, an algorithmic-based restructuring technique

was tested in the Yorktown Silicon Compiler [10]. Even though the work lacks detailed

algorithms and theoretical analysis, it had several interesting ideas from which some ideas

presented in this chapter were originated.

Chapter 6 is dedicated to the first phase of timing optimization, technology-

independent timing optimization. Detailed description of algorithms will be given. Em

phasis will be placed on an important step in the optimization process, timing-driven de

composition. Exact conditions will be given under which optimal solutions can be obtained.

Last, a technique for improving the optimization time, incremental delay trace, will be pre

sented.



Chapter 2

Basic Definitions

Boolean Algebra

Boolean algebra is an algebraic structure defined on a set of elements B with

two binary operators + and • (called disjunction and conjunction) provided the following

(Huntington) postulates are satisfied:

1. B is closed under the operator + and •, i.e.

x,y e B => x + y e B and x*y € B.

2. There exists an identity element with respect to + designated by 0 and an identity

element with respect to • designated by 1, i.e.

30 6 B(Vx € B(x + 0 = x))

31 6B(VxeB(x*l = x))

3. Both + and • are commutative, i.e. for all ar, y e B the following equalities hold:

x + y = y + x

x-ky = y-kx

4. + is distributive over* and • is distributiveover+, i.e. for all x, y,z GB the following
equalities hold:

x • (y + z) = (x • y) + (x • z)

x + (y-kz) = (x + y)*(x + z)
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5. For every element x G Bt there exists an element x' GB (called the complement of x)

such that

x + x' = 1

x • x' = 0

6. B has at least two elements.

A two-valued Boolean algebra is a Boolean algebra in which the set B has exactly

two elements, B = {0,1}. In this thesis, Boolean algebra refers exclusively to the two-valued

Boolean algebra.

Duality and De Morgan's Law

An important property of Boolean algebra is the duality principle. It states that

for every truth (false) statement 5(+,*,0,l) the corresponding statement in which the

operators and identity elements are interchanged, i.e. 5(*, +, 1,0), is also true (false). The

duality principle is often used as the following specific forms of De Morgan's Law:

(x + y)' = x'y'

(xy)' = x' + y'

Single-output Boolean Function

A binary variable can take the value of 0 or 1, representing one dimension of the

Boolean space B = {0,1}. A single-output Boolean function F maps an n-dimensional

Boolean space to a one dimensional Boolean space, i.e.

F: {0,1}*- {0,1}.

A single-output Boolean function is also called logic function or simply function when there

is no confusion. There are two special functions denoted by 0 and 1. Function 0 maps

{0, l}n to the constant 0 and function 1 maps {0,l}n to the constant 1.

Sum-Of-Products Form

A literal is a variable or its complement (e.g., x or a').

A cube is a set C of literals such that x £ C implies x' £ C (e.g., {x,yy z'} is a

cube, and {x, x'} is not a cube). A cube represents the conjunction of its literals. The
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trivial cubes, written as 0 and 1, represent the Boolean functions 0 and 1 respectively.

By definition, function 0 is represented by the empty set <f> and 1 is represented by a set

containing only the empty set, {</>}. Since a cube is a set, cube-containment is naturally

defined by the set-containment.

A sum-of-products (SOP) form (also called expression) is a set of cubes. For ex

ample, {{a:}, {y, z'}} is an expression consisting of two cubes {x} and {y, z'}. An expression

represents the disjunction of its cubes.

Conventionally, a cube is written as a list of its literals omitting the operator *

(e.g., cube {x,y', z] is written as xy'z rather than x*y'*z). An expression is written as the

sum of its cubes with implicit parenthesis around each cube, e.g., expression {{a:,z'}, {y1, z}}

is written as xz' -f- y'z instead of (x • z') + (y'• z).

An expression is algebraic if no cube in the expression contains another. For

example, expression a + be is algebraic, and expression a + ab is non-algebraic because

{a}C{a,b}.

The support of an expression / is a set of variables, sup(f), f depends on, i.e.

sup(f) = {x\3C G / such that x GC or x' GC}.

For example, sup(xy + x'z') = {x,y,z}.

Two expressions / and g are said to be orthogonal, f±g, if they have disjoint

support, i.e., sup(f) n sup(g) = <f>.

Factored Form

An alternative representation (to sum-of-products form) of a logic function is the

factored form. It is the generalization of sum-of-products form allowing nested parenthesis.

For example, the expression

ace + ade + bee + bde + e'

can be written in factored form as

e(a + b)(c+ d) + e'.

In other words, a factored form is a sum of products of sums of products,..., of arbitrary

depth. Since the formal definition of factored forms is used exclusively in Chapter 3, the

definition will be given in the chapter along with some of properties.
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Division

Since Boolean algebra does not have additive or multiplicative inverses, there can

be no division operation. However, one can define operations which, when given functions /

and p, find functions q and r such that f = pq+r. Every such operation is like the division

operation and is therefore called division of / by p generating quotient q and remainder r.

It is clear that such a division operation is not unique. Even for a given division operation,

the resulting q and r may be dependent upon the particular representation of / and p.

Next, two classes of divisions are introduced and examples will be given for each one.

Algebraic and Boolean Division

The product of two cubes c and d is a cube defined by (recall that a cube is a set

of literals)

if 3a: (x Gc U d and x' G c Ud)
cd =

d otherwise

The product of two expressions / and g is a set defined by

fg = {cd\c G / and d Gg and cd / 0}.

Notice that cd = 0 if and only if c U d contains both a literal and its complement.

fg is an algebraic product if / and g are orthogonal (have disjoint support); other

wise fg is a Boolean product. For example, (a + b)(c+ d) = ac+ ad + be+ bd is an algebraic

product and both (a + b)(a+ c) = a +ab +ac + bc and (a + b)(b' + c) = ab' + ac + bc are

Boolean products.

An operation OP is called division if, given two functions / and p, it generates

q and r (< q,r >= OP(f,p)) such that f = pq + r. If pq is an algebraic product, OP is

called an algebraic division; otherwise pq is a Boolean product and OP is therefore called a

Boolean division. An algebraic division is usually denoted by ALGEJDJV and a Boolean

division is usually denoted by BOOLJ)TV.

Weak and Strong Division

Weak division and strong division are specific examples of algebraic division and

Boolean division.

[ cu
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Given two algebraic expressions / and p, a division is called weak division if 1) it

generates q and r such that pq is an algebraic product, 2) r has as few cubes as possible,

and 3) pq + r and / are the same expression (having the same set of cubes). Given the

expressions / and p, it can be shown that q and r generated by weak division are unique.

WEAKJ)IV denotes the operation of weak division. Often, f/p is used to denote the

quotient of weak dividing / by p. [17] gives an O(nlogn) algorithm for weak division. A

linear algorithm for weak division exists given that expression / and p are represented in a

special way [38].

Unlike weak division, strong division finds the quotient q and the remainder r by

the following procedure:

STRONGJ)IV(f,p)

1. Let x be a literal representing expression p.

2. D = x'p + xpf.

3. g = MINIMIZED,D,x)

4. q = {c - {a?}|c G g and x G c}.

5. r —{d\d G g and x £ d}.

6. return (q, r).

In STRONGJDIV, x is a special variable representing expression p. D is the

exclusive-OR of x and p. For example, if p —a + b, then D = x'a + x'b + xa'b'. Since x is

always equal to p, function D is always false. So, D can be used as the don't-care set to

reduce the number of cubes in /, which is done by MINIMIZE. Notice that the literal x'

may appear in the minimized /. The objective of STRONGJ)IV is to find a quotient and

a remainder which are as simple as possible. If x' is allowed, then the size of the reaminder

cannot be controlled. To prevent this, one has to modify the MINIMIZE to avoid using

the litral x'. Finally, all the cubes g containing literal x form the quotient and the remaining

cubes form the remainder. [14] provides comprehensive discussions of the strong division.

Usually, / -r p is used to denote the quotient of strong divide / by p. Strong division is a

Boolean division because the quotient q and the divisor p are not guaranteed to be disjoint.
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Note also that unlike weak division, q and r are not unique and in general depends on the

initial representation of / and p.

Kernel

The notion of a kernel of an algebraic expression was introduced in [17] to provide

means for finding subexpressions common to two or more expressions. All operations used

to find kernels are algebraic (i.e., algebraic product, algebraic division, etc.), but the word

algebraic is omitted for brevity. In particular, algebraic division is done by WEAKJ)TV.

An expression is cube-free if no cube divides the expression evenly (e.g., ab + c is

cube-free; ab+ac and abc are not cube-free). Notice that a cube-free expression must have

more than one cube.

The primary divisors of an expression / are the set of expressions

[D(f) = {f/c\c is a cube }.

The kernels of an expression / are the set of expressions

K(f) = {g\g G D(f) and g is cubefree }.

In other words, the kernels of an expression / are the cube-free primary divisors of /.

A cube c used to obtain the kernel k = f/c is called a co-kernel of k, and C(f) is

used to denote the set of co-kernels of /. For example, the kernels and their corresponding

co-kernels of the function

x = adf + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d+e)f + g

are listed in Table 2.1. Notice that a kernel may have more than one co-kernel and a

kernel co-kernel

a + b + c <*/, ef
d + e af, bf, cf
(a + b + c)(d + e)f + g 1

Table 2.1: Kernels and co-kernels of (a + b+ c)(d + e)f + g

co-kernel can be the trivial cube 1 if the original expression was cube-free.
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For certain operations described in the following chapters, it is nearly as effective

and frequently more efficient to compute a certain subset of K(f) rather than the full set.

This leads to the following recursive definition for the level of a kernel. Let

{
Kn{f) =i {* e K(f)\K(k) ={k}} n=0

{k Gi*T(/)|Vfci g K(k) h ^ k such that h GKn~1(f)} n > 0

If k G K°(f), then fc is a level-0 kernel of /. If k G Kn(f) and k <£ Kn~x(f), then k is a

level-n kernel of /. According to the definition, a kernel is said to be of level-0 if it has no

kernels except itself. Similarly, a kernel is of level n if it has at least one level n-1 kernel

but no kernels (except itself) of level n or greater. This gives us a natural partition of the

kernels:

K°U) C K\f) C K\f) C •••C Kn(f) C KU).

Notice that the set of level-i kernel is given by Ki+l(f) —Kx(f).

Multiple-output Boolean Function

A multiple-output Boolean function F maps an n-dimensional Boolean space to an

m-dimensional Boolean space, i.e.,

P:{0,l}n-+{0,l}m.

A multiple-output Boolean function F can also be defined (equivalently) as a set of single-

output Boolean functions, i.e.,

F = {*!|JJ: {0,1}" - {0,1}}.

Multi-level Logic

In many applications, it is infeasible to describe each single-output function of a

multiple-output function as a single expression or a single factored form. Often, a set of

intermediate functions are introduced, each one depends on the original inputs and possibly

other intermediate functions. Then, each single-output function can be expressed as a

function of original inputs as well as the intermediate functions. For example, the multiple-

output function

Ft = ((a + b)c + d)e + f

F2 = ((a + b)c + d)g + h
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can be expressed as the following set of functions involving intermediate variables x and y:

*i = ye + f

F2 = yg + h

y = xc + d

x = a + b.

Multi-level logic refers to any multiple-output Boolean function represented by a set of inter

connected functions. Therefore, multi-level logic is a particular representation of multiple-

output functions. If F is a multiple-output Boolean function, n(F) is often used to denote a

multi-level logic representation of F. All the original inputs of F are called primary inputs

of n(F), denoted by the set PI(n(F)). All the outputs of F are called primary outputs of

n(F), are denoted by the set PO(n(F)). All other variables in n(F) are called intermediate

variables. The set of functions of n(F) are denoted by FUNCTION(n(F)).

Boolean Network

A multi-level logic function can be graphically represented as a directed acyclic

graph (DAG) where each node i is associated with 1) a variable yi and 2) a representation

fi of a logic function (sum-of-products form and/or factored form).

In the graph, an arc connects node i to node j if y,- G sup(fj). The primary inputs

and primary outputs correspond to special nodes in the graph, the source nodes and sink

nodes of the DAG. There is no function associated with the source or sink nodes.

A node j is a fan-in of a node i if function /; depends on variable yj explicitly,

i.e., there is an arc from j to i. The set of all fan-in's of a node i is denoted by

<f> i is a primary input
Fi(i)= ,

{j\j G sup(i)} otherwisei
The set of transitive fan-in's of a node i is denoted by TFI(i) and is defined recursively as:

<t> i is a primary input

FI(i) UUi€FJ(») TFI(j) otherwise

Likewise, a node j is a fan-out of node i if function fj depends explicitly on variable

yi, i.e., there is an arc from i to j. The set of all fan-out's of a node i is denoted by

i is a primary output

TFI(i) =i

FO(i)
'"" G sup(j)} otherwise-r
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The set of transitive fan-out's of a node i is denoted by TFO(i) and is recursively defined

as:

j 0 i is a primary output
\ FO(i)u\Jj€FO{{)TFO(j) otherwise

The set of all nodes in a Boolean network 77 is denoted by NODE(rj). Since

every variable in a Boolean network corresponds to a signal in the implementation, vari

ables are sometimes called signals and the set of signals of Boolean network is denoted by

SIGNAL(rj). There is a one-to-one correspondence between functions in FUNCTION(rj),

nodes in NODE(rj), and signals in SIGNAL(n). Often, they are used interchangeably.

Incompletely Specified Function

An n-dimensional Boolean function partitions the input space (the domain) into

two sets, the ON-set (points which are mapped to 1) and OFF-set (points which are mapped

to 0). A Boolean function is incompletely specified if it partitions the input space into three

sets, the ON-set, OFF-set, and don't-care set (points which can be mapped to either 0 or

1). An incompletely specified function can be represented as a three-element ordered set

(/>d,r) *nwhich the first element / represents the ON-set, the second element d represents

the don't-care set, and the third element r represents the OFF-set. Together, /, d, and r

form a partition of the entire Boolean space, i.e., every point belongs to one and only one

of /, d, and r.

Sometimes, an incompletely specified function is represented by two sets (/, d) in

which the first element is the ON-set, the second element is the don't-care set, and the

OFF-set contains the rest of points and can be obtained from / and d.

Sometimes, the ON-set / as represented by a designer may overlap with the don't-

care set d. In this case the real ON-set is implicitly understood as / —d.

Extraction

The operation extraction on a Boolean network is the process of creating some

intermediate functions and variables and re-expressing the original functions as functions
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of the original as well as the intermediate variables. For example, the process of translating

F = (a + b)cd+ e

G = (a + b)e'

R = cde

to

F = XY + e

G = Xe'

R = Ye

X = a + b

Y = cd

is extraction. The associated optimization problem is to find a set of intermediate functions

such that the resulting network is minimum, measured by either area or delay.

Decomposition

Decomposition of a function is the process of re-expressing a single function as a

collection of new functions. For example, the process of translating

F = abc + abd + a'c'd' + b'c'd'

to

F = XY + X'Y'

X = ab

Y = c + d

is decomposition. The associated optimization problem is to find a decomposition with

minimum total area or delay.

Factoring

Factoring is the process of deriving a factored form from a sum-of-products form

of a function. For example

F = ac + ad + be + bd + e

can be factored to

F = (a + b)(c + d) + e.

The associated optimization problem is to find a factored form with the minimum number

of literals.
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Substitution

Substitution of a function G into F is to re-express F as function of its original

inputs and G. For example, substituting

G = a + b

into

F=a + bc

produces

F = G(a + c).

Collapsing

Collapsing is the inverse operation of substitution. If G is a fanin of F, collapsing

G into F re-expresses F without G (un-does the operation of substituting G into F). For

example, if

F = Ga + G'b

G = c + d

then, collapsing G into F results in

F = ac + ad+ bc'd'

G = c + d
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Chapter 3

Factoring Logic Functions

3.1 Introduction

There are many ways of representing logic functions; among them are the binary

decision diagram [19], the truth table, the disjunctive form (SOP), the spectral form [39],

and, of course, the factored form. A factored form is a parenthesized algebraic expression.

For example, each of the following is a factored form:

a',

ab'c,

ab + c'd,

(a + b)(c + a' + de) + f,

where a, a', b', c, ... are called literals.

Factored forms have many attractive properties. In most design styles (for exam

ple, complex-gate CMOS design) the implementation of a function corresponds directly to

its factored form, as shown in Figure 3.1. As illustrated in the example, the factored form

specifies not only the number of transistor pairs in the gate, but also the way in which they

are connected. Hence, factored forms are useful in estimating area and delay in a multi-level

logic synthesis and optimization system.

Factored forms in general are more compact than disjunctive forms. For example,

if the following factored form were to be expressed as a sum-of-product form, it would have

21
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x=(a+b)c+d
c\

GND

(a) (b)

Figure 3.1: A logic function (a) and its implementation (b)

contained 16 product terms with 4 literals in each term.

(a + b)(c + d)(e + f)(g + h)

Furthermore, many commonly used logic operations can be easily performed on factored

forms. By duality, factored forms also provide both functions and their complements, which

is a property not found in sum-of-product forms. These properties make the factored forms

useful for being used as an internal representation of logic functions in logic synthesis and

optimization systems.

This chapter has three goals. The first is to define systemically a set of logic oper

ations on factored forms and to derive efficient algorithms for performing those operations.

The results can be used to implement a new logic synthesis system in which the factored

forms are used as the internal representation of logic functions. The second goal is to de

velop and analyze algorithms for deriving good factored forms from sum-of-product forms.

Last but not least, several properties of optimum factored forms are studied, from which

more powerful algorithms may be derived and lower bounds on the size of factored forms

can be computed to verify the quality of factoring algorithms.

Section 2 defines the factored forms and related terminology. It also provides nota

tions for describing algorithms and procedures in the remaining sections. Section 3 defines

certain logic operations to be performed directly on factored forms and derives, when

ever possible, algorithms to implement the operations. Section 4 develops and analyzes a

heuristic factoring algorithm. Several variations of the algorithm will also be presented and

compared. Section 5 presents several properties of optimum factored forms of completely

specified, as well as incompletely specified logic functions. These properties suggest certain

algorithmic structures to factorize logic functions optimally. In several cases, these prop

erties can be used to derive better lower bounds on the size of optimum factored forms.
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Section 6 describes how the examples were obtained for testing the factoring algorithms

and how the experiments are performed. Results are given to show the qualities of various

algorithms. The tradeoffs between run time and quality of results among several algorithms

are also presented.

3.2 Basic Definition

A factored form is a parenthesized algebraic expression. Any logic function can

be represented by a factored form and any factored form is a representation of some logic

function. To be precise, a factored form can be defined recursively by the following rules:

1. A product is either a single literal or a product of factored forms.

2. A sum is either a single literal or a sum of factored forms.

3. A factored form is either a product or a sum.

For example, each of the following is a factored form:

y',

abc1,

a + b'c,

((a' + b)cd+ e)(a + b') + ef,

where the first two are literals, the third is a product, the forth is a sum, and the last one

is a sum of products of sums of By the definition, the following is not a factored form:

(a + b)'c

because it inverts (a + b) internally whichis not allowed by the definition. Like the disjunc

tive forms, factored forms are in general not unique, as illustrated by the following three

equivalent factored forms:

ab+ c(a + b),

be+ a(b + c),

ac + b(a + c).
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If / is a logic function, then F* is used to denote a factored form of /, and S*

is used to denote a disjunctive form of /. When there is no confusion, / is used to denote

both a logic function and a factored form of the logic.

Factored forms can also be graphically represented as labeled trees, called factoring

trees, in which each internal node including the root has a label of either "+" or "*", and

each leaf has a label of either a variable or its complement. For example, Figure 3.2 is the

factoring tree of ((a' + b)cd+ e)(a + b') + e',

a b'Q) c

c drl
a' b

Figure 3.2: Factoring tree of ((a' + b)cd+ e)(a + bf) + e'

Any sub-tree of a factoring tree is a factor of the factored form represented by the

factoring tree. In other word, factor of a factored form is any sum term or product term

in the factored form. For example, a(b + c) and de + f axe factors of the factored form

a(b + c) + de + f.

Two factored forms are said to be equivalent if the represent the same logic func

tion, f-equivalent if their factoring trees, including the leaves, are isomorphic. For example,

a(b + c) + be and ab + c(a+ b) are equivalent, and (a + b)(c + d)e and (c + d)e(a + b) are

f-equivalent.

Some factored forms can be further factored. For example, ab + ac can be further

factored to a(b+ c), and (a + b)c + (a + b)d can be further factored to (a + b)(c + d). This

leads to the following definition of maximally factored forms. A factored form is maximally

factored if

1. For every sum of products, there are no two f-equivalent factors in the products.

2. For every product of sums, there are no two f-equivalent factors in the sums.
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For example, the following factored forms are not maximally factored

ab + ac,

(a + b)(a + c),

because they can be further factored to

a(b + c),

a + be.

Notice that in Boolean algebra, "+" is distributive over "*" and "*" is distributive over

"+". The above factorings are obtained by direct application of the distributive law. The

transformation of ab+ac to a(b+c) may seems to be easier than (a+b)(c+d) to a+bc. This

is because we often think a Boolean expression as a polynomial, in which multiplication is

distributive over summation. But, in Boolean algebra, the OR, "+", is also distributive

over the AND, "*". So, the second transformation should be just as simple.

The size of a factored form / is measured by the number of literals in the factored

form and is denoted by p(f). For example, p((a+ b)ca') = 4 and p((a + b+ cd)(a'+ b')) = 6.

A factored form is said to be optimum if no other equivalent factored form has less literals.

A factored form is positive unate in x if literal x appears in / and literal x' does

not appear in /, negative unate in x if literal x' appears in / and literal x does not appear

in /. / is unate in a; if it is either positive unate or negative unate in x. /is binate in x if

it is not unate in x. For example, (a + b')c+ a' is positive unate in c, negative unate in b

and binate in a.

The cofactor of a factored form F with respect to a literal / (i.e. x or x) is a

factored form, denoted by P/, obtained by replacing all occurrences of / with 1 and all

occurrences of I with 0 and simplifying the factored form using the following identities of

the Boolean algebra:

lx ^Z X

1 + x = 1

Ox = 0

0 + x = X

Notice that after the constant propagation, part of the factored form may appear as x + x.

In general, x is not a literal, but another factored form. In factor, the two z's may have

different factored forms. Identifying these equivalent factored forms and obtaining the
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simplification x + x = x is the subject of later sections. Here, we are only interested in

obtaining a factored form which represents the cofactor of a function with respect to a

literal.

The cofactor of a factored form F with respect to a cube c is a factored form,

denoted by Fc, obtained by successively cofactoring F with each literal in c.

EXAMPLE: Let P = (x + $ + z)(xu + zy(v + u)) and c = vz. Then

P5 = (x + y)(xu + y(v + u))

Fc = (x + y)(xu + y)

3.3 Manipulating Factored Forms

This section deals with direct manipulations of logic functions in their factored

forms. Factored forms are more compact representations of logic functions than the tradi

tionally used sum-of-products forms. For example, the following factored form

(a + b)(c+ d(e + f(j + i + h + g)))

when represented as a sum-of-products form would be

ac + ade + adfg + adfh + adfi + adfj

+bc + bde+ bdfg + bdfh + bdfi + bdfj.

In fact, every sum-of-products form can be viewed as a special factored form. So, factored

form representations are intrinsically smaller than their corresponding sum-of-products

forms, and in many cases much smaller as illustrated by the previous example. When

measured in terms of number of inputs, there are functions whose size is exponential in

sum-of-products forms, but polynomial in factored forms. The following Achilles' heel func

tion is such an example.
i=n/2

II (x*i-l +*2i).
t=l

It is easy to see that there are n literals in the factored form and 2n/2 literals in the sum-

of-products form.
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In most design styles, e.g. complex-gate CMOS design, the implementation of a

function corresponds directly to its factored form. Consequently, the number of literals in

the factored form of a logic function is generally used as a technology independent estimate

of the cost. Traditionally, sum-of-products forms are used as the internal representation

of logic functions in most multi-level logic optimization systems because the algorithms

and procedures for manipulating sum-of-products forms are readily available. But this

approach has two undesirable consequences. First of all, the performance of such systems is

unpredictable, for they may accidentally generate a function whose sum-of-products form

is too large. Secondly, factoring algorithms have to be used constantly throughout the

optimization process in order to provide continuously an estimate for the size of the Boolean

network. The CPU resource spent on the factoring becomes significant when accumulated

over time.

An obvious solution is to avoid sum-of-products forms by using factored forms as

the internal representation of logic optimization systems. But this is not practical unless

we know how to perform logic operations on the factored forms directly without converting

them to sum-of-products forms. The goal of this section is to compile a set of logic operations

commonly found in a logic optimization system and provide, whenever possible, algorithms

for performing the operations.

3.3.1 List of operations

The following is the list of logic operations to be considered in this section. They

are the basic operations frequently used in the multi-level logic optimization system MIS

[14]. The list is by no means complete, but sufficient for implementing most optimization

algorithms in MIS. Some of the more complicated operations are also included even though

they can be expressed as compositions of simpler operations, because when operated on

factored forms these operations are particularlysimple to be implemented directly without

using the basic operations.

• Basic logic operations.

—Conjunction (logical AND).

—Disjunction (logical OR).

— Inversion.
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— Cofactoring.

— Simulation.

• Operations used to generate kernels.

—Dividing a factored form by a literal.

—Dividing a factored form by a cube.

—Finding the largest common cube of a factored form.

— Generating kernels.

• Higher level operations.

—Dividing a factored form by another factored form.

—Collapsing two factored forms.

—Decomposing a factored form.

—Substituting a factored form into another factored form.

—Tautology.

—Simplifying factored forms.

3.3.2 Notation

A factored form can be represented as a labeled tree in which each node has a

label of either "*", n+n, or LEAF1. Each node also has a set of fanin nodes and one fanout

node. A factored form can be specified by its factoring tree or simply the root node of the

tree. Since every node in a factoring tree is a root of some sub-tree, it can also be viewed

as a factored form.

In describing algorithms, variable f,g,...,x are used to denote factored forms,

more precisely the root nodes of their corresponding factored forms. If / is a factored form

(a node), /(/) is the set of fanin nodes (factored forms) of /, O(f) is the fanout node of

/, LEAVES(f) is the set of leaf nodes of /, and NODES(f) is the set of all nodes of /.

Notice that O(f) is empty if / is a root. OP(f) 6 {" *V + ", LEAF} gives the label of /.

The example in Figure 3.3 clarifies the above definitions. Node / is the root node, g, h, x, y,

1In actual implementation, a leaf node has an additional parameter indicating whether the leaf (literal)
is complemented. Since this additional parameter is not need in describing algorithms, it is omitted.
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Addlnput(f, x)
1(f) = /(/) u {*}
return /

Deletelnput(f, x)
iU) = i(f) - {*}
return /

d e

a 6a' cS' c'

Figure 3.3: Factoring tree of (ab+ a'c + b'c')(d + e)

and z are internal nodes, and a,a',b,6',c,c',d,e are leaves. 1(g) = {x,y,z), 0(h) = /,

OP(f) = " * ", OP(g) = " + ", and OP(a) = LEAF.

Under these notations, two primitive subroutines are defined for manipulating

factoring trees.

Addlnput simply makes the node x an input ofnode /. If / = ab, then Addlnput(f, x)

abx. If / = g + h, then Addlnput(f,x) = g+ h + x. Deletelnput simply removes node x

from the fanins of /. It is the inverse operation of Addlnput. Figure 3.4 shows graphically

the affects of Addlnput and Deletelnput.

3.3.3 Basic operations

Conjunction

Let / and g be two factoring trees. Let AND(f, g) be a factored form of the logical

conjunction of function / and g. Notice that AND(f, g) is a logical operation expressed
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AND(f,g)
P = a new node.

OP(P) = " * "
AddInput(P, f)
AddInput(P, g)
return P.

Addlnput(f,x)
^>

Deletelnput(f,x) / \

Figure 3.4: primitive tree manipulations

using factored forms. So, in addition to defining operation of AND(f,g) on factored forms,

we have to prove also that the resulting factored form is indeed a factored form of logic

function fg.

Figure 3.5 illustrates the result graphically.

Figure 3.5: AND(f,g)

PROPOSITION 3.3.1 The logicfunction represented by the factoredform AND(f, g) is

the logical conjunction of logic functions represented by f and g.

Proof. Any minterm which sets / and g both to 1 will set AND(f,g) to 1. Otherwise the

minterm will set AND(f,g) to 0, because the root node of AND(f,g) is labeled "*". •
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PROPOSITION 3.3.2 AND(f,g) is an 0(1), constant, operation.

Proof. The first two operations in the algorithm are trivially constant. Addlnput involves

inserting an element into a set which is, in general, a non-constant operation. But, in this

application where we know that g,f & I(P)> the insertion is a constant operation. So,

Addlnput is a constant operation, and so is AND(f,g). •

Even though AND(f,g) generates a correct factored form of fg, the resulting

factored form can often be simplified and some of the simplifications are quite trivial. For

example, if / = abcand g = abd, AND(f, g) returns a factoring tree (abc)(abd) even though

it can be easily simplified to (abed). However, the general problem of simplifying a factored

form is quite difficult, and will be discussed at the end of this section. For now, we assume

that there is a routine SIMPLIFY(f) which can simplify the factored form /.

Disjunction

Logical disjunction can be handled in the exact same way as the conjunction, and

all algorithms, propositions, and discussions of conjunction operation remain valid. So,

we simply give the definition, the algorithm, and the corresponding propositions without

further discussion.

Let / and g be two factoring trees. Let OR(f,g) be a factored form of the logical

disjunction of function / and g.

OR(f,g)
P = a new node.

OP(P) = " + "
AddInput(P, f)
AddInput(P, g)
return P.

PROPOSITION 3.3.3 The logic function represented by the factored form OR(f,g) is

the logical disjunction of logicfunctions represented by f and g.

PROPOSITION 3.3.4 OR(f,g) is an 0(1), constant, operation.
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Inversion

Let / be a factored form. Let INV(f) be a factored form of the logical inversion

of function /.

INV(f)
if OP(f) = LEAF {

complement literal /
if0P(/) = "*"

OP(/) = "+"
else /+ OP(f) = "+tt */

OP(/) = "*»
for each x € 1(f)

INV(x)
return /.

The algorithm is a direct application of DeMorgan's Law. It switches "*w and "+"

and recursively inverts each fanins. At a leaf, it complements the literal, i.e. x —• x' and

x' —• x.

PROPOSITION 3.3.5 The logic function represented by the factored form INV(f) is

the logical inversion of the logic function represented by f.

Proof. This is DeMorgan's Law in its generalized form. •

PROPOSITION 3.3.6 INV(f) is an 0(p(f)) operation, where />(/) is the number of

literals (leaf nodes) in f.

Proof. The algorithm spends a constant amount of time on each node in the factoring

tree /. Since there are p(f) leaf nodes and each internal node has at least two fanins, the

total number of nodes in the tree can be no more than 2p(f) —1. So, the algorithm INV

is an 0(p(f)) operation. •



3.3. MANIPULATING FACTORED FORMS 33

Cofactoring

Recall the definition of cofactoring a factored form / with respect to a literal x.

It replaces every occurrence of literal x with constant 1 and literal x' with constant 0, and

propagates the constants using Boolean identities Is = x,0x = 0,1 + x = 1, and 0 + x = 0.

We first formalize the algorithm.

Cofactor(f, lx)
for each / € LEAVES(f) s.t. / = x or / = x' {

if ((/ = x) and (lx = x) or (I = x') and (lx = x'))
Propagate(FO(l), 1,1)

else /* ((/ = x) and (lx = x') or (I = a:') and (lx = x)) */
Propagate(FO(l),l,0)

} /
return /

Propagate(x, y, n)
if OP(x) = " + "

if n = 0

Deletelnput(x,y)
else /* n = 1 */

Propagate(FO(x), x, 1)
else/*OP(x) = ,'*', */

if w = 0

Propagate(FO(x), x, 0)
else /* n = 1 */

Deletelnput(x, y)

Toshow that procedure Cofactor iswell defined, we need to show that Cofactor(f,x)
is indeed an factored form of logic function fx.

PROPOSITION 3.3.7 Cofactor(f,x) is a factored form of logic function fx.

Proof. To avoid confusion, let / be a logic function, F* be its factored form, and fx be

the cofactoring of / with respect to x and P/ be Cofactor(F*,x). Let m be a minterm.
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We say m € / if m is an implicant of /, m 6 F* if Ff evaluates to 1 using input vector

V(m) in which a variable x is assigned 1 if literal x is in m, assigned 0 if literal x' is in m.

We need to prove P/ = F*x (i.e. P/ is a factored form of fx).

m 6 F*m <=^> mefx

<=$> mx e f

<=> mx e F*

«*=> rnqF*

The last implication is true because P/ is just the partial result of evaluating F* using

V(mx) where V(m) has not yet been evaluated. Of course, when V(m) does get evaluated,

P/ has to be 1 because mx e F*, so m 6 P/. •

Like AND and 0A, Cofactor(f, x) is also quite efficient when the factored form

/ is minimal in some respect.

DEFINITION 3.3.8 A factoredform f is said to be alternating ifOP(x) ^ OP(y) Vx e

I(y)i Vy 6 NODES(f), i.e. for every node x in thefactored tree of f, there is no fanin of

x having the same label as x.

PROPOSITION 3.3.9 If thefactored form off is alternating, thenCofactor(f,x) is an

0(p(fix)) operation, where p(f,x) is the number times literals x and x' appear in f.

Proof. First, its is easy to see that Propagate(x,y,n) is a constant time operation. There

are two cases under which Propagate recursively calls itself. If OP(x) = " * " and n = 0,

then the constant to be propagated up is 0 and the label (operator) at the next level is

"+". So, the propagation stops at the next level. If OP(x) = " + " and n = 1, then the

constant to be propagated up is 1 and the label (operator) at the next level is "*". So,

the propagation again stops at the next level. Therefore, there can be no more than two

levels of propagation for a given constant in routine Propagate, i.e. Propagate is an O(l),

constant, operation.

In Cofactor, with the help of certain data structure techniques, there is no need

to loop over all leaves of / in order to find literals x or x'. In fact, it is easy to design a

data structure in which this operation is 0(p(f,x)). for instance, associate with each input

variable x of / a linked list of pointers to the leaves of / which are either literal x or x'.

Therefore, the whole algorithm Cofactor(f,x) is an 0(p(f,x)) operation. •
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3.3.4 Generating kernels

Kernels [17] have been shown in severalmulti-levellogic optimization systems [10]

[14] to be good candidates for identifying common factors between a set of functions. This

section presents methods for generating kernels from a given factored form directly and

representing the kernels in their factored forms.

The following is a kerneling algorithm first proposed in [17] and has been shown in

practice to be very efficient. It is; outlined here for easy reference. The general strategy in

the algorithm is to divide a function by a literal, obtain a kernel by making the quotient of

the division cube-free, and proceed recursively to find lower level kernels. Full discussions

of the algorithm can be found in [17].

Kernel(f,k)
f = cube^free(f)

* = {/}
for i = k to n {

c = largestjcommonjcube(f/li)
if /,- £ c and Vfc <i

K = KU Kernel(fl(U n c),i)
}
return K

There are four basic operations used in the algorithm: dividing a function by a

literal, dividing a function by a cube, finding the largest common cube of a function, making

a function cube-free. It will become evident later on that dividing a function by a cube is

equivalent to dividing by a literal, and making a function cube-free is equivalent to finding

the largest common cube and dividing the function by that common cube. Therefore, only

two operations are really needed and will be studied: dividing a function by a literal and

finding the largest common cube of a function.

Kernels and operations used in generating kernels are all defined on algebraic

sum-of-products expressions which are single-cube-containment minimum sum-of-products

forms. When operating on factored forms, the notion of kernels is not yet well defined. Our

approach is to define first the operations used to generate, from a factored form, a set of

factored forms which will be shown to correspond to the set of kernels of an appropriately
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derived algebraic expression.

Dividing a factored form by a literal

Let P, G, and R be factored forms. If P can be re-expressed as xQ + R where

Q and R are independent of literal x, then Q is called the quotient and R is called the

remainder of dividing P by x. To avoid confusion, some times 9* and R% are used to

denote the quotient and remainder of dividing P by x.

To compute the quotient and the remainder of a division, the following derivations

are needed.

P = G + R

= (««? + *?) + (««? + *?)

= »«? + 9?) + (*? + af)
= «9J + *J

P = GiT

= (»9?+ *?)(««? +a?)
= *M^ + 9?*? + a?g?) + (R°R?)
= «9f + aj

So, we have the following formula for computing quotients and remainders.

9f =
QZ + Qi* if F = G + H

QZQS + QVRI' + RZQX if F = GR

rF t R<* +RH if F=G+R

FACTORJ)IV(F,x)
if OP(F) = LEAF {

HF = x

9 = 1
R = 0

else

9 = o
R = F

} else if OP(F) = " +

-{ RGRH if F = GH

These equations suggest a recursive procedure for computing the quotient and

remainder of dividing a factored form by a literal.
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9 = 0
R = 0

for each G e 1(F)
(r,q) = FACTORJ)IV(G,x)
Q = Q + q
R = R + r

} else /* OP(F) = "*"*/{
9 = o
R = l

for each G G 1(F)
(r,q) = FACTORJ)IV(G,x)
Q = Q(q + r) + qR
R = Rr

}
return (Q,R)

PROPOSITION 3.3.10 FACTORJ)IV(F,x) is an 0(p(F)) operation.

Proof. The algorithm works on each node twice, once on the way down and once on the

way up. Since the total number of nodes in F is no more than 2p(F) —1, the algorithm is

an 0(p(F)) operation. •

Finding largest common cube

To simplify the algorithm description, the following definition of cubes is used. A

cube is a set of literals. By definition, the empty set is the universal cube 1. For example,

abc = {a, 6,c} and abd' = {a, b, d'} are cubes. Cube AND in Boolean domain is set union

in our notation. For example,

(abc)(abd') = (abed') = {a,b,c} u{a,b,d'} = {a,b,c,d'}.

Furthermore, the common cube of two cubes is given by set intersection of the two cubes.

For example,

commonjcube(abc, abd') = {a, b, c} n {a, b, d'} = {a, 6} = ab.
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Let CC(F) be the largest common cube of P. The above definition and examples make the

following recurrence relation clear.

•{CC(F) = < CC{G) U°C(H) if F=GH
CC(G)nCC(R) if F = G + R

The following algorithm uses this recurrence relation to find the largest common cube of

factored form P.

COMMONJCUBE(F)
if OP(F) = LEAF

CC = {P}
else if OP^^-H"

CC = {*} /* the set of all literals */
for each G G 1(F)

CC = CCn COMMON.CUBE(G)
else /* OP(F) = "*"*/

CC = <f>
for each G e 1(F)

CC = CCU COMMON_CUBE(G)
return CC

Relationship with Kernels

Now, we have all the operations necessary to carry out the algorithm Kernel on

factored forms. Let FK(F) be the set of factored forms generated by the Kernel algo

rithm, using the new procedures FACTORJ)IV and COMMON-CUBE replacing ///,-

and largestjcommonjcube. We would like to establish some relationship between factors in

FK(F) and kernels in K(E) where E is some algebraic expression derived from P. Our

presentation begins with the following definitions.

DEFINITION 3.3.11 Given a factored form f, let S* be the sum-of-products form de

rivedfrom f by multiplying f out literal by literal to a set of cubes and applying the following

operations on the set of cubes:

1. Remove terms containing both a literal and its complement (x'xc = 0^.
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2. If a literal appears multiple times in a cube, remove all but one of the literals (xxc =

xc).

3. Removing a cube if it is entirely contained in another cube (abc + ab = ab).

S* is called the derived sum-of-products of f, and the last operation is denoted by SCC(S)

which stands for single cube containment of a sum-of-products form.

The relationship between FK(f) and K(S?) is given by the relationship between

SQ* and 9f7, and CC(f) and CC(S*). Notice that SQ* is the derived SOP of the quotient
Ql, 9f is the algebraic quotient ofdividing the algebraic expression S* by x, CC(f) is the

common cube computed from factored form / directly, and CC(S?) is the common cube

derived from the algebraic expression S*. If 5^* = 9f an(l CC(/) = CC(S*), then we

have an ideal result FK(f) = K(S*).

LEMMA 3.3.12 Let g and h befactored forms.

S<>+h = SCC(S9 + Sh)

S*h = SCC(S9Sh)

Proof. Let gi and hi be the sum-of-products forms obtained by multiplying g and h out

without the single-cube containment operation. We have,

SCC(S<> + Sh) = SCC(SCC(gx) + SCCQn)) = SCC(gx + hx) = S^h
SCC(S*>Sh) = SCC(SCC(g1)SCC(h1)) = SCC(gihi) = S«*

LEMMA 3.3.13 Let f be a sum-of-products expression, possibly non-algebraic. We have

CC(f) = CC(SCC(f))

Proof. Let c e CC(f), d,ee f such that dCe. Since c is the largest common cube of /,

d and e must be of forms pc and qc. So, c must be a common cube of / - {d}. If there is

a literal / common to all the cubes of / —{d}, it must be in cube e and consequently must

be in d since d C e. So, that literal must be in c because c is the largest common cube of

/. So, c is also the largest common of / —{d}.
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Let c G CC(SCC(f)), d,e G / such that d C c. Then, e can be expressed as pc.

Since rf C e, d can be expressed as qc. So, c has to be a common cube of SCC(f) U {d},

and c has to be the largest because it is the largest common cube of SCC(f), an expression

with fewer cubes.

So we have, CC(f) = CC(SCC(f)). m

Using Lemma 3.3.12 and Lemma 3.3.13, we can show that indeed CC(f) is the

same cube as CC(S*).

THEOREM 3.3.14 Let f be a factored form, and S* be the derived SOP of f. Then,

CC(f) = CC(S').

Proof. By induction on the number of literals in /. It is trivially true if p(f) = 1.

If / = gh then

CC(f) = CC(gh)

= CC(g)uCC(h)

= CC(S9)uCC(Sh)

= CC(S*>Sh)

= CC(SCC(S<>Sh))
= CC(SCC(Sah))

= CC(S')

lff = g + h then

CC(f) = CC(g + h)

= CC(g)nCC(h)

= CC(S<>) n CC(Sh)
= CC(S° + Sh)

= CC(SCC(S° + Sh)
= CC(SCC(So+h)
= CC(Sf)

Induction

Lemma 3.3.13

Lemma 3.3.12

Induction

Lemma 3.3.13

Lemma 3.3.12

DEFINITION 3.3.15 LetS and T be two sum-of-products forms. S is dominated by T,

denoted by S -< T «/Vc GS,c G T. S is simply a subset of cubes ofT.
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For example, ab + cd is dominated by ab + cd + ade and a + b is dominated by

a + b.

LEMMA 3.3.16 Let S be a sum-of-products expression. Then 9fcc(5) -< SCC(Q%)

Proof. First, we have
c€qSCC(S) ^ XceSCC(S)

=>• xce s

=• cG9f
=>. cG5CC(9f)

The last implication is true because if c &SCC(Q^.), xc would havebeen redundant which

contradicts to ex G SCC(S). u

For example, let 5 =abcx + dx + ab. Then, 9fCC(5) = d •< SCC(Q%) = abc + d.

THEOREM 3.3.17 Let f be a factored form and S* be its derived SOP form. Then,

Proof. By induction on the number of literals in /. When p(f) = 1, the relation is trivially

true. Now, let / = g o h where o is either ',*,, or "+".

EXAMPLE:

-! SCC(QiS*oS',»
= SCC(Qi'oQih)
•< 5CC(5(9S°«J))

= s<*

Lemma 3.3.16

Induction

O = (a + g)((b + c)(d + x) + e) + b(a+ f)

S<# = S^+sN6*') = ab + ac + bg + eg
Ql° =ac + bg + cg



42 CHAPTER 3. FACTORING LOGIC FUNCTIONS

Theorem 3.3.14 shows that the common cubes found on a factored form / by

COMMON.CUBE(f) and on the SOP form S' are the same. Theorem 3.3.17 shows that

the derived SOP of the quotient Ql dominates 9f/> the quotient ofdividing the derived
SOP form of / by x. So, combining these two, we can make the following claim.

THEOREM 3.3.18 Let f be a factored form. For every kernel k G K(S*), there is a

g G FK(f) such that k -< S9, i.e. k is dominated by S9.

It may appear on the surface that Theorem 3.3.18 decreases the usefulness of

FK(f). However, looking at it carefully yields the following result.

THEOREM 3.3.19 Let k G K(S*) and g G FK(f) where k •< S9. Let c be a co-
kernel [14] of k and d G S9 such that d£k. Then, cube cd is redundant.

Proof. Because S* = ck + r such that k= Qff, and d g k, then cd is covered by ck + r.

Theorem 3.3.19 shows that a factor g in FK(f) not only contains a kernel of K(f),

but also some redundant terms which can be used to find better common factors between

functions. For example, let /1, f2, and fa be three logic functions in factored forms. Let

*i GK(SK), k2 GK(S'*), kz G K(S*>), 9l GFK(h), g2 GFK(f2), and gz GFK(f3).
Suppose

ki=c2 + c3, gi = c\ + c2 + cz

k2=ci+ c3, g2 = ci + c2 + C3

kz = c\ + c2, gz = c\ + c2 + cz

where c; is redundant in fc,- for i = 1,2,3. It is easy to see that cx + c2 + c3 is a better

common factor (Boolean) of three functions because of the introduction of the redundant

cubes. This is not to say that FK(f) finds all the redundant cubes. It simply shows that

the redundant cubes introduced in FK(f) may help improve the results.

In multi-level logic optimization, we often want to find intersections of kernels.

Two problems remain open: howto find kernel intersections on the factored forms directly?

and how to detect the intersections which consist of only redundant cubes?

3.3.5 Higher level operations

We listed a set of high level operations of factored forms which are useful in a

multi-level logic synthesis and optimization system. Only a few will be discussed here to
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show that they are all reduced to a hard problem of simplifying a factored form directly

with a don't-care set also in a factored form.

Dividing a factored form by another

In Boolean algebra, there are many ways of defining division. 2 defined two divi

sions, WEAKJDTV and STRONGJ)IV, which operate on the sum-of-products form of

logic functions. In this section, another division will be defined which operates on factored

from of logic functions. First, let's look at some properties common to all divisions.

LEMMA 3.3.20 Let f = qxx + rx = qyy + ry, then qx^x C ry and qy^y C rx.

Proof. First, qx^x C qxx C /. But qs^nqyy = <f>. So, qx^x C ry. Similarly, qyTfey C rx.

THEOREM 3.3.21 Let f and g be any logicfunctions, and let g = x + y. If f = qxx+ r3

andf = qyy + ry, then f = qxqyg + rx + ry.

Proof.

/ = qxx + rx

= oyy + ry

= <lxx + qyy + rx + ry

= axqyx + qyy + rx + ry qxJ^x C ry

= axqyx + qxqyy + rx + ry ^qyy C rx

= Qxqy9 + rs + ry

THEOREM 3.3.22 Let f and g be any logic functions, and let g = x*y. Iff = qxx + r3
and f = qyy + ry, then f = qxqyg + rx + ry.
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Proof.

/ = qxx + rx

= 1yy+ry

= (qxx + rx)(qyy + ry)

= qxqyxy + rxqyy + qxxry + rxry

= Qxqyxy + rx + qxxry + rxry

= qxqyxy + rx + ry + rxry

= qxqyxy + rx + ry

= Qxqy9+ rx + ry

These theorems have several interesting implications. First of all, it provides a

definition of quotient and remainder of dividing / by g regardless of whether g = xy or

g = x + y. Furthermore, this definition is independent of particular representation of /

and g. The theorems also suggest a recursive procedure for computing the division. The

following algorithm carries out the division on factored forms of logic functions, but can be

easily extended to operate on other representations.

FDIV(f,g)
9 = 1
R = 0

for each x G 1(g) {
(q,r) = FDIV(f,x)
Q = AND(Q,q)
R = OR(R,q)

}
return (Q,R)

Notice that AND and OR operate on the factored forms and return the results

in factored forms. In addition, by definition of feictored forms, the operator of g is either

"+" or "*" which do not affect the resulting Q and R by previous theorems. However, in

multi-level logic optimization, we are often interested in a quotient and a remainder which

are simpler than the function itself and the procedure FDIV does not guarantee that. So,
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the following can be used to simplify the quotient and remainder:

9 = Simplify(Q,-§+R)

R = Simplify(R,gQ)

where the routine Simplify simplifies the first argument using the second argument as the

don't-care set. When using factored forms, the simplification should be done on the factored

forms directly.

Substitution

To substitute a factored form g into another factored form /, Simplify is again

needed. In the following algorithm, a new variable x is introduced to represent function g

in / after the substitution.

Substitution(f, g)
Simplify(f, OR(AND(x, INV(g)), AND(x', g)))

Simplification - An open problem

Simplification can be done at various levels depending on the quality requirement

and run time constraint. The most general form of simplification is to simplify a factored

form with a don't-care set. However, simplification just on a factored form without the

don't-care set is also useful in many situations. Currently, these two problems are still

open.

Somesimpler forms of simplification are possible. For example, constant propaga

tion can be viewed as one form of simplification. Putting a factored form into alternating

form is another form of simplification because it reduces the number of internal nodes in

the factored form. Next, wepropose a simplification algorithm whichguarantees the result

to be maximally factored. To do so, it needs a routine to check for / —equivalence of

two factored forms. By definition, two factored forms are f-equivalent if their factoring

trees are isomorphic. Checking for tree isomorphism is a simple problem and is denoted

by Fequiv(f,g). The simplification routine is called Fsiml(f). It assumes that / is in
alternating form to begin with.
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Fsiml(f)
for each x G /(/)

x = Fsiml(x)
while 3x,y G 1(f) s.t. 3u G J(»),t; G I(y) and Pegmv(«,v) {

g = new node
OP(<7) = OP(x)
Addlnput(g, u)
Addlnput(g, f)
Deletelnput(x, u)
Deletelnput(y, v)
f = 9
Alternate(f)

y
return /

In the algorithm, Alternate puts a factored form into an alternating form. Fsiml

is a recursive algorithm. At each level of recursion, it first simplifies all the fanin nodes.

Then, it performs the following operation assuming u and v are f-equivalent:

up + vq —• u(p + q)

(u + p)(v + q) -+ u + pq

3.4 Heuristic Factoring Algorithms

Factoring is the process of deriving a factored form of a given logic function rep

resented in a sum-of-products form. The objective is to minimize the number of literals in

the final factored form. Algorithms have been presented for solving exactly the problem of

determining the optimum factored form [35]. However, in recent experiments using some

modern extensions [50] for logic function manipulation, the complexity of these exact tech

niques still appear to be impractical for all but the smallest functions. The goal of this

section is to develop fast heuristic factoring algorithms which rely on kernels [17] and find

optimal factored forms.

As we have seen before, there are many equivalent factored forms of a given func

tion. The difference in the number of literals of these equivalent factored forms obtained

by various algorithms could be significant. For example, given the algebraic expression

abg + acg + adf + aef + afg + bd + ce + be + cd,
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the following are three equivalent factored forms obtained by three different algorithms:

(b+ c)(d + e) + ((d + e + g)f + (b+ c)g)a,

(b+ c)(d + e + ag) + (d+ e + g)af,

(af + b+ c)(ag + d + e).

There are 12 literals in the first factored form and only 8 literals in the last one.

The previous example also shows two different kinds of factored forms. Taking the

first factored form and multiplying it out literal by literal to get a sum of cubes without

using Boolean identities xx' = 0 and xx = x, we can in fact recover the original sum-of-

products form. But if we took the last factored form and multiplied it out in the same way,

we would have got a different, non-algebraic, sum-of-products form because of the cube

afag. This leads to the following definitions of algebraic and Boolean factored forms.

DEFINITION 3.4.1 Let f be a factored form, f is said to be algebraic if the sum-of-

products form obtained by multiplying f out directly (without using xx' = 0, xx = x, and

single-cube containment) is algebraic, f is a Boolean factored form if it is not algebraic.

For example, each of the following is an algebraic factored form:

a + bc,

(a + b)(c + d),

(b+ c)(d + e + ag) + (d + e + g)af,

and each of the following is a Boolean factored form:

(a + b+ c + d)(a' + b' + c' + d'),

(af + b+ c)(ag + d + e),

(a + b)((c+ d)(e + f) + g) + b(e+ h).

None of the sum-of-products forms obtained by multiplying the Boolean factored forms

out are algebraic. They either contain terms which are 0 (xx'c = 0), terms with redundant

literals (xxc = xc), orredundant terms (abc+ab = ab). Some factoring algorithms guarantee

the results to be algebraic and others do not. One way of classifying factoring algorithms

is by the following definition:

DEFINITION 3.4.2 A factoring algorithm is said to be algebraic if it guarantees the

results to be algebraic starting from an algebraic sum-of-products expression. A factoring

algorithm is Boolean if it is not algebraic.
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So far, the examples we have used are completely specified functions. In the pro

cess of multi-level logic optimization, we often encounter incompletely specified functions.

Algorithms for factoring incompletely specified functions usually take very different ap

proaches than those for factoring completely specified functions. The remaining of this

section focuses mainly the algorithms for factoring completely specified functions.

3.4.1 Generic Factoring Algorithm

All heuristic factoring algorithms described in this section use the same top-down

paradigm. Given a function P, routine DIVISOR(F) is used to find a candidate divisor, D,

which when substituted into F can simplify the expression. Then, the quotient (co-divisor)

9 is found by dividing D into F using routine DIVIDE(F, D). Now, the function can be

represented as a partial feictored form F = (Q)(D) + (R) where R is the remainder. The

algorithms then proceed to factor P, D, and R separately using the same method. This

top-down recursive approach is described in the following procedure.

FACTOR(F)

1. if F has no factor, return

2. D = DIVISOR(F)

3. (Q,R) = DIVIDE(F,D)

4. return FACTOR(Q)FACTOR(D) + FACTOR(R)

Certain refinements of FACTOR are needed to produce good results. We first

use several examples to motivate the ideas behind the refinements. In each example, we list

the original function F, the divisor D, the quotient Q, the partial factored form P, and the

final factored form O given by FACTOR. It is important to point out that the discussions

are restricted to algebraic operations only.
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EXAMPLE:

P = abc + abd + ae + af + g

D = c + d

Q = ab

P = ab(c+ d) + ae + af + g

O = ab(c+ d) + a(e + f) + g

Obviously, O is not optimal because it is not maximally factored. It can be further

factored to

a(b(c + d) + e + f) + g.

The problem occurs when the quotient Q is a single cube, and some of the literals of Q also

appear in the remainder R. To solve the problem we first check the quotient Q. If Q is a

single cube, we pick a literal in the cube which occurs in the greatest number of cubes of

P. We then divide F by 9i » the chosen literal, to obtain a new divisor D\. Now, P has a

new partial factored form (Q\)(D\) + (^1) a^d literal 9i does no* appear in R\ any more.

Notice that the new divisor D\ contains the original D as a divisor because Qi is a literal

out of Q. When recursively factoring D\, D will be discovered again.

LEMMA 3.4.3 If Q is a single cube, the procedure outlined above guarantees that the

partial factored form Q\D\ + R\ is maximally factored.

Proof. Let D\ = cD2 where c is a common cube of D\ and D2 is cube-free. Now, the

partial factored form is

F = Q1cD2 + R1.

It is easy to see that every literal in c must be in the original cube Q. Since 9i is the literal

of 9 occurring in the greatest number of cubes of the original sum-of-products expression,

no literal in c can occur in R\. In addition, D\ was obtained by dividing P by literal Qi,so

9i does not occur in jRi. Suppose D2 is also a factor of R\. Then the quotient of dividing F

by D would have contained more than one cube since D2 must contain D, which contradicts

the fact that 9 is a single cube. So, no factors of the product form 9ic-^2 can be a divisor

of R\. F is by definition maximally factored at this level. •
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EXAMPLE:

F = ace + ade + bee + bde + cf + df

D = a + b

9 = ce + de

P = (ce + de)(a + b)+ (c + d)f

O = e(c + d)(a + b) + (c + d)f

Again, the final factored form O is not maximally factored because (c + d) is

common to both products e(c + d)(a + b) and (c + d)f. The final factored form should have

been

(c+d)(e(a + b) + f).

The problem is that Q has a factor which is also a factor of R. The problem is solved

by first making Q cube-free to get 9i» tnen obtaining a new divisor D\ by dividing F

by 9i« If i?i is cube-free, we have obtained a partial factored form P = (Q\)(D\) + R\,

and can recursively factor 9i> D\, and R\. If D\ is not cube-free, let D\ = cD2. Then,

the partial factored form becomes F = c(Q\)(D2) + R\. Let Dz = Q\D2, and we have a

partial factoring F = cDz + R\ which is the case illustrated by the previous example and

can therefore be factored maximally. Therefore the problem is if c exists to take the most

recurring literal in c and use that recursively factoring the quotient and remainder.

LEMMA 3.4.4 IfQ is not a single cube, the procedure outlined abovemaximally factorizes

F at this level.

Proof. Suppose D\ is cube-free, then the partial factored form is F = (Qi)(Di) + R\.

Here, 9i cannot be a factor of R\ because 9i is used to obtain D\ by dividing into P. D\

cannot be a factor of R\ because D\ contains a factor D which when dividing into F gives

quotient Q\. So, the partial factored form is maximal at this level. If D\ is not cube-free,

then we have a partial factored form P = cDz + R\ which is factored by our previous

procedure. Lemma 3.4.3 guarantees that the partial factored form obtained is maximal. •

Now, FACTOR can be improved by the procedures proposed. The new routine

is called GFACTOR which stands for Generic Factoring. GFACTOR takes as an input a

function and two more parameters which specify how to find the initial divisor D and how
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to perform the division. As we'll see later on, by varying these two parameters, a spectrum

of algorithms can be obtained with different run time versus quality tradeoffs.

GFACTOR(F, DIVISOR, DIVIDE)
D = DIVISOR(F)
ifD = 0 then

return F

Q = DIVIDE(F,D)
if|9| = i{

return LF(F,Q,DIVISOR,DIVIDE)
} else {

9 = makexube.free(Q)
(D,R) = DIVIDE(F,Q)
if cube^free(D) {

Q = GFACTOR(Q,DIVISOR,DIVIDE)
D = GFACTOR(D,DIVISOR,DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return Q x D + R

} else {
C = common jcube(D)
return LF(F,C, DIVISOR, DIVIDE)

}
}

LF(F, C, DIVISOR, DIVIDE)
L = bestJiteral(F, C)
(Q,R) = DIVIDE(F,L)
C = commonjmbe(Q)
Q = GFACTOR(Q,DIVISOR,DIVIDE)
R = GFACTOR(R,DIVISOR,DIVIDE)
return LxC xQ + R

The subroutine LF(F, C) is avariation of literalfactoring algorithm [9]: bestjiteral

selects a literal in C which occurs in the most number of cubes of P. commonxube(Q)

returns the largest common cube of Q. Instead of calling recursively LF on factors Q and

R, we switch back to the generic factoring algorithm GFACTOR.
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The following theorem shows that the results of GF ACTOR are always maximally

factored.

THEOREM 3.4.5 Algorithm GFACTOR finds a maximally factored form.

Proof. By induction on number of literals in the sum-of-products form of P. If P has

only one literal, it is obviously maximal. Suppose P has n literals, each of the factors

passed to the next recursive call of GFACTOR has no more than n —1 literals, and, by

the induction hypothesis GFACTOR returns a maximally factored form. By Lemma 3.4.3

and Lemma 3.4.4, the factored form derived by GFACTOR at this level is also maximal.

So, the results of GFACTOR are always maximally factored. •

Specific factoring algorithms are instances of GFACTOR with specific choices of

DIVISORS and DIVIDE algorithms. Depending on a particular application of GFACTOR,

appropriate DIVISOR and DIVIDE algorithms are chosen to obtain desired run time ver

sus quality tradeoffs.

Notice that this result uses algebraic division for DIVIDE everywhere. Whether

the result extends to using strong division is still an open problem.

3.4.2 Quick Factoring

The basic operations of GFACTOR are DIVISOR and DIVIDE. Quick Factor

ing (QF) is a version of GFACTOR in whichDIVISOR is replaced by QUICKSUVISOR

which is the quickest way of finding a useful divisor and DIVIDE is replaced by ALGEJ)IV

which is the algebraic division [17] operation.

QUICKJ)TVISOR is a simple modification of the kerneling algorithm [17] that

finds just one level-0 kernel.

QUICKJ)IVISOR(F)
If|P|<l

return <f>
If every literal of F appears once

return <j>
return ONEJ)K(F)
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ONEJ)K(F)
If every literal of P appears once

return P

/ = Pick a literal appearing more than once
F = makexube.free(F j I)
return ONEJHK(F)

If F has only one term or is itself a level-0 kernel, then QUICKJ)TVISO R returns

<j>. Otherwise, there is at least one multiple-cube divisor which is a level-0 kernel F and is

not equal to P. This level-0 kernel is found by routine ONEJZK which arbitrarily picks

a literal which appears more than once, divides P by the literal, and works recursively on

the quotient. ONEJ)K terminates on finding the first level-0 kernel which is when every

literal appears only once.

With QUICKJ*ACTOR, quick factoring (QF) can now be defined as:

QF(F)
return GFACTOR(F,QUICKJ)IVISOR, ALGEJDIV)

3.4.3 Good Factoring

The experiments have shown that QF is very fast and in many cases finds good

factored forms. But, because QUICKJ)IVISOR finds an arbitrary level-0 kernel, the

results in some cases are not satisfactory. For example, in factoring the function

dbg + acg + adf + aef + afg + bd + be + cd + ce,

QUICKJDIVISOR may have chosen a level-0kernel (d+e+g) which leads to the following

factored form

a(g(b + c) + f(d + e + g)) + (d + e)(b + c)

that has 12 literals. However, if we spend more time to examine all the kernels and choose

(af + b+ c) as the divisor, we would obtain a better factored form

(af + b+ c)(d + e) + ag(f + c + b)
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with 11 literals.

Good factoring (GF) tries to obtain a better result by working harder to find a

good divisor to start with. In particular, GF(F) looks at all the kernels and picks one (k)

which, when substituted into P, maximally reduces the total number of sum-of-products

literals of P and k. This procedure is called BESTJCERNEL. Now, GF can be defined.

GF(F)
return GFACTOR(F,BESTJCERNEL,ALGEJ)IV)

3.4.4 Boolean Factoring

GF can be further improved by replacing ALGEJ)IV with boolean division

BOOLJ)TV [14]. Using the above example,

GF(F) = (af + b+ c)(d + e) + ag(f + c + b),

If BOOLJ)TV were used to divide the divisor (af + b+ c) into P, the quotient and the

remainder would have been (ag + d + e) and 0, which would have lead to the following

factored form

(af + b+ c)(ag + d + e)

with only 8 literals. Notice that this is no longer an algebraic factored form because of the

term afag. This version of GFACTOR is called Booleanfactoring BF.

BF(F)
return GFACTOR(F, BESTJCERNEL, BOOLJ) IV)

Since BOOLJ)IV involves a two-level logic minimization step, it is a much more

expensive operation than ALGEJ)IV. Consequently, BF takes considerably more time

than QF and GF. But, because it uses Boolean division, it is able to find some Boolean
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factored forms with significantly fewer literals, as shown by the following example

P = abc'd' + abe'f + a'b'cd+ a'b'ef + cde'f + c'd'ef,

QF(F) = abc'd'+ a'b'cd+ef(c'd' + a'b')+ e'f'(cd +ab),

GF(F) = cde'f + c'd'ef + a'b'(ef + cd) + ab(e'f + c'd'),

BF(F) = (e'f' + c'd' + a'b')(ef + cd+ab).

It should be pointed out that this is a contrived example intended to show the potential

power of Boolean factoring algorithms. In practice, as indicated in the results section of

this chapter, most of the functions found in real circuits can be feictored just as well by

algebraic methods as by Boolean methods and algebraic methods are much faster.

3.4.5 Complement Factoring

The principle of duality in Boolean algebra implies that to complement a factored

form is to exchange "*" and "+n and change the polarities of literals (x —• x' and x' -> x).

As pointed out earlier, one of the advantages of a factored form is that it represents both a

function and, by duality, its complement. To state it differently, if function P has a factored

form with n literals, then there is a factored form of F' with the same number of literals.

However, sum-of-products forms do not have this nice property. All the previous factoring

algorithms QF, GF, and BF start from a given sum-of-products representation, or more

precisely a kernel of that expression. So, the results depend on the phase of the initial

representation. For example, the following function

F = a'b+ a'c + a'd + b'a + b'c + b'd+ c'a + c'b + c'd + d'a + d'b+ d'c

when factored using QF gives

QF(F) = (d+ c)(a'+ b') + (a + b)(c' + d')+ c'd+ a'b + cd'+ ab'.

But, if P is complemented, it becomes

F'= abed + a'b'c'd'

which is already an optimum factored form. Complementing it again using duality, we get

F = (a + b+ c+ d)(a' + b' + c'+ d').
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So, complement factoring CF simply complements a function, uses one of the QF, GF, or

BF to obtain a factored form, and complements the factored form again using duality.

CF(F)
return DUAL(XF(F')) /* XF is either QF, GF, or BF */

3.4.6 Dual Factoring

Instead of factoring either a function or its complement separately, duality can be

further explored at each level of recursion during factoring. The idea is to use the function

and its complement to help find divisors, and choose a better one before factoring each of

the factors. Dual factoring DF uses this idea.

DF(F)
Dx = DIVISOR(F)
(QuRi) = DIVlDE(F,D1)
D2 = DIVISOR(F')
(92,^2) = DJTVIDE(F',D2)
if \Dt\ + |9i| + |-tti| < |X>2| +192| + \R2\

return DF(Q1)DF(D1) + DF(RX)
else

return DUAL(DF(Q2)DF(D2) + DF(R2))

The algorithm derives F = Q\DX + Rx and F' = 92-^2 + #2 and chooses a smaller

one to continue the factoring. The size is measured by \X\ which could either be the number

of product terms of X or the number of sum-of-products literals of X.

3.4.7 Factoring Incompletely Specified Functions

In multi-level logic synthesis and optimization, functions encountered are usually

incompletely specified. Factoring an incompletely specified function is a problem of finding

a cover in the factored form with a. minimum number of literals. The following procedure

outlines one possible algorithm.
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IF(F,DC)
D = DIVIS0R2(F,DC)
(Q,R) = DWIDE2(F,DC,D)
D = IF(D,DC + Q'+R)
Q=IF(Q,DC + D'+R)
R = IF(R,DC + QD)
return DQ + R

The procedure factors the incompletely specified function (P, DC) with ON-set P

and don't-care set DC. DIVISOR2 is used to find a divisor of (P, DC). Then, DIVIDE2

is used first to derive an initial factoring QD + R. When D is 0 or R is 1, the value of Q

does not effect the output value of P. So, DC + D' + R can be used as the don't-care set

to recursively simplify Q. Similarly, D can be simplified using don't-care set DC + Q' + R.

Finally, when QD is 1, P is 1 regardless of the value of R. So, the last step is to simplify

R using the don't-care set DC + QD. Notice that this is not a complete algorithm because

DIVISOR2 and DIVIDE2 are not specified.

3.4.8 Summary of Factoring Algorithms

To summarize, the factoring algorithms presented in this section are all based on

a recursive paradigm: find first a divisor as the initial seed, and then use several divisions

to try to improve the factors before recursively factoring them. All the algorithms use

heuristics, i.e. at each step, the quality of the factoring is estimated by the literals in the

sum-of-products form of each factor. Furthermore, because the initial divisors generated

by DIVISOR are restricted to kernels only, the results of factoring largely depend on the

initial sum-of-products forms. The experiments as presented in the results section show

that the heuristic works well for most of the functions and the results are in general quite

good.

In multi-level logic optimization, the cost of a Boolean network has to be evaluated

again and again. So, factoring algorithms are used constantly to estimate the number of

literals in the factored forms of functions. In this application environment, the speed of the

factoring algorithm is essential. QF seems to be particularly useful in this environment.

In later stages of the optimization, a more accurate measure of network size and exact
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implementation of functions are needed. Therefore, more expensive algorithms such as GF

or BF can be used. In fact, since all the algorithms presented are heuristic based, there is

no theoretical guarantee that one can always outperform the others. So, when the quality

of results is essential, one should try all the algorithms and keep the best result. Table 3.1

of the results section of this chapter summarizes the quality and performance for various

factoring algorithms presented in this section.

3.5 Properties of Optimum Factored Form

Understanding the properties of optimum factored forms can help us to design

better factoring algorithms, to employ heuristics appropriately, and to justify the quality

of results by deriving good lower bounds. In this section, conditions are derived under

which the optimum factored form of a function consists of optimum factored forms of its

sub-functions. These conditions can then be used whenever possible to break a problem of

factoring a large function into factoring a set of smaller functions without loss of optimality.

Next, the unateness properties of logic functions and its implications on their factored forms

are studied.- Then, properties of optimum factored forms of incompletely specified functions

are investigated. Tests will be derived to identify "essential" and "redundant" variables.

3.5.1 Optimum Factoring Theorems

When a function has certain properties, its optimum factored form consists of

optimum factored forms of sub-functions. More precisely, if a function is a sum or a product

of several sub-functions whose supports are mutually disjoint, then the optimum factored

form consists of the sum or the product of optimum factored forms of the sub-functions.

DEFINITION 3.5.1 Let f be a completely Boolean function, p(f) be the minimum num

ber of literals in any factored form of f. Recall that p(F), when F is a factored form,

is the number of literals in F. Let sup(f) be the variable support of f, i.e. set of vari

ables f depends on. Two functions f and g are said to be orthogonal, denoted by f±g, if

sup(f) n sup(g) = <j>.

LEMMA 3.5.2 Let f = g + h such that g±h, thenp(f) = p(g) + p(h).
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Proof. Let P, G and R be the optimum factored forms of /, g and h respectively. Since

G + R is a factored form of /, we have trivially

p(F)<p(G) + p(R)

Let c be a minterm of Jj. Since g and /i have disjoint support, we have

/c = (9 + h)c = gc + hc = Jfc+ hc = 1+ /ic = 0 + hc = hc = /i

and similarly if rf is a minterm of Hwe have /<j = g. Because p(h) = p(fc) < p(Fc) and

p(flO = p(fd) < p(Fd), we have

p(9) + p(h)<p(Fc) + p(Fd).

Now, let m (n) be the number of literals in P which are from sup(g) (sup(h)). When

computing Pc (P«f), we replace all the literals from sup(g) (sup(h)) by the appropriate

values and simplify the factored form by eliminating all the constants and possibly some

literals from sup{h) (sup(g)) using the Boolean identities. So, we have p(Fc) < n and

p(Fd) < m. Since p(F) = m + n, we have

p(Fe)+ p(Fd)<n + m = p(F)

Putting everything together, we have

P(f) < P(9) + P(h) < p(Fc) + p(Fd) < p(F) = p(f)

Lemma 3.5.2 shows that the optimum factoring of / can be obtained by optimally

factoring g and h separately. But this does not imply that all minimum literal factored

forms of / are sums of the minimum literal factored forms of g and h.

COROLLARY 3.5.3 Let f = gh such that glh, then p(f) = p(g) + p(h).

Proof. Let T denotes the factored form obtained using DeMorgan's law. Then, we have
p(F) = p(F) and therefore />(/) = p(J). Plus the above theorem we have

/*/) = P(7) = P(V+K) = P(V) + P(5) = p(g) + p(h)
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THEOREM 3.5.4 Let f = £?=i U%i /»i such that fij-LfuV* ¥> k or j ^ I, then p(f) =

£2=1 E£i/>(/*).

Proof. Use induction on m and then n, and Lemma 3.5.2 and Corollary 3.5.3. •

3.5.2 Essential Variables

In factoring an incompletely specified function, knowing that certain variables

must appear in every factored form may help to trim the search space and deriving a

divide-and-conquer type algorithm to break a large problem into a set of smaller ones.

DEFINITION 3.5.5 For an incompletely specified function (F,D), variable x is essential

if x must appear in every factoredform of(F,D).

THEOREM 3.5.6 For an incompletely specified junction (F, D), x is essential if and only

ifFx gFsr+D? or PF £ Fx + Dx.

Proof. Without loss of generality, assume Fx g Py+ D?. Then there is a* minterm m of Fx

not covered by F^+ D?, i.e. xm eF and Wm £ F + D. Any function g that is independent

of x and covers xm must also coverarm, therefore it cannot be a cover of (P, D).

Tf Fx C Fw+ D? and PF C Fx + Dx, then Fx+ Fw is a cover of (P,D) independent

Of £. •

This Theorem gives the exact condition for a variable to be essential. Knowing

that certain variables of a function are essential, we can in some cases restrict out attention

to the sub-functions in searching for an optimum factored form.

THEOREM 3.5.7 Let (F,D) be an incompletely specified function. Letg be an optimum

factored form of(Fx,Dx). IfFx-=0 and Fx g D^, then xg is an optimum factored form of

(F,D).

Proof. Let h be an optimum factored form of (F,D). By Theorem 3.5.6, h must contain

literal x because F? = 0 and Fx %Dy. Since Py = 0, xhx is also a coverof (F,D) because

hx covers (Fx, Dx). Now, we have

p(xg) < P(xhx) < p(h).
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So, xg is an optimum factored form of (F,D). •

In this theorem, the condition Py = 0 and Fx £ D-?is equivalent to saying that x is

essential. So, under the condition of the theorem, optimum factoring (F,D) is to optimally

factoring (FX,DX). Even if x is not essential, the optimum factored form of (FX,DX) can

still help us to find an optimum factored form of (F,D).

THEOREM 3.5.8 For an incompletely specified function (F,D), let g be an optimum

factored form of(Fx,Dx). If Fx —0, then xg is a factored form of(F,D). Furthermore, if

(F, D) has an optimumfactoredform that depends on x then xg is also an optimumfactored

form.

Proof, xg covers (F,D) because Py = 0. Let h be an optimum factored form of (P, D).

Then, hx covers (Fx, Dx). Because g is an optimum feictored form of (Fx, Dx), p(g) < p(hx).

Since h may not contain x, we have p(xhx) < 1 + p(h). Combining both inequalities, we

have

P(xg) < p(xhx) < 1 + p(h).

If h depends on x, then p(hx) < p(h). From the above, we have

P(xg) < P(xhx) <1 + p(h)

which implies

p(xg) < p(h).

The following Theorem shows exactly how a variable x appears in an optimum

factored form if certain conditions are true.

THEOREM 3.5.9 If an optimum factored form h of (F,D) depends on x, and Fx = 0,

then x must appear exactly once as literal x in h, i.e. any optimum factored form must be

unate in x.

Proof. Let g be an optimum factored form of (FX,DX). Variable x must appear once

because otherwise p(hx) < p(h) —1, which implies

p(xg) < p(xhx) < p(h).
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Since xg covers (P, D) because Pj- = 0, this contradicts the optimality of h.

Variable x must appear as literal x, not V. Assume that h contains a literal x~. By

previous argument, h cannot contain literal x. So, h is negative unate in x. So, h = hx+x~hx.

Since Fx = 0 and hx covers (FX,DX), then hx covers (F,D). Since p(/&x) < />(/&), tn^

contradicts the optimality of h. So, the original assumption is wrong and h does not

contain literal x~. m

In some cases, an optimum factored form of (F,D) is also an optimum factored

form of either (Fx, Dx) or (Py, D?).

THEOREM 3.5.10 Let(F,D) be an incompletely specified junction. Letg be an optimum

factored form of(Fx,Dx). If g covers (F&D?) also, theng is an optimum factored form of

(F,D).

Proof. Let h be any optimum factored form of (F,D). Then, hz is a cover of (FX,DX).

Because g is an optimum factored form of (Fx, Dx), we immediately have

P(g) < P(hx) < p(h).

So, g must be an optimum factored form of (P, D). m

These theorems suggest the following procedure which reduces the optimum fac

toring of certain functions to optimum factoring of some smaller functions. If (F,D) has

a cover of form xg, i.e. Py = 0, then we can find an optimum factored form of (F,D) by

optimally factoring one or two smaller functions. Algorithm OPl handles this case. No

tice that OPl is not an optimum factoring algorithm, it is simply one possible step in an

optimum factoring procedure OF which is not defined yet.
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OFl(F,D,x) /* (F,D) has a cover xg, i.e. Px = 0 */

1. lfFx g i?F , return xOF(Fx,Dx).

2.1fFx + DxC D-s, then return OF(Fx, Dx).

3. p=OP(Px,i?x).

4. If p C i?y, return p.

5. g = OP(Px,DxDF).

6. If p(q) = p(p), return g.

7. return xp.

In OPl, if the condition at line 1 is true, then by Theorem 3.5.7 xOF(Fx, Dx) is

an optimum factored form of (F,D). If the condition at line 2 is true, then any cover of

(Px, Dx) is a cover of (Py, D?) since Py = 0. By Theorem 3.5.10, an optimum factored form

of (FX,DX) is an optimum factored form of (F,D). Otherwise, an optimum factored form

of (Py, Dx-) is found. If the condition at line 4 is true, then by Theorem 3.5.10 again, p is an

optimum factored form of (P, D). Next, let q be an optimum factored form of (Fx, DxD-%).

Since DXD^C Dx, q is a cover of (Fx,Dx). By now, we know that the condition at line 1 is

false, i.e. Fx C D?. So, q is also a cover of (FX,DX). By Theorem 3.5.10, if q has the same

number of literals as p does, then q is an optimum factored form of (P, D). Otherwise, the

optimum factored form of (F,D) is at least one literal more than p and we've already got

one which is xp (notice that by now p(p) < p(q).

Using duality, the above procedure can be applied to (P, D) having a cover of form

x + g.

OF2(F,D,x)

1. h = OFl(F + D,D,x~).

2. return H.

The following set of propositions provide theoretical support for various steps of

procedure OPl.
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PROPOSITION 3.5.11 If(F,D) has a cover xg and x is essential, then xOF(Fx,Dx)

is anOF(F,D).

Proof. Because xg is a cover of (F,D), Py = 0. By Theorem 3.5.7, when x is essential,

xOF(Fx, Dx) is an optimum factored form of (P, D). •

PROPOSITION 3.5.12 If(F,D) has a covereg where c is a cube and all variables in c

are essential, then cOF(Fc,Dc) is an OF(F,D).

Proof. Induction on the number of variables in c and previous proposition. •

The following Lemma is the principle of duality applied to optimum factored forms

of incompletely specified functions.

LEMMA 3.5.13

OF(F,D) = OF(R,D)

Proof. The complement of a cover of (F,D) is a cover of (R,D). By DeMorgan's Law,

complementing a factored form does not change the number of literals. So, let p and q be

the optimum factored forms of (P, D) and (R, D) respectively. If p(p) > p(q), then 5" would

be a better factored form of (F,D). So, p(p) = p(q). m

PROPOSITION 3.5.14 If(F,D) has a cover x+g andx is essential, thenx+OF(Fx-,Dw)

is anOF(F,D).

Proof. (P, D) has a cover x + g implies (R, D) has a cover x~ TJ. By previous proposition,

YOF(Rx;Dx-) is an OF(R,D). By DeMorgan's Law, x + OF(Rx-,Dx-) is an OF(F,D). By

previous Lemma, x + OF(Fx-, D?) is an OF(F, D). m

PROPOSITION 3.5.15 If (P,D) has a cover x + y + ... + z + g and x,y,...,z are

essential, then x + y + ... + z + OF(Fg v ...j,DT% ...j) is an OF(F,D).

Proof. Induction on number of variables in x, y,..., z using previous proposition. •
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3.5.3 Redundant Variables

Finding out redundant variables can also restrict the search space when deriving

optimum factored forms.

DEFINITION 3.5.16 For an incompletely specified function (F,D), if no optimum fac

tored form of (P, D) can contain variable x, then x is said to be redundant.

LEMMA 3.5.17 If f covers (F,D), then fc covers (FC,DC) for any cube c.

Proof. Easy induction on number of variables in c. •

THEOREM 3.5.18 Let(F, D+E) be an incompletely specifiedfunction such thatsup(F+

D)nsup(E) = 0. Then, variables insup(E) areredundant, i.e., OF(F,D+E) = OF(F,D).

Proof. Let / be an optimum factored form of (F,D + E). Assume E ^ 1, and let c be

a minterm of "E. By previous Lemma, fc covers (Pc, Dc + Ec). But, PQ = P, Dc = D, and

Ec = 0. So, fc also covers (F,D). Since / is optimum, we must have p(fc) = p(/)> which

implies that sup(f) n sup(c) = sup(f)nsup(E) = 0. So, OF(F,D + E) = OF(F,D). Notice

that this does not imply that no factored form would contain some variables in E. •

The above Theorem can be interpreted by Figure 3.6. If F, D, and E are repre

sented as sum-of-product expressions in a positional cube notation [16] and the matrix has

the structure indicated in the figure, then the set of cubes in E can be removed from the

don't-care set without affecting the final result.

F
2

D

2 E

Figure 3.6: Certain structure of an incompletely specified function

A natural question to ask at this point is: is E unique? If yes, how to find it? The

following Theorem answers the questions.

THEOREM 3.5.19 Letf be a Boolean function, if there is a sum-of-product representa

tion whose cube matrix has the structure as indicated in Figure 3.7 where the support of A

andB are X and Y respectively, then no prime p contains variables from both X and Y.
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A 2

2 B

X Y

Figure 3.7: Special structure of the cube matrix of /

Proof. Let p be a prime of /. Suppose p does contain variable from both X and Y. Let

p = pxpy where px and py are parts ofp containing only variables from X and Y respectively.

Taking cofactors of / and p with respect to py gives us f^ —A and pPy = px from the

structure of the matrix. So, p C / implies p^ C f^, which in turn implies px C A. This

contradicts to the assumption that p is a prime because all literals of py can be left offfrom

p. So, p must contain variables either entirely from X or entirely from Y. m

Not only did the Theorem show the uniqueness of the partition (if we make all

cubes prime), it also indicated a procedure for obtaining it. Given an incompletely specified

function (F,D), the following procedure finds the unique block partitioning of the matrix,

and removes the redundant blocks.

PARTITIONED)
Expand all cubes of F + D to primes.
M = cube matrix of all primes.
P = partitions of M.
for each block B e P {

if BCD {
remove B from M.

} }

First, the algorithm expands all cubes to primes, builds a cube matrix M, then

partitions M into blocks of disjoint supports. There are many existing algorithms for finding

the partitions [16]. Finally, for each block of the partition, if it is entirely contained in the

don't-care set, it is redundant and is hence removed by Theorem 3.5.19.
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3.6 Experiments and Results

Several heuristic factoring algorithms have been implemented in the multi-level

logic optimization MIS. They are: quick factoring (QF), good factoring (GF), boolean

factoring (BF), quick factoring using complement (QFC), good factoring using complement

(GFC), and Boolean factoring using complement (BFC). These algorithms, particularly

quick factoring, have become important components in the optimization system. Quick

factoring has been very effective and efficient as shown in the results table, and is used

continuously throughout the optimization process to provide estimate for area and delay

of Boolean networks. The objective of this section is to show the relative effectiveness and

efficiencies of all the proposed algorithms by running them on a large set of logic functions

from all available benchmark circuits.

The examples are taken from MIS benchmark set consisting of one hundred cir

cuits. They are either from the MCNC logic synthesis workshop benchmark set, or actual

circuits from industry. For the purpose of experiment and comparison, we want logic func

tions with reasonably large sum-of-product representations. In addition, we want those

functions to have reasonably interesting factored forms, (e.g. ab + cd'+ ef + gh + ... is

hardly interesting to us because it has no factoring except the sum-of-product form itself).

Therefore, a function is chosen if

1. it has at least 20 sum-of-product literals.

2. the number of literals in its factored form obtained by QF is at least 20% less than

the sum-of-product literals.

This process is done indiscriminately for all functions in all the benchmark circuits. The

results are 153 logic functions.

In addition to these real examples, there is another set of contrived examples which

are obtained from good factored forms, usually Boolean, in order to test various specific

features of the factoring algorithms.
The first experiment is to show the relative efficiencies and effectiveness of all the

algorithms. Due to the size of the example set, it is not possible to present individual data
on all the functions. Instead, the summary is presented in Table 3.1. There are total of
153 logic functions used. Each row in the table is the result of a particular algorithm. The
abbreviations used are interpretated as following:

SOP Total number of literals in sum-of-product forms.
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Algorithm SOP FCT LB time best min

QF 4059 1686 1403 14.1 136 79

GF 4059 1683 1403 28.6 138 80

BF 4059 1681 1403 182.4 140 79

QFC 4059 1725 1403 12.9 130 81

GFC 4059 1716 1403 21.9 132 81

BFC 4059 1688 1403 137.3 137 81

Table 3.1: Summary of factoring algorithms on 153 functions

FCT Total number of literals in factored forms.

LB Lower bound on the number of literals in factored forms.

time Seconds on VAX-8650.

best Number of best results obtained by an algorithm (best amount all algorithms tested).

min Number of minimum results obtained by an algorithm (equal to lower bound).

The results show that QF and GF are much faster than BF. Even though the overall results

of BF is better, the amount of improvement is insignificant. Factoring on the complement

in general yields worse results. However, the difference is much greater for QF and GF than

BF, which shows that QF and GF depend more on the initial phase of functions than BF

does. More than 50% of the time one of the algorithms obtained the optimum solutions, as

the last column shows. To examine more closely the difference between the algorithms, we

remove all the examples for which all algorithms generated the same results, and present

data for each function individually in Table 3.2. As we can see from the table, in general,

factoring a function or its complement gives very close results. However, there are few

exceptions, e.g. gS, k9, 19, and /10. On these examples, BF is able to do much better

than both QF and GF. These examples show that there are functions which have good

algebraic factored forms if factoring is performed on a correct phase. However, there are

also functions which do not have good algebraic factored forms on either phases. A example

of such functions is ylO which QF and GF were able to obtain the same results on both

phases but neither is as good as results of BF.

Next, we do the same experiment on the set of contrived examples. The best
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ex SOP QF QFC GF GFC BF BFC

fit lit time lit time lit time lit time lit time lit time

g8 20 15 0.09 21 0.21 15 0.19 18 0.27 15 2.78 17 1.39

h8 24 15 0.10 14 0.11 15 0.24 14 0.21 14 1.59 15 1.44

k9 22 14 0.10 20 0.20 14 0.26 21 0.46 14 1.78 19 2.57

19 22 14 0.12 20 0.19 14 0.25 20 0.34 14 1.57 18 2.17

m9 40 10 0.10 9 0.06 9 0.26 9 0.08 9 1.48 9 0.61

p9 21 14 0.09 14 0.12 14 0.18 13 0.17 15 0.97 13 0.88

q9 25 16 0.10 15 0.09 17 0.23 15 0.18 16 1.34 15 1.15

r9 21 15 0.08 13 0.07 15 0.19 13 0.15 13 0.73 13 1.50

u9 20 14 0.07 15 0.10 14 0.18 15 0.20 14 0.91 15 1.30

w9 22 15 0.12 15 0.15 15 0.22 15 0.29 15 1.44 17 1.00

alO 20 11 0.11 12 0.04 11 0.21 12 0.07 11 1.25 12 0.45

blO 25 14 0.14 15 0.07 14 0.30 15 0.14 14 1.72 15 1.13

clO 25 14 0.13 15 0.07 14 0.30 15 0.13 14 1.69 17 1.12

dlO 25 15 0.11 16 0.10 15 0.24 16 0.19 15 1.53 14 1.44

elO 20 11 0.11 12 0.04 11 0.22 12 0.07 11 1.22 12 0.45

fio 20 11 0.11 12 0.04 11 0.22 12 0.07 11 1.25 12 0.45

gio 25 14 0.14 15 0.08 14 0.30 15 0.13 14 1.76 15 1.23

hlO 25 15 0.12 16 0.11 15 0.26 16 0.21 15 1.50 14 1.44

klO 25 15 0.11 16 0.11 15 0.25 16 0.20 15 1.49 14 1.46

no 24 16 0.09 26 0.20 16 0.19 26 0.55 16 1.62 18 1.82

mlO 22 17 0.09 18 0.16 16 0.23 18 0.31 18 1.49 17 1.32

nlO 20 14 0.09 14 0.10 14 0.29 12 0.20 14 1.08 12 1.21

ylO 56 16 0.13 16 0.15 15 0.58 15 0.59 13 2.09 13 2.06

ill 38 10 0.14 8 0.05 8 0.25 8 0.06 10 1.88 8 0.61

Table 3.2: Comparison of various factoring algorithms
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factoring of each one is listed below.

O = a'b'c'd!e'f + abcdef + (e'f + c'd'+ a'b')(ef + cd + ab)

P = (e'f + c'd' + a'b')(ef + cd+ ab)

Q = (ag + e + d)(af + c + b)

R = (a + b)(c + d)(e + f) + (a' + b')(c'+ d')(e' + f)

S = a'((e' + c')(cf'gh' + d) + (c'k + d'e)(f + c))

As we can see that all of them have good Boolean factored forms. As we see from the

following tables, BF did perform a lot better than both QF and GF on these examples.

Algorithm SOP FCT LB time best min

QF 151 100 54 0.3 1 0

GF 151 95 54 0.6 1 0

BF 151 74 54 2.7 4 1

QFC 151 100 54 0.4 2 0

GFC 151 96 54 0.9 2 0

BFC 151 87 54 4.0 1 1

Table 3.3: Comparison of factoring algorithms on contrived examples

ex SOP QF QFC GF GFC BF BFC

fit fit time fit time lit time lit time lit time lit time

P 36 28 0.04 34 0.16 28 0.10 34 0.47 24 0.47 33 1.81

Q 24 20 0.03 26 0.11 20 0.07 22 0.18 12 0.38 16 0.90

0 23 12 0.05 8 0.02 11 0.08 8 0.05 8 0.24 11 0.21

R 44 26 0.11 18 0.05 22 0.18 18 0.09 16 0.89 12 0.38

S 24 14 0.04 14 0.04 14 0.12 14 0.08 14 0.70 15 0.59

Table 3.4: Comparison of factoring algorithms on contrived examples

Notice that a fast algorithm that does well is to do QF, QFC and take the best

provided that the complement can be obtained efficiently.

3.7 Future work

In a multi-level logic network, every function has certain don't-care conditions.

The existing heuristic in factoring an incompletely specified function is to minimize the

sum-of-products form for the function and then factor the optimized sum-of-products form.
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But, a minimum-cube sum-of-products form cover is in general not related to a minimum-

literal factored form cover. So, there is a need to factor an incompletely specified function

directly (problem DCF).

As shown in Section 3.3, many problems encountered in manipulating factored

forms are or can be reduced to simplifying a factored form using a don't-care set also in the

factored form. Solutions to this problem are essential to manipulating functions entirely on

factored forms.

These two problems are related. To factor an incompletely specified function, one

can use existing algorithms to factor the on-set and don't-care set separately and then

simplify the result using FSIM. On the other hand, to simplify a factored form with the

dont'-care set also in factored form, one can first collapse the two factored forms into sum-

of-products forms and then use DCF to obtain a new factored form.
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Chapter 4

Boolean Simplification

4.1 Introduction

Two-level minimization is a much more developed science than multi-level mini

mization, and very efficient algorithms exist for finding minimal two-level representations of

Boolean functions. Two-level logic minimization plays an important role in optimal multi

level logic synthesis. Recall that a Boolean network is simply a collection of inter-connected

logic functions and each one can be represented as a sum-of-products expression or a fac

tored expression. The sum-of-products form of each function in a Boolean network can be

minimized, i.e. replaced by an equivalent but smaller sum-of-products form, using two-level

logic minimization algorithms. Two-level minimization can be made more powerful in this

context by providing the minimizer with various don't-care sets derived from the immediate

environment of a function. Just how much of the don't-care sets to derive depends on how

thorough and how fast this minimization process is expected to be.

The ultimate goal of simplifying a function in a Boolean network is to replace it

with another equivalent, but minimal, function which has the fewest number of literals in

the factored form. At the moment, thereis no algorithm for minimizinga function with this

objective. Instead, two-level minimization algorithms are used to minimize the number of

literals in sum-of-products form of a function as an approximation to the number of literals

in the factored form.

As we will see later on, don't-care sets of a function can and do become very

large in the sum-of-products representation. Furthermore, the dimension of the Boolean

space in which a function and its don't-care set are defined can also become very large.

73
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Together, they limit seriously the effectiveness ofour simplification procedure. The emphasis

of this chapter is to study ways of reducing the size of a don't-care set by finding and

removing the useless or "almost" useless cubes from the don't-care set. Doing so not only

reduces the size of a don't-care set in the sum-of-products representation, but also restricts

the dimension of the Boolean space. Experiments in MIS have shown that this approach

improves significantly the performance of the simplification process, but at the potential

expense of small loss in the quality of results.

Section 2 gives basic definitions. Section 3 outlines a simplification procedure and

its variations. Section 4 studies two ways of restricting the size of a don't-care set, one by

removing certain cubes from the don't-care set, and the other by generating selectively the

don't-care set in the first place. Section 5 suggests an alternative way of reducing the size

of a don't-care set by representing a certain part of it in the complemented form. The last

two sections present experimental results and discussions of some open problems.

4.2 Basic Definitions

Let / be a logic function, the character / is often used to denote certain expression

off (e.g., / = a+b'c), or the literal corresponding to the function / which is used to compose

other functions (e.g., g = fh + fh'). To avoid confusion, we explicitly define // to be the

literal corresponding to function /, and fe to be any expression of function /. The default

convention for interpreting the meaning of character / when // and fe are not used is: /is

a literal if it appears on the right-hand side of an equation and is an expression otherwise.

The operator © denotes the operation exclusive-OR, i.e., <z©6 = a'b+ ab'. The op

erator © denotes operation exclusive-NOR, i.e, a©& = ab+ a'b'. Notice that © is equivalent

to =, the identity relation.

Some operations described in this chapter modify a network by deleting certain

nodes. Let D be a set of nodes in a Boolean network rj. n —D represents a new network

obtained by deleting all nodes of D from n and considering all edges from D to n —D as

additional primary inputs ofn-D and all edges from n - D to D as additional primary

outputs ofn —D.
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Fan-in Don't-care Set

For any completely specified function /, the value of its literal // is always equal

to the value of its expression fe. So, the new function represented by the expression // © fe

represents combination of values of variables // and sup(f) which can never occur. This

new function is denoted by DIf, i.e.,

DIS = // © /.

and is called the intermediate don't-care set posed by function / for the reason that it can

never be evaluated to 1 and therefore can be used as the don't-care set for other functions.

An example of / and its corresponding DIf is

/ = a + b

DIf = f(a + b) + f(a + b)' = fa + fb + fa'b'.

Since function / can have, in general, many different expressions, it remains to

show that DIf is well-defined, i.e., its value is independent of the expression fe used in

/z©/e-

PROPOSITION 4.2.1 Let f\ and f\ be two different expressions of function f. Then,

//©£ = /<©/*•

Proof. Since /* and ft both are expressions of /, wehave

(/iw?) = i.

So,

ft eft = (//©/iX/ie/e)

= (fift + Tift)(ftft + ftft)

= Tiftft + fiftf!
fieft = (fi®ft)(ft®ft)

= Ui7l+Tift)(ftft + 7Tft)
= Iftft + fJU!

Therefore, /, ©/* = ft © /e2. •

In a given Boolean network, each function poses an intermediate don't-care set.

Together, they form the intermediate don't-care set for the entire network. Let n be a
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Boolean network, we define

DI(V) = £ DIf-
f£FUNCTION(ri)

When there is only one Boolean network involved, we simply use DI instead of DI(rj) for

brevity.

Fan-out Don't-care Set

Let n be a single output Boolean network. Let p be the primary output and x be

an intermediate function in n. Define px to be the network obtained by replacing everywhere

the literal x with constant 1 and literal x' with constant 0, i.e., px is p when x is forced

to be 1. Similarly, px is the network obtained by replacing everywhere the literal x with

constant 0 and literal x' with constant 1. Define DO? as

DOl = pJBv*.

Thus, DO% is the condition under which px and p^ are both 1 or both 0, i.e., the value of

p does not depend on the value of x. For this reason, jDOJ is called fan-out don't-care set

of x. Notice that if p is independent of x, then px = px/ which implies DO% = 1.

To generalize this concept to a multiple-output Boolean network, define

DOx(n)= J! D°x-
p€PO(«)

Notice that PO(rj) n TFO(x) is the subset of primary output which is contained in the

transitive fanout of x, TFO(x). Clearly, DOx is the condition under which no primary

output of n can be affected by the value of a:. Therefore, DOx is called the fanout don't-care

set of x.

Internal Don't-care Set

The intermediate and fan-out don't-care sets together form a don't-care set for a

function in a Boolean network. Fora Boolean network nand a function / 6 FUNCTION(n),
define

Df(n) = DI(r)) + DOf(T}),

or simply

Df = DI+DOf.

Df is called internal don't-care set of /.
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4.3 Simplification procedure

This section outlines and studies a simplification procedure. It begins with an

example as an introduction to the concept of internal don't-care sets, Boolean substitution,

simultaneous Boolean substitution, and simplification. A general simplification procedure

is presented along with several specific variations which have been implemented and tested

in MIS.

4.3.1 An Example

Let a Boolean network contain two functions:

/ = a + bc + bd

g = a + c + d.

It is not immediately obvious but can be easily verified that / can be re-expressed as

/ = a+bg, because when a+bg is multiplied out, the term ba is contained in a and therefore

can be removed. However, to discover this simplification is a much harder problem, and is

described step by step next.

Function / = a + bc+bd can be re-expressed as / = a+b(c+d)g+b(c+d)g' for any

g. Because the particular g we are using is equal to a + c + d, (a+ c+ d)g' is always 0 which

implies (c + d)gJ is always 0. So the last term can be dropped and now / = a + b(c+ d)g.

For the same reason, (a + c + d)'g is always 0, so the term ba'c'd'g can be added into the

expression. We can also add term bac'd'g into the expression because it is covered by a.

Together, these cubes can then be merged into a + bg. The entire process is summarized by

/ = a + b(c + d)

= a + b(c + d)g + b(c + d)g' x = xy + xy'

- a + b(c + d)g (c + d)g' = Q

= a + b(c + d)g + ba'c'd'g a'c'd'g = 0

= a + b(c + d)g + ba'c'd'g + abc'd'g abc'd'g C a

= a + b(c + d)g + bc'd'g xy + xy' = x

= a + b(c+ d)g + b(c + d)'g c'd' = (c + d)'

= a + bg xy + xy' = x
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4.3.2 Boolean Substitution

The essential fact used in the previous example to achieve the simplification is

that g is always equal to a + c + d. Because of this, the condition (a + c + d)'g can never be

evaluated to 1 and nor can (a + c + d)g'. Together, the condition Dg = (a + c + d) ©g can

never be evaluated to 1 and therefore can be used as the don't-care set for simplifying any

/. Indeed, if ESPRESSO were used to minimize / with Dg as the don't-care set, the result

would have been f = a + bg also. This process can be viewed as a Boolean substitution of

g into /. It is made of two related problems.

PROBLEM 1: (question of existence) Given logic functions / and g, are there any p, q,

and r where at least one of p and g is non-zero such that /' = pg + qg' + r?

THEOREM 4.3.1 Let (P, D) be an incompletely specified function. Let f = ph + r be a

cover of (F,D) and g be any other function. If g®hC D, then f = pg + r is also a cover

of(F,D).

Proof. Let f = ph+ r and /' = pg+ r. We need to prove /©/CD.

/©/ = (pg + r)® (ph + r)
= (p'r'+ g'r')(ph + r) + (pg + r)(h'r' + p'r')

= g'r'ph + pgh'r'

= r'p(g'h + gh')

= r'p(g@h)

C g@h

C D

COROLLARY 4.3.2 pge + r is a cover of(f,gt ©ge) if and only ifpgi + r is a cover of

(f,9lQ9e).

COROLLARY 4.3.3 pg'e + r is a cover of (f,g[ ©g'e) if and only ifpgJl + r is a cover of

(/.rferf).

Therefore, the answer to PROBLEM 1 is: p, q and r exist if and only, by forcing

variable g to be used either as literal gi or literal g[, we can obtain a cover of (f,gi ©ge).
[18] provides an algorithm for doing so.
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PROBLEM 2: (optimization) Given logic functions / and g, find p, q, and r such that

/ = P9l + a9\ + r is minimum.

In multi-level logic optimization, the size of a function is measured by the number

of literals in its factored form. So, the objective of PROBLEM 2 is to find a factored form of

P9i+99i+f with the minimum number of literals. However, there is no knownalgorithm for

solving this problem. Therefore, p, q and r are minimized for the total number of product

terms as an approximation to the total number of factored-form literals. In general, the

number of product terms of p, q, and r are not independent of each other. However, since

we are only interested in minimizing the total number of product terms, the objective is

simplified because of the one-to-one correspondence between the total number of product

terms in p, q and r and the number of product terms in the expression pg\ + qg\ + r, i.e.,

\p\ + W\ + \r\ = \pgi + qgi + r\

because g\and g\ are literals. This objective can be achieved by minimizing the incompletely

specified function (/, g\©ge) using any two-level minimization algorithm. Notice that if the

objective is to minimize the total number of literals in the sum-of-products forms of p, q,

and r, then minimizing the sum-of-products literals in pgi + qg[ + r would only serveas an

approximation because of the following observation: suppose function / has two different

covers, i.e / = pgi + r and / = pgi + r, such that p has fewer literals but more terms. A

two-level minimum literal minimizer may not pick pgi + r because literal gi appears in too

many terms.

Putting everything together, we have the following Boolean substitution algorithm

which tries to minimize function / using an existing function g. The fact that g is an existing

function is important because the cost of g is not taken into account when minimizing

(/> 9i © 9e)- The problem of finding a g such that the total cost of pg + qg' + r and g is

minimized is a harder problem and is not addressed here.

BOOLjSUBl(f,g)
Dig = gt®ge
MINIMIZE(f,DIg)
return /
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The routine MINIMIZE can be ESPRESSO or any other two-level minimization

program. Notice that the goal of BOOLjSUBl(f,g) is to simplify / using an existing g. If

function g does not help simplify /, then the literal gi and g\ will not appear in the resulting

/,.•'

4.3.3 Simultaneous Boolean Substitution

When there are more than two functions in a Boolean network, a function may

be simplified by trying to substitute all other functions into it one by one. A new question

arises: in Which order should the substitution be carried out? Even if we can enumerate

all possible orderings, there is still a more fundamental question of whether additional

simplification can be made by simultaneously substituting a set of functions into /. The

following example answers the questions. We add one more function h = a + b to the

previous example and see how we can use both g and h to simplify /.

/ = a + bc + bd

g = a+c+d

h = a + b

We try all possible orders in which to substitute g and h into / and the results are summa

rized as:

BOOLJ5UBl(f,g) => a + bgt

BOOLJ5UBl(f,h) =>. a + (c+d)ht

BOOLjSUBl(BOOLJSUBl(f,g),h) => a + bgi

BOOLjSUBl(BOOLJSUBl(f,h),g) => a + gfa.

If g is substituted into / first, no further simplification can be made by substituting h. If

h is substituted into / first, / can be simplified again with g to a + gfa. But, a + gfa can

be further simplified to gfa because a is contained in gh = (a + b)(a + c+ d). The reason

this was not discovered by the procedure is because the relationship between a and hi was

not known when substituting g into a + (c + d)h\ and the relationship between a and gi

was not known when substituting h into a + bgi. Had we tried to substitute both g and

h into / simultaneously with the don't-care set (gi ©ge) + (ht ©he), f would have been

simplifed to gfa. Therefore, not only did weachieve moresimplification by simultaneously

substituting g and h into /, wealsoobtained the result (gih{) which could not otherwise be

obtained by substituting g and h into / individually in any order and we did it with only
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one simnpfification. So, the Boolean substitution routine has to be generalized to allow

this more powerful simplification. Let X be a set of functions. The following procedure

simplifies function / by substituting all functions of X into / simultaneously.

BOOLjSUB2(f,X)
DIx = Uxgxfa/ © *e)
MINIMIZE(f,DIx)
return /

BOOLJSUB2 simplifies the function / by substituting a set of functions X into

/ simultaneously. It is possible that some functions in X are not useful for simplifying

/. During the course of simplification, BOOLJSUB2 implicitly selects an optimal subset

of X which is the set of functions that ends up in the simplified /. By the nature of the

minimization process, adding more functions into X can never hurt the simplification result.

However, the run time of BOOLJSUB2 can be significantly affected if X is constructed in

a un-justified manner. This issue will be addressed in the subsequent sections.

To put simultaneous Boolean substitution into the context of multi-level logic

optimization, it is the process of simplifying a function using all other existing functions in

the network. The don't-care set is just the intermediate don't-care set, DI, defined earlier

and the simplification procedure is:

SIMPLIFYJ)I(vJ)
I>J = DJ-{/,©/e}
MINIMIZE(f,DI(rj))

Notice that all the cubes in //©/e have to be removed from DI in order to prevent

/ to be simplified to // because

/ = /•

= Ul + feTl

= fefl + Tefl '
= fl
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4.3.4 Output don't-care conditions

Simultaneous substitution of a set of existing functions into another function is

not the only way a function can be simplified. The following example illustrates this. Let

x = af + bc

f = a'd + b'c.

In this example, / is used in function x. Notice that whenever be is 1, x is 1 regardless of

the value of /, so be can be added to / without effecting the outcome of a:. In addition,

whenever a is 0, the value of / does not affect the outcome of x also, therefore a' can be

added to / without effecting the outcome of x. Together, / can be simplified because

/ = a'd + b'c

= a'd + b'c + bc + a'

= a' + c.

The condition be + a' is treated here as the don't-care set of / because any change of /

using this don't-cares does not affect the outcome of x. It is trivial to verify that be + a' is

equal to xffixfi and is, as we defined earlier,'the fan-out don't-care set of /.

Ideally, one would like to simplify a function / using its entire fan-out don't-care

set DOf. However, there is one problem with this process. For an arbitrary function / in

a Boolean network, if all fan-outs of / are primary outputs, DOf can easily be computed

because we know the operationof cofactoring an expression with respect to a literal. If some

fan-outs of / are not primary outputs, the procedure for computing DOf is not defined.

For this reason, a subset of DOf is computed and used to simplify /. This subset is defined

as

DOlf = JJ Xfl&Xfi
x€PO(/)

and is called one-level fan-out don't-care set of /. Notice that / is a variable in x because

x is an immediate fan-out of /, therefore, the operation of obtaining Xf and Xfi is defined.

To see that DOlf is a subset of DOf, we need

THEOREM 4.3.4 DOlf C DOf.

Proof. Trivial. Since DOl is the condition under which the value of / does affect the

values of the immediate fanouts of /, so it does not affect the primary outputs. Thus,

DOl C DO. u
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The theorem is really a simple statement: if the value of a function does not affect

the values of its fan-outs, it does not affect the values of the primary outputs.

Now, we have restricted the entire fanout don't-care set of a function to a subset

which can actually be computed in a straight forward manner. The simplification procedure

using this don't-care set is called SIMPLIFYJ)Ol.

SIMPLIFY-DOl(f)
MINIMIZE(f, DOlf)

4.3.5 Simplification

By now, it has become fairly clear that to simplify a function / is to minimize

the function with an appropriately derived don't-care set. The don't-care set may consist

of intermediate don't-cares (DI), a subset (DOlf) of the fanout don't-cares as wellas user

specified don't-cares DC (also called external don't-cares). This procedure of simplification

is called SIMPLIFY and is simply MINIMIZE(f, DI+DOlf + DC). To obtain desired

run-time versus quality tradeoffs, two parameters are added to the simplification procedure

which result in the following:

SIMPLIFY(f, MINIMIZE, DCjGEN)
DC = DCjGEN(f)
MINIMIZE(fDC)
return /

The first parameter, MINIMIZE, specifies a two-level minimization program

to be used. The second parameter DCJGEN specifies the type of don't-cares, which

may be any combination of DI, DOlf, and DC or their subsets. By selecting different

MINIMIZE and varying DCjGEN, one can achieve desired tradeoffs between the perfor

mance and the quality of results. In general, ESPRESSO can be used as the minimization

program and has been shown in MIS to produce high quality results except for very few

cases. [36] provides another minimization routine which is a variation of ESPRESSO. The
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second parameter is intended for controlling the size of the don't-care set to achieve desired

run-time efficiency. It will be shown in the results section of this chapter that the don't-care

set can get very large and there is currently no effective procedure that can make use of

such a large don't-care set efficiently. In the next section, emphasis will be placed on how

to find the useful or "most" useful part of a don't-care set.

4.4 Filtering Don't-care Sets

An ideal procedure for simplifying a given logic function / in a Boolean network

is to generate first the entire don't-care set, D, including fanin don't-care set DI, the one-

level fanout don't-care set DOlf *, and user specified don't-cares, and then minimize the

incompletely specified function (f,D). However, for most practical circuits this approach

can hardly be carried through for two reasons. First, because the simplification is finally

performed by a two-level minimizer, the don't-care set needs to be represented in a sum-

of-products form. As will be shown in the result section of this chapter, the don't-care set

is often too large, so large that it exceeds the capacity of most existing computer systems.

Even when the don't-care set can be computed, most of the existing two-level minimization

programs still take unacceptable amounts of time because the large amount of don't-care

information.

The first solution is to generate the don't-care set in a selective fashion. By

examining the circuit topology (connections) around the function to be simplified, one can

leave out parts of the don't-care set derived from the functions which are "far away" and are

unlikely to be used in the simplification. One of the theorems presented later on suggests a

way to find out, based on circuit topology, those functions which have absolutely no use in

the simplification.

Since a function in a Boolean network can be arbitrarily complex, parts of the

circuit topology are actually hidden inside the function. So, the don't-care set generated by

looking at any special circuit topology may still contain un-necessary components (cubes).

Therefore, one needs to look into the sum-of-products representation of the don't-care set

and remove the useless or "almost" useless cubes to further reduce its size. This process is

called filtering because it filters out the useless part of the don't-care set. A filter is exact

if it finds out the cubes which, when removed from the don't-care set, do not compromise

lThe entire fan-out don't-care set DO/ should and would be used if it can be computed efficiently.
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the quality of the final result. A filter is heuristic if it finds out the "unlikely to be useful"

part of the don't-care set.

In the remaining of this section, the emphasis is on understanding the two-level

minimization algorithms and from that understanding deriving conditions which can be

used to filter out the "useless" cubes in the don't-care sets. An exact filter is first derived

based on a special structure in the matrix representation of the don't-care set. Then, its

implication on the circuit topology is studied which can then be used to guide the don't-care

set generation in the first place. In addition, a set of approximate filters are designed to

further reduce the size of the don't-care set.

4.4.1 An exact filter

For an incompletely specified function where both the on-set and the don't-care

set are represented in the sum-of-products forms, deleting a cube of the don't-care set may

result in excluding certain variables from consideration in the minimization process, and

consequently speeds up the simplification process. However, doing so may also limit the

solution space and compromise the results.

DEFINITION 4.4.1 Let (Fy D) be an incompletely specified function. A variable x is

said to be in-essential if there is an optimum cover of(F,D) which is independent of x. A

cube c € D is in-essential if any optimum cover of (J1, D —{c}) is an optimum cover of
(F,D).

So, if a cube c is in-essential, one can simply delete it from the don't-care set with

out worrying about losing any optimality. The next theorem helps remove some in-essential

cubes and, as a by-product, some in-essential variables for a given incompletely specified

function if the function has a special structure in its sum-of-products representation.

LEMMA 4.4.2 Let C be the sum of two orthogonal functions, i.e. C = A + B such that

sup(A) n sup{B) = <f>. Let PaVb be an implicant of C such that sup(pA) C sup{A) and
sup(pB) C sup(B). Then, eitherPaQA or pB C B.
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Proof. If ps %.B, then we must have pA C A because there must be a minterm of B'

which is in the form psq such that

PA = (paPb)pbq

c a PBq

— -"-pag + BpBq

= A + 0

= A

wp(pA)±.sup(phq)

PAPB Q C

C = A + B

PBQ C B'

THEOREM 4.4.3 Let (F, D + E) be an incompletely specified function and \(sup(F) U

sup(D)) n sup{E)\ = 1, then ALL cubes ofE are in-essential and all variables in sup(E) —

sup(F + D) are in-essential.

Proof. The structure of the function is illustrated in Figure 4.1. Let sup(F + D) be

on-set

don't—care set

X V Z

Figure 4.1: Special structure of an incompletely specified function (F, D + E)

X U{y}, and sup{E) be Z U{y}. All weneed to proveis: for any prime p of (F, D + E) such

that sup(p) nZ ^ <f>, there is another prime q such that sup(q)n Z = <f> and any minterm

of F covered by p is also covered by q.

Let p be a prime of (F, JD + E) containing some variables of Z. Let p = #rPypz

where px, py, and p* contain literals of p from X, Y, and Z respectively.

Since pxpz = p^ Q F^ + D^ + E^ and sup^F^ + DPy)n sup(EPy) = <j>. By
Lemma 4.4.2 we have either px C F^ + Fpj, or p* C FPy. If px C FPtf + FPtf, we have

P*Py C F + i? which implies for p to be prime pz = 1. Hence, pxpy = pC F + D. The other

case is px = 1, hence p = pypz C F, which is a don't-care and therefore redundant. Hence,

all non-redundant cubes are contained in F + 27 •

The exact filter suggested by Theorem 4.4.3 is to discover the special structure

illustrated in Figure 4.1 in the matrix representation of an incompletely specified function.

F
2

D

2 I E
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If the structure exists, all cubes in E can be removed from the don't-care set without

any loss of optimality. This exact filter should always be applied prior to simplifying an

incompletely specified function since it is easy to identify this structure. Notice that this

exact filter identifies some in-essential don't-care cubes, but not all.

4.4.2 Topological interpretation of the exact filter

An example

A straight-forward way of using the exact filter when simplifying a function is to

construct first the don't-care set and then apply the filter to remove in-essential cubes.

However, it is advantageous not to generate those in-essential cubes in the first place in the

presence of certain special circuit topologies. Therefore, it is important to understand the

implications of the exact filter on the circuit topology and use that to guide the don't-care

set generation.

The relationship between a certain structure of a cube matrix and the correspond

ing circuit topology can be best illustrated by a simple example.

EXAMPLE: Let n be a multi-level Boolean network with a single output. Let / be the

primary output node, i.e. / is the root node of the decomposition circuit. Furthermore,

there is no user-specified don't-care set. We would like to simplify node /.

Since / is a primary output, there is no fanout don't-care set, i.e. DOf = <j>. The

only don't-care set we can use to simplify / is

DI= £ (*«©*i).
x€(NODES(r,)-{f})

Suppose the circuit has a topology illustrated in Figure 4.2, i.e., there is an intermediate

signal g such that the only connection between the circuit rooted at g, »?(<7), and the rest of

the network is through g. In other words, every path from a node of n(g) to / has to pass

node g. Thus / has been decomposed into /(«i,... ,£*, <7(£fc+i»..., <7n)). Let

E = HxGNODES(tfa)){xl ©xe)

D = Hx€NODES(rj)-NODES{ti9))(Xl ®*«)'

It is clear that DI = D + E. Now, the only variable common to (/, D) and E is g. So, by

Theorem 4.4.3 E is in-essential and therefore does not have to be generated. Notice that



88 CHAPTER 4. BOOLEAN SIMPLIFICATION

Figure 4.2: A special circuit structure

leaving E out implies that no variable of n(g) can appear in the final minimized form of /

except g.

The sub-circuit n(g) having the above property is called a disjoint component

of the network n. The don't-care set used to simplify / is generated only over those nodes

of n which do not belong to any disjoint component of rj.

Meaning of simplification

Having seen an example, it is appropriate to emphasize the meaning of simplifica

tion. To simplify a function / is to strong-divide a set of candidate factors simultaneously

into /. Part of the don't-care set is the OR of DIX\ each one stating a relationship of x

with its fanins in a form that is useful for the simplification. If, for a given x, none of the

fanins are needed to simplify /, then DIX serves no purpose and can thus be omitted.

Region of interest (RI)

All the nodes which can not be excluded in generating the don't-care set for sim

plifying function / have potential values in simplifying /. These nodes form a region of
interest around / which is formally defined below.

DEFINITION 4.4.4 Let f be a node in a network n. A region of interest of f, denoted
by RI(f) is a sub-network consisting of a subset of nodes in r\ including f. All inputs to
RI(f) are considered as primary inputs and all outputs ofRI(f) are considered as primary
outputs.

RI(f) is the environment around / in which / is to be simplified. It specifies a
region over which the don't-care set is to be generated. Given a RI(f), one can simplify
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/ in the sub-network RI(f) rather than the entire original network. However, doing so

may compromise the quality of the result. This leads to the following definitions for certain

properties of RI.

DEFINITION 4.4.5 A RI(f) is Dl-minimal if there is no proper subset of it, RI'(f),

in which f can get the same simplification using only the intermediate don't-care set. A

RI{f) is minimal if there is no proper subset of it, RI\f), in which f can get the same

simplification using all internal don't-care set.

For example, let n be the network used in Example 4.4.2. An example of RI(f) is

the entire network itself. However, this RI(f) is not DI-minimal because / can get the same

simplification in RI(f) —n(g). This example also brings up another question: to simplify a

function in a network, what is the minimal RI(f) in which / can get as much simplification

as in the network itself?

DEFINITION 4.4.6 A RI(f) is Dl-sujficient iff can be simplified in RI(f) as much as

in the entire network using only the intermediate don't-care set. A RI(f) is sufficient iff
can be simplified in RI(f) as much as in the entirenetwork using all the internal don't-care

set.

Since the entire network is an instance of #!(/), there is always a sufficient RI(f)

for any function / in any Boolean network. However, our interest is to find a sufficient

RI(f) which is also minimal.

A necessary condition for a DI-minimal RI

Since a node in a Boolean network can be arbitrarily complex, it is never sufficient

to remove in-essential cubes of a don't-care set just by examining the circuit topology. For

this reason, any condition based on circuit topology is only necessary but not sufficient. To

study the necessary condition for an RI to be minimal, we generalize the notion of disjoint

component used in Example 4.4.2.

DEFINITION 4.4.7 A path between a pair nodes in a Boolean networkis a set of edges,

not necessarily pointing in the same direction, connecting the two nodes.
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For example, if / 6 FO(g) and g 6 FO(h), then h —g —f is a path consisting of

only forward edges. If / € FO(g) and h e FO(g), h-g- f is a path consisting of backward

edge h —g and forward edge g —f.

DEFINITION 4.4.8 A non-empty subset of nodes, D, of a network, n, is disjoint */

there is an edge e that is on every path from a node in D to a node outside ofD. The edge

e in this cases is called joining edge.

Notice that if I? is a disjoint component of 77, so is rj —D.

THEOREM 4.4.9 A RI(f) is not Dl-minimal if it contains a disjoint component.

Proof. Let RId(f) be the disjoint component not containing /. By definition, / can

neverbe in a disjoint component. The don't-careset derived from the nodes in RId(f) can

at most have one variable in common with the rest of the don't-care set and the on-set,

because there is only one edge between RId(f) and RI(f) —RId(f). By Theorem 4.4.3,

the part of the don't-care set derived from RId(f) is in-essential. So, / can get the same

simplification in RI(f) —RId(f) as in RI(f). Therefore, RI(f) is not Dl-minimal. . •

Figure 4.3 illustrates some of the circuit topology RI(f) which are not minimal.

In all cases, the shaded areas represent the disjoint component which can be excluded from

the don't-care set generation. The only connect between the shaded area and the rest of the

network is by edge e. In case (a) and (b), e is a backward edge. In case (c) and (d), e is a

forward edge. If edge e weredeleted, then the transitive fanout and fanin ofg is completely

disconnected from the rest of RI(f).

CONJECTURE 4.4.10 A RI{f) is not minimal if it contains a disjoint component.

A sufficient condition for a Dl-sufficient RI

Next, we would liketo find out a condition for a RI(f) to be sufficient in simplifying

/. By our definition, the entire network n(f) is obviously sufficient. We are interested in

finding as small a sufficient RI(f) as possible.

THEOREM 4.4.11 Let f be a function to be simplified, and n(f) be the network which
f belongs to. Let RI{f) be a region of interest of f obtained by removing all the disjoint
components from n(f). RI(f) is Dl-sufficient.
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(b)

(c) (d)

Figure 4.3: Severalexamples of non-minimal RI(f)

Proof. Given a / and n(f), there is only a finite number of disjoint components. By

applying Theorem 4.4.9 repeatedly, one can obtain the RI(f) such that / can get the same

simplification in RI(f) as in n(f). •

COROLLARY 4.4.12 Let RI(f) be Dl-sufficient in a network n.

1. Every out-going edge of RI(f) is either a joining edge or a primary output of n.

2. Every in-coming edge ofRI(f) is either a joining edge or a primary input of n.

CONJECTURE 4.4.13 Let f be a function to be simplified, and n(f) be the network

which f belongs to. Let RI(f) be a region of interest of f obtained by removing all the

disjoint components from n(f). RI(f) is sufficient.

The structure of a Dl-sufficient RI(f) is pictured in Figure 4.4. In the figure, the

region around / is RI(f). The edges goingout of RI(f) are considered as primary outputs

of RI(f), PO(RI(f)). The edges coming in to RI(f) are considered as primary inputs of

£/(/), -P^(-^(/))- Both eg and e/, are joining edges. The shaded area covering g is part
of the network reachable from g using both forward and backward edges excluding edge

eg. The fact that eg is a joining edge implies that the shaded area coveringg is a disjoint
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y t /
PO(RI(f))

Ri(f) Of?

PO
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Figure 4.4: Structure of Dl-sufficient RI(f)

component of n(f) and therefore does not have to be part of RI(f). Likewise, the shaded

area covering h is part of the network reachable from h and is also a disjoint component of

n(f) with eh being the joining edge. It too can be excluded from RI(f).

Summary

To summarize, the exact filter is designed to remove certain in-essential cubes

from the don't-care set when its cube matrix has a special structure. When simplifying a

function /, the environment in which / is to be simplified is called the region of interest

of /, RI(f). The topological interpretation of the exact filter gives us a way to reduce the

size of RI(f), i.e. removing all of its disjoint components. Finally, a Dl-sufficient RI(f)

can be obtained by removing maximally disjoint components from ??(/). A function / can

get the same simplification in a Dl-sufficient RI(f) as in n{f) using only the intermediate

don't-care set.

4.4.3 Approximate filters

In practice, there are cases where the don't-care set filtered by the exact filter is

still too large for existing two-level minimization programs to handle efficiently. So, further

reduction of the don't-care set is needed to obtain a desired run time efficiency at the

expense of possibly a little loss in optimality. Those reductions are called approximate filters.

Approximate filters try to remove cubes from the don't-care set which are unlikely to be

useful, but with no guarantees. The approximate filters were derived through experiments
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and have been shown to be effective, i.e. they have been able to reduce run time drastically

and still permit significant optimization.

Sub-support filter

This is a filter based on circuit topology 2. When simplifying a function /, this

filter tries to reduce the size of a don't-care set by restricting the region of interest to

only those nodes whose supports are entirely contained by the support of /. The precise

definition of the don't-care set generated by this filter is:

RI(f) = {x G NODES(n(f))\sup(x) C sup(f)}

DC(f) = T,xeRI{f)-{f}(*l ©*e).

The don't-care set DC(f) used for simplification contains fanin don't-care set only. This

filter has been shown to be very effective and efficient, i.e. achieve good minimization

quality with acceptable run time requirements [46].

Disjoint support filter

This filter is defined on the matrix representation of a don't-care set. Given an

incompletely specified function (F, D+E) such that its matrix has the structure indicated in

Figure 4.5, then all cubes in E are removed by this filter. While this filter cannot guarantee

F | 2

D

2 E

Figure 4.5: Structure that disjoint support filter looks for

that the cubes in E are in-essential, it has been shown through experiment that they are

unlikely to be used 3.

Maximum support filter

This is again a filter defined on the matrix representation. Each cube of the don't-

care set introduces a set of possible new variables which may be used during simplification.

2This filter was suggestedby Alex Saldanha
3The experiment wasdone by Mauro Pipponzi of SGS, Italy
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The goal of this filter is to limit the size of the don't-care set by imposing a limit on the

maximum support size. The limit can be specified as one of the two ways:

1. Specifying explicitly the set of new variables allowed to be used during simplification.

Any cube of a don't-care set containing variables other than those specified is removed.

2. Specifying the number of new variables allowed during simplification. Given a don't-

care set, the cubes are examined in certain sequence. A cube is kept if it does not

introduce more variables to the existing support than allowed by the limit. By varying

the limit, tradeoffs between run time and result quality can be obtained.

4.4.4 Putting it together

To simplify a function using various filters presented in this section, one should:

1) find the region of interest RI(f), 2) restrict RI(f) using the exact filter or sub-support

filter, 3) generate the matrix representation of the don't-care set, 4) apply the exact filter on

the matrix to remove more cubes, 5) apply appropriate approximate filters to reduce further

the size of the don't-care set, and 6) then simplify function / with the filtered don't-care

set. The reason for applying the exact filter on the matrix again is because the function at

a node can be arbitrarily complex and certain in-essential cubes can not be discovered by

looking at the circuit topology alone.

4.5 Don't-care Set Representation

The internal don't-care set of a function is a property of the Boolean network and

is implicitly specified by the network topology and node functions. There have been several

methods for simplifying functions using the don't-care sets implicitly [49] [4]. However,
the simplification procedure presented in this chapter requires the don't-care sets to be
expressed explicitly, in particular, in sum-of-products forms.

One drawback of representing the don't-caresets in sum-of-products forms is that

their size (number ofcubes) can get very large, sometime too large to behandled efficiently,
or at all, within the capacity of current computer systems. Forexample, if the function at
a node is:

x = ab + cd + ef + gh,
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then DX1 computed by x/ © xei is

Dx - x\ab + cd+ ef + gh) + {ab + cd + ef + gh)'x

= x'ab + s'cd -f- x'ef + x'gh+

xaceg + xaceh + xacfg + xacfh-r

xadeg + xadeh + xadfg + xadfh+

xbdeg + xbdeh + £&d/<)r -f xbdfh+

xbceg + ar&ce/i + xbcfg + xbcfh.

It is evident that the don't-care set Px would be un-manageable if x contains few more

disjoint cubes. The source of the size increase is clearly due to the complementation of

expression ze, and the multiplication of sum-of-products forms.

The situation can get even worse when computing fanout don't-care sets. In fact,

the formula for computing the one-level fan-out don't-care set of a function / is:

DOf= JJ {xs®xf,).
x6FO(/)

Notice that in addition to the complementation, DO$ is a product of fanout don't-care

conditions of all output nodes of /.

In this section, two methods are proposed to represent the don't-care sets in a

more compact form, i.e., with fewer number of cubes. One method reduces the number of

cubes in a don't-care set by introducing new variables, and the other by representing the

don't-care set in its complemented form.

4.5.1 Reduction using new variables

As we have seen in the previous example, functions with many disjoint set of cubes

have complements which are very large. In this case, the size of the complement can be

reduced by introducing new variables.

Suppose there is a function / = g+h such that g and h have disjoint support, i.e.,

g±h. Then

/ = 9+h

DIf = f!(g+k) + frfh'

\Dif\ = M +1*| + M x |*'|
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If two new variables, x and y are used to represent g and h, then

/ = x + y

x = g

y = h

DIS = fKxi + y^ + fix'tyl + x^g + x^ + ylh^yih'

\DIf\ = 3 + M + W + M + |fc'|.

It is clear that \g'\ x |V| is avoided by introducing two new variables. As a by-product of

this method, more simplification is possible using this representation of the don't-care set

because the new intermediate functions introduced may be better than the existing ones.

So, the general procedure for computing DI is to introduce first a set of new

variables, each one representing a set of disjoint cubes in a function, then carry out the

usual computation of DI. Notice that there are functions which do not have a partition of

disjoint cubes and still have exponential number of cubes in the complements. For example,

the complement of the following function can still be very large even though it does not

have partitions of disjoint cubes.

x = abc + cdef + fghi + ijkl + ....

One solution to this problemis to partition the cubes in x to "almost" disjoint sets and still

use a new variable to represent each set. In this case, an analysis should be performed to

see if he complement is indeed too large. [16] provides an algorithm, ESTCOMP, which
can be used to estimate the size of the complement.

It should be pointed out that the introduction of new variables may put extra

burden ontheminimization program because ofthe extra information, but may allow better
solutions to be found because ofthe availability ofmore intermediate variables. However,
the main objective of this approach is to have a way of representing the don't-care set
that we could not otherwise represent before. As long as we have a representation of the
don't-care set, filters can be used to reduce its size.

4.5.2 Reduction by complementation

Thesecond source ofproblem is themultiplication in the computing fanout don't-
care sets. Again, an example is used to show a possible solution. FO{x) and DOx denote
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the fanouts of x and the fanout don't-care of x respectively.

FO(x) = {/,</}

DOi = f&f*

DO% = fJBgj

DOx = DO%DO{
\DOx\ = \DO{\ x \DO%\

If .DOx is complemented, we would have

15UI = DOfx + DOx

Since

\D0i\ = \fx®fA * l/^e/^l = \{D0i)\

we have

I^UTI = \DO{\ +|2>0?| « \D0{\ + |Z>OJ|.

Computing i?Ox involves multiplication. But, computing DOx only involves addition. This

example suggests that the complement of a fanout don't-care set is usually more compact.

But, how do we use it in a minimizer?

4.5.3 Requirement for a new two-level minimizer

As defined earlier, the internal don't-care set of a function in a Boolean network

has two components, the intermediate don't-care set and the fan-out don't-care set. The

previous section has shown that the complement of the fan-out don't-care set has, in gen

eral, more compact representation. Therefore, using this approach, the don't-care set is in

the form of D + ~E where D represents the intermediate don't-care and E represents the

complement of the one-level fan-out don't-care set. This particular representation of the

don't-care set poses a new requirement for the two-level minimization algorithms, i.e., being

able to operate on this special representation of the don't-care set directly.

Currently, such a minimizer does not exist. However, simple modifications can

be made to the existing algorithms to accommodate this new requirement. Instead of

giving a complete description for such an algorithm, we show here that one of the basic

operation, the containment operation, in two-level minimization can be carried out using

this representation directly.
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Suppose we want to check the conditionp C D+TZ. The following set of equivalent

conditions can be derived,

pCD + TZ & (2? + E)p=l
& Dp+ T2p = l
& Dp + l?p'=l
& EpCDp

So, checking whether p C D + TZ is equivalent to checking that Ep C Dp. Thus, cube-

containment operation can be carried out on the don't-care of form D + E without having

to complement E at all. However, the drawback of this approach is that it avoids doing the

complementation by doing more tautology checking in determining Ep C Dq. So, in im

plementing the new minimizer, one needs to dynamically choose between complementation

and tautology strategy, based on estimating the size of the complement.

4.6 Literal Weight

The objective of this chapter is to reduce the size of a Boolean network by simpli

fying each function in the network using appropriate don't-cares. There is an assumption

being made at each step of this process. In simplifying a function using internal don't-cares,

it is assumed that all the intermediate functions exist in the network regardless of whether

they are used in the final simplified form of the function, when in fact some of them can

be deleted from the network if not used. For example, Figure 4.6 shows a case where not

Figure 4.6: A case of non-equal literals of /

all intermediate variables can be treated as equal. Suppose in the process of simplifying /,

a two-level minimizer discovers three equal size covers using variables {x,«}, {x,v}, and

{u, v} respectively. The two-level minimizer, without any other information, could choose
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any one of them. Here, even though the choice does not affect the size of simplified /, it

does affect the total size of the network. If the cover with variables {x,v} is chosen, node u

can be deleted. Better yet, if the cover with variables {u, v] is chosen, not only can node x

be deleted, nodes y and z can be deleted as well. However, if the cover with variable {a;, u]

is used, no nodes can be deleted because v is used by some other nodes in the network.

So, to simplify / correctly, each of the possible variables has to have a weight reflecting

the amount of reduction if it is not used in the final cover of /. In the example, variable x

should have the largest weight, and variable v should have the smallest weight.

To take into account the literal weights, current two-level minimizers need to be

modified to find minimal weighted covers of incompletely specified functions. Nevertheless,

there is a simple modification of procedure SIMPLIFY which avoids this problem of non-

equal literal weights without requiring a new two-level minimizer.

Right before simplifying a function /, all of the inputs are examined. If an input

x is used only in function /, it is collapsed into /. This process repeats until the fanins of /

are either primary inputs or multiple-fanout nodes. After this, the normal simplification can

be performed on / where every variable can be treated equally. This procedure is outlined

as follows:

SIMPLIFY\f)
while 3ar € FI(f) such that FO(x) = {/} {

collapse(f, x)
}
DC = DCjSEN(f)
MINIMIZE(f,DC)

4.7 Experiments and Results

The simplification procedure has been implemented in MIS with an extensive list

of options designed to allow various experiments. Using the options, one can select various

two-level minimization algorithms, specify criteria by which the simplification results are

accepted, define the region of interest, and choose the type of don't-care sets. Most of the
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results presented in this section were obtained by various combinations of these options.

The objectives of the experiments are listed below:

1. To get a feel on the size of the problems we are dealing with, in particular the size of

don't-care sets.

2. To show the effect of filters, exact and heuristic, on the size of don't-care sets.

3. To show that the size of don't-care sets can be reduced by introducing new variables

or by representing their complements.

4. To compare the quality of results obtained by using various don't-care sets.

The examples used in the experiments are taken from the MIS benchmark set

consisting of over one hundred circuits. They are either from the MCNC logic synthesis

workshop benchmark set, or actual circuits from industry. The circuits are first optimized

using MIS with the standard algebraic script. In all experiments the sizes of a don't-care

set is measured by the number of cubes.

The first experiment simply generates the entire fanin don't-care set for all the

benchmark circuits. Some of the size of these don't-cares are tabulated in Table 4.1. The

second column, DI, lists the number of cubes in the fanin don't-care set. the don't-care sets

are generally quite large as compared with the kind of don't-care sets we see in two-level logic

design. In addition, the technique of reducing the size of fanin don't-care sets by introducing

new variables is explored. Before generating the fanin don't-care set, the functions are first

decomposed into disjoint components, each one being represented by a new variable. The

size of don't-care sets in this new representation is listed in the last column, DI with new

variables. It was intended to show that disjoint decomposition may help reduce the size

of fanin don't-care sets. However, the results showed that in all but a few examples, the

size went up rather than down. There are three examples, 9sym, rd73, and yannis, whose

don't-care sizes went down significantly with disjoint decomposition. The conclusion is that

disjoint decomposition should only be used on the nodes whose complements are potentially

large. [16] has an algorithm, ESTCOMP, for estimating the size of the complement.

The next experiment studies the fanout don't-care set. In this experiment, we

restrict ourselves to the immediate fanout don't-care sets only, because the correct compu

tation of general fanout don't-care sets has not yet been implemented in MIS. Since fanout

don't-care sets are associated with nodes, sizes of fanout don't-care sets are presented in
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example DI

DI with

new var.

9sym 719 500

film 216 343

misex2 159 185

rd73 328 271

sao2 304 364

cafmt 127 154

cfeed 327 327

ciadr 104 149

cntmux 103 150

count4 251 359

dinmux 121 193

gprdec 712 712

iseset 133 167

maskgn 322 530

neeeds 122 182

pbo2 343 466

pbonew 534 661

pcdmux 131 131

resmux 128 128

runset 163 183

sOmux 186 276

setpmr 205 311

yannis 152 104

ampms 402 597

chest 195 263

101

Table 4.1: Sizes of the entire fanin don't-cares and their alternative representation
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terms of average and maximum sizes. Again, a related experiment is to show how the sizes

are reduced by representing the complement of the don't-care sets. The results are sum

marized in Table 4.2. It is evident from the table that even though the average size of the

example ave. DO max. DO

ave. DO

in comp.
max. DO

in comp.

5xpl 4 58 2 13

9sym 374 14362 28 160

alupla 5 48 3 9

bw 10 196 4 20

f5lm 6 86 3 12

rd73 62 342 25 83

sao2 44 592 7 40

vg2 4 20 2 12

cafmt 3 16 1 6

cfeed 2 27 1 3

cntmux 9 127 2 10

iseset 7 22 3 9

maskgn 2 48 2 14

neeeds 6 15 3 9

pbo2 24 391 4 37

pbonew 83 2594 7 50

setpmr 4 65 2 15

yannis 19 50 7 16

amprx 11 660 2 14

chest 394 7072 3 32

ctcucon 19 388 2 16

Table 4.2: Sizes of one level fanout don't-cares and their complements

fanout don't-care sets are small, it becomes occasionally very large as indicated by examples

9sym, pbonew, and chest. The next two column show the size of the fanout don't-care sets

when represented as their complements. As expected, the sizes of the complements are

significantly smaller.

Numbers in previous tables show that the don't-care sets found in a multi-level

Boolean network are almost always too large to be handled efficiently by existing two-level

minimization programs such as ESPRESSO. So, the filters, both exact as well as heuristic,

are applied to reduce the don't-care sizes. The results are reported in Table 4.3. The first

two columns list example names and the size of the fan-in don't-care sets. The next two

columns report the average and maximum sizes of don't-care sets after the exact filter. The
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example DI

ave. DI

exact

filter

max. DI

exact

filter

ave. DI

heuristic

filter

max. DI

heuristic

filter

alupla 253 236 247 24 54

bw 312 300 308 50 99

film 216 75 86 20 37

misexl 93 83 89 24 44

misex2 159 150 156 20 36

rd53 81 69 75 22 47

rd73 328 277 311 34 93

sao2 304 289 301 50 116

vg2 132 105 124 16 42

alui 576 570 573 29 71

cafmt 127 113 121 33 55

camux 18 2 5 2 4

cbmux 93 80 86 28 48

ccrup 105 61 84 16 39

cfeed 327 307 321 13 18

ciadr 104 94 99 35 52

cntmux 103 56 82 18 37

dinmux 121 44 81 30 66

gprdec 712 132 143 23 26

iseset 133 114 127 34 65

maskgn 322 314 319 32 68

mdrmux 192 186 186 155 155

neeeds 122 111 116 41 68

pbo2 343 314 328 67 140

pbonew 534 503 523 68 162

runset 163 31 105 6 40

sOmux 186 163 174 136 145

setpmr 205 133 179 19 49

Table 4.3: Effect of exact and heuristic filters on the sizes of fanin don't-care set

103
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last two columns report the average and maximum sizes of don't-care sets after the heuristic

filters. Fair amounts of reductions are obtained by the exact filter on all the examples. In

some cases, the reduction is quite significant as demonstrated by example film, z5ml, and

pmoset. However, the results are still too large. So, heuristic filters are applied to reduce

further the don't-care sizes. With few exceptions, the don't-care sets after being reduced by

heuristic filters are much smaller and can be reasonably handled by two-level minimization

tools like ESPRESSO.

The same experiment is performed to filter the fanout don't-care sets. The results

are summarized in Table 4.4. It is worth noting that the exact filter did not perform as

example
ave.

DO

max.

DO

ave. DO

exact

filter

max. DO

exact

filter

ave. DO

heuristic

filter

max. DO

heuristic

filter

5xpl 4 58 2 41 0 1

9sym 374 14362 180 5418 1 4

bw 10 196 3 164 0 1

film 6 86 2 19 0 6

misexl 4 16 1 9 0 2

rd53 4 18 4 18 1 3

rd73 62 342 37 342 0 5

sao2 44 592 19 536 1 8

vg2 4 20 2 20 0 0

z4ml 1 3 1 3 1 3

afmt 3 16 1 7 0 7

cafmt 3 16 1 7 0 7

cbmux 4 29 3 29 0 4

cfeed 2 27 0 0 0 0

ciadr 3 11 1 9 1 4

cntmux 9 127 0 0 0 0

crbus 4 11 2 11 1 3

iseset 7 22 6 19 1 3

neeeds 6 15 2 15 1 6

pbo2 24 391 11 329 0 4

pbonew 83 2594 63 2582 0 9

Table 4.4: Effect of exact and heuristic filters on fanout don't-cares

wellas it did for fanin don't-cares because if is a product. On the other hand, the heuristic

filters did very well on the fanout don't-cares. In fact, they may filter out too much.
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The last set of experiments compare results of simplification using various don't-

care sets. Table 4.5 summarizes the results. Column SBS lists the results of using the

example SBS INOUT INOUT-E

5xpl 145 2.5 145 6.3 145 6.1

9sym 35 0.6 35 1.0 35 0.8

alupla 24 0.8 24 4.1 24 2.2

bw 265 26.0 279 36.0 279 46.8

conl 0 0.1 1 0.2 1 0.1

duke2 876 24.6 1409 685.8 1409 632.5

f2 8 0.2 8 0.3 8 0.3

film 126 1.5 126 6.0 126 5.2

misexl 68 0.4 88 1.3 88 1.4

misex2 39 1.4 41 18.1 41 23.1

rd53 44 0.3 44 0.5 44 0.4

rd73 427 2.0 427 2.8 427 2.8

rd84 920 11.4 920 15.0 920 14.6

sao2 294 2.4 294 3.4 294 3.2

z4ml 166 0.7 166 1.6 166 1.5

Table 4.5: Simplification results using various don't-care sets

subset-support filter. Column INOUT lists the results of using don't-cares generated over

one-level of fanin and then one level of fanout of the fanins. Column INOUT-E is the same

as INOUT column with don't-cares being filtered by the exact filter. In each case, there axe

two columns, the first indicates the literal reductions and the second indicates the CPU time.

The literal reduction is the sum of literal reductions of all the nodes. The literal reductions

of a node is measured independent of other simplifications, i.e. each node is simplified,

measured, and put back to its original form. The reason for doing so is to remove the effect

of simplification ordering?. The results show that subset-support filter in general performs

quite well, i.e. obtains comparable results (except duke2) with less time. The INOUT filter

allows more nodes to be used in generating the don't-cares. Consequently, it could only

perform better, as shown by the result of duke2. As the theorem predicts, using exact filter

on the don't-cares does not change the results quality, as verified by the table, but may

affect the run time. On some examples, the CPU time went down because the exact filter

reduced the don't-care sets. In other cases, the CPU time went up, an indication that the

exact filter itself is a quite expensive operation and, when no reductions are possible, the

time spent on filtering is wasted, as shown by the results of bw and misex2.
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4.8 Future Work

Since simplification is a form of Boolean substitution, it is possible to have a situa

tion where any one of the two functions / and g can be substituted into the other, resulting

in two different networks. This is the simplest situation where the order of simplification is

important. The problem gets even more complicated when more nodes are involved. Try

ing out all possible orderings is simply too expensive to be a viable solution. Preliminary

experiments have shown that significant improvement can be made by choosing the right

orderings. The subject is well worth further investigation.

A heuristic used in the simplification process is to use the size of sum-of-products

forms as approximation to the size of factored forms, when in reality the two quantities

are not related well enough. So, there is a strong need for a simplification program which

optimizes an incompletely specified function for factored literals.

Section 4.5 has shown that some don't-care sets have more compact sum-of-

products representation in the complement. Consequently, the don't-care set used for sim

plifying a function may have both the un-complemented and complemented components,

i.e., DC = DI+DOC where DOC = DO. Modifications are needed to the existing two-level

minimization algorithm which handle the don't-care set expressed in both un-complemented

and complemented form.



Chapter 5

Phase Assignment

5.1 Introduction

The principle of duality is an important property of Boolean functions. It states

that every algebraic expression deducible from the basic axioms of Boolean algebra remains

valid if both operators (i.e. AND and OR) and identity elements (i.e. 1 and 0) are inter

changed. The duality principle is formally expressed as the following specific form of De

Morgan's law:

x + y = x~f

xj=x~+f

The duality principle makes it possible to implement a Boolean function in either un

complemented or complemented form provided that necessary inverters are supplied at the

inputs as well as the output of the function. For example, the function a(S+ c) can be

realized by either of the circuits in Figure 5.1.

In a given multi-level combinational logic network, each function can be imple

mented in its present or complemented form provided that appropriate inverters are sup

plied. However, the costs of implementing a function or its complement may differ. For

example in static CMOS technology, NAND gates are generally preferred over NOR gates

due to performance considerations. More importantly, the choice of implementing a func

tion in its present or complemented form affects the number of inverters needed at the

inputs and output of the function, which may in turn affect how other functions are to

be implemented. For example in Figure 5.2, circuit (b) can be derived from circuit (a) by

107
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a b c a b c

(a) (b)

Figure 5.1: Equivalentimplementations of a(E + c)

complementing functions /, g, and h and has fewer number of inverters than circuit (a)

does.

(a) (b)

Figure 5.2: Reducing inverters by complementing certain functions

For a Boolean network, whether the present or the complemented form of logic

functions should be implemented to minimize the cost of implementing the network is a

global problem, and is therefore defined as global phase assignment problem or simply

phase assignment. The cost of a Boolean network may vary, depending on the optimiza

tion criteria. Typical cost functions are:

1. Total area occupied by the logic in the network.
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2. Total number of inverters in the network.

3. Longest delay in the network.

The first cost function is used during the area optimization phase, and for certain tech

nologies it can be reduced to the second cost function. Whereas the third cost function is

often used in conjunction with other performance optimization algorithms. This chapter

is dedicated to solving the problem of minimizing the total number of inverters. However,

the formulations and algorithms can easily be extended to accommodate more complex cost

functions.

To solve the global phase assignment problem, the first question to be answered is

whether an algorithm exists to solve the problem optimally in a reasonable amount of time.

It will be shown in Section 2 that the problem is NP-complete. Only when the network is

in a very specific form can the phase assignment problem be solved optimally in polynomial

time. A dynamic programming algorithm will be designed to minimize the total number of

inverters in a tree network.

To offer a practical solution to the phase assignment problem, several heuristic

algorithms have been developed, tested on a large set of examples, and experimentally

shown to be very efficient and effective. They will be discussed in Section 3.

When used in a cell-based design style, e.g., standard cell or gate array technol

ogy, the phase assignment problem can be extended to allow more general modifications

to functions than just complementation. New modifications will be formally defined and

heuristic algorithms, developed in Section 3, will be extended to solve this generalized

phase assignment problem in Section 4.

To evaluate the heuristic algorithms and to compare their relative performance,

experimental results will be presented and examined in Section 5.

Finally, open problems and future directions will be discussed in Section 6.

5.2 Basic Definitions

In a given Boolean network, every signal has two phases. The presently available

phaseofa signalis referred to as its positive phase. The complement ofa signalis referred to

as its negative phase. Notice that these definitions are relative to the current configuration

of a given Boolean network.
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Inverters in a Boolean network can be specified implicitly by allowing signals to

appear in logic equations as either literals or complement of literals. For example, when

given two equation / = x~a and x = 6c, it is implicitly understood that an inverter is needed

in the final implementation to provide 7. A Boolean network is said to be phase-consistent

if all the inverters needed are explicitly present in the network.

The dualof a Boolean expression /, denoted by rf/, is another expression obtained

by switching AND's and OR's in /. For example, if / = a(F+ c) then df = a + 5c. It is

obvious that the dual of / is not the complement off. By De Morgan's law, the complement

of / can be obtained by switching all AND's and OR's and invert all literals. Using the

same example, if / = a(5 + c), then J = a(F+ c) = V+ 6c\ To formalize these definitions,

let F(*, +, x,y,..., z) be an expression for /(x, y,..., z). Then / and df are

df{x,y *) = ^(+, *,x,y,..., z)

/(af,y,...,2?) = f,(+,*,y,f,...,I).

PROPOSITION 5.2.1 The operation dual is self-inverse, i.e.,

dd/=f

Proof.

ddH*,v *) = ^(«.+,*.y *)

= dF(+,*,x,y,...,*)

= f(x,y,...,z)

PROPOSITION 5.2.2 Every function can be replaced by its dual with inverters each

input and the output, i.e.,

/(*, y, •••,z) = <f/(y,y,...,y)
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Proof.

f(x,y,...,z) = /(x,y,...,z)

= F(*,+,x,y,...,z)

= d/(y,f,...,j)

The proposition can be interpreted as follows: if a function is replaced by its

dual, then inverters have to be added to all the inputs and the output in order to preserve

the logic, as indicated in Figure 5.3. Notice that buffers and inverters are the self-dual.

(a) (b)

Figure 5.3: Replacing / by its dual df

Sometimes, replacing a node / with its dual df is referred to as negating f or flipping f.

5.3 Complexity and Formulation

Is phase assignment a difficult problem? Can we solve the problem exactly in

practice? If an exact algorithm is unlikely to be found, can we solve the problem exactly

when the networks possess some special properties? These are the questions to be studied

and answered in this section.

First, the complexity of the phase assignment problem is investigated and the

decision problem associated with the phase assignment problem will be shown to be NP-

complete. In addition, the problem is formulated as a mathematical programming problem

with a linear objective function and non-linear constraints. Finally, a dynamic programming
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algorithm running in polynomial time is proposed to find the optimum solution of the phase

assignment problem for tree networks.

5.3.1 Complexity of Phase Assignment

Given a Boolean network with n nodes, the size of the solution space of the phase

assignment problem is bounded by 2n simply because each node has the choice of being

replaced by its dual or not, i.e. the problem is in NP. Unfortunately, it will be shown that

it is very unlikely to find an algorithm that is substantially better than searching through

all possible solutions, i.e. the phase assignment problem is NP-complete.

To simplify the proof, it is convenient to look at the decision problem associated

with phase assignment. The decision problem of phase assignment can be informally stated

as: given an instance of a Boolean network with n nodes, is there a phase assignment

requiring no more than K inverters? This decision problem can be no harder than its

corresponding optimization problem. Clearly, any algorithm that solves the minimum-

inverter phase-assignment problem also answers the question of the decision problem at the

same time.

The decision problem of phase assignment can be proved to be NP-complete by

transformation from the MAX CUT problem which is defined as

MAX CUT

INSTANCE: Graph G = (V,£), weight w(e) e Z+ for each e e E, positive integer K.

QUESTION: Is there a partition of V into two disjoint sets Vi and V2 such that the sum of

the weights of the edges from E that have one endpoint in Vi and one endpoint in V2 is at

least IT?

The MAX CUT problem is NP-complete [30] and remains NP-complete ifw(e) =
1 for all e € E (the SIMPLE MAX CUT problem) [25].

The decision problem of phase assignment is formally defined as:

PHASE ASSIGNMENT

INSTANCE: Boolean network n, dual df for each / GNODES{n), positive integerL.
QUESTION: Is there a subset of functions F C NODES{rj) such that replacing each / e F
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by df results in a Boolean network with at most L inverters?

The following lemma is needed to prove that PHASE ASSIGNMENT is NP-

complete.

LEMMA 5.3.1 Given a graph G = (V,E), assigning directions to the edges in E such

that the resulting directed graph is acyclic is a polynomial time operation in the number of

edges .

Proof. The following algorithm assigns directions to edges of G in polynomial time.

Without loss of generality and for the sake of simplicity, G is assumed to be connected. In

the algorithm, SUBjSRAPH(Gy S) is a graph whose vertices are S C V and whose edges

are all edges of G with both endpoints in 5.

ASSIGNJ)IRECTION(G = (V,E))

1. Let U = <£, and W = V.

2. Pick any v 6 W, let U = U U{v} and W = W - {v}.

3. Let S = <f>.

4. For each edge (u,w) such that u 6 U and w € W, assign direction it -» 10, and
5 = Su{w}.

5. ASSIGNJ)IRECTION(SUB.GRAPH(G, S)).

6. LetW = W-S, zndU = UuS.

7. UW^(f> goto step 3, otherwise done.

In the algorithm, U contains the partial result. Each time when S is added to

U, all edges between U and 5 are pointing from U to S. Because \S\ < |V|, by simple

induction on the number of nodes in the graph, SUBjGRAPH(S) can be made acyclic by

recursive call to ASSIGN-DIRECTION. Eventually, U will contain all the nodes of G.

So, the resulting directed graph is acyclic. The algorithm is 0(|£|) because each edge is

encountered exactly once. •
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• ••

Figure 5.4: Steps in constructing a DAG from a graph

• ••

The algorithm used in the proof can be visualized in Figure 5.4, where 5i, 52,...

refer to 5 constructed at step 4 in each iteration.

To prove that PHASE ASSIGNMENT is NP-complete, the SIMPLE MAX

CUT is transformed to PHASE ASSIGNMENT. Recall that SIMPLE MAX CUT

is to partition the nodes of a graph into two sets, Vi and V2, such that the number of

crossing edges is maximized. The transformation maps the graph G to a phase-consistent

Boolean network rj. V\ is mapped to the set of nodes of n which are to be replaced by their

duals. V2 corresponds to the un-changed nodes. Maximizing the edges across the partition

is transformed to minimizing the number of inverters.

THEOREM 5.3.2 PHASE ASSIGNMENT is NP-complete.

Proof. It is easy to see that PHASE ASSIGNMENT e NP, because a nondeterministic

algorithm need only guess a set of functions / € NODES(n)y replace them with their duals,

and check in polynomial time that the number of inverters needed in the network n is less

than or equal to L.

The SIMPLE MAX CUT can be transformed to PHASE ASSIGNMENT in poly

nomial time. Let an arbitrary instance of SIMPLE MAX CUT be given by the graph

G = (V,J5) and the positive integer K < \E\. The following steps are used to construct a

Boolean network from G.
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GRAPHJTOJVETWORK(G) :

1. ASSIGNJ)IRECTION{G).

2. Associate each vertex ogVa node nv.

3. Associate each edge e e E with a node ie.

4. Each i^tyj is assigned an inverter function, t^^j = 7SJ.

5. If a node nv has no incoming arcs, it is a primary input.

6. Otherwise, let nv = U(u,v)eE «(u,«) (AND function).

It is easy to see how the construction can be accomplished in polynomial time,

because the first step is polynomial by Lemma5.3.1 and each of the remaining steps is also

polynomial.

The correspondence between solutions of SIMPLE MAX CUT and PHASE AS

SIGNMENT is established as follows. Let N be the set of nodes, given by the PHASE

ASSIGNMENT algorithm, to be replaced by their duals. Vi is associated to F by

Vi = {v\nv € N}.

Now, it is essential to show that there is a partition V\ and V2 of V with a number

of edges between Vi and V2 being no less than K if and only if there is a set of functions

N which, when replaced by their duals, result in a network with no more than L inverters,

where L = \E\- K.

If there is a partition Vi and V2 of V with K crossing edges, then the dual replace

ment of all the nodes corresponding to vertices in V\ will result in a network with \E\ - K

inverters. The reason is quite simple. For each edge (u, v) € E, there is a corresponding

inverter i(uv) in the network. This inverter can be eliminated if and only if exactly one of

the nodes, nu or nVy is replaced by its dual, i.e. the edge (u,v) is a crossing edge. On the

other hand, if (u, v) is not a crossing edge, then either both nodes nu and nv or none of

them are replaced by their duals. So the inverter corresponding to (w, v) remains. Thus,

the number of crossing edges, K, corresponds to the number of inverters being eliminated,

which implies that the number of inverters left in the network is \E\ —K.
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If there is a phase assignment resulting in a network with L inverters, then let Vi

contain all the vertices whose corresponding nodes are replaced by their duals, and let V2

contain the rest of the vertices. The resulting partition will have no more than |JE7| —L

crossing edges. The proof is again by establishing a one-to-one correspondence between a

crossing edge and an eliminated inverter.

Now, we have established a one-to-one correspondence between a solution of SIM

PLE MAX CUT and that of the corresponding PHASE ASSIGNMENT, i.e. if there is a

partition with at least K crossing edges, then there is a phase assignment with at most

L —\E\ —K inverters. •

5.3.2 A Mathematical Programming Formulation

The phase assignment problem has a natural mathematical programming formu

lation: a 0-1 integer programming problem with linear objective function, and non-linear

constraints.

The mathematical programming problem is setup as follows: Each of the primary

inputs and internal signals is associated with a binary variable. A value of 1 implies the

presence of an inverter to provide the negative phase of the signal. Each internal node is

associated with an additional binary variable whose value being 1 implies that the node

is to be replaced by its dual. Obviously, the objective is to minimize the sum of all the

variables associated with the signals.

The constraints are used to ensure the consistency of the network. Let / be a

primaryinput or an internalnode. NFO(f) and PFO(f) partition the fanouts of/, FO(f),

as indicated in Figure 5.5. NFO(f) contains all the fanouts of / which presently depend

on the negative phase of /. PFO(f) contains all the fanouts of / which presently depend

on the positive phase of /. The inverter can be eliminated if all the nodes in NFO(f)
are negated. In addition, if / is an internal node, the inverter can also be eliminated by

negating all nodes in PFO(f) and /. These are the basis for deriving the constraints. It

is worth mentioning that at the presence of the inverter, the constraint associated with

/ should be automatically satisfied simply because both phases of / are available for the

fanouts of / to use.

Formally, let 77 be a phase-consistent Boolean network. Two sets of binary vari-
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NFO(f) PFO(f)

Figure 5.5: Partition of FANOUTS(f) into NFO(f) andPP0(f)

ables, X and Y", are created.

X(v) = {*. 6 {0,l}|s 6 SIGNALS(n)}

Y(v) = ton € {0,l}|n G NODES(n)}.

Value of 1 for x8 means an inverter is needed to provide the opposite phase of signal s, 0

means no inverter is needed. Value of 1 for yn means that node n is to be replaced by its

dual, dn. The objective function is

3€SIGNALS(rt)

Each signal s € SIGNALS(n) yields a constraint Ca

= f (1 - *.)(Ei€FO(.) fJ +N.Vf - JV.) =0 / £PJ(i?)
1(1-*.)(El€FO(.) *i - *.) =o 5ePI(1?)

where J\T, = |PO(.s)| is the number of fanouts of s, / is the node generating signal s, and

CK =

^ is defined as

i-vt ye PPO(s)

2ft V € NFO(s)

We use an example to illustrate how the constraints are derived. Figure 5.6 shows

part of a Boolean network where s is the signal generated by node /. o,p,q, and r are the

fanouts of /. o and p depend on the negative phase of /. q and r depend on the positive

phase of /. To eliminate the inverter, we need to either negate o and p and keep the current

phase of /, g, and r, i.e.

Vo + yP -r (l - yq) + (i - yr) = -2V"/ «««/ y/ = o

zl = (5.1)
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Figure 5.6: Associate constraint variables with nodes and inverters

or keep the current phase of o and p and negate /, q, and r, i.e.

Vo + VP + (1 - yq) -r (1 - yr) = 0 and yf = 1.

Combining the above two constraints, we get

y0 + yP + (i - yq) + (i - yr) = (1 - y/)^/,

which is

yo + yP + (i-yq) + (i-yr) + Nyyf-Nf = o.

Since the constraint exists only if the inverter is to be eliminated, the constraint should be

multiplied by 1 —xai i.e.

(1 - xa)(y0 + yp + (1 - yq) + (1 - yr) + J\T/tf/ - Nf) = 0.

When the variables defined as in equation 5.1 are used,

(1 - xa)(z°f + zpf + z) + z} + Nfyf - Nf) = 0.

5.3.3 Exact Solution on Trees

For networks with certain special structure, it is possible to derive an efficient

algorithm for solving the phase assignment problem optimally. In particular, a dynamic

programming algorithm will be presented in this section to find the optimum phase assign
ment for networks which are trees.

First, let's look at a simple example to see why a simple greedy algorithm fails to

yield the optimum solution. In Figure 5.7, (a) is a phase-consistent tree Boolean network

with five nodes and five inverters. Any greedy algorithm stops after the dual-replacement

CHAPTER 5. PHASE ASSIGNMENT
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(a) (b) (c)

Figure 5.7: Greedy algorithm falls into local minimum (d)

of nodes p and q, leaving the network, (b), with three inverters. However, if all nodes are

dual-replaced, the network, (c), would have only two inverters, an optimum solution. To

achieve this optimum configuration by a sequence of dual replacements, some of the dual

replacements must be allowed to increase the number of inverters temporarily.

Additional definitions are needed to describe a dynamic programming algorithm.

Given a tree network rj, let ROOT(rj) be the root node of n. Let Vf be the

network rooted at node /. Let NI{rj) be the number of inverters in the network n. A phase

assignment of n is given by function P(rj): NODES(n) —> {0, l}, i.e.

P(n) = {(n,b)\n enandbe {0,1}}

where a node is assigned a 1 if it is replaced by its dual, and is assigned 0 otherwise.

The algorithm has two major components, OPAJ(rj) finds the optimum phase

assignment of n with an inverter in front of the root node ROOT(n), OPAJf(rj) finds the

optimum phase assignment with no inverter in front of ROOT(rf). The two components

are described as two co-routines: each one calls itself or the other with a smaller tree, and

terminates at the primary inputs of n.

OPAjr(n)
P = {(ROOT(n),0)}
for each / € FI(ROOT(n)) and f g PI(rj)

if ROOT(rj) 6 PFO{f)
if NI(OPAJf(r)f)) < NI(OPAJ(rjf))

P = P UOPAJ!(rif)
else

P = P UOPAJ{nf)
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else

if NI{OPAM{r)f))••+ 1 < NI(OPAJ(t)f)) - 1
P = P UOPAM(nf)

else

P = P UOPAJ(nf)
return P

OPAJ is very similar to OPAM. It assigns "1" to the root and inverts the

dependencies of the root on its fanins.

OPAM(n)
P = {(ROOT(rj),l)}
for each / € FANINS(ROOT(n)) and f £ PI(n)

if ROOT(rj) € NFO(f)
if NI(OPAM(vf)) < NI(OPAJ(rjf))

P = PuOPAM(nf)
else

P = P UOPAJ(nf)
else

if NI(OPAM(vf)) + 1 < NJ(OPAJ(rif)) - 1
P = P UOPAM(rjf)

else

P = P UOPAJ{rif)
return P

Now, to find the optimum phase assignment of a tree network, algorithm OPA

simply evaluates the results of OPAM and OPAJ and picks the better one.

OPA(rj)
iiNI{OPAM(rj)) < NI(OPAJ(n))

return OPAM(n)
else

return OPAJ(rj)

Figure 5.8 helps explaining OPAM. f is the current root with two fanins g
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Figure 5.8: Finding OPAM(rjf) and OPA - P(rff)

and h, and depends on the positive phase of g and the negative phase of h. To find

OPAMfjif), f must not be flipped. Since / dependson the positive phase of p, the optimum

phase assignment of ng should be used. This is found by comparing NI(OPAM(ng)) with

NI(OPAJ(ng)). If / depends on the negative phase of an input, e.g. h, then the number

of inverters from this branch is either NI(OPAM(nh)) + 1 or N1(0PAJ(nh)) - 1. This

justifies the last 'if statement in the algorithm.

It is a dynamic programming algorithm because it uses the principle of optimality

and assumes that at each step the optimum solutions of sub-problems have already been

found.

THEOREM 5.3.3 The algorithm OPAM(rj) finds the optimum phase assignment with

outan inverter at ROOT(n). The algorithm OPAJ(n) finds the optimum phase assignment
with an inverter at ROOT(n).

Proof. By induction on the height of the tree network. If the network rj is of height one,

then there is no other choice than not flipping the node in OPAM and nipping the node
in OPAJ. The algorithms work correctly in this case.

If the network n is ofheight n, let / € FI(ROOT(rj)), then the input network n(f)
is of height less than n. By the induction hypothesis, OPAJ and OPAM find optimum

phase assignment of n(f) with and without inverters at the root of n(f). The algorithm
will choose either OPAJ(n(f)) or OPAM(n(f)) depending on which one results in less

inverters. Since n is a tree, the phase assignment ofn(f) is independent of all other 77(0),
g e FI(ROOT(rj)). Therefore, the result is optimum. •

COROLLARY 5.3.4 Algorithm OPA finds the optimum phase assignment for tree net
works.
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Proof. Obvious from Theorem 5.3.3 •

The algorithm is also very efficient. In fact, we have

THEOREM 5.3.5 Algorithm OP A is O(N) where N is the number of nodes in the tree

network.

Proof. Each node in the network is processed exactly twice, one by OPAM and one

by OPAJ. Each time, a fixed amount of operations is performed. In particular, since

the phase assignment of sub-trees is independent of each other, the union operation in the

algorithm OPAM and OPAJ can be done in constant time. •

5.4 Heuristic Algorithms

Since the phase assignment problem is NP-complete, we have to resort to heuristic

algorithms. One operation used repeatedly in the heuristic algorithms is to compute inverter

savings which is the number of inverters saved by nipping a node/ Based on this operation,

a greedy algorithm can be easily derived. To avoid falling into a local minimum far removed

from the global minimum, the greedy algorithm is improved to allow partial hill-climbing

to find better solutions at the expense of more computing time. These algorithms can be

further improved by allowing look-a-head in selecting nodes to be processed. Each of the

above steps are described in details in the followingsubsections.

5.4.1 Computing Inverter Saving

Inverter Saving of a node / is defined as the number of inverters saved if the node

/ is replaced by its dual df. Correctly computing Inverter Savings of nodes is essential in

the heuristic algorithms described later on. Figure 5.9 shows what is involved in computing

Inverter Saving of node /.

There are two sets of nodes associated with the fanouts of node /, NFO(f) con

taining all nodes n 6 FO(f) which depend on the negative phase of /, PFO(f) containing

all nodes n € FO(f) which depend on the positive phase of /. A node n belongs to both

groups NFO(f) and PFO(f) if n depends on both phases of/.
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OS(f)

9) (h

Figure 5.9: Computing inverter savings of flipping /

The inverter savings of / in the figure has two components, savings at the output

of / and savings at each input of /. When replacing / by its dual df, an inverter can be

saved at the output of / if and only if all outputs of / depend on the negative phase of /

and no output of / depends on the positive phase of/, i.e.

• NFO(f) = FO(f) and PFO(f) = <f>.

An inverter has to be created at the output of / if and only all outputs of / depend on the

positive phase of / and no output of / depends on the negative phase of /, i.e.

PFO(f) = FO(f) and NFO(f) = <j>.

At an input x of /, an inverter can be saved if and only / is the only node in FO(x) that

depends on the negative phase of x and / does not depend on the positive phase of x, i.e.

NFO(x) = {/} and PFO(x) = FO(x) - {/}.

An inverter has to be created if and only if no output of x depends on the negative phase
of xt i.e.

NFO(x) = <f>.

The procedure OS(f) computes the inverter savings at the output of / if / is
replaced by its dual df.

NFO(f) PF°(f)

123
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if NFO(f) = FO(f) and PFO(f) = <f>
saving = 1

else if PFO(f) = FO(f) and NFO(f) = 0.
saving = —1

else

saving = 0
return saving

The procedure J5(/, x) computes the inverter savings at input xoffiffis replaced

by its dual df.

IS(f,x)
if NFO(x) = {/} and PFO(x) = FO(x) - {/}

saving = 1
elseifi\rPO(a:) = <£

saving = —1
else

saving = 0
return saving

Using the two procedures above, the inverter savings of /, when it is replaced by

its dual df, can be computed quite easily:

S(f)
saving = OS(f)
for each x e FI(f)

saving = saving + IS(f, x)
return saving

5.4.2 Incremental Update of Inverter Saving

Inverter Saving is used throughout our heuristic algorithms selecting nodes to flip.

It is too expensive to compute the Inverter Saving repeatedly. In fact, inverter savings of
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nodes need to be computed only once at the beginning. When a node is flipped, only the

inverter savings of certain nodes around it need to be re-computed. It is essential to be able

to update incrementally Inverter Savings after each flip of a node.

First of all, when a node is flipped, it is important to And out all the other nodes

whose inverter savings could be affected. The example in Figure 5.10 illustrates some of the

possibilities. When / is flipped, node o is affected because one of its input inverter savings

Figure 5.10: Nodes affected when / is flipped

IS(o,f) is changed from —1 to'O. Node p is also effected because its output inverter saving

OS(p) is changed from 0 to 1. Furthermore, node g is affected because one of its input

Inverter Saving IS(g,p) is changed from 1 to 0. So, if node / is flipped, the nodes which

need to be updated are all of its fanouts, all of its fanins, and all the fanouts of the fanins,

i.e. the following set of nodes

AFFECTED(f) = FO(f) u FI(f) (J FO(x)
x€FI(f)

Since Inverter Saving of a node / depends on its fanouts, fanins, and fanouts of

the fanins, AFFECTED(f) are all the nodes whose Inverter Savings could possibly be

changed. In addition, it is not even necessary to re-compute Inverter Savings of all the

nodes in AFFECTED(f) from scratch. In the above example, Inverter Saving of node o is

changed due to the changes at its input branch from /. So, it can be updated by subtracting

IS(o,f) and then adding IS(o,df). All the nodes in AFFECTED(f) can be updated in a

similar way. The procedure for doing so is called FLIPJLNDJ7PDATE. It replaces node

/ by its dual df and updates incrementally Inverter Savings of all the affected nodes.

FLIP-ANDJJPDATE(f)
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for each g 6 FO(f)
S(g) = S(g)-IS(g,f)

for each g € FI(f)
S(g) = S(g) - OS(g)
for each h € FO(g)

S(h) = S(h)-IS(h,g)
replace / by df
S(d,) = -S(f)
for each 3 e FO(df)
. S{g) = S(g) + IS(g,d,)
for each g 6 FI(df)

S(g) = S(g) + OS(g)
for each /i € PO(^)

5(/t) = 5(/i) + I5(/i,<7)

5.4.3 Quick Phase

A greedy algorithm for phase assignment consists of flipping the node with largest

inverter savings until all nodes in the given network have zero or negative inverter savings.

Because the algorithm runs very fast when compared to other algorithms, it is named

QUICKJPHASE.

QUICKJ>HASE(n)
for each node / e NODES(n)

compute S(f)
repeat {

/ = argmaxx^NODES^ {S(x)}
if S(f) < 0 done
FLIP_ANDJJPDATE(f)

}

Notice that QUICKJ>HASE never flips a node whose Inverter Saving is zero.

This is to avoid falling into an infinite loop. However, allowing flips of these nodes maylead
to further inverter reduction. Algorithm QUICKJHASE' explores this idea by allowing

nodes with zero Inverter Savings to flip, but once only until the inverter count is reduced
again.
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QUICKJ>HASEf(n)
for each node / € n

compute S(f)
unmark /

repeat {
/ = argmaXX£NODES(T,) and unmarked iS(x)}
if5(/) = 0

mark /
else if S(f) > 0

unmark all marked nodes in n

else /* now S(f) < 0 */
done

FLIPJLNDJJPDATE(f)
}

5.4.4 Good Phase

The problem with both QUICKJ BASE and QUICKJ>HASE' is that the cost

function, the inverter count, never increases. Consequently, the results are often just local

minimum and largely depend on the initial configuration of the Boolean network. In this

section, another algorithm is presented which allows the cost function to increase in a limited

fashion.

The idea used in QUICKJ>HASE' is to allow a node to flip even if the cost

function stays the same. But a zero-inverter-saving node can only be nipped once before

a better solution is found. The generalization of the idea is to allow a node to flip even if

the cost function increases. The order in which nodes are selected is again determined in a

greedy fashion, i.e. selecting a node which decreases maximally or increases minimally the

cost function. But, flipping of a node is restricted to onlyonce beforea better configuration

is found. This algorithm resembles the ideas originated by Kernighan and Lin in solving
the graph partitioning problem [31].

GOODJPHASE(n)
repeat {

unmark all / € NODES(rj)
best = n
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QUICKJ>HASE(r))
if NI(n) < NI(best)

best = rj
repeat {

if all / € NODES(rj) are marked
return best

else

/ = argmaXxeN0DES(r,) and unmarked iS(s)}
FLIP'jLNDJJPDATE(f)
mark /

} until NI(n) < NI(best)

The algorithm is named GOOD.PHASE because it always gives better result

than QUICKJ>HASE. GOODJPHASE always keeps the best network found so far. The

call to QUICKJ>HASE initially reaches a local minimum. Then, GOODJ*HASE enters

the hill-climbing stage by flipping nodes even though the number of inverters in the network

may increase. If, at any point, a solution better than the current best is found, that solution

is accepted and the whole process starts again. The algorithm terminates when all of the

nodes have been flipped once and no better solution has been found. This is a partial

hill-climbing schemebecauseeach function is flipped onlyonce in a greedyorder (minimum

inverter increase).

5.4.5 Look-ahead

Both QUICKJ*BASE and GOODJ>HASE can be improved by choosing the

order in whichnodesare selectedbetter. Sofar, the nodes havebeen chosenin a greedyway,

i.e. selecting the node that maximally decreases or minimally increases the cost function.

This may lead to a poor local minimum solution, as the example in Figure 5.11 shows.

Using a greedy strategy, node / is chosenleading to a solution with fiveinverters. However,

if node g is chosen instead, knowing before hand that it would lead to nipping node h with

two inverter savings and that, in turn, would lead to flipping node i with one more inverter

saving, the resulting circuit would have four inverters. This prompts the idea of fc-step

look-ahead. Instead of choosing the current best move, this strategy chooses a node to flip

which, when combined with the next k - 1 flips of the connecting nodes, leads to the best
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Figure 5.11: look-a-head gives better result on this circuit

overall k moves. The total number of inverters saved in these k moves will be assigned as

the value of the first nipped node. Following is a procedure for computing the value, SJC,

of a node, which takes a node n and a positive integer k as inputs.

SJC(n,k)
saving = S(n)
FLIPJLNDJJPDATE(n)
T = {n}
N = FI(n) U FO(n)
repeat k —1 times {

/ = argmaxX£N {S(x)}
saving = saving + S(f)
FLIPjiNDJUPDATE(f)
T = Tu{/}
N = Nu FI(f) U FO(f) - T

}

Now, function SJC can be used to replace function 5 everywhere mQUICKJ>HASE

and GOODJHASE. k can be used to obtain desired tradeoffs between the quality of re

sults and CPU time.

5.5 Generalized Phase Assignment

Until now, the basic step in global phase assignment is replacing a node / by its

dual df. However, in standard-cell or gate-array design, there are manually designed cells
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which have some input signals inverted internally in order to achieve better performance

or smaller area. Thus, there are many other modifications to the nodes which could affect

the number of inverters. For example, Figure 5.12 shows three cells found in a standard

cell library. If gate A is replaced by gate B, two inverters should be added at the inputs to

ff=ab /, = a + 6 = a H

ft

c

7
a

fa = « °

Figure 5.12: Three cells in a standard cell library

preserve the logic, because o5 = o%. If A is replaced by C, one inverter should be added to

the output and another one should be added to the input a.

As the example shows, replacing A by either B or C is more general than simply

replacing A by its dual d^. Minimizing the number of inverters using such changes is the

generalized phase assignment problem. The objective of this section is to define this

newclassof transformations formally, to showthat the problem is not significantly different

from the original global phase assignment problem, and to extend the heuristic algorithms

to handle the generalized phase assignment problem.

Since the new modifications are possible only by allowing internal inverters of

library cells, the focus of this section is to minimize the inverters for a library-based target

technology. Circuits under consideration in this section are assumed to be mapped. Each

node has associated with it a gate from a given library.

5.5.1 NN-class and Related Definitions

Given a gate g in a library, we would like to find out all the other gates that can

be used to replace g by adding or subtracting some inverters at the inputs and output of

g. What do those gates have in common? How can they be found in a given library?

When replacing a gate by another, how many inverters can be saved? Let's start with the

following definitions.
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An NN-transformation of a gate g consists of negating certain inputs of g, and/or

negating the output of g. For example, in Figure 5.13, gate (b) can be obtained from (a)

a b c

(b)

Figure 5.13: (b) can be derived from (a) by negating some inputs and output

by negating inputs a and c and negating its output.

Two gates are said to be NN-equivalent if one can be NN-transformed to another.

We use g™h to denote the NN-equivalence of gate g and h. It is trivial to see that ?5 is

reflexive, symmetric, and transitive, i.e.

nn

9++9

nn* , . *nn
g++h <=» h±+g

nn» _* * nn • nn •
g<r+h and h*->% =>> <7<->i

So, <-»• is an equivalence relation. Cells in a standard cell library can therefore be partitioned

into NN-equivalent classes, or simply NN-classes. Let NN(g) denote the NN-class gate g

belongs to, i.e.

NN(g) ={h\h eLIB(g) and h™g}
where LIB(g) is the underlying technology library.

A cell g is a tree if its function in factored form has exactly one literal from each

input (e.g. a(S+ c) is a tree and a5+ ZT& is not).

Let g be a tree gate. Since NN(g) is the set of all the gates NN-equivalent to g,

it is possible to choose a representative function for NN(g). Any function / satisfying the

following condition can be chosen to be the representative of NN(g).

• f is positive unate in all the inputs,

• Each input is used exactly once in /,
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• The output is not complemented.

For example, the representative of NN(a(li + c)) could be a(b + c), or a + be. Every cell in

NN(g) can then be expressed as the representative function plus some phase information of

its inputs and output. In the previous example, if a(b4- c) is chosen to be the representative

function, cell a(b~ + c) would have phase(a(Ji + c)) = 0, phase(a) = 0, phase(b) = 1, and

phase(c) = 0. If the representative function is a+bc, a(5+c) would havephase(a(o~+c)) = 1,

phase(a) = 1, phase(b) = 0, and phase(c) = 1, because a(f + c) = fT+far. As the example

shows, the phase of a cell or its input is determined by the choice of the representative

function. Given a library, a preprocessing step can be performed to choose a representative

function for each NN-class so that the phases of all the cells and all of their inputs are

uniquely determined.

Two inputs of a cell are said to be permutable if the connections to these two

inputs can be switched without changing the functionality of the circuit (e.g. an A022,

f = ab+ cd, has four inputs, inputs a and b are permutable. So are inputs c and d).

Let p be an input of a gate g in a mapped circuit. Let vp be the signal connected

to the p. phase(vp) is 0 if the positive phase of vp is used when phase(p) = 0. phase(vp) is

1 if the negative phase of vp is used when phase(p) = 0. Notice that the phase of an input

variable vp is defined with respect to the un-inverted input p of the representative function

of NN(g), regardless of the current phase of the input p.

Finally, the inputs of a gate are sometimes called pins.

5.5.2 Choosing A Move

A basic step, a move, in the generalized phase assignment algorithms presented

here is replacing a gate g by another gate in NN(g). In the original simple phase assignment,

procedure 5 is used to compute Inverter Saving obtained by replacing a gate by its dual.

The goal of this section is to develop a procedure for computing Inverter Savingobtained by

replacing a tree-gate by another gate in its NN-class. There are several reasons for restricting

the attention only to those gates which are trees. First of all, fast procedures are available

for computing Inverter Saving obtained by replacing a tree by another NN-equivalent tree.

Second, the majority of the gates in a library are trees.

We first use an example to show what is involved in computing inverter savings

in this case, to point out some of the difficulties, and to motivate the algorithm developed
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later on.

(a) (b)

Figure 5.14: Replacing (a) by (b) to save two inverters in (c)
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Part (a) of Figure 5.14 is a node of a Boolean network where / = Ub + z3 + e

is required. The gate A0221 with inverted input x is used. Two inverters are needed at

inputs z and u and one inverter is needed at the output. Part (b) is an NN-equivalent gate

AOI221 with two inverted inputs, x and y. If the gate in (a) is replaced by the gate in (b),

two inverters can be saved. Part (c) shows the new connection.

Several simple facts are used in deriving the new configuration. Pin x and y are

permutable, and so are z and u. In addition, the pin group {x, y} and {z, u} are permutable.

For each set of permutable pins (e.g. x and y), there is a problem: finding the permutation

which saves the most inverters. A similar problem exists in finding a permutation of pin

groups. If cells are allowed to have arbitrary levels of logic, there is a hierarchy of the

permutability information about the pins. Figure 5.15 shows a gate with three levels of

logic. Each pair of inputs to the first level AND gates are permutable. In addition, {a, 6} is

permutable with {c,rf} and {e,/} is permutable with {g,h}. Finally, pin groups {a,6,c,d}
and {e, /, g, h} are permutable.

To describe the algorithm formally , additional definitions are needed. A level-0

permutable pin group contains two or more permutable pins. A level-n permutable pin

group, level-n group for short, is a set containing two or more level-n —1 permutable pin
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ab cd ef gh

Figure 5.15: Hierarchy of permutable pins and pin groups

groups. In Figure 5.15, {a, 6} is a level-0 group, {{a,6},{c,d}} is a level-1 group, and

{{{<*, &}> {c, d}}, {{e, /}, {g, h}}} is a level-2 group.

There is another way of representing the permutability information. The internal

of a tree-gate can be viewed as a tree of AND and OR nodes. Two inputs of an internal

node are permutable if the sub-trees rooted at these two inputs are isomorphic. So, the

inputs of each internal node can be partitioned into permutable groups. For the example

in Figure 5.15, all the inputs of all the internal nodes are permutable (this is not the case

in general).

The procedure IIC(A, B) (Input Inverter Count) determines how many inverters

are needed at the inputs if a gate A is replaced by an NN-equivalent gate B. The input

Inverter Saving obtained by replacing A by B can be computed by subtracting the current

number of inverters from IIC(A, B). Since the permutability information is arranged in a

strictly hierarchical fashion, i.e. each internal node has permutable inputs which in turn

have their own permutable inputs, it is natural to describe the procedure recursively.

IIC(A,B)
if A and B are pins

return phase(vj£) @phase(B)
count = 0

for each permutable input group Ga of ROOT(A)
let Gb be the corresponding group of ROOT(B)
create a bipartite graph K = (S,T,E)
for each node g& € Ga

create a node n^ € 5
for each node gs € Gb

create a node n^ € T
create an edge (n^,ns) 6 E
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let w(nA,nB) = IIC{TREE(gA),TREE{gB))
}

}
let M be the minimum weighted complete matching of K
let count = count + Se€M w(e)

}
return count

IIC(A1 B) is a recursive procedure. It stops when A and B are pins. An inverter

is needed at the new pin B if and only if the exclusive-nor of phase(vA) and phase(B) is

1. If A and B are internal nodes, the inputs of root nodes of A and B, ROOT(A) and

ROOT(B) are partitioned into permutable groups. The total input inverter count is the

sum of the inverter count from each group, because the inputs of the groups are mutually

disjoint. For any single group Ga and its corresponding G^, any subtree rooted at gA € Ga

can be replaced by a subtree rooted at gs 6 Gb- So, the bipartite graph K is complete.

The weight of an edge (n^, ns) is the number of inverters needed at the input of tree

TREE(gg), if §a 1S replaced by gs* The minimum inverter permutation is therefore given

by the minimum weighted complete matching of K.

Now, IIC can be used to compute the Inverter Saving obtained by replacing a

gate A with an NN-equivalent gate B. The procedure is called GS (Generalized Saving).

GS(A,B)
saving = outputjsaving(A, B)
saving = saving + IIC(A,A) - IIC(A,B)
return saving

The first step of the procedure is to determine the inverter savings at the output.

This can be computed quite easilyknowingthe relativephaseof the outputs of A and B and

how the output is used. The next step is to determine the inverter savings at the inputs.

It is the difference of current inverter count IIC(A,A) and new inverter count IIC(A,B).
Notice that the current inverter count can not be obtained from the current usage of A

directly because it may be connected in a non-optimum way. However, by replacing A by

itself in IIC(A, A), the optimum usage of A and its associated inverter count can be found.
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The Matching Problem

The matching problem in IIC is to find a complete matching with minimum total

weight. It can be transformed to the usual maximum-weighted-bipartite-matching problem.

Let K = (S,T,E) be an instance of the graphs created in IIC. A new bipartite

graph K' is created by copying K. Then, w(e') is changed to —w(e') for all e' GE'.

PROPOSITION 5.5.1 If M' is the maximum weighted matching of K', then its corre

sponding M is the minimum weighted complete matching of K.

Proof. Obvious. •

Because the graph K' is complete, it is not necessary to solve the matching problem

using general weighted matching algorithms. In fact, the maximum weighted bipartite

matching of K' is the Gale-Shaply matching which can be solved in 0(n2) time [24].

5.5.3 Generalization of Heuristic Algorithms

The heuristic algorithms QUICKJPHASE and GOODJ>HASE can be general

ized to accommodate new moves, i.e. replacing a gate by an NN-equivalent gate; The basic

step of both algorithms is choose a node to, choose a gate g in NN(n) and replace n with

g. To evaluate each move, a generalization of 5, called SAVING, is proposed.

SAVING(n)
if to is not a tree

saving = S(n)
else

saving = maxmeNN^ {GS(n,m)}
return saving

If to is not a tree gate, SAVING uses the old 5 to compute the inverter savings. If

n is a tree gate, SAVING searches through all gates in NN(n) to find one with maximum

inverter savings.

With SAVING, the generalized Quick Phase and Good Phase algorithms can be

described.
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GENERAL-QUICKJ>HASE(rj)
repeat {

/ = argmaxx€NODES{ri) {SAVING(x)}
if SAVING(f) < 0 done
REPLACE(f, BEST(NN(f))

}

In the procedure, BEST(NN(f)) returns a gate in NN(f) which, when replacing

gate /, maximally reduces the number of surrounding inverters. REPLACE does the

actual replacement.

GOODJ>HASE is extended similarly to GENERAL-GOODJPH ASE.

GENERAL-GOODJ>HASE(n)
unmark / for all / € NODES(n)
repeat {

best = rj
GENERAL-QUICKJ>HASE(n)
if NI(n)<NI(best)

best = n

repeat {
if all / 6 NODES(rj) are marked

return best

else

/ = argmaxx€NODES(ri) and x i8 unmarked{SAVING(s)}
REPLACE(f, BEST(NN(f)))

} untU NI(n) < NI(best)
}

5.6 Experiments and Results

The heuristic algorithms presented in the previous subsection for solving the

global phase assignment problem have been implemented and tested on a large set
of examples. The objectives of these experiments are:



138 CHAPTER 5. PHASE ASSIGNMENT

1. To show the speed of QUICK-PHASE and GOOD-PHASE and the quality of

results obtained by the algorithms.

2. To compare the relative speed and result quality of the heuristic algorithms.

3. To explore the possibility and the effect of having random starting points.

The examples are taken from the MIS benchmark set consisting ofover one hundred

circuits. They are either from the MCNC logic synthesis workshop benchmark set, or actual

circuits from industry. The examples are optimized by MIS using an algebraic script prior

to phase assignment.

The first experiment is to compare the quality and run time of QUICK_PHASE

and GOOD-PHASE. Table 5.1 shows the results oiQUICK-PHASE and GOODSHASE.

For compactness, only the examples with more than thirty inverter savings are selected. The

second column is the number of nodes in the circuits excluding inverters. The results show

that Inverter Savings obtained by either QUICK-PHASE and GOOD-PHASE are signif

icant in the total cost of the circuits. The next two columns and the last two columns show

the Inverter Savings obtained by QUICK-PHASE and GOODJ>HASE and their CPU

time in seconds on a DEC /xVAX-HI which is a three MIPS machine. The table shows that

GOOD-PHASE generally spends about 30% more cpu time, but always achieves as good

or better results and can sometimes obtain much better results than QUICK-PHASE

does, as indicated by example alui and merge.

To see closely the deficiencies of QUICK-PHASE, Figure 5.16 is used to show

how the inverter count reduces as GOODJ>HASE flips the nodes in example merge. The

horizontal axis is the number of flips made by the algorithm and the vertical axis is the

inverter count. One can imagine the curve growing from left to right as the algorithm

proceeds. It is clear that QUICK-PHASE would have stopped at 170 inverters. Even the

modified QUICK-PHASE' would have stopped at 166 inverters. Since GOODJHASE

allows partial hill-climbing, it is able to find a muchbetter solution. Figure 5.17 shows the

entire process followed by GOOD-PHASE.

To explore the possibility and effect of using random starting points in conjunc

tion with QUICK-PHASE, the following algorithm is designed which combines random

starting points with QUICKJ*HASE.

RANDOM-GREEDY(n, to)
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QUICK-PHASE GOOD-PHASE

examples no. nodes saving time saving time

alui 161 109 5.2 #152 10.0

aluii 113 68 5.4 69 6.2

amux 32 100 3.6 100 3.9

bfmt 39 11 3.9 40 5.1

bmux 36 132 10.0 132 10.5

brngen 40 88 3.0 106 2.8

cfeed 86 69 2.7 69 3.1

count4 80 45 1.9 45 2.2

gprdec 224 58 4.5 64 6.3

maskgn 93 27 2.2 42 3.5

merge 106 68 9.9 200 13.6

pcfmux 43 73 3.3 73 3.6

rbusmx 34 150 8.6 150 9.2

rotate 104 70 7.0 72 7.0

slmux 40 37 2.4 53 2.7

smux 32 100 3.7 100 4.0

ampdv 161 67 7.1 75 9.7

ampiod 92 50 5.0 56 9.3

ampms 231 101 12.8 112 18.9

amprx 88 41 2.9 42 3.4

amptmm 212 94 13.1 94 15.1

ampxhd 121 52 5.5 70 7.4

txvlsi 120 58 4.5 64 5.6

9sym 55 39 9.2 41 3.8

alupla 56 33 1.8 45 2.5

duke2 113 53 4.1 56 5.3

misex3 162 81 8.4 91 11.0

misex3c 133 82 17.5 85 21.5

Table 5.1: Comparison of QUICK-PHASE and GOOD-PHASE

139
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Figure 5.16: Deficiency oiQUICK-PHASE and QUICK-PHASE'
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Figure 5.17: Partial hill-climbing of GOOD-PHASE
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best = n

for i = 1 to to {
RANDOM-ASSIGN(n)
QUICKJ>HASE(rj)
if to is better than best

best = to

>
return best
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The algorithm takes a network and a number n, and generates to random starting

points. Each time, it uses the greedy algorithm to get to a local minimum. The best

assignment is returned at the end.

The next experiment compares the quality of the results and CPU time ofGOOD-PHASE

and RANDOM-GREEDY with fifty random starting points. Figure 5.18 is the scat

ter plot of inverter savings of GOOD-PHASE versus RANDOM-GREEDY on all the

benchmark examples. Almost all the points are below the 45-degree line. This shows

that one path of GOOD-PHASE almost always gives better results than that of fifty

RANDOMJGREEDY. Furthermore, Figure 5.19 compares the CPU time oiGOOD-PHASE
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Figure 5.18: Quality of RandomjGreedy vs. Good-Phase
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and RANDOM-GREEDY. All the points are way above the 45-degree line, which shows

that GOOD-PHASE takes less time on all the examples. Finally, let us take a closer
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Figure 5.19: CPU time of RandomjGreedy vs. Good-Phase

look at one of the examples. In figure 5.20, the line on the bottom is the result given by

GOOD-PHASE. The line on the top shows the results of each random-greedy assign

ment, clustering within a certain region. This example shows that hill-climbing is essential

in achieving good results for the phase assignment problem, and GOOD-PHASE is very

cost-effective.

5.7 Future Work

In addition to the heuristic algorithms presented in this chapter, several other

algorithms are applicable to the global phase assignment problem. Given that inverter

savings are updated incrementally, simulated annealing is a viable alternative. Several

variations of the Kernighan and Lin algorithm are also applicable here. Recently, Daniel

Brand [8] proposed another probabilistic hill-climbing algorithm. It should be interesting
to apply the algorithm to the phase assignment problem.

The generalized phase assignment problem is fairly new. The treatment presented
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Figure 5.20: Quality of Random-Greedy vs. GoodJPhase

in this chapter is preliminary. More work remains to be done! First of all, the generalized

phase assignment algorithm has yet to be implemented. This requires close interaction

with technology mapping and a new interface to the technology library. Given a standard-

cell library, the gates in it need to be grouped into NN-classes. It should be a fairly

straightforward exercise to check for NN-equivalence of the gates given that the cells are, in

general, quite small, and, in addition, only NN-classes of tree-cells are usedin the algorithm.
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Chapter 6

Timing Optimization

6.1 Introduction

Being able to meet performance requirements is absolutely essential in synthesiz

ing digital logic circuits. As the circuit complexity increases, many of the manual methods

for performance improvement have become impractical. Automatic performance optimiza

tion of digital circuits has played and will be playing a more and more important role in

any synthesis system. Such performance optimization systems must be able to work with

different levels of circuithierarchy and at various steps of the design process (e.g. re-timing,

reducing delay in combinationallogic, delay-driven layout, etc.). This chapter deals exclu

sively with performance optimization of combinational logic circuits (timing optimization).

The results can be used as a component in a performance driven synthesis system.

Timing optimization of combinational circuits can be viewed as a three-phase pro

cess. In the first phase, circuits are globally restructured to havebetter "timing properties".

As a simple example, Figure 6.1 shows two equivalent circuits. If the arrival times of all the

inputs are the same, circuit (b) is preferred over circuit (a) for it reduces the output arrival

time. On the other hand, if input u is the critical signal, circuit (a) becomes superior. It

is evident from this example that even though the two circuits have the same area, one is

better than the other when speed is important. Here, the quality of the circuits is judged
not by the detailed timing figures, but rather, by their structure. A more sophisticated

example of global restructuring is the conversion from a carry-ripple adder to a carry-look-

ahead adder. This phase is characterized by its independence of the target technology. The
objective here is to look for global structural changes of circuits to achieve delay reductions
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y z
y y

(a) (b)

Figure 6.1: Equivalent circuits with different timing property

that can not be obtained by lower level techniques such at transistor sizing or buffering.

The second phase of timing optimization is performed during the physical design

process. Here, the target technology is known and more accurate timing information is

available. Optimization involves transistor sizing, buffering, delay-driven placement, etc.

This phase is characterized by its dependence on a particular target technology and on the

existence of fast and relatively accurate timing simulators.

The third and last phase of timing optimization is performed when actual designs

are available. There, much more accurate timing analyzers are used to fine tune the circuit

parameters. This phase serves both the optimization and verification purpose.

This chapter is dedicated to the first phase of timing optimization. There have

been several previous attempts to solve this problem. SOCRATES [26] uses a rule based

approach and tries to achieve global restructuring through a sequence of local transfor

mations. Even though the system is very flexible in adapting to various cell libraries and

target technology, it is heavily dependent on the rule set and the order in which the rules

are applied. More recently, an algorithmic-based restructuring technique was developed in

the Yorktown Silicon Compiler [10]. Even though the work lacks detailed algorithms and

theoretical analysis, it had several interesting ideas from which some ideas presented in this

chapter were originated. Section 2 gives some basic definitions to be used later on in the

chapter. Section 3 defines exactly the problem to be solvedalong with appropriate abstrac

tions. Section 4 discusses step by step the timing optimization algorithm. Section 5 focuses

on an important step of the algorithm, the timing-driven decomposition, and provides some
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theoretical support for the algorithm. Section 6 studies incremental delay trace, a technique

that can not only significantly increases the speed of the timing optimization algorithm but

also has applications in other parts of performance optimization systems. The last two

sections present some experimental results and discussions on future work in this area.

6.2 Basic Definition

The arrival time of a signal is the time at which the signal settles to its steady

state value. Aa is used to denote the arrival time of signal s. (All times are relative to an

arbitrary, but common, reference point) The required time of a signal is the time at which

the signal is required to be stable. R8 is used to denote the required time of signal s.

The slack of a signal is the difference between its required time and arrival time.

S8 is used to denote the slack of signal s and is defined as

o8 = iC9 — A8.

It is clear that the slack value of a signal measures its criticality, i.e., signals with negative

slacks are considered to be critical. Unlike arrival times and required times, slacks have no

reference point. For these reasons, slacks are some time more convenient to use.

In order to trace circuit delays, certain delay models of logic gates have to be

used. The linear delay model breaks the delay through a gate into two components, the

block (intrinsic) delay and the fanout delay. Let x be an input of a gate. The delay from x

to the output of the gate is modeled by

d = Bx + D * NFO

where Bx is the block delay from input x to the output, D is the fanout driving ability of

the gate, and NFO is the number of gates which this gate drives.

Two specific forms of the linear delay model are often used. The unit-fanout delay

model is a linear model with Bx and D being non-zero constants for all gates. This delay

model is intended to capture the timing properties of circuits in a technology independent

fashion.

A unit-fanout model is called the unit model if D = 0.

These models subsume some of the commonly used models. For example, a unit

model with Bx —\ measures circuit delays as number of levels of logic gates.
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6.3 Technology Independent Timing Optimization

Technology independent timing optimization is also referred to as global circuit

re-structuring. It aims at delay reductions which are beyond the capabilities of low level

techniques such as transistor sizing or signal buffering. More specifically, the purpose of

re-structuring is to discover alternative decompositions of circuits such that critical paths

are minimized, and at the same time keep the area increase as small as possible. Since

re-structuring is independent of any target technology and implementation style, it is im

portant to judge correctly the timing quality of the circuits to be optimized. Without an

actual implementation, any existing method for measuring timing information of the cir

cuits at this stage is necessaryly inaccurate. For this reason, technology-independent timing

quality of the circuits should be justified by one of the following methods:

1. Develop a technology-independent delay model. Since a node in a Boolean network

can be arbitrarily complex, the delay model should take into account the logic function

at the node and its factored form. This is best used when the target technology is

random static CMOS, in which the transistor net-list of a gate is given directly by the

factored form of the logic function. This delay model can be used to judge the quality

of the circuit and to identify its critical sections before the actual implementation is

available.

2. Represent the circuits in some canonical form, e.g. using unlimited fanin NAND func

tions. Because of the specific representation, it is possible to correlate some simple

circuit parameters (e.g. number of logic levels or number of fanins of a function)

with delays of final implementations. Such approachs could reduce the circuit delay

to a very simple form and greatly simplify the re-structuring algorithm. The simpli

fied delay model does not have to give accurate timing numbers and may even use

completely different unit for measuring delays. The numbers given by the simplified

delay model are not to be used as quantitative measurement of delays, but rather as

qualitative measurement, i.e. the larger the simplified delay number is, the longer the

actual delay will be in the final implementation.

The timing optimization presented in this chapter uses the second approach. It is

specifically designed to be used in conjunction with technology mapping in MIS. The general

approach taken in MIS is to minimize first the area of a network without concern for the
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delay. Then at the beginning of the timing optimization phase, the area of the network is

minimized (e.g. all the globalcommon factors have been extracted out). Next, the network

is decomposed into 2-input NAND gates and inverters, the input format for the technology

mapping algorithms. At this point, timing optimization is invoked to re-structure the circuit

into an alternative 2-input NAND gate and inverter form in which critical paths are reduced

at the possible expense of area. The output of timing optimization is then fed directly to

the technology mapping stage.

In this environment, the input circuits are assumed to have already being decom

posed into 2-input NAND gates and inverters, and the output circuits are also required to

be in the same format. The unit-fanout delay model serves as the simplified delay model

for computing the circuit delays. It is chosen because it takes into account two of the

major delay components in the circuit, the number of levels of logic from an input to an

output and the number of fanouts of a signal. Timing constraints are specified as input

arrival times of primary inputs and output required times of primary outputs. The goal of

timing optimization is to meet the timing constraints while keeping the area increase to its

minimum.

6.4 Re-structuring Algorithm

Given a Boolean network in 2-input NAND gate and inverter representation, the

algorithm uses first the simplified delay model to identify the critical section of the network.

In general, the unit-fanout delay model should be used because it takes into account both

the number of logic levels as well as the number of fanouts of each signals. However, one

can optimize only for the number of logic levels by simply replacing the unit-fanout delay

model with the unit delay model. No other part of the algorithm needs to be changed.

The critical section of a Boolean network is made of critical paths from primary

inputs to primary outputs. Given a critical path, the total delay on the path can be

reduced if anysection of the pathis speeded up. For example, in Figure 6.2, part (a) shows

a critical path, a —x —y. The critical path can be reduce by first collapsing x and y and

then re-decomposing in a different way to minimize the critical path, as shown in part (b).

This method (first collapsing along a critical path and then re-decomposing to shorten the

critical path) is the basic step taken in the re-structuring. The nodes to be collapsed and

re-synthesized form the re-synthesis region.
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b

(a) (b)

Figure 6.2: Reducing delay by collapsing and re-decomposition

Since a critical section usually consists of several overlapping critical paths, the

algorithm looks at all of them at once and selects a minimum set of sub-sections, re-synthesis

points, which when speeded up will reduce the delays on all the critical paths. In order to

take into account of possible area increase during the collapsing and re-decomposing step

and the total number of re-synthesis points needed to reduce all the critical paths, a weight

is assigned to each candidate re-synthesis point. The goal is to select a set of points which

cuts all the critical paths and has minimum total weight.

Once the re-synthesis points are chosen, they are speeded up by the collapsing-

decomposing procedure. The simplified delay model is then used to find the new critical

section of the network. The algorithm proceeds iteratively until the timing requirement is

satisfied or no more improvement can be made. The following is an outline of the algorithm.

SPEEDJJP(rj)

1. Computing the arrival and required times for all the nodes in n.

2. Find all the critical nodes in rj.

3. Compute a weight for each critical node.

4. Find the minimum weighted cut-set of all the critical paths.

5. Partially collapse along the critical path at each node on the cut-set.

6. Re-decompose each collapsed node into 2-input NAND gates and inverters.

7. If the timing requirement is satisfied, done.

8. If the circuit improved from the previous iteration, goto step 1.



6.4. RE-STRUCTURING ALGORITHM 151

Each of the steps in the algorithm will be described in detail in the following

sub-sections. At the end of this section, the precise algorithm will be presented.

6.4.1 Identifying critical nodes

Given a linear delay model and timing constraints (input arrival times and output

required times), a simple static timing analyzer is used to trace the delays through the

network and compute for each signal its arrival time, required time, and slack. The following

formula is used to compute the arrival time of signal s given that the arrival time of all the

fanins are available.

Ag = maxx€FI{a) {Ax+ Bx + D * NFO(s)}

Ax is the arrival time of input x. Bxis the block delay from input x to the output s. D is

the drive and NFO(s) is the number of fanouts of s. Using this formula, the arrival time

of all the signals in a network can be computed by the following recursive routine.

ARRIVAL(s)
if Aa is not available at s {

if s is not a primary input {
For each x e FI(s) {

ARRIVAL(x)
}
Ag = maxxeFI{a){Ax + BX + D* NFO(s)}
store Ag at the node s

y
>
return Aa

The routine computes recursively the arrival time of all the fanins and then uses

that information to compute the arrival of s and store the arrival time at the node s so that

it will not be re-computed. To compute the arrival times of all the signals in a network,

simply calls the routine on each primary output of the network.

The required times are computed similarly. The formula for computing required

timeofa signal s is given below when the required times ofall the fanout signals are known
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is

Ra = minx&FO{a) {Rx - Bf - Dx * NFO(x)}.

The recursive routine is

REQUIRED(s)
if Rg is not available {

if « is not a primary output {
For each x 6 FO(s) {

REQUIRED(x)
}
Ag = minx€F0(g){Rx - Bf - Dx* NFO(x)}
store Ra at the node s

>
}
return Ra

The slacks are simply computed by

S8 = Ra - Aa.

Any node with negative slack is critical because the stable value of the signal is

available latex than it is required. A critical path in a network is a path from a primary

input to a primary output such that all the nodes on the path are critical. More precisely,

the set of critical paths of a network n is

CP(n) = {(*i,*2,...,*n)l*« € NODES(rj), SXi < 0, x{ e FI(xi+l), xx € PI(n), xn € PO(n)}

In order for the algorithm to concentrate on speeding up the most critical signals,

the notion of e-criticality is introduced. A signal s is said to be e-critical if 58 < MS + €

where MS is the minimum slack in the network. An c-critical path is a path from a primary

input to a primary output which consists of only the e—critical nodes. The €-critical section

of a network n contains of all the e-critical signals and can be computed by

CR(rf,€)
for each / g PO(n)

ARRIVAL(f)
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for each / 6 PI(n)
REQUIRED(f)

M 5 = oo •

for each / GN0DES(n)
Sf =Rf- Af
MS = min{MS,Sf]

C = <}>
for each / £ NODES(n)

if 5/ < €+ M 5
C = Cu{/}

return C

The following lemma shows a property of all e-critical sections, i.e. an e-critical

section of a network is simply a collection of all the e-critical paths. This property is stated

formally as the following lemma and will be used in the subsequent sections.

PROPOSITION 6.4.1 Let x be an e-critical node in a network n. Then, there exist an

f e FO(x) and age FI(x) such that both f and g are e-critical.

Proof. First, we show that there is at least one fanin of x whose slack is less than or equal

to the slack of x. Since Ax = "iaary€F/(x){Av + Bx + DxNFO(x)}, let g be the fanin that
gives the maximum value of Ax, i.e.

Ax = Ag+ Bx + Dx * NFO(x).

Also because Rg = rnin^F0^{Ry - BJJ - D* *NFO(y)}, we have

Rg<Rx-Bx-Dx* NFO(x).

Combining the two, we have

Ax -r Rg < Ag + Rx

JX*g — Ag ^ *CX — Ax

Sg<Sx

So, if a: is epsi/on-critical, so is g.
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Next, we show that there is at least one of the fanout of x whose slack is less than

or equal to the slack of x. Since Rx = rniny^F0^{Ry - B% - Dy * NFO(y)}, let / be the

fanout that gives the minimum value of Rx, i.e.

Rx = Rf-Bl-D** NFO(f).

Also because Af = rnaxy€FI^{Ay + B* + D* *NFO(f)}, we have

A,>AX + Bl + Df* NFO(f).

Combining the two, we have

Rx + Af > Rf + Ax

Rx-Ax>Rf- Af

Sx > Sf

So, if 2 is e-critical, so is /. •

6.4.2 Computing weights of e-critical nodes

Some e-critical nodes are easier to speed up than others. For example, in part (a)

of Figure 6.3, all the nodes are e-critical. If node y is selected, collapsing its critical fanin

(a) (b)

Figure 6.3: Node y is easier to be speed up than x is

into y will result in a node with one critical input, x, and two non-critical inputs. So, it is

easy to decompose it such that the critical path is reduced, as indicated in part (b). If on
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the other hand x is chosen, collapsing its critical fanins into x will result in a node with all

of its fanins being critical. So, there is no decomposition that can reduce the critical paths

in this case. The weight of an e-critical node should reflect how easy it is to re-synthesis at

the node.

It is also possible that, in order to reduce a critical path, certain nodes have to be

duplicated. For example, part (a) of Figure 6.4 is part of a network with e-critical signals

o o
f\ *\ A 9\

o o
/W\ /X!x%\ /£' /xa rt d a H*H d a 9< A/ \

b c

(a)
6 c

(b)
b c d

(c)

Figure 6.4: Area increase during re-synthesis

b —x —g. If g is chosen as a re-synthesis point, x needs to be collapsed into g and re-

decomposed in a different way. Since / also depends onz,x needs to be duplicated before

the collapsing, as indicated in part (b). Now, the critical path becomes b — x?, —g and

can then be reduced as shown in part (c). This increase in area should be reflected in the

weight of g. Also it may be that x existed initially because it had good area value. Now,

however, its fanout has been reduced, so it should be examined again for its area value and

eliminated it profitable.

Both the ease of re-synthesis and the area increase of an e-critical node depend on

the size of the re-synthesis region at the node. The re-synthesis region of a node consists of

a set of e-critical nodes which are at most distance d away from the node, d is a parameter

for the global re-structuring algorithm, and is used to control the amount of speed up to be

made in each iteration.

Now, the weight of an e-critical node x if a function of d, the distance parameter,

and can be defined as

Wx(d) = Wtx(d) + a*Wx>(d)

where Wx is the delay component reflecting the ease of speed up, and WJ is the area

component reflecting the area increase, a is used to control the tradeoff between delay

reduction and area increase. Let N(d) be the set of signals which are the inputs to the

re-synthesis region of x and M(d) be the nodes in the re-synthesis region. A node in M(d)
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is shared if it is a transitive fanin of another node which is not a transitive fanin of x. Now,

we can define

W*(A - Ifr 6 NWS« ± «>l
W*W ~ \N[d)\

\{y 6 M(d)\y is shared}\
w*d |B55l •

It is clear that the easiness of speed up is inversely proportional to Wt and area increase is

directly proportional to Wa.

The example in Figure 6.5 illustrates the weight computation. In the example, d

critical signal

b c d e

Figure 6.5: To re-synthesis at node x, nodes u, v, and w have to be duplicated.

is equal to 3. {x,z, u, v, w} are the nodes in the re-synthesis region, {u, v, w) are the shared

nodes because they are also in the transitive fanin of y. b and d are the e-critical input

signals to the re-synthesis region. So, the weight of x is

Wx(3) =| +a*|.
whereas for d = 1

Wx(l)=i +aA.
Hence, d affects the relative tradeoff potential of a node. This suggests d should be dynam

ically determined for each node, i.e., for each node various values of d are used to compute

Wx and the one most favorable is used.

6.4.3 Finding minimum weighted cut-sets

After assigning weights to the e-critical nodes, the next step is to select a set of

nodes which, when speeded up, will reduce the delay through every e-critical path in the
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network. This means that at least one node on each critical path must be selected. To

formalize the idea, we define

DEFINITION 6.4.2 For network n, an e-cut-set (or simply cut-set), CS(n, e) is a set of

nodes such thatfor every e-criticalpathp e CP(n, e); p n CS(n, e) ^ <f>.

Theminimum weighted cut-set, MWCS(n, e), is a cut-set such that the totalweight

of the nodes in the cut-set is minimum over all the cut-sets in n.

To find the minimum weighted cut-set of a Boolean network, we first construct a

flow network [34], then use the Max-Flow Min-Cut algorithm to find the minimum capacity

edge cut-set of the flow network, and finally map the edge cut-set back to a node cut-set of

the Boolean network. We begin with the definition of flow network.

DEFINITION 6.4.3 A flow network N = (V,E,s,t,C) is a directed graph (V,E) with

two special vertices, s, the source, and t, the sink, and a function C : E —• Z+ which

assigns capacities to the arcs.

The Max-Flow Min-Cut Theorem [34] states that the maximum value of an (s, t)-

flow is equal to the minimum capacity of an (s, <)-cut-set, and furthermore, the minimum

capacity cut-set can be found in polynomial time.

Given a Boolean network and its e-critical section, the following procedure is used

to construct a flow network from the Boolean network.

FLOW-NETWORKS, e)

1. For eachx £ CR(n, e), create twovertices vx and v+ and an arc (v~, v+) with capacity
Wx.

2. For each x,y e CR(n,e) such that x e FI(y), create an arc (v^,v~) with capacity
oo.

3. Create a source vertex s and a sink vertex t.

4. For each x e CR(n,e) n PO(n), create an arc (v+,t) with capacity oo.

5. For each x 6 CR(n,e) n PI(n), create an arc (s,v~) with capacity oo.
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Notice that the flow network so constructed has exactly one source vertex s and

one sink vertex t because every internal critical node has at least one critical fanin and one

critical fanout, according to Proposition 6.4.1.

LEMMA 6.4.4 Node cut-sets of the Boolean network are in one-to-one correspondence

with finite capacity edge cut-sets of the flow network.

Proof. The proof follows from the one-to-one correspondence between a critical path in

the Boolean network and an s —t path in the flow network, i.e.

(xuX2i...ixn)~(s,v-l,vx"x,vX2,vx-2,...,vXn,vx-n,t)

THEOREM 6.4.5 The minimum weighted node cut-set of a Boolean network is given by

the minimum capacity cut-set of a flow network constructed by FLOW-NETWORK.

Proof. For any Boolean network n, there is at least one node cut-set. That cut-set is

CR(n, e), the set of all the e-critical nodes. Therefore, there is at least one finite capacity

edge cut-set of the corresponding flow network, because all the weights (capacities) asso

ciated with the node s, (Vg~,vf), are finite. Thus, the minimum capacity cut-set of the

flow network contains only finite capacity arcs and its corresponding node cut-set has the

minimum total weight among all the e-cut-sets of n (by Lemma 6.4.4). •

Using Theorem 6.4.5 and procedure FLOW-NETWORK, the algorithm that

finds the minimum weighted e-cut-set of a Boolean network rj can now be defined.

MWCS(n,€)
FN = FLOW_NETWORK(n,€)
C = MINIMUM-CAPACITY-CUTSET(FN)
CS = {x\(vx,vi)€C}
return CS
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6.4.4 Re-synthesis

Once the minimum weighted node cut-set is found, each node on the cut-set is then

re-synthesized. The re-synthesis of a node x involves collapsing all the e-critical fanins of x,

which are at most distance d from x, into x, and then decomposing x back to 2-input NAND

gates and inverters such that the critical path is minimized. The objective of the decom

position is to minimize Ax, the arrival time of x. Timing-driven decomposition algorithms

will be presented and analyzed in the next section. Here, we simply use COLLAPSE(x,d)

and TIMING-DECOMP(x) to denote the collapsing and re-decomposition operations in

the re-synthesis of node x.

6.4.5 Re-structuring algorithm

With all the basic steps previous described, the global re-structuring algorithm

can now be stated precisely as follows.

SPEED.UP(n,d,e)
repeat {

C = CR(n, e)
for each x G C, compute Wx(d)
CS = MWCS(n,e)
for each x € CS {

COLLAPSE(x,d)
TIMING-DECOMP(x)

}
} until requirement is satisfied
return n

6.5 Timing-Driven Decomposition into Trees

Timing-driven decomposition in this section is specifically referred to as decom

posing a single-output logic function into a tree of 2-input NAND gates and inverters such

that the output arrival time is minimized, given the arrival times of all the inputs and

a delay model. Existing methods include rule-based approaches [20] [5] and algorithmic

tree-balancing techniques [32]. All these techniques work on an existing decomposition and
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modify incrementally the decomposition to reduce the output arrival time. In this section,

a direct constructive algorithm is described. Given a function and arrival times of all the

inputs, the algorithm decomposes optimally the function into 2-input NAND gates and in

verters with minimum output arrival time. Exact conditions will be given under which the

algorithm produces optimum results.

6.5.1 Theorems About Optimum Decomposition

The following notation and definitions are needed.

NOTATION:

NDX - n-input NAND gate.

X - set of variables.

NDX(X) - n-input NAND gate with inputs X = {x\,x\,... ,xn}.

Df - tree decomposition of / using 2-input NAND gates and inverters.

ROOT(Df) - root node of Df, which could be a NAND gate or an inverter.

ADf - arrival time of ROOT(Df).

DJ - optimum decomposition of /, i.e. Ado is minimum.

DEFINITION 6.5.1 Let x and y be two signals, x is said to be earlier than y if Ax < Ay.

Let X =-{xi,X2,... ,xn} and Y = {yi,y2i.«.»yn} be two sets of signals. X is said to be
earlier than Y if there is a permutation w such that

Axi < Ayit. i = 1,2,..., n

A circuit has the monotone speedup property1 if speeding-up certain inputs (mak

ing them available sooner) can only reduce the arrival time of the output. For many

commonly encountered circuits and commonly used delay models, the monotone speedup

property holds. This property will be used later on in the section to prove theorems and

to design algorithms. Here, several specific forms of the monotone speedup property are

stated formally as lemmas.

1Named by Patrick McGeer
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LEMMA 6.5.2 (Monotone Speedup Property - first form) Let T be a tree decom

position of an n-input logic function where each node in T is either a 2-input NAND gate

or an inverter. Let the inputs ofTbeX = {xi,X25 •••»^n}- Let 1" be T with one of the

input Xi being replaced by y such that Ay < Ax.. Then,

AT'(x\,«2,...,*,-_i,y,x,+i,...,x„) S -d-T(xi,x2,x,-_i,x,,x,+i,...,xn)

Proof. Since T is a tree decomposition, signals whose arrival times are affected must be

on the path from Xi to the root r, i.e. X{ —S\ —«2 —•• • —sm where sm is the root. Let

y —s[ —s'2 —... —s'm be the corresponding path in T'. Using our linear delay model, we

have Agi < A8l because Ay < AXi, Aa> < A82 because Aa> < A8l, and in general Aai, < ASj

because A8i. < A8._x. So, Aaim < A8m. Thus, we have

AT'{x\ ,x2,...,x,-_i,y,x,-+i,...,xn) S AT(xitX2,x,-_i ,x,-,x,+i ,...,x„/

Lemma 6.5.2 can be generalized to allow any subset of inputs to be replaced by

their corresponding faster signals. Here, the Lemma is stated for NAND gates, but can be

easily generalized for any n-input functions which have tree-decompositions.

LEMMA 6.5.3 (Monotone Speedup Property - second form) Let f be an n-input

function, X = {xi,X2,...,xn} and Y = {yi,J/2,--.,2/m} be two sets of signals suck that

Axi < Aw for i = 1,2,..., n. Then,

Ano < Ano
uj{X) - UJ(Y)

Proof. Let T be -DJ/y\, the optimum decomposition of f(Y). Then,

Ad°Hy) = Anw>V2 y»)

^ AT(xi,y2 yn)

> AT(xi,X2,...,yn)

> •••

> ^T(xi,X2,...,x„)

> A™,
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The last inequality is true by the definition ofDjtxy ^ *^e otner inequalities are true by
Lemma 6.5.2. So, we have

Uf(X) - ^(Y)

There are many implications of Lemma 6.5.2 and Lemma 6.5.3. In particular, they

reveal certain structures of optimum timing decomposition of a class of logic functions, and

therefore provide the bases for designing optimum timing decomposition algorithms.

THEOREM 6.5.4 Let f be an(n + 2)-input NAND gate with u and v being the earliest

arriving signals, i.e, f = NDn+2(X,u,v) and Au < Av < AXi for i = 1,2,...,n. Let

w = uv and g = NDn+i(X,w). Then

Adj = ADo,

i.e., there is an optimum decomposition off with u and v being the inputs to a NAND gate.

Proof. By definition of DJ, we have Ado < Ado. So, we only need to prove Ad° > Ado.
Let u and s feed into a NAND gate p, and v and t feed into a NAND gate q, where s and t

could be inputs or internal signals.

case 1: p £ TFI(q) and q # TFI(p). This situation is illustrated in part (a)

Figure 6.6. It shows the overall structure of the decomposition where T8 is the sub-tree

(a) (b)

Figure 6.6: case 1: p and q are independent

rooted at s, Tt is the sub-tree rooted at t, and T is the remaining part of the decomposition.

Now, if we switch u and t, as indicated in part (b) of Figure 6.6, we have the following:

Ap = max(Ap, Aq)
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Ag < min(Ap,Aq)

because Au < AB and Av < At. Therefore, the inputs of f are earlier than the inputs of T,
and we have

Ad° < Af < At = Am.

The first "<" holds because (t,p,Tg,Tt) is a decomposition of g. The second "<" holds by

Lemma 6.5.3.

case 2: p 6 TFI(q) or q e TFI(p), as illustrated in part (a) of Figure 6.7.

Without loss of generality, we assume q is in the transitive fanin of p. In this situation, we

u v

(a) (b)

Figure 6.7: case 2: p depends on q

again switch u and t. The changes are reflected in part (b) of Figure 6.7. Since Au < At,

we have A5 < Aa and At<Aa, which implies A$< Ap. Therefore, we have

Ado < Af < At = Ado.

Again, the first "<" holds because (f,p,T9,Tt) is a decomposition of g. The second "<"
holds by Lemma 6.5.2 (or Lemma 6.5.3).

So, we have proved that Ad° = Ado. •

The theorem makesa simple statement that for a w-input NAND gate, there is an

optimum timing decomposition in which thereis a 2-input NAND gate with the two earliest

arriving signals as the inputs. This theorem will be used later on to derive an algorithm

which guarantees optimum decomposition of NAND gates.

Next, we look at a more complicated situation in which the functions to decom

posed are not restricted to NAND gates. When a function is a sum of orthogonal cubes
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(cubes with disjoint support), its decomposition has a very special structure. In fact, for

any decomposition of such a function, one can draw a boundary between the decomposition

of each cube and that of the OR function.

LEMMA 6.5.5 (AND-OR boundary lemma) Let{c\,C2,... ,cn} be a set ofcubes such

that C{±Cj for all i,j < n. Let f = c\ + C2 + .. •+ cn, i.e. f is a sum of orthogonal cubes.

Let Df be any tree decomposition of f using 2-input NAND gates and inverters. For each

C{, there is an internal signal (node) s,- in Df such that the sub-tree rooted atS{, T8i, is D%.

Proof. First, we prove that there is a NAND gate x in Df with inputs u and v such

that the support of Tu is disjoint from the support of c,- and the support of Tv is exactly

the support of c,-. Figure 6.8 shows the circuit structure. It is clear that the structure of

Sup(Tj 1 Sup(Cj

Sup(Tv) C Sup(C.)

Figure 6.8: A structure always exists in Df

Figure 6.8 always exists with sup(Tv) C sup(ci). We want to show that sup(Tv) = sup(c{).

Suppose sup(Tv) C sup(ci). Setting all inputs of Tv to 0 and propagating the constants will

result in a new circuit which is the decomposition of /$ = / —c,-. The constant propagation

must stop at x with input v having value 1, because Tu must remain in the circuit. If

sup(Tv) c sup(c{), then some inputs of c; must remain in the new circuit after the constant

propagation. Notice that if a circuit is a tree of NAND gates and inverters, i.e., no multiple

fanout evenat the leaves, then no redundancy exists in the circuit. Since Df is a tree, the

new circuit containing variables in c,- can not possibly be /—c,-, and we have a contradiction.

Therefore, we must have sup(Tv) = sup(c{).

Next, we show that v is Si. This is quite easy. Setting all inputs of Tv (c,) to 1 and

propagating the contants will result in a constant circuit 1. The propagation can not stop

at x with v = 1. So, v must be equal to 0 in this case. Setting any non-empty subset of

inputs of Tv (c{) and propagating the constant will result in a decomposition of / —c,- not

containing any variables in Tv (c,). The propogation must stop at x with v = 1. Therefore,
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we must have v = c~{. So, «,• = v exists. •

A SOP form can also be viewed as a NAND-NAND form. Lemma 6.5.5 says

that if / is the sum of orthogonal cubes, then any tree decomposition of / is made of tree

decompositions of first level NAND gates feeding into the tree decomposition of the second

level NAND gate, as indicated in Figure 6.9. This is quite useful because it gives us an

Figure 6.9: Structure of the tree decomposition of sum of orthogonal cubes

algorithm for the optimal decomposition of any function / which is a sum of orthogonal

cubes. The following theorem formalizes the idea.

THEOREM 6.5.6 Let f be the sum of orthogonal cubes, i.e. f = c\ + c2 + ... + cn and

Ci±cj for all i # j. Let «,- = c,- for all i and g = C^...^. Then, (D°g, D°81,D°a2,..., D°n)
is an optimum decomposition of f, i.e.

Ad° = Ado.

Proof. By definition, we have Ad° < Ad°. To prove AD° > Ado, take an optimum

decomposition DJ of/. By Lemma 6.5.5, there exists in DJ a set ofsignals si,S2,...,sn
such that each s; is equal to c;. For each s,-, replace its fanin sub-tree T8i with D%. and call
the new signal $,-. Clearly, st- and S{ are logically equivalent and

As* <A8i i = 1,0,...,n

Now, 5 = {si,s2,...,sn} is earlier than 5 = {si,s2,...,sn}, by Lemma 6.5.3, we have
Ado < Ad°. Thus, we have proved iw = Ado. m
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6.5.2 Timing Decomposition Algorithms

The theorems developed in the previous section suggest certain algorithms for

optimum timing decomposition of logic functions, and guarantee the optimality of the results

when the functions have some special properties.

A general paradigm used in all the algorithms developed in this section is based

on a bottom-up approach. The decomposition is a process of breaking a large function

into a set of smaller sub-functions and recursively decomposing the sub-functions until

all functions are either 2-input NAND gates or inverters. The bottom-up approach is to

decompose a sub-function only if the arrival times of all the inputs are available. Once the

decomposition of a sub-function is done, its output arrival time is computed so that it can

be used to decompose the function that this sub-function feeds into.

The optimum timing decomposition algorithm of NAND functions is the direct

result of Theorem 6.5.4. For a NAND function, the theorem states that there is an optimum

timing decomposition in which the two earliest arriving signals are inputs of the same NAND

gate. This suggests the following recursive algorithm for decomposing optimally a NAND

function.

NAND-DECOMP(f, model)
if \FI(f)\ < 2

return

Let u and v be the two earliest arriving signals.
w = uv = ufv

g = SUBSTITUTE(f,w)
Aw = ATIME(w, model)
NAND«DECOMP(g, model)
return

The algorithm first selects the two earliest arriving inputs, u and v, then form a

2-input NAND gate with inputs u and t; and feeding into an inverter. The output of the

inverter is w. uv in / is then replaced by w by routine SUBSTITUTE(f,w). The next

step is to compute the arrival time of w using the delay model which is passed in as a

parameter. The last step is to decompose recursively the new function g which is also a

NAND function and has one less input than /. The recursion terminates when function /
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is either a 2-input NAND gate or an inverter.

THEOREM 6.5.7 Algorithm NAND-DECOMP yields the optimum timing decomposi

tion of NAND functions.

Proof. By induction on the number of inputs, n, of the n-input NAND gate NDn. The

theorem is obviously true for ND2. Suppose it is true for NDn-\. Let / be NDn. By

Theorem 6.5.4, there is an optimum timing decomposition of / with an internal signal

w = uv where u and v are the two earliest arriving inputs. The remaining decomposition of

/ with input w and the rest of the inputs must also be optimum. This remaining part is a

decomposition of NDn-\. By induction hypothesis, NAND-DECOMP will give optimum

result for this NDn-i. •

Another feature of the algorithm NAND-DECOMP is its independence of the

delay model and the actual values of the input arrival times. The model is used to compute

the arrival time of w that affects the choice of inputs at the next level of recursion. So,

the algorithm automatically adapts to different delay models. Since there is no assumption

about the actual values of the input arrival times, the result can be viewed as weight-

balanced. The weight of an input is the combination of its arrival time and its distance to

the root of the decomposition tree, i.e. the critical signals (inputs with large arrival times)

are closer to the root.

NAND functions are very special. In global circuit re-structuring, functions en

countered are usually more complicated. However, algorithms for decomposing more com

plicated functions often use NAND-DECOMP as a subroutine. In fact, if a function is

kernel-free, its optimal timing decomposition is no more difficult to obtain than that of

NAND functions. Theorem 6.5.6 suggests how to decompose a kernel-free function, is just

a sum of orthogonal cubes. In the following algorithm, / is a set of cubes (c\, c2,..., cn).

ANDJDRJ)ECOMP(f, model)
for each ct- € / {

Si = C";

NAND-DECOMP(si, model)
Aai = ATIME(si,model)

}
NAND-DECOMP(f, model)
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Af = ATIME(f,model)
return

The algorithm treats the function in NAND-NAND form. The first level of NAND

functions are decomposed first because all of their input arrival times are known. Once they

are decomposed, their output arrival times are computed. Those arrival times are then used

to decompose the second level NAND gate. The NAND gates are decomposed using routine

NAND-DECOMP. The optimality of the result is guaranteed by Theorem 6.5.6.

AND-OR-DECOMP has wider applications than NAND-DECOMP does. Sim

ple functions such as AND, OR, and NOR can all be treated as special case of kernel-free

functions. The dual of kernel-free functions are product of orthogonal sums. They too can

be optimally decomposed using AND.OR-DECOMP.

6.6 Incremental Delay Trace

Global timing optimization depends heavily on the delay information, such as

slacks or arrival times, given by a chosen delay model. The procedures presented in Sec

tion 6.4.1 perform complete delay trace over an entire network. However, the re-structuring

algorithm at each iteration modifies only certain sections of the network. It is not necessary,

in fact it is quite wasteful, to re-compute completely all the timing information. A simple

example is in Figure 6.10. The numbers at the nodes are the current arrival times. The

Figure 6.10: When Ax changes from 1 to 2, only Ay is effected

underlying delay model is unit-delay. Suppose that, during the re-synthesis, the arrival time

of a: changes from 1 to 2, the only node whose arrival time is affected is y. This is the direct

consequence of the underlying delay model and the way arrival times are computed. Recall
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that

Ax = maxy€FI(x){Ay + Bxy + £>* * JVf0(a?)}.

As long as the maximum value of the right hand side stays the same, the arrival time of

x remains un-affected. The primary objective of incremental delay trace is re-computing,

after a Boolean network is modified, only the timing information that is actually changed.

The secondary objective is to perform the computations in an efficient manner.

Let's use arrival time computation as an example to visualize the process of incre

mentally updating the arrival times after the arrival time of some signal changes. Typically,

a change in an arrival time is called an event. If an event occurs at a node, it triggers a set

of events at the fanout nodes, which in turn trigger more events. These events eventually

die either because the change of arrival time at an input of a node did not affect the arrival

time of the node, or because the events have propagated to the primary outputs. Obviously,

there is a restriction on the order by which the events are handled, i.e. do not update the

arrival time of a node unless all its input arrival times are updated. Thus, correct and

efficient incremental delay trace requires a certain combination of data structure techniques

and theoretical understanding of how the nodes should be visited.

In the following section, Boolean networks are abstracted as directed acyclic graphs

(DAGs) and several graph theoretical results are developed concerning the properties of

DAGs and the ordering of the nodes in DAGs. The goal is to gain some theoretical under

standing of the subject, to make the task of algorithm design easier, and to provide founda

tions for proving correctness of the algorithms. Once the theoretical results are available,

the incremental delay trace algorithms can be designed in a fairly straight-forward fashion.

6.6.1 Graph Theoretical Results

The basic object to be studied in this section is a DAG. We are mainly interested

in finding and incrementally maintaining certain ordering of nodes in the DAG. Useful

orderings in delay tracing should have one of the following properties.

• visiting a node after visiting all its fanins.

• visiting a node after visiting all its fanouts.

The formal definitions of these orderings are as follows:
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DEFINITION 6.6.1 An ordering of a DAG, G = (V,E), is a function f that assigns

each node in G a real number, i.e, f : V -* R. f is also called an ordering function. A

forward visit of nodes ofG in ordering f is to visit the nodes, v's, in the increasing order

of their values, f(v) 's. A backward visit of nodes ofG in ordering f is to visit the nodes,

v fs, in the decreasing order of their values, f(v) 's.

By definition, any function / : V —• R is an ordering function. The following

definition defines a subset of ordering functions which are useful to us in delay tracing.

DEFINITION 6.6.2 A topological ordering of a DAG, G = (V,E), is an ordering

function O with the property:

0(v)<0(w) V(v,w)eE

Notice that such an ordering always exists, because G is acyclic.

To compute arrival times in a Boolean network, a node must be visited after all

its fanins. To compute required times, a node must be visited after all its fanouts. A

topological ordering gives us both of these visiting orders. In fact, we have

PROPOSITION 6.6.3 Let O be a topological ordering of a DAG, G = (V,E). The

forward visit of nodes of G in ordering O visits a node after all its fanins. The backward

visit of nodes of G in ordering O visits a node after all its fanouts.

Proof. All we need to show is that the value of a node v 6 V given by 0(v) is strictly

larger than all the values of its fanins and is strictly smaller than all the values of its fanouts,

i.e.

o(u)<o(v) Vuev,(u,v)eE

and

0(v) < 0(w) Viu GV,(v, w) 6 E.

This is guaranteed by the definition of O. m

To see an example of topological ordering, we need the following definition.

DEFINITION 6.6.4 Given a DAG, G = (V,E), a distance function D is defined recur

sively as
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• D(v) = 0 if v is a source node.

• D(v) = rnaxwQFI(v){D(w)} -f 1 otherwise.

It is clear that the distance function D is a topological ordering. It gives us an

ordering by which to compute both the arrival times and required times of signals in a

Boolean network.

As stated earlier, our main interest is to update incrementally a topological order

ing function as the graph changes. There are many ways a graph can change. However, all

the changes can be made as a sequence of some primitive changes. In particular, the primi

tives are: deleting an edge and adding an edge. More complex operations can be performed

by particular sequences of the primitive operations. For example, deleting a node requires

deleting all the fanout edges and fan-in edges of the node. Another example is adding a

node between a pair of connecting nodes. As illustrated in Figure 6.11, the operation can

® ®

:> => © => ©

© © © ©
Figure 6.11: Inserting a node between a pair of connecting nodes

be accomplished by first deleting the connecting edge and then adding two new edges. Since

the topological ordering is defined for DAGs only, it is implicitly assumed that the primitive

operations on a graph do not create cycles. The next set of lemmas gives us a foundation

for updating incrementally topological ordering functions.

LEMMA 6.6.5 LetG- (V,E) be a DAG, O be a topological ordering function ofG, and

e be an edge ofG. Then, O is also a topological ordering function ofG' = (V,E —{e}). In

other word, deleting an edge from a DAG does not change any topological ordering of the

nodes.

Proof. 0(v) < 0(w)V(v,w) £ E implies 0(v) < 0(w)V(v,w) € E - {e}. So, O is still a

topological ordering function for G' = (V,E - {e}). •



172 CHAPTER 6. TIMING OPTIMIZATION

LEMMA 6.6.6 LetG = (V,E) be a DAG, O be a topological ordering function ofG, and

e = (x,y) be an edge to be added into G. If 0(x) < 0(y), then O is also a topological

ordering function of G' —(V,E U{e}). In otherword, adding an edge pointing from a node

with smaller value to a node with larger value does not change any topological ordering of

the nodes.

Proof. Because 0(v) < 0(w)V(v,w) GE and 0(x) < 0(y), we immediately have 0(v) <

0(w)V(v,w) € E U{e}. So, 0 is still a topological ordering function for G' = (V,EU {e}).

The remaining case of primitive operations is adding an edge e = (a:, y) to a DAG

such that 0(x) > 0(y). It is obvious that this operation changes the topological ordering

of the nodes in the graph. In this case, we would like to modify (incrementally update) O

so it becomes a topological ordering function of the new DAG. The modifications involve

assigning new values to some nodes in the DAG. For the moment, let's assume that the

values axe allowed only to increase. We first present a naive algorithm and then see how we

can improve the efficiency of the algorithm by using certain data structure techniques.

RE0RDERJ.(G, O, (x, y))
let S = {y}
while S ^<f> {

let a € S such that FANIN(x) D 5 = <f>
o = maa;y€FAiV/iV(ar){0(y)} + DELTA
if 0(x) < o then {

0(x) = o
S = SuFANOUT(x)

} S = S-{x}
}
return O

The algorithm REORDERA takes a DAG, G, its current topological ordering O,

and an edge (x, y) which is to be added into G. S is initialized to contain only node y and

is used to keep all the nodes whose ordering value may possibly change. At each iteration,

the algorithm picks a node from 5 such that all the fanins of the node are not in 5, i.e.

they have valid ordering values. Such a node always exists in S because the graph G is
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acyclic. The algorithm then proceeds to compute a new ordering value of the node. If the

new ordering value is greater than the old one, the ordering value is updated and all the

fanout of the node are put into 5 because their ordering value may subsequently change.

The algorithm stops when S becomes empty. In the computation of new ordering values,

DELTA is used to ensure the topological ordering condition, i.e. 0(x) < 0(y) for every

edge (x,y). Clearly, keeping DELTA small can reduce the number of nodes to be updated.

However, there is a minimum set of nodes which have to be updated regardless of the value

of DELTA. For example, Figure 6.12 shows part of a DAG where the dashed line is the

new edge. The numbers indicate current ordering values. Using DELTA = 1, nodes x, y,

(a) DELTA = / (b) DELTA = 0.1

Figure 6.12: Effect of DELTA on the number of nodes updated

z, u have to be updated, as indicated in part (a). But, using DELTA = 0.1, only x and z

have to be updated, as indicated in part (b). It is obvious that x and y need to be updated

no matter how small the DELTA is.

A problem with REORDERS is that the selection process at the first line of the

while loop could be very slow. In the worst case, it has to examine all the nodes in S to

find the one that satisfies the condition. So, instead of keeping the nodes in an un-ordered

set 5, it is desirable to keep some partial orderings among the nodes. Fortunately, the old

ordering values of the nodes give us the partial ordering we need. 5 is modified to be an

ordered set. Each node in 5 is given a value, its old ordering value. The minimum valued

node in 5 has the property that none of its inputs is in 5. So, selecting a node from S in

REORDERS becomes quite easy. Then, the operations on S are: inserting a node into S

with a value, and fetching a nodein S with the minimumvalue. Thus, 5 is a priority queue

where a smaller value means higher priority. The following notation is used to express the
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priority queue operations.

DEFINITION 6.6.7 Let Q bea priority queue, n bea node, and pbea number indicating

a priority. SCHEDULE(Q,n,p) denotes the operation of inserting n into Q with priority

p. FETCH(Q) returns a node in Q with highest priority.

With the help of priority queue, REORDERS can now be modified to be more

efficient. The new algorithm is called REORDER which has the basic structure of algo

rithm REORDERS. The set 5 is replaced by a priority queue Q. Each time a node is

scheduled, the negative value of its old ordering is used so that smaller value implies higher

priority.

REORDER(G,0,(x,y))
let Q be a priority queue
SCHEDULER,y,-0(y))
while Q£<j>{

x = FETCH(Q)
. o = maxy^FAmN{x){0(y)'\ + DELTA

if 0(x) < o then {
0(x) = o
for each z € FANOUT(x) {

SCHEDULER, z, -0(z))
}

}
}
return 0

REORDER schedules the nodes by their old ordering values and always updates

the node with the smallest old ordering value. It is not at all clear that REORDER is

correct. In fact, it takes the following Theorem to establish the correctness of REORDER.

THEOREM 6.6.8 The algorithm REORDER correctly updates the ordering function.

Proof. In order to show that REORDER is correct, we need to first establish the fact

that every node whose ordering function changesis put into the queue at some point. Then,

we need to prove that the nodes in the queue are updated at the appropriate time.
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Let z be any node whose ordering value needs to be updated. It is obvious that

there must be a directed path from y to z. We show that z will eventually be put into the

queue by induction on the distance from y to z. The statement is trivially correct when

the distance is 0. Suppose the distance is n. By the definition of the ordering function, the

change in ordering value of z must be caused by the change in ordering value of one of its

input, u. u must be distance n - 1 or less from y. By the inductive hypothesis, u must be

put into the queue at some point and be updated later on. Since the ordering value of u

changes, the algorithm will put, at the point of its evaluation, z into the queue.

To show that every node in the queue is updated at the correct time, let z be the

highest priority node in the queue, i.e. the value of z is the smallest. We claim that all the

inputs of z have correct ordering values at this point. Suppose one of its input u does not

have correct ordering value. Since u is the fan-in of z, its old ordering value must be smaller

than that of z. The fact that z is the highest priority node in the queue implies that u is not

in the queue at this point. Because u is not in the queue and u has the incorrect ordering

value, there must be a path from y to u such that every node on the path is not in the

queue and has incorrect ordering value at this point. But this contradicts the fact that y is

the first node put into the queue and, once it is evaluated, all of it fanouts are put into the

queue. So the original assumption that u has incorrect ordering value is wrong. Therefore,

all of the fanins of z have the correct ordering value and z is updated at the right time. •

Until now, we have restricted ourselves to increasing ordering values of nodes in

updating the ordering function. But nowhere in the definition of ordering function is this

restriction forced. In fact, when adding an edge (x,y), it is just as valid to decrease, the

orderingvalue of x and its fanins as it is to increase the ordering value of y and its fanouts.

For examplein Figure 6.13, whenadding the edge (x,y) in part (a), one can either increase

values of y and its fanout shown in part (b), or decrease values of x and its fan-in shown

in part (c). Depending on the current ordering function, one should choose one method or

another to minimize the numberof nodes to be updated. In incremental delay trace, there

is no problem of determining howthe ordering function is updated because of the particular

choice of the ordering function.



176 CHAPTER 6. TIMING OPTIMIZATION

(a) (b) (c)

Figure 6.13: Two ways of updating an ordering function

6.6.2 Application in Incremental Delay Trace

The last section studied the properties of topological ordering of nodes in a DAG

and how to update incrementally topological ordering functions. These results will be

used as the basis for constructing an incremental delay trace system. As well see later

on, the basic problem of incremental delay trace is to update incrementally some special

topological ordering functions. So, the first task is to decide on what topological function

to use. Once the topological function is chosen, several basic routines will be designed to

serve as primitives in any incremental delay trace environment. Finally, several applications

of incremental delay trace will be given to show the use of the basic primitive routines.

By definition, there are infinitely many topological ordering functions. In order to

choose one that is most convenient to use in incremental delay trace, let's first look at some

properties of arrival times and required times in a Boolean network. The arrival time of a

node x is defined by

Ax = maa;v€irj(x){Av + By + D *NFO(x)}.

Forany realistic delaymodel, Byand D*NFO(x) are positive. Thus, Ay < Ax for all edges

(y,x) in the Boolean network. So, the arrival times define a topological ordering function.

Similarly, the required time of a node x is defined by

Rx = miny&F0(x){Ry - B% - D» * NFO(y)}.

We have Rx >,Ry, and -Rx < -Ry, for all edges (x,y) in the Boolean network. So,

the negative of required times defines also a topological ordering function. Incremental
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delay trace is nothing more than incrementally updating two special topological ordering

functions.

Incremental delay trace can be used in a variety of ways depending on its particular

applications. For example, in transistor sizing, incremental delay trace may be invoked

after every single transistor change. In a rule-based system, it may be invoked after every

application of rules. In our timing optimization system, it may be invoked after every

collapsing-decomposition step. So, it is important to identify a few primitive routines which

are, without lost of efficiency, general enough to be used in* all applications.

In the previous section, we presented a routine REORDER which updates incre

mentally a given topological ordering function after inserting an edge into a DAG. Looking

at it carefully, we find that REORDER really consists of two parts. The first part sim

ply puts the node, whose ordering value has changed, onto a priority queue. The second

part repeatedly fetches a node from the priority queue, computes its new ordering value,

and puts more nodes, if any, onto the priority queue. These concepts are captured in the

following two routines.

SCHEDULE-ARRIVAL(Q, x)
SCHEDULER,x,Ax)

UPDATEJlRRIVAL(Q)
while Q # <f> {

x = FETCH(Q)
a = maxx€FI{x){Ay + By+ D* NFO(x)}
UAx?a{

Ax = a
for each y e FO(x) {

SCHEDULE-ARRIVAL(Q, y)
}

}
}

SCHEDULE-ARRIVAL simply puts x onto the priority queue Q with the old

arrival time as its priority. UPDATE-ARRIVAL fetches a node, evaluates its new arrival
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time, and schedules more nodes until the queue becomes empty. The advantage of breaking

the routine REORDER into these two routines is that now it is no longer necessary to

update the ordering function after every single insertion of an edge into a DAG. In fact,

one can schedule several nodes before calling UPDATEARRIVAL in order to be more

efficient. For example in Figure 6.14, if the arrival times of x and y are both changed,

Figure 6.14: If x and y are scheduled before updating the arrival time, z is evaluated only

once. Otherwise, z might be evaluated twice.

it would be more efficient to schedule both x and y before calling UPDATE-ARRIVAL,

in which case the arrival time of z is computed only once. If UPDATE^ARRIVAL were

called after scheduling x and called again after scheduling y, the arrival time z would have

been computed twice. Just how many nodes to schedule before updating the arrival times

depends on the particular applications.

Required times can be updated in a similar way by the following two routines.

SCHEDULEJtEQUIRED(Q,x)
SCHEDULER,x,Rx)

UPDATEJLEQUIRED(Q)
while Q ^<f> {

x = FETCH(Q)
r = minz€F0(x){Rx -B$-Dz* NFO(z)}
XRx*r{

Rx = r
for each y £ FI(x) {

SCHEDULEJLEQUIRED(Q,y)
}

}
}
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The general paradigm of using incremental delay trace is to initialize the arrival

times and required times of a Boolean network using the recursive routines ARRIVAL

and REQUIRED. Then, as circuits are modified, affected nodes are scheduled in either

required time queue or arrival time queue. At the point where new timing information is

needed, UPDATEARRIVAL and UPDATEJLEQIRED are invoked.

As an example, well show how incremental delay trace can be used in the timing

optimization algorithm SPEED-UP presented in the earlier sections of this chapter.

SPEEDJJP'(n,d,e)
DELAYJ,RACE(n)
initialize AQ as arrival time queue
initialize RQ as required time queue
repeat {

C={x€ NODES(rj)\Sx < e)
for each x 6 C, compute Wx(d)
CS = MWCS(n,e)
for each x £CS {

COLLAPSE(x,d)
SCHEDULE-REQUIRED(RQ,x)
for each y € FI(x)

SCHEDULE-ARRIVAL(AQ, y)
TIMING-DECOMP(x)

>
UPDATEJiRRIVAL(AQ)
UPDATEJtEQUIRED(RQ)

} until requirement is satisfied
return n

Algorithm SPEEDJJP1 still has the basic structure of SPEED-UP with the

addition of incremental delay trace. It initializes all the arrival times and required times in

77 usingroutineDELAYJ RACE. Then, in each collapsing-decomposition step, it schedules

the node x in the required time queueand all inputs of collapsed node x in the arrival time

queue. After all the nodes on the critical cutset are re-synthesized, the arrival times and

required times are incrementally updated.
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6.7 Future Work

Several open problems remain in our approach of technology independent timing

optimization. In this chapter, the concept of e-critical network is used to identify the critical

region in the network. Then, the re-synthesis is done on the critical region alone without

looking at the non-critical region. However, in real circuits, the slacks may vary continuously

over a wide range. Thus, it is difficult, or sometimes infeasible, to separate critical nodes

from non-critical nodes in a clear way. This greatly affects the way the weight of a node is

computed. So, a new way of computing weights is needed which tries to identify the ease of

re-synthesis at a node by looking at the distribution of arrival times of its transitive fanins.

In this chapter, we have presented an algorithm for decomposing optimally a level-

0 kernel function into NAND gates and inverters. Since all the tree decompositions of a

level-0 kernel function have the same area, the decomposition which gives the minimum

output arrival time is the best. Some times, the function to be decomposed is not kernel-

free. In this case, the objective of decomposition is to meet a certain output arrival time

requirement while minimizing the area. Such an optimal decomposition routine can improve

the quality of the results in our timing optimization system.

Incremental delay trace is essential to the performance of circuit re-structuring.

However, a well-designed incremental delay trace system can be used in many other ap

plications. The routines presented in this chapter form the core of the incremental delay

trace system. To make it easy to use, several layers of abstraction are needed on top of the

core. The top most layer interacts directly with naive users who simply turn on or off a

switch. When the switch is on, the delay information is automatically kept up to date after

every single change to the network. It is obvious that this is not always necessary. So, for

more intelligent users who understand the principle of incremental delay trace, the second

layers of routines should be provided which allows the users to do a serious modification

to a network before updating the delay information to improve the efficiency. Below the

second layer is a manager layer which directly interfaces to the core, maintaining various

queues, catching changes to the network, and doing the appropriate scheduling.



Chapter 7

Summary and Conclusion

This thesis has addressed four individual problems in multi-level logic optimization:

factoring logic functions, simplifying logic functions, phase assignment, and technology-
independent timing optimization.

7.1 Factoring Logic Functions

The research on factoring logic functions consists of three basic parts. Direct
manipulation of logic functions in their factored form, deriving factored forms from sum-
of-products forms, and properties ofoptimum factored forms. The manipulation of logic
functions consists of1) basic logic operations, 2) operations pertaining to generating useful
divisors of logic functions (similar to kernels of algebraic sum-of-products forms) on the
factored forms directly, and 3) higher level operations. Algorithms have been given for the
basic operations. Emphasis has been placed on generating useful divisors from factored
forms directly. It has been shown that the kerneling algorithm can be extended to operate
on factored forms. The divisors generated can be associated with kernels and possibly
some redundant cubes. The implication has two sides. On one side, the redundant cubes
can be used to find better (Boolean) common factors between functions. On the other

side, not knowing which cubes are redundant may increase the network size unnecessarily.
Nevertheless, this is an interesting result and deserves further investigation. Higher level
operations have been shown to be reducible to the problem of simplying a factored form
using a don't-care set also in factored form. This simplification problem is still open, but
its solution may have a significant impact on function manipulations and on common factor
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(Boolean) identification.

The second part focused on deriving factored forms from the sum-of-products forms

of logic functions. The problem has been known to be difficult and exact algorithms, even

with latest implementation techniques, are not practical. This thesis provided a spectrum

of heuristic factoring algorithms which have different quality-versus-time tradeoffs. Certain

minimality of factored forms have been defined and some of the algorithms have been

shown to guarantee this minimality. The algorithms have been implemented and tested in

the multi-level logic optimization system, MIS. Because the algorithms are so efficient, they

are constantly used to estimate the size of the networks during optimization. More powerful

algorithms (Boolean factoring) have been proposed and implemented. Results showed that

fast heuristic algorithms perform just as well on most of the examples (almost all the

functions from real circuits), except a few contrived examples. All the factoring algorithms

presented in this thesis work on completely specified functions. Further investigation is

needed to factor incompletely specified functions.

In the last part, properties of optimum factored forms were examined. In par

ticular, a theorem has been given to state conditions under which optimum factoring of a

completely specified function can be obtained by optimally factoring the wsub-functions'\

In factoring incompletely specified functions, this thesis studied conditions for a variable

or a literal to be essential or redundant in the optimum factored forms. Criterias have

been given to identify some of the essential or redundant cubes, variables or literals. These

results can be used as part of an optimum factoring algorithm, or can be used to derive

better lower bounds on the size of optimum factored forms which can be used to judge the

quality of the results generated by heuristic algorithms.

7.2 Simplifying Logic Functions

In this part of the thesis, a simplification procedure called simultaneous Boolean

substitution, was introduced. This technique uses existing two-level minimization programs

in the context of multi-level logic optimization. With an example, it has been shown that

simultaneous Boolean substitution not only reduces the number of minimizations to be

performed, but also is able to obtain the result which can not otherwise be obtained by any

ordering of single-function substitution.

The simplification procedure has been shown through experiments to be very time-
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consuming, due to the large amount of don't-care information presented to the two-level

minimizer. The emphasis of the work was to make the simplification procedure more efficient

by trimming down the don't-care set. An exact filter has been derived which reduces the

size of a don't-care set by removing the un-necessary cubes. No optimality is lost when

the don't-care set is trimmed using this exact filter. Further studies have performed to

control the size of the don't-care sets during their generation in the first place based on

circuit topologies implied by the exact filter. The concepts of minimal and sufficient region

of interest were introduced to identify a sub-network in which a function can get as much

simplification as in the entire network.

The size of the don't-care set can also be reduced by choosing appropriate rep

resentations. In particular, it has been shown and experimentally verified that the fan-in

don't-care set can be reduced by introducing new variables, and the fan-out don't-care can

be reduced by representing it in its complemented form. Preliminary studies showed that it

is possible to extend existing two-levelminimizers to handle the don't-care set in this special

representation without having to complement the don't-care set. The possible drawback is

the increase of run time. Further investigation in this area is highly desirable.

Last, a deficiency of the simplification procedure has been identified which is due

to the fact that existing two-level minimizers treat all the literals in an expression equally.

A modification to the simplification procedure has been proposed to solve the problem

without having to modify the existing two-level minimizers.

7.3 Phase Assignment

The global phase-assignment problem, also known as inverter minimization, is

unique to multi-level logic. There were three components in this part of the thesis. First,

phase-assignment problem has been formulated as an integer programming problem with
linear cost function and non-linear constraints. The problem has been shown to be NP-

complete. Only when the network is in a very specific form can the phase-assignment
problem be solved optimally in polynomial time. A dynamic programming algorithm has
been given to minimize the total number of inverters in a tree network.

To offer practical solutions to the phase-assignment problem, a spectrum of algo
rithms have been designed andimplemented in MIS. Experimental results haveshown that

the algorithms are efficient and effective in reducing the size of the network. The algorithm



184 CHAPTER 7. SUMMARY AND CONCLUSION

can be extended to reduce other cost function defined on the network, such as maximum

delay.

When used in a cell-based design style, e.g., standard-cells or gate-array technology,

the phase-assignment problem can be extended to allow more general modifications to

functions than just complementations. The modification has been formally defined and the

heuristic algorithm has been generalized to solve this generalizedphase-assignment problem.

Experiments are needed to justify the new formulation.

7.4 Technology-Independent Timing Optimization

Timing optimization studied in this thesis is restricted to technology-independent

circuit re-structuring to reduce the "longest" path in the network. This approach uses global

timing information in the network to identify critical sections of the network to re-structure

while keeping the area increase at minimal. Re-structuring is done by collapsing the network

selectively along the critical path and then re-decomposing the collapsed function to avoid

creating longer critical path in the network.

The critical step of timing optimization is timing-driven decomposition. Several

theorems have been stated to give conditions and algorithms for optimum timing decom

position.

Global timing optimization depends heavily on delay information, such as slacks or

arrival times of signals given by a chosen delay model. These timing information has to be

updated constantly throughout the optimization process. Incremental delay trace has been

proposed which updates the timing information as the circuit changes, providing correct

timing information in an efficient way. Preliminary implementation has shown that the

payoff of incremental delay trace is significant. Formal implementation in MIS is desirable

and may affect the performance of other optimization algorithms such as transistor-sizing,

buffering, and delay-driven phase assignment.

\
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