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ABSTRACT

Statically scheduled data flow is a much more efficient wayof exploiting concurrency
in algorithms than dynamically scheduled data flow, but thedomain of algorithms that
can be scheduled at compiletime is limited. Iteration (for loops, do-while) andcondi
tionals (if-then-else) are particularly difficult This paper examines some data flow
representations for these constructs and proposes compiler techniques for mapping
them onto parallel processors. Since a minimal amount of dynamic scheduling is
involved, thetechnique is termed quasi-static scheduling.

Index Terms — allocation, conditionals, data flow, iteration, parallel processing, parti
tioning, recurrences, recursion, static scheduling.
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1. MOTIVATION

Data flow representations of algorithms have concurrency that can be easily exploited,
butthecost of exploiting it is often prohibitive when actors are scheduled dynamically
(at run time). Even for large-grain actors, the hardware or software overhead of run
time scheduling is considerable. One solution is static (compile-time) scheduling, but
the algorithms for which this can be done are restricted to those fitting the synchro
nous data flow (SDF) model [Lee87]. Actors that fire conditionally or an indeter
minate number of times are excluded. The expressive power of languages based on
SDFtherefore excludes conditionals anddata-dependent iteration.

One solution thathas beenattempted is to use static scheduling information to assist a
dynamic scheduler [Gra87]. Although this avoids therestrictions in expressive power,
Granski et al. conclude that there is not enough performance improvement to justify
the cost of the technique.

The aim of this paper is to expand static scheduling beyond the limitations of SDF
without resorting to fully dynamic scheduling. In other words, instead of implement
ing the firing rule for all actors at runtime, it is only implemented for those actors or
subgraphs that fire conditionally. Although this basic idea is bothsimple andobvious,
the mechanics are notso simple. In fact, for some constructs, notably data-dependent
iteration, we have found scheduling techniques that are satisfactory only for certain
special cases, so further work is warranted.

Static scheduling is attractive because it permits efficient implementation of data flow
graphs on parallel architectures where the processing elements are conventional
microprocessors or programmable DSPs. In other words, special hardware is not
required to support it Furthermore, it is important for hard-real-time applications,
where the data-dependent runtime of adynamic schedule cannot be tolerated. Finally,
it is essential for application specific ICimplementations, where scheduling is done at
design time, and then is frozen into hardware, as in silicon compilation. An example
of a design-time scheduling technique is the synthesis of systolic arrays from a
dependence-graph description of the algorithm [Rao85][Kun88], but the restrictions
on the algorithm structure areeven greater than those of SDF. We conclude that static
scheduling is important enough to warrant considerable effort to extend the domain of
algorithms for which it can be done.

In this paper, for clarity of exposition, I use a graphical representation of algorithms.
For some application domains, such as digital signal processing, a language with a
graphical syntax may be appropriate [Lee88], but it should be recognized that the
techniques described here apply equally well to functional, applicative, and data flow
languages that can beeasily translated into data flow graphs for compilation.
We begin with a discussion of recurrences in data flow even though it is well known
that recurrences can be statically scheduled. This serves as a forum to review and
extend the mechanics of delays. Later we will combine iteration with recurrences and
the extended delays will become important. Conditionals are the first non-static con
struct considered. A scheduling technique is proposed that is particularly appropriate
for hard-real-time applications. Three types of iteration are then discussed: manifest
iteration is where the number of iterations is known atcompile time; data determined
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iteration is where thenumber of iterations is known before the iteration begins atrun
time, but is not known at compile time; and convergent iteration is where the number
of iterations is not known until the iteration is finished. The last two are scheduled the
same way, but their data flow representations aredifferent.

2. RECURRENCES

Although the data flow literature sometimes claims that recursion is not possible in
data flow languages, it should notbeinferred that there is any difficulty expressing or
implementing recurrences. Recurrences are computations where the current output
depends on previous outputs. Recursion by contrast means self-referential functions;
it is used in conventional languages toexpress recurrences as well as to express itera
tion. Tail recursion, for example, is usually used to express iteration. Recurrences are
easily expressed in data flow graphs using directed loops.
A data flow graph with a recurrence is represented schematically in figure 1. The
feedback path describes arecurrence. In order toavoid deadlock, any directed loop in
the graph must have at least one delay. The delay, which corresponds to a z""1 opera
torin signal processing, is indicated withdiamond containing a D.
To understand howrecurrences can be implemented efficiently, it is helpful to review
the SDF model. With any data flow model, an actorcan fire whenever it has sufficient
data at its inputs, i.e. the tokens it will consume must be available. It is up to the
scheduler to determine when this is the case. In the SDF model [Lee87a][Lee87b], a
special case of data flow, there are numbers adjacent to each arc to indicate the
number of tokens that each actor will produce or consume on that arc when it fires.
These numbers must be constant throughout the computation, and hence must be
independent of the data. In figure 1we have shown the simplest case where each
actor consumes and produces exactly one token on each port each time it fires. If a
data flow graph consists exclusively of such actors, then it is called a homogeneous
SDF graph.

A delay does not correspond to unit time delay, butrather to a single token offset It
is simply an initial token on an arc. Such delays are sometimes called logical delays
or separators to distinguish them from time delays [Jag86]. A logical delay need not
bearun-time operation. Consider for example the feedback arc in figure 1, which has
a unit delay. The initial token on the arc means that the corresponding input of actor
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Figure 1. A data flow graphwith a recurrence. Recurrences are expressed using directed
loops and delays.
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A has sufficient data, so when a token arrives on its other input, it can fire. The
second time it fires, it will consume data from the feedback arc that is produced by the
first firing of actor B. In steady-state, the n**1 firing of actor B will produce atoken
that will be consumed by actor A on its (n +1)'* firing; this explains the "delay" ter
minology. The value of the initial token can be set by the programmer, soadelay can
be used to initialize a recurrence. When the initial value is other than zero, we will
indicate it using the notation D{value). Since delays are simply initial conditions on
the buffers, they requireno run-time overhead.

It is obvious that directed loops without delays imply an immediate deadlock, since
there are no initial tokens in the loop so no actor in the loop can fire. This situation
can be automatically detected and flagged as an error [Lee87a].

Consider algorithms that run forever, or operate on a large data set For these,
directed loops are the only fundamental limitation onthe parallelizability of the algo
rithm. This is intuitive because any algorithm without recurrences can be pipelined.
For homogeneous SDF, where every actor produces and consumes a single sample on
each input and output, it is easy to compute the minimnm period at which the actor
can be fired. This is called the iteration period bound, and is the reciprocal of the
maximum rate. LetR(L) be the sum of the run times of the actors in adirected loop
L. The run time of an actor is simply the time it takes to fire. The iteration period
bound of a homogeneous SDF graph is the maximum over all directed loops L of
R (L )/D(L), where D(L) is the number of delays in L [Ren81][Coh85]. General SDF
graphs can be systematically converted to homogeneous SDF graphs for the purpose
of computing the iteration period bound [Lee86]. If there are nodirected loops in the
graph, then.we define the iteration bound to be zero, since in principle all firings of
eachnode could occursimultaneously.

3. MANIFEST ITERATION

Manifest iteration is where the number of repetitions of a computation is known at
compile time, and hence is independent of the data. Manifest iteration can be
expressed in data flow graphs by specifying the number of tokens produced and con
sumed each time an actor fires, and can bestatically scheduled. For example, actor B
in figure 2 will fire ten times for every firing of actor A. In conventional program
ming languages, this would be expressed with a/or loop. Nested for loops are easily
conceived as shown in figure 2. If actors A and E fire once each, then B and D will
fire ten times, and C will fire 100 times. Techniques for automatically constructing
parallel schedules for suchgraphs are givenin [Lee87a].

A B c D E
10 1 10 1 1 10 1 10

Figure 2. An SDF graph that contains nested iteration.
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The efficiency of the implementation depends on the schedule and on the mechanism
for buffering data passed between actors. For example, one possible single-processor
schedule for figure 2 is

{A, 10 x B, 100 x C, 10 x D, E},
and an alternative schedule is

{A,10x{B, 10xC,D},E}.

The notation 10 x C means that C is fired ten times in a row. The latter schedule will
require less memory for buffering than the former. In either case, a brute force
approach would be to synthesize in-line object code, but the resulting code size will
be large. A better approach is to detect repeated patterns in theschedule for each pro
cessor andinsert looping constructs into the object code.

A second issue is the effectiveness with which an algorithm is parallelized. There is
no fundamental impediment to simultaneously firing successive invocations of an
actor on parallel processors. Consider the iteration expressed in figure 2; the question
arises as to whether successive invocations of actor C can fire in parallel Since there
is no directed loop anywhere in the graph, there is no fundamental impediment (the
iteration period bound is zero). The onlydifficulties are practical.
One practical limitation on the parallelism arises from bounding the buffer sizes. One
way to model bounded buffer sizes is with directed loops and delays [Kun88]. Con
sider figure 3, a modification of figure 2. Here we have added a feedback path with
ten delays to model a bufferof length ten on the path from B to C. The tokens on the
feedback path represent empty locations in the buffer. The total number of delays in
the loop (ten) is equal to the size of the buffer. In this case there are no delays in the
forward path, so they all get put on the feedback path. Actor B must have ten tokens
on the feedback path (i.e. ten empty locations in the buffer) before it fires. Whenever
actor C fires, it consumes a token from the forward path, freeing a bufferlocation, and
indicating the free buffer location by putting atoken onthe feedback path. Notice that
any buffer with length less than ten will lead to deadlock. This situation can be
automatically avoidedby properly choosing the buffer sizes [Lee87a].

This non-homogeneous SDF graph could be converted to a homogeneous SDF graph
and the iteration period bound computed, but in this simple example the iteration
period bound is easily seen by inspection. It is clear that after each firing ofB, C must
fire ten times before B can fire again. Hence, even though B will be fired ten times for

B

-\T~
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D E
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Figure 3. A modification of figure 2 to model the effect ofa buffer of length ten between ac
tors B and C.
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each firing of A, the ten invocations of B cannot occur in parallel because of the buffer
space limitations. By contrast if the buffer hadlength 100, then all ten invocations of
B could fire simultaneously, assuming there are no other practical difficulties.
A second limitation on the parallelism can arise from the addressing mechanism of the
buffers. Each buffer can beimplemented as aFIFO queue sothat delays are correctly
handled, but then access to the buffer becomes a critical section of the parallel code.
FIFO queues are most cheaply implemented as circular buffers with pointers to the
read and write locations. However, parallel access to thepointers becomes a problem.
If successive invocations of an actor are to fire simultaneously on aseveral processors,
then great care must be taken to ensure the integrity of the pointers. A typical
approach would be to lock the pointers while one processor has control of the FIFO
queue, but this effectively serializes the implementation. Furthermore, this requires
special hardware to implement an indivisible test-and-set operation, assuming the tar
get hardware is a sharedmemory machine.

A less expensive alternative is static buffering [Lee87b]. Static buffering is based on
the observation that there is a periodicity in the buffer access that a compiler can
exploit It preserves the behavior of FIFO queues (namely it correctly handles
delays), but avoids read and write pointers. Specifically, suppose that all buffers are
implemented with fixed-length circular buffers, implementing FIFO queues, where
each length has been pre-determined to be long enough to sustain the run without
causing a deadlock. Then consider an input of any actor in an SDF graph. Every N
firings, where AT is to be determined, the actor will get its input token(s) from the
same memory location. The compiler can hard-code these memory locations into the
implementation, bypassing the need for pointers to the buffer. Systematic methods for
doing this, developed in [Lee87b], can be illustrated by example. Consider the graph
in figure 3, which is a representation of figure 2 with the buffer between B and C
assigned the length 10. A parallel implementation of this can be represented as fol
lows:

FIREA

DO ten times {
FIREB

DO in parallel ten times {
FIREC

}
FIRED

)
FIREE

For each parallel firing of C, the compiler supplies aspecific memory location for it to
get its input tokens. Notice that this would not be possible if the FIFO buffer had
length 11, for example, because the second time the inner DO loop is executed the
memory locations accessed by C would not be the same as the first time. But with a
FIFO buffer of length 10, invocations of C need not access the buffer through
pointers, so there is no contention for access to the pointers. The buffer data can be
supplied to all ten firings in parallel, assuming the hardware has a mechanism for
doing this (such as sharedmemory).
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Using static buffers there is no need for an indivisible test-and-set operation. This is
true even if full/empty semaphores are usedin the individual buffer locations to syn
chronize parallel processors. The savings comes from the observation that each
shared memory location is written by exactly one processor and read by exactly one
processor. In particular, there are no bufferpointers that might be read or written by
more than one processor.

Static buffering is key to efficient parallel firings of successive instances of the same
actor. It avoids critical sections of code that mustaccess the same data in parallel. In
order to do static buffering, the lengths of the buffers must be carefully selected. For
details, see [Lee87b].

In figure 2 we use actors that produce more tokens than they consume, or consume
more tokens than they produce. Proper design of these actors can lead to iteration
constructs semantically similar to those encountered in conventional programming
languages. In figure 4 we show four such actors that have proved useful for a wide
variety ofexamples. The first, figure 4a, simplyoutputs the lastofN tokens,where N
is a parameter of the actor. The second, figure 4b, takes oneinput token and outputs a
pattern thatmay or may not depend on the value of the input token. The pattern has
the form W •••WY •• •Y, where the values of W and Y are either a parameter of the
actor or the value of the input token, and the number of repetitions of W and Y are
parameters. The third, figure 4c, takes one inputtoken each time it fires, and outputs
the last N tokens that arrived. It has a self-loop used to remember the past tokens
(and initialize them). This can be viewed as astate of the actor, it effectively prevents
multiple simultaneous invocations of the actor. We will see an example shortly that
uses this actor.

The fourth actor, figure4d, provides one of several mechanisms for initialization code
that runs prior to an infinitely repeated algorithm, typical for example of real-time
applications. It consumes a token exactly once, on its first invocation, and then out
puts that token on every subsequent invocation. It is not an SDF actor because the
number of tokens consumed depends on whether it is being invoked for the first time.
This is indicated in figure 4d by providing arange (0,1) at the input instead of a fixed
number of tokens consumed. The scheduling strategy is straightforward, and foresha
dows techniques discussed later in the paper. The data flow graph is divided in two by
a cutset consisting of the input arcs to all "repeat forever" actors. If it cannot be so
divided, the graph is incorrectly constructed. Once it is divided, a schedule is

LAST

OFN

^"

PATTERN
N

N

1
LAST

N

N (0,1)^
REPEAT

FOREVERW---WY---Y

(a) (b)

Figure 4. Four SDF actors useful for iteration.

(c) (d)
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constructed for the two subgraphs. Each schedule, even the one that will be repeated
cyclically, canbe constructed usingthe techniques given in [Lee87a].

A complete iteration model must include the ability to nest recurrences within itera
tion. We will illustrate this with a finite impulse response (FIR) digital filter because
it is a simple example, but the reader should bear in mind that the issues are funda
mental and apply to a wide variety ofcomputations.

An FIR filter computes the inner product of a vector of coefficients and a vector with
the last N input tokens, where N is the order of the filter. It is usually assumed to
repeat forever, firing each time a new input token arrives. Consider the possible
implementations using a data flow graph. A large grain approach is to define an actor
with the implementation details hidden inside. An alternative is a fine grain imple
mentation withmultiple adders and multipliers and adelay line. A third possibility is
to use iteration and a single adder and multiplier. This first and lastpossibilities have
the advantage that thecomplexity of thedata flow graph is independent of the order of
the filter. A good compiler should be able to do as well with any of the three struc
tures. One implementation of the last possibility is shownin figure 5. The iteration
actors are drawn from figure 4. The COEFFICIENTS actor simply outputs a stream
of N coefficients; it produces one coefficient each time it fires, and reverts to the
beginning of thecoefficient listafter reaching theend. It could be implemented witha
directed loop withN delays, ora number of other ways. The product of the input data
and the coefficients is accumulated by the adder with a feedback loop. The output of
the filter is selected by the "last ofN" actor.

The FIR filter in figure 5 has the advantage of exploitable concurrency combined with
a graph complexity that is independent of the order of the filter. Note, however, that
there is a difficulty with the feedback loop at the adder. Recall from above that a
delay is simply aninitial token on the arc. If this initial token has value zero, then the
first output of the FIR filter will be correct However, after every N firings of the
adder, we wish to reset the token on that arc to zero. This could be done with some
extra actors, but a fundamental difficulty would remain. The presence of that feed
back loop implies a limitation on the parallelism of the FIR filter, and that limitation
would be an artifactof our implementation. Our solution is to introduce the notion of
a resetting delay, indicated with a diamond containing an R. The resetting delay is

Figure5. An FIR filter implemented using a singlemultiplier and adder.
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associated with a subgraph, which in this example is surrounded with a dashed line.
Foreach invocation of the subgraph, the delay token is re-initialized to zero. Further
more, the scheduler knows that the precedenceis broken when this occurs, and conse
quently it can schedule successive FIR output computations simultaneously on
separate processors.

A resetting delay can be initialized to a data value that is supplied as an input to the
subgraph associated with the delay. For example, the "repeat forever" actor in figure
4d is used in combination with a reseting delay in figure 6. The initialization sub
graph is invoked only once to compute the initial value for the delay. This is
represented asaninput to the delay that must also be an inputto the subgraph associ
ated with the delay (enclosed in dashed lines). The delay can be viewed as an actor
thatconsumes initialization data only when it resets.

The resetting delay can be used in general whenever we have nested iterations where
the inner iterations involve recurrences using variables that must be initialized. In
other words, anything of the form:

DO some number of times {
Initialize X

DO some number of times {
newX = f(X)

}
}

The implementation of a resetting delay is simple and general For the purposes of
implementation, the scheduler first treats thedelay asif it were an actor that consumes
onetoken and produces onetoken each time it fires. Recall that in practice noruntime
operation is required to implement a delay, so there actually is no such actor. How
ever, by inserting this mythical actor, the scheduler can determine howmany times it
would fire (if it did exist) for each firing of the associated subgraph. The method for
doing this is given in [Lee87a], and consists of solving a simple system of equations.
For each resetting delay, the scheduler obtains a number N of invocations between
resets; this number is used tobreak the precedence of the arc for every Nth token and

INITIALIZATION
SUBGRAPH

1 (0,1)
REPEAT

FOREVER

1 1
REPEATING
SUBGRAPH

Tffl.il

Figure 6. A data flow graph with an initialization subgraph thatgets invoked only onceand
a repeating subgraph that gets invoked an infinite number of times. This is typical of real
time applications. The repeating subgraph is shown with a delaythat gets initialized to the
value computed by the initialization subgraph.
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to insert object code that re-initializes the delay value. The method works even if the
subgraph is not invoked as a unit, and even if it is scattered among the available pro
cessors. It is particularly simple when in-line code is generated. However, when the
iteration is implemented by the compilerusing loops, then a small amount of run-time
overheadmay have to associated with some delays in orderto count invocations.

We have given a comprehensive mechanism for handling manifest iteration in data
flow graphs, and for synthesizing efficient parallel implementations. It is worth men
tioning that dependence graph methods handle manifest iteration using the notion of
an index space [Kun88][Rao85] buthavethe significant disadvantage thatall variables
in the algorithm must iterate overthe same index space. This restriction is not present
in SDF. On the other hand, the functionality of the resetting delay is more cleanly
expressed as boundaryconditions on the index space.

4. CONDITIONALS

Conditionals in data flow graphs are harder to describe and handle efficiently. One
attractive solution is a mixed-mode programming environment, where the program
mer can use data flow at the highest level and conventional languages such as C at a
lower level Conditionals would be expressed in the conventional language. This is
only a partial solution, however, because conditionals would be restricted to lie
entirely within one actor, and concurrency within such actors is difficult to exploit. If
the complexity of the operations that are performed conditionally is high, then this
approach is probablynot adequate.

A simple alternative that is frequently suitable is to replace conditional evaluation
with conditional assignment. The functional expression

y <- if (c) then/(x) else g(x)

can be implemented as shown in figure 7. The MUX actorconsumes a token on each
of the T, F, andcontrol inputs andoutputs either the T or F token. Hence, both f(x)
andg (x) will be computed and only one of the results will be used. When these func
tions are simple, this approach is efficient; indeed it is commonly usedin deeply pipe
lined processors to avoid conditional branches. For hard-real-time applications, it is
alsoefficient when one of the two subgraphs is simple. Otherwise, however, the cost
of evaluating bothsubgraphs maybeexcessive, soalternative techniques are required.

r*©-1 *T

»F

Figure 7. A data flow graph with conditional assignment Both/0 and #(•) are evaluated,
and only one of the two outputs is selected.
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As an example, consider the problem of squaring the entries of an array A[«] until the
first negative entry. In pseudo-code,

doI=l,N
if (A[I] <0) then goto L else A[I| := A[I] * A[T|

end do

L: rest ofprogram

This example combines iteration and conditionals. To translate this into a data flow
graph, it is helpful to write a single-assignment version as follows:

flag[l] := false
doI=l,N

if((A|T]<0)ORflag[I])
then

B[I]:=A[I]
flag[I+l] :=true

else

end do

BP]:=A[I]*A[I]
flag[I+l]:= false

A data flow graph implementing this algorithm is shown in figure 8. Bothbranches of
theconditional are evaluated. In this simple example, thisis efficient
The above example not only illustrates combined iteration and conditionals, but also
illustrates a data flow technique for handling arrays. Namely, thearray elements form

—VorV-^0?V-

(felMK R

SOURCE

OF ARRAY

AN

N

± ±
T F

MUX

NEW ARRAY

Figure 8. An SDF graph that squaresthe elementsof an array until the first negative ele
ment of the array.



E. A. Lee UC Berkeley 11

a stream, and instead of modifying the array, a new array is created. This is required
(at least conceptually) in order to abide by the functional style of programming
[Bac78]. Although this simple example canbe made efficient, random access of data
structures in data flow canbeexpensive; For acomplete discussion of alternative tech
niques, see [Gau86].

An alternative data flow graph for an if-then-else is shown in figure 9a. A data token,
x, is routed by the switch to one of two functions depending on the value of the
boolean token c. The appropriate function fires, and itsresult is selected by the select
actor. This data flow graph is not SDF because for the switch and select actors it is
not possible to specifya priori the number of tokens produced and consumed on each
input or output For example, when the switch actor fires, it will produce a token on
one of two outputs, depending on the condition c. Consequently, paralleli2dng com
pilers that work on SDF graphs will not work on graphs of this type. Instead, wepro
pose quasi-static scheduling. In quasi-static scheduling, some firing decisions are
made at run time, but only where absolutely necessary. One such scheduling strategy
is illustrated in figure 9b for three processors. The figure shows two Gantt charts that
indicate the activity of each of three processors over time. Two possible Gantt charts
are shown, one for each possible branch decision. The only difficulty is ensuring that
after each possible branch decision, the pattern of processor availability should be the
same. Thus, although actors fire conditionally, the timing after they have fired is the

(a)

CODE FOR TRUE" SUB6RAPI
NO-OPS.

ru.PE

1

2

3

CONDITIONAL BRANCH INSTRUCTIONS

RESUME SCHEDULING MAIN GRAPH

CODE FOR "FALSE" SUBGRAPH
NO-OPS

PATTERN OF AVAILABILITY

(b)

Figure 9. a. A data flow graph for the expression: y :»rf(c) then f(x) else g(x). We assume
that /(•) and g(-) represent subgraphs of arbitrary complexity, b. Gantt charts for two
schedules corresponding to two possible decisions. The schedules are padded with no-ops
so thatthe pattern of availability after the conditional is independent of the decision.
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same, so static scheduling can proceed.

To construct such a schedule, the data flow graph is divided into three subgraphs, the
/(•), the #(•), and everything else. Each of the three subgraphs can have arbitrary
complexity, and the /(•) and #(•) subgraphs can themselves have if-then-else con
structs (as well as iteration). We will schedule the actors within each subgraph stati
cally, and synthesize conditional branch instructions that effectively control the firing
of entire subgraphs. Assume without loss of generality that the "everything else"
graph is an SDF graph. It includes the switch and select actors. Since this subgraph
will be treated by the scheduler as a separate graph, the control.token c is routed
through the switch actor to the select to ensure that die switch has precedence overthe
select within this subgraph. The "everything else" subgraph can be scheduled stati
cally. To the left of the conditional branch instructions in figure 9b is a normal static
schedule consisting of actors from the everything else graph. When it comes time to
schedule the switch node, conditional branch instructions are spliced directly into the
object code of the target processors. Then the scheduler calls itselfrecursively to con
struct a static schedule for the "true" subgraph, / (•), figure 9b (top). The only differ
ence between this scheduling task and an ordinary SDF scheduling taskis that the ini
tial pattern of processor availability is arbitrary. In other words, instead of assuming
all processors are available at the same time, different times are possible. This
presents no difficulty, and ordinary critical path methods can be applied. If the true
subgraph itself contains if-then-else constructs, then the scheduler will again call itself
recursively, soarbitrary nesting of if-then-else's is permitted. When the true subgraph
has been scheduled, the scheduler returns control to the top level scheduler, which
then calls the scheduler recursively to schedule the "false" subgraph, #(•), figure 9b
(bottom). The same initial pattern of processor availability is assumed, so the true and
false schedules overlap in time. This explains the useof two Ganttcharts to illustrate
the schedule. When this scheduler returns, the two schedules, figure 9b top and bot
tom, are compared, and the worst case termination time on each processor is deter
mined. The two schedules can then be padded with no-ops so that the pattern of pro
cessor availability is now independent of the branch taken. This is essential for static
schedulingof the main graph to then resume.

This strategy is particularly well suited to real-time applications, where the schedule
must complete in the same time regardless of the branchtaken. In fact, if we assume
thatall branch decisions in the graph are independent, thenthere is no cost associated
with the no-op padding. Of course, this assumption is often not realistic. The no-op
padding itself can be omitted if synchronization between processors is enforced so
that any processor that needs data from another processor will wait until that data is
available.

For non-real-time applications an alternative suggested by Loeffleret al. [Loe88] is
attractive. It must be known which branch of the if-then-else is more likely. The
higher probability branch is statically scheduled first, much as above, and the pattern
of terminations is observed. Then the lower probability branch is scheduled to over
lap in time, and padded with no-ops so that its pattern of terminations is the same.
Note that only the pattern of tenninations needs to be same, not the absolute termina
tion times. Consequently, this approach works regardless of which branch takes
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longer to execute. However, the absolute termination times may differ, so the com
pletion time of the overall schedule will depend on the branch taken. For this reason,
this method is not attractive forhard-real-time applications.

In both cases, the presence of the if-then-else has an impact on the scheduling tech
niqueused for the main graph. In particular, suppose that a critical path method such
as the Hu level scheduling method [Hu61] is being used [Lee87a]. This is a popular
and effective suboptimal hueristic with manageable complexity. In this case, it is
necessary to assign levels (loosely equivalent to priorities) to actors that feed data to
the if-then-else, but the strictly speaking these levels depend on the branch decision^
There areat least two possible levels thatcan be assignedto the switch actoritself, for
example. For real-time applications, the largest of the possible levels should be
assigned. For non-real-time applications, a weighted combination of the levels can be
used, where the weights correspond to the probabilities of the decisions [Mar69].

Interestingly, this idea of assigning an expected Hu level to nodes in the graph was
applied (without success) by Granski, et al. to guide a dynamic scheduler [Gra87].
Applied to quasi-static scheduling, however, this approach has much more promise.
Granski et al. give auseful approximation to themean critical path length that can be
used to reduce the complexity of the compiler.

5. DATA-DEPENDENT ITERATION

We have shown how manifest iteration andconditionals can be efficiently scheduled,
but for some iterative algorithms the number of iterations depends on the data. Such
algorithms are not generally used in hard-real-time computations, but must be sup
ported for more general applications. Data-dependent iteration is more difficult than
conditionals. Nonetheless, viable quasi-static scheduling techniques exist However,
the techniques proposed here are close to optimal only for certain special cases.
We consider two cases: in data determined iteration, the number of iterations is
known before the iteration begins but not known atcompile time; in convergent itera
tion it is only known after the iteration is complete. The two will be scheduled the
same way but expressed differently.

For data determined iteration, we simply needto modify the blocksin figure 4 to take
anextrainput token, the value of whichwill determine die numberof tokens produced
or consumedwhen the actor fires. The general framework is shown in figure 10. The
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Figure 10. A general framework for data determined iteration.
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upsample and downsample actors can be drawn from from those in figure 4, modified
to take an extra input

Consider for example a data flow graph that computes Yx using data determined
iteration and a recurrence, as shown in figure 11. The delay resets to one each time
the subgraph indicated in the dashed lines is invoked. The 'last of X" actor selects the
final result by using thevalue of itscontrol input token to determine howmany tokens
to consume.

Another example is a data flow graph that computes the factorial of a number using
data determined iteration and a recurrence, as shown in figure 12. It is a special case
of figure 10where the upsample actor is omitted. The two delays are resetto zeroand
unity respectivelyeachtime the subgraph enclosed in the dashed line fires.
One difficulty that is immediately evident concerns buffering. The PATTERN actor
in figure 11, for example, seems to require an output buffer with a size that depends
on the data. Furthermore, when this buffer is large we have an inefficient use of
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Figure 11. A data flow graph that computes Yx using data determined iteration and a re
currence. The PATTERN actor is configured to repeat the Y input token a number of times
given by the control input token (X). For example, to compute 102, the PATTERN actor out
puts two successive tokens with value 10.

Figure 12. A dataflow graph thatcomputesthe factorial of a number using datadetermined
iteration and a recurrence.
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memory. A smart compiler using static buffering, however, can generate code that
requires at most two memory locations on the output buffer, one for the token in the
first part of the pattern (W) and one for the token in the second part (Y). Similarly, the
LAST OF X actor only requires one memory location for its input buffer because the
tokens that will be discarded can be overwritten. Li both cases, the compiler must
havedetailed knowledgeof the functionality of the actors.

The twoexamples figure 11 and figure 12 contain recurrences in the body of the itera
tion. These recurrences limit the ability to schedule successive iterations in parallel.
If the recurrences were absent, however, then there would beno fundamental impedi
ment In addition, successive invocations of the loop bodycan proceed in parallel, for
example multiple factorial computations. However, practical difficulties arise with
the mechanics of both buffering and scheduling, so further work is required to be able
to exploit this parallelism.

Before considering the scheduling strategy for data determined iteration, let us con
sider convergent iteration as shown in figure 13. Itimplements theexpression:

do {new x :=f(x)} while t(x).

The difference here is that the data being computed in the iteration is used to deter
mine when the iteration is finished (or has "converged"). The delay at the control
input of the select actor should be an initial token with boolean value "false" so that
the first token selected comes from the upper subgraph, rather than from the feedback
loop. The body of the iteration itself is a recurrence. Both the boolean test token and
the new value for x are fed back. Consequently, unlike data determined iteration, the
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SWITCH (CONDITIONAL BRANCH);
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Figure 13. a. A do-while loop implementing y :- do{x :• f(x)} while t(x). b. Arepresenta
tion ofa scheduling strategy where theiteration period ismade thesameonall processors.
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iterative construct in figure 13precludes multiple simultaneous invocations of succes
sive iterations. Other variations on this graph, implementing for example a while-do,
are easyto visualize. Because of the switch and select actors, it is not an SDF graph.
Although the data flow representation of convergent iteration is quite different from
data determined iteration, similar scheduling strategies canbe used. In eithercase, the
graph is divided into two subgraphs, the body of the iteration and eveiything else. In
figure 10, the upsample and downsample actors are included in the "everything else"
subgraph because they are are synchronous with it In figure 13, the switch and select
actors are part of the iteration body. Assumewithout loss of generality that the outer
subgraph in both cases is an SDF graph. Then it canbe scheduled as normal. When it
comes time to schedule the iteration, special action must again be taken. In both
cases, code to implement a loop will be spliced into theobject code for each processor
used by the iteration. One iteration is then scheduled. When this is done, then the
scheduler splices into the code for each processor conditional branch instructions.
After these conditional branch instructions have been written, the scheduler can
resume scheduling the outer subgraph. However, it is essential that the scheduler
know the pattern of processor availability after the conditional branch instructions. It
need not know the absolute times (indeed it cannot know them because the iteration is
data dependent), but it must know the availability time of each processor relative to
the others. In order for the pattern of availability to be independent of the number of
iterations, it follows that the time spent by each processor in each iteration mustbe the
same, as shown in figure 13b. If the scheduler puts less workontoone processor, then
its schedule should be padded with no-ops.
Although the scheduling strategy outlined above seems reasonable, there are some
serious disadvantages and some practical difficulties. One disadvantage is evident
when the bodyof the iteration cannot make use of all of the processors. In the worst
case, it will use only one processor, and all other processors will be idle during the
entire time the do-while is being executed. Techniques are needed to make use of
these idle processors. This involves deciding how many processors to allocate to the
iteration. If this is done, it would permit, for example, successive invocations of the
subgraph enclosed in dashed lines in figure 13 to occur simultaneously on different
sets of processors.

One practical difficulty arises when trying to determine the priorities of actors that are
used to compute the input to the do-while. Suppose for example that the Hu level
scheduling algorithm [Hu61] is being used again. What level should be assigned to
actors that come before the do-while? Again, a reasonable answer is provided in
[Gra87] and [Mar67]. If the probability thatthe iteration will continue is constant and
known, then the expectedHu level can be computed.

A second practical difficulty concerns the algorithm used to construct the schedule of
theiteration actors. The scheduler willbegiven the original pattern of processor avai
lability, and it mustschedule one iteration in such away that the pattern of availability
is the same after the iteration as before. Hence the objective is to minimize the max
imum span of one iteration of the schedule on each processor. This is almost the same
as theoriginal SDF scheduling problem! Theonlydifference is the original pattern of
availability. Unfortunately, known optimal algorithms have combinatorial
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complexity. If the iteration has few actors, this is not a serious problem, and an
exhaustive method can be used to find the schedule. However, if the iteration has
many actors, heuristics must be used.

One possibility is to use the Hu level scheduling algorithm [Hu61] combined with
blocked scheduling, as proposed for SDFscheduling in [Lee87a]. In blocked schedul
ing, all processors are synchronized after each iteration. This effectively avoids deal
ing with the dependencies across iterations and reduces the scheduling problem to the
standard one of minimizing the makespan of a graph with precedences. However,
synchronizing all processors implies a flat pattern of availability both before andafter
the body of the iteration. This means that before the iteration is begun, the processors
will have to be padded with no-ops until the time at which each is available is the
same. This obviously implies wastedcomputations.

One way to view the blocked scheduling strategy is as nestedstatic schedules. Con
sider an algorithm with nested iterations. The main (outer) SDF graph is scheduled
statically with static sub-schedules for the bodies of the iterations. The interface
between these static schedules, as well as the code that controls the number of invoca
tions of each sub-schedule, is in essence performing dynamic scheduling. However,
entire subgraphs are dynamically scheduled, rather than individual actors. The over
headis much lower andis incurred only whenthe algorithm demands it.

A possibly practical alternative to blocked scheduling is cyclo-static scheduling
[Sch85]. Although cyclo-static scheduling algorithms can have combinatorial com
plexity, under certain circumstances the complexity is manageable for a moderate
number of actors.

A final comment about the use of resetting delays in data dependent iteration is in
order. If the resetting delay is to reset just prior to each new set of iterations, then the
method proposed before breaks down. The compiler cannot compute the numberof
invocations of the delay occur between resets because it depends on the data! For
both data determined and convergent iteration, however, the body of the iteration is
scheduled as a unit, so the compiler can easily insert code to reset allrelevant delays
just priorto the code that implements the iteration.

6. CONCLUSIONS

Techniques areproposed for efficient parallel scheduling of recurrences, iteration, and
conditionals in languages based on data flow. The schedules are mostly static, with
runtime overhead incurred only when the algorithm demands it Thus the advantages
of static scheduling are made available to a much broader class of algorithms than
before. However, the methods for scheduling data dependent iterations may yield
unsatisfactory schedules in some circumstances, implying a need for further work in
this area.
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