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CANONICAL REALIZATION OF CHUA'S CIRCUIT FAMILY t

Leon 0. Chua and Gui-nian Lin tt

ABSTRACT

In this paper we present a new canonical piecewise-linear circuit capable of

realizing every member of the Chua's circuit family. It contains only six 2-terminal

elements: five of them are linear resistors, capacitors and inductors and only one ele

ment is a three-segment piecewise-linear resistor. It is canonical in the sense that: (1)

It can exhibit all possible phenomena associated with any three-region symmetric

piecewise-linear continuous vector fields, including those defined in [1] and in [2],

and more; (2) It contains the minimum number of circuit elements needed for such a

circuit

Using this circuit, we proved a theorem which specifies the constraint on the

types of eigenvalue patterns associated with a piecewise-linear continuous vector field

having three equilibrium points. This theorem has an explicit physical meaning and

unified the corresponding theorems in [1] and [2]. We also present some computer

simulation results of this circuit, including some new attractors which have not been

observed before.

t This work is supported inpart by the Office of Naval Research under Contract N00014-89-J1402, and by the National
Science Foundation under grantMIP 8614000.
tt L.O. Chua is with the University of California, Berkeley. G.N. Lin is from the Shanghai Railroad Institute, China.
Heis a visiting scholar at the University of California, Berkeley, from 1988 to 1989.
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1 Introduction

Among general piecewise-linear systems, the class of three-region symmetric (with respect to the

origin) piecewise-linear continuous vector fields (henceforth denoted by L) is of particular interest and

importance[l-10]. It is proved in [1] and [2] that any two vector fields £ and £' in L are linearly conju

gate if and only if their corresponding eigenvalues in each region are identical, and are linearly

equivalent if and only if their corresponding normalized eigenvalues in each region are identical. Here,

linear conjugacy implies the respective dynamic behaviors are identical, whereas linear equivalence

implies qualitatively similar dynamic behaviors.

Therefore, if we can build a piecewise-linear circuit whose natural frequencies are equal to an

arbitrarily prescribed set of eigenvalues, we can derive all possible phenomena in L by analyzing this

one circuit alone. Such an attempt has been mentioned in[6], butno such circuit has been reported to
date.

Although Chua's circuit displays rather rich nonlinear dynamic[8], many phenomena which can

not be observed from Chua's circuit have been discovered from other piecewise-linear circuits[9][10].

However, we will prove that not one of these circuits is general enough to satisfy our above cited

objective.

In this paper we will present a new piecewise-linear circuit It contain the minimum number of

circuit elements needed to generate all possible phenomena in any 3-dimensional, 3-region, continuous

and symmetric piecewise-linear vector fields. In Section 2 wedemonstrate why no existing circuits can

fulfill our purpose. In Section 3 we give the structure of the canonical piecewise-linear circuit and the

explicit formulas for calculating its elements parameters from an arbitrarily given set of eigenvalues. In

Section 4, based on this circuit, we proved a theorem on the class of realizable eigenvalues, thereby

unifying the corresponding theorems in[l] and [2]. In Section 5 we present some simulation results,

including a few attractors which have not been reported before. For certain eigenvalues where the

canonical circuit in Section 3 requires negative dynamic elements, and/or too many negative resistors,

other equivalent butmore practical piecewise-linear circuits realizations are presented in Section 6.

2 Eigenvalue constraints for existing circuits

Consider the class of 3-dimensional, 3-region, and symmetric (with respect to the origin)

piecewise-linear continuous vector fields. The eigenvalues in the inner region D0 are denoted by\iu\y^
and n3. The eigenvalues in the two outer regions D+l and D^ are equal, since the vector field is sym

metric with respect to the origin. We denote them byVi, v2, and v3. Some of the |i's and the v's may

be complex conjugate numbers. In order to avoid complex numbers, let us define

^1 = ^1 + ^2+^3. Pi = \hVk+ H2M-3 + H3Hl» PZ = |AlH2H3 (1)

Q1 = Vi + V2 + V3, q2 = VjVz + V2V3 + V3Vlf q% - V2V2V3 (2)



Let us first analyze the type of eigenvalue patterns that can be produced by Chua's circuit, as shown in

Fig. 1(a). The v-i relationship of the nonlinear resistor GN is shown in Fig.1(b). The state equations of

this circuit are:

dvi i i

~dT =c7[G<Vr_vi> " (G*Vl +2iGa~Gb) (|Vl +1' " |Vl " *l}} ]

dv2 i

di_
dt L

where we have chosen vj = +1 as the break points for simplicity.

In the £>0 region, the state equations are linear:

dvi

"dT
dv2

dt

dt

HG + Ga)

C2

G
0

-G 1

c2 C:

-1

L
0

where M0 is a constant matrix.

The characteristic equation of M0 is:

= Mc

GaIs1- M01 =*3 +s\-%- +-£- +-52-) +S{
C2 Ci C\' yC\C2 LC2' LC\C2

On the other hand, since \iit \i2 and n3 are the eigenvalues wewant this system to possess, wehave

(s - n,) (s - Hj) (s - n3) =j3 - pis2 +p2s -p% =0 (6)

Comparing (5) with (6), we obtain

GG* +^)+4^=0

C2 C\ C\

GGe

G+Ga

LC\C2

Similarly, in the DM regions we have

'a { 1
C\C2 LC2

--Pi

(3)

(4)

(5)

(7)

(8)

(9)



g_ +JL +2l=-
C2 C\ C\

GGb i

C jC 2 LC2

G +Gb

LC\C2

Subtracing (10) from (7), (11) from (8) and (12) from (9), we obtain

Ga-Gb

= -q3

or,

Ci

G(Ga-Gb)

C\C2

Ga-Gb

LC\C^

= -Pi + ?i

= Pi-qi

= ~Ps + qi

1 -Pi+ii

c, Ga- Gb

1 Pt•qi

c2 G(qi-pi)

1 G(qy p^

Pi-qi

(10)

(ii)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Substituting (16), (17) and (18) into (7), (8) and (9), and after some algebraic manipulations, we obtain

a set of three linear algebraic equations in G, Ga and Gb:

° (P2-qz) + qi (qi-pi) qi-Pi-piiqi-pO
(pi-qi)(q\-p\) qi-Pz-qiiq\-P\) P2(qi-Pi)-(q*-Pi)

0 q3 -p3

G\ \o
Ga = 0

Gb lo.
(19)

This set of homogeneous algebraic equations has nonzero solutions only if the determinant of the matrix

is equal to zero, i. e.

or,

det
(Pz-qi) + qi (qi-pi) iqi-pi)-p\{q\-p\)

?3 ~P3

(P2 ~ ?2) (Pi - qi) = (Pi - q\) (Pzq\ - q&i)

= 0 (20)

(21)



This is the main eigenvalue constraint on Chua's circuit. Only those eigenvalues which are subject to

this constraint can be realized by Chua's circuit In addition, the following obvious constraints must

also be satisfied:

Pi*qi, Pi*q2. Pt*qi (22)

Otherwise, Cu C2 or L will tend to infinity in view of (16), (17) and (18).

Let us consider a numerical example using the following element parameters from Chua's circuit

in m:

Ci =|, C2=l, G=0.7, Ga=-0.8, G*=-0.5, L=y (23)

Using to (7)-(12) we obtain

Pi = 0.2, p2=1.96, p3 = 6.3, ?i=-2.5, q2= 3.85, ?3 = -12.6, (24)

It is easy to verify that (24) does satisfy (21).

Consider next the piecewise-linear circuit in Fig.2. Since it is related to the torus attractors[9], we

will refer to it as the "torus circuit". By an analysis similar to the above, we can show that the sets of

eigenvalues of this circuitare subject to the following constraints:

p2-q2 = 0 (25a)

Pi?3-/>3?i = 0 (25b)

It is easily to see that (25) is a special case of (21). However, (25a) violates (22). Therefore, all eigen

value patterns produced by the torus circuit can not be produced by Chua's circuit, no matter how one

adjusts the circuit parameters in Chua's circuit

Consider next the piecewise-linear circuit in Fig.3. We will refer to it as the "double hook cir-

cuit"[10]. By a similar analysis we can show that this circuit is also subject to the eigenvalue con

straints (21) and (22), as in Chua's circuit Hence, from the point of view of computer simulation they

are equivalent. However, the corresponding element parameters in these two circuits are different for a

particular set of eigenvalues. From the point of view of experimental observation, one of these two cir

cuits therefore would be a better choice if it requires fewer negative dynamic elements in a particular
case.



3 The canonical piecewise-linear circuit

In this Section we will present a universal piecewise-linear circuit for realizing any eigenvalue

pattern associated with any vector field in L.

Firstly we have to decide what is the minimum number of elements such a circuit needs. Since

our objective is a 3-dimensional 3-region symmetric piecewise-linear continuous vector field, the circuit

under consideration is allowed to have only onenonlinear resistor whose v-i characteristic is 3-segment

piecewise-linear and symmetric with respect to the origin. The circuit must have three dynamic ele

ments (capacitors and/or inductors) since the system is of third order. The rest are all linear resistors.

Let us investigate next how many linear resistors are needed in general.

A linear autonomous R-C circuit has two circuit elements and can have only one natural fre

quency \l = VRC . If we increase C to aC and decrease R to R /a, the natural frequency of the circuit

will remain unchanged. Therefore, to produce a natural frequency \i> we can assign an arbitrary value

to C or R (e.g. let C = 1) and find the value for the other parameter.

The situation is similar for Chua's circuit In eqns. (7)-(12) there are six unknown parameters:

Ci, C2, G, Ga, Gbi and I. However, if we regard Cu C* G, Ga, Gb, and 1/L as the unknown vari

ables, the left hand side of eqns. (7)-(12) are homogeneous functions of the zero'th order. For any par

ticular setof p's and q's, if ( C10, C^ Go, Ga0, Gb(h L0 ) is a solution of (7)-(12), then ( oC10, aC20,

aGo, aGao, otG^o. Lrfa ) (a is an arbitrary real number) will also be a solution. In other words, if

(7)-(12) have solutions, we can assign an arbitrary value to any one of the six parameters (e.g. let

Ci = 1) and calculate the remaining five parameters. This means that out of the six circuit parameters

the "degree of freedom" is only five. From the point of view of circuit theory, we can refer this obser

vation as "impedance scaling".

It reveals the reason why Chua's circuit can not produce an arbitrary set of eigenvalues. There are

not enough circuit parameters! Since we have six eigenvalues in our problem, we need at least seven

parameters. Therefore, besides three dynamic elements and one nonlinear resistor (with two slopes in

different regions counted as two circuit parameters), we need at least two linear resistor to build a

canonical circuit

Of course, not every circuit containing that many elements will qualify as a canonical circuit Our

canonical circuit is shown in Fig.4(a).

The state equations of this circuit are:

dvx i
^-=C7[-/(v,) +i3]

dv2 i_ = _(_Gv2 + I-3) (26)



where

dii _i— =T(v, +v2 +/?,3)

/(v) = G*v+-(Ga-G»)(|v + l| - |v-l|)

is the v-i characteristic of the nonlinear resistor shown in Fig.4(b).

In the D0 region (i.e. |v, |£1), the state equations (26) become linear:

dvi -Ga
0

1

dt Ci Gi
dv2 -G 1

vi vi

IT — 0
c2 c2

v2 = M0 v2

di-s -1 - 1 -R .'3 '3

dt L L L

where M0 is a constantmatrix. The characteristic equation of M0 is:

kl-M0|=,3 +̂ +̂ +4)
C i U2 L

GGa GaR GR 1 1 G+Ga + GGaR n
KCXC2 + LCX +LC2 LCX + LC2)+ LC^ "°

Just as in Section 2, we obtain

— +-£- +£ =_
Cj C2 L

GGa _ GaR GR i 1

CiC2 LCi LC2 LCj LC2

G +Ga+ GGaR

LC\C2 = ~P3

Similarly, from the equation in the D& regions (i.e. |vt |> 1) we obtain

— + — + - = -
C\ C2 L

GGb GbR GR 1 l
CXC2 + LCX +LC2 +Ld +LC2 ~qi

G +Gb+ GGbR

LC\C2 = -<73

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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Subtracting (33), (34) and (35) from (30), (31) and (32) respectively, we obtain

Ga-Gb

C,
= -Pi + q\ (36)

Ga-Gb t G R,—£ (— + j) =P2~q2 (37)

(Ga - Gb) (GR + 1)
LC& =-'3 +«3 (38)

Substituting (36) into (37) and (38), we obtain

G_+ R_ __ -P2 +qi
C2 L P\-q\

and

(GR + i) _ Pi - q-i
LC2 P\-q\

Substituting (39) into (30) and (33), we obtain

(39)

(40)

Ga P2 ~ q2
7r=~Pl + Z—T <41>

and

Gb , P2-q2
"r"=-*i +"Z—T <42>Ci Pi-qi

As we mentioned before, among the seven parameters we can assign an arbitrary value to any one of

them. Let us take

C\ = 1 (43)

Then we obtain the values of parameters Ga and Gb from (41) and (42):

n , Pi-q2

G'=-9i+7r^r (45>

Substituting (39), (40), (41) and (43) into (31), we obtain the foUowing value of L:

1
L =

P2 + (- — - P\) (- —)
Pi-qi P\-q\ p\-q\

(46)



Now from (32) we have

G ,r , Gg(p3-g3)^
— =-L{p3 + —- —] = * (47)
c2 ^i(Pi-qo

where the constant k is introduced for simplicity. Substituting (47) into (39), we obtain the value of R:

r=-L(^itzt-+^ (48)Pi - qi

From (40) we have

i _*-«, gr P^-iy+k(k +P1zJl) (49)
Pi-qiLC2 Pi- qi LC2 Pi -qi

Hence, the value of C'2is given by

c2 =
1

Pi ~
L[—

•qi
+ *(* +

P2~- qi
—)]

(50)

)1
Pi-qi Pi-qi

Finally, from (47) we obtain the value of G:

G = kC2 (51)

Equations (43), (44), (45), (46), (48), (50) and (51) are explicit formulas for calculating the seven

parameters in our canonical circuit from any given set of eigenvalues. The only constraint is

Pi * qi (52)

Otherwise some of the parameters will tend to infinity. Constraint (52) is mainly academic since in the

unlikely event that

Pi = qi (53)

for a given set of eigenvalues, we can usually eliminate this singular situation by perturbing one of the

H's or v's without causing any qualitative change in the system's dynamic.

4 Some properties of the canonical circuit

The three-dimensional vector fields produced by our canonical circuit have the following proper

ties:
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1. The vector field is continuous everywhere and symmetric with respect to the origin.

2. The state space is partitioned into three regions D.u D0 and D+1 by two parallel planes located at

v1 = ±l.

3. The vector field is linear in region D0 and affine in regions D_i and D+J.

These properties are obvious from the structure of the canonical circuit In [1] and [2], the vector

fields under consideration are more restricted. They always have one equilibrium point in each region

D_lf D0 and D+1. Besides, the vector fields discussed in [1] all have one real eigenvalue and a pair of

complex conjugate eigenvalues in each region (Henceforth called type I eigenvalues), while those dis

cussed in [2] all have three real eigenvalues in the D0 region, and onereal and a pair of complex con

jugate eigenvalues in the D±1 regions (Henceforth called type II eigenvalues). These two types of

eigenvalue patterns are more interesting because their vector fields can exhibit chaotic attractors. How

ever, the vector fields which can be produced by the canonical circuit have no such constraints. Their

eigenvalues may be either all real, or one real plus a pair of complex conjugate values in each region.

In the canonical circuit, the origin is of course an equilibrium point However, theDM regions may or

may not have equilibrium points. In the latter case, we say the regions D± have a virtual equilibrium

point In [1] and [2], there are theorems stating under what condition there will be equilibrium points

in regions D±1. The proof of these theorems are quite involved and have little physical meaning. For

our canonical circuit we can prove a similar theorem using a much simpler proof, which at the same

time gives a much clearer physical meaning.

Theorem 1

The following three conditions are equivalent, each one giving a necessary and sufficient condi

tion for a vector field realized by our canonical circuit to have equilibrium points in the D±1 region:

1. The canonical circuit has three dc operating points.

2. (G +Ga(l + GR))(G +Gb(l + GR)<0 (54)

3. p3q3 < 0 (55)

Proof

1. The equilibrium points of the nonlinear system described by (26) are obtained by solving

/(vi)-i=0

Gv2 -i=0 (56)

Vi + v2+Ri =0

Equations (56) are exactly the KCL and KVL equations of the resistive circuit shown in Fig.5(a),
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which is obtained from the canonical circuit with the capacitors open circuited and the inductor

short circuited. It is obvious from the state equations (28) that the canonical circuit has one and

only one equilibrium point at the origin in the D0 region (whenever |M01 ^ 0). Hence, if the

circuit has three dc operating points, two of them must be located in the D^ regions. The con

verse is true too. Figure 5(b) gives the physical interpretation: whenever the loadline has three

intersection points with the 3-segment piecewise-linear characteristic, two of them must neces

sarily be located in the D±1 regions.

2. Segment B* in Fig.5(b) is described by the equation

(57)*" = (Ga •- Gb) + Gbv

The loadline is described by

— V

R +
1

G

The abscissa of the intersection point of (57) and(58) is given by

(Gb - Ga) (1 + GR)
Vn =

G +Gb(l + GR)

Observe that the region D+1 has an equilibrium point if and only if

vo > 1 (60)

It is easily to show that (60) is equivalent to (54) after some simple algebraic manipulations.

From (32) and (35) we have

(G + Ga(l + GR)) (G + Gb(\ + GR))

(58)

(59)

L2CX2C22 = P3<?3 (61)

This implies that (54) and (55) are equivalent. •

Remark

1. When the eigenvalues are of type 1, the sign of p3 and q$ are determined by the sign of Yo and Yi

respectively, where Yo and Yi denote the real eigenvalues in the D0 and D±jregions. Therefore

(55) is equivalent to the condition

YoYi <0 (62)

When the eigenvalues are of type 2, the sign of p3 is determined by the sign of HiJi^ and the

signof q-i is determined by the sign of Yi- Therefore (55) is equivalent to the condition
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Hi^sYi < 0 (63)

Conditions (62) and (63) are exactly the same,conditions given in [1] and [2]. We have therefore

unified Theorem 3.1 in [1] and Theorem 4.1 in [2], in addition to giving an explicit physical

interpretation to the theorem.

2. It is obvious from (59) that the locations of the equilibrium points depend only on the values of

G, Ga, Gb and/?, and not on the values of CXi C2 andl.

5 Results of computer simulations

In this section we present a sample of some computer simulation results of our canonical

piecewise-linear circuits, since the 6-dimensional eigenvalue parameter space is too huge to search

thoroughly. Every point in this parameterspace corresponds to one or more attractors. To determine and

classify all possible attractors and their boundaries is a difficult project Oursimulation is by no means

comprehensive. However, all attractors discovered in L and reported so far in the literatures are

included here, in addition to some newly discovered ones.

Table 1 shows the simulation results when the inner region contains a pair of complex conjugate

eigenvalues. Table 2 shows the simulation results when the inner region contains only real eigenvalues.

Both Tables 1 and 2 contain some blanks, indicating that some attractors may be discovered in the

future. Table 3 summarizes the values of the eigenvalues and the circuit parameters for a sample of

attractors listed in Table 1 and 2. Since all vector fields with the same normalized eigenvalues are

linearly equivalent[l][2], all examples in Table 3 have been normalized with (ox = 1 for comparison
purposes.
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Table 1 Some attractors for type I eigenvalue patterns

Eigenvalues Type of stability Observed attractors

Class Yo Co Yi <*i

stable at

origin?
DoesP±

exist?

stable

at/»*?
stable

equilibrium
limit

cycle
toroidal

attractor

chaotic

attractor

1 + + + + no no no no no no

2 + + + - no no no no no no

3 + + - + no yes no no *1 *2

4 + + - . no yes yes yes yes no no

5 + . + + no no no no no no

6 + - + . no no no no no no

7 + - . + no yes no no yes ♦3 *4

8 + . . . no yes yes yes no no

9 . + + + no yes no no no no no

10 - + + . no yes no no ♦5 ♦6 ♦7

11 - + - + no no no no no no

12 . + . . no no no yes no no

13 - - + + yes yes no yes no no no

14 . . + _ yes yes no yes no no no

15 . - _ + yes no yes no no no

16 - - - - yes no yes no no no

*1: see Fig.6 for an example of a periodic attractors.

*2: see Fig.7,8,9 for examples of 3 chaotic attractors.

*3: see Fig.10,11 for examples of toroidal attractors.

*4: see Fig.12,13,14,15,16,17 for examples of chaotic attractors.

*5: see Fig.18 for an example of a periodic attractor.

*6: see Fig.19,20 for examples of toroidal attractors.

*7: see Fig.21 for an example of a chaotic attractors.
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Table 2 Some attractors for type II eigenvalue patterns

Eigenvalues Type of stability Observed attractors

Class Hi ^2 H3 Yi <*i

stable at

origin?
DoesP±

exist?

stable

atP±?
stable

equil.
limit

cycle
toroidal

attractor

chaotic

attractor

1 + + + + + no no no no no no

2 + + + + . no no no no no no

3 + + + . + no yes no no

4 + + + . _ no yes yes yes yes no no

5 + + . + + no yes no no no no no

6 + + _ + . no yes no no yes *8

7 + + . _ + no no no no no no

8 + + _ . _ no no no yes no no

9 + . . + . + no no no no no .no

10 + - - + _ no no no no no no

11 + . . . + no yes no no *9

12 + - - . _ no yes yes yes no no

13 - . - + + yes yes no yes no no no

14 - - - + _ yes yes no yes no no no

15 - - . - + yes no yes no no no

16 - - - - - yes no yes no no no

*8: see Fig.22 for an example of a chaotic attractor.

*9: see Fig.23,24 for examples of 2 chaotic attractors.
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Table 3 Parameters of the canonical circuit associated with different attractors in Fig.6-24.

Eigenvalues'* Circuit parameters*
Fig. Hi H2 H3 Yi <*l c2 G Ga Gb L R

6 0.3 0.2 ±j20 -20 0.2 1513 -492.4 19.35 39.65 .00128 -.0252

7 0.2 0.3 ±jio -3 0.3 1183 -2565 30.73 33.93 .00094 -.02947

8 .30 .0577 +J2.78 -1.33 0.29 170 -86 5.98 7.146 .0234 -.1376

9 .44 .0577 ±j2.78 -1.33 0.29 105 -70.3 5.17 6.47 .0297 -0.15

10 .1474 -.0487 ±jl.O -.104 .0343 -.66 .071 -.12 -.036 -.5 -.09

11 .272 -.0635 ±j.746 -.076 .0019 22 11 -2.3 -2.1 .22 .368

12 18.2 -.115 ±jl.02 -3.5 .0055 -.6827 .01397 -18.16 3.298 -1.38 -.2916

13 .728 -.319 ±j.892 -1.29 .061 -.632 -.0033 -.419 .839 -1.02 -.33

14 .272 -.136 ±j.409 -.409 .0454 48.4 31.6 -2.68 -2.36 .171 .346

15 .728 -.319 ±j.892 -1.29 .042 -.6 0.01 -.445 .85 -1.1 -0.4

16 1.474 -.0487 ±jl.O -1.04 .0343 -.154 .0285 -1.4 .94 -5.81 -1.25

17 .618 -.37 ±j3.50 -2.30 .195 99.6' -89.4 6.72 8.50 .020 -.113

18 -0.33 .312 ±jl.03 .186 -.167 -1.74 .030 -.324 .117 .442 .021

19 -.05 .08 ±jl.O .035 -.056 -3.2 .0042 -.114 .0726 .687 .0039

20 -1.62 .084 +J1.15 .922 -.412 -0.7 -.0015 1.034 -.515 -.685 -.285

21 -0.45 .0235 +J.346 .277 -.124 41.1 -18.5 2.36 1.93 .252 -.381

22 1.032 .1354 -.4425 .02 -0.2 -95.68 3.733 -2 .895 .4448 .5845

23 1.15 -2.98 -5.70 -.89 0.15 -1.35 .0014 6.63 -.31 .251 .226

24 .919 -.541 -3.64 -.353 .156 -15.6 -6.42 4.13 .906 .421 -.537

": The parameters coi and Cx for all attractors are assumed to be equal to 1.
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6 An alternate realization of the canonical circuit

We do not claim that the canonical circuit in Fig.4 is unique. However, so far we have not found

any other circuit having the same degree of generality.

Figure 25(a) shows an alternate piecewise-linear circuit It's state equations are given by:

dvx i

where

dv2 \
-77 = Tr(- Gv2 + i3)

c2dt

di3 i

/<'3> =**«+-2C*.-*»)(l*s+l|-|is-l|>

is the v-i characteristic of the nonlinear resistor shown in Fig.25(b).

In the D0 region (i.e. \i |£1 ), the state equations (64) reduces to the linear equation:

dv

dt

dv2

dt

di$

~d7

-Gx

Ci

0

0 -k
zG J_
C2 C2

1 _J- ~Ra
L L L

Vl vi

V2 = M0 V2

/3. '3

(64)

(65)

(66)

where M0 is a constant matrix. The characteristic equation of M0is given by

• - «« i •» i.G\ G2 Ra1*1-MqI =^3 +*2(7Ti +7^ +-p)
C i C2 L

CjGj M, CA i i Gj +Gj +GiGjR,, „ ,
+s(-clc7 +-^r +-cT+cJ+cJ)+ Hzl =° <67>

It follows from (67) that

Cx C2 L

GiG2 GxRa G2Ra i i
+ ~-rzr- + -T7T- + -zrr + -rr = PiCXC2 LCX C2L CXL C2L

Gx + G2 + GxG2Ra

CxCiL = -Pi

(68)

(69)

(70)
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Similarly, from the equations for the D±oregions (i.e. \i |> 1) we obtain

G\ G2 Rb

GXG2 GxRb G2Rb l l

CXC2 CXL C2L CXL C2L

Gx + G2 + GxG2Rb

CXC<^> = -*3 (73)

Subtracting Eqs. (71), (72) and (73) from Eqs. (68), (69) and (70) respectively, we obtain

Ra —Rb
1 =-/>i + ?i (74)

Ra -Rb G\ G2
1 (— + —)=P2-q2 (75)

GxG2(Ra-Rb)
C^Z ="^ +^3 (76)

Substituting Eq. (74) into Eqs. (75) and (76), we obtain

Gx G2 P2~q2

Cx C2 -Pi + qi

and

GiG2 Pi-qi

ciG2 Pi-qi

Since one parameter can be assigned an arbitrary value, let us take

L = 1 (79)

Substituting Eqs. (77) and (78) into Eqs. (68) and (71), weobtain the following values of Ra mdRb:

Ra=~Pi + (80)
Pi-qi v '

Rt="?,+77^7 (81)

On the other hand, Eqs. (77) and (78) imply that GXICX and G2/C2 are the two roots of the following
quadratic equation:

(77)

(78)
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xa +x(£iZii) +£lZils0 (82)
Pi-qi Pi-qi

Solving for the values of Gx/Cx and G2IC2t we obtain

Gj_ _ - P2 +?2 +V(ft ~ ?2)Z - (Pi - gl) (ft ~ ?3) A,
Ci 2(p,-9l) " 1

^2 _ - ft +?2- V(P2 - ?2)z - (pi - qi) (Pi - qi) A
C2 2<ft-*i> " 2

Substituting Eqs. (78), (79), (80), (83) and (84) into Eqs. (69) and (70), we obtain

(83)

(84)

l.i Pi-qi , P2-q2,p2-q2 .
7r- + 77-=P2-- — + ( ft) (85)
Ci C2 ft-?i ft-?i Pi-?i

*i . k2 Pi-qi,P2-q2
TT- +7- = -ft - —(- — -ft) (86)
Ci c2 Pi-qi Pi-qi

Equations (85) and (86) constitute a system of 2 linear algebraic equations in 1/Ci and 1/C2 , which is

easy to solve. Finally, we can calculate Gx and G2 from (83) and (84):

Gi = kxCx (87)

Gi=*iC, (gg)

Since all circuit parameters can be explicitly calculated from the given set of eigenvalues, this

circuit qualifies as an alternate canonical circuit However, it is subject to somewhat stronger restric

tions than the canonical circuit proposed in Section 3. This is because Eqs. (83) and (84) have real
solutions only if

(Pi ~ qif *4(Pi~qi)(Pi- qi) (89)

Therefore, it is not general enough to qualify as a canonical circuit If we are only interested in com

puter simulation, the canonical circuit in Fig.4 is more than adequate and there is no need to search for

alternate circuits. However, our canonical circuit may contain some negative dynamic elements for

some sets of eigenvalues. In the laboratory negative C and L are usually harder to realize than negative

R. Consequently, if another circuit can produce the same vector field but contains fewer negative

dynamic elements, then it may be preferable to use such an alternate equivalent circuit for practical
realization purposes.
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7 Concluding remarks

We have developed a canonical circuit which is general enough for simulating all possible

dynamics associated with any 3-dimensional, 3-region, and symmetric piecewise-linear continuous vec

tor field. It contains only one 3-segment piecewise-linearresistor and the least number of two terminal

linear elements and no controlled sources. All circuit parameters can be determined explicitly from any

given set of eigenvalues withno constraints. It would of course be highly desirable to derive analogous

canonical circuit for higher-dimensional systems.
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Figure captions

Fig.l (a) Chua's circuit.

(b) The v-i characteristic of the nonlinear resistor GN.

Fig.2 The torus circuit.

Fig.3 The double hook circuit

Fig.4 (a) The canonical piecewise-linear circuit.

(b) The v-i characteristic of G#.

Fig.5 (a) The dc circuit associated with the canonical piecewise-linear circuit

(b) The dc operating points of the circuit.

Fig.6 An example of a limit cycle associated with a type I class 3 eigenvalues pattern.

Fig.7 An example of a chaotic attractor associated with a type I class 3 eigenvalues pattern.

Fig.8 An example of a chaotic attractor associated with a type I class 3 eigenvalues pattern.

Fig.9 An example of a chaotic attractor associated with a type I class 3 eigenvalues pattern.

Fig. 10 An example of a toroidal attractor associated with a type I class 7 eigenvalues pattern.

Fig.l1 An example of a toroidal attractor associated with a type I class 7 eigenvalues pattern.

Fig. 12 An example of a chaotic attractor associated with a type I class 7 eigenvalues pattern.

This attractor is identical to the double scroll in [7].

Fig. 13 An example of a chaotic attractor associated with a type I class 7 eigenvalues pattern.

This attractor is identical to the double scroll in [7].

Fig. 14 An example of a chaotic attractor associated with a type I class 7 eigenvalues pattern.

This attractor is different in shape from the double scroll.

Fig. 15 An example of a chaotic attractor associated with a type I class 7 eigenvalues pattern.

This attractor is identical to a Rossler band.

Fig. 16 An example of a chaotic attractor associated with a type I class 7 eigenvalues pattern.

Fig. 17 An example of a chaotic attractor associated with a type I class 7 eigenvalues pattern.

Fig. 18 An example of a limitcycle associated with a type I class 10eigenvalues pattern.

Fig.19 An example of a toroidal attractor associated with a type I class 10 eigenvalues pattern.

Fig.20 An example of a toroidal attractor associated with a type I class 10 eigenvalues pattem.

Fig.21 An example of a chaotic attractor associated with a type I class 10 eigenvalues pattem.

Fig.22 An example of a chaotic attractor associated with a type II class 6 eigenvalues pattem.

Fig.23 An example of a chaotic attractor associated with a type II class 11 eigenvalues pattern.

This attractor is identical to the double hook in [10].

Fig.24 An example of a chaotic attractor associated with a type II class 11 eigenvalues pattern.

Fig.25 (a) An alternate but less general piecewise-linear circuit

(b) The v-i characteristic of the nonlinear resistor RN.
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