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Abstract

In this paper we present new results on the structure of the zeros of linear and nonlinear systems under
perturbation. In particular, we show that when state space descriptions of linear or nonlinear single-
input single-output systems with relative degree > 2 are regularly perturbed, then their zero dynamics
are singularly perturbed and show a separation of time scales. In the SISO case, we give asymptotic
formulas for the new highfrequency zero dynamics arising from the regular perturbation.

1 Introduction

In this paper weshow that regular perturbations of the statespace descriptions of linear andnonlinear single-
input single-output (SISO) systems of relative degree > 2 result generically in the appearance of singularly
perturbed (fast) zero dynamics. In other words, an effect of perturbations in the state space descriptions
is the migration of some zeros from oo to finite locations in the complex plane. Depending on the sign of
the regular perturbations, someof the perturbed zeros can migrate from oo to the right halfof the complex
plane. This leads to a reconsideration of minimum phase systems of high relative degree (pole-zero excess
> 2) as being only dominantly minimum phase since small perturbations result in right half plane zeros of
large magnitude.

Our investigations in this direction were motivated in part by a study in [HSM88] of the linearization by
nonlinear state feedback of a class of slightly non-minimum phase systems encountered in the flight control
of VTOL aircraft. Indeed, in this work, the true system had a small regular perturbation in its equations
caused by the way moments were generated on the aircraft. This, in turn, manifested itself as two zeros of
large magnitude—one minimum phase and one non-minimum phase. We restrict ourselves to the SISO case
here and postpone the considerably more technical MIMO case [HSK89].

This paper deals with both linear and nonlinear systems—definitions of zero dynamics for nonlinear
systems have only recently become available pM87,BI88]. The qualitative theory is similar for both classes
of systems, though the techniques are rather different. The techniques also draw heavily from the literature
on singular perturbation [KK086,SOK84].

An outline of the paper is as follows: In Section 2, we develop explicit formulas for the locations of the
large magnitude zeros of linear systems under perturbation. In Section 3, we repeat this development for
the nonlinear case. Section 4 collects some concluding remarks.

tResearch supported in partby NASA undergrant NAG2-243, the Army under grant ARO DAAL-88-K0572, NSF under
grant BCS 87-15811, the SchlumbergerFoundation,and the BerkeleyEngineeringFund.



2 Linear Systems

In this section we will consider the effects of regular perturbations of flo, Co, A$ on the zeros of a SISO linear
system of the form

x = Aqx + bou

y = cox.

We will assume that the system (2.1) is minimal and has relative degree (excess of poles over finite zeros)
70, i.e.,

co&o = coAobo = •••= coAo°""2&o = 0
coAZ°-lbo ?* 0.

To exhibit its (n —70) finite zeros, it is useful to use a normal form which willalso prove convenient in the
nonlinear case. To this end, we define

(2.1)

(2.2)

CqAq

x =: (2.3)

coAtf-1
H H

with f 6 R70, 17 € Rn~70 such that ((rtrfr)T is a change of coordinates on the original state space, i.e.,

- € Rnxn is nonsingular. Further, from the definition ofrelative degree in (2.2), we may choose H so

that Hbo = 0. The linearsystem (2.1) can be rewritten in (£,tj) coordinates as

" 0 1 *

♦ . 0

0 1

*? 4

P Q

- .

c0AZ°-% u.

Here, ax e R70, a2 € Rn"70, P € R"-*^"^ Q e Rn-7oxn-70) ^d

c0Al°-lx = a?t + c$ri
HA0x = P£ + Qi).

The form (2.4) is referred to as a normal form and it is well known that the (n —70) eigenvalues
the zeros of the system (2.1). It is useful to note that the state feedback law

coi42i0 xfto
renders the 77 variables unobservable and, furthermore, it zeros the output for all t, that is,

iK0=y(*) = —= »(7D-l)Wso.
The subspace

Vo = Ja:: cqx = c0A0x =•••= coA%°~1x = 0J
= {(0,77):»7€Rn-7«>}

(rendered invariantby (2.6)) is referred to as the zero dynamics subspace of (2.1).

(2.4)

(2.5)

of Q are

(2.6)

(2.7)

(2.8)



2.1 Perturbations in 6

To begin with, we study the effects of perturbations in the input channel alone, i.e., systems of the form

x = Aqx + bou -f-eb\u

y = cqx.
(2.9)

Note that (2.9) remains minimal for c small. Let the relative degree of the perturbation system (co,.Ao,&i)
be 7i. The caseof greatest interest* is 71 < 70, which, by the definition of 71, implies that

C0&1 = coAobi = ••• = coj4o1""2&i = 0
coAp-%2 0 (2.10)

and that, for c small enough, the relative degree ofthe perturbed system (2.9) will be 71. It is easy to obtain
the form of(2.9) in the (£, 77) coordinates defined in (2.3). It will, however, beconvenient for us to decompose
the £ of (2.3) as £T = (tf,#) with

£1 :=

6 :=

Co

CqAq

LC0A7-1
coAl

coAl?-1

x €R71,

(2.11)

x € R70-71.

Note that if 70 = 71, & fails to exist. Also note that we have already used the assumption that 71 < 70 in
the definition (2.11). The system (2.9) is now written as

ii

&

" 0 1

'-. 1

0

0

1

0

0

0 1

0 1

2af

0

!P 2P Q

6

ecoAl^h
ecoAf&i

cc0i4j°"*26i

€Hbx

where la 6 R71, 2ax € R7'"7*, XP e R(»-7o)x7l) ip e r(»-7o)x(7o-7i), and

aT = CaT*aTf, P=[lP*P).

u. (2.12)

(2.13)

Note that, in (2.12), the perturbations appear asinput terms in the equations for fi7l, £2i» •••> £2,70-71» and
t). To find the zero dynamics of (2.12), we use the state feedback

u = —

€CoA%1 % ecoAp *bi
(2.14)

*See the remarks after Theorem 2.1.



to zero the output making the subspace

Vi = |x :cox =c0A0x =•••=cojIJ1"1* =°f
= {(0,&,»?):6€R7o-7*,77€Rn-7<>}

(2.15)

invariant and the state variables (&»»?) 6 Rn_71 unobservable. The dynamics of the (&»»?) variables on Vi
are given by

(21

6,70-71

where

coAZ^b:

c0AZ°-3bi Q
co^1"1*!

2P

2P = —d-r-ff*i 0

0

al,7o-7i a?

Q

+ 2P.

(21

6,70-7i

(2.16)

(2.17)

Thus, wesee that the system (2.9) has (n-71) > (n-70) zeros. To establish the structure of these zeros, we
note that the (-dependent term in (2.16) corresponding to£2,70-71 1S oforder 1/eand thus iscertainly not a
regular perturbation. This singular perturbation term is due to the high-gain form of the feedback control
(2.14). The rich literatureon high-gain systems (see, in particular, [Mar88,San83]) is therefore applicable to
the study of perturbed zero dynamics.

Theorem 2.1 The linear system (2.9) has (n —71) zeros which, according to their asymptotic behavior as
€ —• 0, belong to two groups:

• The (70 —71) large zeros tend to 00 asymptotically as

to-iti

(2.18)

• The remaining (n —70) zeros tend to the zeros of the unperturbed system (2.1).

Proof To facilitate an asymptotic calculation of the eigenvalues of the matrix in (2.16), we transform the
system into a standard singular perturbation form. To this end, we rescale & as follows

and rewrite (2.16) as

- - 1 - TO—-t\— 1

61 = (aii 62 = oo-T! £22}..., £2,70-71 = € y°-yi 6,70-71

1 - - t . / a \

e70-ri£2 = W£2 + Co-tiI^ + Olcro-yij
fl = 2P(2 + QV

(2.19)

(2.20)



where

W:= andT:=

c0Ay°-lb0

( coApbt \
\ coAp-HjcoA?'

0

1

0 2Ol,70-7»

(2.21)

Tosee that (2.20) is in the standard two-time-scale form of [KK086], note that its right hand side is regularly
perturbed by oo—n r, while the matrix of the unperturbed part is block lower triangular. By inspection,
the upper diagonal block is nonsingular as required for a standard form. It follows that the eigenvalues of
(2.16) are asymptotically

e-*±n.\(W)U\(Q). (2.22)
Clearly, the eigenvalues of Q are the (n - 70) zeros of the unperturbed system. It is easy to see [Wil65,

chapter 2] that the remaining (70 —71) eigenvalues are the (70 —7i)th roots of (—'"-V*" *°) multiplied by
CoA0l~ bi

e~ "ro—ri (that is

' lc0AZ°-%\^
(2.23)

This is the asymptotic expression of the (70 —71) large zeros of the perturbed system which tend to 00 as
e —• 0. The remaining (n —70) tend as a set to the eigenvalues ofQ (zeros of the unperturbed system). CD

Remarks

1. Theorem 2.1states that if the relativedegree 71 of the perturbation cb\ is less than that of the original
&0i then (70 —71) of the original system's infinite zeros become finite according to the asymptotic
formula (2.23).

2. Weleaveit to the reader to verify(by direct calculation)that, if the relative degree of the perturbation
bi is 7i > 70, then both the perturbed and unperturbed systems have the same number of zeros and
the zero locations are a smooth function of e.

3. Theorem 2.1 has important implications for the concepts of non-minimum phase and minimum phase.
In particular, if 70 —71 > 2, it follows that arbitrarily small perturbations of the form (2.9) result in
non-minimum phase systems since, for 70-71 > 2, at least one of the roots of (2.18) is in the right half
plane. Of course, for c small enough, the non-minimum phase zeros are far off in the right half plane
prompting us to think of the perturbed system as being slightly non-minimum phase. Nevertheless,
numerous system theory results based on a strict minimum phase assumption should be reexamined
in this light.

4. Even when 70—71 = 1, the relative signs of the quantities in (2.18) may result in right halfplane zeros.
In particular, some zeros will be in the right half plane either when € is positive or when e is negative.

5. Note that, if a perturbation resulting in direct feed-through (y = cqx + cdiu) were allowed, then 71
would be 0 and the asymptotes would coincide with the familiar root locus asymptotes.



2.2 Perturbations in c

Consider now the effects of perturbations of (2.1) in the output channel, i.e.,

x = Aqx + 6o«

y = CoX + €CiX.

As before, if 71 represents the relative degree of the perturbation system (q,.Ao,&o)> ifc follows from con
siderations dual to those given above that if 71 < 70 the system (2.24) has (70 - 71) extra zeros given
asymptotically by the (70 —71) roots of

(lcoA£^%\ *ro-*ri

(2.24)

(2.25)

2.3 Perturbations in A

The qualitative effects of perturbations in .do are similar in that some of the (n - 70) zeros at 00 maybecome
finite; the details of the proof are however more subtle.

Consider

x = (j4o + cA\)x + bou
y = cqx.

Further, let the perturbed system (2.26) have relative degree 71 (71 < 70, as before, is the case of interest),
i.e.,

co&o = co(A0 + cAi)6o = •••= c0(Ao + cAi)7l"260 = 0 Vc
co^o +^i^&o^O fore small. (2'2?)

From (2.27), it is easy to see that the relative degree 71 depends on Ai in a complicated fashion. For the
purpose of this paper, we will restrict our attention to the class of perturbations A\ satisfying assumptions
(2.29) and (2.30) below. Define the subpaces

At- := span {60, Ao&o, ••.,A060 }• (2.28)
Assume that

AiAt- C Ai C Ker cq for i = 1,..., 71 - 3 (2.29)
and

AiA7l_2 £ A7l_2 and AiA7l_2 £ Ker cq. (2.30)
If 71 < 3, assumption (2.29) is vacuous and if 71 < 2, then (2.30) is vacuous. We conjecture that, if the
assumptions (2.29), (2.30) are violated, then the fast zero dynamics occur at a multiplicity of time scales.
The assumptions (2.29), (2.30) guarantee that

coiAo + cAtyr*-1!* = ecoA^-Ho + 0{e2)
=: ca0(€).

(2.26)

(2.31)

Note that a0(0) = coAiA7,1-^.
Thenormal form for thesystem (2.26) isnoteasily obtained inthe(f, rj) coordinates of(2.3); consequently,

we define

£< c0(j4o +cAi)
x. (2.32)

,70-1cq(Aq + cAi)



The matrix in (2.32) is a perturbation of that in (2.3) and is therefore nonsingular for small e. We partition
£e into

Co

Co(A) + eAi)
« '=

U :=

_c0(Ao-reAiyi-1
c0(>lo + ^i)71

70-1c0(Ao + €Ai)

x GR7S

(2.33)

x €R70"71.

In these coordinates we have

(i

(I

' 0 1

"•. 1

0

0

l

0

0

0 1

0 1

' 2*?(e)

0

a?(e)

lPM »/>(€) QW

(-
7o-lj

€ <*0(0)

(f

8

o

ea0(e)
eai(c)

«*7o-7i-l(«)
€<*7o-7i (€) + cpA7,0-1^

0

u.

(2.34)
In (2.34) the vectors, lat(c), 2ai(c), a2(c), and matrices, 1P(e), 2P(c), Q(c), are all perturbations of the
corresponding entries in (2.12) and the a,- (i > 1) are smooth functions of c. Note that, with the exception
ofco-Aj0- &o, all the input coefficients are multiplied byc. We now leave it to the interested reader to verify
that the unbounded (as functions ofe) zeros have the asymptotic form of the (jo —Ti) roots of

(2.35)

Equation (2.35) is very similar to (2.18) except that cc0Aj1_16i is replaced by cao(0) (= c0Al^J1~260), the
control coefficient for £f7i.

3 Nonlinear Systems

We briefly review the definition of zero dynamics for SISO nonlinear systems of the form

* = fo(x) + go(x)u
y = ho(x).

(3.1)

Let xo be an equilibrium point of the undriven system (i.e., fo(x0) = 0) and let U C Rn be an open
neighborhood of xq. We will assume the the system has strict relative degree 70 at xq, i.e.,

Lgoh0(x) = LgoLhho{x) =•••=LgoLf-2h0{x) =0 Vx € U
LtoLfo'lho(x)^0. (3.2)



Note that we implicitly assume that the system has a relative degree! We will further assume (w.l.o.g.) that
M*o) = 0.

To find a convenient normal form for the nonlinear system (3.1), we begin by defining

* :=

h0(x)
Lfoh0(x)

L I]J-lAo(*)

€R7o

(3.3)

TJ := T}(x) gR»-7o

such that (f, rj) is a diffeomorphism of x in U. Fromthe definition of relative degree, wemaychoose r)(x) so
that

Lgorn(*) = 0 *= l,...,n-70. (3.4)

The normal form of the nonlinear system (3.1) is then written (using (£,77) coordinates) as

0 1

0

0 0

p 0 " " 0

£

0 0

»7

+ Kt,v) + «(t,r,)

««,»?) 0

L -1
•

u. (3.5)

Here, a(£, 77) = I,0jDJJ*"%(x) and 6(f, rj) = X}J/»0(«) in the (£,77) coordinates and #(f, rj) = Lforji(x) in the
(£,77) coordinates.

The zero dynamics of a nonlinear system are the dynamics of (3.5) consistent with the constraint that
the output is held identicallyzero, i.e., y(t) = 0. From the normal form (3.5), it is clear that the nonlinear
state feedback

«=—^-T*tf, 1) =-, ^ii. , ^}°Mx) (3.6)
««,H) L^0"1''0o^/o Ao(*)

results in y(t) = 0. Furthermore, the control law (3.6) renders the manifold

Mo = {x:h0(x) =Lfoho(*) =~- =I>}r1ho(x) =o}
= {(0,r7):i7€R"-7°}

(3.7)

invariant and makes the 77 variables unobservable. Since y(<) = 0 is equivalent to £ = 0, we find that the
zero dynamics of (3.5) (hence (3.1)) evolve on the zero dynamics manifold Mo and are described by

77 = 9(0,77). (3.8)

Let 770 be the 77 componentofxo (i«e-» xq •-+ (0,770) under the change ofcoordinates). Then 770 is an equilibrium
point of (3.8). Further, we may associate with 770 the (Jacobian) linearization of g(0,77) at 77 = 770, i.e.,

a?(Mo)
077

with its eigenvalues referred to as the nonlinear zeros of the system (3.1).
We will now study the effects of perturbations on the normal form (3.5).

(3.9)



3.1 Perturbations in g

Consider, as in the previous section, perturbations in the input channel alone, i.e.,

* = /o(*) + <7o(s)u + egi(x)u
y = ho(x).

We will assume that the perturbation system (/j0i /o> <7i) has a strict relative degree of 71, i.e.,

Lgih0(x) = LgiLJoh0(x) = ... = LgiL?Q-2h0(x) = 0 Vx € U
LgiLyo'1ho(x)^0.

(3.10)

(3.11)

As before, the case of greatest interest is when 71 < 70. Following the previous development, we partition f
as

h0(x)
Lfoho(x)

6

£1 =

6 =

Lq^hoix) J

L?0ho(x)

L t%-lho{x) J
The perturbed system (3.10) expressed in (&,&,77) coordinates looks like

" 0 1

'•. 1

0

0

1

0

0

0 1

••. 1

0

0

0 0 0

€R71,

GR7o-7i.

6

q&v)

(3.12)

eL^Ll-'hp

eLgiLyo-2h0
a(^,77) + eZ;gl£7°-1Ao

eLgxVi

€LgiVn-yo
(3.13)

Note that, in (3.13), we have deliberately chosen not to write the LtlL*j0ho terms in the (f, 77) coordinates.
Using the nonlinear state feedback

to zero the output, we make the manifold

Mx = {x:hQ(x) =LJoh0^) ='" =L'}l0~1ho(x) =o}
= {(0,&,»7):&€R7o-7l,77€Rn-70}

(3.14)

(3.15)



invariant and the (&, v) € Rn~71 variables unobservable. Thus, the zero dynamics of (3.10) are precisely the
dynamics of (£2,rj) on Mi given by

61

£2,70-7i

f LgtL^nho
i«£701"1/,°
LgiL%+lh0

1

0 1

0 ••

0 ••

L

• 0 1

0

0

Lg}Tll

0 0
LgiVn—vo

€70-71 £2
0

6

21

&t7o-7i

0

«(*,U)

(3.16)
Before we state a nonlinear counterpart to Theorem 2.1, we apply the scaling specified by equation (2.19)
to (3.16), namely

~ 1 - 70-71-1

6l = «1» 62 = e™-7i £22, ••♦, 6,70-71 = C T0~71 6,70-Ti* (3-17)
The transformation of (3.17) renders terms in the first column of the matrix in (3.16) potentially unbounded
as € tends to zero. Now rewrite (3.16) as

L90LJ%~ h°

LgiL%-lh0

'•. 1

•• 0 + £T0-7ifc(|2,77,e). (3.18)

0 0
^ffl^n—-

In (3.18), We will assume that fc(f2,77, c) € Rn_7» is a smooth function of£, 77, and c. Thus, for example, we
may require that for some K that

'Jal
L9lL%-lho
Lgj^'ho
LgiL%-lh0

< *I6i|,

etc.

(3.19)

Withthis assumption, which is unique to the nonlinear case, it may be verified that the second termin (3.18)
is multiplied by e^o-71 in analogy with the second term on the right hand side of (2.20). Equation (3.18)
shows the two time scale nature of the zero dynamics. We mention in passing that if conditions of the form
of (3.19) do not hold then there may be more than twotime scales in the zerodynamics. The f2 variables
are the fast variables and the slow manifold of the zero dynamics of (3.18) is the subspace corresponding to

10



the 77 variables (up to zeroth order in e). The fast dynamics of the £2 variables are determined by studying
the scaled variables I2 in the fast time, i.e., set r = tfe.1^0-"11 and then set e= 0 to get

dr ~ 6
(3.20)

'W/o

77(1-) = 770.
L^L^ho

La^LZ^h
Note that ° ^_. in (3.20) should be expressed as a function of (fij&i*?) with £1 and 77 set to 0 andLgiL?o-lho
770, respectively. From this, the stability properties of the fast system are easy to deduce. Clearly, £2 = 0 is
an equiUbrium point of (3.20) and the eigenvalues of (the linearization of) (3.20) are the (70 —71) different
roots of the lower left term of (3.20), i.e.,

at Kn6i»?) = (0,0,770). (3.21)

In the original time scale, these eigenvalues are of order l/e1'70-71.
The remarkable new feature of the fast zeros of the nonlinear system is that they vary with rfo on the

base slow manifold Mo* Pictorially then, we have the following figure for the foliation of M 1.

Figure 1: Showing the foUation of the zero dynamics manifold of M1 (with Mo embedded) by the fast zero
dynamics of (3.20).

CoUecting these observations, we have the following counterpart to Theorem 2.1.

Theorem 3.1 The nonlinear system (8.10) has (n —71) zeros. According to their asymptotic behavior as
€ —• 0, the zeros belong to two groups:

• As e —* 0, (71 —70) zeros arise from the dynamics of

0

^2
€ 70-71

dt

LgiL?o-lhz

11

6

(fi,f2,»j)=(0,0,»7o)

• The remaining (n —70) zeros tend to the zeros of the unperturbed system (3.1) as e—>0.

(3.22)



Proof The preceding observations yield the first part of the theorem. The verification that as e —• 0 the
dynamics of 77 in (3.18) tend to those of 77 = 9(0,77) foUows fromsetting c = 0 and f2 = 0 in (3.18). (Actually,
this happens in quite a subtle fashion since some terms appear as multiples of £21 and others appear as
multiphes ofc1/7o-7i t) •

Remarks

1. As in the remarks after Theorem 2.1, we leave it to the reader to verify that, if the relative degree
of the perturbation g\ (i.e., 71) is > 70, then the zero dynamics of the perturbed and unperturbed
systems have the same dimension and qualitative properties (i.e., the perturbation in the zero dynamics
is regular).

2. The remarkable additional feature found in nonUnear systems that is not present in linear systems is
that the locations of the asymptoticaUy unbounded zeros in the complex plane, i.e., 1/£1/to-7i times
the quantities in (3.21), vary with 77. Thus, as suggested by figure 1, some parts of the zero dynamics
manifold Mo of the unperturbed system may be attractive to the fast dynamics of the £2 variables
while other parts may be repulsive. Of course, it is easy to show that if the equiUbrium point xo of the
original system corresponds to (0,770), then the fast zeros wiU be given by

(3.23)^ ~tLgiLl-lh0)
Uit€a»«7)=(0,0,»7o)

In figure 1, for example, xo has been shown belongingto a region where the manifold M0 is attractive.

3.2 Perturbations in h

As in Section 2.2, the qualitative results of Section 3.1 hold when the nonlinear system (3.1) is perturbed in
ho. To this end, we consider the perturbed system

x = /o(x) + g0(x)u
y = ho(x) + ehi(x)

with relative degree 71 < 70. It is no longer possible to invoke duality but one may use a new set of
coordinates for the normal form given by

ho(x) + cAi(x)
Lf0(ho(x) + ehi(x))

V :=

lL?o~1(h0(x)-reh1(x))

77 := 77(x)

(3.24)

€R70

(3.25)

in-to

Note that the diffeomorphism of (3.25) is a perturbation of that in (3.3). By partitioning£e into £f and £|
and scaling£| as above, it can be shown that the £<§ variables in the time scale r = t/e1^0'^1 satisfy

d&
dr

oro(0,#«,f?)

ti

where ao(£f,li,»7) and a0(£f,|f,T7) are L^Lf^hi and L^Lj^ho in (ff,||,77) coordinates.

12

(3.26)



3.3 Perturbations in /

The situation here is delicate and analogous to that in Section 2.3. Consider the perturbed system

& = fo(x) + c/i(x) + g0(x)u
y = ho(x)

(3.27)

and assume that it has relative degree 71 < 70. The class of perturbations /i(x) satisfy a nonlinear analog
of assumptions (2.29) and (2.30). Define the distributions

A, := span {g0, adfog0,..., ad)ogo}. (3.28)

Assume that (the notation _l_ means the orthogonal distribution)

adh A, C A,- C {dh0}± for i = 1,..., 71 - 3 (3.29)

and

ad/1A7l_2 <£ A7l_2 and adflAyi-2 £ {dh0}±. (3.30)
If 71 < 3, assumption (3.29) is vacuous and if 71 < 2, (3.30) is vacuous. As in the linear case, we conjecture
that if these assumptions are violated then the fast zerodynamics may occur at a multiplicityof time scales.
These assumptions guarantee that

^oiJS^o = eLgoLflLyo-2h0 + 0(e*)
=: «*0(e).

Note that a0(0) = LgoLhL)\'2ho.
For coordinates, one uses

V :=

77 :=

ho(x)

Afo+e/iM*)

77(x)

6R70

g Rn-70

(3.31)

(3.32)

and the development ofSections 3.1 and 3.2 can be repeated to yield the fast dynamics ofequation (3.26)
with the difference that or0(£f,£§,77) is L^L^V^ho.

4 Conclusion

In this paper, we have shown the effects of perturbation on the zero dynamics of both linear and nonlinear
SISO systems. We have shown how regular perturbations in the state space descriptions of these systems
can result in the appearance ofsingularly perturbed or fast zero dynamics. We have given expUcit formulas
for the locations in the complex plane that the zeros at 00 migrate to under perturbation. For the most
part, we have placed assumptions on the structure of the allowable perturbations so as to guarantee the
appearance of fast time scale zero dynamics at one time scale alone. When these assumptions are not met,
we conjecture that our qualitative results wiU be unaltered but that fast zero dynamics at multiple time
scales will appear. Our theory bears a strong resemblance to the Uterature on high gain feedback and is in
some sense to be thought of as a companion to that Uterature, since it reveals the zero structure at 00 by
the artifact of system perturbation.

We conclude by noting that the analysis presented in this paper can be extended albeit in much more
subtle form to the MIMO case, and involving a multiplicity of time scales (see [HSK89]).
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