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Abstract

In this paper we present new results on the structure of the zeros of linear and nonlinear systems under
perturbation. In particular, we show that when state space descriptions of linear or nonlinear single-
input single-output systems with relative degree > 2 are regularly perturbed, then their zero dynamics
are singularly perturbed and show a separation of time scales. In the SISO case, we give asymptotic
formulas for the new high frequency zero dynamics arising from the regular perturbation.

1 Introduction

In this paper we show that regular perturbations of the state space descriptions of linear and nonlinear single-
input single-output (SISO) systems of relative degree > 2 result generically in the appearance of singularly
perturbed (fast) zero dynamics. In other words, an effect of perturbations in the state space descriptions
is the migration of some zeros from oo to finite locations in the complex plane. Depending on the sign of
the regular perturbations, some of the perturbed zeros can migrate from co to the right half of the complex
plane. This leads to a reconsideration of minimum phase systems of high relative degree (pole-zero excess
> 2) as being only dominantly minimum phase since small perturbations result in right half plane zeros of
large magnitude.

Our investigations in this direction were motivated in part by a study in [HSM88] of the linearization by
nonlinear state feedback of a class of slightly non-minimum phase systems encountered in the flight control
of VTOL aircraft. Indeed, in this work, the ¢rue system had a small regular perturbation in its equations
caused by the way moments were generated on the aircraft. This, in turn, manifested itself as two zeros of
large magnitude—one minimum phase and one non-minimum phase. We restrict ourselves to the SISO case
here and postpone the considerably more technical MIMO case [HSK89].

This paper deals with both linear and nonlinear systems—definitions of zero dynamics for nonlinear
systems have only recently become available [[M87,BI88]. The qualitative theory is similar for both classes
of systems, though the techniques are rather different. The techniques also draw heavily from the literature
on singular perturbation [KK0O86,SOK84].

An outline of the paper is as follows: In Section 2, we develop explicit formulas for the locations of the
large magnitude zeros of linear systems under perturbation. In Section 3, we repeat this development for
the nonlinear case. Section 4 collects some concluding remarks.

tResearch supported in part by NASA under grant NAG2-243, the Army under grant ARO DAAL-88-K0572, NSF under
grant ECS 87-15811, the Schlumberger Foundation, and the Berkeley Engineering Fund.



2 Linear Systems

In this section we will consider the effects of regular perturbations of by, co, Ao on the zeros of a SISO linear
system of the form

2 = Aoz +bou
y = coz.
We will assume that the system (2.1) is minimal and has relative degree (excess of poles over finite zeros)
Y0, i.e.,

(2.1)

CObO = COAobo == 00A3°'2bo =0
coAJ*~1bo # 0.

To exhibit its (n — 7o) finite zeros, it is useful to use a normal form which will also prove convenient in the
nonlinear case. To this end, we define

(2.2)

.- - B Co 9 .- -
I3 coAo =
= z = z (2.3)
_ codd~? —_
Ln] | B | &

with £ € R, n € R*-" such that (¢7,77)T is a change of coordinates on the original state space, i.e.,

€ R™*" is nonsingular. Further, from the definition of relative degree in (2.2), we may choose H so

thg Hbo = 0. The linear system (2.1) can be rewritten in (£, 1) coordinates as
-1 [0 1 1r 11 o ]
€ 0 3 :
0 1 0
— 1= af a%' _ + CQAgo—lbo u. (24
Ui | P Q n 0

Here, a, € R, az € R*=70, P € R"=7X"o, Q € RP-70X"~0, and
COAgo-lz = azlré' + ag'n
HAoz = PE+Qn.

The form (2.4) is referred to as a normal form and it is well known that the (n — 7o) eigenvalues of Q are
the zeros of the system (2.1). It is useful to note that the state feedback law

1

(2.5)

U= —m(ﬂf& + ag‘n) (2.6)
renders the 7 variables unobservable and, furthermore, it zeros the output for all ¢, that is,
y(t) = y.(t) =cee = y(7°_1)(t) = 0- (2'7)

The subspace
Vo = {z 100z = cpApz = ++- = coAg"“l:c = 0}
= {(0,n) : n € R*=7}
(rendered invariant by (2.6)) is referred to as the zero dynamics subspace of (2.1).

(2.8)



2.1 Perturbations in b
To begin with, we study the effects of perturbations in the input channel alone, i.e., systems of the form

& = Aoz -+ bou+ ebyu (2.9)
Yy = coz.

Note that (2.9) remains minimal for € small. Let the relative degree of the perturbation system (co, Ao, b;)
be 71. The case of greatest interest! is v; < 79, which, by the definition of v;, implies that
Cob1 = cvob1 = eee= cOAgl-zbl =0
coAg"lbl -',ﬁ 0
and that, for ¢ small enough, the relative degree of the perturbed system (2.9) will be v;. It is easy to obtain

the form of (2.9) in the (€, n) coordinates defined in (2.3). It will, however, be convenient for us to decompose
the & of (2.3) as &7 = (¢F,£7) with

(2.10)

Co
cvo
El = . z GR“’

| coAd ! | (2.11)
[ coAl ]
62 = : 2 €RY-TN,

CQAgo- 1

Note that if y0 = 71, £, fails to exist. Also note that we have already used the assumption that y; < 9o in
the definition (2.11). The system (2.9) is now written as

- 0 1 - 1 [ 0 ]
3 R 0 0 & :
. . 1 0
1 €coAP ~1b,
1 €coAd by
& | = 0 S 0 & |+ : u.  (2.12)
0 1 ecoA b
S 17 20T of — coAJ° " (bo + €by)
7 1p 2p Q n eHby

where 'a; € RT, 2g; € RY-mn, 1p¢ R(ﬂ—‘ro)x’h’ 2pe R(ﬂ—'ro)x(‘ro—'h)' and
af = (*a] %aT)T, P=['P2P]. (2.13)

Note that, in (2.12), the perturbations appear as input terms in the equations for 5'1.,,, E21) .00 5'2'.,0_.,,, and
7. To find the zero dynamics of (2.12), we use the state feedback

1 1
- 1 521 =- 1
€A~ by €A by

u= coA'z (2.14)

$See the remarks after Theorem 2.1.



to zero the output making the subspace

W = {:c:Co:c=cvo:c= “‘=¢0A3‘-1z =0}
{(01£2$ 7)) : Eg (3 R‘YO""h, neE Rn-7°}

(2.15)

invariant and the state variables (£2,7) € R"="1 unobservable. The dynamics of the (&2, 7) variables on V;

are given by

£

63"‘!0-'71

CQAn." b;

CoAgl-!b1
coAg'"'H'bg
c0AJI™ b,

4:.,.4"“0"5l

CQA;"—‘b;

CoA;'o-lbl _ lCoAgo-lbo

0

+2ay; 2apg

2
8@1,70—1

f2ﬂo-1x

&1

coAT " 1h, € coAJt " p,

~

L i p Q L ]

(2.16)
where

Pp=| ——tr—Hty 0 |42p (2.17)

CoAgl-lb1

Thus, we see that the system (2.9) has (n —71) > (n— o) zeros. To establish the structure of these zeros, we
note that the e-dependent term in (2.16) corresponding to ég’-'o--n is of order 1/¢ and thus is certainly not a
regular perturbation. This singular perturbation term is due to the high-gain form of the feedback control
(2.14). The rich literature on high-gain systems (see, in particular, [Mar88,5an83)) is therefore applicable to
the study of perturbed zero dynamics.

Theorem 2.1 The linear system (2.9) has (n — v1) zeros which, according to their asymptotic behavior as
€ — 0, belong to two groups:

o The (70 — 11) large zeros tend to co asymptotically as

—
_LeoAP M ) ™7 (2.18)
€ coAg‘-lbl ) )

o The remaining (n — 7o) zeros tend to the zeros of the unperturbed system (2.1).

Proof To facilitate an asymptotic calculation of the eigenvalues of the matrix in (2.16), we transform the
system into a standard singular perturbation form. To this end, we rescale &; as follows

—yy =1

- - 1 <
§21 = {21, £22 = €70-71 829, vy L2190y S € 10771 L2190, (2.19)
and rewrite (2.16) as
g, = Wh
U] = 2P& + @Qn

+ el + Ofewtw) 2.20)



where

[ 0 1 ] [ - CoAi" b! 1 1
. CQA;“-‘51
W= ' a and T := 0 . (2.21)
0 ¢ . 1 : .. 1
_ caA;’o-‘bo ... . ¢ °
[ coa’ "y, 0 0 J | 0 .- 0 261,‘70—71 i

To see that (2.20) is in the standard two-time-scale form of [KKO86), note that its right hand side is regularly
perturbed by e€5-71T, while the matrix of the unperturbed part is block lower triangular. By inspection,
the upper diagonal block is nonsingular as required for a standard form. It follows that the eigenvalues of
(2.16) are asymptotically

e Torm  A(W)UXQ). (2.22)
Clearly, the eigenvalues of @ are the (n — ) zeros of the unperturbed system. It is easy to see [Wil65,

-1
chapter 2] that the remaining (vo — 71) eigenvalues are the (7 — 71)th roots of (-%é,’:—_i%) multiplied by
04/1g 1

= e .
€ %o-71, that is

—
(-lcoA;“"bo) — (223)

€ coAd'~ lbl

This is the asymptotic expression of the (7o — 71) large zeros of the perturbed system which tend to oo as
€ — 0. The remaining (n — 7o) tend as a set to the eigenvalues of Q (zeros of the unperturbed system). O

Remarks

1. Theorem 2.1 states that if the relative degree v, of the perturbation eb; is less than that of the original
bo, then (70 — 11) of the original system’s infinite zeros become finite according to the asymptotic
formula (2.23).

2. We leave it to the reader to verify (by direct calculation) that, if the relative degree of the perturbation
b1 is 71 2 70, then both the perturbed and unperturbed systems have the same number of zeros and
the zero locations are a smooth function of e.

3. Theorem 2.1 has important implications for the concepts of non-minimum phase and minimum phase.
In particular, if 70 — 11 > 2, it follows that arbitrarily small perturbations of the form (2.9) result in
non-minimum phase systems since, for 70 —7; > 2, at least one of the roots of (2.18) is in the right half
plane. Of course, for € small enough, the non-minimum phase zeros are far off in the right half plane
prompting us to think of the perturbed system as being slightly non-minimum phase. Nevertheless,
numerous system theory results based on a strict minimum phase assumption should be reexamined
in this light.

4. Even when 70— 71 = 1, the relative signs of the quantities in (2.18) may result in right half plane zeros.
In particular, some zeros will be in the right half plane either when e is positive or when ¢ is negative.

5. Note that, if a perturbation resulting in direct feed-through (y = cpz + edju) were allowed, then 7,
would be 0 and the asymptotes would coincide with the familiar root locus asymptotes.



2.2 Perturbations in ¢

Consider now the effects of perturbations of (2.1) in the output channel, i.e.,

T Aoz + bou
Yy = cor+eciz.

(2:24)

As before, if 71 represents the relative degree of the perturbation system (q, Ao, bo), it follows from con-
siderations dual to those given above that if 93 < 7o the system (2.24) has (yo — 1) extra zeros given
asymptotically by the (v0 — 71) roots of

1 e
_leods®™ bo ) ™ (2.25)
€ clAgl-lbo ‘

2.3 Perturbations in A

The qualitative effects of perturbations in A are similar in that some of the (n — 7o) zeros at co may become
finite; the details of the proof are however more subtle.
Consider
£ = (Ao+e€A1)z+ bou
y = coz.
Further, let the perturbed system (2.26) have relative degree 1 (71 < Y0, as before, is the case of interest),
ie.,

(2.26)

cobo = co(Ao + €A1)bo Seeez= cO(Ao + €A1)7'-2bo =0 Ve
co(Ao +€A1)" b £ 0 for € small.
From (2.27), it is easy to see that the relative degree v, depends on A; in a complicated fashion. For the

purpose of this paper, we will restrict our attention to the class of perturbations A, satisfying assumptions
(2.29) and (2.30) below. Define the subpaces

(2.27)

A; := span {bo, Aobo, ..., Ajbo}. (2.28)
Assume that
A1Ai CA;C Kereg fori=1,..,71 -3 (2.29)
and
A1Ay, 2 € Ay, _2 and A1A,,_2 ¢ Ker cp. (2.30)

If 71 < 3, assumption (2.29) is vacuous and if v; < 2, then (2.30) is vacuous. We conjecture that, if the
assumptions (2.29), (2.30) are violated, then the fast zero dynamics occur at a multiplicity of time scales.
The assumptions (2.29), (2.30) guarantee that

CQ(Ao + €A1)7"lbo = 6CoA1Ag'-2bo + 0(62) (2 31)
=: eagp(e). )
Note that ag(0) = coAlAg“zbo.
The normal form for the system (2.26) is not easily obtained in the (£, ) coordinates of (2.3); consequently,
we define

[ ] co
e co(Ao +€4,;)
= : z. (2.32)
- co(Ao + €4;)"°!
7] | H



The matrix in (2.32) is a perturbation of that in (2.3) and is therefore nonsingular for small e. We partition
&€ into

Co
g = cO(Ao + €A1) z €RM,
| co(Ao+€A)"t (2:33)
CO(Ao + 614.1)"'1
& = : z €RY-mMm,
| CO(Ao +€A1)7°-1 |
In these coordinates we have
’. - [0 1 1. T 0 i
é 0 0 & :
o. 1 0
1 €ao(e)
1 eay(e)
E; = 0 ., . 0 E& + E u.
0 1 ea‘)’o-“h-l(e) L
— 167 (¢) A af(e) — €yo-, (€) + coAg"” o
17 1P(e) 2p(e) Q) " 0

(2.34)
In (2.34) the vectors, la;(e), %a1(¢), az(¢), and matrices, 1P(¢), 2P(¢), Q(¢), are all perturbations of the
corresponding entries in (2.12) and the o; (i > 1) are smooth functions of e. Note that, with the exception
of coAg"'lbo, all the input coefficients are multiplied by . We now leave it to the interested reader to verify
that the unbounded (as functions of ¢) zeros have the asymptotic form of the (v — 11) roots of

ICOAgo-lbo ";o-l'l—x
(_Z—ao(o) ) : (2.35)

Equation (2.35) is very similar to (2.18) except that ecoAg* ~'b; is replaced by eag(0) (= coA1 AT ~2bo , the
A 0 0
control coefficient for &5, .

3 Nonlinear Systems
We briefly review the definition of zero dynamics for SISO nonlinear systems of the form

& fo(z) + go(z)u
y = ho(z).
Let zo be an equilibrium point of the undriven system (i.e., fo(zo) = 0) and let U C R™ be an open
neighborhood of zo. We will assume the the system has strict relative degree 7o at zo, i.e.,
Lgoho(2) = Lo Lyoho(z) = -+ = Lyg L1 ?ho(z) =0 Vz €U
Ly LY ho(z) # 0.

(3.1)

(3.2)

7



Note that we implicitly assume that the system has a relative degree! We will further assume (w.l.o.g.) that

ho(xo) =0.
To find a convenient normal form for the nonlinear system (3.1), we begin by defining
ho(z)
Ly, ho(z
£ = fo . () € R™
: (3.3)
L1 ho(z)
n = n(z) € Rn-7e

such that (¢, ) is a diffeomorphism of z in U. From the definition of relative degree, we may choose n(z) so
that
Lgmi(z)=0 i=1,..,n—7,. (3.4)

The normal form of the nonlinear system (3.1) is then written (using (¢, 1) coordinates) as

-4 [0 17 0 1 [ o ]
13 0 ¢ : :

. 1 0 0
= 0 |t b | ] aEn) |* (3.5)
n 0 0 n a(€,n) 0
- - L i - L o - o

Here, a(§,7) = LgoL}:"lho(z) and b(§,n) = L} ho(z) in the (¢, ) coordinates and g;(£,7) = Ly,mi(z) in the
(&, m) coordinates.

The zero dynamics of a nonlinear system are the dynamics of (3.5) consistent with the constraint that
the output is held identically zero, i.e., y(t) = 0. From the normal form (3.5), it is clear that the nonlinear

state feedback 1 1
= e b E S — /4 () 3.6
a(fa T’) (E‘) ’7) Lyo L}:—lho(z) fo 0(2) ( )

results in y(¢) = 0. Furthermore, the control law (3.6) renders the manifold

My = {.z' tho(z) = Lyyho(z) =---= L}:'lho(z) = 0} (3.7
= {(0,n): n€Rn-1}

invariant and makes the 7 variables unobservable. Since y(t) = 0 is equivalent to £ = 0, we find that the
zero dynamics of (3.5) (hence (3.1)) evolve on the zero dynamics manifold Mo and are described by

1= q(0,7). (38)

Let no be the n component of z¢ (i.e., 2o — (0, 7o) under the change of coordinates). Then 7y is an equilibrium
point of (3.8). Further, we may associate with 5o the (Jacobian) linearization of (0, n) at 7 = 7o, i.e.,

8q(0a 7’0)
o (3.9)

with its eigenvalues referred to as the nonlinear zeros of the system (3.1).
We will now study the effects of perturbations on the normal form (3.5).



3.1 Perturbationsing

Consider, as in the previous section, perturbations in the input channel alone, i.e.,

¢ = fo(2) +90(z)u +eqr(z)u

(3.10
y = hofa). )
We will assume that the perturbation system (ho, fo,g1) has a strict relative degree of 71, i.e.,

Lg, ho(z) = Ly, Ly ho(2) = -+ = Ly, L};_zho(-"’) =0 VzeU (3.11)

Ly L}~ ho(z) #0.

As before, the case of greatest interest is when 9 < 90. Following the previous development, we partition &

& ad
ho(z)
h
51 = Lfo ‘O(Z) c R‘h,
-1
L L!D ho(ﬂ.‘) J (3.12)
[ L} ho(z)
62 = E € RYo—71,
L L}:_lho(z) ]
The perturbed system (3.10) expressed in (&, €2, 77) coordinates looks like
- - B 0 1 ) - | : 0 - - 0 |
" ° 0 &1 : :
1 : 0
; 0 cLs, L};-lho
1 B Lo Ljsho
1 0 0 & |+ + ; )
: 0 chl L}:-zho
0 6(61 7’) a(£, 77) + CLgl L}:—lho
N €Lg,m
n n ‘
0 0 O a(é,m)
- - - - CLgl nn—-yo

) ) ] S (3.13)
Note that, in (3.13), we have deliberately chosen not to write the LglL}oho terms in the (€, n) coordinates.
Using the nonlinear state feedback

1 1

P S S S— 7 YW 3.14
eLg,L};‘lhofn €Ly, L} Tho(z) o(=) (3.14)

to zero the output, we make the manifold

My = {z:ho(z) = Lyho(z) = -+ = L} ho(z) = o}

(3.15)
{(0,&2,7) : &3 € RYo=m1, n € R*~70}



invariant and the (£2,%) € R®~7! variables unobservable. Thus, the zero dynamics of (3.10) are precisely the
dynamics of (£2,7) on M given by

i Lg, L7 ho 1
T Lo L]

149 "0
. LnL};ﬂho 0 1
€21 "L LE T 21 [0

_EaLR ke 0 ... 0 1 : 0
) — LgyL71 " ho | + | b(e,n)
§$270-m Lo, L ho 3 LggL}0 ho $2,10-m 280
_L,‘L}:-l’lo B ?L’IL}’:_lho )
7.’ - Ly-,ﬂ_l n Q(E9 77)
L"L,; ho

) ’ : 0 0 ) ’
- Lq Mn—vo
Ly, L}’; ““ho

e

-

: (3.16)
Before we state a nonlinear counterpart to Theorem 2.1, we apply the scaling specified by equation (2.19)
to (3.16), namely

Yo=Yy ~1

. . . .
€21 = €21, L2 = €701 €29, + oy E290mqy =€ -1 E2yomy - (3.17)

The transformation of (3.17) renders terms in the first column of the matrix in (3.16) potentially unbounded
as ¢ tends to zero. Now rewrite (3.16) as

0 1 :
. S LI . LR . O - -
€Yo~ ¢, 0 .. 1 &
L,oL"'!°"‘ho .
= "L“ L}:"lbo 0 -..- 0 + €0 k({z, 7 6). (3.18)
o gm
Lo, L7 ho

- = _ Lg;nn—v
LﬂL;;' ho

L. .

In (3.18), We will assume that k(£;,n,€) € R*~" is a smooth function of &, 1, and . Thus, for example, we
may require that for some K that

Lg,LY ho
—_—t

Lg, L};'lho S KI&ZII:

Lo, L7+ ho
Lo, L7 " ho

< Kl + K22, (3.19)

etc.

With this assumption, which is unique to the nonlinear case, it may be verified that the second term in (3.18)

is multiplied by %= in analogy with the second term on the right hand side of (2.20). Equation (3.18)
shows the two time scale nature of the zero dynamics. We mention in passing that if conditions of the form
of (3.19) do not hold then there may be more than two time scales in the zero dynamics. The £, variables
are the fast variables and the slow manifold of the zero dynamics of (3.18) is the subspace corresponding to

10



the 7 variables (up to zeroth order in ¢). The fast dynamics of the &, variables are determined by studying
the scaled variables &; in the fast time, i.e., set T = t/e!/Y=71 and then set € = 0 to get

0 1
& _ g,
ar o | (3.20)
_Lslp ko 0
Loy L3 ™ he .

(7)) = 7o

v0—1p -~
Note that -i—“i—{gr; in (3.20) should be expressed as a function of (£1,&2,7) with & and 1 set to 0 and
1% 40 ° -~
7o, respectively. From this, the stability properties of the fast system are easy to deduce. Clearly, &, = 0 is
an equilibrium point of (3.20) and the eigenvalues of (the linearization of) (3.20) are the (yo — 71) different

roots of the lower left term of (3.20), i.e.,

Lo, LY ho\ ™ -
e f 2 at = (0,0, 70)- 3.21
( Ly!L};-lho (£1,€2,m) = (0,0, 70) (3:21)

In the original time scale, these eigenvalues are of order 1/¢l/7o—m,
The remarkable new feature of the fast zeros of the nonlinear system is that they vary with m on the
base slow manifold Mg. Pictorially then, we have the following figure for the foliation of M ;.

Figure 1: Showing the foliation of the zero dynamics manifold of M; (with Mg embedded) by the fast zero
dynamics of (3.20).
Collecting these observations, we have the following counterpart to Theorem 2.1.

Theorem 3.1 The nonlinear system (3.10) has (n — 11) zeros. According to their asymptotic behavior as
€ — 0, the zeros belong to two groups:

o Ase — 0, (71 — Yo0) zeros arise from the dynamics of

[ 0 1 ]
-l dgz R 3
et e _ ) 3.22
0=71 7 -1 52 ( )
_L,OLZ“'lho 0
=1
L L" L}; ho - (61 réﬁ ] )=(0'01"0)

o The remaining (n — o) zeros tend to the zeros of the unperturbed system (3.1) as e — 0.

11



Proof The precedmg observations yield the first part of the theorem. The verification that as ¢ — 0 the
dynamics of 7 in (3.18) tend to those of 1} = ¢(0, 1) follows from setting ¢ = 0 and fz = 0in (3.18). (Actually,
this happens in quite a subtle fashion since some terms appear as multiples of £;; and others appear as
multiplies of ¢1/70-m1)

Remarks |

1. As in the remarks after Theorem 2.1, we leave it to the reader to verify that, if the relative degree
of the perturbation g, (i.e., 71) is > 7o, then the zero dynamics of the perturbed and unperturbed
systems have the same dimension and qualitative properties (i.e., the perturbation in the zero dynamics
is regular).

2. The remarkable additional feature found in nonlinear systems that is not present in linear systems is
that the locations of the asymptotically unbounded zeros in the complex plane, i.e., 1/¢1/70=7 times
the quantities in (3.21), vary with 5. Thus, as suggested by figure 1, some parts of the zero dynamics
manifold Mo of the unperturbed system may be attractive to the fast dynamics of the Eg variables
while other parts may be repulsive. Of course, it is easy to show that if the equilibrium point z¢ of the
original system corresponds to (0, 7o), then the fast zeros will be given by

1 LgoL‘Yo-lho 'ru-"u
. (€2,€2m)=(0,0,m0)

In figure 1, for example, 2 has been shown belonging to a region where the manifold My is attractive.

3.2 Perturbations in A

As in Section 2.2, the qualitative results of Section 3.1 hold when the nonlinear system (3.1) is perturbed in
ho. To this end, we consider the perturbed system

¢ = fo(z)+ go(z)u
y = bho(z)+ehi(x)

with relative degree 91 < 7. It is no longer possible to invoke duality but one may use a new set of
coordinates for the normal form given by

(3.24)

ho(z) + ehl(z)
P Lfo(ho(z).-!- €hi(z)) c R
: (3.25)
L}~ (ho(z) + eha(2))
n = n(z) € R0

Note that the diffeomorphism of (3.25) is a perturbation of that in (3.3). By partitioning £¢ into £{ and &5
and scaling £§ as above, it can be shown that the £5 variables in the time scale 7 = t/el/To—7 gatisfy

0 1
df% *e . ‘e . e
—=L = 3.26
o o & (3.26)
_30(0,65,1) 0
00(0'55:'7) -

where ao(&§, €5, 1) and ao(£5, &, ) are Ly, L};‘lhl and LgoL”'lho in (£5,£5,n) coordinates.
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3.3 Perturbations in f

The situation here is delicate and analogous to that in Section 2.3. Consider the perturbed system

z Jo(z) + ef1(z) + go(z)u
vy = ho(z)

and assume that it has relative degree 71 < 7. The class of perturbations f;(z) satisfy a nonlinear analog
of assumptions (2.29) and (2.30). Define the distributions

(3.27)

A; := span {go,adsego, - - - ad},go}. (3.28)
Assume that (the notation L means the orthogonal distribution)
ads, A; C A; C {dho}* fori=1,...,7,—3 (3.29)
and
adf,Ay,_3 ¢ Ay, _2 and ady, Ay, _2 ¢ {dho}™. (3.30)

If 1 < 3, assumption (3.29) is vacuous and if v; < 2, (3.30) is vacuous. As in the linear case, we conjecture
that if these assumptions are violated then the fast zero dynamics may occur at a multiplicity of time scales.
These assumptions guarantee that

LoLhienho = eLgLyL}™"ho+0(e%) (3.31)
=: eao(e).
Note that ag(0) = Lgo Ly, LJ2~2ho.
For coordinates, one uses
ho(z)
g = Llo+€h ho(z) c R
I ” (3.32)
fo-l'dl 0
n = n(z) €Rm—

and the development of Sections 3.1 and 3.2 can be repeated to yield the fast dynamics of equation (3.26)
with the difference that ao(£§,£5,7) is Lgo Ly, L'"'zho

4 Conclusion

In this paper, we have shown the effects of perturbation on the zero dynamics of both linear and nonlinear
SISO systems. We have shown how regular perturbations in the state space descriptions of these systems
can result in the appearance of singularly perturbed or fast zero dynamics. We have given explicit formulas
for the locations in the complex plane that the zeros at co migrate to under perturbation. For the most
part, we have placed assumptions on the structure of the allowable perturbations so as to guarantee the
appearance of fast time scale zero dynamics at one time scale alone. When these assumptions are not met,
we conjecture that our qualitative results will be unaltered but that fast zero dynamics at multiple time
scales will appear. Our theory bears a strong resemblance to the literature on high gain feedback and is in
some sense to be thought of as a companion to that literature, since it reveals the zero structure at oo by
the artifact of system perturbation.

We conclude by noting that the analysis presented in this paper can be extended albeit in much more
subtle form to the MIMO case, and involving a multiplicity of time scales (see [HSK89)).
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