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Abstract. It is shown that the sequenceof function values constructed by the Pshenichnyi lineari
zation method in solving a minimax problem converges linearly to the minimum. The proof does not
assume strict complementary slackness, and applies to a version of the method employing a practical
step size rule, which can be executed in a finite number of steps. The result is extended to minimax
problems in which each function appearing in the max is composed with a different linear function.
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1. Introduction

We are concerned with the rate of convergence of algorithms for solving the minimax problem,

min max/'(;c) , m
x 6 R" J « b.

where the functions /^JR" -» R are continuously differentiable and where p denotes the set of integers

{ 1 ,... ,p }. We denote the maximum function by y(x) ^ maxfJ(x) . Rates of convergence have
jee.

been established for several minimax algorithms. Shor has shown that a sequence of iterates { x,- }£o

constructed by a subgradient method on a convex problem converges linearly to a minimizer x (Ref. 1).

In Ref. 2, Kiwiel has proved that sequences generated by a bundle algorithm also converge linearly on

constrained minimax problems. Pevnyi has shown that a sequence of values {\y(x») }£o constructed by

the e-active set method of Dem'yanov converges linearly to a value less than y<£) +e (Ref. 3). These

methods use only first order information. If every subset of { V/^(x) \fJ(x) - \|/(x) } has maximal rank,

then x is said to be a Haar point. The sequential linear programming algorithm of Ref. 4 was shown to

converge quadratically to Haar points. Superlinear rates of convergence to minimizers meeting less

stringent requirements have been obtained for algorithms using second order information, see, for exam

ple, Refs. 5-8. The algorithm in Ref. 7 switches between a first-order trust region method, in which a

linear program is solved to obtain the search direction, and a second-order active set approach, in which

the search direction is obtained from a quasi-Newton iteration on the necessary conditions for optimality

for the minimax problem. Convergence was shown to be superlinear in the quasi-Newton phase, and

was shown to be quadratic in the sequential linear programming phase, if the sequence converges to a

Haar point

The minimax problem (1) can be converted into a nonlinear program. An extra variable xq

representing the value of yO is chosen as the cost, which is subject to the differentiable constraints,

fJ(x) £ xo for j e p. A number of minimax algorithms are based on this fact (including those in Refs.

5-9). The obstacle to achieving superlinear convergence by applying standard nonlinear programming

techniques to this formulation of problem (1) is the practical insistence on a decrease in the value of

V(-) at each iteration. This translates into the requirements that the value of the cost of the nonlinear



program decrease at each iteration and that the iterates remain feasible. Standard nonlinear program

ming techniques (see, for example, Refs. 10 and 11) do not satisfy these requirements, but a recently

developed algorithm does (Ref. 12), by solving acorrected sub-problem (Ref. 13) and using acurvilinear

step size (Ref. 14).

In most of the convergence rate theorems cited, the restrictions imposed on the problems and on

the choice of step size are unrealistic. Ref. 4 makes the very strong assumption that the sequence of

iterates converges to a Haar point Non-degeneracy assumptions are also made in Refs. 5, 7, 8 and 12.

Superlinear convergence of the algorithm in Refs. 5 and 8 require that a step size of one be chosen in

the tail of any sequence constructed. Except in the neighborhood of a Haar point (Ref. 15), a step size

of one does notalways reduce \|/Q. However, in practice and in convergence theorems, step size rules

which guarantee a decrease in \j/Q are generally required.1 The step size rule used to prove linear con

vergence of an algorithm in Ref. 1 does notsatisfy the assumptions of the convergence theorem proved

for the algorithm.

Of the results cited, only that of Pevnyi (Ref. 3) regarding the Dem'yanov algorithm specifies a

realistic step size rule for which a strong global convergence result obtains and which does not make

overly restrictive assumptions on the problem, such as convergence to a Haar point or strict comple

mentary slackness. Pevnyi's result assumes that the Hessians of all of the functions maximal at x are

positive definite.

In this paper, we discuss a variant of the Pshenichnyi linearization method (Ref. 16) for solving

the minimax problem (1). The method obtains a direction of descent for \j/() by solving an approxima

tion to (1) in which the functions fJ(x + h)are replaced by first-order, quadratic approximations,

tf{h Ix) £ fKx) +W'(x) . h)+ Wfj \h\2 (2)

for fixed Yy>0. The search direction is chosen to be the unique solution to the problem

min max tf(h I x), where

lThealgorithm in Ref.7 allows \y(-) to increase during thequasi-Newton phase, buta rather weak convergence result is ob
tained as a result.
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h(x) & (y6fil/to^(x)-8) , (3)

for some 5 >0. In Ref. 16, it is assumed that Y; = 1 for every j e p, and it is shown that a sequence

( xi )to constructed by the algorithm will converge linearly to the solution x of problem (1). In Refs.

15 and 16, it is shown that if the iterates constructed by the Pshenichnyi algorithm using an Armijo-

type step size rule converge to Haar point then the convergence is quadratic.

However, rate of convergence results for the Pshenichnyi algorithm suffer from some of the

deficits described above. The linear convergence result in Ref. 16 is obtained for step sizes lying below

a threshold which is not generally known a priori. A non-degeneracy assumption is also made. In Sec

tion 3, we show that the sequence of values { y(Xj) }£o generated by the Pshenichnyi algorithm con

verges linearly to the minimum value. Our result is obtained for versions of the algorithm employing

an exact minimizing line search and, in Section 4, an implementable Armijo-type step size rule. These

step size rules can be used in practice, unlike the unknown step size of Pshenichnyi's result and the

unity step size of other results. In these sections, we make no assumption of non-degeneracy. Finally,

our result requires that the Hessian of the Lagrangian function at x be positive definite only on the sub-

space orthogonal to the span of the gradients of functions maximal at x.

In Section 5, we extend these results to the composite minimax problem,

min max gJ(Ax) , (4)

in which each continuously differentiable function #;: R; -» R is composed with a different linear

function Aj : R" -» RJ.

2. The Pshenichnyi Algorithm

We begin by stating a version of the Pshenichnyi algorithm which uses an exact minimizing line

search, and a convergence result.

Algorithm 2.1: (see Algorithm 5.2 and Corollary 5.1 in Ref.17)

Data: Xq e R"; -v, > 0 ,V ; e p ; i = 0.
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Step 1: Compute the search direction,

h(xj) £ arg min max <J/(/i Ixd . (5)
h g R" J e £

Step 2: Compute the minimizing step size, X,- = arg min \p(x(- + 7Jt(xD) •
X.e R

Step 3: Set jti+1 = *,- + VK*i)» replace i by i + 1 and go to Step 1. •

When "ij = y for allj e p, the search direction finding problem,

8(x) 4 min max «/»I jc> —\y(x) , (6)

can be solved by converting it to dual form as follows. Let the standard unit simplex be denoted by

1^ § {|i € IRP Ijj/ £ 0 , ]£ jf s fi p/ =1 }. We replace the max over j e £ by a max over the stan

dard unit simplex,

8(jc) = min max Y p/ §(h Ix) - \i/(x). ™

By an extension to von Neumann's Minimax Theorem (Ref. 17), the max and min in (8) can be inter

changed,

G(x) = max min 2 M' <W *) - ¥(*)
Ve J^ he IB* jet

= max min £ p/ (/'(*) +<V/'(x), /t)- y(x)) +Whl2 ,
fie^AelR-yeg

= max £ p/ (f'(x) - V(x)) - J-l J m/V/^)I2 . (8)

by solving the inner minimization problem. Several methods exist for solving this positive semi-definite

quadratic program (see, for example, Refs. 18-22). The solution is not always unique, and we denote

the solution set by

U(x) Aarg max £ p/ (f\x) - y(x)) - ±i £ p/'V/^)l2 . (9)

As a consequence of the extended von Neumann Minimax Theorem, for any jl e £/(x),

£ p/<y(/i(x) Ix) < max £ p/(|/(A(x) Ix)
>6£ •le3>y6£

= min max £ p/ <j/(/i Ix)



= max min £ tf tf(fr 'x)
tte2>Ae R"/6e

= min J p^^lx). ao)

Hence, any multiplier vector jl e f/(x) yields the solution,

A(x) =arg min £ P> <j/(A Ix) =-^E P^x) , (11)

to the primal problem (8), which is unique since the function max j e B<{/(•1 x) is strictly convex. Note

that when p = 1, y(x) =/J(x) and A(x) reduces to the search direction employed by the method of

steepest descent

The following necessary condition for optimality can be found in Ref. 17.

Theorem 2.1: (Ref. 17) If x e R" is a solution to problem (1), then there exists a vector of multipliers

fie "Lpsuch that

E#V/'<*) = 0 , (12a)

Z $/'<*)-V<2)] = 0. (12b)
y*6£

•

If the functions /'(•) are convex, equations (12a, 12b) are a sufficient condition for optimality. We

denote the minimum value for problem (1) and the set of minimizers by y = min xe R„ y(x) and

6 4 arg min x6 Rn \|/(x), respectively. For any xe 8, the set of multiplier vectors fe^ which

satisfy equations (12a, 12b) together with x is exactly U(x).

Theorem 2.2: (Ref.17) Suppose that the functions /'(•) inproblem (1) have continuous derivatives. Ifx

is an accumulation point of a sequence {x,- }£o constructed by Algorithm 2.1, then x satisfies the

optimality condition (12a, 12b). •

By analogy with nonlinear programming, we shall say that strict complementary slackness holds

ata solution x if, for every multiplier vector jl satisfying (12a, 12b) with x,
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#>0 if and only if/'(*) =¥(*). <13)

If strict complementary slackness holds at a ininimizer x, the multiplier vector £ satisfying (12a, 12b)

with x is unique. For any x e 8, we define

7(x) £ [jep\B\iG C/(x):p/>0}. <14>

If strict complementary slackness holdsat x, /(x) = {j e g l/'(x) = \jf(x)} .

3. Linear Convergence of the Pshenichnyi Algorithm

We restate the Pshenichnyi convergence rate theorem in Ref.16. Let /*(•) denote the second

derivative matrix of/'(•).

Theorem 3.1: (Ref. 16) Suppose that

(i) the functions f^) are twice continuously differentiable,

(ii) x is a local minimizer ofy(-),

(iii) the gradients { V/'(£) } are affinely independent2
ye/w

(iv) strict complementary slackness holds at x,

(v) the second derivative matrix ofthe Lagrangian at (x , jl). E ,- 6* ff &(*)' ispositive definite.

Then there existsa neighborhood Woix such that the process

xM =xjfc+oJi(x*) JeN, (15)

converges linearly to x, provided thatxx € W and a > 0 and5 > 0 are sufficiently small.

If, in addition, the affine hull of { V/'(x) } contains R", { x,- )to converges to x quadratically. _
}*Jw •

We now prove that the sequence of values, {\|f(x,) }£o, converges linearly to the minimum value

under weaker assumptions than those of Theorem 3.1. In particular, our theorem omits assumptions

(iii) and (iv) of Theorem 3.1 and relaxs the convexity requirement of assumption (v). Its proofdraws on

ideas which appear in the proofs of linear convergence of the Pironneau-Polak algorithm for inequality

^e vectors { vy }yeBare said to be affinely independent if, for any j0 € £, the vectors { vy - vy }ye fiXy are linearly in
dependent



constrained minimization in Refs. 23 and 24. We make the following assumptions, denoting the initial

point of Algorithm 2.1 by Xn.

Hypothesis 3.1: Suppose that

(i) the functions /'(•) are twice continuously differentiable,

(ii) the set S 4 { x e RB Iy(x) £ yfo) } is bounded, and the necessary conditions (12a, 12b) are

satisfied at a single point, xe S,

(iii) for some M < ~ , all x e RB and all j e p, IF(x)l2 < M . •

Let B denote the subspace spanned by the vectors { V/'(x) } ., and let Bl denote the orthogonal

complement of B.

Hypothesis 3.2: Suppose that (i) there exists m>0 such that for all (i € t/(x),

m\hP < Vi, Z#M2) M V h e ^ , (16)

(ii) m and M are chosen so that m< Y; <M/or affy eg. •

The convexity assumption (i) is analogous to the weak convexity assumption used in Ref. 23. The

proof of linear convergence requires several technical lemmas. Let P : RB -> RB denote the projection

operator with range equal to B% and let P1 be the projection operator with range equal to B1. For any

ye R" and p. e £p> we define

*(y,H) £ *AmI - jl(l - s)ZJe e\i! F&+ {I - s)y)ds . <V0

The function J?(- , •) is continuous, and, by Hypothesis 3.2(i), R(0 , £) is negative definite on the sub-

space B1 for any jl e t/(x). We use the notation z, -> Z to represent the convergence of a sequence

{ n }%o c RB to a setZ c RB, i.e. - lim ,• _»«, min ye z Izi - yl = 0.

Lemma 3.1: IfHypotheses 3.1 and 32 hold, then there exists K > 0 swft that

y -»oF lyl tPyl U»;



Proof: See the Appendix. •

Lemma 3.2: IfHypotheses 3.1 and 32 hold, then

Um lx-x\W(x-%\ =Q (19)
*-+* \|<r)-\|/

Proof: See the Appendix. •

We now relate the potential decrease in the function y(x) to the decrease predicted by 8(x).

Lemma 33: If Hypotheses 3.1 and 32 hold, then

,. 6(x) ^ mhm sup ^— <, —-p .
* -* max > tFYi (^U)

Proof: Since ]£Ve pAJ/(/i Ix) -» «> as /i -» «>, uniformly for x e 5, and p. lies in the compact set 2^,,

an extension of von Neumann's Minimax Theorem (Ref. 17) permits the interchange of max and min

below,

G(x) A min max £ p/<|/(/i Ix)- y(x)

o max min Y. \i/ty(h Ix) - w(x). on

For any pe U(x)t

G(x)= min £ pty(Alx)-Y(x). mv

Setting s(x) 4 mlmax^e i/c*> Zye*Mfy] . we have s(x) <1by Hypothesis 3.2(H). Substituting

/i = s(x)(x - x) in (22) and using the definition of <J/(-1 •) in (2),

G(x) <; £ pty( 5(x)(x - x) Ix) - v(x)
y'6£

=£ V?]fJ(x) - \|/(x) +(V/>(x), s(x)Cc - x)>+ Vfy six)2 G-xl2]

^^Jz^te +̂SP^/^.x-x^+V^lx-xl2-^)} , (23)
|/6B. JGB. J



since six) e (0, 1) and fJ(x) £ \j/(x). Adding and subtracting the term

ix-x, Jo(l - 0 Sp/F'Cr +(1 - t)(x-x))dt
/€ £

ix-x)),

e(x)^5(x)J£^/yW +<SP^/^).x-x>+U-x.|ji(l-/)£

-x)j (24)

\|/(x)

+ (x - x, Rix - x , p)(x

Using Taylor's Theorem,

6(x) £ s(x>
If6* J

*(*) |V(*) - y(x) +(x - x , /?(x - x, p)(x - x)Y.

Dividing both sides of (25) by \jf(x) - y,

6(x)

V(x) - y(x)
<Is(x)« t ( fr-x,fl(x-x.rD(*-*)>

y(x) - \j/(x)

By Lemma 3.1,

,. Clin __„ <x - x , /?(x - x . n)(x - x)) v
lim sup max ^ r < a ,

*-S »l«ww lx-xllP(x-x)l

and, by Lemma 3.2,

.. lx-x»IP(x-x)l n
lim sup > f = 0 .

*-•* Y(x)-\jf

Since the set-valued map U(x) is upper semicontinuous, six) is lower semicontinuous and

lim inf j(x) > —
x - max .pty

m

Taking the lim sup of (26) as x -» x and using (27), (28) and (29) yields (20).
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We combine Lemma 3.3 with a relation between the decrease predicted by G(x) and the actual decrease

obtained at x in the direction h(x) using an exact line search.

Lemma 3.4: If Hypotheses 3.1 and 32 hold, then

,. • V(x +Xh(x)) -\jf ^ , m min;6gTfr

Proof: If there existed a point x e 5, distinct from x, such that \y(x) = y, then x would meet the neces

sary conditions (12a, 12b). However, this would contradict Hypothesis 3.1(ii), and thus \|/(x) = V and

\|f(x) > \jf for all x * x. Since G(x) is zero if and only if the necessary conditions (12a, 12b) are met at

x, G(x) <0forallx*x.

The second derivative bound of Hypothesis 3.1(iii) implies that for each/Q,

/y(y+z) -fJ(y) - <V/'(y), z) <J KMlzl2 , V y , z e RB . (31)

Thus, for anyX e (0 , 1) and x * x,

min \j/(x + \h(x)) - y(x) £ \j/(x +X/t(x)) - \y(x)

£ max/'(x) - \|/(x) +<V/'(x), M(x)H 1MWJi(x)l2 ,

«£ X(max/'(x) - v(x) +<V/'(x) ,h(x))+ VKMUWP ], (32)

Setting X = miny> 6 BYy IM and using Hypothesis 3.2(ii),

min V(x +TJiix)) - V(x) <S Efmax/'(x) - y(x) +<V/>(x). *W>+ Vty IA(*)I2 ] =XG(x). (33)

Hence, for all x,

min Vfi +UM)-**^***'**. (34)
XeIR G(X<) M W

Applying inequality (34) and Lemma 3.3 to the right hand side of (30),
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to sup min V(x +^))-yW=1.m min ^♦Mffi-TW _§&_
* Xe R ..a . HelR G(x) , N *>

\|/(X) - \f * -»* y(x) - \|fX -» z

^ mmy6gY/ ,. 6(x)
£ TT^ lim SUP —

Al * , a.
*-»* V(x)-V
x#x

M

-m

max 2 p*fc

A# max £ |i*y* ' (35)
u e l/<x) >e £

The second step holds because G(x) < 0 and y(x) > \|/. Adding 1 to both sides yields the desired result.

•

Theorem 3.2: IfHypotheses 3.1 and 32 hold and Algorithm 2.1 generates a sequence { x,- }£o, then (a)

Xi -» x, the unique solution x, and (b) either the sequence terminates in afinite number of steps atxor

.. Vfrw) - V ^, m min;egYy
hm sup <S 1 - — ~> • (36)

i _♦» a M max Y, pnfc

The lefthand side of the inequality is known as the convergence ratio of the sequence {\p(x,) )Zo-

Proof: (a) The sequence {x, }£o lies in the compact set5, and hence it converges to the setof its accu

mulation points. By Theorem 2.2, each accumulation point must satisfy the necessary conditions (12a,

12b). Since, by Hypothesis 3.1(H), only x e 5 satisfies (12a, 12b), the sequence converges to x.

(b) Follows from (a) and Lemma 3.5. •

4. Linear Convergence Using an Armijo Step-Size Rule

The step size rule used in Algorithm 2.1 calls for the exact minimization of a single variable

function. In practice, we use a step size rule which can be executed in a finite number of steps. A suit

able replacement for Step 2 in Algorithm 2.1 is the following generalization (Ref. 17) of the Armijo

rule for differentiable functions (Ref. 25),

-11-



Step 2': Compute the step size,

Xi = max (P* I yto + p*^ - v(x^ - aP*G(xO £ 0} , (37)
Jfce IN

with fixed parameters a , Pe (0,1). The convergence result, Theorem 22, holds for the algorithm

which substitutes Step 2' for Step 2 in Algorithm 2.1 (Ref. 17). We show that a rate of convergence

result very similar to Theorem 3.2 holds as welt

Theorem 4.1: If Hypotheses 3.1 and32 hold, and Algorithm 2.1 generates a sequence { x, }£o using

the step size rule Step 2', then (a) x,- -» x, the unique solution x, and (b) either the sequence terminates

in a finite numberof steps at x or

.. Vfori) - ¥ ,,. am min;6gYylim sup £ 1- aP-rr g y . (38)
'— w(x)-0 Af max 2 p.*yA

Proof: (a) Same as the proof of Theorem 3.2(a).

(b) We obtain a bound on the decrease in y(') obtained at each iteration, assuming that the sequence

does not terminate in a finite number of steps at x. The second derivative bounds again imply relation

(31), and so, for all i e N and k £ 0,

V& +P**i)-V(*i) = maxfiixi + phd-Wd

<, max/fo) +(V/fo), $%- yixd+ ViMp2*!^2

<. p* [max/W +(V/>(x;), A,)- y(Xf) +V*Mp* I/.,!2] . (39)

because P* £ 1and/(x) £ y(x). Therefore, if P* £ min y6gYy / A*.

V(*i +P%) -V(*i) * P* fcjfj/W +W(x^, /tf- vOc,) +Vfyto.12]
= P*G(xf) < aP*6(Xi) <0. (40)

By (37), X< £ pmin>6 £Yy / M and

V(**i) - V(*i) *ap *p£ G(x,). (41)

Combining inequality (41) with Lemma 3.3 yields the desired result.

-12-



5. Linear Convergence on Composite Minimax Problems

We consider the composite minimax problem,

min maxg'iAjx) , (42)
xeR«/€£

where gi: Ry -> R is continuously differentiable and Aj is an lj x n real matrix. We note that if the

matrices Aj have a common null space, problem (42) will not have a unique minimum and therefore

will not satisfy Hypothesis 3.1(ii).

Nor will the problem satisfy the convexity requirement of Hypothesis 3.2(i). For problem (42),

f> k gJ»Aj and the second derivative of the Lagrangian at anunimizer x has the form,

L«i^CW^ . (43)

where G*i) denotes the second derivative matrix of gJ(-). If the Aj matrices have a common null space,

the second derivative matrix may be only positive jemf-definite on the subspace B1, so that m=0.

This yields a convergence ratio bound of one, allowing for sublinear convergence. However, we have

observed in computational experiments that linear convergence of the values { y(Xi) }£o to the

minimum value is not lost in this circumstance. We derive a bound on the rate of convergence of

Pshenichnyi's method which requires that the Lagrangian Hessian be positive definite only on the

orthogonal complement of the common null space. We assume in this section that the Pshenichnyi algo

rithm employs the exact minimizing line search for determining the step size at each iteration, and that

yj sb y for each y* e p and some y >0.

Proposition 5.1: Suppose that the functions g'(•), are strictly convex and that strict complementary

slackness holds for every x e 8. Then, (a) there is a unique jl such that f/(x) ={ £ }for all xe G,

and (b) the set) £ 7(x) is independent ofxfor all x e G.

Proof: We show (b) first Suppose that Pi , \i2 e C/(x) for some x e G, and that p.i * \i2. Let / and j0

be defined by

•13-



t 4 min{ . . I p/| > p4 } >0 . (44a)
ye* p4-p4

7o 4 arg min{ ."* • Ipi >p£ }. (44b)
/e£ p4-p^

Then m 4 |ij +tfa2 - M-i) € ?,, satisfies (12a, 12b) with x, and hence me f/(x). Necessarily, p? >0,

and hence j0 e /(x) by (13). However, p£° = 0 by construction, implying thaty0 ^ A*)- This contrad-

iction shows that U(x) is a singleton for each x e G.

Suppose that Ae J&) but y^/(5") for some x\ x"e 8. Then *''(A^O <Y(*"). Let

% £ #+(l-f)x". Then x,e 8 for all re [0,1], and, by the convexity of g\),

8Jl(Ajfid <V(*") =Y&) for all t e (0 ,1). It follows from (i) above that £/(&) ={[it}, a singleton,

and from (12b) that p? =0 for all t e (0 ,1). Now, by the Maximum Theorem in Ref. 26, {/(•) is an

upper semicontinuous set-valued map. Since UG?) = { £'}, a singleton, £/(•) is continuous at xf. Hence

H, -> jl' as / -» 1, which implies that £Vl =0. Since jx e J&)t this contradicts (13), and we conclude

that (b) holds.

Now, we prove (a). Suppose that xf, x"e 8. From (b), $'*(A/x'+ /(x^ - x0)) is constant for

t e [0 , 1] and all j e /. Since each g'(•) is strictly convex, we conclude that A/fc - x") = 0 for

each j e 7. Therefore, for all j e7, AjVg >(AjxO = A/V$ >(a£") and hence any £ satisfying (12a,

12b) with xT satisfies (12a, 12b) with x". This fact and (i) imply (a). •

Proposition 5.2: There exists a neighborhood, W, of 8 such that, for all xe W, p/ = 0 for all

p. e Uix) andj e 7.

Proof: (a) Since h(x) is the solution of the primal problem (6), it satisfies the optimality conditions

(12a, 12b) with respect to problem (6). Every p. e U(x) satisfies equations (12a, 12b) together with /i(x),

and hence the second of those equations yields

2 iLJ[tfihix) Ix) -V(x) - G(x)) =0

•14-
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By Proposition 5.5 in Ref. 17, h@) =0 and 6(x) =0 for every x e 8. Since both functions are con

tinuous, A(x) -> 0and G(x) -> 0as x -» 8. Therefore, (j/(/z(x) Ix) -» 5'(Ajx), implying that

<KA(x) Ix) - y(x) - G(x) < 0 (46)

for every / e / m some neighborhood, W, of G. It follows from (45) and (46) that, for all x e W,

p' =0foraUy^7foraUne U(x). •

We show below that the Pshenichnyi algorithm converges linearly on some problems of the form

(42) which do not satisfy the assumptions of Theorem 3.2. Letting h < ... <jb be the indices compris

ing 7, we define Af k [A£ ,... ,AJb]. First we show that the tail of asequence {xt )Zo generated by

the Pshenichnyi algorithm is contained in a translation of the range of A. Let a k ranki A ) and let

Z be an n x a matrix, the columns of which form an orthonormal basis for RangeQF). We then show

that the sequence corresponds to that constructed on a restriction of problem (42) to a tranlation of the

range of A',

min yQc+ Zy) . (47)
ye Ra

Finally, we show that the restricted problem satisfies the assumptions of Theorem 3.2. We use a+[X] to

denote the minimum positive eigenvalue of any symmetric, positive semi-definite matrix X.

Theorem 5.1: Suppose that

(i) thefunctions g '(•) are twice continuously differentiable,

(ii) there exist constants0 < / £ L such that,for all j e p,

IIhfzVi, Gi(z)h)ZLIhf , V h,2e R1' , (4&0

(Hi) strict complementary slackness holds for all x e 8,

(iv) I and L are chosenso that the scaling parameter, y, satisfies

'<**[ E &AJAJI < y < Lmax &TAJAjZl , (48b)
/eg

/eg

where Q. is the sole member of U(G).
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For any x e G, (a)

hm sup mm -" "*— si-- i^t^t>i -ti •

xe x + Range&)

IfAlgorithm 2J constructs a sequence fa}£o in jo/ring problem (42), then, (b) x,- -* x/<?r xome x e G

ay i -> oo, and (c) either the sequence terminates in a finite number of steps at x or

lim sup si-— y T . (48d)

The assumption of strict complementary slackness is necessary only if the matrices Aj have different

null spaces. In particular, the linear convergence result holds without this assumption if each Aj is the

nxnidentity matrix.

Proof ofTheorem 5.1: First, we show that x, -> 8 as i -> °°. Let A7" ^ [Af,... ,Aj]. From (11),

every hi is of the form £yeRAJzJt with zj e Ry. Thus, the sequence {xt }£o is contained in the

closed and convex set Q £ {xo +RangeiA1")} n {x e RB I\j/(x) s y(xo) }. Suppose that Q is

unbounded. Then there exists a nonzero u e RangeiA1), such that, with x, £ xo + ft, \|f(x,) < \y(xo) for

all / > 0. If AjQu * 0 for some j0e g, then the strong convexity of g '(•), which follows from assump

tion (ii) of this theorem, implies that lim, _>«\|/(x^ = + oo. This contradicts \|/(x,) < y(x0), and thus

A« = 0. But u e Range(/J)^Null(A) = {0 } contradicts the assumption that u* 0. Therefore, the set

6 is bounded, and hence compact. Consequently, the sequence { x, }£o must have an accumulation

point, x. From Corollary 5.1 in Ref. 17, any accumulation point x of a sequence generated by Algo

rithm 2.1 must satisfy G(x) = 0, and therefore, by Proposition 3.1, x e 8. Since Q is compact, it fol

lows that xi -> G as i -» oo.

Now we apply Theorem 3.2 to a restricted problem. From Proposition 5.2, there exists a neigh

borhood Wz>8 such that p/= 0 for all ye7 and p. e U(W). From relation (11),

-16-



«(x) =2 je b. V* AfVg JiAjxd for any ^ e U(x). For all x e Wt then,

«(x) e Ranged) . (49)

Since x,- -»8, there exists i0 e IN such that xt- e Wfor all i >io. Hence, {x,- }H- /„ c x^ +Range(AT).

We consider the restricted problem,

min y(xL + Zy) , (50)
ye Ra

formed by substituting x ^x^ + Zy into problem (42). By its definition above, Z has orthonormal

columns spanning the range of AT. The search direction d(y) constructed by the Pshenichnyi algorithm

at a point y e Ra with respect to problem (55) satisfies

d(y) k arg min max g>(A.<x/o +Zy)) +&AjVg '(A/x, +Zy)) , <t>+ Wdl2
deWJ*B.

=arg min max gKAfa +Zy)) +<AfVg KAfx^ +Zy)) ,Zd>+ lA^Zd\2
del&JeB.

= arg min max tfiZd IXl. + Zy) , (51)
deWJee.

since ZTZ =Ia and <t/(n Ix) k g'(x) +^Vg \x)M)+ VtflhP. Now, by Proposition 5.2, if x^ +Zy e Wt

Kx^ +Zy) e Range$). Hence, equation (51) implies that

h(xio +Zy) =Zd(y). (52)

Also, for y such that x^ +Zy e W,

arg min \]/( x,- +Z(y + MOO) ) = arg min \|f( X;. +Zy + XZd(y) )

=arg min y( x^ +Zy +TJiQc^ +Zy) ) k Ux^ +Zy). (53)

Suppose the Pshenichnyi algorithm is applied to problem (50) with initial point y0 =0, and generates

sequences of iterates { yk }* »0 , search directions { d(yd }* »0and step sizes { k* }* d0- Relations (52)

and (53) imply that the search directions satisfy ^(x^ +Zyd - Zd(yd and that the step sizes satisfy

K* = A.(xfn + Zyd . Hence, x,- = x,- + Zyt _,- for all / £ i0-

•17-



Now we verify that Hypothesis 3.1 is satisfied for the restricted problem (50) and apply Theorem

3.2. The functions gJ(Afi% +Zy)) are twice continuously differentiable in y by assumption (i) of this

theorem. The set Q k [ye Ra Iyfy,+Zy) s ^(x^ } Ues in the set ZT(Q-x^t where

Q = (x0 + RangeiA!) ) n { x e RB Iy(x) s v(xq) }, as defined in the proof of Theorem 5.1(a). The

set Q is bounded since Q is bounded.

Establishing that only a single point in Q satisfies the necessary conditions for optimality for

problem (50) is slightly involved. Let 6 denote the minimizing set of the restricted problem (55). If

x^ +Zye G, then ye D, and hence D=> ZT(Q<^Q - x^. Now consider any y' e Ra such that

x^ +Zy' e G. Since xf -> G and { jk* J^ lies in the closed subspace x^+Ranged),

&n[xiQ +Ranged)] *p% and hence, there exists y"eRa such that x^ +Zy" e 8. Then

Y0% +ZyO >^(x^ +Z/0. contradicting the assumption that / e 5.Therefore, D=Zr(8<~»g - x^).

Now consider the set of multipliers which, together. with y, satisfy the equations (12a, 12b)

corresponding to the optimality conditions for problem (50),

£ vfZTAJVg \Ajix: +Zy)) =0 , .

Uy<y) k «He 3; (54)

For any ye D, we have x^ +Zye 8, and thus g'(A/x^ +Zy)) <^(x^ +Zy) for all j 47. This

implies that, for any p e f/y(y), ^ =0 for all; e 7. Therefore,

2 tfAJVg KAfa +Zy)) e Range&F) =Jbujeg). (55)

Equation (55) and Zy«ajtf ZTAjVj'CA/x^ +Zy)) =0 together imply that

2 yeRV? AfVg y(Ay<x,0 +Zy)) as 0 . Hence, Jl, together with x,0 +Zy% satisfies the necessary conditions

for the original problem (42). Thus, Uy(y) c U(xio +Zy) for ye B, and Uyib) ={£ }, where £ is the

sole member of U(G).
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Suppose that yi , y2 e Q satisfy the optimality conditions corresponding to the for problem (50).

Since ^(x^ +Zy) is convex in y, these necessary conditions are sufficient for optimality, and, further

more, the entire line segment between yj and y2, [yi, yj* lies in D. Since t/yflyi , yd) = { £ } and

$ >0 for all j e /, g/(A/xio +Zy)) =^(x^ +Zy) =\j/ for all ye \yi ,yj and all j e7. Because the

functions g '(•) are strictly convex, this implies that AjZyi =A^Zy2 for all j e /, or yi-y2e Null(AZ).

Since Range(2) =Ranged) , Afa//(AZ) = {0 }, implying that yt =y2. Therefore, the necessary condi

tions are satisfied at a unique point ye Q and Hypothesis 3.1(h) holds. Since

Xj -> S^tx^ +flangeCA7)], this proves part (a) of the theorem, x,- -» x^ +2$.

Letting g[X] denote the minimum eigenvalue value of any real symmetric matrix X,

(56)2 pa^A/x^ +zSfl/ay2 S0''Z7Aj(?(A/xio +2$))A>Z

*/2
/6£

J

o/tf4z ^^
y6£

i (57)

since the columns ofZspan RangeQ?) =NullGtf and Null(ZJG BffAJAj) =Aft//(A). Thus Hypothesis

3.2(i) holds.

Assumption (ii) of Theorem 5.1 ensures that Hypothesis 3.1(iii) holds. Assumption (iv) of

Theorem 3.2 holds with M=Lmax j.« B\ZTAJA-Zl. Therefore, Theorem 3.2 applies to the restricted

problem (50), yielding (a) yt->y and x, -» x,0 +2je 8. Lemma 3.5 applies as well, and letting

x it x/o +Zj,

i- • v(x + Xn(x)) - \|/ .. ..
lim sup mm TN ^ "—^ = lim sup mm

\j/(x)-\? ,-S X6R V^ +Zy)-^

\j/(x: +Z(y+Xd(y))-\?

Xe IR
X -» X

x e x, + Range(Z)
0
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tl.LiSnM±. (58)
L max XZFA\Ag\

keg.

which is part (b). Part (c) of Theorem 5.1 follows directly from parts (a) and(b). •

6. Conclusion

We have shown that a sequence { y(x,) )Zo generated by the Pshenichnyi algorithm converges

linearly to the minimum value under weaker conditions than were assumed in Pshenichnyi's conver

gence rate analysis. Our result applies to an implementable version of the algorithm, not just to a con

ceptual version requiring that the step sizes lie below some unknown threshold. Furthermore, we have

shown that linear convergence is achieved also on a class of composite minimax problems which arise

in optimal design problems.

The Pshenichnyi algorithm can be generalized in a straightforward way to solve semi-infinite

composite minimax problems (Ref.17) which arise in control system design,

min max max <^(A>x, yj) , (cn\
xeR" JezyjeYj KJyj

where the sets Yj c R*> are compact, and the functions tf:TR,Jx B.Sj -»R, j e p and V^O , •) are

continuous. As before, each A,- is an /y x n matrix. Under assumptions analogous to those of Theorem

5.1, a linear rate of convergence has been obtained for the semi-infinite case (Refs. 27 and 28).

7. Appendix

Proof of Lemma 3.1: Writing y = Py + P*y for any y e R",

<y.R(y, My^Vy + Pty.Rfy. vtiiPy + i^y))

= V^y ,R(y , \i)P^y)-h{Py,R(y , )i)iPy + 2P*y))

^iPy,R(y,\i)iPy + 2P^y)), (60)

for p. near U$) and y small by Hypothesis 3.2(i). Using the Schwarz inequality and the fact that

\Py + 2/*y» s 2lyl,
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ty,R(y, n)y>s IR(y , |X>0 IPyl IPy+ 2/*yl

s 2lR(y , p)l IPyl lyl

S 3 max l/?(0 , R)l IPyl lyl ,
Hel/<x)

for p. near U(x) and y small, since !/?(•, •)' is continuous. •

Proof of Lemma 3.2: Using Taylor's Theorem,

V(x) - \|/(x) > max f'(x) - V(x)
y6J(x)

=max/>(x) +W4x),x-x>+<*-x, (f J(l - *)/*<* +*(x - x))ds)ix -x))- \|/<x) . (62)

Since/'(a) = \|f(x) for ally e J(x) and by Hypothesis 3.1(iii),

V(x) - y(x) ;> maxW^ ,x-x)+U-x, [f J(l -*)F(x+*(x-x))ds)ix-x))

2: maxW'<x),x-x>-Mx-xl2. (63)

Since <y/4fc, /*(x-x)>f 0 for ally e ./<£),

max W<x).x-x>= max tV/'(x), /*(x - x) +P(x- x)) ,

= max {VfJ$), P(x-x)). (64)

We wish to show that there exists an T| > 0 such that

max WfJ$) ,Pix-x)) >r\tPix-x)l. (65)

Suppose not Then, there exists a nonzero u e B such that max W'(x), u )s 0 . By (12b),

p/ = 0 for allj e /(x) and for any n e £/(x). Therefore,

2 Sw/>6), s>= < X (W3>.«>=«>, <n= o , (66)
/e/(x) /e/£)

-21-
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by (12a). Since t/(x) is convex, there exists a£ e Ufo such that p> >0 for all j e J$). Then, equation

(66) implies that there is a convex combination of the nonpositive numbers { (V/'(x) ,u)) with

nonzero coefficients is zero. This implies that (?/'(£), u> =0 for ^ ,/€/(£). But men

u e B^b-i = { 0 }, contradicting the assumption that u* 0. Hence, let T] >0 be such that (65) holds.

Substituting (64) into (65) and (65) into (63) yields

V(x)-\jr(x)^TilP(x-x)l-Aflx-xl2 , (67)

for x in some neighborhood of x.

Now we derive another lower bound on y(x) - \|/(x). For any jll e U(x), using Taylor's Theorem

and the fact that 2/6 £A' V/'(x) =0,

y(x)-y(x)£ £ p>/>(x)-\|/(x)

» «

JGB.

= Cc-x,
/Gfi

(x-x)>

= tf*(x-x),

+ tf»(x-x),

By Hypothesis 3.1(iii) and Hypothesis 3.2(i),

j1oil-s)IlixlFJGc +six-x))ds P\x-xJ>

(2P*(x-x) +P(x-x))V (68)

/e«

JJ(l-*) 2 ^<*+ *(*"*))*
jeg.

V(x) - v(x) 2> V4ml/*(x - x)l2 - 2M\P(x - x)l flPHx - x) +P(x- x)l

£V^I/*(x-x)l2-2A/l/>(x-x)l Ix-xl ,

for x in a neighborhood of x.

Combining (67) with (69) and dividing by IP(x - x)llx - xl yields

IF(x-x)llx-xl
^ max*

ttml/*(x-x)l2 ^ t| M Ix-xl
l/>(x-x)llx-xl Ix-xl tf»(x-x)l

.22-
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for x in a neigborhood of x. Using the fact that Ixl s \Px\ + IP4*!, and defining

r(x) = l^(x-x)l/liaA(x-x)l,

V(s) - V(s)

l/>(x-x)llx-xl
^ max 1/tm -2M

rixf + rix)

We use (71) to show that

-^--Af^ +l)}. (71)
Ix-xl r(*> J

liminf HW-Tft =00, (72)
x-*5 IP(x-x)l Ix-xl

which is equivalent to (19). Given any integer k > 0, there exists a real number r > 0 such that the first

term in the max in (70) is greater than k if r(x) s r. For x such that r(x) > r, the second term term in

the max is greater than T|/lx - xl - M(1/r + 1). Hence, there exists a neighborhood, Wk, of x such that

the max in (70) exceeds k for all x e W*, and, therefore, (19) holds. •
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