

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DISTRIBUTED RAID -

A NEW MULTIPLE COPY ALGORITHM

by

Michael Stonebraker

Memorandum No. UCB/ERL M89/56

15 May 1989

Distributed RAID -- A New Multiple Copy Algorithm

by

Michael Stonebraker

Memorandum No. UCB/ERL M89/56

15 May 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering

University of California

Berkeley, CA 94720

DISTRIBUTED RAID -- A NEW MULTIPLE COPY ALGORITHM

Michael Stonebraker
EECSDept.

University of California, Berkeley

Abstract

All previous multicopy algorithms require additional space for redundant information equal to the

size of the object being replicated. This paper proposes a new multicopy algorithm with the potentially

attractive property that much less space is required and equal performance is provided during normal

operation. On the otherhand, during failures the new algorithm offers lower performance than a conven

tional scheme. As such, this algorithm may be attractive in various multicopy environments as well as in

disaster recovery. This paperpresents the new algorithm and then compares it againstvarious other mul

ticopy and disasterrecovery techniques.

1. INTRODUCTION

In a recent paper, the concept of a RAID (Redundant Array of Inexpensive Disks) was introduced

[PATT88]. Such disk systems have the desirableproperty that they survive disk crashes and require only 1

extra disk for each group, G of disks. Hence, the space cost of high availability is only 100/G percent, a

modest amount compared to traditional schemes which mirror each physical disk at a space cost of 100

percent

In this paper we extend the RAID concept to a distributed computing system and call the resulting

construct RADD (Redundant Array of Distributed Disks). RADDs will be shown to support redundant

copies of data across a computer network at the same space cost as RAIDs do for local data. Such copies

will be shown to increase availability in the presence of both temporary and permanent failures of single

This researchwas sponsoredby the National Science Foundation under GrantMEP-8715235 and by a Grant from IBM Corp.

computersystems as well as disk failures. As such,RADDs should be considered as a possiblealternative

to traditional multiple copy techniques such as surveyed in [BERN81]. Moreover, RADDs are also candi

date alternatives to high availability schemes such as hot standbys [GAWL85].

In Section 2, we begin by briefly reviewing a Level 5 RAID from [PATT88], which is the system we

generalize. Then, in Section 3 we discuss our model of a distributed computing system and indicate the

basic structure of a RADD. Section 4 continues with an extension of the model to deal with unequal disk

capacity at the various sites. Then, Section 5 deals with network unreliability, while Section 6 considers

the relationship ofRADD to a distributed DBMS. Lastly, Section7 closes with a performance comparison

between RADD and severalothermultiplecopy andhighavailability schemes.

2. RAID

A RAID is composed ofa group ofG data disksplusone parity disk andanassociated I/O controller

which processes requests to read and write disk blocks. All G+l disks are assumed to be the same size,

and a given block on the parity disk is associated with the corresponding data blocks on each data disk.

This parity blockalways holds thebit-wise parity calculated from theassociated G data blocks.

On a read to a functioning disk, the RAID controller simply reads the object from the correct disk

and returns it tothe attached host On awrite toa functioning disk, the processing is somewhat more com

plex because the controller must update both the data block and the associated parity block. The data

block, ofcourse, issimply overwritten. However, the parity block must be updated as follows:

parity-block=old-parity-block XOR (new-data-block XOR old-data-block) (1)

Here XOR is the bitwise exclusive OR of two objects, the old parity block and the XOR between the new

data block and its old contents. Intuitively, whenever a data bit is toggled, the corresponding parity bit

must also be toggled.

Using this architecture, a read has no extra overhead while a write may cost 2 physical reads-

modify-write accesses. However, careful buffering of the olddata block can remove oneof the reads and

prefetching the old parity block can remove the latency delay of the second read. A RAID can support as

many as G parallel reads but only asingle write because ofcontention for the parity disk. In order toover

come this last bottleneck, [PATT88] suggests striping the parity over all G+1drives so that each physical

drive has 1/(G + 1) of the parity data. In this way, up to G/2 writes can occur in parallel though a single

RAID controller. This striped parity proposal is called a Level5 RAID in [PATT88].

If a head crash or other disk failure occurs, the following algorithm must be applied. First, the failed

disk must be replaced with a sparedisk either by havingan operator mechanically replace the failed com

ponent or by having a G + 2nd spare disk associated with the group. Alternately, spare drives can be

economized by having RAIDs share spare drives. Then, a background process is performed to read the

other G disks and reconstruct the failed disk onto the spare. For each corresponding collection of blocks,

the contents of the block on the failed drive is:

tailed block=XOR {other blocksin thegroup) (2)

If a read occurs before reconstruction is complete, then the corresponding block must be reconstructed

immediately according to the above algorithm. A write will simply cause a normal write to the replace

mentdisk and its associated parity disk. Algorithms to optimize disk reconstruction havebeenstudied in

[COPE89.KATZ89].

In order for a RAID to lose data, a second failure must occur while recovering from the first one.

Since the mean time to failure of single disk is typically in excess of 30000 hours (about 4 years) and

recovery time can easily be contained to an hour, then the mean time to failure of a RAID with G = 10

exceeds 50 years.

Hence, we will assumethata RAID is tolerant to disk crashes. As such it is an alternative to conven

tional mirroring of physical disks, such as isdone byseveral vendors of computer systems. Ananalysis of

RAIDs is presented in [PATT88] that indicates that a RAID offers performance only slightly inferior to

mirroring butwith vasdy less physical disk space.
9

On the other hand, if asite fails permanently (because of flood, earthquake, or other disaster), then a

RAID will also fail Hence, a RAID offers noassistance with site disasters. Moreover, if a site fails tem

porarily, because of a power outage, a hardware failure ora software failure, then thedata on a RAID will

be unavailable for theduration of the outage. In the next section we extend theRAIDidea to a multi-site

computer network and demonstrate how toprovide space-efficient redundancy that increases availability in

the presence of temporary or permanent site failures aswellas disk failures.

3. RADD

3.1. Introduction

Consider a collection of G +2 independent computer systems, S[0],..., S[G+1], each performing

data processing onbehalfof itsclients. The sites are notnecessarily participating inadistributed <**** base

system orother logical relationship between sites. Each site has one ormore processors, local memory and

a disk system. The disk system is assumed to consist of some number, N, physical disks each with B

blocks. These N * B blocks can be managed by the local operating system or I/Ocontroller and havethe

following composition:

N*B*G/(G + 2) datablocks
N*B/(G + 2) parityblocks
N * B / (G + 2) spare blocks (ora lesser number)

Informally, data blocksare usedto store local sitedata. Parity blocks are usedto store parity infor

mation for data blocks at other sites. Furthermore, spare blocks are used to reconstruct the logical disk at

some site if a site failure occurs. Loosely speaking, these blocks correspond to data, parity and spare

blocks in a RAID. Also, it will be possible to allocate a lesser number of spare blocksat each siteat the

expense of lower availability. This issue is discussed further in Section 12.

In the following discussion it may be helpful to refer to Figure 1 where we show the layoutof data,

parity and spare blocks for the case G = 4. The Ith row of the figure shows the composition of physical

block I at each site. In each row there is a single P which indicates the location of the parity block for the

remaining blocks. There is also a single S in each row which indicates the location of the spare block

which will be used to store the contents of the block if another site is temporarily or permanently down.

The remainder of the blocks are used to store data and are numbered 0,1,2,... at each site.

In the rest of this section we will discuss our algorithms in terms of reading and writing physical

blocks, noting that they are logically interpreted as in Figure 1. Also, userreads and writesaredirected at

data blocks and not parityor spare blocks. Lastly, we assumethatthe network is reliable. In other words,

there are no network failures and a message, once delivered to the network manager, will be received by

the destination machine. Unreliable network communication is treated in Section 5.

S[0] S[l] S[2] S[3] S[4] S[5]

block 0 P S 0 0 0 0
block 1 0 P S 1 1 1
block 2 1 0 P s 2 2
block 3 2 1 1 p S 3
block 4 3 2 2 2 P S
block 5 S 3 3 3 3 P

The LogicalLayout of Disk Blocks

Figure 1

Weassume that there are three kinds of failures, namely:

1) disk failures
2) temporarysite failures
3)permanent site failures (disaster)

In the first case, asite continues to be operational but loses one ofits Ndisks. The other disks continue to

function normally and the site remains operational, albeit short Bblocks. The second type of failure occurs

when asite ceases to operate temporarily. After some repair period the site becomes operational and can

access its local disks again. The third failure is asite disaster. In this case the site may be restored after

some repair period but aU information from allN disks is lost This case typically results from fires, earth

quakes and other natural disasters, in which case the site is usually restored on alternate or replacement
hardware.

Consequently, each site inthe network isin one ofthree states:

up functioning normally
down not functioning
recovering running recovery actions

Asite moves from the up state to the down state when atemporary site failure or site disaster occurs.

After the site is restored, there is aperiod of recovery, after which normal operations are resumed. Adisk

failure will move asite direcdy from up to recovering. The protocol by which each site obtains the state

ofall other sites is straightforward and is not discussed further in this paper [ABBA85].

Our algorithms attempt to recover from single site failures, disk failures and disasters. No attempt is
madeto survivemultiple failures.

3.2. Algorithms

Each site is assumed to have a source of unique identifiers (UIDs) which will be used for con

currency control purposes in the algorithms to follow. The only property ofUIDs isthat they must be glo

bally unique and never repeat. For each data and spare block, alocal system must allocate space for asin

gle UID. On the other hand, for each parity block the local system must allocate space for an array ofG+2

UIDs.

If system S[J] isup, then the Ith data block on system S\J] can be read by accessing the Kth physical

block according toFigure 1. For example, on site S[l], the Kth block iscomputed as:

K=(G+2) * quotient (I / G)+remainder (I / G)+2

The Ith data block onsystem S[J] iswritten byobtaining anew UID and:

Wl) writing the Kth local blockaccording to Figure 1 together with theobtained
UID.

W2) computing A =remainder (K / (G+2))

W3) sending a message to siteA consisting of:
a) the block number K
b) thebitsin theblockwhich changed value (thechange mask)
c) the UID for this operation

W4) When site A receives themessage it will update block K, which is a parity
block, according to formula (1) above. Moreover, it saves the receivedUID in the
Jth position in theUID array discussed above.

If System S[J] is down, other sites can read the Kth physical block on system S[J] in one of two

ways, and thedecision is based onthestate of thespare block. Each data and spare block has twostates:

valid non-zero UID
invalid zero UID

Consequendy, the spare block isaccessed byreading the Kth physical block atsite S[A'] determined by:

A' =remainder ((K + 1)/ (G +2))

The contents of the block is the result of the read if theblockis valid. Otherwise, the data block mustbe

reconstructed. This is done by reading block Kat all up sites except site S[A*] and then performing the

computation noted in formula (2) above. The contents of the data block should then berecorded at siteA*

along with a new UID obtained from the local system to make the block valid. Subsequent reads can

thereby beresolved byaccessing only the spare block.

Ifsite S[J] is down, other sites can write the Kth block on system S[J] by replacing step Wl with:

Wl') send a message to site S[A'] with the contents of block K indicating it
should write the block.

Ifa site S[J] becomes operational, then it marks it state as recovering. To read the Kth physical

block on system S[J] if system S[J] is recovering, the spare block is read and its value is retumed if it is

valid. Otherwise, the local block isread and its value is returned ifit is valid. Ifboth blocks are invalid,

then the block is reconstructed as ifthe site was down. As aside effect ofthe read, the system should write

local block Kwith its correct contents and invalidate the spare block. Ifsite S[J] is recovering, then writes

proceed inthe same way asfor upsites. Moreover, the spare block should beinvalidated asa side effect

Arecovering site also spawns abackground process to lock each valid spare block, copy its contents

to the corresponding block ofS[J] and then invalidate the contents ofthe spare block. In addition, when

recovering from disk failures, there may be local blocks that have an invalid state. These must be recon

structed by applying formula (2) above to the appropriate collection of blocks at other sites. When this

process iscomplete, the status ofthe site will be changed toup.

3.3. Concurrency Control

During normal operations, any concurrency control scheme can be used. However, we will assume

that dynamic locking isemployed. Hence, reads and writes set the appropriate locks on each data block

that they read or write. Ifasite is down, men read and write locks are set on me spare block which exists

at some site which is up. Parity blocks are never locked. If the spare block is valid, no further special treat
ment must be performed.

If the spare block is not valid, then it must be locked as above and then reconstructed by remote

reads ofGother blocks. These reads can be performed with no additional locking; however, each read

operation must also return the UID of the stored block. TTie parity block must return its array of UIDs.

Each UID must be compared against the corresponding UID in the array for the parity block. Ifall UIDs

match, then formula (2) constructs the correct contents of the block. If any UIDs fail to match, then the

read was not consistent and must be retried.

3.4. Crash Recovery

The algorithms we have described operate at the file system level. Hence, itisnecessary to discuss

crash recovery in three different contexts:

1) the DBMS performs transaction management through write-ahead-log (WAL)
techniques. The file system has noknowledge of transactions.

2) the DBMS performs transaction management through a no-overwrite scheme.
Again,the file systemis ignorant of transactions.

3)the operating system performs transaction management.

In the case that the DBMS is using aWAL scheme [GRAY78], there is asignificant problem. Ifsite

S[J] fails, other sites can employ the algorithms above to reconstruct the contents ofthe railed file system at

the time of the crash onto spare blocks. However, there may well be writes from uncommitted transactions

that have been recorded as well as writes from committed transactions that have not yet been recorded.

Consequendy, the blocks ofS[J] must first be restored to aconsistent state by DBMS recovery code

before they can be accessed. This will require running the standard two-phase recovery algorithm over the

log which was written by the local DBMS [HAER83]. Unfortunately, the log must also be reconstructed

according to the algorithms noted above. As aresult, each block accessed during the recovery process will

requireG physical readsat various sites.

In the case ofatemporary site failure, local recovery can often be initiated rather quickly. For exam

ple, recovery will be commenced immediately for software failures. In this case, only one local read need

be done for each block accessed during the recovery process. Therefore, remote recovery is unlikely to

finish before local recovery has been completed. Consequendy, in the common case of site failures of

short duration, astandard WAL technique used in conjunction with aRADD is unlikely to increase availa
bility.

As aresult, RADDs are more appropriate for site disasters and disk failures in this environment To

make them useful for site failures, very fast recovery is required. There are amultitude ofoptions to move

8

in this direction; however the best technique appears to be a no-overwrite storage manager and we now

turn to this scenario.

POSTGRES [WENS88, STON861 supports a storage manager in which data is not overwritten

[STON87]. In this architecture, there isno concept ofprocessing alog at recovery time. Hence, if asite

failure occurs, then remote operations can proceed according to the algorithms inSection 3 with no inter

vening recovery stage. Hence, a RADD will work well for site failures as well as site disasters and disk

failures if ano-overwrite storage manager is used.

If transaction management is supported within the operating system, then the above considerations

precisely apply. If the operating system uses a WAL, as in the 801 project [CHAN87] or Camelot

[SPEC87], then a RADD will not work well on short-duration site failures. On the other hand, if the

operating system does not overwrite blocks, as in [OUST88], aRADD will perform well on all three kinds

of failures.

4. NONUNIFORM DISK SYSTEM SIZES

In the previous sections we have assumed that each site has N disks each ofBblocks capacity. In

this section, we indicate that this assumption isstraightforward to relax. Specifically, assume that there are

L sites, L >G+2, with numbers of disks N[0], N[l],..., N[L-1]. Furthermore assume the total number of

drives at all sites isequal to A * (G+2), for some constant A. Lasdy, assume that no site has more than A

drives. The goal is allocate the collection ofA* (G+2) drives into A groups ofG+2 drives each such that

the G+2 drives are all on different sites. In this way, we can run the algorithms ofSection 3on each group

individually.

The following simple algorithm shows how to meet this goal Pick a single drive from each of the

G+2 sites with the largest number ofdrives, and put these drives into the first group. Ifmultiple sites have

the same number of drives, then resolve the tie in some arbitrary way. Since no site has more than A

drives, there must be atleast G+2 sites with adrive. There are now N'[0],.... NTL-1] drives at each site

totaling (A-l) * (G+2) drives. Moreover, no site has more than A-l drives. Consequendy, the problem

definition isthe same as before. Repeat the the picking algorithm iteratively until there are no drives left.

This algorithm is also straightforward to extend to cover non uniform disk sizes. Simply group disk

blocks at each site into logical drives ofsize B, B>0blocks. Then use the above algorithm to allocate

these logical drives to RADD groups. Assuming that Bdivides the total number ofblocks at each site, the

algorithm willconstruct a successful RADDwith nowasted blocks.

5. NETWORK FAILURES

We now indicate how to extend the model ofSection 3to deal with network railures of two kinds:

network partitions
lost messages

In the case ofnetwork partitions, we assume that the sites divide into two or more mutually exclusive col

lections that can communicate within individual partitions but not across partition boundaries. If the parti

tion looks like asingle failure, e.g. there are two collections with respectively G+1and 1site, then the

algorithms ofSection 3apply to the partition with G+1members. As long as the singleton site ceases

processing, consistency is guaranteed. Any other network partition looks like amultiple site failure and is

not addressed by the RADD algorithms. In this case, the system must block by denying access to data

blocks until the failure is repaired.

Ifmessages can be lost, then software at each site must ensure that the following conditions are true

before a transaction canbe committedat thatsite:

1) the messages updating the parity block for all writes performed on behalf of
the transaction have been received at the various parity sites

2) the message corresponding to transaction commit has been received at its par
ity site

Enforcing these conditions may entail a substantial performance penalty. However, they will allow a

RADD tooperate correctly when messages can be lost

Hence, network failures that look like single site failures can be tolerated along with lost packets (at

some performance penalty). Other partitions require aRADD to block awaiting reconnection.

6. DISTRIBUTED DATA BASES

If adistributed DBMS is the client ofaRADD, then it must take the following actions. First, query

optimization can proceed with no consideration ofmultiple copies. TTie resulting heuristic plan is meant to

10

be executed at several sites. Ifthe site at which aplan is supposed to execute is up or recovering, then the

plan issimply executed at that site. If the site isdown, then the plan isaUocated tosome other convenient

site.

Distributed concurrency control can be done using any of the common techniques. The algorithms

above do not appear toimpact any ofthe common algorithms.

Atwo-phase commit iscommonly used to raise the probability that all sites commit orall sites abort

adistributed transaction [SKEE81]. Nothing about our algorithm interferes with such commit processing.

Moreover, in a RADD one can question the need for a two phase commit Commonly, one has a

master module c<x>rdinating acollection ofslave modules, one at each site where processing needs to take

place. The master sends commands to various slaves who reply done when they are ready for more input

For each local write that is made by aslave into the local buffer pool, the algorithms ofSection 3require a

non-local write to the parity block. If the message for each such write is sent and received reliably before

the slave returns done, then aslave can crash any time after returning done, and the information written in

the buffer pool is recoverable. Each slave isthereby prepared after each command, and the coordinator

can issue acommit at any time after he has received adone from all slaves. Consequendy, ifthe network

is reliable, only a single failure occurs, and the messages to update the parity information are sent before

returning done, then a two-phase commit does not increase the probability of avoiding inconsistent data.

The second and third assumptions are plausible; hence if the network fails infrequendy then it may not be
worthwhile tousea two-phase commit ina RADD environment

7. PERFORMANCE

7.1. Introduction

In this section we compare the performance ofaRADD against five other possible schemes that give

higher availability. The first is a traditional multiple copy algorithm. Here, we restrict attention to the case

where there are exacdy two copies of each object In this case, any voting scheme reduces to something

equivalent to aRead-One-Write-Both (ROWB) scheme [ABBA85]. In fact ROWB is essentially the same

as aRADD with agroup size ofland no spare blocks. The second comparison is with aLevel 5RAID as

discussed in [PATT88]. Third, we examine acomposite RAID in which the RADD algorithms are being

11

performed as in Section 3. In addition, the single site RAID algorithms are also applied to each local I/O

operation, transparent tothe higher level RADD operations. This combined RAID will becalled C-RAID.

It is also possible to utilize atwo dimensional RADD. In such asystem the sites are arranged into atwo-

dimensional array and arow parity and column parity are constructed, each according to the formulas of

Section 3. We call this scheme 2D-RADD, and avariation on this idea was developed in [GIBS89]. The

last case which we examine is aRADD in which the group size is one-half as large as normal. Such asys

tem, named 1/2-RADD will require the same amount ofdisk space as aC-RAID and may be an interesting

alternative if extra spaceis available.

The comparison will use three metrics. First we consider the space overhead ofeach scheme. Next

we document the cost ofread and write operations for each scheme under various conditions. Weconclude

the performance discussion by considering network bandwidth issues. The third issue is reliability, and we

document two metrics for each system. The first metric is the mean time to the unavailabflity ofaspecific

data item, MTTU. This quantity is the mean time until the particular data item isunavailable because the

algorithms must wait for some site failure to be repaired. The second metric is the mean time until the sys

tem irretrievably loses data, MTTF. This quantity isthe mean time until there exists adata item that cannot

be restored. The next four subsections document ourresults.

7.2. Space Requirements

Space requirements are determined solely bythe group size, G, that isused, and for the remainder of

this paper we assume that G=8. Furthermore, it is necessary to consider briefly our assumption about

spare blocks. TTie algorithms in Section 3were constructed assuming that there is one spare block for each

parity block. During any failure, this will allow any block on the down machine to be written while the site

is down. Alternately, it will allow one disk to fail in each disk group without compromising the ability of

the system to continue with write operations to the down disks. Clearly, asmaller number ofspare blocks

can be allocated per site if the system administrator is willing to tolerate lower availability.

In our analysis we assume there is one spare block per parity block. Analyzing availability for lesser

numbers ofparity blocks is left as a future exercise. Figure 2indicates the space overhead ofeach scheme

under the assumptions above. Clearly, the traditional multiple copy algorithm requires a100 percent space

12

System Space Overhead

RADD 25 percent
ROWB 100percent
RAID 25percent
C-RAID 5625 percent
2D-RADD 50 percent
1/2-RADD 50 percent

A Space Comparison
Figure 2

penalty since each object is written twice. Since G=8and we are also aUocating aspare block for each

parity block, then the parity schemes (RAID and RADD) require two extra blocks for each 8data blocks,

Le. 25 percent The space overhead for aRADD with group size of4(1/2-RADD) is twice as high, Le. 50

percent For each 64 disks in atwo-dimensional array, the 2D-RADD requires two coUections of 16 extra

disks. Hence, the space overhead is 50 percent Hie C-RAID requires two extra disks for each 8 data

disks for the RADD algorithm. In addition, the 10 resulting disks need 2.5 disks for the local RAID algo
rithms. Hence, the total space overhead is5625 percent

7.3. Cost of I/O Operations

In this subsection we indicate the cost of read and write operations for the various systems. In the

analysis we use the constants in Table 1below, and Figure 3shows the number of local and remote opera-

Parameter cost

local read R
local write W
remote read RR
remote write RW

Some Cost Parameters
Table 1 -

13

tions required by the systemsto perform reads andwrites under various circumstances. Under normal cir

cumstances when all sites are up, all systems read data blocks byperforming a single local read. A normal

write requires 2actual writes inaU cases except C-RAID and 2D-RADD. A local RAID requires two local

writes, whUe RADD, ROWB, and 1/2-RADD aU need a local write plus a remote write. A C-RAID

requires atotal of4 writes. The RADD portion ofthe algorithm performs alocal write plus aremote write.

However, each will be turned into two actual writes by the RAID portion ofthe algorithm. We count this as

3local writes plus one remote write. In a2D-RADD, the RADD algorithm mustberun intwo dimensions,

resulting in two remote writes and one local write.

Ifadisk failure occurs, all parity systems must reconstruct the desired block. In each case, they must

read all other blocks in the appropriate disk group. TTiese are local operations for RAID and remote opera

tions for RADD, 2D-RADD and 1/2-RADD. Lasdy, aC-RAID can use the local RAID portion of the

System

no failure

read time

no failure

write time

RADD ROWB RAID C-RAID 2D-RADD 1/2-RADD

R

disk failure G*RR RR
read time

R R R R

W+RW W+RW 2*W RW+3*W W+2RW W+RW

G*R G*R G*RR G*RR/2

disk failure

write time
2*RW RW 2*W 2*W+2*RW 4*RW 2*RW

previously
reconstructed

read time

R+RR R '2*R 2*R R+RR R+RR

site failure
read time

G*RR RR G*RR G*RR G*RR/2

site failure
write time

2*RW RW 2*RW 4*RW 2*RW

A Performance Comparison
Figure 3

14

algorithm to reconstruct the desired block locaUy. The only scheme that requires less operations is ROWB

which needs only to read the value ofthe other copy ofthe desired object asingle remote read.

Write operations require less operations when adisk faUure is present Each parity scheme writes

the appropriate spare block plus the parity block. The various schemes thereby require amix of local and

remote writes. Only C-RAID and 2D-RADD which employ the algorithm more than once have higher

overhead. ROWB, ofcourse, needs only to write the single copy of the object which is up.

Lasdy, we consider the case of read operations to a block which has already been written onto the

spare block or which has been previously reconstructed. In this case, all parity schemes must read the

spare block and perhaps also the normal block. Counting both reads yields the fifth row ofFigure 3.

In the case ofa site failure or site disaster, modifications ofthe the disk failure costs must be made

for two of the parity schemes. SpecificaUy, aRAID cannot handle either failure and must block. Further

more, a C-RAID must use the RADD portion of its algorithm to process read operations. Hence, recon

struction occurs with Gremote reads rather than Glocal reads. The final two rows indicate these changes.

To make the performance ofthe various options more specific, we assume the R=W=30 msec, and

that RR and RW are 2.5 times more cosdy. These numbers are approximately the same as the ones

reported in [LAZ086]. Figure 4gives anumerical comparison of the options by evaluating the formulas in

Figure 3. During normal operation RAID outperforms all other systems because writes are less cosdy.
RADD, 1/2-RADD and ROWB all offer the same performance while the composite schemes further

escalate the cost of writes. During failures, ROWB offers superb performance, as does RAID for the

failures that it can tolerate. Among the other parity systems, C-RAID and 1/2-RADD offer good perfor
mance in some faUure modes. Only 2D-RAID offers high costs during aU faUures.

7.4. Network Performance

RAID, of course, requires no extra messages between sites. Hence it is unaffected by network costs

or bandwidth. On the other hand, the implementation of ROWB that consumes the least bandwidth in a

WAL environment is probably to copy the DBMS log from the first site to that of the back-up. Then, the
log is simply restored onto the second system. This scheme is usuaUy referred to as a hot standby
[GAWL85]. Ahot standby wiU usuaUy result in reduced network bandwidth because the log can be a

15

System RADD ROWB RAID C-RAID 2D-RADD 1/2-RADD

no failure
read time

30 30 30 30 30 30

no faUure
write time

105 105 60 165 180 105

disk faUure
read time

600 75 240 240 600 300

disk faUure
write time

150 75 60 165 300 150

previously
reconstructed

105 30 60 60 105 105

write time

site faUure
read time

600 75 - 600 600 300

site faUure
write time

150 75 - 105 300 150

A Numerical CostComparison
Figure4

logical log of events and not a physical log ofchanges to secondary storage [HAER83]. RADD wUl

require the changed bits for each block to be sent between sites in step W3. Moreover, suppose we have an

encoding scheme that aUows one to transmit an insert into apage by simply sending the insert and its loca

tion. At the receiving site the bits after the insert are moved down to make room for the insert Similarly,

delete operations can be efficiendy encoded. Such encoding wiU aUow B-tree inserts and deletes to be pro

cessed with minimal bandwidth requirements. Using these techniques, it appears that aRADD should

approximate the bandwidth requirements ofahot standby.

Under normal circumstances, a DBMS wiU change only a small fraction of each data block. For

example, ifblocks are 4K in size and records are 100 bytes, then an update ofaU fields ofadata record wUl

cause 2.5 percent ofthe block to be changed. If every block is brought into memory, changed, and then

written out then there wiU be 8K oflocal disk bandwidth for each 100 byte change record sent over the

16

network. In the case that locahty of reference results in the average block being changed four times in

memory before itis retumed to disk, then 8K ofdisk I/O wUl result in 400 bytes ofnetwork traffic. Hence,

the aggregate network bandwidth needs to be only 1/20 of the aggregate disk bandwidth. This relative per

formance approximates what is possible today. As aresult aRADD should not unduly stress anetwork

duringnormaloperation.

Ifasite is down, then aread to the down site results in Gremote reads. Ifasingle site fails, then

(G-1) / Gofthe read operations are unaffected whUe 1/G ofthem require Gphysical reads. Hence, on

average, each read requires two physical read operations during faUures. On the other hand, write perfor

mance is only modesdy affected by faUures. Under the assumption that reads are half the total I/O load,

then the aggregate network bandwidth and disk bandwidth at the up sites must increase by 50 percent dur

ing faUures. Hence, response time and throughput would, no doubt suffer during faUures, but normal

operations could usuaUy continue under thissort of load increase.

7.5. Reliability

To make quantitative the reliabUity of the various schemes, we use the disk and site numbers from

Table 2and consider four environments composed ofall combinations of each of two metrics. The first

metric is the number ofdisks at asite. In aRAID environment or one where disk servers abound, there

may be many disks, and we have used N= 100. On the other hand, in aconventional environment N=10

mightbe morerepresentative.

The second metric is the assumptions about disasters. It is difficult to discuss the mean time to a

disaster because they are rare events. Hence we use two sets ofnumbers, one for acautious user and one

for anormal user. The cautious numbers suggest the mean time to disaster is about 25 years and wiU

require 1day ofoutage. This might be the assumption ofauser who has spent the time to formulate aseri

ous disaster recovery plan. On the other hand, anormal user might assume amean time to disaster ofabout

100 years and two weeks of outage might result

Table 2indicates acolumn for each combination ofthe two metrics. All columns share the disk relia

bUity constants from [PATT88]. Hence, adisk faUure is assumed to happen about once every four years.

In aRAID environment we assume aMTTR of 1hour because it seems reasonable to have aspare disk on

17

site, and repair requires only aboard swap. On the other hand, in aconventional environment, it would be

more normal to require 8 hours to recover from a disk faUure. Lasdy, in all cases we assume a site faUure

every 150 hours, about once aweek, with amean time torecovery of 30minutes.

InaRADD, MTTU is theexpected time until a specific second site fails while the first oneisdown.

Using the standard assumptions ofexponential distributions and independent faUures, this time is:

MTTU =(site-MTTF) **2/ (site-MMTR * (G +1)) (3)

For ROWB, MTTB is givenby (3) above withG= 1:

MTTU = (site-MTTF) ** 2 / site-MMIR * 2

For RAID, the MTTB isthe expected time tothe faUure ofaspecific site, i.e:

MTTU = site-MTTF

In aC-RAID, MTTU is driven by the MTTU of the D-RAID portion, and wUl be approximated by (3)

above. For a2D-RAID the MTTU is the time for two specific sites to faU whUe the first one isrecovering,

namely:

MTTU =site-MTTF) **3/ site-MTTR. * (G+1)* (G+ 1)

Consequendy, Figure 5 gives the MTTU for the various systems. Since all four scenarios give the same

MTTU, wereport thenumbers onlyonce.

cautious cautious normal normal
RAID conventional RAID conventional

disk-MTTF 30,000 hours 30,000 hours 30,000 hours 30,000 hours
disk-MTER 1 hour 8 hours lhour 8 hours
site-MTTF 150 hours 150 hours 150 hours 150 hours
site-MTTR 30 minutes 30 minutes 30 minutes 30 minutes
disaster-MMTF 150,000 hours 150,000 hours 600,000 hours 600,000 hours
disaster-MTTR 24 hours 24 hours 300 hours 300 hours
N 100 10 100 10

Reliability Constants
Table 2

18

system MTTU

RADD 5000 hours
ROWB 22,500 hours
RAID 150 hours
C-RAID 5000 hours
2D-RADD 83333 hours
1/2-RADD 10,000 hours

MTTU fortheVarious Systems
Figure 5

MTTF can also be calculated by acoUection offormulas. For RAID, MTIF is simply the mean time
to the first site disaster, i.e:

MTTF=disaster-MTTF / (G+2)

On the other hand, for RADD data loss wUl be caused by one ofthe foUowing events:

1) asecond disaster whUe recovering from the first
2) adisaster whilerecovering from adiskfaUure
3)asecond disk crash whUe recovering from the first
4) adisk faUure whUe recovering from adisaster

For all our combinations ofreliabUity constants, itturns out that 4) is much more frequent than the other

threeevents. Hence, MTTF can be approximated by the MTIF of4) alone, which is:

MTIF =(site-MTTF) *(disk-MTTF) / site-MMTR *(G +1) *N (4)

For ROWB, MTIF depends on the physical distribution ofcopies. Atone extreme, one can allocate

aspecific second site to be the backup for all data at aspecific site. On the other hand, each object can be

backed up at arandom site, in which case every disk is likely to have backup information from aU other

systems. In the latter case, MTTF is given by (4) above, whUe in the former case one must multiply (4) by

N.Asaresult wewUl use (4) as aconservative estimate for MTTF for ROWB.

Lasdy, aC-RAID anda 2D-RADD wUl not fail unless

1) adouble faUure occurs on each of two systems
2) asecond disaster occurs while recovering from the first
3) adouble disk failure occurs whUe recovering from adisaster

19

Each of these events has amean time to occur of more than 500 hundred years. Consequendy, Figure 6

indicates the MTTF calculations of the various systems. Notice that RADD and ROWB have high reliabU

ity in conventional environments, but offer no better reliabUity than RAID when there are alarge number

of disks at each site. The explanation for this fact is that MTTF is driven by adisk faUure during recovery
from adisaster. With alarge number of disks, the probabUity of one failing during disaster recovery is
essentiaUy 1.0, resulting in the same MTTF for all three systems.

8. CONCLUSIONS

We have examined six different approaches to high availability in this study, and each can be seen to

offer specific advantages. RAID is the highest performance alternative during normal operations. How

ever, it offers no assistance with site faUures or disasters, and therefore has very poor MTTU and MTIF.

RADD offers dramaticaUy better availabUity in aconventional environment than RAID, but offers much

lower performance during both normal and recovery operations. On the other hand, ROWB offers perfor
mance intermediate between RADD and RAID; however, it requires alarge space overhead.

The other three options, C-RAID, 2D-RADD and 1/2-RADD, all require more space than aRADD

but less than ROWB and have different good points. A2D-RAID offers highest availability in the pres
ence ofsite failures and disasters but offers the lowest performance. On the other hand, aC-RAID offers

comparable availabUity in the presence of disasters and very good performance but suffers low availabUity

cautious cautious normal normal
RAID conventional RAID conventional

RADD 1.71 28.5 6.84 20.0
ROWB 1.71 28.5 6.84 20.0
RAID 1.71 1.71 6.84 6.84
C-RAID >500 >500 >500 >500
2D-RADD >500 >500 >500 >500
1/2-RADD 3.42 >100 13.7 >100

MTTF for the Various Systems (in years)
Figure 6

20

during site faUures. Lasdy, a 1/2-RADD offers intermediate avaUability and performance.

To tighten up the conclusions, we assume that reads happen twice as frequendy as writes and calcu

late the average cost ofan I/O during normal operation from Figure 4. Figure 7 then restates the numerical

comparison between the solutions using this I/O cost and the reliabUity numbers for the cautious conven

tional environment There are two solutions at 25 percent overhead, and RADD clearly dominates RAID.

For amodest performance degradation, RADD reliability is more than one order ofmagnitude better than

RAID. In addition, there are three solutions near 50 percent in overhead, 1/2-RADD, C-RAID and 2D-

RADD. AU offer MTTF over 100 years and better MTTU than RADD. 1/2-RADD offers the best perfor

mance of the three whUe 2D-RADD offers the best MTTU. C-RAID seems unattractive because itismuch

less reliable than 2D-RADD with only sUghdy better performance. Lasdy, ROWB requires aspace over

head of 100 percent It is somewhat more reliable than RADD and somewhat higher performance than

2D-RADD, but overaU does not seem like an attractive option. Consequendy, RADD, 1/2-RADD and

2D-RADD appear to be the dominantalternatives.

If we consider instead the normal RAID environment from Table 2,then RADD, ROWB and RAID

aU offer the same 6.84 year MTIF . AU seem to be insufficiendy reliable to be serious candidates for

disaster recovery. Hence, 1/2-RADD and 2D-RADD remain as the desirable options.

space overhead I/O cost MTTU MTIF
(percent) (msec) (years) (years)

RAID 25 40 .017 1.71
RADD 25 58.3 .57 28.5

1/2-RADD 50 58.3 1.14 >100
C-RAID 50 75 .57 >500
2D-RADD 56.25 80 9.51 >500

ROWB 100 583 2.57 28.5

MTTF for theVarious Systems (in years)
Figure6

21

In summary, note that RADD and its variants, 1/2-RADD and 2D-RADD, offer an attractive combi

nation ofperformance, space overhead and reliability. They appear to dominate RAID and ROWB as reli

abUity enhancers in multi-siteenvironments.

[ABBA85]

[BERN81]

[CHAN87]

[COPE89]

[GAWL85]

[GIBS89]

[GRAY78]

[HAER83]

[KATZ89]

[LAZO86]

[OUST88]

[PATT88]

[SKEE81]

[SPEC87]

[STON86]

[STON37]

[WENS88]

REFERENCES

AbbadL A. et al., "An Efficient Fault-Tolerant Protocol for Replicated Data
Management" Proc. 1985 ACM-SIGACT SIGMOD Conference on Principles of
Database Systems, Waterloo, Ontario, March 1985.

Bernstein, P. and Goodman, N., "Concurrency Control in Distributed Database
Systems," Computing Surveys, June 1981.
Chang, A. and Mergen, M„ "801 Storage: Architecture and Prograinmine " Proc
11th SOSP, November 1987.

Copeland, G. and KeUer, T., "A Comparison of High-Availability Media
Recovery Time," Proc. 1989 ACM-SIGMOD Conference on Management of
Data, Portland, OR, June 1989.

GawUch. D., "High AvailabUity with Large Transaction Systems," Proc. Interna
tional Workshop on High Performance Transaction Systems, Asilomar, CA, Sept
19o5.

Gibson, G. et at, "FaUure Correction Techniques for Large Disk Arrays," Proc.
Third Int Conf. on Architectural Support for Programming Languages and
OperatingSystems,March 1989.

Gray, J., "Notes on Database Operating Systems," IBM Research, San Jose, CA,
RJ2188, Feb 1978.

Haerder, T. and Reuter, A., "Principles of Transaction-Oriented Database
Recovery," ACM Computing Surveys, December 1983.
Katz, R., "Algorithms for RAID Reconstruction," (in preparation).
Lazowska, E. et al., "HieAccess Performance ofDiskless Workstations," ACM
TOCS,August 1986.

Ousterhout J. and Douglis, F., " Beating the I/O Botdeneck: ACase for Log-
Structured File Systems," University ofCalifornia, Computer Science Division,
Technical Report UCB/CSD 88/467, October 1989.

Patterson, D. et al, "RAID: Redundant Arrays of Inexpensive Disks," Proc.
1988 ACM-SIGMOD Conference on Management ofData, Chicago, 111., June
l"oo.

Skeen, D., "Non Blocking Commit Protocols," Proc. 1981 ACM SIGMOD
Conference on Management ofData, Ann Arbor, Mich., June 1981.
Spector, A. et at, "Camelot: ADistributed Transaction FacUity for Mach and the
Internet" CMU Dept ofComputer Science, Report CMU-CS-87-129, June 1987.
Stonebraker, M. and Rowe, L., "The Design ofPOSTGRES," Proc. 1986 ACM-
SIGMOD Conference on Management ofData, Washington, D.C., May 1986.
Stonebraker, M., "The POSTGRES Storage System," Proc. 1987 VLDB Confer
ence, Brighton, England, Sept 1987.

Wensel, S. (ed.), "The POSTGRES Reference Manual," Electronics Research
Laboratory, University ofCaUfomia, Berkeley, CA, Report M88/20, March 1988.

22

	Copyright notice1989
	ERL-89-56

