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ABSTRACT

Scheduling ofdataflow graphs onto parallel processors consists ofassigning actors to processors, order
ing the execution of actors within each processor, and firing the actors at particular times. Many
scheduling strategies do at least one of these operations at compile time toreduce run-time cost. In this
paper, we classify four scheduling strategies, (1) fully dynamic, (2) static-assignment, (3) self-timed,
and (4) fully static. These are ordered in decreasing run-time cost Optimal or near-optimal compile-
time decisions require deterministic, data-independent program behavior known to the compiler. Thus,
moving from strategy number (1) towards (4) either sacrifices optimality, decreases generality by
excluding certain program constructs, or both. This paper proposes scheduling techniques valid for
strategies (2), (3), and (4). In particular, we focus on dataflow graphs representing data-dependent
iteration; for such graphs, although it is impossible to deterministically optimize the schedule at com
pile time, reasonable decisions can be made. For many applications, good compile-time decisions
remove the need for dynamic scheduling or load balancing. We assume a known probability mass
function for the number ofcycles in the data-dependent iteration, and show how acompile-time deci
sion about assignment and/or ordering as well as timing can bemade. Thecriterion weuse is tominim
ize the expected total idle time due to the iteration; in certain cases, this will also minimize the expected
makespan of the schedule. We will also show how to determine the number of processors that should
be assignedto the data-dependent iteration.
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1. INTRODUCTION

A dataflow representation is suitable for programming multiprocessors because paral
lelism can be extracted automatically from the representation [Ack82][Gos82]. Each
node, or actor, in a dataflow graph represents a task to be executed according to the
precedence constraints represented by arcs, which also represent the flow of data.
Nodes in a dataflow graph are to be scheduled in such a way as to achieve the fastest
execution from a given multiprocessor architecture. We make no assumption here
about the granularity of the dataflow graph. The proposed techniques are valid both
for fine-grain and large-grain.

Scheduling of parallel computations consists of assigning actors to processors, order
ing the actors on each processor, and specifying their firing time, each of which can be
done either at compile time or atrun-time. Depending on which operations are done
when, we define four classes of scheduling. The first is fully dynamic, where actors
are scheduled atrun-time only. When all input operands for a given actor are avail
able, the actor is assigned to an idle processor at run-time. The second type is static
allocation* where an actor is assigned to a processor atcompile time and a local run
time scheduler invokes actors assigned to the processor. In the third type of schedul
ing, the compiler determines the order inwhich actors fire as well as assigning them to
the processors. At run-time, the processor waits for data to be available for the next
actor in its ordered list, and then fires that actor. We call this self-timed scheduling
because of its similarity to self-timed circuits. The fourth type of scheduling is fully
static; here the compiler determines the exact firing time of actors, as well as their
assignment and ordering. This is analogous to synchronous circuits. As with most
taxonomies, theboundary between these categories is notrigid.
We can give familiar examples ofeach ofthe four strategies applied in practice. Fully
dynamic scheduling has been applied in the MIT static dataflow architecture [Den80],
the LAU system, from the Department of Computer Science, ONERA/CERT, France
[Pla76], and the DDM1 [Dav78]. It has also been applied in adigital signal process
ing context for coding vector processors, where the parallelism is of a fundamentally
different nature than that in dataflow machines [Kun87]. A machine that has a mix
ture of fully dynamic and static-assignment scheduling is the Manchester dataflow
machine [Wat82]. Here, 15 processing elements are collected in a ring. Actors are
assigned to a ring at compile time, but to a PE within the ring at run time. Thus,
assignment isdynamic within rings, but static across rings.
Examples of static-assignment scheduling include many dataflow machines [Sri86].
Dataflow machines evaluate dataflow graphs at run time, but a commonly adopted
practical compromise is to allocate the actors to processors at compile time. Many
implementations are based on the tagged-token concept [Arv82]; for example ITs
data-driven processor (DDP) executes Fortran programs that are translated into
dataflow graphs by a compiler [Cor79] using static-assignment. Another example
(targeted at digital signal processing) is the NEC uPD7281 [Cha84]. The cost of
implementing tagged-token architectures has recently been dramatically reduced
using an "explicit token store" [Pap88]. Another example of an architecture that
assumes static-assignment is the proposed "argument-fetching dataflow architecture"
[Gao88], which is based on the argument-fetching data-driven principle of Dennis and
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Gao [Den88].

When there is no hardware support for scheduling (except synchronization primi
tives), then self-timed scheduling is usually used. Hence, most applications oftoday's
general purpose multiprocessor systems use some form of self-timed scheduling,
using for example CSP principles [Hoa78] for synchronization. In these cases, it is
often up to the programmer, with meager help from a compiler, to perform the
scheduling. A more automated class of self-timed schedulers targets wavefront arrays
[Kun88]. Another automated example is adataflow programming system for digital
signal processing called Gabriel that targets multiprocessor systems made with pro
grammable DSPs [Lee89]. Taking a broad view of the meaning of parallel computa
tion, asynchronous digital circuits can also be said to use self-timed scheduling.
Systolic arrays, SIMD (single instruction, multiple data), and VLIW (very large
instruction word) computations [Fis84] are fully statically scheduled. Again taking a
broad view of the meaning of parallel computation, synchronous digital circuits can
also be said to be fully statically scheduled.

As wemove from strategy number one to strategy number four, the compiler requires
increasing information about the actors in order to construct good schedules. How
ever, assuming that information is available, the ability to construct detenninistically
optimal schedules increases. To construct an optimal fully static schedule, the execu
tion time of each actor has to beknown; This requires that aprogram have only deter
ministic and data-independent behavior [Lee87]. Constructs such as conditionals and
data-dependent iteration make this impossible and realistic I/O behavior makes it
impractical. The concept of static scheduling has beenextended to solve someof these
problems, using a technique called quasi-static scheduling [Lee89]. In quasi-static
scheduling, some firing decisions are made at run-time, but only where absolutely
necessary.

Self-timed scheduling in its pure form is effective for onlythe subclass of applications
where there is no data-dependent firing of actors, and the execution times of actors do
not vary greatly. Signal processing algorithms, for example, generally fit this model
[Lee87]. The run-time overhead is very low, consisting only of simple handshaking
mechanisms. Furthermore, provably optimal (or close to optimal) schedules are
viable. As with fully static scheduling, data-dependent behavior is excluded if the
resulting schedule is to be optimal. Again, quasi-static scheduling solves some of the
problems, but data-dependent iteration has been outof reach except for certain special
cases.

Static-assignment scheduling is a compromise that admits data dependencies,
although all hope of optimality must be abandoned in most cases. Although static-
assignment scheduling is commonly used, compiler strategies for accomplishing the
assignment are not satisfactory. Numerous authors have proposed techniques that
compromise between interprocessor communication cost and load balance
[Muh87][Chu80][Zis87][Ma82][Efe82][Lu86]. But none of these consider pre
cedence relations between actors. To compensate for ignoring the precedence rela
tions, some researchers propose a dynamic load balancing scheme at run-time
[Kel84][Bur81][Iqb86]. Unfortunately, the cost can be nearly as high as fully
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dynamic scheduling. Others have attempted with limited success to incorporate pre
cedence information in heuristic scheduling strategies. For instance, Chu and Lan use
very simple stochastic computation models to derive some principles that can guide
heuristic assignment for more general computations [Chu87].

Fully dynamic scheduling is most able to utilize the resources and to fully exploit the
concurrency of a dataflow representation of an algorithm. However it requires too
much hardware and/or software run-time overhead. For instance, the MIT static
dataflow machine [Den80] proposes an expensive broadband packet switch for
instruction delivery and scheduling. Furthermore, it is not usually practical to make
globally optimal scheduling decisions at run-time. One attempt to do this by using
static (compile-time) information to assign priorities to actors to assist a dynamic
scheduler was rejected by Granski et. al., who conclude that there is not enough per
formance improvement to justify the cost of the technique [Gra87].
In view of the high cost of fully dynamic scheduling, static-assignment and self-timed
are attractive alternatives. Self-timed is more attractive for scientific computation and
digital signal processing, while static-assignment is more attractive where there is
more data dependency. Consequently, it isappropriate to concentrate on finding good
compile-time techniques for these strategies. In this paper we propose a way to
schedule adata-dependent iteration for general cases with the assumption that the pro
bability distribution of the number of cycles of the iteration is known or can be
approximated at compile time. The technique is not optimal except in certain special
cases, butit is intuitively appealing and computationally tractable.

2. DATA-DEPENDENT ITERATION

Two possible dataflow representations for data-dependent iteration are shown in figure
1[Lee89]. The numbers adjacent to the arcs indicate the number of tokens produced
or consumed when an actor fires [Lee87a]. In figure la, since the upsample actor pro
duces X tokens each time it fires, and the iteration body consumes only one token
when it fires, the iteration body must fire X times for each firing of the upsample
actor. In figure lb, the number of iterations need not be known prior to the com
mencement of the iteration. Here, atoken coming in from above is routed through a
"select" actor into the iteration body. The "D" on the arc connected to the control
input of the "select" actor indicates an initial token on that arc with value "false". This
ensures that the data coming into the "F" input will be consumed the first time the
"select" actor fires. After this first input token is consumed, the control input to the
"select" actor will have value "true" until the function t (•) indicates that the iteration is
finished by producing atoken with value "false". During the iteration, the output of
the iteration function / (•) will be routed around by the "switch" actor, again until the
test function t (•) produces a token with value "false". There are many variations on
these two basic models for data-dependent iteration.

For simplicity, we will group the body of a data-dependent iteration into one node,
and call it a data-dependent iteration actor. In other words, we assume a hierarchical
dataflow graph. In figure la, the "iteration body" actor consists of the upsample,
data-dependent iteration, and downsample actors. The data-dependent iteration actor
may consist of a sub-graph of arbitrary complexity, and may itself contain data-
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Figure 1. Data-dependent iteration can be represented using the either of the dataflow
graphsshown. Thegraph in (a) is usedwhen the number of iterations is known prior to the
commencement of the iteration, and (b) is used otherwise.

dependent iterations. In figure lb, everything between the "select" and the "switch",
inclusive, is the data dependent iteration actor. In both cases, the data-dependent
iteration actor can be viewed as an actor with a stochastic runtime, but unlike atomic
actors, it can be scheduled onto several processors. Although our proposed strategy
can handle multiple and nested iteration, for simplicity all our examples will have
only one iteration actor in the dataflow graph.

The proposed scheme has two components. First, the compilermust determine which
processors to allocate to the data-dependent iteration actor. These will be called the
"iteration processors", and the rest will be called "non-iteration" processors. Second,
the data-dependent iteration actor is optimally assigned an assumed execution time to
be used by the scheduler. In other words, although its runtime will actually be ran
dom, the schedulerwill assume a carefullychosen deterministic runtime and construct
the schedule accordingly. The assumed runtime is chosen so that the expected total
idle time due to the difference between the assumed and actual runtimes is minimal.
Locally minimizing idle time is well known to fail to minimize expected makespan,
except in certain special cases. (The makespan of the schedule is defined to be the
time from the start of the computation to when the last processor finishes.) We will
discuss these special cases andargue that the strategy is nonetheless promising, partic
ularly when combined with other heuristics.

Using the assumed execution time, a fully-static schedule is constructed. When the
program is run, the execution time of data-dependent actors will probably differ from
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the assumption, so processors must be synchronized. If all processors are synchron
ized together, using for example a global "enable" line, then we say the execution if
"quasi-static". It is not fully static because absolute firing times depend on the data.
If processors are pairwise synchronized, then the execution is self-timed or static-
assignment, depending on whether ordering changes are permitted.

The assumed execution time and the number of processors devoted to the iteration
together give the scheduler the information it needs to schedule all actors around the
data-dependent iteration. It does not address, however, how to schedule the data-
dependent iteration itself. We will not concentrate on this issue because it is the stan
dard problem of statically scheduling a periodic dataflow graph onto a setof proces
sors [Lee87a]. Nonetheless, it is worth mentioning techniques that can be used. To
reduce thecomputational complexity of scheduling and to allow any number of nested
iterations without difficulty, blocked scheduling can be used. In blocked scheduling,
all iteration processors are synchronized after each cycle of the iteration so that the
pattern of processor availability is flat before and after each cycle (meaning that all
processors become available for the next cycle at the same time). If the scheduling is
fully static, then this can be accomplished by padding with no-ops so that each proces
sor finishes acycle at the same time. The wasted computation can be reduced using
advanced techniques such as re-timing or loop-winding1 [Lei83][Gir87]. In these
techniques, several cycles of an iteration are executed in parallel to increase the
overall throughput For blocked scheduling, the objective is to minimize the mak
espan of one cycle. Throughput can also beimproved using optimal periodic schedul
ing strategies, such as cyclo-static scheduling [Sch86]. The proposal below applies
regardless of which method is used, but in all our illustrations we assume blocked
scheduling. We similarly avoid specifics about how the scheduling of the overall
dataflow graph is performed. Our method is consistent with simple heuristic schedul
ing algorithms, such as Hu-level scheduling [Hu61], as well as more elaborate
methods that attempt, for example, to reduce interprocessor communication costs.
Broadly, our method can be used to extend any deterministic scheduling algorithm
(based onexecution times of actors) to include data-dependent iteration.

3. THE ASSUMED EXECUTION TIME

To schedule the actors around the data-dependent iteration actor at compile time, it is
necessary to assign some fixed execution time to the data-dependent iteration actor.
Since the number of cycles of the iteration to be executed is not known at compile
time, we have to assume a number. The first guess might be to simply assume the
expected execution time, which can be approximated using methods proposed byMar
tin and Estrin [Mar69], but this will often be far from optimal. In fact, the assumed
number should depend on the ratio of the number of iteration processors to the total
number of processors. When the actual execution time differs from the assumedrun
time, some processors will be idled as a consequence. Our strategy is to find the
assumed runtime that minimizes the expected value of this idle time. We make the
bold assumption that the probability distribution of the number of cycles of the

As a possibly interesting side-issue, it does not appear tohave been pointed outin the literature
that retiming issimply adataflow perspective on loop-winding, so the techniques are in fact equivalent



Ha, Lee UC Berkeley

iteration actor isknown or can be approximated at compile time.
Let the number ofcycles of an iteration be arandom variable / with known probabil
ity mass function p(i). Denote the minimum possible value of / by MIN and the
maximumby MAX. MAX need notbe finite. In this section, we assume that we have
already allocated somehow the number N of processors to the data-dependent itera
tion actor. How to allocate the number of processors will be addressed in the next
section. If the total number of the processors isT, the number ofnon-iteration proces
sors is T-N.

Let the assumed execution time of the data-dependent iteration actor be t. For the
time being werestrict t tomultiples of the execution time of one cycle of the iteration.
If the execution time of a cycle is z, then x = t/z denotes the assumed number of
cycles of the iteration. At runtime, for each invocation of the iteration actor, there are
three possible outcomes: the actual number / of cycles of the iteration is (1) equal to,
(2) greater than, or (3) less than x. These cases are displayed in figure 2. In order for
the scheduler to resume static scheduling after the iteration is complete, it mustknow
the "pattern of processor availability". As indicated in figure 2, this pattern simply
defines the relative times at which processors become free after the iteration. For
now, assume this pattern is strictiyenforced by some global synchronization mechan
ism, regardless of the number of iteration cycles actually executed at run time. This
will force either the iteration processors or the non-iteration processors to be idle,
depending on whether the iteration finishes early or late. This constraint is precisely
what we mean by "quasi-static" scheduling of data-dependent iterations. It is not
strictiy static, in that exact firing times are not given at compile time, but relative
firing times are enforced.

01 x = i

N
T y-

l!|!IIIIl!

*
case l)i = x

01 i x

N
T y

ii|iiii||

r"
case 3)i<x

•*—w

N

numberof
iterations

01 x i

case 2)i>x

pattern of
processor availability

idle time

execution time

Figure 2. A static schedule is constructed using a fixed assumed numberx ofcycles inthe
iteration. The idle time due to the difference between x and the actual number ofcyclesi is
shown for 3 cases: i is equal to, less than, or greater than the assumed number,x.
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Consider the case where the assumed numberx is exactly correct. Then no idle time
exists on any processor (case 1, figure 2). Otherwise, the non-iteration processors will
be idled if the iteration takes more than x cycles (case 2, figure 2), or else the iteration
processors will be idled (case 3, figure 2). Our strategy is to select x to rninimize the
expected idle timeon all processors for a given number of iteration processors.
Let p (i) be the probability mass function of the number of iteration cycles confined
within MIN and MAX. For a fixed assumed x the expected idle time r^jc) on the
iteration processors is

tx(x)=Nz £ p(i)(x-i). (1)
i=MIN

The expected idletime t2(x) onthenon-iteration processors is
MAX

t2(x) =(T-N)z 2 PiW-x). (2)
i=x+l

The total expected idle time t(x) is t(x)=tx{x) + t2(x). The optimal value of x
minimizes thisquantity. From this wecan get that

x MAX

t(x)-t(x+l) =-Nz 2 p(i) + (T-N)z 2 p(i)
i=M!N i=x+l

MAX (3)
= -Nz + Tz 2 p(i),

i=x+l

Similarly,

MAX

t(x)-t(x-l)=Nz-TzZp(i). (4)
i=x

The optimal x will satisfy the following two inequalities: f(jt)-f(;c+l)<0,
f(x)-r(x-l)£0. Since z is positive, from the equations (3), (4),

MAX M MAX
ZP<0£f *I/>(0. (5)

i=x+l 1 i=3C

All quantities in this inequality are between 0 and 1. The left and right sides are
decreasing function ofx. Furthermore, for all possible x, the intervals

MAX MAX

Zp(0, Zp(0 (6)
J=3C+1 i=x J

are non-overlapping and cover the interval [0,1]. Hence, either there is exactly one
integer x for which NIT falls in the interval, or NIT falls on the boundary between
two intervals. Consequently, (5) uniquely defines the one optimal value for*, or two
adjacent optimal values.

This choice ofx is intuitive. As the number of iteration processors approaches the
total number, 7\ of processors, NIT goes to 1 and x tends towards MIN. Thus even if
an iteration finishes unexpectedly early, the iteration processors will not be idled.
Instead the non-iteration processors (if there are any) will be idled (figure 3a and b).



Ha, Lee UC Berkeley 8

On the other hand, x will be close to MAX ifN is small. In this case, unless the itera
tion runs through nearly MAX cycles, the iteration processors, ofwhich there are few,
will be idled while the non-iteration processors need not be idled (figure 3c and d). In
both cases, the processors that are more likely tobe idled at run time are the lesser of
the iteration or non-iteration processors.
Consider the special case that NIT = 1/2. Then from (5),

MAX x

which implies that

Furthermore,

E/>(0 = i-2p(0£1/2
i=*+l MIN

Zp(i)>U2.
MIN

MAX

"LP(0*1/2
l=X

(7)

(8)

(9)

Taken together, (8) and (9) imply that x is the median of the random variable / (not
the mean, as one might expect). In retrospect, this result is obvious because for any
random variable /, the value of* that minimizes E \I -x I is the median. Note that
for a discrete-valued random variable, the median is not always uniquely defined, in
that there can be two equally good candidate values. This is precisely the situation

0 x = MIN

T N

2E_

1

(a)N->T,i = MIN

0 x = MAX
kA7 1::.:::::.:::::::::::::..::::!

T

iv

(c)N = l,i = x

number of
iterations

N

N-

| idle time

execution time

0 x i

not

(b)N->T,i>MIN

0 i MAX

(d)N = l,i<MAX

Figure 3. When the number of iteration processors N approaches the total number T, x
approaches MIN and the iteration processors will not be idled for any actual number of
iterations (a and b). On the other hand, when N is small, x tends toward MAX so that the
non-iteration processors will not be idled(c and d).
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where x falls on the boundary between two in intervals (6).

Up to now, we have implicidy assumed that the optimal * is an integer, corresponding
to an integer number of cycles of the iteration. For non-integer x, the total expected
idle time is restated as

|xj MAX
t(x)=Nz 2 p(i)(x-i)+(T-N)z J p(i)(i-x). (10)

i=MIN i=L;cj +1

Define 5X =*-L*J , so0 <5X <1. Then equation (10) becomes
L*J , , MAX

t(x)=Nz 2 P(i)([x}-i4$x) +(T-N)z £ p(0(i-|*|-5x)
i=MIN /=[*) +i

,. . L*J MAX
=t([x]) +Nz 2 Pd)Sx-(T-N)z £ p(i)bx an

i=MIN «=W+1

, , MAX
= t(lx}) +zSx(N-T J) p(0).

i=Lxj+i

This tells us that between |*J and [xj + 1, t(x) is an affine function of8X, so itmust
have its minimum at 8X =0 or 8X-»1 depending on the sign of the slope. Either of
these results isan integer, so inequality (5) is sufficient to find the optimal value ofx.
Asan example, assume p(i) isauniform distribution over the range MIN to MAX. In
other words,

1

/>(*)=•

MAX-MIN+1 MIN <> i £ MAX
(12)

0 otherwise .

Then the optimal number x satisfies

(MAX-x) N (MAX-x+l)
(MAX-MIN+l) T (MAX-MIN+l) ' (13)

from inequality (5). From this,

x>MAX - -^(MAy-M/iV+l), and
N (14>x <MAX +1- y(MAX-MIN+l).

Together these imply that

x=MAX- y(MAX-MIN+l) (15)

In the special case that exacdy half of the processors are devoted to the iteration, x
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becomes the expected number of cycles of the iteration, which for this distribution is
the same as the median. Also, as N gets small, x tends toward MAX and as N
approaches T, x tends towards MIN, justas expected.
A uniform probability mass function p(i) is not agood model for many types ofitera
tion. In situations involving convergence, ageometric probability mass function may
be abetter approximation. Ateach cycle ofthe iteration, we proceed to the next cycle
with probability q and stop with probability \-q.
For generality, we still allow an arbitrary minimum number MIN of cycles of itera
tion. The maximum number, MAX, is infinite. Let j=i-MIN, where i is the number
of cycles of the iteration. Then, the geometric probability mass function means that
for any non-negative integer r,

P[jZr]=qr, (16)
and

P\j=r]=p(r) = qr(l-q). (17)

To use inequality (5), we find
MAX oo

2P(0= % Pd)=P\jZx+l-MIN]=qx+1~MIN. (18)
i'=3C+l i=cc+l

Similarly,
MAX

£P(0 =<7*-M/2V. (19)
i=x

Therefore, from inequality (5), x satisfies

N

Combining these we get that

x+l-MIN>\ogqj.

x-MIN>\ogq^.

x=MIN + log,—

(20)

(21)

To gain intuition about this expression, consider the special case where q =0.5 mean
ing that after each cycle of the iteration we are equally likely to proceed as to stop.
Further specializing, when exacdy half of the processors are devoted to the iteration,
x becomes MIN+1, which is the expected number of iteration cycles, as well as the
median. Note that practical applications are likely to have a larger value for q, in
which case the median will be smaller than the mean.
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4. PROCESSOR PARTITIONING

In the previous discussion, we assumed that we can somehow allocate the optimal
number N of processors to the data-dependent iteration. Now we give a strategy
determining this number. Unfortunately, in practical situations, the detailed structure
of the dataflow graph has an impact on the optimal choice of N. To keep the
scheduler simple, our preference is to adopt suboptimal policies that are optimal for a
subset of graphs and reasonable for the rest. In particular, we can apply a similar prin
ciple to that used in section 3. We will discuss the limitations of our method in the
next section.

Recall that our scheduling strategy is to assume the iteration runs for* cycles exactly
and to construct a static schedule accordingly. When the actual number of cycles
differs from x (as it often will), global synchronization is used to idle either the itera
tion processors (if the iteration finishes early) or the non-iteration processors (if the
iteration finishes late). From this, we can conclude that the total cost of the data
dependent iteration in quasi-static scheduling is the execution time spent onthe itera
tion plus the idle time caused by it. This is an approximation, as discussed in the next
section, because it ignores the effect that the data dependent iteration may have on
othercomputations. Nonetheless, we propose to select N to rninimize this cost.
As before, i is the number of iterations, zN is the run time per iteration cycle (with N
iteration processors), and xN is the assumed number ofiteration cycles from the previ
ous section (with N iteration processors). Note that zN and xN are both non-
increasing in N.

If i is smaller thatxN, the iteration processors will be idled and the total cost will be
NxNZp (case 3, figure 2). On the other hand, if i is greater than xN, the cost of the
iteration consists of execution time on the iteration processors plus idle time on the
non-iteration processors. In this case, the total cost becomes NizN +(T-N)(i-xN)zN
(case 2, figure 2). As aresult, the expected value of the costof theiteration for a fixed
N is

a*"1 MAX
'*(#) = 2 Pd)NxNzN+ LPd)(NizN+(T-NXi-xN)zN). (22)

i-MIN i=xN

After a few manipulations, (22) becomes
MAX

ta(N)=NxNzN +TzN 2>(O0'-%). (23)
i=xN

Our proposal is to minimize this quantity. This can be done for specific distributions
P(i).

First, let us consider ageometric distribution on the number of cycles of the iteration.
Since
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MAX

2/>(*)(*-%) =
i=xN W

t0(N)= NzNxN + TzN—±-q
l-q

12

xN-MIN
(24)

Xn-MIN
(25)

Since both xN and zN are functions of N, dependency of t0(N) on N can not be
clearly defined. If wereplace xN using (21) weget

t0(N)=NzN(MIN + log
N_

) + T*N-ri-<il-q

i N

(26)

which is a complicated transcendental that looks as if it has to be rninimized numeri
cally. Fortunately, we can draw some intuitive conclusions for certain interesting spe
cial cases.

Consider the case where linear speedup of the iteration actor is possible. In other
words, zNN =K, where K is the total amount of computation in one cycle of the
iteration. The (26) simplifies slighdy to

t0(N)=K(MIN) + K i Nlog,y +r
K q
N l-q

l08» Y
(27)

The first term is constant in N and the second term is decreasing in N. We will now
show that the third term is approximately constant in N, suggesting that t0(N) is
minimized by selecting the largest possible value, N =T. This is intuitively appeal
ing, since with linear speedup applying more processors to the problem would seem to
make sense. To show that the third term is approximately constant, note that

N

qT
= q >q

log?-^-
>^

Consequendy, the third term is bounded as follows,

l-q N l-qH l-q '
These bounds do not depend on N. Note, however, that when N =T, this third term
is at its minimum, Kql(l-q). It may also be at this minimum for other values of N,
but since the middle term in (26) decreases as N increases, the conclusion is that N
should be made as largeas possible,namely N =T.
Consider another extreme situation, when no speedup of the iteration is possible. In
this case, zN =K, independent ofN. For the third term in (26), we use similar bound
ing arguments and find that both the upper and lower bounds on the third term
increase linearly in N. The first term also increases linearly in N. The second termis

(28)

(29)
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Nz log,y (30)

which also increases in N, so the conclusion is that if no speedup is possible, we
should use as few processors as possible, orN = 1. This is areassuring conclusion.
For general speedup characteristics, we cannot draw general conclusions. This sug
gests that acompiler implementing this technique may need to solve (26) numerically
for the optimalN. If the totalnumberof processors T is modest, then this task should
not be too onerous, although we wouldcertainly prefer to not have to do it. The task
can be somewhat simplified, perhaps, by the observation that we can shrink the range
of N to beexamined by looking into the range of t0 (N). From (20),

which implies that

xn+I-MIN < N_ xN-MIN

zNN(xN +-3-) <; t0 (N) <zNN(xN +-i-).
i-q i-q

(31)

1
(32)

For somevalues of N, the upper bound is smaller than thelowerbound for some other
value ofN, so we can ignore the latterN 's.

As another example, consider the case where p(i) is a uniform distribution. Then
equation (23) becomes

f,n .. „ (MAX-xN)(MAX-xN + l)
t0(N)=NzNxN+TzN - - (33)

N N N 2{MAX-MIN + 1) K }
We can replace xN with the value given by (15). Observe that if we define
R = MAX-MIN+ l,±en

y(MAX-MIN+l) TR> (34)

when RNIT is large. This crude approximation simplifies the analysis compared to a
bounding argument like that above, which can be carried out and leads to the same
conclusion. If in addition we assume linear speedup, so that NzN=K, then
(33) simplifies to

t0(N)=K(MAX) +£-
T

(35)

We see that this function isdecreasing linearly in N, suggesting again that we should
select the maximumN =T.

To summarize, we have derived ageneral cost function that depends on the speedup
attainable for the iteration as more processors are devoted toit. The cost function was
given for the special cases when the probability mass function for the number of
cycles of the iteration is geometric or uniform. Furthermore, simple special situations
lead to intuitive results. Namely, if linear speedup is attainable, then we should
devote all the processors to the iteration. If no speedup is possible, then we should
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devote no more than one processor to the iteration. For more general situations,
finding the optimal number of processors requires numerically solving acomplicated
transcendental.

5. OPTIMALITY

The solution we have given is the optimal solution to a simple, but unrealistic prob
lem. Observe that the makespan of aschedule can begiven as follows,

makespan = -=;(INzN + Y + A) (36)

where INzN is the total computation time devoted to the iteration (lighdy shaded in
figure 2), Y is the idle time due to our quasi-static synchronization strategy (dark
shading in figure 2), and A is the rest of the computation, including all idle time that
may result both within the schedule and at the end. Our solution minimizes the mak
espan under the bold (and unrealistic) assumption that A is independent of our deci
sions for N and xN. For fixed N, the first term in (36) is independent of xN, so our
choice of xN, which rninimizes the second term, is optimal. For variable N, our stra
tegy is to minimize the sum of the first two terms.

The key assumption is unreasonable when precedence constraints make A dependent
on ourchoices. Consider for example, the situation where there are more processors
than we can effectively use, and the data-dependent iteration is in the critical path for
all possible outcomes of/. In this case, it may be helpful to devote more processors
to me iteration than the optimal number predicted in section 4. On the other hand,
suppose there are no precedence constraints. Then the key assumption is not bad as
long as the execution times of all actors are small relative to the makespan. Realistic
situations are likely to fall between these twoextremes. Perhaps the bestsolution is to
use our policy, but permit the programmer to indicate a different preference through
annotation of the program.

6. STATIC ASSIGNMENT AND SELF-TIMED SCHEDULING
Once the number of iteration processors and the assumed number of iteration cycles
are decided, we can construct a static schedule accordingly. Quasi-static scheduling
means global synchronization thatmakesthe pattern of processor availability after the
iteration consistent with the scheduled one, as shown in figure 2. This implies
hardware for global synchronization, which may be less expensive than the handshak
ing required for self-timed execution (a simple wired-or circuit would suffice). How
ever, some idle time compulsorily inserted may be unnecessary in reality. Further
more, if handshaking is omitted, then the system is intolerant of run-time fluctuations,
due for example to interrupts or I/O operations. Hence the quasi-static scheduling
strategy is regarded as impractical. Nonetheless, it suggests a good strategy for
static-assignment or self-timed scheduling. In static-assignment, we discard all infor
mation from the quasi-static schedule except the assignment of actors to processors.
In self-timed scheduling, we alsouse the ordering of actors within processors.

In static-assignment scheduling, actors are assigned to processors without defining the
execution order. Unlike dynamic load balancing or techniques that compromise
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between interprocessor communication cost and load balance, our proposed strategy
considers arbitrary precedence relations at compile time. If the actual computation
times are similar to those assumed by the scheduler, then our technique can get close
to the minimal makespan.

Anexample of static-assignment scheduling is shown in figure 4. A dataflow program
consists of six actors with precedence relationships shown in figure 4a. Actor D
represents a data-dependent iteration. Suppose that the program is statically
scheduled using our technique, and the resulting assignment puts actors D , C, and F
onto the first processor, and the restonto the second processor. Theordering and tim
ing information is discarded. Assuming D has a data-dependent execution time, the
run-time schedule depends on its outcome. Two possible schedules are shown in
figure 4b and c. By inspection, we can see in figure 4 that the schedules shown are
optimal in the sense of minimizing makespan. However, designing a run-time
scheduler that reliably produces these schedules is not easy. Assume that when a pro
cessor becomes free, if there is an actor ready to be fired, then the run-time scheduler
will fire it. This isnot necessarily optimal, but in deterministic processor scheduling it
can be shown to be reasonable. Then the only decision to be made by the scheduler
occurs when there is more than one actor ready to fire. In figure 4b, the run-time
scheduler never faces this decision, so a very simple strategy will yield the schedule
shown. In figure 4c, however, after the completion of actor A, the second processor
must decide between firing B or E. E is the betterchoice, but it is not clear at all how
the scheduler might know this. An immediate idea is to use some of the static infor
mation that was discarded: specifically the ordering information. However, this does
not guarantee the right choice, because the static information is based on an assump
tion about the data-dependent execution time, and the outcome may be far from this.
The alternative of stochastic modeling of the program is not very promising either,
because only the most grossly oversimplified stochastic models yield to optimization.'
The above observations lead to an interesting conclusion. In static-assignment
scheduling, the run-time scheduler on each processor faces an ambiguous decision
only if more than one of the actors assigned to it are ready to fire when the last actor
completes. If this situation arises rarely, then a naive scheduler will work well.

D C

B

(a) precedence relation (b)

F

•v-

D

-

F C

A E B

(c)

Figure 4. An example of static-assignment scheduling. The precedence relations are
shown in (a), and two possible schedules, which depend on the execution time of actorD
are shown in (b) and (c).
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However, under the same conditions, a self-timed strategy would work just as well,
and the cost would be lower. On the other hand, if the situation arises frequendy, then
we do not know how to make the decision. Practical proposals are to make the deci
sion arbitrarily, subject to a "fairness" principle, in which no actor will be tried twice
before all other actors have been tried [Gao83]. It may be profitable to augment this
strategy byusing information discarded from the static schedule, but as argued before,
this is notguaranteed to lead to an optimal schedule.
A comparison with the Granski, et, al. proposal [Gra87] is in order. In fully dynamic
scheduling, assignment is easy, assuming the target architecture is homogeneous. It
does notmatter which free processor gets an actor, once the decision has been made to
fire that actor. So the decisions to be made by the scheduler are simply which of the
actors that are ready to be fired should be fired. If the number of actors that are ready
to be fired is smaller than thenumber of available processors, then there is nodecision
tobe made, and the scheduler will not be helped bystatic information. Itisonly if the
number of ready actors is large that static information can help. In [Gra87] the
authors report that the improvement due to using static information in a dynamic
scheduler degrades to no improvement for large numbers of processors. We just
stated the reason for this.

In self-timed scheduling, wedefine the execution order of actors at compile time, thus
avoiding the difficulty of designing the local controller. In the example of figure 4,
suppose that actors are constrained to execute in the order given by figure 4b. In this
case, we sacrifice some freedom to optimizeat execution time. However, if the varia
bility inexecution time is small enough, then there is little justification for paying the
run time cost of static-assignment scheduling. Of course, if the explicit token store
mechanism of Papadopoulos [Pap88] proves to be truly low cost, then the additional
adaptability of static-assignment scheduling makes it more attractive. As pointed out
earlier, however, tractable static-assignment scheduling is not guaranteed to outper
form self-timed. It is easy to construct demonstration examples where, for example,
an iteration finishes well before expected, causing an order change that results in a
larger makespan than if there were noorder change.
The difference between quasi-static and self-timed scheduling is shown in figure 5. In
quasi-static scheduling, actors A ft are executed after the iteration even if actorA is
independent of the iteration, assuming the scheduler places A after theassumed endof
the iteration. We also have to synchronize the processors of actors by inserting idle
time compulsorily. However, in self-timed scheduling, actor A is executed indepen
dently of the completion of the iteration when its data are available. Idle time may be
automatically inserted after A while the next actor waits for data. Similarly, actor B
is executed as soon as it is runnable; that is, all input data are available and the
assigned processor is available. Since all actors are executed before or at the same
synchronized time from quasi-static scheduling case, the self-timed scheduling stra
tegy always gives aresult better than or equal to the quasi-static scheduling strategy,
assuming overhead for synchronization is comparable. In addition, it does not need
global synchronization mechanism, but only local handshaking. As a result, we
believe that self-timed scheduling is moreattractive.
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x: assumed numberofiterations

i: actual number of iterations

(a) quasi-static scheduling

idle time

iteration actor

53
(b) self-timed scheduling

Figure 5. Comparison between quasi-static scheduling and self-timed scheduling. In
quasi-static scheduling, the pattern of processor availability after the iteration is enforced by
global synchronization. In self-timed scheduling, the pattern is only enforced if the pre
cedences require it. Here we have assumed that actorB is dependent on the iteration but
actor A not.
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Self-timed scheduling overcomes a difficulty of quasi-static scheduling illustrated in
figure 6. According to the dataflow graph given in figure 6a, the proposed quasi-static
schedule is shown in (b). However, suppose the actual number of iterations i exceeds
the assumed number x. A strict quasi-static schedule would execute as shown in
figure 6c, while a self-timed schedule would execute as shown in (d). In this case, our
proposed schedule is no more optimal than that in (d), because we considered only the
idle time before the completion of the iteration actor when deciding the value x. In
other words, ourchoice ofx only locally optimal. In this example, the idle time after
the iteration depends on x. Self-timed execution can sometimes compensate for this
deficiency in the scheduling strategy. Idle time immediately after the completion of
the iteration has no effect on the performance since there is no compulsory idle time.
In other words, for self-timed execution, the schedules in figure 6b and d are
equivalent.

This does not lead us to the conclusion that the strategy we propose is optimal under
self-timed execution. Consider the two schedules in figure 7, which assume the same
precedence graph from figure 6a. Under self-timed scheduling, the schedule in figure
6a is clearly preferable to that in figure 6b, because even if the iteration runs twice as
long as the assumed number x, the makespan will not be affected. Our scheduling
strategy thus far imposes no constraints that would prefer the schedule in figure 6a.
Intuitively, care should be taken to schedule actors after the iteration actor in static-
assignment or self-timed scheduling. For examples of this type, the problem can be
largely avoided by the following heuristic; all else being equal, actors independent of
the iteration should be assigned to the non-iteration processors after the iteration. This
heuristic may be easily incorporated in the original static scheduling without
significant cost.
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jjjjIjJB iteration actor (E)
probabilities:

p(0) = p(l) = p(2) = l/3

(a) precedence graph

x

(c) quasi-static execution

X

processors

1 D

2
A B C

processors

1

(b) static schedule

D

A B C

(d) self-timed execution

Figure 6. An example showing that a difficulty in quasi-static scheduling is overcome in
self-timed scheduling. In the precedence graph shown in (a), assume the iteration actor E
is equally likely to run for 0, 1, or2 iterations of unit length. Assume that one of two proces
sors is to be devoted to the iteration. Then our proposed strategy yields the static schedule
in (b). Assume now that a given execution results in the iteration running for two cycles.
Static execution of the schedule, in which global synchronization enforces the pattern of pro
cessor availability after the iteration, results in the schedule shown in (c), while self-timed
execution results in the schedule shown in (d).

•

processors

1 D

2
A B C

(a) optimal scheduling (b) bad scheduling

Figure 7. For the same precedence graph as in figure 6, two static schedules with the
same makespan are shown. However, if the actual number of iterations turns outto be two,
the schedule in (a) is better than that in (b).
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7. CONCLUSION

Static-assignment and self-timed scheduling strategies look like the most promising
compromises between hardware cost/performance and flexibility. The choice should
depend on the amount of data-dependent behavior in the expected applications. Both
strategies require compile-time decisions; they require that tasks be assigned to pro
cessors at compile time, and in addition, self-timed scheduling requires that the order
of execution of the tasks be specified. If there is no data-dependency in the applica
tion, then these decisions can be made optimally (or nearly so, to avoid complexity
problems). When there is data-dependency, however, optimal or near optimal
compile-time strategies become intractable. Most previously proposed solutions
include random choices, clustering (to minimize communication overhead), and load
balancing. These solutions either ignore precedence relationships in the dataflow
graph, oruseheuristics based on oversimplified stochastic models. This is justifiable
if there is so much data-dependency that the precedence relationships are constantly
changing. However, there is alarge class of applications, including scientific compu
tations and digital signal processing, where this is not true.

Nearly all applications of parallel computers involve some data-dependent behavior.
Consequently, there is a clear need for compile-time strategies that can use pre
cedence information in these cases. Quasi-static scheduling strategies have been pre
viously proposed that can handle conditionals and some forms of iteration [Lee89].
The main contribution of this paper is to extend these techniques to handle data-
dependent iterations, and to propose that the resulting static schedules give the infor
mation needed by a compiler in self-timed and static-assignment situations. The
resulting technique can be used to enhace many scheduling algorithms, including
those that try to reduce interprocessor communication together with reducing mak
espan. The proposed method should work well when the amount of data dependency
is small, butwe admittedly cannot quantify at what level the technique breaks down.
The probability mass function of the number of iteration cycles must be known or
estimated at compile time for each iterative construct in the program. Using these
probabilities, we find an "assumed" number x of iterations that the scheduler can use
to construct a static schedule. This number is selected to rninimize the expected idle
time on all processors at runtime due to the difference between x and the actual
number of iteration cycles executed. This idle time is computed by assuming that the
processors are globally synchronized. When half the processors are devoted to the
iteration, the resulting choice for x is the median number of iterations (not the mean).
It is shown that if the execution is self-timed, then the performance can only improve
over the quasi-static case, and that the information generated by the quasi-static
schedule can be used at very low cost. For static-assignment scheduling, tractable
runtime scheduling algorithms may actually lead to worse schedules than the quasi-
static case, although most of the time the schedules will be better.
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